
Efficient Exploration in Reinforcement Learning
through Time-Based Representations

by

Marlos Cholodovskis Machado

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

c© Marlos Cholodovskis Machado, 2019



Abstract

In the reinforcement learning (RL) problem an agent must learn how to act op-

timally through trial-and-error interactions with a complex, unknown, stochas-

tic environment. The actions taken by the agent influence not just the imme-

diate reward it observes but also the future states and rewards it will observe,

implicitly requiring the agent to deal with the trade-off between short-term

and long-term consequences. In this context, the problem of exploration is the

problem of selecting appropriate actions to explore the state space to gather

information while taking this trade-off into consideration.

In this dissertation I advocate that agents’ exploration strategy can be

guided by the process of representation learning. I support this claim by

introducing different exploration approaches for RL algorithms that are ap-

plicable to complex environments with sparse rewards. They all use learned

time-based representations, state representations that capture the temporal

aspect of RL problems, implicitly encoding the temporal proximity of states.

The two instantiations of time-based representations I use are proto-value

functions (PVFs) and the successor representation (SR).

The first approaches I introduce are based on the idea of option-based ex-

ploration. Option-based exploration hinges on the assumption that an agent

that exhibits purposeful behavior is more likely to visit states that are far

from its current state than an agent that randomly selects actions at every

time step. I model this purposefulness through options, which, in reinforce-

ment learning, represent temporally extended courses of actions over different
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time scales. I then introduce algorithms capable of discovering options au-

tonomously through PVFs and the SR.

I also introduce count-based exploration approaches, which are based on

the idea of keeping state visitation counts to ensure all states (or abstractions

of a state) are visited a proper number of times. I show that the norm of the

SR, while it is being learned, incorporates state visitation counts and I use

this result to introduce RL algorithms that achieve state-of-the-art results in

large domains that require function approximation.

I evaluate my algorithms in both tabular domains and Atari 2600 games. I

use tabular domains such as the 4-room domain, RiverSwim, and SixArms in

order to develop a better intuition about the proposed algorithms and to com-

pare the proposed approaches to classic baselines in the field. I use Atari 2600

games to evaluate the scalability and generality of the proposed approaches

since the state space of Atari 2600 games is too large, requiring function ap-

proximation. I discuss approaches based on linear and non-linear function

approximation.
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Preface

The central chapters of this dissertation are based on papers that are ei-

ther published or that are currently under review. More specifically, Chap-

ter 3, 4 and 5 are based on papers published in conference proceedings [1, 2].

Chapter 6 is based on a paper currently under review [3]. Parts of Chapter 7

are based on a paper presented at a workshop [4]. In the rest of the chapters

(1, 2, and 8), the majority of the contributions are original to this dissertation.
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My goal when writing this dissertation was to present a concise and cohe-

sive story with all contributions revolving around the same topic. During the

period in which I was developing the research presented in this dissertation I

also wrote papers that have been omitted. Some of them are briefly discussed

as related work [5, 6, 9, 10, 11] while others are entirely unrelated to the main
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“Se quer seguir-me, narro-lhe; não uma aventura, mas ex-
periência, a que me induziram, alternadamente, séries de
racioćınios e intuições. Tomou-me tempo, desânimos, es-
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Chapter 1

Introduction

Artificial intelligence (AI) is often seen as an agent’s ability to achieve goals

in the world, with the agent being a decision maker that perceives its envi-

ronment through sensors and acts upon that environment through actuators.

This ability to achieve goals involves the automation of “activities such as

decision-making, problem solving, learning, creating, game playing, and so

on” (Bellman 1978). Sequential decision making problems are capable of mod-

eling most of these activities. These problems are the main topic of study in

this dissertation.

Sequential decision making problems take place over multiple time steps.

In this dissertation I study a particular formulation of sequential decision mak-

ing problems where at every time step an agent is in a state; it takes an action;

and then transitions to a new state observing a real-valued reward signal. The

agent’s goal is to maximize a (possibly weighted) sum of future rewards. In

these problems the actions taken by the agent influence not just the immedi-

ate reward it observes but also the future states and rewards it will observe.

Consequently, this problem implicitly requires agents to deal with the trade-off

between immediate and future rewards.

In the reinforcement learning framework we formulate sequential decision

making problems as tasks where an agent must learn how to act optimally

through trial-and-error interactions with a complex, unknown, stochastic en-

vironment. Reinforcement learning algorithms have been very successful in

addressing sequential decision making problems. Some of these successes
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include tackling problems of navigation (Banino et al. 2018), memory con-

trol optimization (Ipek et al. 2008; Mart́ınez and Ipek 2009), game play-

ing (Mnih, Kavukcuoglu, et al. 2015; Silver et al. 2016; Tesauro 1995), robot

control (Levine et al. 2016; Stone, Sutton, and Kuhlmann 2005) and services

personalization (Theocharous, Thomas, and Ghavamzadeh 2015).

In this dissertation I study the problem of exploration in reinforcement

learning, which aims to reduce the number of samples (i.e., interactions) an

agent needs in order to learn to perform well in the aforementioned tasks.

The sample efficiency of reinforcement learning algorithms is largely depen-

dent on how agents select actions to explore the state space. Surprisingly, the

most common approach to date is to select exploratory actions uniformly at

random; with many high-profile success stories in the field obtained with this

strategy (e.g., Mnih, Kavukcuoglu, et al. 2015; Tesauro 1995). Nevertheless,

random exploration often fails in environments with sparse rewards, that is,

environments where the agent observes a reward signal of value zero for the

majority of states.1 This dissertation contributes and evaluates exploration

approaches for reinforcement learning algorithms that are applicable to com-

plex environments with sparse rewards. Specifically, I focus on algorithmic

approaches for exploration that take long-term dependencies into considera-

tion.

1.1 Thesis statement

The central claim of this work is that time-based representations can

be used to design domain-independent algorithms that efficiently

explore complex, sparse reward environments.

Time-based representations are state representations that capture the tem-

poral aspect of sequential decision making problems, implicitly encoding tem-

poral proximity of states; that is, how long an agent would take to go from

1In this dissertation I use the term environments with sparse rewards for brevity and ease
of presentation. Actually, in the reinforcement learning formulation, any sequential decision
making problem has dense rewards since, by definition, a reward signal is observed at every
time step. By environments with sparse rewards I formally mean environments where the
vast majority of transitions lead to reward signals with the same value.
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one state to another given a policy. In this dissertation, as I discuss be-

low, I focus on two different time-based representations: proto-value func-

tions (Mahadevan 2005; Mahadevan and Maggioni 2007) and the successor

representation (Dayan 1993). I discuss both of these approaches in the next

chapter but, in short, proto-value functions are basis functions obtained from

the eigendecomposition of the matrix encoding the environment’s underlying

state-transition graph. The successor representation is a representation that

generalizes between states using the similarity between their successors, that

is, the similarity between the states that follow the current state given the

environment’s dynamics and the agent’s policy.

By domain-independent algorithms I mean reinforcement learning algo-

rithms that are able to succeed in a variety of domains without requiring

domain-specific tailoring. I am using this term in the same way as Bellemare,

Naddaf, et al. (2013). By algorithms that efficiently explore the state space I

mean algorithms that given a fixed number of samples it is likely they will visit

more states than if they were selecting actions uniformly at random. The main

baseline I use throughout most of this dissertation is selecting exploratory ac-

tions uniformly at random because it remains the most commonly adopted

approach in complex domains.

By complex environments I mean large, stochastic, initially unknown en-

vironments. Often it is not tractable to enumerate all states in such environ-

ments and function approximation, discussed in the next chapter, is required.

Finally, sparse reward environments, as aforementioned, are those environ-

ments in which the value of the observed reward signal is the same in the vast

majority of the visited states. This poses a hard exploration problem because

all states initially seem equally promising, even though some of these states

might be closer to states with different reward signals.

1.2 Approach

I support my thesis statement in this document with different algorithms,

theoretical justifications, and experimental results. The developed algorithms
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are based either on proto-value functions or on the successor representation;

and they tackle the problem of exploration with an approach that is either

based on options, defined below, or on counting state/features visitation.

The idea of option-based exploration hinges on the assumption that an

agent that exhibits purposeful behavior – i.e., that takes a sequence of actions

targeting some goal – is more likely to visit states that are far from its current

state than an agent that randomly selects actions at every time step.

I model this purposefulness through options, which, in reinforcement learn-

ing, represent temporally extended courses of actions over different time scales

(Sutton, Precup, and Singh 1999). In this dissertation I consider the call-

and-return option execution model and I provide evidence that exploring at

a higher level of abstraction, acting according to randomly selected options

instead of acting according to randomly selected actions, does reduce the ex-

pected average time an agent takes to visit every state in the environment.

In this context, I first introduce an algorithm for option discovery based

on proto-value functions. As I discuss in the next chapter, proto-value func-

tions have important properties that are useful for exploration, such as the

fact that they do not depend on the environment’s rewards, allowing them

to be applicable to environments with sparse rewards, and that they capture

different time scales in the environment. I then show that the successor rep-

resentation, which can be estimated online with a low computational cost, is

actually a more general version of proto-value functions. Using this insight I

revisit my algorithm for option discovery based on proto-value functions and I

extend it to the more general case of stochastic environments with asymmetric

transitions. Importantly, such generalization also allows me to introduce an

algorithm that learns representations at the same time as it discovers options.

I conclude this line of work by providing preliminary results on how we

can use some of the aforementioned approaches iteratively. When doing so

we can see that the discovered options are increasingly more complex in later

iterations and they allow agents to navigate even farther through the state

space.

In this dissertation I also explore the idea of count-based exploration by
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introducing a count-based algorithm using the successor representation. This

algorithm is theoretically justified in the tabular case while being extendable

to settings where function approximation is required. My approach and its

underlying theory is based on the substochastic successor representation, a

concept I develop in this dissertation. I show that the substochastic successor

representation is able to implicitly count the number of times each state (or

feature) has been observed. The proposed approach is general. It is applicable

to the tabular setting, where all states can be uniquely identified, and to

the setting where features representing a state are learned through neural

networks.

Throughout this dissertation I perform evaluations both in tabular envi-

ronments and in Atari 2600 games. I use the tabular case to provide intuition

about the proposed methods and I use Atari 2600 games to evaluate the gen-

erality of the proposed solutions and their applicability to complex domains

that require function approximation.

1.3 Contributions

The key contributions of this dissertation are:

• Option-based exploration. Options have always been said to have the

potential to accelerate learning. In this thesis, considering the call-and-

return option execution model, I advocate that options can accelerate

learning not only by accelerating the credit assignment process but also

by improving exploration through the introduction of purposeful behav-

iors (Chapter 3). I also show that options that terminate on bottleneck

states, which are often used as example of canonical options, impair

exploration if used as described above (Chapter 4).

• Proto-value functions for option-based exploration. I introduce

an algorithm that discovers options autonomously by defining them in

terms of proto-value functions. This algorithm is applicable to the tabu-

lar case and to the linear function approximation case for binary features,

5



terms I define in the next chapter (Chapter 4).

• The successor representation for option-based exploration. I

provide an equivalence between proto-value functions and the eigenvec-

tors of the successor representation, when the SR is defined in a specific

way, and I use such an equivalence to extend the aforementioned algo-

rithm to a more general setting with stochastic and asymmetric transi-

tions. I also extend this approach to settings where handcrafted features

are not available by using a neural network that is capable of estimating

the successor representation from raw pixels while also learning a feature

representation (Chapter 5).

• Incremental exploration with options discovered iteratively. I

present some preliminary results in the tabular case where I evaluate

multiple iterations of the process of discovering options that are then

used for exploration. In this loop the agent selects actions according

to randomly chosen options, moving farther away in the state space.

While doing so the agent gathers more experience, which is then used

to discover more options that, as I show here, will push the agent even

farther through the state space (Chapter 7).

• The successor representation for count-based exploration. I pro-

pose an extension to the successor representation, termed substochas-

tic successor representation, and I show that it implicitly counts state

visitation. This realization leads to a model-based algorithm that is

competitive to the state-of-the-art in hard exploration problems in the

tabular case. Moreover, it also motivated the development of a model-

free algorithm that uses a neural network to learn representations from

raw pixels and to estimate state-action value functions. This algorithm

achieves performance competitive to the state-of-the-art in Atari 2600

games (Chapter 6).
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1.4 Dissertation layout

This document contains eight chapters. Chapter 2 presents an overview of

the related background and prior research. Chapter 3 introduces the idea of

option-based exploration and the option discovery cycle, a general approach

I introduce for option discovery. Chapter 4 contains an instantiation of the

option discovery cycle using proto-value functions. Chapter 5 presents the

equivalence between proto-value functions and the eigenvectors of a specific

instantiation of the successor representation and it uses this equivalence to in-

troduce algorithms for option discovery based on the successor representation.

Chapter 6 introduces the substochastic successor representation and it shows

how we can use this concept to create count-based exploration algorithms.

Chapter 7 presents some preliminary results on the consequences of running

multiple iterations of the loop that alternates between exploring the environ-

ment and discovering options. It also discusses some recent work, from other

research groups, that while not my own build upon the ideas introduced in

this thesis. Chapter 8 summarizes these contributions and discusses potential

future research directions.
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Chapter 2

Background

In this chapter I introduce the formalism behind reinforcement learning,

the options framework (Sutton, Precup, and Singh 1999), as well as time-

based representations (Dayan 1993; Mahadevan 2005). I elaborate on the

problem of exploration in reinforcement learning and I present some of the

existing algorithms that tackle this problem. I conclude this chapter discussing

the Arcade Learning Environment (Bellemare, Naddaf, et al. 2013), the main

platform I used when evaluating my algorithms.

Throughout this dissertation, as a convention, I will indicate scalar-valued

random variables by capital letters (e.g., St, Rt), vectors by bold lowercase

letters (e.g., θ,φ), functions by non-bold lowercase letters (e.g., v, q), and sets

with a calligraphic font (e.g., S,A).

2.1 Standard Reinforcement Learning

Reinforcement learning (RL) is a problem formulation that allows us to tackle

sequential decision making problems. In RL we consider an agent interacting

with an unknown environment in a sequential manner, aiming to maximize cu-

mulative reward. In this dissertation I assume that the environment satisfies

the Markov property and that it can be modeled as a Markov decision process

(MDP). An MDP is formally defined as a 4-tuple (S,A, p, r). Starting from

state S0 ∈ S, at each time step t the agent takes an action At ∈ A, to which the

environment responds with a state St+1 ∈ S, according to a transition prob-
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ability kernel p(s′ | s, a) .
= Pr(St+1 = s′ |St = s, At = a), and with a reward

signal Rt+1 ∈ R, where r(s, a) indicates the expected reward for a transition

from state s under action a, that is, r(s, a)
.
= E[Rt+1 | St = s, At = a].

The agent’s goal is to learn a policy π : S×A→ [0, 1] that maps each state

to a probability distribution over actions. The optimal policy maximizes, on

expectation, the discounted cumulative sum of rewards, defined as

Gt =
∞
∑

k=0

γkRt+k+1, (2.1)

with γ ∈ [0, 1). The parameter γ is called the discount factor and it defines

the relative value of future rewards.

In this dissertation I focus on value-based methods. To obtain the policy

π, these algorithms aim to estimate the state-value function vπ : S → R or

the state-action value function qπ : S × A → R. The value of a state s when

following a policy π, vπ(s), is defined to be the expected sum of discounted

rewards from that state: vπ(s)
.
= Eπ

[

Gt|St = s
]

. The state-action value func-

tion is defined similarly, but it also takes into consideration the action taken

in state s, that is, qπ(s, a)
.
= Eπ

[

Gt|St = s, At = a
]

. Where the expectation in

both definitions is with respect to the policy π and the probability kernel p.

Importantly, these function can be defined recursively (Bellman 1957):

vπ(s) =
∑

a
π(a|s)

[

r(s, a) + γ
∑

s′
p(s′|s, a)vπ(s′)

]

, (2.2)

and

qπ(s, a) = r(s, a) + γ
∑

s′

p(s′|s, a)vπ(s′)

=
∑

s′,r

p(s′, r|s, a)
[

r(s, a) + γ
∑

a′

π(a′|s′)qπ(s′, a′)
]

. (2.3)

These equations can also be written in matrix form. The state-value func-

tion, for example, can be defined with vπ, r ∈ R
|S| and Pπ ∈ R

|S|×|S|:

vπ = r+ γPπvπ = (I − γPπ)
−1r, (2.4)

where Pπ is the state to state transition probability function induced by π,

that is, Pπ(s, s
′) =

∑

a π(a|s)p(s′|s, a).
9



These algorithms can be roughly divided into two classes: model free and

model-based approaches. I further discuss these approaches below.

2.1.1 Model-Free Reinforcement Learning

In the reinforcement learning formalism we assume the agent does not know the

matrix Pπ nor the function r beforehand. Model-free approaches directly esti-

mate vπ or qπ from samples (s, a, r, s′), without explicitly estimating the tran-

sition dynamics or the reward function of the environment. Two traditional

model-free approaches in reinforcement learning are Q-Learning (Watkins and

Dayan 1992) and Sarsa (Rummery and Niranjan 1994; Sutton and Barto 1998).

Sarsa is an on-policy algorithm, meaning that it estimates the value of the

policy currently followed by the agent. Typically, the agent follows an ǫ-greedy

policy with respect to the estimates Q(St, At) of the state-action value function

qπ(St, At). Sarsa’s update rule is

Q(St, At)← Q(St, At) + α
(

Rt+1 + γQ(St+1, At+1)−Q(St, At)
)

, (2.5)

where α ∈ [0, 1) is the algorithm’s step-size.

Sarsa and several other algorithms I discuss in this dissertation are based

on temporal difference (TD) learning (Sutton 1988), which learns estimates of

the value function by bootstrapping from its current estimate. This is done by

updating the prediction at a given time step to bring it closer to the prediction

of the same quantity at the next time step according to the TD error, δt. In

Sarsa the TD error is

δt = Rt+1 + γQ(St+1, At+1)−Q(St, At). (2.6)

Q-learning is another traditional RL algorithm. It it is an off-policy algo-

rithm, meaning that it estimates the value of a policy that can be different

from the one followed by the agent. The optimal policy, for which the agent

is estimating the value, is called the target policy while the policy the agent is

following is called the behavior policy. Q-learning’s update rule is

Q(St, At)← Q(St, At) + α
(

Rt+1 + γmax
a∈A

Q(St+1, a)−Q(St, At)
)

, (2.7)
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where α is, again, the algorithm’s step-size.

The policy that is learned by both algorithms is:

π(s)
.
= argmax

a∈A
Q(s, a). (2.8)

When the value of each state (or state-action pair) is individually stored,

this is a tabular method. Nevertheless, generalization is required in problems

with large state spaces, where it is unfeasible to learn an individual value for

each state. This is generally done by parametrizing a function V or Q with

a set of parameters θ. We write, given the parameters θ, V (s;θ) ≈ vπ(s)

and Q(s, a;θ) ≈ qπ(s, a). In the past, a common approach was to use linear

function approximation where Q(s, a;θ) = θ⊤φ(s, a), in which θ is now a

vector of weights and φ(s, a) denotes a static feature representation of the

state s when taking action a. In this case, the update rule is not very different

from what I described above. For Sarsa, for example, it is:

θt+1 ← θt + α
(

Rt+1 + γθ⊤t φ(St+1, At+1)− θ⊤t φ(St, At)
)

. (2.9)

Recently, Mnih, Kavukcuoglu, et al. (2015) introduced Deep Q-Network

(DQN), which uses a neural network to perform off-policy non-linear function

approximation of the value function. The study of algorithms that use neural

networks as function approximators has since then been dubbed deep reinforce-

ment learning. Deep RL substitutes the requirement of a good handcrafted

feature representation by the requirement of an effective network architecture

and algorithm. Mnih, Kavukcuoglu, et al., for example, when introducing

DQN used a neural network composed of three hidden convolutional layers

followed by a fully-connected hidden layer (see Figure 2.1). The network pa-

rameters are updated through gradient-descent with the following update rule:

θt+1 = θt + α
[

Rt+1 + γmax
a∈A

Q(St+1, a;θ
−
t )

−Q(St, At,θt)
]

∇θt
Q(St, At;θt), (2.10)

where θ−t denotes the parameters of a duplicate network, which are updated

less often for stability purposes:

θ−t =

{

θt, if t mod U = 0,
θ−t−1, otherwise,
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tion that use model-based algorithms. The results I present in Chapter 6 are

limited to the tabular case.

2.2 Time-Based Representations

In order to perform function approximation we must have access to a function

capable of extracting a representation from the agent’s observation (the func-

tion φ in Equation 2.9, for example). For decades it was quite common to use

domain knowledge to handcraft feature vectors that were useful for the problem

being solved. Learning feature representations became much more common in

the past couple of years after the rise of deep reinforcement learning. In this

section I discuss two representation learning methods that pre-date deep re-

inforcement learning. They learn representations with a particular structure

and they are central to this dissertation.

2.2.1 Proto-Value Functions

Proto-value functions (PVFs; Mahadevan 2005) are learned representations

that reflect the geometry of the environment. They are basis functions based

on the notion of diffusion models (Coifman et al. 2005; Kondor and Lafferty

2002), which are models that capture how information flows in the environment

by modeling it as a graph connecting nearby states. PVFs were introduced

as a way to capture the underlying environment dynamics in a representation

so this representation would be able to properly represent value functions

linearly. This is motivated by the fact that value functions can actually be

seen as the result of rewards diffusing through the state space, governed by

the environment dynamics (Mahadevan and Maggioni 2007).

Formally, proto-value functions are the eigenvectors of a symmetric diffu-

sion operator such as the combinatorial graph Laplacian matrix,

L = D −W, (2.11)

where W is the graph’s adjacency matrix and D the diagonal matrix whose

entries are the row sums of W . Notice that, in theory, the matrix W can be
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extended from a binary matrix to a weight matrix. Different diffusion models

can be used to generate PVFs, such as the normalized graph Laplacian,

L = D− 1

2 (D −W )D− 1

2 , (2.12)

which is what I use in this dissertation.

These diffusion models are tightly related to the random walk diffusion

model D−1W . One of the reasons the random walk matrix is called a diffusion

model is because powers of this matrix determine how quickly the random walk

takes to converge to its stationary distribution. A diffusion model works as a

surrogate that is easier to estimate than the full transition matrix, while still

being useful for value function approximation since the value function can be

represented as a linear combination of the eigenvectors of the transition matrix,

as suggested in Equation 2.4. See the work by Mahadevan and Maggioni (2007)

for a detailed discussion.

Computational reasons justify the use of one of the graph Laplacian ma-

trices instead of simply using the random walk model. The graph Laplacian

has a spectral structure that is related to the random walk diffusion model

but it is symmetric, making it easier to be diagonalizable. It is fairly easy to

see the relationship of the spectral structure of the graph Laplacian and of the

random walk model, as Mahadevan and Maggioni (2007) showed:

L = D− 1

2 (D −W )D− 1

2 = I −D− 1

2WD− 1

2

I − L = D− 1

2WD− 1

2

D− 1

2 (I − L)D 1

2 = D−1W

Thus, we can then see that both the normalized graph Laplacian and the ran-

dom walk matrix have the same eigenvalues. The eigenvectors of the random

walk matrix are the eigenvectors of I − L point-wise multipled by D
1

2 . These

basis functions are known as proto-value functions because they form “global”

basis functions whose support is the entire state space. Consequently, “the set

of PVFs form the building blocks of all value functions on a state space” (Ma-

hadevan and Maggioni 2007). Importantly, PVFs provide a compact basis

set.
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expectation can be estimated from samples with TD methods:

Ψ̂(St, j) ← Ψ̂(St, j) + η

[

✶{St=j} + γΨ̂(St+1, j)− Ψ̂(St, j)

]

, (2.13)

for all j ∈ S and with η being the step-size. The successor representation also

corresponds to the Neumann series of γP :

Ψπ =
∞
∑

t=0

(γPπ)
t = (I − γPπ)

−1. (2.14)

Interestingly, when looking at the equation above we see that the successor

representation is actually part of the solution when computing a value function,

which was first presented in Equation 2.4:

vπ = (I − γPπ)
−1r = Ψπr.

The successor representation is directly related to several other ideas in

the field. It can be seen as a form of dual approach to dynamic programming

and to value function based methods in reinforcement learning (Wang, Bowl-

ing, and Schuurmans 2007). Moreover, the eigenvectors generated from the

eigendecomposition of the SR, when it is defined with respect to the uniform

random policy in a deterministic and symmetric environment, are equivalent

to proto-value functions (Stachenfeld, Botvinick, and Gershman 2014; 2017;

Machado, Rosenbaum, et al. 2018) and to slow feature analysis (Sprekeler

2011).

Such equivalences play a central role in the algorithm I describe in Chap-

ter 5. The successor representation may also have an important role in neuro-

science. Stachenfeld, Botvinick, and Gershman (2014; 2017) recently suggested

that the successor representation is encoded by the hippocampus, and that a

low-dimensional basis set representing it is encoded by the enthorhinal cortex.

Interestingly, both hippocampus and entorhinal cortex are believed to be part

of the brain system responsible for spatial memory and navigation, which is

obviously related to the problem of exploration, the main topic of study in

this dissertation.

Universal value function approximators (UVFAs; Schaul, Horgan, et al.

2015) are also seemingly related to the successor representation. UVFAs
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use function approximation to generalise not just over states but also over

goal states. This is different from the successor representation, which can be

thought of as generalizing over different reward functions given a fixed policy.

Nevertheless, UVFAs lack the theoretical foundation the successor representa-

tion has and they are not easily defined in the tabular case. I do not explore

UVFAs in this dissertation, although adapting the ideas proposed here to

UVFAs might be an interesting future research direction.

While the definitions given for the successor representation so far have been

limited to the tabular case, they can also be extended to the function approx-

imation setting. Successor features are the natural extension of the successor

representation to the function approximation setting. In this dissertation I

use Barreto, Dabney, et al.’s (2017) definition of successor features for the

uncontrolled case:

Definition 2.2.1 (Successor Features). Let ψπ(s) ∈ R
d denote the successor

features of state s when following the policy π. For a given 0 ≤ γ < 1 and for

a feature representation φ(s) ∈ R
d we have:

ψπ(s) = Eπ,p

[

∞
∑

t=0

γtφ(St)

∣

∣

∣

∣

∣

S0 = s

]

.

Alternatively, in matrix form, Ψπ =
∑∞

t=0(γPπ)
tΦ = (I − γPπ)

−1Φ, where

Φ ∈ R
|S|×d is a matrix encoding the feature representation of each state.

In words, ψπ,i(s) encodes the discounted expected value of the i-th feature

in the vector φ(·) when the agent starts in state s and follows the policy π.

The update rule presented in Equation 2.13 can be naturally extended to this

definition. Importantly, the TD error in the update rule can be used as a

differentiable loss function, allowing us to estimate successor features with a

neural network, which is something I explore in subsequent chapters of this

dissertation.

The successor representation has received a lot of attention recently. One

of the results that inspired the work I present here is Kulkarni, Saeedi, et

al.’s (2016), which presented a first approach for approximating the successor

representation using a neural network. In this work Kulkarni, Saeedi, et al.
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briefly show how one can extract bottleneck states as subgoals for options,

which I discuss below, as well as how one can use the successor representa-

tion to accelerate learning in non-stationary environments where the reward

function changes every now and then. Importantly, in Chapter 4 and 5; I use

the squared TD-error as a loss function to learn the successor features with a

neural network, which is similar to what Kulkarni, Saeedi, et al. proposed. Dif-

ferently than their work, my neural networks use the definition of the successor

representation in terms of states, not state-action pairs. Moreover, my neural

networks do not learn a reward model and they do not use an autoencoder to

learn a representation of the world.

To the best of my knowledge, the successor representation has never been

used for exploration or option discovery, as I propose in this dissertation.

Recently it has been extensively studied for transfer learning in reinforcement

learning (Barreto, Borsa, et al. 2018; Barreto, Dabney, et al. 2017; Lehnert

and Littman 2018; Lehnert, Tellex, and Littman 2017; Ma, J. Wen, and Bengio

2018). It has also been recently used to accelerate learning of general value

functions (Sherstan, Machado, and Pilarski 2018) and as a motivation for the

generation of new model-based algorithms (Pitis 2018).

2.3 Temporal Abstraction in RL

Sequential decision making usually involves planning, acting, and learning

about temporally extended courses of actions over different time scales. In the

reinforcement learning framework, options are a well-known formalization of

the notion of actions extended in time that allow us to represent courses of

actions (Sutton, Precup, and Singh 1999). I discuss this formalization below,

as well as the most relevant related work to this dissertation.

2.3.1 The Options Framework

An option ω ∈ Ω is a 3-tuple

ω = 〈Iω, πω, Tω〉,
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with Iω ⊆ S denoting the option’s initiation set, πω : S×A→ [0, 1] denoting

the option’s policy, and Tω ⊆ S denoting the option’s termination set. I

consider the call-and-return option execution model in which a meta-policy,

µ : S → Ω, dictates the agent’s behavior (notice A ⊆ Ω). After the agent

decides to follow option ω from a state in Iω, actions are selected according

to πω until the agent reaches a state in Tω.
In this dissertation I use the terms meta-policy and high-level policy inter-

changeably when referring to µ. Moreover, by stating that an agent follows

or takes an option ω I mean that the agent commits to follow the option’s

policy, πω, until its termination. To distinguish between options and actions,

in this dissertation I often refer to the actions originally defined in the problem

formulation as primitive actions.

The formal definition of qµ : S×Ω→ R comes from a natural extension of

the traditional state-action values (Sutton, Precup, and Singh 1999):

qµ(s, ω) = E

[

Rt+1 + · · ·+ γkRt+k

+γk
∑

ω′∈Ω

µ(St+k, ω
′)qµ(St+k, ω

′) | E(ω, s, t)
]

= Rω(s) +
∑

s′∈S

p(s′|s, ω)
∑

ω′∈Ω

µ(s′, ω′)qµ(s
′, ω′), (2.15)

with E(ω, s, t) being the event of ω being initiated in state s at time t, Rω(s)

denoting the expected discounted sum of rewards observed while executing

option ω given E(ω, s, t), and t + k being the random time at which ω ter-

minates. In this definition, γ is folded into the state-prediction part of the

equation, p(s′|s, ω), such that

p(s′|s, ω) =
∞
∑

k=1

p(s′, k|s, ω)γk, (2.16)

where p(s′, k|s, ω) is the probability that the option ω terminates in s′ after k

steps (Sutton, Precup, and Singh 1999).

The formalism I used above to introduce options is more restrictive than the

original one. Instead of a termination set, Sutton, Precup, and Singh (1999)

defined options with a termination condition, β(St), denoting the probability
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the option terminates in the state the agent is currently in, St. I restrict

β(St) ∈ {0, 1} instead. Additionally, although it is becoming increasingly

popular, the call-and-return option execution model I use has limitations. In

the call-and-return execution model, once an option starts to be executed it

cannot be interrupted, regardless of what the agent observes or the rewards

it receives. This is clearly not ideal. Although beyond the scope of this

dissertation, the algorithms I introduce here could be augmented to support

interruption (Sutton, Precup, and Singh 1999). The options I introduce in the

next chapters, when taking the reward into consideration, could be interrupted

when there is an option ω′ ∈ Ω such that

qµ(St, ω
′) > qπω

(St, a), ∀a ∈ A, (2.17)

where ω ∈ Ω is the option being executed before interruption. It is also

important to acknowledge that only recently the idea of actually “executing”

an option has become popular. In the past options were mostly used for faster

credit assignment.

2.3.2 Related Work

The literature related to options in reinforcement learning is vast. In this

section I discuss only the most relevant work related to option discovery, the

subfield concerned with the problem of autonomously identifying good op-

tions – i.e., the elements of the tuple 〈Iω, πω, Tω〉.
Traditionally, options capable of moving agents to bottleneck states have

been sought after. Bottleneck states are those states that connect different

densely connected regions of the state space (e.g., doorways; McGovern and

Barto 2001; Şimşek and Barto 2004; Solway et al. 2014). They have been

shown to be efficient for planning as these states are the states most frequently

visited when considering the shortest distance between any two states in an

MDP (Solway et al. 2014). In Chapter 4 I discuss this objective in detail and

I show a setting in which bottleneck options hurt agent’s performance.

Most algorithms for option discovery can be seen as top-down approaches.
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Agents use successful trajectories that lead to non-zero rewards1 as a start-

ing point, decomposing and refining them into options. There are many ap-

proaches based on this principle, such as methods that use the observed re-

wards to generate intrinsic rewards leading to new value functions (e.g., Mc-

Govern and Barto 2001; Menache, Mannor, and Shimkin 2002; Konidaris and

Barto 2009), methods that use the observed rewards to climb a gradient (e.g.,

Mankowitz, Mann, and Mannor 2016; Vezhnevets, Mnih, et al. 2016; Bacon,

Harb, and Precup 2017), or to do probabilistic inference (Daniel et al. 2016;

Fox et al. 2017). However, such approaches are not applicable in large state

spaces with sparse rewards. If non-zero rewards are unlikely to be found by

an agent using only primitive actions, requiring long or specific sequences of

actions, options are equally unlikely to be discovered.

The approaches I propose in this dissertation can be seen as bottom-up

approaches, in which options are constructed without taking the rewards gen-

erated by the environment into consideration. Options discovered this way

tend to be task-independent, in the sense that they are potentially useful in

many different tasks (Eysenbach et al. 2019; Gregor, Rezende, and Wierstra

2016). Such options can also be seen as being useful for exploration by allow-

ing agents to commit to a behavior for an extended period of time, as I discuss

in the next chapter. Importantly, other results that became available mostly

after or simultaneously to the work I developed in this dissertation have also

shown evidence of the usefulness of options for exploration (e.g., Eysenbach

et al. 2019; Fox et al. 2017).

Among the approaches to discover options without using the rewards gen-

erated by the environment are the use of global or local graph centrality mea-

sures (Chaganty, Gaur, and Ravindran 2012; Şimşek and Barto 2004; Şimşek

and Barto 2008; Şimşek, Wolfe, and Barto 2005), clustering of states (Bacon

2013; Fox et al. 2017; Lakshminarayanan et al. 2016; Mannor et al. 2004)

and diversity between terminal states (Eysenbach et al. 2019). Interestingly,

1For clarity and ease of presentation I focus the presentation on tasks that are defined
such that the agent observes a reward signal of value zero until reaching a goal. This
discussion is equally applicable to other settings with sparse rewards, such as tasks where
the agent observes a reward of -1 until the episode is over.
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Şimşek, Wolfe, and Barto (2005) and Lakshminarayanan et al. (2016) also use

the graph Laplacian in their algorithm, as I do in this dissertation. However,

they use the graph Laplacian to identify bottleneck states.

The idea of explicitly using options for exploration is much less explored.

Chaganty, Gaur, and Ravindran (2012) show how options can be used to

create a small world effect into the environment’s underlying graph, while

Baranes and Oudeyer (2013) and Moulin-Frier and Oudeyer (2013) show how

one can build policies to explicitly assist agents to explore the environment.

The proposed algorithms self-generate subgoals in order to maximize learning

progress. The policies built can be seen as options. Solway et al. (2014)

formally proved that “optimal hierarchy minimizes the geometric mean number

of trial-and-error attempts necessary for the agent to discover the optimal

policy for any selected task”. My experiments confirm this result, although I

propose diffusion time as a different metric to evaluate how options improve

exploration.

The idea of discovering options by learning to control parts of the environ-

ment is also related to my work. The options I discover encode different rates

of change in the agent’s representation of the world, while the corresponding

policies aim at maximizing such change. Others have also proposed ways to

discover options by learning to control the environment. Hengst (2002), for

instance, proposes an algorithm that explicitly models changes in the variables

that form the agent’s representation. Gregor, Rezende, and Wierstra (2016)

proposed an algorithm in which agents discover options by maximizing a no-

tion of empowerment (Salge, Glackin, and Polani 2014), where the agent aims

at getting to states with a maximal set of available intrinsic options.

Continual Curiosity driven Skill Acquisition (CCSA; Kompella, Stollenga,

et al. 2017) is the closest approach to eigenoptions, which I introduce here.

CCSA also discovers skills that maximize an intrinsic reward obtained by some

extracted representation. While I use PVFs or the successor representation,

CCSA uses Incremental Slow Feature Analysis (SFA; Kompella, Luciw, and

Schmidhuber 2011) to define the intrinsic reward function. Sprekeler (2011)

has shown that, given a specific choice of adjacency function, PVFs are equiv-
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alent to SFA (Wiskott and Sejnowski 2002). SFA becomes an approximation

of PVFs if the function space used in the SFA does not allow arbitrary map-

pings from the observed data to an embedding. My algorithms differ in how

I define the initiation and termination sets, as well as in the objective being

maximized. CCSA acquires skills that produce a large variation in the slow-

feature outputs, leading to options that seek bottlenecks. The algorithms I

propose do not seek bottlenecks, focusing on traversing different directions of

the learned representation.

Another approach directly related to this dissertation is FeUdal Networks

(Vezhnevets, Osindero, et al. 2017). At the same time I was developing the

work presented in Chapter 4, Vezhnevets, Osindero, et al. (2017) also proposed

to explicitly build hierarchies based on the learned latent representation of the

state space. Their work is inspired by feudal reinforcement learning (Dayan

and Hinton 1992), an approach that generates a hierarchy of policies by hav-

ing managers dispatching jobs to workers. Similar to the work I present here,

Vezhnevets, Osindero, et al. (2017) explicitly encourage the agent to traverse

directions of a latent representation of the environment. They do so by using

the cosine similarity between the goal state, defined by a “manager” module,

and the direction, in the latent space, that the agent navigates. Neverthe-

less, Vezhnevets, Osindero, et al. (2017) do not explicitly build options with

initiation and termination sets. Instead, they learn a hierarchy through an

end-to-end learning system that does not allow us to easily retrieve options

from it.

Finally, Scheduled Auxiliary Control (SAC) and Visual Reinforce-

ment Learning with Imagined Goals (RIG) are a two recent algorithms that

came after much of the work in this dissertation that propose similar ideas.

SAC (Riedmiller et al. 2018) suggests that agents should learn policies to max-

imize an auxiliary task (e.g., to get two objects within a given distance, or to

maximize the translation velocity sensor), and that these learned sub-policies

should be used to drive exploration. Similar to the results I present in the

next chapters, they showed that randomly selecting between sub-policies does

improve exploration. Differently from my work, they did not formalize their
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approach in terms of options and, more importantly, they still rely on hand-

coded auxiliary tasks that, although general, do start with some semantics

about the task (e.g., proximity, relative position of objects, etc). The second

approach, RIG (Nair et al. 2018), proposes agents should learn a representation

with a β-VAE (Higgins et al. 2017) and then use this learned representation

to pose goals. It does not specifically implement options but goal-conditioned

policies. RIG poses goals by sampling from the β-VAE and then learns how to

achieve those goals. This process is said to generate skills that are useful when

a task is posed in the form of a reward function, giving agents the purposeful

exploration I talk about in this dissertation. In a high-level, both algorithms

can be seen as an implementation of the option discovery cycle I discuss in the

next chapter.

2.4 Exploration in Reinforcement Learning

Reinforcement learning algorithms often are not only responsible for learning

accurate value estimates from the observed samples but also for determining

the sample collection process. Ideally, RL algorithms should be able to traverse

the state space to obtain distinct and informative samples as fast as possible.

Nevertheless, it is not clear how to effectively collect these samples as the agent

starts with no information about the environment it is in. This is the problem

of exploration. Maximizing the return in environments with sparse rewards

is one of the problems that exemplify the importance of good exploration

strategies. Until the agent observes a non-zero reward it does not know that

it is possible to achieve a return that is greater than zero. Therefore, it is of

the agent’s interest to explore the environment as fast as possible to ensure it

will observe samples with non-zero rewards.

The existing approaches for exploration in model-based and model-free RL

have very different flavours. In model-based RL we often have theoretical

guarantees (e.g., Brafman and Tennenholtz 2002; Kearns and Singh 2002;

Strehl and Littman 2008) that allow us to understand what are reasonable

expectations about an algorithm in terms of sample complexity. Nevertheless,
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the algorithms derived from these results have not been as succesful in larger

problems where function approximation is required, with few exceptions being

known (e.g., Keramati et al. 2018). Model-free approaches are mostly heuristic,

but have been extremely succesful in the past (e.g. Bellemare, Srinivasan, et al.

2016; Burda et al. 2019; Ostrovski et al. 2017). Few strong theoretical results

are known for model-free approaches (Strehl, Li, et al. 2006). I further discuss

both settings below.

2.4.1 Theoretical Framework for Exploration

PAC-MDP (Kakade 2003) is the best-known theoretical framework in which

exploration is studied. It is an adaptation of the PAC framework, originally for-

mulated to study supervised learning algorithms (Valiant 1984). PAC stands

for probably approximate correct and, in the supervised learning setting, its

goal is to select, with high-probability (probably), a function that is accurate

most of the time (approximate correct). When adapted to the reinforcement

learning problem, the PAC-MDP framework can be informally described as

estimating the number of times an agent executes sub-optimal actions while

learning to maximize the return.

Because the agent’s actions impact the samples it observes (states and

rewards), there is not an obvious sampling model to be used when defining

a PAC-MDP algorithm. Different models have been proposed. The model

with stronger assumptions relies on a generative model that allows the agent

to know the reward and the next state it will observe when acting in any

particular state (Kearns, Mansour, and Ng 1999). The µ-reset model has

weaker assumptions. It forces the agent to perform an online simulation of

its experience, but it allows the agent to reset the current state to a state S0

drawn according to the distribution µ (Kakade and Langford 2002). Finally,

the model that is closer to the general reinforcement learning problem assumes

the agent only has access to an online simulation of the MDP (Kakade 2003).

The formal definition of a PAC-MDP algorithm and the notion of approximate

correctness is presented below.
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Definition 2.4.1 (from Strehl and Littman 2008). Let c = (s1, a1, r1, s2, a2,

r2, . . .) be a path generated by executing an algorithm A in an MDPM. For

any fixed ǫ > 0, the sample complexity of exploration (sample complexity, for

short) of A with respect to c is the number of timesteps t such that the policy

at time t, πAt
, is not ǫ-optimal from the current state St at time t (formally,

vπAt
(St) < v∗(St)− ǫ).

Definition 2.4.2 (from Strehl and Littman 2008). An algorithm A is said

to be an efficient PAC-MDP (Probably Approximately Correct in Markov

Decision Processes) algorithm if, for any ǫ and δ, the per-step computational

complexity and the sample complexity of A are less than some polynomial in

the relevant quantities
(

|S|, |A|, 1/ǫ, 1/δ, 1/(1 − γ)
)

, with probability at least

1− δ. For convenience, we may also say that A is PAC-MDP.

As aforementioned, the algorithms proposed in this theoretical framework

are rarely used in practice. In large problems, the explicit requirement of

visiting all states a polynomial number of times is prohibitive.

There is also an extension of the PAC-MDP formalism to options, pre-

senting a formal analysis of how options can affect and benefit the sample

complexity of reinforcement learning algorithms (Brunskill and Li 2014). This

extension is summarized by the definition below:

Definition 2.4.3 (from Brunskill and Li 2014). Given history ht at epoch t,

an RL algorithm is viewed as a non-stationary policy, denoted At. For any

fixed ǫ, the sample complexity of exploration (or “sample complexity”) of A is
∑

t τt ·✶{vAt
(St)≤v∗(St)−ǫ}, where ✶{C} is the set-indicator function that evaluates

to 1 if event C occurs and 0 otherwise.

In the definition above, ht
.
= (s1, a1, τ1, r1, s2, a2, τ2, r2, . . .), where τt de-

notes the “waiting time” an option (i.e., the expected number of time steps

until it terminates), and C and L are parameters of its assumed distribution.

Brunskill and Li (2014) then proceed to define PAC-SMDP (Probably Approx-

imately Correct in SMDPs) algorithms just as in Definition 2.4.2, but using

the notion of sample-complexity they introduced.
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An important result from Brunskill and Li (2014) that is directly related

to my work is the upper bound they prove for their algorithm, SMDP-Rmax:

Theorem 2.4.1 (from Brunskill and Li 2014). SMDP-Rmax is PAC-SMDP

with a sample complexity of, ignoring logarithmic terms,

Õ
(

v3max

ǫ3

∑

s,a

Nsa

(1− γ̄s)2
(

1

1− γ + L+
1√
C

)

)

,

where Nsa is the number of reachable next states of (s, a), γ̄s =

maxa
∑

τ γ
τP (τ |s, a), and P (τ |s, a) =∑s′ P (s

′, τ |s, a) is the marginal waiting-

time distribution.

The result above suggests that, to be sample efficient, one should keep the

number of state-action tuples small. However, the results I present in the next

chapters show how I am able to improve exploration by adding a large number

of options to the agents’ action set. There is no contradiction between these

results. In my work I only use options to define an exploration policy, without

having to actually learn expected returns for each state-option pair.

In this dissertation I will not provide PAC-MDP guarantees for my algo-

rithms, although this is an interesting future direction. I use the PAC-MDP

formalism in Chapter 6 when discussing algorithms I used as baseline.

2.4.2 Pseudo-Counts for Practical Exploration in RL

Traditionally, in practice, exploration in RL algorithms is done through ran-

dom action selection (ǫ-greedy strategies), or with simple heuristics such as

optimistic initialization (Sutton and Barto 1998) and exploration bonuses (Sut-

ton 1990). Recently, these approaches have been revisited and extensions to

the function approximation case have been proposed (e.g., Bellemare, Srini-

vasan, et al. 2016; Machado, Srinivasan, and Bowling 2015; Ostrovski et al.

2017; Tang et al. 2016). Among these approaches, and many others, the use of

exploration bonuses generated from pseudo-counts is probably the approach

that has led to the most impressive results in large domains such as Atari 2600

games.
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Introduced by Bellemare, Srinivasan, et al. (2016), pseudo-counts are a

generalization of count-based exploration to the function approximation set-

ting. Count-based exploration consists in directly using visit counts to guide

an agent towards states it has visited least often in order to reduce uncertainty.

Such an approach is the crux of most successes in the bandits literature (e.g.,

Auer, Cesa-Bianchi, and Fischer 2002) and has also led to RL algorithms with

PAC-MDP guarantees (Strehl and Littman 2008).

Pseudo-counts are defined in terms of a density model, ρ, on the state

space. Let ρn(S) be the probability assigned to S after training the model on

the sequence of states S1, . . . , Sn. The recoding probability ρ′n(S) is defined

to be the probability the model would assign to S if it were trained on that

same observation one more time. Given some assumptions, pseudo-counts are

defined as

N̂n(S) =
ρn(S)(1− ρ′n(S))
ρ′n(S)− ρn(S)

. (2.18)

This definition comes from the expectation that, “after observing one instance

of S, the density model’s increase in prediction of that same S should corre-

spond to a unit increase in pseudo-count” (Bellemare, Srinivasan, et al. 2016),

such that:

ρn(S) =
N̂n(S)

n̂
ρ′n(S) =

N̂(S) + 1

n̂+ 1
, (2.19)

where n̂ is the pseudo-count total. Under certain assumptions on the density

model, it can be shown that pseudo-counts do grow approximately linearly

with real counts. Because of that, Bellemare, Srinivasan, et al. (2016) have

proposed the use of R+
n as a reward bonus, with

R+
n (S) =

1
√

N̂n(S) + ǫ
, (2.20)

where ǫ is a small constant value (e.g., 0.001).

The main caveat of such a simple approach is that the density model afore-

mentioned is domain-dependent. In video-games, for example, it has been

shown that both CTS (Bellemare, Srinivasan, et al. 2016) and PixelCNN (Os-

trovski et al. 2017) are useful, reaching, at the time, some of the highest scores
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ever seen in Atari 2600 games such asMontezuma’s Revenge. Nevertheless,

these density models are often complicated and hard to implement, making

these results hard to replicate. Moreover, it is not clear what density model

should be used when trying to apply this approach to a new task. The ap-

proach I propose in Chapter 6 is very related to this line of work as it can also

be seen as count-based method. In a sense, it uses the norm of the successor

representation as a pseudo-count. Importantly, the successor representation is

a much simpler object and it is defined for any reinforcement learning problem.

In Chapter 6 I use Bellemare, Srinivasan, et al. (2016)’s and Ostrovski et al.

(2017)’s results as baseline.

2.4.3 Related Work

R-Max is the model-based algorithm most related to the model-based al-

gorithm I introduce in Chapter 6. R-Max is a PAC-MDP algorithm that

augments the state-space with an imaginary state and encourages the agent

to visit that state by assuming its expected reward is the largest possible. By

encouraging the agent to visit states visited least often R-Max is implicitly

reducing the algorithm’s uncertainty in the state-space. R-Max deletes the

transition to this imaginary state once a state has been visited a given number

of times. However, as aforementioned, it is not clear how to apply model-

based RL algorithms such as R-Max, without additional domain knowledge,

to large domains where function approximation is required.

Conversely, there are multiple model-free algorithms for exploration that

actually work in large domains. Multiple other approaches have surfaced re-

cently, such as the use of Thompson Sampling for exploration (Osband, Blun-

dell, et al. 2016; Osband, Roy, and Z. Wen 2016), perturbations on the function

approximator (Fortunato et al. 2018; Plappert et al. 2018), or the use of pre-

diction errors as exploration bonuses (Burda et al. 2019; Stadie, Levine, and

Abbeel 2015). Nevertheless, most of these approaches have obtained only par-

tial success, failing in tasks with sparse rewards in large domains such as the

Atari 2600 game Montezuma’s Revenge.

Aside from the work by Bellemare, Srinivasan, et al. (2016) and Ostrovski
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et al. (2017), it is important to mention the work by Martin et al. (2017),

which showed that counting activations of fixed, handcrafted features in Atari

2600 games leads to good exploration behavior. This is relevant because, as I

will discuss in later chapters, some of the algorithms I propose can be seen as

not only counting learned features but also implicitly capturing the induced

transition dynamics.

It is also worth mentioning some recent work which became available after

I had developed much of the work in this dissertation. Burda et al. (2019)

presents impressive results in Atari 2600 games by introducing a training pro-

cess that distills a randomly initialized (target) network into a trained network

and uses the prediction error as an exploration bonus. The intuition behind

such an approach is that the prediction error is low on states that are similar

to states the agent already visited. In Chapter 6 I use Burda et al.’s work as a

baseline and I show that under a low sample-complexity regime the algorithm

I introduce outperform theirs, dubbed Random Network Distillation.

Finally, another work related to what I discuss here was developed by

Savinov et al. (2019), who suggest that agents should explore the environment

by visiting states that they believe are far from the states they have already

observed. They implemented this idea using an episodic memory with a neural

network predicting how far a given state is from the states in this memory.

This work is related to mine because the approaches I propose for option-based

exploration can be seen as trying to move the agent to states that are far from

the states it often sees. Instead of a neural network that learns a distance

metric in the embedded state I use a singular value decomposition to estimate

frequency of observation, as I discuss in Chapters 4 and 5.

2.5 The Arcade Learning Environment

The Arcade Learning Environment (ALE) is both a challenge problem and

a platform for evaluating general competency in artificial intelligence. Origi-

nally proposed by Bellemare, Naddaf, et al. (2013), the ALE makes available

dozens of Atari 2600 games for agent evaluation. The agent is expected to do
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well in as many games as possible without game-specific information, generally

perceiving the world through a video stream. Atari 2600 games are excellent

environments for evaluating AI agents for three main reasons: 1) they are var-

ied enough to provide multiple different tasks, requiring general competence,

2) they are interesting and challenging for humans, and 3) they are free of ex-

perimenter’s bias, having been developed by an independent party. Therefore,

the ALE is the main platform I use in this dissertation when evaluating the

scalability and generality of my algorithms with function approximation.

I also use the MDP formalism when tackling Atari 2600 games. In the

context of the ALE, an action is the composition of a joystick direction and an

optional button press. There are two possible settings: (1) to use the game-

dependent minimal action set where only the actions that do have an effect

in that particular game are available, or the (2) full action set, where the 18

actions are available in all games. The agent observes a reward signal, which

is typically the change in the player’s score (the difference in score between the

previous time step and the current time step), and an observation Ot ∈ O of

the environment. This observation can be a single 210×160 image and/or the

current 1024-bit RAM state. Because a single image typically does not satisfy

the Markov property, I distinguish between observations and the environment

state, with the RAM data being the real state of the emulator.2 A frame (as a

unit of time) corresponds to 1/60th of a second, the time interval between two

consecutive images rendered to the television screen. Initial versions of the

ALE were deterministic: given a particular emulator state, s, and a joystick

input, a, there is a unique resulting next state, s′. In other words, p(s′ | s, a) =
1. This is the setting in which I evaluate my algorithms in Chapter 4 and 5.

The latest version of the ALE, released by Machado, Bellemare, Talvitie, et

al. (2018), introduces a form of stochasticity known as sticky actions, which

was used in Chapter 6. In sticky actions there is a stickiness parameter ς, the

probability at every time step that the environment will execute the agent’s

previous action again, instead of the agent’s new action. More specifically, at

2The internal emulator state also includes registers and timers, but the RAM information
and joystick inputs are sufficient to infer the next emulator state.
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time step t the agent decides to execute action a; however, the action At that

the environment in fact executes is:

At =

{

a, with prob. 1− ς,
at−1, with prob. ς.

In other words, if ς = 0.25, there is 25% chance the environment will not

execute the desired action right away.

Agents interact with the ALE in an episodic fashion. An episode begins by

resetting the ALE to its initial configuration, and ends at a natural endpoint

of a game’s playthrough (this often corresponds to the player losing their last

life). The primary measure of an agent’s performance is the score achieved

during an episode, namely the undiscounted sum of rewards for that episode.

While this performance measure is quite natural, it is important to realize

that score, in and of itself, is not necessarily completely correlated to the

human notion of progress. In some games, agents can maximize their score

by “getting stuck” in a loop of “small” rewards, ignoring what human players

would consider to be the game’s main goal. Nevertheless, score is currently

the most common measure of agent performance.

Beyond the minimal interface described above, almost all agents designed

for the ALE implement some form of reward normalization. The magnitude

of rewards can vary wildly across games; transforming the reward to fit into a

roughly uniform scale makes it more feasible to find game-independent meta-

parameter settings. For instance, some agents divide every reward by the

magnitude of the first non-zero reward value encountered, implicitly assuming

that the first non-zero reward is “typical” (e.g., Bellemare, Naddaf, et al. 2013;

Liang et al. 2016). Others account only for the sign of the reward, replacing

each reward value with -1, 0, or 1, accordingly (e.g., Mnih, Kavukcuoglu, et

al. 2015). In this dissertation I constrain the rewards between −1 and 1, also

allowing real-valued rewards. I do this by having all values smaller than −1
being set to −1 and all values greater than 1 being set to 1.

Most agents also employ some form of hard-coded preprocessing to sim-

plify the learning and acting process. I briefly review the three most common

preprocessing steps. 1) Frame skipping (Naddaf 2010) restricts the agent’s
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decision points by repeating a selected action for k consecutive frames. Frame

skipping results in a simpler reinforcement learning problem and speeds up ex-

ecution; values of k = 4 and k = 5 have been commonly used in the literature.

2) Color averaging (Bellemare, Naddaf, et al. 2013) and frame pooling (Mnih,

Kavukcuoglu, et al. 2015) are two image-based mechanisms to flatten two suc-

cessive frames into a single one in order to reduce visual artifacts resulting from

limitations of the Atari 2600 hardware – by leveraging the slow decay property

of phosphors on 1970s televisions, objects on the screen could be displayed ev-

ery other frame without compromising the game’s visual aspect (Montfort and

Bogost 2009). Effectively, color averaging and frame pooling remove the most

benign form of partial observability in the ALE. Finally, 3) frame stacking

(Mnih, Kavukcuoglu, et al. 2015) concatenates previous frames with the most

recent in order to construct a richer observation space for the agent. Frame

stacking also reduces the degree of partial observability in the ALE, making

it possible for the agent to detect the direction of motion in objects. Impor-

tantly, one can stack and skip frames. When this is done, the frames that are

skipped are also not add to the stack.

It is not possible to concisely summarize here all the work that have used

the ALE as a testbed since its introduction. In a paper that is not part of

this dissertation I present a survey with a (still incomplete) discussion about

related work (Machado, Bellemare, Talvitie, et al. 2018). I also present clear

guidelines on how to evaluate and report results using the Arcade Learning

Environment to ensure that they are comparable to other approaches and that

they are reproducible. These guidelines are the ones followed when generating

the results I report in Chapter 6, where I revisit the used methodology.
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Chapter 3

Option-Based Exploration

The first contribution in this dissertation is the proposal of option-based

exploration, the idea that agents can explore the environment more effectively

if they use options to operate at a higher-level of abstraction. When follow-

ing options, agents exhibit more decisive behavior in constrast to the aimless

dithering and lack of intentionality commonly observed with primitive actions

chosen uniformly at random. Intuitively, if one needs to explore the level of

a building, it makes more sense to do so in terms of rooms than in terms of

motor twitches. In this chapter I discuss the general strategy I propose for

option discovery and in Chapter 4 and 5 I present algorithms that develop this

intuition.

3.1 Option Discovery in RL

Regardless of whether the intuition presented above is correct or not, it is

important to acknowledge that autonomous option discovery is one of the

biggest open problems in reinforcement learning. Therefore, in order to defend

the idea of option-based exploration I will first discuss a general approach that

is capable of discovering options. Importantly, because I am advocating for

options that improve exploration, the proposed approach cannot rely on first

observing non-zero rewards to start discovering options. The proposed method

for discovery should follow a constructivist approach (Piaget 1963), where

increasingly more complex options are discovered until the desired behavior is

36



Learn linear 

repr. (features)

Learn how to attain 

each feature
Select k features

Define

option

Collect

samples

Figure 3.1: Option discovery cycle.

learned.

The general idea behind the algorithms I propose in this dissertation is

summarized in Figure 3.1. This figure depicts the option discovery cycle and

it tries to highlight the main steps an algorithm needs to go through in order

to discover options. The two most important ideas in this diagram is that the

option discovery process is guided by the process of learning a representation,

and the fact that it is a cycle. I depict this process as a cycle because options

discovered early in the agent’s life should be used to bootstrap the option

learning process. I believe successful algorithms in the future will be able

to simultaneously discover representations and options. Agents will use their

learned representation to discover options, which will be used to further explore

the environment, improving the agent’s representation. In the next chapters I

present some first instantiations of this idea.

Below I discuss each one of the steps in Figure 3.1. Importantly, while

I present these steps sequentially, and all the algorithms in this dissertation

that implement the option discovery cycle execute these steps sequentially, it

does not have to be. One could also imagine all these steps being executed

concurrently, at different time scales.
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3.1.1 Collect Samples

The first step in each iteration of the proposed option discovery cycle is to

have the agent follow a pre-specified policy while collecting data in the form

of observations. Because at the start of the agent’s life it has no information

about the environment it is in, selecting actions uniformly at random is an

obvious first choice. At every new iteration of this cycle a new policy can

be defined. Once the agent starts to be able to follow options’ policies, there

are more possibilities. While in this dissertation I show that selecting actions

uniformly at random between the primitive actions and the option’s policy is

an effective strategy for exploration, one could also imagine more elaborate

strategies such as selecting options with probability inversely proportional to

the number of time steps the option is expected to last.

3.1.2 Learn Linear Representation

While acting in the world, the agent should learn a representation of its envi-

ronment. There are multiple ways of doing so and throughout this dissertation

I discuss a couple of approaches. I decided to specifically focus on time-based

representations that naturally capture the dynamics of the environment, as

discussed in the previous chapter, but this is not a requirement. Moreover,

although I labeled this step as learning a linear representation, the actual re-

quirement is that the learned representation is a vector. Therefore, the output

of specific layers of a neural network is also a valid representation. In order to

be able to fully explore this framework it is better if the agent does not depend

on observing rewards to learn such a representation. Autoencoders (Bengio et

al. 2006) and UNREAL (Jaderberg et al. 2017) are some of the many existing

methods that could potentially be directly used here.

3.1.3 Select k Features

After a representation is learned, the agent should select a given number of

features, k, it wants to learn to maximize or to minimize. Obviously, k could

be as large as the total number of features, but it is likely that some features
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simply capture noise and in that case a smaller k might be more beneficial. All

the algorithms I introduce in this dissertation use singular value decomposition

(or eigendecomposition) to sort features by how much they vary over time,

making the task of selecting a subset of features easier.

3.1.4 Learn How to Attain each Feature

Once a representation has been learned and a subset of features has been

selected, the agent needs to learn to attain those features. Each feature will

generate a different policy. This step can be done in parallel with an off-

policy learning algorithm, for example. The learned policy will be the option’s

policy. I decided to not specify here how the agent should tackle the problem

of learning to attain a feature. I do so in in Chapter 4, where I introduce the

concept of eigenpurpose, which is the reward function I use in the algorithms

in this dissertation.

3.1.5 Define Option

Finally, after the options’ policies have been learned, the last step is to properly

define the option. As discussed in the previous chapter, an option consists of a

policy, an initiation set, and a termination condition. While the option’s policy

has been learned in the previous step, the initiation and termination sets have

not been defined yet. One could imagine defining the terminal condition of

an option based on the value of the feature being maximized (or minimized),

either via a threshold or as a function of the value of the feature. In the next

chapter I introduce a theoretically sound approach to define option termination

when maximizing eigenpurposes.

As discussed above, the options learned with this approach are defined even

in the absence of rewards. Intuitively, when the agent observes a change in the

environment through its feature representation, one of these options can learn

a policy capable of reproducing that change. When such an option becomes

available to the agent, the agent now can move farther in the state-space,

with some events that were rare now becoming frequent and events that were

“impossible” now becoming “just” infrequent.
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3.2 Overview of the Proposed Algorithms

Chapter 4, 5, and 7 contain different instantiations of the option discovery cycle

introduced here. The algorithms introduced in this dissertation start with a

policy that selects actions randomly. If only primitive actions are available,

they are selected uniformly at random. If options have been learned, the

agent selects uniformly at random between all of the options and primitive

actions. If an option is selected, its policy is followed until termination. While

the agent is acting in the world it learns a time-based representation (proto-

value functions or the successor representation). These representations can be

learned in multiple ways, as I discuss throughout this document.
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Chapter 4

Option-Based Exploration with
Proto-Value Functions

In this chapter I introduce my first algorithm capable of option-based explo-

ration. As discussed in the previous chapter, this algorithm implements the

option discovery cycle, using the representation learning process to drive option

discovery. More specifically, in this chapter I show how proto-value functions

(PVFs), a particular form of learned representation, can be seen as implic-

itly defining purposes for the agent. I do so by introducing the concepts of

eigenpurpose and eigenbehavior. Eigenpurposes are intrinsic reward functions

that incentivize the agent to traverse the state space by following the prin-

cipal directions of the learned representation. Each intrinsic reward function

leads to a different eigenbehavior, which is the optimal policy for that re-

ward function. I term the options discovered with this approach eigenoptions.

Importantly, they are task-independent because, as PVFs, eigenpurposes are

obtained without any information about the environment’s reward structure.

Aside from being task independent, eigenoptions have two important prop-

erties that allow them to improve exploration: 1) they operate at different time

scales, and 2) they can be easily sequenced. Having options that operate at

different time scales allows agents to make finely timed actions while also de-

creasing the likelihood the agent will explore only a small portion of the state

space. Moreover, because these options are defined across the whole state

space, multiple options are available in every state, which allows them to be

easily sequenced.
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Equation 4.1 and the action set is augmented by the action terminate (⊥),
which allows the agent to leave Me

i at no cost, which is equivalent to be-

ing able to terminate an episode in an episodic task. The state space and

the transition probability kernel remain unchanged from the original problem.

The discount rate can be chosen arbitrarily, although it impacts the timescale

the option encodes by defining how myopic the agent will be with respect to

the eigenpurpose.

With Me

i , I define a new state-value function vπe(s), for policy π
e, as the

expected value of the cumulative discounted intrinsic reward if the agent starts

in state s and follows policy πe until termination. Similarly, I define a new

action-value function qπe(s, a) as the expected value of the cumulative dis-

counted intrinsic reward if the agent starts in state s, takes action a, and

then follows policy πe until termination. The optimal value function for any

eigenpurpose obtained through e can also be described as

ve∗(s) = max
π

vπe(s) and qe∗(s, a) = max
π

qπe(s, a).

These definitions naturally lead us to eigenbehaviors.

Definition 4.1.2 (Eigenbehavior). An eigenbehavior is a policy, χe, that is

optimal with respect to the eigenpurpose rei , that is,

χe(s) = argmax
a∈A

qe∗(s, a).

Finding the optimal policy πe

∗ now becomes a traditional RL problem,

with a different reward function. Importantly, this reward function tends to

be dense, avoiding challenging situations due to exploration issues. In this

chapter I use policy iteration to solve for an optimal policy.

In order for an eigenpurpose to define an option I need to define the op-

tion’s policy, initiation, and termination set. The option’s policy is defined by

the eigenpurpose’s corresponding eigenbehavior. I now proceed to define the

option’s initiation and termination set to ensure that it is available in every

state where it is possible to achieve its purpose, and to terminate when this

purpose is achieved.
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When defining the MDP to learn the option I augment the agent’s action set

with the terminate action, allowing the agent to interrupt the option anytime.

I want options to terminate when the agent achieves its purpose, that is, when

it is unable to accumulate further positive intrinsic rewards. With the defined

reward function, this happens when the agent reaches the state with largest

value in the eigenpurpose (or a local maximum when γ < 1). Any subsequent

sum of rewards will be negative. I formalize this condition by defining

qµe(s, a) =

{

qχe(s, a), if a ∈ A,
0, if a = ⊥,

where µe denotes the policy of the option defined by the PVF e. When the

terminate action is selected, control is returned to the higher level policy (Di-

etterich 2000). An option following a policy µe terminates when qµe(s, a) ≤ 0

for all a ∈ A. I define the initiation set to be all states in which there exists

an action a ∈ A such that qµe(s, a) > 0. Thus, the option’s policy is

µe(s) = argmax
a∈A∪{⊥}

qµe(s, a).

As aforementioned, I refer to the options discovered with this approach as

eigenoptions. The eigenoption corresponding to the example at the beginning

of this section is depicted in Figure 4.2 (right). Below I summarize the terms

used in this section.

Table 4.1: Terms used when discussing the introduced options.

Term Description

Eigenpurpose Intrinsic reward function, rei , the agent maximizes when dis-
covering the corresponding option. This reward function en-
courages the agent to navigate alongside a PVF e. Formally,
rei (s, s

′) = e
⊤(φ(s′)− φ(s)).

Eigenbehavior Optimal policy that maximizes the cumulative discounted
sum of a given eigenpurpose.

Eigenoption Option discovered when maximizing an eigenpurpose. Its
initiation set, policy, and termination condition are derived
from the corresponding eigenbehavior, as discussed in the
main text.
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For any eigenoption, there is always at least one state in which it termi-

nates, as I show below (the supporting lemmas are available in the Appendix).

Theorem 4.1.1 (Option’s Termination). Consider an eigenoption o =

〈Io, πo, To〉 and γ ∈ [0, 1). Then, in an ergodic MDP with finite state space, To
is nonempty.

Proof. We can write the Bellman equation in the matrix form: v = r+ γPπv,

for a fixed policy π, where v is a finite column vector with one entry per

state encoding its value function. From Equation 4.1 we have r = Pπw −w

with w = Φe, where e denotes the eigenpurpose of interest and Φ ∈ R
|S|×d

denotes the matrix representing the d-dimensional feature representation for

each state. I use r : S → R for simplicity. This function can be seen as the

expected reward in a given state. With that we have:

v = Pπw −w + γPπv

v +w = Pπw + γPπv

= Pπw + γPπv + γPπw − γPπw

= (1− γ)Pπw + γPπ(v +w)

v +w − γPπ(v +w) = (1− γ)Pπw

(I − γPπ)(v +w) = (1− γ)Pπw

v +w = (1− γ)(I − γPπ)
−1Pπw

where the last step is true because (I−γPπ)
−1 is guaranteed to be nonsingular

since ||Pπ|| ≤ 1, where ||Pπ|| = sup
v:||v||∞=1 ||Pπv||∞. By the Neumann series

we have (I − γPπ)
−1 =

∑∞
n=0 γ

nP n
π . Using the induced norm we have:

||v +w||∞ = (1− γ)||(I − γPπ)
−1Pπw||∞

||v +w||∞ ≤ (1− γ)||(I − γPπ)
−1Pπ||∞||w||∞ because ||Ax|| ≤ ||A|| · ||x||

||v +w||∞ ≤ (1− γ) 1

(1− γ) ||w||∞ Lemma A.2

||v +w||∞ ≤ ||w||∞

We can shift w by any finite constant without changing the reward, that

is, Pπw −w = Pπ(w + δ) − (w + δ) because Pπ1δ = 1δ since
∑

j Pπi,j
= 1.
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Therefore, we can assumew ≥ 0. Let s∗ = argmaxs ws∗ , so thatws∗ = ||w||∞.

Clearly vs∗ ≤ 0, otherwise ||v +w||∞ ≥ |vs∗ + ws∗ | = vs∗ + ws∗ > ws∗ =

||w||∞, arriving at a contradiction.

This result is applicable in both the tabular and linear function approxima-

tion case. An algorithm that does not rely on knowing the underlying graph

is provided in Section 4.3.

4.2 Empirical Evaluation in the Tabular Case

I used three MDPs in the empirical study (see Figure 4.1): an open room, an

I-Maze, and the 4-room domain. Their transitions are deterministic and gray

squares denote walls. Agents have access to four actions: up, down, right, and

left. When an action that would have taken the agent into a wall is chosen,

the agent’s state does not change. I demonstrate three aspects of the proposed

framework:1

• How the eigenoptions present specific purposes.

• How eigenoptions improve exploration by reducing the expected number

of steps required to navigate between any two states.

• How eigenoptions help agents to accumulate reward faster. I show how

few options may hurt the agents’ performance while enough options

speed up learning.

4.2.1 Discovered Options

In the PVF theory, the “smoothest” eigenvectors, corresponding to the

smallest eigenvalues, are preferred (Mahadevan and Maggioni 2007). The same

intuition applies to eigenoptions, with the eigenpurposes corresponding to the

smallest eigenvalues being preferred. Figures 4.3, 4.4, and 4.5 depict the first

eigenoptions discovered in the three domains used for evaluation.

Eigenoptions do not necessarily look for bottleneck states, allowing this

algorithm to be applied in many environments in which there are no obvious,

1Python code can be found at: https://github.com/mcmachado/options
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when comparing the second and fourth eigenoptions in the 10× 10 grid (Fig-

ure 4.3). The fourth eigenoption terminates, on expectation over all possible

start states, twice as often as the second eigenoption.

In this section I show that eigenoptions improve exploration. I use the

diffusion time metric to quantify the effectiveness of the exploration strategy.

Diffusion time encodes the expected number of steps required to navigate

between two states randomly chosen in the MDP while following a random

walk. A small expected number of steps implies that it is more likely that the

agent will reach all states with a random walk. Dayan and Hinton (1992) have

proposed a similar metric in the past.

In tabular domains, we can easily compute the diffusion time with dynamic

programming. To do so one should define a new MDP such that the value

function of a state s, under a uniform random policy, encodes the expected

number of steps required to navigate between state s and a chosen goal state.

One can then compute the expected number of steps between any two states

by averaging, for each possible goal, the value of all other states.

The MDP in which the value function of state s encodes the expected

number of time steps from s to a goal state has γ = 1 and a reward function

where the agent observes +1 at every time step in which it is not in the goal

state. Policy evaluation in this case encodes the expected number of time steps

the agent will take before arriving to the goal state. To compute the diffusion

time we iterate over all possible states, defining them as terminal states, and

averaging the value function of the other states in that MDP.

Figure 4.6 depicts, for the three environments, the diffusion time with

options and the diffusion time using only primitive actions. I add options

incrementally in order of increasing eigenvalue when computing the diffusion

time for different sets of options.

The first options added hurt exploration, but when enough options are

added, exploration is greatly improved when compared to a random walk using

only primitive actions. The fact that few options hurt exploration may be

surprising at first, based on the fact that few useful options are generally

sought after in the literature. However, this is a major difference between
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equipped with eigenoptions outperform agents equipped with options leading

to bottleneck states in settings in which the goal state is far from the doorways,

as aforementioned. In scenarios where the goal state is closer to bottleneck

states, the options leading to doorways are more competitive. Importantly,

this analysis is based on the results when using 64 eigenoptions, which may

not encode all options required to go to a specific region of the state space.

Finally, I also compared the performance of eigenoptions and of random

options, described in the previous section, when accumulating reward. Fig-

ure 4.8b depicts the learning curve of agents equipped with eigenoptions and

of agents equipped with random options. As before, the blue lines indicate

the agent’s performance in individual runs. We can see that no individual run

is competitive to eigenoptions. When fewer options are used (not shown), the

variance across individual runs is even larger, depending on whether one of

the random options terminates near the goal state. In some runs the agent

never even learns to reach the goal. Therefore, as in the diffusion time, on

average, random options are not competitive to eigenoptions, demonstrating

the importance of the diffusion model I use.

4.3 Approximate Option Discovery

So far I have assumed that agents have access to the adjacency matrix rep-

resenting the underlying MDP. However, in practical settings this is generally

not true. In fact, the number of states in these settings is often so large that

agents rarely visit the same state twice. These problems are generally tackled

with sample-based methods and some sort of function approximation.

In this section I propose a sample-based approach for option discovery that

asymptotically discovers eigenoptions. I then extend this algorithm to linear

function approximation. I provide anecdotal evidence in Atari 2600 games

that this relatively näıve sample-based approach to function approximation

discovers purposeful options.
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4.3.1 Sample-based Option Discovery

In the online setting, agents must sample trajectories. Naturally, one can sam-

ple trajectories until being able to perfectly construct the MDP’s adjacency

matrix, as suggested by Mahadevan and Maggioni (2007). However, this ap-

proach does not easily extend to linear function approximation. In this section

I propose an approach that does not build the adjacency matrix, allowing me

to extend the concept of eigenpurposes to linear function approximation.

In my algorithm, a sample transition is added to a matrix T if it was not

previously encountered. The transition is added as the difference between the

current and previous observations, that is, φ(s′) − φ(s). In the tabular case

I define φ(s) to be the one-hot encoding of state s. Once enough transitions

have been sampled, I perform a singular value decomposition on the matrix

of stacked transitions T such that T = UΣV ⊤. I use the columns of V , which

correspond to the right-singular vectors of T , to generate the eigenpurposes.

The intrinsic reward and the termination criterion for an eigenbehavior are

the same as before.

Matrix T is known as the incidence matrix. If all transitions in the graph

are sampled once, for tabular representations, this algorithm discovers the

same options obtained with the combinatorial Laplacian. The theorem below

states the equivalence between the obtained eigenpurposes (the supporting

lemma is available in the Appendix).

Theorem 4.3.1. Consider the SVD of T = UTΣTV
⊤
T , with each row of T con-

sisting of the difference between observations, i.e., φ(s′)−φ(s). In the tabular

case, if all transitions in the MDP have been sampled once, the orthonormal

eigenvectors of L are the columns of V ⊤
T .

Proof. Given the SVD decomposition of a matrix A = UΣV ⊤, the columns

of V are the eigenvectors of A⊤A (Strang 2005). We know that T⊤T = 2L,

where L = D −W (Lemma A.3 in the Appendix). Thus, the columns of VT

are the eigenvectors of T⊤T , which can be rewritten as 2(D−W ). Therefore,

the columns of VT are also the eigenvectors of L.
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There is a trade-off between reconstructing the adjacency matrix and con-

structing the incidence matrix. In MDPs in which states are sparsely con-

nected, such as the I-Maze, the latter is preferred since it has fewer transitions

than states. However, what makes this result interesting is the fact that this

algorithm can be easily generalized to linear function approximation.

4.3.2 Function Approximation

An adjacency matrix is not available when the agent has access only to features

of the state. However, I can use the intuition about the incidence matrix to

propose an algorithm compatible with linear function approximation.

In fact, to apply the algorithm proposed in the previous section, I just need

to define what constitutes a new transition. I define two vectors, t and t′, to

be identical if and only if t− t′ = 0. I then use a set data structure to avoid

duplicates when storing φ(s′)−φ(s). This is a näıve approach, but it provides

encouraging evidence eigenoptions generalize to linear function approximation.

More involved methods do perform even better, as I discuss in Chapter 7.

I tested my method in the ALE (Bellemare, Naddaf, et al. 2013). The

agent’s representation consists of the emulator’s RAM state (1,024 bits).

I defined six different starting states in each Atari 2600 game, letting the

agent take random actions from that point until termination. The agent fol-

lows a pre-determined sequence of actions leading it to each starting state.

I store the observed transitions leading the agent to the start states as well

as those obtained from the random actions. I provide results for Freeway,

Montezuma’s Revenge andMs Pac-Man. The starting states for all three

games are depicted in Figure 4.11.

The agent plays rounds of six episodes, with each episode starting from a

different start state, until it observes at least 25,000 new transitions. The final

incidence matrix in which I ran the SVD had 25,000 rows, which I sampled

uniformly from the set of observed transitions. The agent used the determin-

istic version of the Arcade Learning Environment (ALE), the games’ minimal

action set, and a frame skip of 1.

In the tabular case I select eigenpurposes generated by the eigenvectors
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Chapter 5

Option-Based Exploration with
the Successor Representation

In the previous chapter I introduced an algorithm for option discovery that,

in the tabular case, can be used in symmetric and deterministic environments.

In environments where it is infeasible to enumerate states, this algorithm is

applicable when a linear representation is available beforehand. In this chap-

ter I introduce an algorithm for eigenoption discovery that is applicable to

settings with stochastic and asymmetric transitions. Motivated by the fact

that methods that learn non-linear representations are more flexible, more

scalable, and often lead to better performance, in this chapter I also introduce

an algorithm that is capable of discovering eigenoptions while learning non-

linear state representations from raw pixels. It exploits recent successes in the

deep reinforcement learning literature and the fact that PVFs are equivalent

to the eigenvectors of the successor representation (SR) when it is defined

with respect to the uniform random policy in a symmetric and deterministic

environment, a result I present here.

I evaluate this algorithm in a tabular domain as well as on Atari 2600

games. I use the tabular domain to provide intuition about the algorithm

and to compare it to other algorithms in the literature. The evaluation in

Atari 2600 games demonstrates that results similar to those obtained in the

previous chapter can also be obtained from raw pixels. This result provides

promising evidence of the applicability of this algorithm in a setting in which
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a representation of the agent’s observation is not available.

5.1 Proto-Value Functions and the Eigenvec-

tors of the Successor Representation

The main result in this chapter is the realization that PVFs (the eigenvec-

tors of the normalized Laplacian) are equal to the eigenvectors of the successor

representation, for a random policy in a regular graph, scaled by γ−1D1/2. To

the best of my knowledge, this equivalence was first mentioned by Stachenfeld,

Botvinick, and Gershman (2014) but no proof was provided. Below I provide

a formal statement of such an equivalence for the eingevalues and the eigen-

vectors of both approaches in the special case in which the SR is defined with

respect to a random policy in a symmetric and deterministic environment. I

then use the proof to further discuss the extent of this interchangeability.

The theorem below uses the definitions already provided in this disserta-

tion. I assume 0 < γ < 1, with Ψπ = (I−γPπ)
−1 denoting the matrix encoding

the SR, and L = D−1/2(D −W )D−1/2 denoting the matrix corresponding to

the normalized Laplacian, both obtained under a uniform random policy.

Theorem 5.1.1. The i-th eigenvalue (λSR,i) of the SR, defined with respect

to a uniform random policy, and the j-th eigenvalue (λPVF,j) of the normal-

ized Laplacian are related as follows when in a symmetric and deterministic

environment :

λPVF,j =
[

1− (1− λ−1
SR,i)γ

−1
]

The i-th eigenvector (eSR,i) of the SR and the j-th eigenvector (ePVF,j) of the

normalized Laplacian, where i + j = n + 1, with n being the total number of

rows (and columns) of matrix Pπ, are related as follows:

ePVF,j = (γ−1D1/2)eSR,i

Proof. Let λi, ei denote the i-th eigenvalue and eigenvector of the SR, re-

spectively. Using the fact that the SR converges to (I − γPπ)
−1 (through the

Neumann series), we have:
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(I − γPπ)
−1ei = λiei

ei = λi(I − γPπ)ei

(I − γPπ)ei = λ−1
i ei

(I − γPπ)γ
−1ei = λ−1

i γ−1ei

γ−1ei − Pπei = λ−1
i γ−1ei

Pπei = γ−1ei − λ−1
i γ−1ei

= (1− λ−1
i )γ−1ei

Iei − Pπei = Iei − (1− λ−1
i )γ−1ei

(I − Pπ)ei = [γ − (1− λ−1
i )]γ−1ei

(I − Pπ)γ
−1ei = [1− (1− λ−1

i )γ−1]γ−1ei

(I − Pπ)γ
−1ei = λ′jγ

−1ei (5.1)

(I −D−1W )γ−1ei = λ′jγ
−1ei

(D−1(D −W ))γ−1ei = λ′jγ
−1ei

D1/2(D−1(D −W ))γ−1ei = λ′jγ
−1D1/2ei

D−1/2(D −W )γ−1ei = λ′jγ
−1D1/2ei

D−1/2(D −W )D−1/2D1/2γ−1ei = λ′jγ
−1D1/2ei

LD1/2γ−1ei = λ′jγ
−1D1/2ei

Importantly, when using PVFs I am first interested in the eigenvectors

with the corresponding smallest eigenvalues, as they are the “smoothest” ones.

When using the SR I am interested in the eigenvectors with the largest eigen-

values. The change of variables in Equation 5.1 highlights this fact, that is,

λ′j = [1 − (1 − λ−1
i )γ−1]. The indices j are sorted in the reverse order of the

indices i. This distinction can be important when trying to estimate the rele-

vant eigenvectors. Finding the largest eigenvalues/vectors is statistically more

robust to noise in estimation and does not depend on the eigenvectors with

smallest eigenvalues. Moreover, scaling by D1/2 does not change the direction

of the eigenvectors when the size of the action set is constant across all states.

This is the case in all the RL problems being studied in this dissertation.
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Alg. 1 General eigenoption discovery

Ψ̂← LearnRepresentation()
E ← ExtractEigenpurposes(Ψ̂)
for each eigepurpose ei ∈ E do

〈Iei , πei , Tei〉 ← LearnEigenoption(ei)
end for

Alg. 2 LearnRepresentation() with the successor representation

for a given number of steps n do

Observe s ∈ S, take action a ∈ A selected according to π(s), and observe a
next state s′ ∈ S

for each state j ∈ S do

Ψ̂(s, j)← Ψ̂(s, j) + η
(

✶{s=j} + γΨ̂(s′, j)− Ψ̂(s, j)
)

end for

end for

return Ψ̂

5.2 Eigenoption Discovery in the Tabular Case

The structure of the algorithms capable of discovering eigenoptions is fairly

straightforward. Algorithm 1 is an overview of the general approach. The

agent learns (or is given) a representation that captures the diffusion model

of information flow (for example, the combinatorial Laplacian). It then uses

the eigenvectors of this representation to define eigenpurposes (Extract-

Eigenpurposes). The option’s policy is the one that maximizes this new

reward function, while the initiation and termination sets are defined by the

agent’s ability to accumulate reward, as I discussed in the previous chapter.

In the tabular case, the instantiation of the idea of using the successor

representation to discover options is also fairly simple. Instead of assuming

the matrix Ψ̂ is given in the form of the graph Laplacian, or trying to estimate

the graph Laplacian from samples by stacking the row vectors corresponding

to the different observed transitions, we can estimate the diffusion model of

information flow through the successor representation (see Algorithm 2). This

idea is supported by the theorem in the previous section. The equivalence

ensures that the eigenpurposes extraction and the eigenoption learning steps

remain unchanged. That is, I still obtain the eigenpurposes from the eigende-
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composition1 of matrix Ψ̂, and I still use each eigenvector ei ∈ E to define the

new learning problem in which the agent wants to maximize the eigenpurpose.

Importantly, the use of the SR also generates an algorithm that has a memory

cost that is independent of the number of samples drawn by the agent.

5.3 Eigenoption Discovery in the Non-Linear

Function Approximation Case

The tabular case is interesting to study because it provides intuition about

the problem and it is easier to analyze, both empirically and theoretically.

However, the tabular case is only realizable in toy domains. In real-world

situations the number of states is often very large and the ability to generalize

and to recognize similar states is essential. In this section I show how one can

replace Algorithm 2 by a neural network that is able to estimate the successor

representation from raw pixels. Such an approach circumvents the limitation

of requiring a linear feature representation to be provided beforehand. It is

built on the concept of successor features, discussed in Chapter 2.

The neural network architecture I used is depicted in Figure 5.1. The re-

construction module is the same as the one introduced by Oh et al. (2015),

but augmented by the successor features estimator (the three layers depicted

at the bottom). The successor features estimator uses the learned latent rep-

resentation as input, that is, the output of the representation learning module.

This neural network receives raw pixels as input and learns to estimate

the successor features of a learned lower-dimension representation. The loss

function LSR used to learn the successor features is

LSR(s, s
′) = E

[

(

φ−(s) + γψ−
(

φ−(s′)
)

−ψ
(

φ(s)
)

)2
]

,

where φ(s) denotes the feature vector encoding the learned representation of

state s and ψ(·) denotes the estimated successor features. In practice, φ(·) is
1Notice the matrix Ψ̂ is not guaranteed to be symmetric. In that case one can define the

eigenpurposes to be Ψ̂’s right-singular eigenvectors, as I do in Section 5.3.
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ø in Figure 5.1). I trained the network with RMSProp and I followed the same

protocol Oh et al. (2015) used to initialize the network.

In Algorithm 1, ExtractEigenpurposes returns eigenpurposes, which

are defined in terms of a feature representation φ(St) of the environment and

of the eigenvectors ei of the diffusion model of information flow (the successor

representation in this case). I generate both with the trained network. It

is trivial to obtain φ(St) as I just use the output of the appropriate layer

in the network as the feature representation. To obtain ei I first need to

generate a meaningful matrix since the network outputs a vector of successor

features instead of a matrix. I do so by having the agent follow the uniform

random policy while I store the network output, ψ(St), which corresponds to

the network estimate of the successor features of state St. I then create a

matrix T where row t corresponds to ψ(St) and I define ei to be its right-

singular vectors.

Once I have extracted the eigenpurposes, the option discovery problem

is reduced to a regular RL problem where the agent aims to maximize the

cumulative sum of rewards. Any learning algorithm can be used for that. In

the next section I provide details about the used approach.

5.4 Empirical Evaluation

In this section I evaluate the discovered eigenoptions. I use the traditional

4-room domain to evaluate the impact of approximating the successor repre-

sentation on its eigenvectors, on the discovered options and on the agent’s final

performance. I then use Atari 2600 games to demonstrate how the proposed

network does discover purposeful options from raw pixels that are very similar

to those discovered in the previous chapter.

5.4.1 Diffusion Time in the Tabular case

My first experiment evaluates the impact, in the agent’s diffusion time, of

estimating the SR from samples instead of assuming that an adjacency matrix

representing the environment is available. I performed this evaluation in the
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5.4.4 Non-Linear Function Approximation

In this section I evaluate the eigenoptions discovered when the successor

representation is obtained from raw pixels using the neural network described

in this chapter. I used four Atari 2600 games via the Arcade Learning Environ-

ment (ALE) as testbed: Bank Heist, Freeway, Montezuma’s Revenge,

and Ms. Pac-Man.

I trained the network in Figure 5.1 to estimate the SR under the uniform

random policy. Since the network does not impact the policy being followed,

I built a dataset of 500,000 samples for each game and I used this dataset to

optimize the network weights. I passed through the shuffled dataset 10 times,

using RMSProp with a step size of 10−4. Once I was done with the training,

I let the agent follow a uniform random policy for 50,000 steps while I stored

the SR output by the network for each observed state as a row of matrix T .

I define e, the eigenpurposes the agent maximizes, to be the right-singular

vectors of the matrix T , while φ(·) is extracted at each time step from the

network in Figure 5.1. Due to computational constraints, I approximated the

final eigenoptions. As in the previous chapter, I did so by using the ALE’s

internal emulator to do a one-step lookahead and act greedily with respect

to each eigenpurpose (in practice, this is equivalent to learning with γ = 0).

This is not ideal because the options I obtain are quite limited as they do not

deal with delayed rewards. However, even in this limiting setting I obtained

promising results, as I discuss below.

As in the previous chapter, I evaluate the discovered eigenoptions qualita-

tively. I execute all options following the procedure described above (greedy

one-step lookahead) while tracking the avatar’s position on the screen. Fig-

ure 5.8 summarizes the behavior of some of the meaningful options discovered.

The trajectories generated by different options are represented by different col-

ors and the color’s intensity at a given location represents how often the agent

was at that location. I argue that eigenoptions are options that generate pur-

poseful behavior and we can clearly see that the discovered eigenoptions are

indeed purposeful. They aim to reach a specific location and stay there. If
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(a) Bank Heist (b) Mont. Revenge

(c) Ms. Pacman (d) Freeway

Figure 5.8: Plots of density of state visitation of eigenoptions discovered in
four Atari 2600 games. States visited more frequently show darker images
of the avatar. Note that an eigenoption’s overwhelming mass of visitations
corresponds to its terminal state, and that disparate options have different
terminal states.

this was not the case the agent’s trajectory would be much more visible. In-

stead, what we actually observe is that the mass of visitation is concentrated

on one location on the screen, dominating (color intensity) all the others. The

location the agent is spending most of its time on can in fact be seen as the

option’s terminal state. Constantly being in a state suggests the agent has

arrived to a myopic local maximum for that eigenpurpose.

In three out of four games (Bank Heist, Montezuma’s Revenge, Ms.

Pacman) the proposed algorithm discovers options that clearly push the agent

to corners and to other relevant parts of the state space, corroborating the

intuition that eigenoptions also improve exploration. In Montezuma’s Re-

venge, the terminal state of the highlighted options even correspond to what

are considered good subgoals for the game (Kulkarni, Narasimhan, et al. 2016).

It is likely that additional subgoals, such as the key, were not found due to
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the myopic greedy approach. This approach may also explain why my algo-

rithm was ineffective in Freeway. Avoiding cars may be impossible without

longer-term planning or a more varied set of start states. The fact that myopic

policies are able to navigate to specific locations and stay there also suggests

that, as in the tabular case, the proposed approach gives rise to dense intrinsic

rewards that are very informative. This is an important constrast between

randomly assigned subgoals and my approach. Randomly assigned subgoals

do not give rise to such dense rewards. Thus, one can argue that this ap-

proach does not only generate useful options but it also gives rise to dense

eigenpurposes, making it easier to build the policies associated with them.

It is important to stress that the proposed algorithm was able to discover

eigenoptions, from raw pixels, similar to those obtained in the previous chapter,

which used the RAM state of the game as a feature representation. The RAM

state of the game often uses specific bytes to encode important information

of the game, such as the position of the player’s avatar in the game. The

algorithm in this chapter had to implicitly learn what were the meaningful

parts of the screen. Also, different from before, this approach is not constrained

by the dimensionality of the state representation, a limitation that prevented

me in the last chapter from using the best linear features available for Atari

2600 games (Liang et al. 2016). Based on this discussion, I consider these

results to be promising, even though I only depict options that have effect on

the initial state of the games. I believe that in a more general setting (e.g.,

using DQN to learn policies) this algorithm has the potential to discover even

better options.

5.5 Discussion

In this chapter I introduced a new algorithm for eigenoption discovery in RL.

My algorithm uses the successor representation (SR) to estimate the diffusion

model of information flow in the environment, leveraging the equivalence be-

tween proto-value functions (PVFs) and the eigenvectors of the SR when it

is defined with respect to the uniform random policy in a symmetric and de-
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terministic environment. This approach circumvents several limitations from

the algorithm presented in the previous chapter: 1) it builds increasingly ac-

curate estimates using a constant-cost update-rule; 2) it naturally deals with

stochastic MDPs; 3) it does not depend on the assumption that the transi-

tion matrix is symmetric; and 4) it does not depend on handcrafted feature

representations. The first three items were achieved by simply using the SR

instead of the PVFs, while the latter was achieved by using a neural network

to estimate the SR.

The algorithms presented here can also be seen as instantiations of the

option discovery cycle proposed in Chapter 3 (page 37). Actually, the only

step that is different from what I discussed in Chapter 4 is the representation

learning step. Instead of having an agent following the random policy while

learning proto-value functions (PVFs) as the linear representation, the agent

now follows a random policy while learning the successor representation. The

SR can be seen as a linear representation in both the tabular and non-linear

function approximation cases. The agent selects the top k features according

to the obtained eigenvalues and proceeds to learn to attain those features via

eigenpurposes. Each one of the options then consists of an eigenbehavior and

the initiation and termination sets as previously defined. As in Chapter 4, I

presented results for a single iteration of the cycle in this chapter. Some initial

results of multiple iterations of this cycle are discussed in Chapter 7.

Finally, although the ideas presented in this chapter address multiple lim-

itations of the framework proposed in Chapter 4, this algorithm is still not

fully practical in settings such as Atari 2600 games. The main reason behind

it is the fact that learning multiple options is computationally intensive and

different from the tabular case, one cannot simply rely on the sorting provided

by the eigenvalues to select eigenpurposes. There are a couple of reasons for

this, such as the fact that a random walk does not necessarily capture the

true distribution of state visitation in a short amount of time. A better neural

network architecture, that seems to be able to generate a better sorting of

interesting eigenpurposes was recently proposed by Pfau et al. (2018), as I dis-

cuss in details in Chapter 7. In the next chapter I explore the observation that
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the top eigenvector of the successor representation, while being learned, seems

to be a good guiding signal for exploration, as mentioned in Section 5.4.3.
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Chapter 6

Count-Based Exploration with
the Successor Representation

In the previous chapter we have seen that the top eigenpurpose of the

successor representation (SR), while it is being learned, seems to incentivize

the agent to navigate to states it has visited less often. Motivated by this

observation, in this chapter I introduce algorithms that use the SR to directly

generate exploration bonuses. This is a simple approach that allows me to

develop algorithms for the tabular case that are also extendable to settings

where function approximation is required. The exploration bonus I propose

here is the norm of the transient SR for the current state.

In this chapter I also introduce the substochastic successor representation

(SSR) in order to try to understand the behavior of the proposed exploration

bonus. The SSR behaves similarly to the SR but it is more amenable to

theoretical analysis. I am able to show that the SSR implicitly counts state

visitation, suggesting that maybe the exploration bonus obtained from the

transient SR is also incorporating some notion of state visitation counts. I

proceed to show that a standard model-based RL algorithm that uses the

norm of the SSR as an exploration bonus performs as well as algorithms with

provable PAC-MDP bounds in hard exploration tasks. Finally, I extend the

idea of using the norm of the SR as an exploration bonus to the function

approximation setting, designing a model-free deep RL algorithm that achieves

state-of-the-art performance in hard exploration Atari 2600 games (Bellemare,
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Srinivasan, et al. 2016; Burda et al. 2019; Ostrovski et al. 2017) when evaluated

in a low sample-complexity regime.

6.1 The Norm of the Successor Representa-

tion as an Exploration Bonus

The thesis statement in this dissertation is that time-based representations

can be used to guide exploration in RL. The previous chapters presented some

evidence supporting this claim, showing for example that the SR incorporates

diffusion properties of the environment and how it can be used to promote

exploration via options. As aforementioned, in this chapter I argue that the

SR can be used in a more direct way to promote exploration. I show that

the magnitude of the norm of the SR, while it is being learned, behaves as

an exploration bonus. In this section I first demonstrate it empirically, in

the tabular case, to clearly present the idea behind the proposed algorithm.

I then introduce the substochastic successor representation to provide some

theoretical intuition of why the proposed exploration bonus is effective.

6.1.1 Empirical Demonstration in Tabular Model-Free
Reinforcement Learning

I demonstrate the usefulness of the norm of the SR as an exploration

bonus by first comparing the performance of an algorithm that uses this ex-

ploration bonus to an algorithm that uses an ǫ-greedy exploration strategy. I

use the Sarsa update rule (Rummery and Niranjan 1994) to implement both

approaches. I refer to the algorithm that uses an ǫ-greedy strategy as Näıve

Sarsa while the one that uses the proposed exploration bonus as Sarsa+SR.

The update equation for Sarsa+SR is

q̂(St, At)← q̂(St, At)+α

(

Rt+β
1

||Ψ̂(St)||1
+γq̂(St+1, At+1)−q̂(St, At)

)

, (6.1)

where β is a scaling factor and, at each time step t, Ψ̂(St, ·) is updated before
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Figure 6.1: Domains used as testbed in the tabular case. The tuples in each
transition should be read as 〈action id, probability, reward〉.

q̂(St, At) via temporal-difference learning, as discussed in Chapter 2:

Ψ̂(St, j)← Ψ̂(St, j) + η
(

✶{St=j} + γSRΨ̂(St+1, j)− Ψ̂(St, j)
)

. (6.2)

I evaluated Sarsa+SR in RiverSwim and SixArms, traditional domains

in the PAC-MDP literature (Kakade 2003; Strehl and Littman 2008) that are

often used to evaluate provably sample-efficient algorithms (see Figure 6.1). In

these domains it is very likely that an agent will first observe a small reward

generated in a state that is easy to get to. If the agent does not have a

good exploration policy it is likely it will converge to a suboptimal behavior,

never observing larger rewards available in states that are difficult to get to.

These are features often found in larger domains such as Atari 2600 games and

robotics. These domains allow me to investigate the behavior of my algorithm

without having to also take other aspects into consideration, such as feature

learning. For SixArms, the agent starts in state 0. For RiverSwim, the

agent starts in either state 1 or 2 with equal probability.

The results suggest that the proposed exploration bonus has a profound

impact in the algorithm’s performance. When evaluating the agent for 5,000

time steps, Näıve Sarsa obtains an average return of approximately 26,000,

while Sarsa+SR obtains an approximate average return of 1.8 million! Notice

that, in RiverSwim, the reward that is “easy to get” has value 5, implying

that, different from Sarsa+SR, Näıve Sarsa almost never explores the state

space well enough to discover larger rewards. In SixArms the trend is the

same. Näıve Sarsa obtains an approximate average return of 284,000 while

Sarsa+SR achieves approximately 2.2 millon. The actual numbers, which

were averaged over 100 runs, are available in Table 6.1.
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Table 6.1: Comparison between Näıve Sarsa and Sarsa+SR. A 95% confidence
interval is reported between parentheses.

Näıve Sarsa Sarsa + SR

RiverSwim 26,526 (2,351) 1,792,126 (258,709)

SixArms 284,013 (88,552) 2,176,044 (449,962)

Both algorithms acted ǫ-greedily maximizing the discounted return using

γ = 0.95. For Sarsa+SR, I swept over different values of α, η, γSR, β and

ǫ, with α ∈ {0.01, 0.05, 0.1, 0.25, 0.5}, η ∈ {0.01, 0.05, 0.1, 0.25, 0.5}, γSR ∈
{0.5, 0.8, 0.95, 0.99}, β ∈ {1, 10, 100, 1000, 10000} and ǫ ∈ {0.01, 0.05, 0.1}. For
Näıve Sarsa, I swept over the parameters α and ǫ. For fairness, I looked at a

finer granularity for these parameters, with α ∈ i×0.005 for i ranging from 1 to

100, and with ǫ ∈ j×0.01 for j ranging from 1 to 15. The reported performance

of Sarsa+SR was obtained with α = 0.1, γSR = 0.5, ǫ = 0.01, β = 10000 in

both settings, with η = 0.5 in RiverSwim and η = 0.25 in SixArms. The

Näıve Sarsa results were obtained with α = 0.37 and ǫ = 0.12 in RiverSwim

and α = 0.43 and ǫ = 0.01 in SixArms. The value function of Näıve Sarsa was

pessimistically initialized to 0 because my goal was to use random exploration

as baseline, not approaches such as optimistic initialization that are not easily

applicable to the function approximation setting. The reported results hold

for a wide range of parameter values.

6.1.2 Theoretical Justification

It is difficult to characterize the behavior of the proposed exploration bonus

because it is updated at each time step with TD learning. It is hard to analyze

the transient behavior of estimates obtained with TD learning. Also, at its

fixed point, the ℓ1-norm of the SR is
∑

γt1 = 1/(1− γ) for all states, making

it hard to use the fixed point of the SR to theoretically analyze the behavior of

this exploration bonus. In this section I introduce the substochastic successor

representation (SSR) to provide some theoretical intuition of why the norm of

the SR is a good exploration bonus. The SSR behaves similarly to the SR but

it is simpler to analyze.
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Definition 6.1.1 (Substochastic Successor Representation). Let P̃ denote the

substochastic matrix induced by the environment’s dynamics and by the policy

π such that P̃ (s′|s) = n(s,s′)
n(s)+1

. For a given 0 ≤ γ < 1, the substochastic successor

representation, Ψ̃, is defined as:

Ψ̃ =
∞
∑

t=0

γtP̃ t = (I − γP̃ )−1.

The SSR only differs from the empirical SR in its incorporation of an ad-

ditional “phantom” transition from each state, making it underestimate the

real SR. Through algebraic manipulation one can show that the SSR allows

us to recover an estimate of the visit counts, n(s). This result, stated in The-

orem 6.1.1, provides some intuition of why the exploration bonus I propose in

this chapter performs so well, as exploration bonuses based on state visitation

counts are known to generate proper exploration.

As aforementioned, the SSR behaves similarly to the SR. When computing

the norm of the SR, while it is being learned with TD learning, it is as if a

reward of 1 was observed at each time step.1 Thus, there is little variance

in the target, with the predictions slowly approaching the true value of the

SR. If pessimistically initialized, as traditionally done, the estimates of the

SR approach the target from below. In this sense, the number of times a

prediction has been updated in a given state is a good proxy to estimate how

far this prediction is from its final target. From the definition above we can

see that the SSR have similar properties. It underestimates the true target

but slowly approaches it, converging to the true SR in the limit. The SSR

simplifies the analysis by not taking bootstrapping into consideration.

The theorem below formalizes the idea that the ℓ1-norm of the SSR implic-

itly counts state visitation, shedding some light on why the exploration bonus

I propose seems to work so well.

1When estimating the SR with TD learning, in vector form, the clause ✶{St=j}, from
Equation 6.2, is always true for one of the states, that is, an entry in the vector representing
the SR. Thus, it is as if a reward of 1 was observed at each time step.
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Theorem 6.1.1. Let n(s) denote the number of times state s has been vis-

ited and let Ψ̃ denote the substochastic successor representation as in Defini-

tion 6.1.1. For a given 0 ≤ γ < 1,

γ

n(s) + 1
− γ2

1− γ ≤ (1 + γ)− ||Ψ̃(s)||1 ≤
γ

n(s) + 1

Proof of Theorem 6.1.1. Let P̂π be the empirical transition matrix. I first

rewrite P̃ in terms of P̂π:

P̃ (s, s′) =
n(s, s′)

n(s) + 1
=

n(s)

n(s) + 1

n(s, s′)

n(s)
=

n(s)

n(s) + 1
P̂π(s, s

′)

=
(

1− 1

n(s) + 1

)

P̂π(s, s
′).

The expression above can also be written in matrix form: P̃ = (I −N)P̂π,

where N ∈ R
|S|×|S| denotes the diagonal matrix of augmented inverse counts.

Expanding Ψ̃ we have:

Ψ̃ =

γ
∑

t=0

(γP̃ )t = I + γP̃ +
∞
∑

t=2

(γP̃ )t = I + γP̃ + γ2P̃ 2Ψ̃.

The top eigenvector (the eigenvector with largest eigenvalue) of a stochastic

matrix is the all-ones vector, 1 (Meyn and Tweedie 2012), and it corresponds

to the eigenvalue 1. Using this fact and the definition of P̃ with respect to P̂π

we have:

(I + γP̃ )1+ γ2P̃ 2Ψ̃1 =
(

I + γ(I −N)P̂π

)

1+ γ2P̃ 2Ψ̃1

= (I + γ)1− γN1+ γ2P̃ 2Ψ̃1. (6.3)

We can now bound the term γ2P̃ 2Ψ̃1 using the fact that 1 is also the top

eigenvector of the SR and has eigenvalue 1
1−γ

:

0 ≤ γ2P̃ 2Ψ̃1 ≤ γ2

1− γ1.

Plugging Equation 6.3 into the definition of the successor representation

we have (notice that Ψ(s)1 = ||Ψ(s)||1):

(1 + γ)1− (1 + γ)1+ γN1− γ2P̃ 2Ψ̃1 = γN1− γ2P̃ 2Ψ̃1 ≤ γN1.
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When we also use the other bound on the quadratic term we conclude that,

for any state s,

γ

n(s) + 1
− γ2

1− γ ≤ (1 + γ)− ||Ψ̃(s)||1 ≤
γ

n(s) + 1
.

In other words, the SSR, obtained after a slight change to the SR, can be

used to recover state visitation counts. The intuition behind this result is that

the phantom transition, represented by the +1 in the denominator of the SSR,

serves as a proxy for the uncertainty about that state by underestimating the

successor representation. This is due to the fact that
∑

s′ P̃ (s, s
′) gets closer

to 1 each time state s is visited.

6.1.3 Exploration in Model-based RL with the SSR

Inspired by the result above, I implemented a simple model-based algorithm

that penalizes the agent for visiting commonly visited states. This algorithm is

named ESSR and it uses an exploration bonus equals to rint(s) = −||Ψ̃(s)||1.2

In ESSR the agent maximizes the reward function r(s, a) + βrint(s), with β

being a scaling parameter. The shift 1+γ in the theorem above has no effect in

the agent’s policy because it is the same across all states. The agent updates

its SSR estimate as in Definition 6.1.1. Its transition probability model and

reward model are updated through the equations

P̂π(s
′|s) = n(s, s′)

n(s)
, r̂(s) =

C(s, s′)

n(s)
, (6.4)

where n(s, s′) denotes the number of times the transition s→ s′ was observed,

n(s) =
∑

s′∈S n(s, s
′), and C(s, s′) denote the sum of the rewards associated

with the n(s, s′) transitions (I drop the action in the discussion to simplify

notation). Algorithm 3 depicts the pseudo-code of ESSR. I use P̂π and r̂ for

the empirical estimates of Pπ and r.

I evaluated ESSR in RiverSwim and SixArms, with the algorithm max-

imizing the discounted return (γ = 0.95) in both environments. I used policy

2The code used to generate these results is available at: https://github.com/

mcmachado/count_based_exploration_sr/tree/master/tabular.
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Algorithm 3 Exploration through the Substochastic Successor Representa-
tion (ESSR)

n(s, s′)← 0 ∀s, s′ ∈ S

t(s, a, s′)← 1 ∀s, s′ ∈ S, ∀a ∈ A

r̂(s, a)← 0 ∀s ∈ S, ∀a ∈ A

P̂ (s, a)← 1/|S| ∀s ∈ S, ∀a ∈ A

P̃ (s, s′)← 0 ∀s, s′ ∈ S

π ← random over A

while episode is not over do
Observe s ∈ S, take action a ∈ A selected according to π(s), and observe
a reward R and a next state s′ ∈ S

n(s, s′)← n(s, s′) + 1

t(s, a, s′)← t(s, a, s′) + 1

n(s)←
∑

x′,b t(s, b, x
′)

n(s, a)←
∑

x′ t(s, a, x′)

r̂(s, a, s′)← (t(s,a,s′)−2)×r̂(s,a,s′)+R
t(s,a,s′)−1

for each state x′ ∈ S do

P̂ (s, a, x′)← t(s,a,x′)
n(s,a)

P̃ (s, x′)← n(s,x′)
n(s)+1

end for
Ψ̃← (I − γP̃ )−1

rint ← −Ψ̃e

π ← PolicyIteration(P̂ , r̂ + βrint)

end while

iteration where the policy evaluation step is terminated when the estimates

of the value function change by less than 0.01. In RiverSwim β was set to

100 and in SixArms β was set to 1000. These values were obtained after

evaluating the algorithm for β ∈ {1, 10, 100, 200, 1000, 2000}.
Table 6.2 depicts the performance of ESSR as well as the performance of

some algorithms with polynomial sample-complexity bounds. The goal with

this evaluation is not to outperform these algorithms, but to evaluate how well

ESSR performs when compared to algorithms that explicitly keep visitation

counts to promote exploration. ESSR performs as well as R-Max (Brafman

and Tennenholtz 2002) and E3 (Kearns and Singh 2002) on RiverSwim and it

outperforms these algorithms on SixArms; while MBIE (Strehl and Littman
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Table 6.2: Comparison between ESSR, R-Max, E3, and MBIE. The numbers
reported for R-Max, E3, and MBIE are an estimate from the histograms
presented by Strehl and Littman (2008). ESSR’s performance is the average
over 100 runs. A 95% confidence interval is reported between parentheses.

E3 R-Max MBIE ESSR

RiverSwim 3,000,000 3,000,000 3,250,000 3,088,924 (± 57,584)

SixArms 1,800,000 2,800,000 9,250,000 7,327,222 (± 1,189,460)

2008), which explicitly estimates confidence intervals over the expected return

in each state, outperforms ESSR in these domains. These results clearly show

that ESSR performs, on average, similarly to other algorithms with PAC-MDP

guarantees, suggesting that the norm of the SSR is a promising exploration

bonus.

A more careful examination of ESSR sheds some light into these results,

as ESSR and R-Max are actually very similar. As R-Max, ESSR augments

the state-space with an imaginary state and encourages the agent to visit

that state, implicitly reducing the algorithm’s uncertainty in the state-space.

However, while R-Max deletes the transition to this imaginary state once a

state has been visited a given number of times, ESSR lets the probability of

visiting this imaginary state vanish with additional visitations.

6.2 Counting Feature Activations with the SR

In large environments, where enumerating all states is not an option, model-

based RL algorithms or using Sarsa+SR as described in the previous section

are not viable options. Learning the SR becomes even more challenging when

the representation, φ, is also being learned. Using neural networks to learn

a representation while learning to estimate state-action value functions is the

approach that currently often leads to state-of-the-art performance in the field.

In this section I describe an algorithm that uses the same ideas described so far

but in the function approximation setting. The proposed algorithm is inspired

by the neural network introduced in the previous chapter, which learns the

successor features jointly with the feature representation itself.
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The neural network used to learn the agent’s value function while also

learning the feature representation and the successor representation is depicted

in Figure 6.2. The layers used to compute the state-action value function,

q̂(St, ·), are structured as in DQN (Mnih, Kavukcuoglu, et al. 2015), but with a

different numbers of parameters (i..e, filter sizes, stride, and number of nodes).

This was done to match Oh et al.’s (2015) architecture, which is known to

succeed in the auxiliary task of predicting the agent’s next observation, as

previously discussed. From here on I will call the part of our architecture that

predicts q̂(St, ·) DQNe to stress the difference between the parameters of this

network and DQN. It is trained to minimize

LTD = E

[

(

(1− τ)δ(s, a) + τδMC(s, a)
)2
]

,

where δ(s, a) and δMC(s, a) are defined as

δ(s, a) = Rt + βrint(s;θ
−) + γmax

a′
q(s′, a′;θ−)− q(s, a;θ),

δMC(s, a) =
∞
∑

t=0

γt
(

r(St, At) + βrint(St;θ
−)
)

− q(s, a;θ).

This loss is known as the mixed Monte-Carlo return (MMC) and it has been

used in the past by algorithms that achieved succesful exploration in deep

reinforcement learning (Bellemare, Srinivasan, et al. 2016; Ostrovski et al.

2017). The distinction between θ and θ− is standard in the field, with θ−

denoting the parameters of the target network, which is updated less often

for stability purposes. As before, I use rint to denote the exploration bonus

obtained from the successor features of the internal representation, φ, which

will be defined below. Moreover, to ensure all features are in the same range,

I normalize the feature vector so that ||φ(·)||2 = 1. In Figure 6.2 I highlight

with φ the layer in which I normalize its output. Notice that the features are

always non-negative due to the use of ReLU gates.

The successor features are computed by the two bottom layers of the net-

work, which minimize the loss

LSR = Eπ,p

[

(

φ(St;θ
−) + γψ(St+1;θ

−)−ψ(St;θ)
)2
]

.
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Moreover, I use the ℓ2-norm of the SR instead of the ℓ1-norm, which was used

so far. This mismatch is further discussed in Section 6.3.3. It was driven by

the ℓ2-norm leading to slightly better performance.

Finally, I initialize the network the same way Oh et al. (2015) does. I use

Xavier initialization (Glorot and Bengio 2010) in all layers except the fully

connected layers around the element-wise multiplication denoted by ⊗, which
are initialized uniformly with values between −0.1 and 0.1.

6.3 Evaluating the Exploration Bonus in Deep

Reinforcement Learning

I evaluated the proposed algorithm on Atari 2600 games through the Arcade

Learning Environment (ALE). Following Bellemare, Srinivasan, et al.’s (2016)

taxonomy, I evaluated the algorithm in the Atari 2600 games with sparse re-

wards that pose hard exploration problems. They are: Freeway, Gravitar,

Montezuma’s Revenge, Private Eye, Solaris, and Venture.3

I followed the evaluation protocol proposed by Machado, Bellemare, Talvi-

tie, et al. (2018). I used Montezuma’s Revenge to tune the algorithm’s

parameters. The reported results are the average over 10 seeds after 100 mil-

lion frames. I evaluated the agents in the stochastic setting (sticky actions,

ς = 0.25) using a frame skip of 5 with the full action set (|A| = 18). The agent

learns from raw pixels, that is, it uses the game screen as input.

The reported results were obtained with the algorithm described in the

previous section. I set β = 0.025 after a rough sweep over values in the

game Montezuma’s Revenge. I annealed ǫ in DQN’s ǫ-greedy exploration

over the first million steps, starting at 1.0 and stopping at 0.1 as done by

Bellemare, Srinivasan, et al. (2016). I trained the network with RMSprop

with a step-size of 0.00025, an ǫ value of 0.01, and a decay of 0.95, which are

the standard parameters for training DQN. The discount factor, γ, is set to

0.99 and wTD = 1, wSR = 1000, wRecons = 0.001. The weights wTD, wSR, and

3The code used to generate these results is available at: https://github.com/

mcmachado/count_based_exploration_sr/tree/master/function_approximation.
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wRecons were set so that the loss functions would be roughly at the same scale.

All other parameters are the same as those used by Mnih, Kavukcuoglu, et

al. (2015).

6.3.1 Overal Performance and Baselines

Table 6.3 summarizes the results after 100 million frames. The performance of

other algorithms is also provided for reference. Notice I am reporting the learn-

ing performance for all algorithms instead of the maximum scores achieved

by the algorithm. I use the superscript MMC to distinguish between the algo-

rithms that use MMC from those that do not. When comparing my algorithm,

DQNMMC

e +SR, to DQN we can see how much my approach improves over

the most traditional baseline. By comparing my algorithm’s performance to

DQNMMC+CTS (Bellemare, Srinivasan, et al. 2016) and DQNMMC+PixelCNN

(Ostrovski et al. 2017) I compare my algorithm to established baselines for

exploration. By comparing my algorithm’s performance to Random Network

Distillation (RND; Burda et al. 2019) I compare my algorithm to one of the

most recent papers in the field with state-of-the-art performance.

As highlighted in Section 6.2, the parameters of the network I used are

different from those used in the traditional DQN network, so I also compared

the performance of my algorithm to the performance of the same network my

algorithm uses but without the additional modules (next state prediction and

successor representation) by setting wSR = wRecons = 0 and without the intrinsic

reward bonus by setting β = 0.0. The column labeled DQNMMC

e contains the

results for this baseline. This comparison allows me to explicitly quantify the

improvement provided by the proposed exploration bonus.

We can clearly see that DQNMMC

e +SR achieves scores much higher than

those achieved by DQN, which struggles in games that pose hard exploration

problems. Moreover, by comparing DQNMMC

e +SR to DQNMMC

e we can see that

the provided exploration bonus has a big impact in the game Montezuma’s

Revenge, which is probably known as the hardest game among those I used

in my evaluation. Interestingly, the change in architecture and the use of MMC

leads to a big improvement in games such as Gravitar and Venture. It
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Table 6.3: Performance of the proposed algorithm, DQNMMC

e +SR, compared to various agents on the “hard exploration” subset
of Atari 2600 games. The DQN results reported are from the work by Machado, Bellemare, Talvitie, et al. 2018 (2018)
while the DQNMMC+CTS and DQNMMC+PixelCNN results were extracted from the learning curves available in Ostrovski
et al.’s (2017) work. DQNMMC

e denotes another baseline used in the comparison. When available, standard deviations are
reported between parentheses. See text for details.

DQN DQNMMC

e DQNMMC+CTS DQNMMC+PixelCNN RND DQNMMC

e +SR
Freeway 32.4 (0.3) 29.5 (0.1) 29.2 29.4 - - 29.5 (0.1)
Gravitar 118.5 (22.0) 1078.3 (254.1) 199.8 275.4 790.0 (122.9) 430.3 (109.4)
Mont. Rev. 0.0 (0.0) 0.0 (0.0) 2941.9 1671.7 524.8 (314.0) 1778.6 (903.6)
Private Eye 1447.4 (2,567.9) 113.4 (42.3) 32.8 14386.0 61.3 (53.7) 99.1 (1.8)
Solaris 783.4 (55.3) 2244.6 (378.8) 1147.1 2279.4 1270.3 (291.0) 2155.7 (398.3)
Venture 4.4 (5.4) 1220.1 (51.0) 0.0 856.2 953.7 (167.3) 1241.8 (236.0)
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is likely this is due to the faster credit assignment MMC provides in settings

where the reward is not extremely sparse and to the finer granularity of the

convolutional layers. However, notice that the change in architecture does not

have any effect in Montezuma’s Revenge. The proposed exploration bonus

seems to be essential in this game. The proposed exploration bonus seems to

be essential in games with very sparse rewards. I also compared DQNMMC

e +SR

to DQNMMC+CTS and DQNMMC+PixelCNN. We can observe that, on average,

it outperforms these algorithms while being simpler since it does not require

a density model. Instead, my algorithm requires the SR, which is domain-

independent as it is already defined for every problem since it is a component

of the value function estimates, as discussed in Chapter 2.

Finally, DQNMMC

e +SR also outperforms RND (Burda et al. 2019) when it

is trained for 100 million frames. Importantly, RND is currently considered to

be the state-of-the-art approach for exploration in Atari 2600 games. Burda

et al. did not evaluate RND in Freeway. I computed the performance of

RND from the data used by Burda et al. to plot Figure 7 of their paper. The

authors shared this data with me. The performance I report is the average

performance after 1,530 rollouts. Each rollout consists of 128 time steps with 4

frames per time step (128 environments were executed in parallel), leading to

1,530× 128× 128× 4 = 100,270,080 frames. I averaged the performance over

3 seeds in the games Gravitar, Private Eye, Solaris, and Venture.

The performance reported for Montezuma’s Revenge is the average over

10 seeds.

In order to provide additional data about DQNMMC

e +SR and DQNMMC

e ,

regardless of their performance compared to other baselines, I also present

their performance after different amounts of experience in Tables 6.4 and 6.5;

and their learning curves are depicted in Figure 6.3.

6.3.2 Evaluating the Impact of the Auxiliary Task

While the results depicted in Table 6.3 allow us to clearly see the benefit of

using an exploration bonus derived from the SR, they do not inform us about

the impact of the auxiliary task in the results. I did evaluate the impact of
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Table 6.4: Results obtained with DQNMMC

e +SR after different amounts of ex-
perience.

Game 10M frames 50M frames 100M frames

Freeway 24.9 (0.5) 29.5 (0.1) 29.5 (0.1)

Gravitar 244.1 (23.8) 326.4 (53.0) 430.3 (109.4)

Mont. Revenge 2.6 (7.2) 563.8 (465.7) 1778.6 (903.6)

Private Eye 99.2 (1.2) 98.5 (3.3) 99.1 (1.8)

Solaris 1547.5 (410.9) 2036.3 (339.0) 2155.7 (398.3)

Venture 26.2 (22.1) 942.0 (423.8) 1241.8 (236.0)

Table 6.5: Results obtained with DQNMMC

e after different amounts of experi-
ence.

Game 10M frames 50M frames 100M frames

Freeway 25.7 (1.5) 29.6 (0.1) 29.5 (0.1)

Gravitar 229.9 (31.3) 559.3 (75.9) 1078.3 (254.1)

Mont. Revenge 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Private Eye 216.7 (219.5) 109.1 (44.1) 113.4 (42.3)

Solaris 2230.0 (322.3) 2181.5 (292.9) 2244.6 (378.8)

Venture 63.8 (31.3) 794.1 (151.9) 1220.1 (51.0)

the introduced exploration bonus by reporting the performance of DQNMMC

e

but I did not evaluate the impact of the auxiliary task introduced to the

network yet. It is well-known that auxiliary tasks tend to improve agents’

performance (Jaderberg et al. 2017), so it is important to know how much

the auxiliary task is responsible for the reported results, and how much the

proposed exploration bonus is. For this analysis I focus onMontezuma’s Re-

venge because it is the game where the problem of exploration is maximized,

with most algorithms not being able to do anything without an exploration

bonus.

The first question to ask is whether the auxiliary task is necessary to

DQNMMC

e +SR. I evaluated this by dropping the reconstruction module from

the network to test whether the initial random noise generated by the succes-

sor representation is enough to drive representation learning. It is not. When

dropping the auxiliary task, the average performance of this baseline over 4

seeds in Montezuma’s Revenge after 100 million frames was 100.0 points

(σ2 = 200.0; min: 0.0, max: 400.0). As comparison, DQNMMC

e +SR obtains
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Table 6.6: Performance of the proposed algorithm, DQNMMC

e +SR, when us-
ing the ℓ1-norm and ℓ2-norm of the SR to generate the exploration bonus.
Standard deviations are reported between parenthesis.

ℓ1-norm ℓ2-norm
Freeway 29.4 (0.1) 29.5 (0.1)
Gravitar 457.4 (120.3) 430.3 (109.4)
Mont. Rev. 1395.4 (1121.8) 1778.6 (903.6)
Private Eye 104.4 (50.4) 99.1 (1.8)
Solaris 1890.1 (163.1) 2155.7 (398.3)
Venture 1348.5 (56.5) 1241.8 (236.0)

Table 6.7: Performance of Sarsa+SR, in the tabular case, when using the
ℓ1-norm and ℓ2-norm of the SR to generate the exploration bonus. A 95%
confidence interval is reported between parentheses.

ℓ1-norm ℓ2-norm
RiverSwim 1,792,126 (258,709) 1,989,479 (167,189)
SixArms 2,176,044 (449,962) 2,625,132 (516,804)

when using the ℓ2-norm of the SR, β = 0.05 when using the ℓ1-norm of the

SR. These results also support the claim that the norm of the SR can be used

to generate exploration bonuses. DQNMMC

e +SR, when using the ℓ1-norm of the

SR, exhibits performance comparable to pseudo-count based methods, despite

not being the best results I obtained.

I also revisit the results presented in Section 6.1.1 to evaluate the impact of

the different norms in Sarsa+SR. I swept over all the parameters, as previously

described. The results reported for Sarsa+SR when using the ℓ2-norm of

the SR are the average over 100 runs. The actual numbers are available in

Table 6.7. Interestingly, we observe the same trend we observed in the deep

RL case. The ℓ2-norm of the SR leads to even better results. The reported

performance of Sarsa+SR was obtained with α = 0.1, γSR = 0.5, β = 10000

in both settings, with η = 0.5 and ǫ = 0.05 in RiverSwim and η = 0.5 and

ǫ = 0.01 in SixArms.

The fact that the algorithms proposed in this chapter perform better when

using the ℓ2-norm of the SR instead of the ℓ1-norm deserves further investi-

gation, either empirically or theoretically. I conjecture it might be possible

to derive theoretical guarantees for the ℓ2-norm of the SR that are similar to
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Table 6.8: Results obtained with DQNMMC

e +SR after different amounts of ex-
perience when using the ℓ1-norm of the SR.

Game 10M frames 50M frames 100M frames

Freeway 23.5 (0.8) 29.3 (0.1) 29.4 (0.1)

Gravitar 238.8 (26.4) 343.0 (72.2) 457.4 (120.3)

Mont. Revenge 0.2 (0.4) 591.3 (870.1) 1395.4 (1121.8)

Private Eye 97.2 (5.3) 99.4 (1.9) 104.4 (50.4)

Solaris 1455.7 (146.3) 1755.9 (237.5) 1890.1 (163.1)

Venture 29.0 (30.2) 1102.4 (77.6) 1348.5 (56.5)

Table 6.9: Results obtained with DQNMMC

e after different amounts of experi-
ence when using the ℓ1-norm in the normalization.

Game 10M frames 50M frames 100M frames

Freeway 24.0 (8.4) 26.4 (9.3) 26.4 (9.3)

Gravitar 228.6 (26.9) 555.9 (35.6) 1063.1 (271.8)

Mont. Revenge 0.1 (0.3) 0.6 (1.9) 40.0 (126.5)

Private Eye 97.3 (5.1) 102.8 (13.2) 98.7 (3.2)

Solaris 1873.6 (210.6) 2175.2 (243.8) 2028.7 (143.2)

Venture 48.1 (44.9) 795.3 (167.2) 1236.0 (51.3)

those derived here. Nevertheless, these results suggest that the idea of using

the norm of the SR for exploration is quite general, with the p-norm of the SR

being effective for more than one value of p.

The performance of DQNMMC

e +SR and DQNe after different amounts of

experience, when using the ℓ1-norm of the SR, is available in Tables 6.8 and 6.9;

and their learning curves are depicted in Figure 6.5.

6.4 Discussion

In this chapter I introduced a general method for exploration in RL that

implicitly counts state (or feature) visitation in order to guide the exploration

process. It is still guided by the successor representation but it does not require

dozens or hundreds of options to be learned simultaneously before an effective

exploration strategy can arise. It is compatible with representation learning

and the idea can also be adapted to be applied to large domains. The results

reported in this chapter are competitive to state-of-the-art results in Atari
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setting through a density model, which is often domain-specific and difficult

to implement. The work presented in this chapter is obviously related to this

idea, and maybe it can be seen as showing how the successor representation

can instead be used to approximate state visitation counts.
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Chapter 7

Bootstrapping in Option-Based
Exploration and Other
Developments

In this chapter I discuss some extensions of the ideas I presented in the previous

three chapters. In Section 7.1 I discuss some preliminary work I developed

to assess the impact of composing eigenoptions. This is an instantiation of

multiple iterations of the option discovery cycle proposed in Chapter 3. In

Section 7.2 I discuss some recent developments, by different research groups,

that proposed ways to compute the eigenvectors of the Laplacian (or of the

successor representation) online. These results are directly connected to what

I have proposed in this dissertation because they can potentially pave the way

to online algorithms for eigenoption discovery.

7.1 Bootstrapping Eigenoption Discovery

In Chapters 4 and 5 I described two instantiations of the option discovery

cycle proposed in Chapter 3 and I presented results of a single iteration of the

process. In theory, this process could have been repeated, with the discovered

eigenoptions being used by the agent to collect data in the second iteration

of the option discovery process. The main challenge in doing this is the high

sample complexity of current reinforcement learning algorithms and the fact

that off-policy learning methods are known to be unstable in domains where
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0000 0000 00011111 1111 1111

Figure 7.1: Environment used to evaluate the effects of option composition.

function approximation is required (Machado, Bellemare, Talvitie, et al. 2018).

Consequently, with modest computational resources, it is unfeasible to learn

the multiple eigenbehaviors generated by the proposed approaches in large

domains such as Atari 2600 games.

In this section I present some preliminary results I obtained when exploring

the effect of executing multiple iterations of the option discovery cycle in a

small toy-domain. In this domain the value function is computed through

linear function approximation. I used the algorithm described in Section 4.3.

Shortly, the agent acts randomly with respect to primitive actions and options

(after the first iteration) while collecting samples. These samples are stacked

in a transition matrix such that row t encodes φ(St)−φ(St−1). After a given

number of steps I compute the SVD of this transition matrix and use its right-

singular vectors to generate the eingepurposes that will then be maximized. I

test the following hypotheses with this algorithm:

• At each new iteration the discovered eigenoptions become increasingly

more complex.

• More complex options move the agent farther away in the state space.

• As the agent moves farther away with newly discovered options, it ob-

serves new features, discovering different options, what creates a self-

reinforcing loop.

The agent selected actions (and options) uniformly random. The domain

I used was a ring of length 4096 with deterministic transitions in which the

agent starts at the x coordinate 0 and at every time step it chooses between
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random walk

option discovery

(a) Full observability

option discovery

random walk

(b) Partial observability

Figure 7.2: Sample random walk using primitive actions and a random walk
using the discovered options. Dashed vertical lines represent iteration bound-
aries.

going right or going left (see Figure 7.1). Each state is represented as a vector

containing the two’s complement binary encoding (12 bits long). When the

agent goes left on the state 0 it goes to the state −1 (0000 0000 00002 →
1111 1111 11112). Similarly, going right in state 2047 transitions to −2048.
The agent observes a reward signal of value zero in every state.

All the evaluations were made in the same setting, with a discount fac-

tor γ = 0.99 when learning the eigenbehaviors. The policies were obtained

through value iteration with 100 iterations. Each round of the algorithm con-

sisted of 1,000 time steps in which the agent collected transitions to discover

eigenpurposes. I ran six rounds, with only primitive actions available in round

zero. All discovered options become available for the agent in a subsequent

iteration.

I first evaluated this algorithm in settings with full observability, in which

the agent perceives states as described above (Figure 7.2a, and Table 1). By

looking at the average length of the discovered options we see that options be-

come increasingly complex with each iteration. This added complexity allows

the agent to move to farther states, as evidenced by the increasing distance

between farthest point and the agent’s starting state at that iteration (Max

Dist. from Start). The improvement is particularly clear when comparing

to a sample random walk on primitive actions (Figure 7.2a). Note that, de-

spite options constructed in later iterations still use only primitive actions,
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Table 7.1: Properties of discovered options, per iteration, when compared to a random walk in a ring. Each number is the
average of 30 runs and standard deviations are reported between parentheses.

Observ. Metric Iter. 0 Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5

F
u
ll

Num. Options Discov. - (-) 5.9 (5.5) 7.7 (10.3) 8.5 (8.8) 9.2 (12.6) 9.5 (11.4)
Avg. Opt. Length - (-) 12.1 (1.1) 19.2 (2.1) 21.6 (2.0) 25.5 (2.0) 27.8 (1.7)
Max Dist. from Start 29.3 (18.2) 168.7 (222.5) 240.1 (287.3) 269.9 (311.5) 287.1 (436.9) 298.9 (320.8)

P
ar
ti
al Num. Options Discov. - (-) 3.5 (20.9) 5.2 (14.1) 6.2 (19.4) 6.6 (30.2) 6.8 (21.6)

Avg. Opt. Length - (-) 20.4 (1.8) 30.5 (1.4) 33.5 (2.1) 35.9 (1.7) 37.7 (1.7)
Max Dist. from Start 29.3 (18.2) 212.8 (326.9) 314.9 (314.3) 301.8 (434.3) 352.4 (464.1) 301.1 (360.0)
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they present more complex behaviors. This is different than typical option

discovery methods, which construct hierarchies of options.

I also evaluated a setting in which the agent had partial observability. In

this setting the agent does not observe the three least significant bits encoding

the state. This collapses several states together and makes it much harder for

the agent to observe progress. Interestingly, the same behavioral pattern as in

the full observability experiment emerges. Agents still come up with options

of the type “flip the i-th bit” once they discover these purposes. The only

difference is that fewer options are discovered at each iteration, due to fewer

observable eigenpurposes.

We can conclude that these results confirm the three aforementioned hy-

potheses. It is important to acknowledge that the described domain was de-

signed to highlight the benefits of the proposed approach and that these results

are fairly preliminary. That being said, these results suggest that the option

discovery cycle proposed in Chapter 3 might scale well with computation.

7.2 Online Computation of the Eigenvectors

of the Laplacian (or the Successor Repre-

sentation)

One of the main issues I did not discuss in this dissertation is the fact

that the computational cost of the eigendecompostion/SVD required by some

of my algorithms is fairly high. In discrete settings, when all the data can

fit in memory, the cost of an eigendecomposition is O(n3). In continuous

settings, the eigenfunctions need to be approximated from a fixed number of

points while their value at other points is computed through the Nyström

approximation (Liu et al. 2017; Mahadevan and Maggioni 2007), an operation

that might also be extremely expensive depending on the size of the dataset.

While I do not adress this issue in my work, Pfau et al. (2018) and Wu,

Tucker, and Nachum (2018) recently proposed approaches for estimating the

eigenvectors of the graph Laplacian online. These methods approximate the
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eigenfunctions of the graph Laplacian on high-dimensional function spaces via

stochastic optimization. Pfau et al. (2018) do so by posing the problem of

eigenfunction computation as an optimization problem and by deriving a gra-

dient estimate which optimizes the sequential eigenfunction problem, allowing

them to use neural networks to solve large-scale spectral decompositions. Wu,

Tucker, and Nachum (2018) formalize the Laplacian in a more general way and,

inspired by spectral graph drawing theory (Koren 2003), compute the eigen-

functions online by using an objective function that is amenable to stochastic

optimization. They enforce orthonormality of the eigenvectors by introducing

a penalty term into the objective function. Differently from Pfau et al. (2018),

which formulated the problem with an unconstrained optimization problem

objective, Wu, Tucker, and Nachum (2018) did not. The authors also claim

that different from Pfau et al.’s, their approach scales linearly in the number

of embedding dimensions.

Importantly, these approaches seem to outperform the algorithms I intro-

duce in this dissertation for the estimation of the eigenvectors of the graph

Laplacian (or successor representation). When considering the architecture I

introduced in Chapter 5, this might be due to the fact that none of the compo-

nents of my architecture pushes the network to learn a representation with a

particular structure to the latent space. If one transforms the learned feature

representation φ(·) with an arbitrary invertible matrix Aφ(·), the reconstruc-
tion module could be unaffected as one can turn ζ(φ(·), a) into ζ(A−1φ(·), a).
However, when computing ψπ,i, this same term A could be pulled out, giving

us Aψ(·). Importantly, the SVD of AΨ(·) can be completely different than the

SVD of Ψ(·), depending on A, which I do not specify. The formulations pro-

posed by Pfau et al. (2018) and Wu, Tucker, and Nachum (2018) address this

issue and remove the necessity of multiple losses, computing the eigenpurposes

in a fully end-to-end fashion.

Unfortunately, neither Pfau et al. nor Wu, Tucker, and Nachum evaluated

their approaches in the setting I propose here. Pfau et al. computed eigen-

purposes in Atari 2600 games and showed that their algorithm, when looking

at the top k eigenvectors of the singular value decomposition, often obtains
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eigenpurposes that are more diverse and that encode more interesting fea-

tures. Nevertheless, eigenoptions were never actually learned. Wu, Tucker,

and Nachum (2018) on the other hand, despite comparing the accuracy of

the eigenvectors estimated by my approach to theirs, focused on the more

traditional take of applying Laplacians in reinforcement learning in order to

generate a feature space that reflects more accurately the geometry of the en-

vironment dynamics. They validated such a hypothesis with a shaped reward

signal in goal-achieving tasks.

In conclusion, recent results suggest that there are ways to make the sin-

gular value decomposition in the approaches I proposed cheaper via online

estimation. These results could potentially let me avoid having to explicitly

compute the singular value decomposition of the Laplacian or of the successor

representation. By doing so I would then be able to generate a fully online algo-

rithm for option discovery. Moreover, improved neural network architectures

might actually allow us to concentrate in a lower number of eingepurposes,

also reducing the number of eigenbehaviors that would have to be learned.

7.3 Discussion

In this chapter I discussed different potential improvements or extensions to

the ideas presented in this dissertation for option discovery. I presented pre-

liminary results of multiple iterations of the option discovery cycle proposed

in Chapter 3, and I discussed how other research groups have started to ex-

ploit some of the ideas I present in this dissertation. More specifically, Pfau et

al. (2018) and Wu, Tucker, and Nachum (2018) recently have proposed online

ways of computing the eigenfunctions of the graph Laplacian, an approach that

could be applied to some of the algorithms I propose. In the next chapter I lay

out the main conclusions obtained in this work and I discuss some promising

research directions, further discussing the impact of the ideas presented here.
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Chapter 8

Discussions and Future Work

This dissertation set out to demonstrate that

time-based representations can be used to design domain-independent

algorithms that efficiently explore complex, sparse reward environ-

ments.

In this final chapter I summarize the contributions I presented to support this

statement. I discuss some possible future research directions that the contri-

butions in this dissertation raise and I present some potential new directions

for the field based on my experience developing this work.

8.1 Summary of Contributions

I started this document claiming that despite the recent successes of reinforce-

ment learning algorithms, exploration is still a major problem in the field. This

problem is particularly important in environments where the agent observes

the same reward signal in the large majority of states. In environments where

specific and long sequences of actions are required before the agent observes a

different reward signal, the dithering behavior generated by random walks is

almost hopeless. Despite all of that, random walks and ǫ-greedy strategies are

still, by far, the exploration strategies mostly commonly used by practitioners.

The work I described in this dissertation tackles the problem of explo-

ration with a new approach. I advocate that agents should use their progress

when learning representations to guide their exploratory behavior, which is
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somehow reminiscent of the idea of using learning progress to guide explo-

ration (Oudeyer, Kaplan, and Hafner 2007; Schmidhuber 2008). Agents should

visit places that they know are reachable, but have only been rarely visited.

This information can be obtained from the learned representations. In my the-

sis statement I specifically advocate for the use of time-based representations

to guide exploration and in the rest of this document I discussed different ways

one could do that.

I first proposed option-based exploration (Chapter 3), which is the idea

of using options with the call-and-return model to explore the environment.

If these options operate at different time scales, and they are available at

different parts of the state space, they improve exploration even when selected

in a uniformly random fashion. This is because agents empowered by these

options exhibit a more purposeful behavior and they operate at different levels

of abstraction. Finally, I advocate that a general way of obtaining these options

is to learn how to attain individual features of the agent representation.

In Chapters 4 and 5 I proceeded to introduce different algorithms for op-

tion discovery that obtain options that allow agents to better explore the state

space. These options were discovered from learned time-based representations,

proto-value functions (PVFs) and the successor representation. These repre-

sentations naturally capture different time scales, ensuring that if different

options aim at attaining different features they would indeed operate at dif-

ferent time scales. I define their initiation set in such a way that these options

are available in the large majority of the state space as well, satisfying the

conditions aforementioned.

In Chapter 4 I showed how PVFs could be used to generate algorithms that

instantiate this option discovery cycle. I also proposed an extension to the

original work of PVFs in order to be able to apply the same idea to settings in

which a set of handcrafted linear features is available. The contributions in this

chapter can also be seen as connecting two otherwise disjoint areas of research:

option discovery and representation learning in reinforcement learning.

In Chapter 5 I introduced new algorithms that relax some of the assump-

tions made in Chapter 4, namely symmetry and determinism of the environ-
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ment. The algorithms introduced in this chapter are also more general because

they are sample-based, being implemented with temporal-difference learning,

and because they permit the agent to simultaneously learn a non-linear rep-

resentation of the environment with a neural network. All the algorithms in

this chapter use the successor representation and they were inspired by the

equivalence I proved between PVFs and the eigenvectors of the successor rep-

resentation when it is defined with respect to a uniform random policy in a

deterministic and symmetric environment.

While I do believe option-based exploration is a promising research di-

rection, as I discuss in the next section, the computational cost of learning

the policies of multiple options is sometimes prohibitive. In order to provide

additional evidence of the potential of using time-based representations for

exploration, in Chapter 6 I showed how the norm of the successor representa-

tion, while it is being learned, can be actually used as an exploration bonus for

count-based reinforcement learning algorithms. I instantiated this idea in the

tabular case in both model-free and model-based settings, and I introduced a

neural network architecture for the deep reinforcement learning setting that

achieves results comparable to the state-of-the-art in Atari 2600 games that

pose hard exploration problems.

Finally, in Chapter 7 I returned to the idea of option-based exploration and

I discussed some results that have the potential to strengthen the framework

I proposed. Specifically, I presented some preliminary work I developed on

bootstrapping the option-discovery process by executing multiple iterations

of the option discovery cycle and I discussed some recent work, from differ-

ent research groups, that show how one could compute the eigenvectors of

time-based representations online. These are exciting results that show how

promising the ideas proposed in this dissertation are. These result might also

pave the way towards more practical algorithms for option-discovery.
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8.2 Discussion and Future Directions

This dissertation opens up new interesting research directions that could either

complement the work presented here or that arose from insights I gained while

developing this work. I discuss some of these directions in this section.

8.2.1 Exploration Guided by Representation Learning
Algorithms

With the advent of reinforcement learning algorithms that use deep neural net-

works as function approximators, it is now common for reinforcement learning

algorithms to learn a representation of the available observations while inter-

acting with the world. However, researchers rarely focus on using the process

of representation learning as a learning signal. This dissertation provided ev-

idence that this is indeed a promising research direction. I believe that the

process of learning representations is by itself informative and it could guide

agents in environments with sparse feedback. In fact, other groups have re-

cently started exploring this idea. Burda et al. (2019), for example, recently

introduced an algorithm that achieves impressive performance in some Atari

2600 games by rewarding the agent when it visits states it is not so certain

about, with this uncertainty being measured by predictions of the learned la-

tent representation. In this dissertation I explored time-based representations

due to their underlying structure, but the idea of using the representation

learning process to guide exploration seems to be a much more general princi-

ple. It would be interesting to see this general principle being further explored.

8.2.2 Option-based Exploration

In reinforcement learning, options are often associated to predictions or to

faster credit assignment (Sutton, Precup, and Singh 1999), not so much to

exploration. Nevertheless, in this dissertation I have presented evidence sug-

gesting that the decisiveness introduced by options can actually play an im-

portant role in exploration. Simultaneously to the the work developed here,

Vezhnevets, Osindero, et al. (2017) also proposed a hierarchical reinforcement
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learning algorithm that uses the representation learning process to guide the

hierarchy discovery and, despite not being the main topic of study in their

work, they were also able to show that the purposeful behavior introduced

by the uncovered hierarchy improved the agent’s ability to explore. Similarly,

Warde-Farley et al. (2018) recently proposed an approach that does not take

the environment’s reward into consideration but it is capable of learning goal-

conditioned policies. The proposed neural network can be seen as learning the

definition of a goal in that setting, ignoring parts of the observation that are

not under the agent’s control. Importantly, their approach can also be seen as

learning a higher-level policy that could potentially accelerate learning. I do

believe this is a promising research direction that should get more attention

in the future, both theoretically and empirically.

My experience developing this work gave me a different perspective about

this problem as well. The concept of exploration with options often relies

on the assumption that the cost of learning the options is not taken into

consideration. This is not generally true in the tasks that are traditionally

used in the field (e.g., Atari 2600 games, or MuJoCo problems). It seems to

me that exploration with options will have a particularly important effect in

more ambitious settings such as continual learning (Ring 1997), where the cost

of learning options is amortized within all the tasks an agent is expected to

do (Liu et al. 2017). In those settings, a promising research direction would

be to have coevolving action and representation abstractions: higher levels

of action abstraction should drive the agent to improve its representation of

the world and once the agent has a better representation of the world, better

action abstractions should become available.

8.2.3 Return Maximization with Eigenoptions in Large
Environments

The algorithms I introduced in Chapters 4 and 5 obtained encouraging results

but I was still not able to use them to maximize rewards in large domains

such as Atari 2600 games. This was mainly due to two problems: 1) the

eigenpurposes obtained in the approximated setting do not seem to be properly
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sorted according to their eigenvalues, with several of them being seemingly

equivalent; and 2) the computational cost of learning the policies of dozens of

options is prohibitive for most modern deep reinforcement learning algorithms.

If these issues were solved I believe one could have a complete system for

maximizing rewards using eigenoptions.

Fortunately, as I discussed in the previous chapter, progress on both of

these issues has been made. Pfau et al. (2018) and Wu, Tucker, and Nachum

(2018) have introduced methods that seem to generate a better sorting of

the eigenvectors/eigenvalues. Importantly, these approaches are online, which

could also potentially address the limitation in my work of not having a fully

online algorithm for option discovery. In the off-learning policy setting, recent

developments have generated more stable off-policy learning algorithms (e.g.,

Espeholt et al. 2018), which give us hope that they could actually be deployed

in the option learning phase. Combining all these recent developments with

the ideas I present in this dissertation is definitely a promising direction.

8.2.4 Theoretical Understanding of Option-based Ex-
ploration and of the Successor Representation

There is a lot of room for improvement in our theoretical understanding of

some of the ideas presented in this dissertation. Formally understanding the

impact options have in exploration in reinforcement learning is one of them.

Such an understanding would be beneficial and could directly impact how we

design algorithms for option discovery in the future. I conjecture that the

right set of options might end up reducing the mixing time in the graph un-

derlying the environment, either by making it somehow closer to an expander

graph (Chapter 21, Arora and Barak 2009) or by introducing a small-world

phenomenon (Chaganty, Gaur, and Ravindran 2012). Understanding how

the transient behavior of the successor representation evolves with updates is

another potentially interesting avenue, which could allow us to avoid the for-

malism introduced with the substochastic successor representation. Moreover,

I conjecture that the use of the (substochastic) successor representation can

lead to algorithms with PAC-MDP bounds (Kakade 2003).
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A very interesting research task I believe is essential for the future ende-

vours of exploration in reinforcement learning is the development of a the-

oretical formalism that tackles exploration under a function approximation

perspective, moving away from the tabular case. It is not realistic to expect

algorithms to visit all possible states in the environment in order to obtain

guaranteess about their performance. Given the proper assumptions about

similarity of states, we should have results about exploration in the function

approximation case, when generalization comes into play. The work developed

by Jiang et al. (2017) is a very promising direction towards that path.

8.3 Conclusions

In this dissertation I introduced different approaches for exploration in rein-

forcement learning. These approaches use the process of learning time-based

representations to guide exploration. This is done by either discovering op-

tions that provide decisiveness to agents, avoiding the low-level dithering of

random walks, or by generating exploration bonuses that directly incentivize

the agent to visit parts of the state space that have only been rarely visited.

This is a powerful framework and I believe there is still a fruitful path for

further exploring the ideas presented here.

In this work I focused on using representation learning to guide exploration

because we are now at a time in which we have a solid understanding of ex-

ploration in the tabular case but we still struggle to translate this knowledge

to more general settings. Expecting agents to visit every state in the environ-

ment is unrelastic. We need to explicitly incorporate generalization into our

algorithms to be able to properly explore large environments. It is likely that

even such an approach will not be sufficient towards a fully intelligent agent.

Complementary approaches such as curriculum learning, reward shaping, and

imitation learning are also likely to be required in this process. It is not my

intention to claim that agents should be able to learn, tabula rasa, any task

specified to them, but I believe that, in tasks with some regularities, we should

aim at moving away from the low-level dithering random walks provide.
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Şimşek, Özgür, Alicia P. Wolfe, and Andrew G. Barto (2005). “Identifying Use-
ful Subgoals in Reinforcement Learning by Local Graph Partitioning.” In:
Proceedings of the International Conference on Machine Learning (ICML).

Solway, Alec, Carlos Diuk, Natalia Córdova, Debbie Yee, Andrew G. Barto,
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Appendix A

Supporting Lemmas

In Chapter 4 I used two lemmas I did not discuss in that chapter. They are

presented here, as well as their proofs.

Lemma A.1. Suppose (I + A) is a non-singular matrix, with ||A|| ≤ 1. We

have:

||(I + A)−1|| ≤ 1

1− ||A|| .

Proof. 1

(I + A)(I + A)−1 = I

I(I + A)−1 + A(I + A)−1 = I

(I + A)−1 = I − A(I + A)−1

||(I + A)−1|| = ||I − A(I + A)−1||

≤ ||I||+ ||A(I + A)−1||

≤ 1 + ||A||||(I + A)−1||

||(I + A)−1|| − ||A||||(I + A)−1|| ≤ 1

(1− ||A||)||(I + A)−1|| ≤ 1

||(I + A)−1|| ≤ 1

1− ||A|| if ||A|| ≤ 1.

Where the first inequality is due to the fact that ||A + B|| ≤ ||A|| + ||B||
and the second inequality comes from the fact that ||AB|| ≤ ||A|| · ||B||.

1This proof follows closely the proof of Parnell in lecture notes available at http://

www-solar.mcs.st-and.ac.uk/~clare/Lectures/num-analysis.html.

127



Lemma A.2. The induced infinity norm of (I − γT )−1T is bounded by

||(I − γT )−1T ||∞ ≤
1

(1− γ) .

Proof.

||(I − γT )−1T ||∞ ≤ ||(I − γT )−1||∞||T ||∞ because ||AB||∞ ≤ ||A||∞ · ||B||∞
||(I − γT )−1T ||∞ ≤

1

1− || − γT ||∞
||T ||∞ Lemma 3.1

||(I − γT )−1T ||∞ ≤
1

1− γ||T ||∞
||T ||∞ because ||λB|| = |λ|||B||

||(I − γT )−1T ||∞ ≤
1

(1− γ)
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Lemma A.3. In the tabular case, if all transitions in the MDP have been

sampled once, T⊤T = 2L.

Proof. Let tij and ttij denote the entries in the i-th row and j-th column of

matrices T and T⊤T . We can write ttij as:

ttij =
∑

k

tik × tjk. (A.1)

In the tabular case, tij has three possible values:

• tij = +1, meaning that the agent arrived in state j at time step i,

• tij = −1, meaning that the agent left state j at time step i,

• tij = 0, meaning that the agent did not arrive nor leave state j at time

step i.

We decompose T⊤T in two matrices, K and Z, such that T⊤T = K + Z.

Here Z is a diagonal matrix such that zii = ttii, for all i; and K contains all

elements from T⊤T that lie outside the main diagonal.

When computing the elements of Z we have i = j. Thus zii =
∑

k t
2
ik.

Because we square all elements, we are in fact summing over all transitions

leaving (−12) and arriving (12) in state i, counting the node’s degree twice.

Thus, Z = 2D.

When not computing the elements in the main diagonal, for the element

ttij, we add all transitions that leave state i arriving in state j (−1× 1), and

those that leave state j arriving in state i (1×−1). We assume each transition

has been sampled once, thus:

ttij =

{

−2, if the transition between states i and j exists,
0, otherwise.

Therefore, we have K = −2W and T⊤T = K + Z = 2(D −W ).
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Appendix B

Evaluating the Reconstruction
Task when Learning the
Representation and the SR

In Section 5.4.4 I presented the eigenoptions my algorithms discover in four

Atari 2600 games. I did not discuss the performance of the proposed network

in the auxiliary task of predicting the next screen given the current screen and

the action taken. I do it here. Figures B.1–B.4 depict a comparison between

the target screen that should be predicted and the network’s actual prediction

for ten time steps in each game. We can see that it accurately predicts the

general structure of the environment and it is able to keep track of most moving

sprites on the screen. The prediction is quite noisy, different from Oh et al.’s

result. Still, it is interesting to see how even an underperforming network

is able to learn useful representations for my algorithm. It is likely better

representations would result in better options.
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