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Abstract 

Ovarian cancer is the fifth leading cause of cancer-related mortality in women. 

Epithelial ovarian cancer (EOC) constitutes approximately 90% of all ovarian 

malignancies. Platinum-based compounds have been used to treat EOC, with 

carboplatin currently being used as a first-line therapeutic agent in combination 

with paclitaxel. Despite the initial positive response to carboplatin, relapse occurs 

in most advanced EOC patients and resistance eventually develops, with a 5-year 

survival rate of only 30%. Accordingly, there is an urgent need to identify the 

molecular mechanisms underlying chemoresistance in EOC in order to develop 

more effective therapeutic strategies. To address this objective, the gene 

expression profiles of the EOC cell line A2780s (cisplatin-sensitive) and its 

derivative A2780cp (cisplatin-resistant) were compared by conducting DNA 

microarray and ingenuity pathway analysis (IPA). A number of genes were found 

to be differentially expressed between these two cell lines including RUNX3 and 

genes encoding several components of the Wnt/β-catenin signaling pathway. 

These genes were selected for further analysis as they have not been previously 

studied in the context of chemoresistance in EOC.  

RUNX3 is a member of the RUNX family of transcription factors that act as 

developmental regulators and have an oncogenic role in EOC. Consistent with 

DNA microarray data, subsequent validation by Western blotting showed that 

RUNX3 expression was higher in A2780cp cells compared to A2780s cells. 

Further gain- and loss-of-function studies in A2780 cells confirmed the role of 

RUNX3 in EOC resistance to carboplatin-induced cytotoxicity. Interestingly, the 
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results demonstrate that RUNX3 upregulates the expression of cellular inhibitor 

of apoptosis 2 (cIAP2), suggesting a potential mechanism by which RUNX3 

confers resistance to carboplatin.  

In addition, DNA microarray analysis and subsequent validation by qRT-PCR 

suggested that the Wnt/β-catenin signaling pathway is more active in A2780cp 

cells compared to A2780s cells. Consistent with this finding, further analysis 

showed increased nuclear localization of β-catenin and higher β-catenin 

transcriptional activity in A2780cp cells compared to A2780s cells. Interestingly, 

chemical inhibition of Wnt/β-catenin signaling by CCT036477 sensitized 

A2780cp cells to carboplatin, especially at high concentrations. Further 

investigation of the effect of other Wnt/β-catenin signaling inhibitors is 

warranted. Two Wnt negative regulators, dickkopf-related protein 1 (DKK1) and 

secreted frizzled-related protein 1 (SFRP1), were among the down-regulated 

proteins in A2780cp cells. Gain- and loss-of-function approaches are planned to 

investigate their specific roles in chemoresistance in EOC.  

In conclusion, our data suggest that RUNX3 contributes to carboplatin 

resistance of EOC cells and therefore it could be a potential therapeutic target. In 

addition, the Wnt/β-catenin signaling pathway is more active in resistant EOC 

cells, suggesting its potential contribution to chemoresistance in EOC. 
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1. Introduction 

1.1 Ovarian cancer 

1.1.1 Epidemiology and risk factors 

According to the Canadian cancer statistics 2014
1
, ovarian cancer represents 

2.9% of the estimated new cases of cancer, ranking 8
th
 in terms of cancer 

incidence in the female population of Canada. In addition, it has been estimated 

that the percent lifetime probability of developing ovarian cancer in this 

population is 1.4%. In terms of the mortality rate, ovarian cancer ranks 5
th 

with a 

percentage of 4.7%. In this respect, ovarian cancer constitutes the leading cause of 

death due to gynecologic malignancies
2
. The 5-year observed survival proportion

*
 

for ovarian cancer patients is approximately 42%, ranking 8
th
 in terms of low 

survival. In 2009, approximately 10,695 cases were diagnosed since 1999, putting 

ovarian cancer 13
th
 among other cancers in terms of 10-year prevalence. Similar 

percentages of incidence, mortality and  prevalence have been reported in the 

developed world including the United States
3
 and the United Kingdom

2
. In the 

developing world, ovarian cancer ranked 8
th
 in terms of both incidence and 

mortality rates. Globally, it ranked 7
th

 and 8
th 

in terms of incidence and mortality 

rates, respectively. In this regard, 2012 global cancer statistics estimated a total of 

238,700 new ovarian cancer cases and 151,900 deaths from ovarian cancer
4
.  

Based on epidemiological studies, ovarian cancer risk is positively correlated 

with the ovulation status. In this respect, it was found that pregnancy and the use 

of oral contraception may decrease the risk of ovarian cancer because they are 

                                                             
* The 5-year observed survival proportion is an epidemiological measure that estimates the 

proportion of cancer patients who remain alive after five years from diagnosis. 
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associated with decreased ovulation. Similarly, lactation, tubal ligation, and 

hysterectomy are associated with decreased risk of ovarian cancer
5-8

. Conversely, 

nulliparity
†
, early menarche, late menopause, increasing age, perineal talc use, 

endometriosis, Lynch syndrome, BRCA1/2 mutation and positive family history 

of ovarian or breast cancer together with infertility therapeutics that stimulate 

ovulation may increase the risk of ovarian cancer
2,5,8-12

.  

1.1.2 Types and histotypes of ovarian tumors 

Ovarian tumors are a group of different diseases with distinct origin, 

molecular and histological properties, which have common anatomical location—

the ovary
13

. In this sense, they have been classified based on their origin into three 

major types: surface epithelial-stromal tumors, sex cord-stromal tumors and germ 

cell tumors
14

.  

Surface epithelial-stromal tumors were believed to originate from the ovarian 

surface epithelium (OSE), although this is currently controversial as detailed later. 

On the other hand, the sex cord-stromal and germ cell tumors arise from the 

granulosa-theca cells and ovarian germ cells, respectively
14

. Each of these three 

types has a number of subtypes with distinct histological and molecular features, 

as detailed in the World Health Organization (WHO)-approved classification
15

.  

Based on histology, surface epithelial-stromal tumors are further subdivided 

into histotypes. The four major histotypes are serous, mucinous, endometrioid, 

and clear cell ovarian tumors
13

. Other less common histotypes include the 

transitional cell (Brenner type), squamous, mixed, and undifferentiated 

                                                             
†
 Nulliparity refers to women‘s status of never giving birth to children  
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histotypes
5,16

. Surface epithelial-stromal tumors that are not assigned a specific 

histotype are termed adenocarcinomas not otherwise specified (NOS)
14

.  

Some extraovarian malignancies, which exist in the pelvic and abdominal 

cavities concomitantly with ovarian tumors, have identical histological and 

clinical properties to those of ovarian tumors. However, it cannot be determined 

whether the ovarian tumor is the origin of these extraovarian tumors or whether 

they simply have common features due to their shared embryonic precursor —the 

coelomic mesothelium. In such cases, these malignancies are classified as 

extraovarian peritoneal carcinoma
5,14

.  

As mentioned above, the histotypes of ovarian cancer have distinctive origin, 

histological features, risk factors, genetic aberrations, tumor marker profiles, and 

therapeutic response
16

. In addition, each of these histotypes is further divided into 

benign, borderline and malignant categories
14,17

. Borderline tumors demonstrate 

low malignant potential (LMP), with epithelial proliferation in a fashion similar to 

malignant tumors, but without invasion of the adjacent stroma. However, they 

may also metastasize in 10% of cases
18

. Table 1.1 summarizes the features of the 

major four histotypes of surface epithelial-stromal tumors and Figure 1.1 shows 

representative images of these subtypes.  

Malignant surface epithelial-stromal tumors are simply termed epithelial 

ovarian cancer (EOC), which will be the focus of the thesis and therefore will be 

reviewed in detail below. 
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Table 1.1 List of epithelial ovarian cancer (EOC) histotypes and their 

characteristics (compiled from text in Ref. 14) 

A. Serous EOC 

 Composed of cells resembling those lining the fallopian tube 

 Malignant serous EOC is the most common EOC subtype, and constitutes 

50% of all ovarian malignancies 

B. Mucinous EOC 

 Composed of cells resembling those of the endocervical epithelium 

(endocervical/müllerian type) or those of the intestinal epithelium (intestinal 

type) 

 Borderline intestinal-type or malignant mucinous EOC may be associated 

with pseudomyxoma peritonei (abdominal and pelvic accumulation of large 

amounts of mucoid material with few tumor cells independent of primary 

tumor dissemination) 

 Malignant mucinous EOC constitute 5–10% of all malignant ovarian 

malignancies 

C. Endometrioid EOC 

 Composed of cells resembling those lining the uterus (endometrial cells) 

 May be linked with endometriosis or endometrial cancer 

 Malignant endometrioid EOC is the second most common EOC subtype, and 

constitutes 10–25% of all ovarian malignancies. 

 It has a better prognosis than either mucinous or serous subtypes 

D. Clear cell EOC 

 Composed of clear, peg-like or hobnail-like cells 

 Mostly malignant; benign and borderline tumors are scarce 

 Clear cell EOC constitutes 4–5% of all ovarian malignancies 

 It has the worst prognosis among all other EOC subtypes 
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Figure 1.1 Representative images of the four major histotypes of EOC. The 

major histotypes of EOC are serous, mucinous, clear cell, and endometrioid 

histotypes.  Other less common histotypes include the transitional cell (Brenner 

type), squamous, mixed, and undifferentiated histotypes (not shown). Reproduced 

with permission from Bast et al., 2014
16

. 
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1.1.3 Staging of ovarian cancer   

A staging system for ovarian cancer has been developed by the International 

Federation of Gynecology and Obstetrics (FIGO), with the purpose of 

standardizing disease terminology worldwide and stratifying patients into 

prognostic groups with specific treatment options
19

. Based on this staging system, 

ovarian cancer is classified into four stages (I through IV) dependent on ovarian, 

pelvic, or peritoneal involvement, and the presence of distant metastases
2
. Stage 

I  is limited to the ovaries, while stage II involves pelvic extension or primary 

peritoneal cancer. In stage III, the disease involves spread to the peritoneum 

and/or metastasis to the retroperitoneal lymph nodes. Stage IV involves distant 

metastasis excluding peritoneal metastases
20

. Early-stage ovarian cancer includes 

stages I and II, while advanced-stage ovarian cancer includes stages III and IV
5
.  

1.1.4 Grades of epithelial ovarian cancer (EOC)  

EOC is the most common type of ovarian cancer representing approximately 

90% of all ovarian malignancies. EOC is classified into type I (low-grade) and 

type II (high-grade) based on the growth rate, expression profile, prognosis, and 

response to therapy
21

. This classification is usually combined with the histotype-

based classification, so that a specific histotype may be described as low- or high-

grade. Low-grade EOC includes low-grade and borderline serous cancers, low-

grade endometrioid cancers, together with mucinous and clear-cell cancers.  High-

grade EOC represents the majority of EOCs, and includes high-grade serous 

cancers, and high-grade endometrioid cancers
18,22-24

. The two types differ in terms 

of their underlying genetic and epigenetic aberrations. Low-grade EOC is 
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diagnosed in early stages (I or II), demonstrates slow growth properties, is 

resistant to conventional chemotherapy, and frequently estrogen receptor-positive 

and therefore may respond to hormonal therapy
18,22-24

. 

On the other hand, high-grade EOC is more common, diagnosed in later 

stages (III or IV), grows rapidly, responds better to chemotherapy, but shows less 

response to hormonal therapy
18,22-24

.  

1.1.5 Clinical presentation and diagnosis of EOC 

Ovarian cancer typically presents as a cystic mass in the pelvic region. It has 

been named the ―silent killer‖ because a large percentage of early-stage ovarian 

cancer patients are asymptomatic
18,25

. Conflicting with this is another study that 

reports 95% of patients had symptoms before diagnosis
19

. The symptoms are, 

however, nonspecific and resemble those of other gastrointestinal, genitourinary 

and gynecological conditions. Therefore, symptom-based early diagnosis of 

ovarian cancers is still elusive. Table 1.2 enlists the reported symptoms and 

physical findings of ovarian cancer.  

Generally, ovarian cancer should be suspected in women with enlarged or 

palpable ovary. In this respect, transvaginal ultrasonography is preferred to 

computed tomography (CT) scanning in the assessment of pelvic masses
25

. A 

transvaginal ultrasonogram demonstrating complex ovarian cysts composed of 

both solid and cystic components provides preliminary diagnosis of ovarian 

cancer, which needs to be confirmed surgically rather than by percutaneous 

biopsy to avoid tumor spillage
25

. Elevated postmenopausal CA-125 (MUC16) 

serum levels together with the presence of an abdominal or pelvic mass is highly 
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suggestive, but not diagnostic, of ovarian cancer. CA-125 serum levels are more 

important in the screening and early detection of ovarian cancer
18,25

, the 

assessment of response to chemotherapy
4,5,26,27

 and the early detection of recurrent 

disease
17

. Figure 1.1 shows an intraoperative appearance and a transvaginal 

ultrasonogram of EOC. 

1.1.6 Origin of EOC 

There was a prevailing theory that EOC originates either directly from OSE or 

from cortical inclusion cysts (CICs) that are derived from OSE
28-30

.  This theory 

proved recently to be very controversial
11

. The reason for this controversy is the 

inability of pathologists to find in situ ovarian lesion. In this respect, high-grade 

serous EOC is the only epithelial cancer lacking an established precancerous 

lesion
31

. In addition, EOC histotypes resemble epithelia of extraovarian sites in 

terms of histologic features. Serous EOC exhibits tissue architecture similar to 

that of the surface epithelium of the fallopian tube, endometrioid and clear-cell 

EOC resemble endometrioid carcinomas of the uterus, and mucinous EOC 

resembles endocervical glands or gastrointestinal epithelium
31

. This led scientists 

to postulate that EOC represents metastases from extraovarian cancer lesions
13,32-

34
.  An additional dimension to this controversy is the embryonic origin of the 

ovary as compared to other extraovarian sites. Whereas the ovary and its OSE are 

of coelomic origin, EOC is histologically similar to normal fallopian tubes, 

endocervical glands and endometrium. These structures arise from the müllerian 

duct, which has a mesodermal origin. The mechanism by which ovarian 

tumorigenesis elicits transformation into müllerian-like histology is not well 
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understood
31

. In 2005, it was demonstrated that HOX genes play an important role 

in this transformation
23,24

.  
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Table 1.2 List of symptoms and physical findings of ovarian cancer (compiled 

from texts in Refs. 5,25) 

A. Symptoms 

 Abdominal fullness 

 Pain (abdominal, pelvic, side of trunk, flank, back, rectal) 

 Bloating (due to increased abdominal pressure from ascites or involvement of 

the omentum) 

 Dyspepsia, food intolerance, intestinal gas 

 Diarrhoea 

 Vomiting 

 Early satiety, anorexia 

 Fatigue, low energy, general weakness 

 Headache 

 Shortness of breath 

 Unintentional weight loss 

 Urinary burning, dysuria 

B. Physical findings 

 Palpable ovarian mass 

 Ascites 

 Pleural effusions 

 Sister Mary Joseph‘s nodule (an umbilical mass non-specific to ovarian cancer 

that can be linked to gastric, pancreatic, gallbladder, colon, and appendiceal 

cancers 

 Extraabdominal involvement of the pleural space and occasionally pulmonary 

parenchyma  

 Paraneoplastic syndromes such as hypercalcemia and subacute cerebellar 

degeneration associated with anti–Purkinje-cell antibodies 

 Leser–Trélat sign (sudden appearance of seborrheic keratoses) occasionally 

foretells ovarian cancer 

 Trousseau‘s syndrome (migratory superficial thrombophlebitis): palmar 

fasciitis, dermatomyositis, and polyarthritis 
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Figure 1.2 Representative images of the appearance of EOC. A and B, Typical 

intraoperative appearance of advanced EOC with omental involvement. C, 

Typical appearance of a complex cyst on a transvaginal ultrasonogram; arrows 

indicate solid components within the fluid-filled cyst D, Intraperitoneal 

metastases from EOC on the peritoneal surface. Figures were reproduced with 

permission from the following  references: Figure A from Hennessy et al., 2009
5
, 

Figures B and C from Cannistra, 2004
25

 (copyright Massachusetts Medical 

Society), and Figure D from Bast et al., 2014
16

 . 
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To resolve the controversy regarding EOC origin, it was hypothesized that 

EOC arises from extraovarian sites such as the fallopian tube epithelium and the 

mesothelium covering the surface of the peritoneal cavity
31

. This hypothesis has 

been extensively reviewed
22,30,35-40

 and was experimentally tested in mouse 

models
41,42

.  

Briefly, it was previously proposed that EOC originates from OSE because of 

‗incessant ovulation‘ associated with continuous destruction and repair of OSE 

together with the formation of CICs and surges of hormones and cytokines in the 

ovarian microenvironment. These events lead to an inflammatory environment 

that is conductive to ovarian tumorigenesis
28

. This theory proved to be partially 

correct as evidenced by subsequent epidemiologic and experimental studies that 

support the role of inflammation and incessant ovulation in EOC 

tumorigenesis
5,22,29

.   

Recently, it has been proposed that a large proportion of the major ovarian 

malignancy— high-grade serous EOC, arises from carcinoma of the fallopian 

tube called serous tubal intraepithelial carcinoma (STIC) which spreads to the 

ovary. A small proportion, however, is believed to arise from CICs formed after 

implantation of tubal (müllerian) tissue rather than metaplastic OSE (mesothelial 

coloemic) tissue
22

. In this sense, the origin of high-grade serous EOC is assumed 

to be tubal rather than ovarian. The ovarian microenvironment was found to be 

more supportive of tumor progression than the tubal microenvironment. Figure 

1.2 summarizes the proposed theories regarding the origin of EOC. 
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Figure 1.3 Proposed origin of EOC. A, Fallopian tubes fimbria shed normal 

cells on the ovary, which undergo invagination and formation of CICs. CICs, in 

the proinflammatory ovarian microenvironment, undergo malignant 

transformation and develop EOC. B, STIC cells directly disseminate or exfoliate 

onto the ovarian surface and start tumor progression to form a new tumor 

seemingly arising in the ovary. Figures and text adapted with permission from 

Kurman and Shih, 2010
39

. 
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1.1.7 Molecular pathogenesis of EOC 

EOC is a heterogeneous disease with a multitude of genetic and epigenetic 

defects
13,16,18

. Both inactivating (deletion, loss of heterozygosity, mutation, 

promoter methylation) and activating (amplification, mutation and 

hypomethylation) genetic and epigenetic aberrations have been documented
16

. 

Histone modifications and miRNAs have been also implicated in EOC. The extent 

of genomic instability has been found to positively correlate with the high tumor 

grade and late stages
18

.  

Germline mutations of BRCA1, BRCA2 and hereditary non-polyposis 

colorectal cancer (HNPCC) mismatch repair genes are found in approximately 

10–15% of ovarian cancers. These germline mutations contribute to genomic 

instability in hereditary cases of EOC, together with TP53 which is mutated in 

60–80% of both sporadic and familial cases
18

.  

Other examples of aberrant tumor suppressor genes in EOC include PTEN 

(Phosphatase and tensin homolog), ARHI (DIRAS3), PLAGL1 (pleiomorphic 

adenoma genelike 1), and PEG3 (paternally expressed 3). RASSF1 (Ras 

association domain family member 1), DLEC1 (deleted in lung and esophageal 

cancer 1) and OPCML (opioid binding protein/cell adhesion molecule-like) were 

also reported to be epigenetically silenced in EOC
16,18,43,44

.  

Along with tumor suppressor genes, a number of oncogenes have been 

implicated in the pathogenesis of EOC such as KRAS, PIK3CA (Phosphoinositide 

3-kinase  catalytic subunit-α), BRAF, RAB25, CTNNB1 (β-catenin), PRKCI, MYC, 

EGFR, and NOTCH3
18,43

. 
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As mentioned above, the genetic and epigenetic profiles of different EOC 

types are among the criteria used for the classification of EOC into two prognostic 

grades—low-grade (type I) and high-grade (type II) EOC. Low-grade EOCs 

exhibit more frequent PTEN, PIK3CA, KRAS, BRAF and CTNNB1 mutations. 

TP53 mutations occur in a small fraction of these cases; therefore, genomic 

instability is lower in low-grade EOC. Conversely, high-grade EOCs have TP53 

mutations in approximately 80% of cases which leads to marked genomic 

instability
45

. 

 Specifically, low-grade serous EOC is characterized by mutations in KRAS 

and/or BRAF (≥60%). Low-grade endometrioid EOC have mutations in CTNNB1, 

PTEN and PIK3CA with microsatellite instability.  Mucinous EOC, a low-grade 

EOC, exhibits mutations in KRAS, and TP53 mutation associated with transition 

from borderline tumor to carcinoma. Clear cell EOC has PTEN mutation or loss 

of heterozygosity together with PIK3CA mutation. On the other hand, high-grade 

serous EOC have TP53 mutation (up to 80%) and aberrant BRCA1. In addition, 

high-grade endometrioid EOC resembles the serous phenotype together with 

having PIK3CA mutations
18

. 

All these genetic aberrations are responsible for the aberrant signaling of 

EOC. In this respect, a number of signaling pathways are activated in EOC 

including PI3K (70%), Src (>50%), IL-6–IL-6R or JAK–STAT3 (70%), 

lysophosphatidic acid (LPA; 90%), MEKK3–IKK–NF-κB (>50%), PKCι (78%), 

RAS–MEK–MAPK (<50% ; mostly in low-grade EOC), Endothelin receptor, 

NOTCH, Wnt, Müllerian inhibition substance (MIS) and vascular endothelial 



17 
 

growth factor (VEGF) signaling pathways
2,16,18,43

. As a result, alterations in the 

biology of ovarian/tubal cells (survival, proliferation, epithelial-mesenchymal 

transition [EMT], stemness, DNA repair, metabolism, and angiogenesis) 

contribute to EOC development and progression. 

1.1.8 Management of EOC 

Upon preliminary diagnosis of EOC based on findings from physical 

examination and transvaginal ultrasonography, surgery is indicated for the 

purpose of histopathological definitive diagnosis, tumor debulking (primary 

cytoreduction), and assessment of the FIGO stage
2,25,46

. Surgery includes total 

hysterectomy, bilateral salpingo-oophorectomy, tumor debulking, and 

omentectomy
47,48

. The goal of cytoreduction is to achieve total macroscopic 

tumor clearance with minimal residual visible disease
46

. Cytoreductive surgery 

with minimal residual disease has been associated with high survival rates
49

. 

Neoadjuvant (preoperative) platinum-based chemotherapy is indicated in cases 

where complete cytoreduction is not possible
2,46,50

.   

It has been recommended that patients with early-stage (I/IIa) EOC receive 

adjuvant platinum-based chemotherapy due to positive effects on patient 

survival
51,52

. There is no data regarding superiority of platinum-paclitaxel 

combination to platinum therapy alone in such settings
25,46

.    

For advanced disease (stage III/IV), platinum-based chemotherapy has been 

the first-line chemotherapy for approximately 40 years
2,13

. Currently, the standard 

of care chemotherapy in advanced EOC is carboplatin (at least 6 cycles) in 
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combination with paclitaxel
53,54

. This chemotherapy regimen continues for 

approximately 4.5 months
2
. 

Clinical trials have shown a clinical benefit of the high-dose intraperitoneal 

carboplatin as compared to the low-dose intravenous carboplatin
55-57

. Likewise, a 

dose-dense weekly regimen of paclitaxel was found to be superior to conventional 

regimens in terms of progression-free survival (PFS) and overall survival 

(OS)
58,59

. Table 1.3 details the adjuvant chemotherapy regimen of EOC. 

In addition, new developments in understanding EOC biology led to the 

incorporation of novel molecularly targeted therapeutics in therapeutic regimens. 

In this respect, bevacizumab (antibody that targets VEGF) and pazopanib (VEGF 

receptor tyrosine kinase inhibitor) were used as maintenance therapeutics
2,60,61

.   
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Table 1.3 Primary adjuvant chemotherapy for EOC (reproduced with 

permission from Ref. 8) 

Intravenous 

regimens 

1) Paclitaxel (175 mg/m
2
 over 3 h IV) followed by 

carboplatin (AUC 5-7.5 IV over 1 h) on day 1, every 

3 weeks for 6 cycles 

2) Docetaxel (60-75 mg/m
2
 over 1 h IV) followed by 

carboplatin (AUC 5-6 IV over 1 h) on day 1, every 3 

weeks for 6 cycles 

3) Dose-dense paclitaxel (80 mg/m
2
 IV over 1 h) on 

days 1, 8, and 15 plus carboplatin (AUC 6 IV over 1 

h) on day 1, every 3 weeks for 6 cycles 

Intraperitoneal 

regimen 

Paclitaxel (135 mg/m
2
 IV infusion over 24 h) on day 

1, cisplatin (75-100 mg/m
2
 IP) on day 2, and 

paclitaxel 

(60 mg/m
2
 IP) on day 8, every 3 weeks for 6 cycles 

AUC: area under the curve; IV: intravenous; h: hour; IP: intraperitoneal 
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1.1.9 Recurrence of EOC  

Recurrence of EOC can be detected by monitoring serum CA-125 

concentration. CA-125 level doubling constitutes an early indicator of recurrent 

disease. In such settings, second-line chemotherapy is indicated
8
. The choice of 

chemotherapeutic agents largely depends on the nature of the recurrent disease as 

to platinum sensitivity. In this regard, recurrent EOC developing in less than 6 

months following platinum chemotherapy is considered platinum-resistant. 

Otherwise, platinum sensitivity is expected if recurrence occurs beyond 6 months 

in direct proportionality to the latency of the recurrence after platinum treatment
8
.   

For platinum-sensitive recurrent EOC, carboplatin is used alone or in 

combination with either paclitaxel or gemcitabine. Carboplatin can be 

alternatively followed by a second agent with efficacy against EOC. This 

paradigm is termed sequential drug delivery
62

. On the other hand, platinum-

resistant recurrent EOC is treated with other agents such as altretamine,  

bevacizumab, docetaxel, epirubicin, etoposide, gemcitabine, ifosfamide, 

irinotecan, liposomal doxorubicin,  paclitaxel,  tamoxifen, topotecan or  

vinorelbine
62

.  

1.1.10 Platinum-resistant EOC 

 Platinum resistance in the context of EOC was defined as ―the absence of 

response to primary platinum therapy or the recurrence of the disease within 6 

months of platinum treatment despite initial response‖
62-64

. More recently, another 

classification divided EOC based on response to platinum therapy into 4 

categories. The ‗platinum-refractory‘ category includes patients with disease 
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progression during treatment or within 4 weeks following the last dose; 

‗platinum-resistant‘ category includes patients with progression within 6 months 

of platinum treatment; ‗partially platinum-sensitive‘ category with disease 

progressing between 6 and 12 months; and ‗platinum-sensitive‘ category with 

disease progressing after 12 months
8,65,66

.  

Most patients with recurrent EOC will ultimately have platinum-

refractory/resistant disease
8,46

. Patients in these categories were found to have 

poor prognosis with short OS (less than 12 months). As discussed above, a 

number of agents can be administered in such settings.  Therefore, the priority, in 

drug selection, is given to those agents with favorable safety profiles to maintain 

or improve the patient‘s quality of life
8,46

. In line with this strategy, sequential 

single agents rather than combination treatments are employed to minimize 

possible toxicities
46

. 

At the molecular level, a number of mechanisms have been implicated in EOC 

resistance to platinum therapy
67,68

. These mechanisms will be covered later in 

Section 1.2. 

1.1.11 Novel therapeutics of EOC 

Recent advances in understanding the biology of EOC led to the emergence of 

a multitude of novel therapeutics with the aim of achieving better efficacy and 

tolerability along with overcoming resistance
2,18,69

.  

As mentioned above, a proportion of EOC patients harbor BRCA1/2 

mutations. Since BRCA1/2 are essential for double-stranded DNA damage repair 

via homologous recombination, such patients have greater dependency on the 
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poly(ADP-ribose) polymerase (PARP) single-strand repair pathway. Therefore, 

administration of PARP inhibitors to these patients leads to more effective and 

tumor-selective therapeutic outcomes
70,71

; this therapeutic approach is termed 

synthetic lethality
72,73

. In this respect, the PARP inhibitor— olaparib, has proven 

to be effective in clinical trials on BRCA1/2-mutated EOC patients
74

. As the first 

synthetic lethality-based clinical drug, olaparib received US Food and Drug 

Administration (FDA) approval in December 2014 for the ―treatment of advanced 

ovarian cancer associated with defective BRCA genes‖
75

.  

A number of molecularly targeted therapeutics were investigated in the 

treatment of EOC including agents targeting angiogenesis, platelet-derived 

growth factor (PDGF), EGFR, ErbB receptor family, PI3K–AKT pathway, 

farnesyl transferase, endothelin receptor, NOTCH 3 pathway, Src  kinase, mTOR, 

and α-folate receptor (αFR) 
8,69,76

. Therapeutics targeting VEGF proved to be 

more promising candiadates than other investigational molecularly targeted 

therapeutics
8,69,76

 .   

1.1.12 Experimental models of EOC 

EOC have been experimentally studied using a number of preclinical models 

with varying advantages and disadvantages. These models include cell lines 

developed from ascites or whole tumor tissue of EOC patients such as HEYA8, 

OVCAR-4, SKOV3 and CAOV-3 cells
21,77

. A recent report evaluated cell lines in 

terms of their representativeness of high-grade serous EOC (HGSEOC), and 

consequently classified these cell lines into likely, possibly and unlikely to be 

HGSEOC
78

. Based on this classification, OVCAR-4 and CAOV-3 are likely high-
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grade serous, ES2 and OV90 are possibly high-grade serous, whereas HEYA8, 

SKOV3 and A2780 are unlikely high-grade serous.  

Resistance can be modeled by exposing the parental cell line to the 

chemotherapeutic agent of interest to develop a laboratory-evolved paired 

resistance model such as A2780s (cisplatin-sensitive) and A2780cp (cisplatin-

resistant) cells
79

. This model has been used in our study to explore novel 

molecular mechanisms of chemoresistance to carboplatin. Other models include 

three-dimensional (3D) culture models that mimic the tumor microenvironment 

effect, co-culture of mesothelial cells with EOC cells, and complex 3D 

organotypic models with epithelial and stromal components including the 

superficial layer of the peritoneum (mesothelium). Other models include 

spontaneous, xenograft, syngeneic and transgenic mouse models of EOC
21,77

.  
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1.2 Platinum-based cancer therapeutics  

1.2.1 Discovery of platinum-based compounds 

Cisplatin (cis-diamminedichloroplatinum [cis-DDP ]; PtII(NH3)2Cl2) is the 

prototype of platinum-based antineoplatic agents
48

. Initially termed Peyrone‘s 

chloride or Peyrone‘s salt, it was chemically synthesized and characterized by 

Michele Peyrone in 1845
80,81

. More than a century later, it was accidentally 

rediscovered by Barnett Rosenberg in 1965
82

. Rosenberg was studying the effect 

of electric field on cell division of Escherichia coli. In his experiments, he 

observed that E. coli changed from short rods into long filaments upon the 

application of the electric field. Unexpectedly, the observed effect was found to 

be elicited by the electrolysis products of platinum electrodes included in the 

growth chamber, not due to the electric field itself
83

. Upon chemical analysis of 

these products, two platinum-based compounds were identified— cisplatin and its 

trans isomer; cisplatin was much more active
82

. Later on, Rosenberg 

experimentally investigated the anticancer effect of cisplatin on a murine tumor 

model. In these experiments, cisplatin was found to have potent antitumor 

activity
84

. Therefore, Peyrone was the first to chemically synthesize cisplatin and 

Rosenberg was the first to discover its biological effects
81

. After a number of 

preclinical and clinical studies, cisplatin received FDA approval in 1978 for the 

treatment of metastatic testicular and ovarian cancers
83,85,86

.  

The discovery of cisplatin was followed by other attempts to find better 

platinum-based compounds that broaden their spectrum of utility in different 

malignancies and minimize the dose-limiting toxicity of cisplatin (nephrotoxicity, 
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neurotoxicity and ototoxicity) together with overcoming the emerging resistance 

against this drug. These attempts ultimately led to the development of carboplatin 

(cis-diammine(cyclobutane-1,1-dicarboxylato) platinum (II)
85,87-91

. Carboplatin 

received FDA approval in 1989 for the palliative management of ovarian cancer 

after previous chemotherapy. In 1991, it was approved as a frontline agent for the 

treatment of ovarian cancer
83

. Later on, a number of other platinum-based 

compounds were developed including oxaliplatin, satraplatin, picoplatin, 

eptaplatin, lobaplatin, and nedaplatin. These agents have specific efficacy and 

safety profiles, although they share closely similar mechanisms of action
48,83,92-95

. 

It is also noteworthy that satraplatin is the first orally available platinum-based 

chemotherapeutic agent
96

. The chemical structures of these compounds are 

illustrated in Figure 1.3.  

As mentioned in Section 1.1.8, carboplatin is currently the first-line and the 

major antineoplastic agent in the management of EOC. In addition, carboplatin is 

the most closely related platinum compound to cisplatin compared to other agents 

in this therapeutic class
97,98

. Moreover, most efficacy and resistance studies were 

conducted on cisplatin, especially in the context of EOC as it was originally used 

in this disease before carboplatin. Therefore, the focus in the next sections will be 

mainly on these two agents. 
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Cisplatin Carboplatin 

 

 

Oxaliplatin Satraplatin 

 

 

Picoplatin Eptaplatin 

 

 

Lobaplatin Nedaplatin 

 

Figure 1.4 Chemical structures of selected agents of platinum-based 

chemotherapeutics. Platinating agents or platinum-based compounds represent 

an important class of chemotherapeutics. This class comprises many agents that 

share similar modes of action and specific efficacy, safety and biopharmaceutical 

profiles. Cisplatin and carboplatin are the only agents used in the context of EOC. 

These structures were retrieved from individual drug monographs in Brayfield, 

2015 
48

. 
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1.2.2 Cellular handling and mechanism of action of cisplatin and carboplatin 

Although platinum-based compounds interact with several biological targets, 

DNA has long been considered as the primary target of these compounds. To 

exert their effects, it is mandatory for these drugs to pass through biological 

membranes to the cytosol and then to the nucleus in order to bind DNA and 

initiate a cascade of signaling events that mediate their cytotoxicity. This cascade 

will be detailed below as most resistance mechanisms are considered as 

alterations/adaptive responses to one or more steps of this cascade.  

i. Cellular uptake Cisplatin and carboplatin are taken up into the cell by 

passive diffusion together with active transport mainly by the copper transporter 

CTR1 and to a lesser extent by the organic cation transporters (OCTs) OCT1, 

OCT2 and OCT3. Both transporter types belong to the solute carrier (SLC) 

family
98-101

. The extent of cellular accumulation of platinum-based compounds 

has been correlated to the chemosensitivity to these agents
101

. In addition, the 

mutual mechanisms of copper and platinum transport into the cell explain the 

potential of copper to competitively inhibit platinum uptake, and therefore induce 

resistance
98

. Moreover, organ-specific toxicity such as nephrotoxicity, which is a 

major dose-limiting side effect of cisplatin, has been associated with high renal 

expression of OCT2. Conversely, OCT transporters do not effectively transport 

carboplatin; therefore, it has lower nephrotoxicity
99

. Other putative uptake 

mechanisms include endocytosis, Na
+
/K

+
 ATPase-gated channels and 

aquaporins
98

.  
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ii. Intracellular trafficking and biotransformation Platinum accumulates in 

a variety of vesicular structures most importantly lysosomes, which transport 

platinum into the nucleus. Accumulation in the lysosomes might occur by 

transport of cytosolic platinum via the intracellular copper adenosine triphosphate 

transporters ATP7A and ATP7B or by direct transport of extracellular platinum 

via the endocytotic route
99

. Cytosolic platinum may be also directly transported to 

the nucleus by passive diffusion
101

.    

To exert its action, cytosolic platinum undergoes an essential aquation 

(speciation; hydrolysis) step in which one or more leaving groups (chloride 

groups in cisplatin) are replaced by water molecule
83,98

. Chemically, this aquation 

step converts cisplatin into a neutral molecule that can easily penetrate through 

the lipid bilayer of biological membranes
101

. Pharmacologically, this step converts 

cisplatin into a highly reactive metabolite that interacts readily with biomolecules 

such as DNA. In addition, this activation step depends on the intracellular 

chloride, sodium and potassium levels, pH and redox status of the cell
83,98

. 

Since aquation is the rate-limiting step that governs interaction of platinum 

with DNA, the kinetics of this step is a major determinant of drug potency. In this 

respect, it was found that the aquation rate constant of carboplatin is 

approximately 100-fold lower than that of cisplatin
102-104

. Because of this slower 

activation, carboplatin is much less potent than cisplatin as it needs longer time to 

elicit the same extent of DNA crosslinks. To account for these differences, 

carboplatin has been given by continuous intravenous injection over 3–5 days in 

some therapeutic regimens. It is noteworthy, however, that once the same extent 
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of DNA damage is achieved by either drug, the efficacy is not expected to be 

different
105

. 

Cytosolic platinum may be inactivated by conjugation with thiol-containing 

biomolecules such as metallothioneins or glutathione. The latter reaction is 

catalyzed by glutathione S-transferases (GSTs). These conjugation reactions 

interfere with the accumulation of effective concentrations of platinum in the 

nucleus
83

. 

iii. Cellular and nuclear efflux Cytosolic platinum can be directly effluxed 

by ATP7A/B. Alternatively, the glutathione S-conjugates are effluxed by 

multidrug resistance protein-1 (MRP2; ABCC2), MDR1 (ABCB1), MRP1 

(ABCC1), MRP3  (ABCC3) and MRP5 (ABCC5) pumps
83

.  At the nuclear 

membrane level, a nuclear extrusion transporter termed lung resistance related 

protein (LRP) has been implicated in nuclear cisplatin efflux
99,101

. The expression 

of these transporters has been correlated with chemoresistance
83

. Figure 1.4 

summarizes the cellular handling of extracellular and cytosolic platinum. 

iv. Interaction with DNA As mentioned above, the aquated platinum 

metabolite possesses high reactivity towards biomolecules including DNA. It 

covalently binds to DNA at the N7 position of the imidazole ring of purine bases 

mainly guanine (G) and to a lesser extent adenine (A). As a result, it forms either 

monofunctional/bifunctional crosslinks or adducts via replacement of one/two 

leaving groups, respectively. The two amine groups (carrier ligands) remain 

attached to platinum
106

.  
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Figure 1.5 Cellular handling of extracellular and cytosolic platinum. 

Extracellular platinum is taken up by the cell via passive diffusion or active 

transport mainly by CTR1. The intracellular platinum is then activated by an 

aqaution step that depends on intracellular chloride levels. A fraction of aquated 

platinum is transported to the nucleus where it binds its primary target—DNA.  

Another fraction is either directly effluxed by ATP7A/B transporters or after 

conjugation with thiol-containing biomolecules such as metallothioneins or 

glutathione, then effluxed by the MRP2 pump. The expression level of these 

biomolecules is among the determinants of resistance to platinum. Cisplatin is 

shown here, and most of the mechanisms apply to carboplatin. Reproduced with 

permission from Kelland, 2007
83

. 
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The majority of the crosslinks involves bases on the same DNA strand, and 

are therefore termed intrastrand crosslinks. Approximately 80-90% of all adducts 

involve adjacent bases. The GpG 1,2-intrastrand  crosslinks constitute 60–65% of 

all crosslinks as compared to the ApG 1,2-intrastrand crosslinks which constitute 

20–25%
83

. In addition, non-adjacent bases may be involved as is the case with the 

GpXpG 1,3-intrastrand crosslink (X stands for an intervening base) which occur 

at a frequency of approximately 2%. Guanine monofunctional adducts rarely 

occur (≈ 2%). On the other hand, guanine bases on opposite strands may be 

involved in the formation of G–G interstrand crosslinks. These occur rarely at a 

frequency of approximately 2% of all adducts
83,107-109

. Generally speaking, the 

extent of platinum cytotoxicity is directly proportional to the total level of 

platinum bound to DNA especially intrastrand DNA crosslinks
110

. 

v. Recognition of DNA damage The formation of DNA adducts/crosslinks 

initiates a cascade of signaling events that start with DNA damage recognition. 

DNA distortion elicited by adduct formation widens the DNA minor groove 

surface available for binding by more than 20 proteins, including high-mobility 

group (HMG) proteins (HMG1 and HMG2), DNA repair proteins (hMSH2 or 

hMutSα proteins of the mismatch repair [MMR] complex), transcription factors 

(upstream binding factor [hUBF] and TATA binding protein [TBP]) and histone 

H1
98,110,111

. These proteins may exhibit more preferential binding to adducts 

formed by specific platinum compounds compared to others
110

. Moreover, each of 

them may initiate distinct downstream signaling events that contribute differently 

to platinum-induced cytotoxicity. These signaling events lead ultimately to a 
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number of outcomes including inhibition of replication and transcription, cell 

cycle arrest, DNA repair and cell death
98

.  

In addition to their signal-transducing function, these recognition proteins may 

have a more direct role in inducing cytotoxicity. For example, HMG1 was found 

to shield platinum-DNA adducts from  nucleotide excision repair (NER)
110

.  

vi. Transduction of DNA damage signals A number of signaling pathways 

are activated in response to recognition of DNA-platinum adducts including 

PI3K/AKT, c-ABL, p53 and MAPK/JNK/ERK pathways. These in turn modulate 

cell cycle checkpoints, DNA repair and cell death pathways
98

.  

Briefly, activation of cell cycle checkpoints leads to cell cycle arrest to permit 

DNA damage repair. NER is the major pathway implicated in the repair of 

platinum–DNA adducts. The activity of the NER pathway positively correlates 

with resistance to platinum compounds. Accordingly, specific testicular cancer 

types exhibit high sensitivity to platinum due to low constitutive NER 

capacity
83,98,112

. On the other hand, the MMR pathway is critical for induction of 

cytotoxicity. MMR induces cell death by either initiating futile cycles of repair 

indirectly leading to apoptosis or invoking direct apoptotic signaling through 

ATM/ATR. Therefore, defective MMR has been correlated with resistance to 

platinum compounds. For example, downregulation of MSH2 or MLH1 

(components of MMR machinery) is associated with cisplatin resistance in human 

ovarian tumor cell lines
98,113-115

.  

p53 plays a central role in platinum-induced cytotoxicity. DNA damage 

directly and indirectly activates p53, which modulates the expression of a 
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multitude of downstream target genes encoding proteins involved in DNA repair, 

cell cycle arrest and apoptosis. These include the cyclin-dependent kinase 

inhibitor (CDK) inhibitor p21
Waf1/Cip1

, GADD45α, and the pro-apoptotic protein 

Bax. Therefore, p53 plays an important role in both cell survival and death 

following platinum exposure in a complex and highly coordinated process. 

Generally, if the DNA damage is overwhelmingly extensive, apoptosis is 

induced
99

.  

It is noteworthy that platinum compounds induce cell death via either 

apoptosis or necrosis at low and high doses, respectively. Apoptosis starts with 

translocation of Bax to the mitochondria leading to a cascade of events, involving 

cytochrome c release. As a result, the intrinsic apoptotic (caspase 9-caspase 3) 

pathway is activated and apoptosis occurs. The extrinsic (Fas/FasL-activated 

caspase 8–caspase 3) apoptotic pathway has also been implicated in platinum-

induced cytotoxicity
110

. The antiapoptotic Bcl-2 family members and inhibitors of 

apoptosis proteins (IAPs) have a role in the regulation of apoptosis, and might 

contribute to resistance to chemotherapeutics including platinum-based 

compounds
116,117

. 

On the other hand, excessive DNA damage induces hyperactivation of 

poly(ADP-ribose)polymerase (PARP), which utilizes NAD
+
/ATP to perform its 

enzymatic  functions. As a result of this hyperactivity, ATP depletion may be 

such that it induces necrotic death
98

. 

vii. Non-genotoxic mechanisms of platinum-induced cytotoxicity DNA 

damage has been considered to be the major trigger of platinum cytotoxicity. 



34 
 

However, a substantial body of evidence exists that platinum exerts its effects by 

mechanisms other than induction of DNA damage. These mechanisms involve 

lysosomal toxicity, endoplasmic reticulum stress, cytosolic events and effects 

involving the plasma membrane and cytoskeleton (reviewed by Sancho-Martinez 

et al.
99

). Consistent with this, it was found that only 1% of the gross amount of 

cisplatin taken up by the cell is bound to the DNA, suggesting that platinum 

cytotoxicity is initiated in the cytoplasm and is markedly enhanced by nuclear 

effects
118,119

. Taken together, platinum-based compounds induce a number of 

widespread cellular events that lead ultimately to their cytotoxic action. 

Nonetheless, cancer cells may exhibit inherent insensitivity to platinum 

compounds (intrinsic resistance) or initial responsiveness followed by 

development of resistance (acquired resistance). Since the focus of the thesis is on 

the molecular mechanisms of acquired resistance of EOC to carboplatin, these 

mechanisms will be reviewed in detail in the following section.    

1.2.3 Resistance to cisplatin and carboplatin 

Antineoplastic agents frequently suffer from therapeutic failure due to 

decreased efficacy within safe dosage ranges— a status defined as resistance. This 

problem applies to platinum-based compounds despite their widespread cytotoxic 

effects. Resistance generally is subdivided into intrinsic and acquired categories. 

Intrinsic resistance constitutes the inherent insensitivity of cancer cells to 

antineoplastic agents as is the case with resistance of colon and renal cancers to 

platinum-based compounds
83,110,120

. This intrinsic resistance may derive from 

increased expression of P-glycoprotein
121

 or from  intrinsic differences in DNA 
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repair mechanisms
122

. On the other hand,  acquired resistance is developed by 

initially sensitive cancers after repeated exposure to antineoplastic agents, as is 

the case with the resistance of EOC to platinum compounds
123

.  

The definition of chemotherapy resistance varies between laboratory and 

clinical settings. In laboratory settings, resistance to a specific anticancer agent is 

defined as the increase in the median inhibitory concentration (IC50) by at least 2-

fold
79

. In clinical settings, resistance is defined as the progression of the disease 

within the clinically safe therapeutic dosage ranges of the drug
68

. In the context of 

EOC, a number of clinically drug-resistant categories have been defined as 

discussed above in Section 1.1.10.  

Among platinum-based compounds, most of the resistance studies have been 

conducted with cisplatin. In addition, cisplatin and carboplatin have been 

considered, in most settings, as more closely related to one another than other 

members of this therapeutic class. In this regard, they share a similar mode of 

action and a broad range of cross-resistance
98,124

, which might not be evident in 

other platinum compounds such as oxaliplatin
125

.  Therefore, resistance to these 

two agents has been discussed on the grounds of having common resistance 

mechanisms, and this hypothesis will be adopted in this thesis
115

. Resistance 

mechanisms to platinum compounds have been extensively 

reviewed
67,68,110,120,122,123,126-129

. Here, a general outline of these mechanisms is 

presented, with a focus on those mechanisms encountered in the context of EOC.   

Generally, acquired resistance mechanisms to platinum compounds are 

classified into pharmacokinetic (systemic changes that interfere with drug 
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accumulation in the tumor in therapeutically effective concentrations) and 

pharmacodynamic (localized changes that interfere with drug action; these 

include cancer cell- and tumor microenvironment-specific mechanisms)
68

.  

Examples of the molecular mechanisms affecting resistance include decreased 

drug uptake, increased efflux, increased detoxification by conjugation, increased 

DNA repair (mainly NER machinery), increased tolerance to DNA damage 

(defective MMR machinery), and dysfunctional apoptosis
110

. Other mechanisms 

involve altered mitochondria, altered proliferative signaling (e.g. HER-2/neu and 

the PI3K pathways), epigenetic changes, induction of both EMT and stemness 

and changes in microRNAs
123,126

.  

In EOC, a multitude of resistance mechanisms have been reported (Table 

1.4). Nonetheless, resistance still represents a major cause of therapeutic failure in 

the management of EOC, resulting in a 5-year survival rate of only 30% in 

advanced EOC
68

. Therefore, it is crucial to identify novel mechanisms in order to 

effectively manage the platinum-resistant disease.  

It is noteworthy that resistance to carboplatin is multifactorial in nature, and it 

is common to find multiple resistance mechanisms operative in the same patient 

and even in the same tumor because of inter- and intra-tumor heterogeneity, 

respectively. Accordingly, combination therapy is an important therapeutic 

strategy to overcome resistance. Another factor to consider is the clinical 

relevance of resistance mechanisms identified preclinically (either in cell lines or 

animal models), which is the case with most currently identified mechanisms
110

. 
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1.2.4 Safety of cisplatin and carboplatin 

EOC was initially treated with cisplatin. As a result of its high toxicity profile 

(nephrotoxicity, peripheral neurotoxicity and ototoxicity), cisplatin has been 

replaced with carboplatin which lacks these side effects. The major dose-limiting 

toxicity of carboplatin is myelosuppression (thrombocytopenia and neutropenia) 

128
. At conventional carboplatin doses, thrombocytopenia has been reported in 20–

40% of patients and severe neutropenia in less than 20%. At high doses, 

myelosuppression has been reported in more than 90% of patients. In such 

settings, granulocyte-macrophage colony stimulating factor (GM-CSF) is 

administered to avoid life-threatening complications
128

. 
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 Table 1.4 Selected mechanisms of EOC resistance to cisplatin and 

carboplatin  

Altered components in resistance References 

Transporters 130-132 

Detoxification machinery (GSH and metallothioneins) 133,134 

DNA damage response 135-137 

Apoptosis  138-140 

Tumor microenvironment  141-143 

Proliferative signaling  144,145 

miRNAs  146-154 

Transcription factors and coactivators 155-159 

EMT and stemness 160-162 

Other alterations 163-167 
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1.3 RUNX family of transcription factors 

1.3.1 Overview of RUNX transcription factors 

RUNX (Runt-related transcription factor) family of genes are also termed 

acute myeloid leukemia (AML), core-binding factor-α (CBFα) or polyoma 

enhancer-binding protein-2α (PEBP2α) family
168

. They represent an 

evolutionarily conserved group of genes in both simple and complex metazoans, 

which is suggestive of their biological importance
169

. They have multiple roles in 

both development and homeostasis. In mammals, three RUNX genes have been 

identified, namely: RUNX1, RUNX2 and RUNX3 
170

.  

1.3.2 Structure of RUNX family members 

The three RUNX proteins share a number of evolutionarily conserved 

domains. Most important, they share a 128-amino-acid Runt domain (Runt-

homology domain; RHD) which is responsible for DNA binding and dimerization 

with a common cofactor named CBFβ (core-binding factor β) or PEBP2β 

(polyomavirus enhancer binding protein 2β)
168,171

. CBFβ does not interact with 

DNA itself, but enhances DNA binding and stability of RUNX proteins
172,173

. The 

structural basis of CBFβ interaction with RUNX1 protein and subsequent DNA 

binding has been solved
174,175

. Other conserved domains include the activation 

domain (AD), the inhibitory domain (ID), and the VWRPY motif at the C-

terminus. This last motif is responsible for the interaction with transcription 

corepressors
176

. RUNX2 protein possesses a unique domain termed QA domain 

that consists of tandem repeats of glutamine and alanine amino acids
169

 (Figure 

1.5).  
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Figure 1.6 Schematic illustration of the structures of RUNX proteins. The 

RUNX family of transcription factors comprises three members RUNX1, 2 and 3. 

They share Runt, AD and ID domains together with C-terminus VWRPY motif. 

QA domain is unique to RUNX2. Adapted with permission from Ito et al., 

2015
169

. 
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1.3.3 Transcriptional activity of RUNX family of transcription factors 

RUNX proteins bind to DNA at a consensus target sequence (AACCGCA), 

which is facilitated by CBFβ. As a result, transcription of many target genes is 

activated or repressed
177

. The specific outcome is governed by the proximity of 

binding sites to either co-activators (p300, CCAAT/enhancer-binding protein 

[C/EBP], ETS, MYB and SMADs) or co-repressors (Groucho–transducin-like 

enhancer of split [Groucho–TLE], histone deacetylases [HDACs], mSin3A and 

nuclear receptor corepressor [nCoR]), and the availability of these co-

activators/co-repressors in the nucleus. In addition, a number of post-translational 

modifications regulate the transcriptional activity of RUNX proteins, including 

phosphorylation, acetylation and ubiquitination
168,178

. These modifications affect 

the subcellular localization and stability of RUNX proteins
169

. 

1.3.4 Functions of RUNX family of transcription factors 

RUNX proteins serve as transcription factors that regulate various 

developmental, homeostatic and pathological processes. In this respect, they 

modulate cell lineage specification, proliferation, differentiation, apoptosis, cell 

cycle progression, stress (hypoxia and DNA damage) responses, oncogene-

induced senescence, ribosomal biogenesis, inflammatory responses, EMT and 

stemness
169,176

. The roles of RUNX proteins in these processes constitute the 

outcome of crosstalk with a plethora of signaling pathways such as transforming 

growth factor-β (TGFβ), bone morphogenetic protein (BMP), PI3K, Wnt, 

NOTCH, estrogen, Hippo/MST2, and  Hedgehog signaling pathways
179-182

.  
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The biological functions of RUNX proteins are mediated via modulation of a 

number of target genes that encode components involved in apoptosis 

(p14/p19
ARF

; p21
WAF1

), TGFβ  signaling (TGFβR1), hematopoietic differentiation 

(TCRα, -β, -γ, -δ, CD3ε, CD4, GM-CSF, IL-3, IgA1, IgCα, M-CSFR, 

myeloperoxidase [MPO], C/EBPδ), cell cycle regulation (cyclin D3) and bone 

development (bone sialoprotein, osteopontin, collagenase-3, VEGF)
168

. It is 

noteworthy that RUNX family members might exert redundant or antagonistic 

functions, which are mostly context-dependent (cell- or tissue-specifc)
169

.  

Knockout studies in mice confirmed the fundamental role of each of the 

RUNX members in different biological processes. Specifically, RUNX1 is 

important for hematopoiesis, immune responses, hair follicle development, and 

nociceptive sensory neuronal regulation. RUNX2 is implicated in skeletal 

development, skin and hair follicle development and specification of alveolar cell 

maturation in mammary glands during pregnancy. RUNX3 is involved in 

differentiation of gastric epithelial cells, neuronal cell fate specification, 

macrophage and T cell differentiation, and dendritic cell maturation
169

. Therefore, 

aberrations in RUNX genes lead to a number of diseases, most prominently 

cancer. 

1.3.5 RUNX proteins in cancer 

RUNX proteins play fundamental roles in cancer-related processes such as 

proliferation, differentiation, apoptosis, stress (hypoxia and DNA damage) 

response, and oncogene-induced senescence. Therefore, aberrant expression or 

mutations of RUNX genes contribute to a broad spectrum of malignancies. In this 
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respect, RUNX1 has been implicated in acute myeloid leukemia (AML), acute 

lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML), invasive 

endometrioid carcinoma, breast cancer, and squamous cell carcinoma 

(SCC)
183,184

. RUNX2 is involved in osteosarcoma, breast cancer and prostate 

carcinomas
169,185

. RUNX3 has been implicated in a broad spectrum of cancers. 

These include neuroblastoma, glioma, basal cell carcinoma (BCC), AML, 

hepatocellular carcinoma (HCC), EOC, head and neck squamous cell carcinoma 

(HNSCC), chondrosarcoma, thyroid, skin, esophageal, breast, prostate, lung, 

gastric, bladder, and colon cancers
169,186-191

. RUNX members may exert either 

oncogenic or tumor-suppressive effects based on cellular context and 

spatiotemporal regulation
169,192,193

. Tumor suppressive effects derive from the 

capacity to induce differentiation, growth arrest and senescence. On the other 

hand, oncogenic effects derive from the ability of specific members to induce 

transformation, differentiation block, EMT and stemness
168

. Since EOC is the 

focus of the thesis, the role of RUNX proteins in EOC will be discussed below.  

1.3.6 RUNX proteins in EOC 

RUNX1 and RUNX2 were found to be overexpressed in EOC including LMP 

tumors, high-grade primary tumors and metastatic disease. Methylation status of 

RUNX1 and RUNX2 genes in primary EOC tumors was not significantly different 

from that in EOC omental metastases, suggesting that metastatic behavior of EOC 

was not dependent on methylation-based epigenetic modulation of these two 

genes
194,195

. Conversely, they were found to be hypomethylated and 

overexpressed in primary cell cultures developed from post-chemotherapy tumors 
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from serous EOC patients, as compared to cultures derived from matched primary 

pre-chemotherapy tumors
196

, suggesting RUNX1 and RUNX2 might have a role 

in chemoresistance. In line with their potential oncogenic role in EOC, 

knockdown of either RUNX1 or RUNX2 led to the inhibition of proliferation, 

migration and invasion of EOC cells, and was associated with a gene expression 

profile characterized by downregulation of a number of oncogenic pathways and 

induction of tumor suppressive pathways
194,195

. These reports suggest that 

RUNX1 and RUNX2 might be potential therapeutic targets in EOC.   

In another study, RUNX2 was found to be overexpressed in EOC patient 

tissues (n=116) as compared to normal ovarian tissues, and its expression level in 

high clinical stages (III and IV) correlated with shorter OS and PFS. This suggests 

that RUNX2 could serve as a potential prognostic marker for EOC
197

.  

RUNX3 expression was found to be higher in malignant and borderline serous 

EOC patient specimens compared to normal ovarian epithelium specimens, as 

assessed by both immunohistochemistry (IHC) and quantitative reverse 

transcription polymerase chain reaction (qRT-PCR). Subsequent gain- and loss-

of-function studies in the EOC cell lines SKOV3 and OVCAR429, respectively 

suggested a role for RUNX3 in promoting EOC progression
197

.  This oncogenic 

role of RUNX3 was consolidated by another study in 2011
190

. Conversely, 

RUNX3 was reported to be inactivated in other cancers including endometrial 

carcinoma
198

.  

As mentioned above, CBFβ is essential for adequate transcriptional activity of 

RUNX proteins. In line with the oncogenic role of RUNX proteins in EOC, 
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knockdown of CBFβ in SKOV3 cells led to a significant suppression of their 

anchorage-independent growth. Whether this oncogenic activity is dependent on 

RUNX proteins has yet to be elucidated
199

.  
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1.4 Wnt/β-catenin signaling 

1.4.1 Overview of Wnt signaling 

Wnt designation is derived from the fly Wingless (wg) gene and Int-1 (now 

named Wnt1) proto-oncogene. The wg gene of Drosophila melanogaster was 

identified in 1980 as a gene implicated in segment polarity during larval 

development
200

, and Int-1 gene was discovered in 1982 as a gene activated by 

integration of mouse mammary tumor virus (MMTV) proviral DNA in virally 

induced breast tumors
201

. In 1987, wg gene was found to be a homolog of Int-1, 

and they constitute a part of a large conserved family of genes; therefore, the 

contracted name Wnt has been proposed
202-205

.  

Wnt signaling has been subdivided into canonical (Wnt/β-catenin; β-catenin- 

dependent) and non-canonical (β-catenin-independent) Wnt signaling pathways 

based on the involvement of β-catenin as an effector
206

. Non-canonical signaling 

includes the Wnt/Ca
+2

 and planar cell polarity (PCP) signaling pathways. The 

focus in this thesis will be on Wnt/β-catenin signaling.  

1.4.2 Cascade and components of Wnt/β-catenin signaling 

Wnt/β-catenin signaling has been extensively reviewed in the biomedical 

literature
207-219

. Briefly, Wnt/β-catenin signaling starts with the binding of 

secreted extracellular Wnt ligands to their receptors belonging to Frizzled (FZD) 

family—an interaction that requires co-receptors called low-density lipoprotein 

receptor related proteins 5 and 6 (LRP5/6). The activated FZD receptor initiates a 

cascade of intracellular signaling events by activating the Dishevelled proteins 

(DVL) to inactivate a destruction (degradation) complex that phosphorylates and 
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therefore directs β-catenin to proteasomal degradation. The destruction complex 

consists of Adenomatosis Polyposis Coli (APC), Axin, glycogen synthase kinase-

3β (GSK-3β) and casein kinase-1 (CK-1). The stabilized β-catenin accumulates in 

the cytosol and then translocates into the nucleus. β-catenin, the effector of 

canonical Wnt signaling, serves as a transcriptional co-activator that associates in 

the nucleus with the T-cell factor/lymphoid enhancer factor (TCF/LEF) family of 

transcription factors and modulate the transcription of a large set of target genes. 

Wnt/β-catenin signaling is regulated by extracellular modulators that belong to 

three families, namely: secreted Frizzled related proteins (sFRPs), Wnt-inhibitory 

factor (WIF-1), and Dickkopfs (DKKs)
220

. The signaling cascade and components 

of Wnt/β-catenin signaling are summarized in Figure 1.6 and Table 1.5, 

respectively.  

1.4.3 Functions of Wnt/β-catenin signaling 

Activation of Wnt/β-catenin signaling leads to the transcriptional modulation 

of a large set of target genes involved in cell proliferation, differentiation, 

survival, migration, genetic stability, cell fate specification, polarity, adhesion, 

hematopoiesis and self-renewal in stem cells
205,206,221-224

. Therefore, Wnt/β-

catenin signaling is fundamental for many developmental and homeostatic 

processes, as evidenced by knockout studies in mice
204

. Accordingly, aberrant 

Wnt/β-catenin signaling leads to multiple diseases including cancer, osteoarthritis, 

renal disease, cardiovascular diseases, fibrosis and neurodegenerative diseases
225-

227
.  
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Figure 1.7 Schematic illustration of the Wnt/β-catenin signaling pathway. 

The Wnt ligand binds FZD receptors and this binding is facilitated by LRP5/6 

coreceptors. This interaction activates DVL that inhibits the destruction complex 

composed of GSK-3, CK1, APC, and Axin.  As a result, β-catenin is stabilized 

and accumulates in the nucleus and binds LEF/TCF to exert its transcriptional 

effects. Adapted from Clevers and Nusse, 2012 and Cadigan and Waterman, 

2012
203,209

.  
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Table 1.5 Signaling components and members of Wnt/β-catenin signaling 

(Reproduced with permission from Ref. 220) 

Component Members 

Wnt ligands Wnt-1(Wg), Wnt-2, Wnt-2B, Wnt-3, Wnt-3A, Wnt-

4, Wnt-5A, Wnt-5B, Wnt-6, Wnt-7A, Wnt-7B, 

Wnt-8A, Wnt-8B, Wnt-9A, Wnt -9B, Wnt-10A, 

Wnt-10B, Wnt -11, Wnt -16 

Extracellular modulators sFRP1-5; DKK1-4; WIF-1  

FZD receptors FZD1-10 

LRP receptors LRP5/6 

Dishevelleds DVL1-3 

β-Catenin destruction 

complex 

Axin, APC, GSK-3, CK-1, protein phosphatases 

(PP1 and PP2A) 

Effector β-catenin (Armadillo) 

Transcription factors TCF-1, TCF-3, TCF-4; LEF-1 
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1.4.4 Aberrant Wnt/β-catenin signaling in cancer 

As a result of its central role in multiple biological processes particularly in 

stem cell biology, aberrant Wnt/β-catenin signaling has been implicated in a 

variety of cancers
203

. Mutations in the APC gene were found in patients with 

familial adenomatous polyposis (FAP) and in sporadic colorectal cancers
228-231

. In 

addition, stabilizing β-catenin mutations were identified in melanoma and colon 

cancer cell lines
232-234

. AXIN1 and AXIN2 mutations were associated with colon 

cancer
235,236

. SFRPs silencing and Wnt or FZD overexpression were associated 

with colorectal and mammary carcinogenesis
237,238

. DVLs have been found to be 

overexpressed in NSCLC and mesothelioma
239,240

. Moreover, WIF1 is 

downregulated in prostate, breast, lung, and bladder cancer
241

. Activating LRP5 

mutations were associated with thyroid tumours
242

. LEF1 mutations were 

associated with sebaceous gland tumors in humans, but in these tumors, Wnt–β-

catenin signaling is inactivated
243

. Other cancers with Wnt–β-catenin signaling 

implication include glioma and urological cancers
244,245

. Given the broad 

spectrum of malignancies driven by this central pathway either directly or 

indirectly, and its role in stemness and EMT, several Wnt–β-catenin-targeted 

therapeutics have been developed and tested in various cancers
206,225,246-253

.  

1.4.5 Aberrant Wnt/β-catenin signaling in EOC 

As mentioned in Section 1.1.7, a number of signaling pathways are 

deregulated in EOC and foster tumor progression. Among these pathways, Wnt/β-

catenin signaling is of special interest as β-catenin, is the 7
th

 gene in terms of 

mutation frequency (6%) in EOC
254

. Other studies reported β-catenin mutation 
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frequencies of 14% in mucinous EOC and up to 54% in endometrioid EOC
255-259

. 

Wnt/β-catenin signaling may be hyperactivated via indirect stabilization of β-

catenin by other pathways such as PI3K, which phosphorylates GSK3β, leading to 

inhibition of its activity and therefore enhancing β-catenin stability
260

. Likewise, 

the receptor-interacting serine/threonine-protein kinase 4 (RIPK4) promotes 

progression of ovarian adenocarcinoma by activating Wnt/β-catenin signaling via 

phosphorylation of DVL2
261

.  

Other components of Wnt/β-catenin signaling are deregulated in EOC. With 

respect to Wnt ligands, Wnt7a was found to drive EOC progression in a murine 

model
262

; other non-canonical Wnt ligands such as Wnt5a were reported to have 

conflicting effects on EOC progression
263-268

. For extracellular modulators of 

Wnt/β-catenin signaling, DKK2 and SFRP5 were reported to be epigenetically 

silenced in EOC cell lines and patient samples
160,269

. DKK1 was found to be 

negatively correlated to invasiveness of EOC cells in vitro
270

. Conflicting with 

this study is a report of DKK1 overexpression in serous EOC and its implication 

in invasiveness
271

. In addition, re-expression of SFRP4 suppressed EMT and cell 

migration in serous EOC cell lines
272

, and its expression was positively correlated 

with lower tumor grade of mucinous EOC
273

. Among Wnt receptors, the 

expression of FZD5 was associated with worse prognosis in EOC
260

. 
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1.5 Preliminary data and hypotheses 

The gene expression profiles of the two paired cell lines A2780s and A2780cp 

were determined using a cDNA gene expression microarray followed by data 

analysis using Ingenuity Pathway Analysis (IPA) software and literature 

reviewing
274

. Thousands of genes were found to be differentially expressed 

between the two cell lines. Based on data analysis, RUNX proteins and Wnt/β-

catenin signaling were selected for further assessment of their role in 

chemoresistance of EOC to carboplatin. Two hypotheses have been addressed in 

the thesis:  

1. RUNX proteins contribute to carboplatin resistance in EOC cells  

2. Wnt/β-catenin signaling is upregulated in resistant EOC cells and might 

contribute to the development of carboplatin resistance. 
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2. Materials and Methods 

2.1 Reagents 

Carboplatin, puromycin, neutral red dye, and polybrene were purchased from 

Sigma-Aldrich. The protease inhibitor cocktail (PIC) was purchased from Roche. 

G418 was purchased from Invitrogen. Anti-RUNX3 antibody (ab40278; R3-5G4), 

anti-tubulin antibody (ab59680) and anti-DKK1 antibody (ab109416; EPR4759) 

were were purchased from Abcam. Anti-RUNX2 antibody (#8486; D1H7), anti-

RUNX1 antibody (#4334), anti-SFRP1 antibody (#3534; D5A7), anti-β-catenin 

antibody (#8480; D10A8), anti-cIAP2 antibody (#9770), anti-PARP and anti-

cleaved PARP antibodies (#9915) were purchased from Cell Signaling 

Technology. Anti-β-actin antibody (A5441; AC-15) and anti-FLAG antibody 

(F1804; M2) were purchased from Sigma-Aldrich. Anti-CBF-β antibody (sc-

56751; 141,4,1) was purchased from Santa Cruz Biotechnology.  

2.2 Cell culture  

Human ovarian cancer cell lines A2780s and A2780cp were cultured in 

DMEM/F12 medium. HEK 293T and Phoenix-Ampho cells were cultured in 

DMEM medium. All the culture media were supplemented with 10% fetal bovine 

serum (FBS), 100 U/ml penicillin, and 100 µg/ml streptomycin.  

The paired A2780s and A2780cp cells were provided by Dr. Benjamin Tsang 

(Ottawa Hospital Research Institute). A2780 cells were established from the 

tissues of untreated ovarian cancer patient
275

. They have ARID1A, BRAF, PIK3CA 

and PTEN mutations, but lack TP53 mutations
78

. In this respect, they do not 

belong to the most common EOC histotypes— high-grade serous EOC
78

. The 
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cisplatin-resistant A2780cp cells were derived from cisplatin-sensitive A2780s 

cells by chronic exposure of the parental cells to stepwise-increasing 

concentrations of cisplatin
275

. The starting dose of cisplatin was 3 nM. A2780 

cells were exposed to the drug in the form of 3-day cycles. Each concentration 

was employed for 3 cycles, with recovery periods in between, taking a total 

period of 3-6 weeks for each concentration. The concentration was then escalated 

in a doubling fashion until A2780cp cell line was generated
275

. The IC50 for 

A2780cp was approximately 10-fold that for A2780s cells as assessed by 

cytotoxicity assays (see Chapter 3). 

2.3 Generating overexpression cells 

MSCVpac vectors were obtained from BC Cancer Research Institute. 

Phoenix-Ampho cells were used for overexpression experiments. The calcium 

phosphate method was used to transfect Phoenix-Ampho cells with the empty 

retroviral vector (MSCVpac) or a retroviral vector containing the appropriate 

human cDNA according to the experiment. The appropriate volume of the 

expression plasmid (e.g., 10 μg of plasmid DNA) was added to molecular-grade 

H2O to a final volume of 450 μL, followed by vortexing and spinning. CaCl2 (50 

μL of 2.5 M solution) was then added to each tube dropwise. Then the solution 

was transferred to  a tube containing 500 μL of 2X HEPES-buffered saline (HBS), 

followed by mixing and incubation for 5 minutes at room temperature (RT). The 

solution was then added dropwise to the Phoenix-Ampho cells, and cells were 

incubated overnight at 37˚C. After 24 h, the media were replaced with fresh 

medium. The next day, the medium from the Phoenix-Ampho cells was filtered 
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(through Millex
®
 syringe-driven Filter Unit 0.33 μm) and added to target cells 

(A2780s or A2780cp cells). Polybrene (8 mg/mL) was added to the target cells to 

a final concentration of 8 µg/mL (1/1000 dilution). Positively infected cells were 

selected by treatment with 1-2.5 μg/ml of puromycin to generate A2780s/Vector 

and A2780s/RUNX3. 

For overexpression of dominant-negative RUNX3 (dnRUNX3) cells, 

A2780cp cells were stably transfected with pcDNA3.1 vector or pcDNA-FLAG-

RUNX3 (1-187) (kindly provided by Dr. Yoshiaki Ito, Cancer Science Institute of 

Singapore) using GeneJuice
®
 Transfection Reagent (Novagen) and selected by 

treatment with 500 μg/ml of G418. pcDNA-FLAG-RUNX3 (1-187) expresses a 

truncated form of RUNX3 that contains the runt domain but lacks the 

transactivation domain at the carboxyl terminus. dnRUNX3 (1-187) functions as a 

dominant negative form of RUNX3
177,187,276

.    

2.4 Generating knockdown cells 

293T cells were transfected with a lentivirus vector (pLentiLox) containing an 

shRNA targeted against a random sequence (shRandom: 5‘-GTT GCT TGC CAC 

GTC CTA GAT-3‘) or an shRNA targeted against the RUNX3 gene 

(shRUNX3D: 5‘-GGA CCC TAA CAA CCT TCA AGA-3‘ or shRUNX3E: 5‘-

GCC GTC TCA TCC CAT ACT TCT-3‘) and packaging plasmids by the calcium 

phosphate method as described in Section 2.3 with few modifications. RRE, REV 

and VSVG plasmids (5 µg each) were included with the expression plasmids in 

the first reaction mixture to serve as packaging plasmids. A2780cp cells were 

infected with lentivirus containing shRandom, shRUNX3D or shRUNX3E. Since 
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pLentiLox vector expresses green fluorescent protein (GFP), positively infected 

cells were purified by fluorescence-activated cell sorting (FACS) for GFP positive 

cells to generate A2780cp/shRandom, A2780cp/shRUNX3D and 

A2780cp/shRUNX3E cells.  

2.5 Cytotoxicity assays 

Cytotoxicity of carboplatin was determined by two cytotoxicity assays: 

neutral red uptake assay and clonogenic assay. Neutral red uptake assay was 

adapted from Repetto et al.
277

 and the clonogenic assay from protocols described 

by Munshi et al. and Franken et al.
278,279

.  

The principle of neutral red uptake assay is based on the ability of viable cells, 

not dead cells, to take up neutral red dye into the lysosomes. This capacity 

distinguishes viable and dead cells, and the extent of dye uptake is directly 

proportional to the number of viable cells.  In this protocol, cells were seeded in 

96-well plate at a plating density of 2,000-3,000 cells per well. The next day, cells 

were treated with increasing concentrations of carboplatin for 72 h. After that, 

media were aspirated and new media containing neutral red dye (33 μg/ml) were 

added. Cells were then incubated for at least 3 h at 37˚C. The cells were then 

washed once with phosphate buffered saline (PBS) and lysed with destaining 

solution (50% ethanol and 1% acetic acid in H2O) to extract the dye. Plates were 

gently shaken until the color became homogenously distributed in the wells. 

Absorbance was then measured at 540 nm using the FLUOstar Omega microplate 

reader. 
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The principle of the clonogenic assay depends on the ability of cells to 

undergo division to produce colonies (composed of at least 50 cells). In this assay, 

cells were seeded in 6-well plates at a plating density (per well) starting from 50 

cells for control wells (untreated) up to 3200 cells for wells treated with the 

highest concentration of carboplatin (200 µM). Six hours after seeding, cells were 

treated with increasing concentrations of carboplatin for 24 hours. The medium 

with carboplatin was then replaced with fresh medium and cells were allowed to 

grow for 9-11 days. The colonies formed were then gently washed with 

phosphate-buffered saline (PBS), fixed with methanol/acetic acid (3:1) solution 

and stained with crystal violet (0.5 % in methanol). Colonies of ≥ 50 cells were 

counted and the viability was calculated using these equations: plating efficiency 

(PE) = count of colonies formed in control wells/number of cells seeded in control 

wells; percent viability = (count of colonies formed in treated wells/number of 

cells seeded in these wells x PE) x 100. Cell viability was expressed as a 

percentage relative to the respective untreated controls.  

2.6 Preparation of whole cell lysates  

Cells were washed twice with PBS, and then treated with modified radio-

immunoprecipitation assay (RIPA) lysis buffer to prepare whole cell lysates as 

previously described
280

.  The modified RIPA buffer used was composed of 50 

mM Tris pH 7.4, 150 mM NaCl, 1 mM EDTA, 0.1% sodium dodecyl sulfate 

(SDS), 1% sodium deoxycholate (DOC), 1 % Triton X-100, 10 mM sodium 

pyrophosphate (NaP2O7), 10 mM sodium fluoride (NaF), 1 mM sodium 

orthovanadate (Na3VO4), 1X PIC. Cell lysates were collected, followed by brief 



59 
 

sonication and centrifugation at 13,000 rpm for 15 minutes at 4˚C. Supernatant 

containing the whole cell lysate was collected. Protein concentration was 

quantified using the DC protein assay (Bio-Rad™). 

2.7 Western blotting 

Equal amount of proteins were loaded into each lane of an SDS 

polyacrylamide gel and transferred to a nitrocellulose membrane. Immunoblotting 

was performed using anti-RUNX1 (1:1000), anti-RUNX2 (1:1000), anti-RUNX3 

(1:1000), anti-β-actin (1:1000), anti-tubulin (1:1000), anti-PARP (1:1000), anti-

cleaved PARP (1:1000), anti-cIAP2 (1:1000) antibodies. IRDye
®
 800CW 

secondary antibodies were used (LI-COR Biosciences). Membranes were scanned 

and analyzed using an Odyssey
®
 IR scanner and Odyssey

® 
imaging software 3.0.   

2.8 RNA isolation and quantitative reverse transcription polymerase chain 

reaction  (qRT-PCR) analysis 

Cells were washed twice with PBS and were then homogenized with TRIzol
®

 

Reagent (Life Technologies). Chloroform was then added (0.2 mL of chloroform 

per 1 mL of TRIzol) followed by incubation for 2–3 minutes at RT. After that, 

tubes were centrifuged at 12,000 ×g for 15 minutes at 4°C. The homogenate 

separated into a clear upper aqueous layer (containing RNA), an interphase, and a 

red lower organic layer (containing the DNA and proteins). The aqueous layer 

was separated and RNA precipitated with 100% isopropanol (0.5 mL of 

isopropanol per 1 mL of TRIzol). This was followed by incubation at RT for 10 

minutes and centrifugation at 12,000 ×g for 10 minutes at 4°C. The supernatant 

was then removed leaving the precipitated RNA pellet.  The pellet was 
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subsequently washed with 75% ethanol (1 mL per 1 mL of TRIzol) followed by 

brief vortexing and centrifugation at 7,500 ×g for 5 minutes at 4°C. After 

washing, the pellet was left to dry for 5–10 minutes. RNA pellet was then 

resuspended in RNase-free water. RNA concentration was measured using a DU 

730
®
 spectrophotometer (Beckman Coulter). 

cDNA was prepared using SuperScript
®
 II Reverse Transcriptase (Invitrogen) 

in the presence of RNaseOUT Recombinant Ribonuclease Inhibitor (Invitrogen), 

random primers, 25mM dNTP using a Veriti
®

 96 well thermal cycler (Life 

Technologies) as per the manufacturer‘s instructions. The qRT-PCR reaction 

mixture was composed of 10 μl of SYBR
®

 Select Master Mix (Applied 

Biosystems), 1 μl of 10 μM primers (forward/reverse), 1 μl of 50 ng/μl cDNA and 

8.5 μl of dH2O. qRT-PCR was conducted using the Mastercycler
®
ep Realplex 

real-time PCR system (Eppendorf). Fold changes were calculated based on the 

ΔΔCT method
281

. Experimental samples were first normalized to GAPDH and 

then to the control samples. Primer sequences are listed in Table 2.1.  

2.9 Immunocytochemistry (ICC) 

The cells were seeded in an 8-well chamber at a plating density of 10,000 

cells/chamber. After reaching approximately 50% confluency, cells were washed 

with PBS, and then fixed by adding 4% paraformaldehyde (diluted in PBS) for 10 

minutes at RT. The cells were then permeabilized by adding permeabilization 

buffer (PBS with 4% FBS and 0.15% Triton X-100) for 10 minutes at RT. The 

cells were then incubated with appropriate primary antibodies for 1 hour at RT 

with gentle shaking. Anti-β-catenin (1:100 in permeabilization buffer) and anti-β-
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RUNX3 (1:100) antibodies were used. Secondary antibodies were then added 

(1:300 dilutions were employed) for 30 minutes at RT with gentle shaking in the 

dark. Cells were then washed with permeabilization buffer followed by PBS at 

RT. After that, 4',6-diamidino-2-phenylindole (DAPI; 1 µg/mL in PBS) was 

added for 5 minutes at RT with gentle shaking, followed by washing twice with 

PBS. DAPI serves as a nuclear stain. Images were taken using a fluorescence 

microscope (ZEISS™). 
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Table 2.1 Primer sequences for qRT-PCR experiments 

Gene Forward primer Reverse primer 

RUNX1 5‘-ACT ATC CAG GCG CCT 

TCA CCT ACT-3‘ 

5‘-TAG TAC AGG TGG TAG 

GAG GGC GAG-3‘ 

RUNX2 5‘-ACG AAT GCA CTA TCC 

AGC CAC CTT-3‘ 

5‘-ATA TGG AGT GCT GCT 

GGT CTG GAA-3‘ 

RUNX3 5‘-TGG CAG GCA ATG ACG 

AGA ACT ACT-3‘ 

5‘-TGA ACA CAG TGA TGG 

TCA GGG TGA-3‘ 

CBFB 5‘-CAC AGG AAC CAA TCT 

GTC TCT C-3‘ 

5‘-CCT TGC CTG CTT CTC 

TTT CT -3‘ 

cIAP2 

(BIRC3) 

5‘-CAA GCC AGT TAC CCT 

CAT CTA C-3‘ 

5‘-CTG AAT GGT CTT CTC 

CAG GTT C-3‘ 

GAPDH 5‘-GGA CCT GAC CTG CCG 

TCT AGA A-3‘ 

5‘-GGT GTC GCT GTT GAA 

GTC AGA G-3‘ 
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2.10 Luciferase reporter assay 

Cells were seeded in 24-well plates at a plating density of 5x10
4 

cells/well. 

After 24 h, cells were transfected with either TOPFlash or FOPFlash plasmids 

(Addgene). 

TOPFlash plasmid is a firefly luciferase reporter of β-catenin-mediated 

transcriptional activation. It contains seven functional TCF/LEF binding sites. 

Conversely, FOPFlash contains mutant TCF/LEF binding sites, and serves as a 

control to account for background luminescence. Each of these plasmids was co-

transfected with a Renilla luciferase reporter driven by the CMV promoter, to 

serve as a transfection control. After 48 hrs, transcriptional activity was assessed  

using the Dual-Luciferase
®
 Reporter Assay kit (Promega) as per the 

manufacturer‘s instructions. Briefly, cells were washed with PBS, followed by 

lysis with passive lysis buffer and lysates were transferred to new tubes. Aliquots 

of 20 μl were pipetted into a 96-well plate. Luminescence was measured using 

Luciferase Assay Substrate in Luciferase Assay Buffer II (LARII) and Stop & 

Glo
® 

Reagent by a FLUOstar Omega microplate reader. Readings for Firefly 

luciferase were normalized to their respective Renilla luciferase value, and then 

TOPFlash to their respective FOPFlash readings in each cell line. The relative β-

catenin transcriptional activity of A2780s was expressed as 1.  

2.11 Data analysis 

Data are shown as mean ± SEM of three to five independent experiments. 

Statistical analysis and IC50 calculation were performed using GraphPad Prism 5. 

Drug-drug interaction analysis to assess potential synergism was conducted using 
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COMPUSYN™ software according to the Chou-Talalay method
282

. Statistical 

significance between each two independent groups was determined by the 

unpaired t-test and defined as P < 0.05.  
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3. Results 

Genome expression profiles of A2780s and A2780cp were compared by 

cDNA microarray followed by IPA analysis. The analysis revealed thousands of 

differentially expressed genes between these two cell lines. Based on a review of 

the literature, RUNX3 and the Wnt/β-catenin signaling pathway were selected for 

further analysis. 

3.1 The role of RUNX proteins in EOC resistance to carboplatin 

3.1.1 RUNX3 expression is elevated in A2780cp cells compared to A2780s 

cells 

From the microarray data generated in our laboratory, RUNX3 gene 

expression was found to be approximately 22-fold greater in A2780cp cells 

compared to A2780s cells
274

. In addition, RUNX3 was reported to be 

overexpressed in EOC in two previous studies
190,283

. These findings were 

confirmed in our laboratory in EOC tissue samples using normal OSE cell 

cultures as non-cancerous controls
274

, and by the analysis of the microarray data 

from the Gene Expression Omnibus (GEO) database
284

.   

To validate the microarray data and determine whether RUNX proteins are 

involved in chemoresistance of EOC, their expression was tested in cisplatin-

sensitive A2780s cells and the cisplatin-resistant counterpart A2780cp cells. qRT-

PCR showed that RUNX1, RUNX3 and CBFβ RNA levels were higher in 

A2780cp cells by 7.3, 20.2 and 2.2 fold, respectively, than that in A2780s. 

RUNX2 RNA levels were similar in A2780s and A2780cp cells (Figure 3.1). 
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Western blotting was subsequently conducted to confirm these data at the 

protein level. It showed that RUNX3 expression was markedly elevated and 

RUNX1 expression was slightly higher in A2780cp cells compared to A2780s 

cells (Figure 3.2). We detected two RUNX3 bands in EOC cells, which is 

consistent with previous studies in EOC
190

, human basal cell carcinomas
285

 and 

human endothelial cells
286

. These two bands could represent two isoforms of 

RUNX3 or are generated by phosphorylation modification or proteolytic 

cleavage
285

. No changes in protein level were observed for CBFβ. RUNX2 was 

undetectable at the protein level. Anti-RUNX2 antibody was validated using 

RUNX2-expressing granulosa cell tumor cells as a positive control (not shown). 

Taken together, these data suggest that RUNX3 expression is elevated in the 

chemoresistant EOC cells and tissues, and its elevation is detectable at both the 

RNA and protein levels. Therefore, RUNX3 was selected for further analysis.   
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Figure 3.1 Expression of RUNX family members and CBFβ at the mRNA 

level in EOC cells.  Expression of RUNX1, RUNX2, RUNX3, and CBFβ in 

A2780s and A2780cp cells was examined by qRT-PCR. Data are shown as mean 

± SEM of three independent experiments. *Significantly different (P < 0.05). 

RUNX1, RUNX2 and RUNX3 data were previously reported in our laboratory
274

, 

and were included here in the same graph with CBFβ data for the purpose of 

comparison. 
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Figure 3.2 Expression of RUNX family members and CBFβ at the protein 

level in EOC cells. Expression of RUNX1, RUNX3, and CBFβ in A2780s and 

A2780cp cells was examined by Western blotting. β-actin was used as a loading 

control. RUNX3 data were previously reported in our laboratory
274

, and were 

included here in the same graph with RUNX1 and CBFβ data for the purpose of 

comparison. 
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3.1.2 Cisplatin-resistant A2780cp cells are also carboplatin-resistant 

The cisplatin-resistant A2780cp cells were derived from cisplatin-sensitive 

A2780s cells by exposing A2780s cells to stepwise-increasing concentrations of 

cisplatin
275

. Carboplatin and cisplatin share similar modes of action and a broad 

range of cross-resistance
83,124

. Because carboplatin is currently more often used 

than cisplatin as the first-line therapeutic agent in the treatment of ovarian cancer 

due to its low toxicity profile when compared to cisplatin
53,287,288

, carboplatin was 

used for this study. To validate the use of this paired cell model for carboplatin 

study, relative viability after exposure to increasing concentrations of carboplatin 

was assessed using the clonogenic assay. As expected, cisplatin-resistant 

A2780cp cells were also resistant to carboplatin (Figure 3.3). The IC50 values for 

carboplatin were 35.5 µM and 3.7 µM in A2780cp and A2780s cells, respectively 

(see Table 3.1 for summary of IC50 values from different experiments). 
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Figure 3.3 A2780cp cells are more resistant to carboplatin than A2780s cells. 

A2780s and A2780cp cells were treated with increasing concentrations of 

carboplatin and cell viability was measured by the clonogenic assay. Cell viability 

was expressed as a percentage relative to the respective untreated controls (0 μM 

carboplatin). Data are shown as mean ± SEM of three independent experiments. 

*Significantly different from the A2780s cells treated with the same concentration 

of carboplatin (P < 0.05). 
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3.1.3 RUNX3 overexpression in A2780s cells confers resistance to carboplatin 

To determine whether elevated expression of RUNX3 is associated with 

carboplatin resistance, RUNX3 was stably overexpressed in A2780s cells to 

generate A2780s/Vector and A2780s/RUNX3 cells (Figure 3.4A) followed by 

clonogenic assay. The clonogenic assay showed that A2780s/RUNX3 cells were 

significantly more resistant to carboplatin-induced cytotoxicity than 

A2780s/Vector cells (Figure 3.4B). The IC50 values for carboplatin were 7.9 μM 

and 3.6 μM in A2780s/RUNX3 and A2780s/Vector cells, respectively. Taken 

together, these results indicate that elevated expression of RUNX3 renders EOC 

cells more resistant to carboplatin. 
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Figure 3.4 Overexpression of RUNX3 renders EOC cells more resistant to 

carboplatin. (A) Overexpression of RUNX3 in A2780s/RUNX3 cells was 

confirmed by Western blotting.  β-actin was used as the loading control. (B) 

A2780s/Vector and A2780s/RUNX3 cells were treated with increasing 

concentrations of carboplatin and cell viability was determined by the clonogenic 

assay and expressed as a percentage relative to the respective untreated controls. 

Data are shown as mean ± SEM of three independent experiments. *Significantly 

different (P < 0.05).   
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3.1.4 Knockdown of RUNX3 modestly increases the sensitivity of A2780cp 

cells to carboplatin 

Next, we tested whether RUNX3 inactivation could sensitize A2780cp cells to 

carboplatin. To do so, RUNX3 was stably knocked down in A2780cp cells using 

two lentivirus-delivered shRNA constructs (shRUNX3D and shRUNX3E) 

targeting two distinct sequences of human RUNX3 (Figure 3.5A)
286

. RUNX3 

knockdown and control A2780cp cells were treated with increasing 

concentrations of carboplatin for 72 h. Neutral red uptake assay showed that 

knockdown of RUNX3 increased the sensitivity of A2780cp cells to 200 µM 

carboplatin, but not the lower doses of carboplatin (Figure 3.5B). The IC50 values 

for carboplatin in A2780cp/shRandom, A2780cp/shRUNX3D and 

A2780cp/shRUNX3E were 123.4, 92.8 and 103.9 µM, respectively.  

To determine whether RUNX3 knockdown renders A2780cp cells more 

sensitive to apoptosis induced by carboplatin, A2780cp/shRandom, 

A2780cp/shRUNX3D and A2780cp/shRUNX3E cells were treated with 200 μM 

carboplatin for 72 h and carboplatin-induced cleavage of PARP was detected as a 

marker of apoptosis by Western blotting. Carboplatin-induced cleavage of PARP 

was more pronounced in RUNX3 knockdown cells compared to the control cells, 

suggesting that RUNX3 knockdown potentiates carboplatin-induced apoptosis in 

A2780cp cells (Figure 3.6A). Quantification showed that shRUNX3D and 

shRUNX3E increased carboplatin-induced production of cleaved PARP by 2.2 

and 1.9 fold, respectively, compared to shRandom (Figure 3.6B). 
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Figure 3.5 Knockdown of RUNX3 moderately sensitizes A2780cp cells to 

carboplatin. (A) Stable knockdown of RUNX3 by two different shRNA 

constructs (shRUNX3D and shRUNX3E) in A2780cp cells was confirmed by 

Western blotting. Tubulin or β-actin was used as the loading control.  (B) These 

cells were treated with increasing concentrations of carboplatin. Cell viability was 

determined by the neutral red uptake assay and expressed as a percentage relative 

to the respective untreated controls. Data are shown as mean ± SEM of three 

independent experiments. *Significantly different (P < 0.05). 
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Figure 3.6 Knockdown of RUNX3 potentiates carboplatin-induced apoptosis. 

(A) A2780cp/shRandom, A2780cp/shRUNX3D and A2780cp/shRUNX3E cells 

were left untreated or treated with 200 μM carboplatin for 72 h. Carboplatin-

induced PARP cleavage was measured by Western blotting using antibody against 

the cleaved PARP. Tubulin was used as the loading control. (B) The Western 

blotting results of carboplatin-induced PARP cleavage were quantified using 

Odyssey imaging software. The density of the cleaved PARP bands was 

normalized to that of tubulin. The density of the bands in the carboplatin-treated 

A2780cp/shRandom cells was designated as 1.  The relative level (fold change) of 

cleaved PARP was shown as mean ± SEM of four independent experiments. 

*Significantly different (P < 0.05). 

 

 



77 
 

3.1.5 Overexpression of dnRUNX3 increases the sensitivity of A2780cp cells 

to carboplatin 

RUNX proteins (RUNX1-3) have been shown to have overlapping and 

distinct biological functions depending on cell context
289

. A truncated form of 

RUNX3 (RUNX3 1-187; dnRUNX3) containing the intact Runt domain but 

lacking the activation domain at the carboxyl-terminus functions in a dominant 

negative manner
187,276

, and has been shown to inhibit the functions of other 

RUNX proteins
187,276,290

.  

To determine whether dnRUNX3 is more potent in sensitizing A2780cp cells 

to carboplatin than RUNX3 knockdown, either the empty vector pcDNA3.1 or 

pcDNA-FLAG-RUNX3 (1-187) were stably overexpressed in A2780cp cells.  

The resultant cells were referred to as A2780cp/Vector and A2780cp/dnRUNX3 

cells, respectively. Overexpression of dnRUNX3 did not affect the expression of 

the endogenous RUNX1, RUNX3 and CBFβ in A2780cp cells (Figure 3.7).  

Neutral red uptake assay and clonogenic assay showed that 

A2780cp/dnRUNX3 cells were more sensitive to carboplatin than 

A2780cp/Vector cells (Figure 3.8). Overexpression of dnRUNX3 decreased IC50 

for carboplatin by 0.27-fold (from 110 μM to 79.8 μM) as determined by the 

neutral red uptake assay and by 0.52-fold (from 36.9 μM to 17.6 μM) as 

determined by the clonogenic assay in A2780cp cells.  

 To determine whether dnRUNX3 renders A2780cp cells more sensitive to 

carboplatin-induced apoptosis, A2780cp/Vector and A2780cp/dnRUNX3 cells 

were treated with 200 μM carboplatin for 48 or 72 h and carboplatin-induced 
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cleavage of PARP was assessed. As shown in Figure 3.9, carboplatin-induced 

cleavage of PARP was more pronounced in A2780cp/dnRUNX3 cells than that in 

A2780cp/vector cells, suggesting that dnRUNX3 potentiates carboplatin-induced 

apoptosis in A2780cp cells.  
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Figure 3.7 Confirmation of dnRUNX3 overexpression in A2780cp cells by 

Western blotting.  dnRUNX3 overexpression in A2780cp cells was confirmed 

using anti-FLAG antibody. In addition, RUNX1, RUNX3 and CBFβ expression is 

in A2780cp/vector and A2780cp/dnRUNX3 cells is shown. β-actin was used as 

the loading control. 

 

 

 

 

 

 

 

 

 



80 
 

 

Figure 3.8 dnRUNX3 increases the sensitivity of A2780cp cells to carboplatin. 

A2780s/Vector and A2780s/dnRUNX3 cells were treated with increasing 

concentrations of carboplatin. Cell viability was determined by the neutral red 

uptake assay (A) and the clonogenic assay (B) and expressed as a percentage 

relative to the respective untreated controls. Data are shown as mean ± SEM of 

five independent experiments for the neutral red assay and three independent 

experiments for the clonogenic assay. *Significantly different (P < 0.05).   
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Figure 3.9 dnRUNX3 potentiates carboplatin-induced apoptosis in A2780cp 

cells. (A) A2780cp/Vector and A2780cp/dnRUNX3 cells were left untreated or 

treated with 200 μM carboplatin for 48 or 72 h. Carboplatin-induced PARP 

cleavage was measured by Western blotting using antibodies against total PARP 

and against the cleaved PARP. β-actin was used as the loading control. (B) The 

Western blotting results of carboplatin-induced PARP cleavage were quantified 

using Odyssey imaging software. The density of the cleaved PARP bands was 

normalized to that of β-actin. The density of the bands in the carboplatin-treated 

vector cells at 48 h was designated as 1.  The relative level (fold change) of 

cleaved PARP was shown as mean ± SEM of three independent experiments. 

*Significantly different (P < 0.05). 
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3.1.6 dnRUNX3 decreases the expression of cellular inhibitor of apoptosis 

protein-2 (cIAP2) in A2780cp cells  

IAPs inhibit apoptosis by interfering with caspase activation
291

. Gene 

expression profiling of A2780s and A2780cp by a microarray analysis (Fu et al, 

unpublished data) showed that expression of the IAP family member cIAP2, but 

not that of  other family members (cIAP1, XIAP and survivin), was elevated in 

A2780cp cells compared to A2780s cells.  

qRT-PCR showed that cIAP2 mRNA level was 37.9 fold higher in A2780cp 

cells compared to A2780s cells (Figure 3.10A), which was confirmed at the 

protein level by Western blotting (Figure 3.10B). Overexpression of RUNX3 in 

A2780s cells increased the mRNA level of cIAP2 by 3.6 fold (Figure 3.11A). 

dnRUNX3 in A2780cp cells decreased the mRNA level of cIAP2 by 36% (Figure 

3.11B), which was confirmed by Western blotting (Figure 3.12A).  

Carboplatin treatment (200 μM carboplatin for 48 h) significantly reduced the 

expression of cIAP2, which was potentiated by dnRUNX3 (Figure 3.12B). 

Quantification showed that overexpression of dnRUNX3 and carboplatin 

treatment decreased cIAP2 protein by 43% and 29%, respectively. However, 

combination of dnRUNX3 and carboplatin treatment decreased cIAP2 protein by 

60% (Figure 3.12C). Taken together, these results suggest that RUNX3 regulates 

the expression of cIAP2 in A2780s and A2780cp cells, and potentiates 

carboplatin-induced decrease of cIAP2 in A2780cp cells.  Table 3.1 summarizes 

IC50 values obtained in different experiments. 
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Figure 3.10 Cellular inhibitor of apoptosis protein-2 (cIAP2) expression in 

A2780s and A2780cp cells. (A) mRNA level of cIAP2 in A2780s and A2780cp 

was determined by qRT-PCR.  Data are shown as mean ± SEM of three 

independent experiments. (B) Protein level of cIAP2 in A2780s and A2780cp was 

determined by Western blotting. β-actin was used as the loading control. 

*Significantly different (P < 0.05). 
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Figure 3.11 Changes in RUNX3 expression are associated with changes in 

cIAP2 expression in A2780s and A2780cp cells. (A) Expression of cIAP2 was 

determined by qRT-PCR in A2780s/Vector and A2780s/RUNX3 cells (A) and 

A2780cp/Vector and A2780cp/dnRUNX3 cells (B). The relative level (fold 

change) of cIAP2 was shown as mean ± SEM of three independent experiments. 

*Significantly different (P < 0.05). 
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Figure 3.12 dnRUNX3 overexpression is associated with decreased cIAP2 

expression in A2780cp cells and potentiates carboplatin-induced cytotoxicity. 

(A) Expression of cIAP2 in A2780cp/Vector and A2780cp/dnRUNX3 was 

determined by Western blotting. β-actin was used as the loading control. (B) 

A2780cp/Vector and A2780cp/dnRUNX3 cells were left untreated or treated with 

200 μM carboplatin for 48 h. cIAP2 protein level was measured by Western 

blotting. β-actin was used as the loading control. (C) The Western blotting results 

of cIAP2 were quantified using Odyssey imaging software. The density of cIAP2 

bands was normalized to that of β-actin. The density of the bands in the untreated 

A2780cp/Vector cells was designated as 1. The relative level (fold change) of 

cIAP2 was shown as mean ± SEM of three independent experiments. 

*Significantly different (P < 0.05). 
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Table 3.1 Summary of IC50 values measured for different experiments by two 

cytotoxicity assays 

Cell lines / 

Experiment 

Cell line Assay IC50 

(µM) 

Fold-change 

(relative to 

control) 

Paired EOC 

model 

A2780s Clonogenic 

assay 

3.7 - 

A2780cp 35.5 9.59 

RUNX3 

overexpression 

A2780s/vector Clonogenic 

assay 

3.6 - 

A2780s/RUNX3 7.9 2.1 

RUNX3 

knockdown 

A2780cp 

shRandom 
Neutral red 

assay 

 

123.4 - 

A2780cp 

shRUNX3-D 
92.8 0.75 

A2780cp 

shRUNX3-E 
103.9 0.84 

dnRUNX3 

overexpression 

A2780cp/vector Neutral red 

assay 

110.0 - 

A2780cp/dnRUNX3 79.8 0.73 

A2780cp/vector Clonogenic 

assay 

36.9 - 

A2780cp/dnRUNX3 17.6 0.48 
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3.2 The role of Wnt/β-catenin signaling in EOC resistance to carboplatin 

The analysis of microarray data of the paired A2780s and A2780cp cell lines 

by IPA software demonstrated that several components of the Wnt/β-catenin 

signaling pathway are differentially expressed between these two cell lines. These 

data, together with subsequent validation by qRT-PCR, were previously reported 

in our laboratory
274

, and  Figure 3.13 shows an updated output of IPA 

software
274

.  It was suggested that Wnt/β-catenin signaling is more active in 

A2780cp cells, and that further analysis is needed to confirm this higher activity 

and the potential of targeting this pathway to sensitize EOC cells to carboplatin
274

. 

Here, most of these future directions have been addressed.  

3.2.1 β-catenin localization is nuclear in A2780cp and membranous in A2780s 

cells 

Upon the activation of Wnt/β-catenin signaling, β-catenin is translocated to 

the nucleus to bind LEF/TCF family members and modulate the transcription of 

Wnt/β-catenin signaling target genes. To confirm the higher activity of Wnt/β-

catenin signaling in A2780cp cells, ICC was conducted using anti-β-catenin 

antibody. As shown in Figure 3.14, β-catenin was found to be localized mainly in 

the nucleus of A2780cp, while it was localized in the membranes of A2780s cells. 

This represents another line of evidence that  Wnt/β-catenin signaling is more 

active in A2780cp cells compared to A2780s cells, and might have a role in the 

development of platinum resistance. 
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Figure 3.13 IPA analysis of microarray data of A2780s-A2780cp paired cell 

line model suggests Wnt/β-catenin signaling is more active in A2780cp cells. 

Several components of Wnt/β-catenin signaling are differentially expressed 

between A2780s and A2780cp cells in a way that suggests Wnt/β-catenin 

signaling is upregulated in A2780cp cells and it might have a role in 

chemoresistance. Components upregulated are shaded in green, and those 

downregulated are shaded in orange.  
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Figure 3.14 β-catenin intracellular localization in A2780s and A2780cp cells. 

Intracellular localization of β-catenin was examined by immunocytochemistry 

using anti-β-catenin antibody. The nucleus was stained with DAPI. While β-

catenin is mainly localized in the membranes of A2780s cells, it is localized in the 

nucleus of A2780cp cells. Scale bar = 20 µM. 
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3.2.2 LEF/TCF-driven transcriptional activity of β-catenin in A2780cp is 

higher than that in A2780s cells 

To further confirm the higher activity of Wnt/β-catenin signaling in A2780cp 

cells, a LEF/TCF-driven luciferase reporter assay was conducted. In this assay, 

A2780cp and A2780s cells were transfected with plasmids having LEF/TCF 

binding motifs associated with a gene encoding luciferase enzyme together with 

appropriate controls. As shown in Figure 3.15, relative LEF/TCF-driven 

transcriptional activity of β-catenin in A2780cp cells is approximately 4-fold that 

of its counterpart in A2780s cells. This again suggests that Wnt/β-catenin 

signaling is more active in the resistant A2780cp cells and might have a role in 

the development of carboplatin resistance.  

3.2.3 Wnt extracellular modulators that negatively regulate Wnt/β-catenin 

signaling are downregulated in A2780cp cells 

Wnt/β-catenin signaling is regulated by three families of extracellular 

modulators, namely: DKKs, SFRPs and WIF-1. A number of these modulators 

were previously reported to be downregulated as assessed by microarray and 

qRT-PCR
274

. To further confirm these findings, DKK1 and SFRP1 were selected 

to test their expression by Western blotting. As shown in Figure 3.16, DKK1 and 

SFRP1 are downregulated in A2780cp cells compared to A2780s cells. 

Downregulation of DKK1 and SFRP1 might contribute to the higher Wnt/β-

catenin signaling in A2780cp cells and therefore may have a role in the 

development of platinum resistance.  
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Figure 3.15 β-catenin transcriptional activity in A2780s and A2780cp cells. β-

catenin transcriptional activity was determined by TOPFlash luciferase assay. 

A2780s and A2780cp cells were transiently co-transfected with a TOPFlash 

(wild-type LEF/TCF binding sites) or a FOPFlash (mutated LEF/TCF binding 

sites) firefly luciferase construct with a Renilla luciferase construct. TOPFlash 

activity was normalized against FOPFlash activity and relative activity of A2780s 

cells was set as 1. Data are mean ± SEM of three independent experiments. 

*Significantly different (P<0.05). 
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Figure 3.16 Expression of selected Wnt signaling components in A2780s and 

A2780cp cells. Protein level of DKK1 and SFRP1 in A2780s and A2780cp cells 

was examined by Western blotting. β-Actin was the loading control. 
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3.2.4 Chemical inhibition of Wnt/β-catenin signaling sensitizes A2780cp cells 

to carboplatin in a synergistic manner  

To test the potential of targeting Wnt/β-catenin signaling in sensitizing the 

resistant A2780cp cells to carboplatin, the Wnt signaling small-molecule inhibitor 

CCT036477 was used. CCT036477 acts by blocking β-catenin- and TCF-induced 

transcription, without altering β-catenin levels
206,292-294

. Based on dose-response 

studies, carboplatin was used at concentrations of 12.5, 25, 50, 100 and 200 µM 

and combined with CCT036477 at concentrations of 10, 15, 20 and 30 µM. 

Response to single and combined treatments was measured after 72 h using 

neutral red uptake assay. The interaction between carboplatin and CCT036477 

was then analyzed using the Chou-Talalay method (COMPUSYN™ software)
282

 

to find potential synergistic combinations. As shown in Figure 3.17 and Table 

3.2, synergistic combinations (CI <1) were observed at high doses of CCT036477 

(20 and 30 µM), and all the doses of carboplatin (12.5 through 200 µM).  
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Figure 3.17 Combination of carboplatin with the β-catenin inhibitor 

CCT036477 in A2780cp cells. Carboplatin (at concentrations from 12.5 through 

200 µM) was combined with CCT036477 (at concentrations from 10 through 30 

µM) and viability of A2780cp cells was assessed by 72-hour neutral red uptake 

assay. The chemical structure of CCT036477 is shown.  
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Table 3.2 Combination index (CI) values for different combinations of 

CCT036477 and carboplatin* 

Carbo 

(μM) 

CCT036477 (μM) 

0 10 15 20 30 

0 NA NA NA NA NA 

12.5 NA 1.72 1.56 0.8 0.22 

25 NA 1.87 1.51 0.75 0.35 

50 NA 1.86 1.56 0.74 0.66 

100 NA 1.64 1.21 0.69 0.16 

200 NA 0.94 0.75 0.5 0.25 
*CI < 1 denotes synergism (shaded in green); CI = 1 denotes additive interaction; CI > 1 denotes 

antagonism 
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4. Discussion 

Most EOCs respond well to the first-line chemotherapeutic agents. However, 

the majority of patients develop drug resistance over the course of treatment. A 

better understanding of the molecular mechanisms underlying the acquired drug 

resistance is therefore necessary to improve the management of this disease.  

The paired cisplatin-sensitive A2780s and cisplatin-resistant A2780cp cell 

lines have been widely used to study the acquired chemoresistance of EOC
295,296

. 

In this study, A2780cp cells were also found to be resistant to carboplatin as 

assessed by the clonogenic assay; the IC50 for A2780cp cells was approximately 

10-fold that of A2780s cells (Figure 3.3 and Table 3.1). In addition, cisplatin and 

carboplatin were reported to have a broad range of cross-resistance
98,124

. 

Accordingly, this chemoresistance model can be used to study carboplatin 

resistance. Genome expression profiling of this chemoresistance model by 

microarray followed by IPA analysis revealed thousands of differentially 

expressed genes between these two cell lines. From these differentially expressed 

genes, RUNX3 and the Wnt/β-catenin signaling pathway were selected for further 

analysis based on literature review. 

4.1 The role of RUNX family members in EOC resistance to carboplatin 

 Two studies have demonstrated that RUNX3 plays an oncogenic role in 

EOC
190,283

. However, the role for RUNX3 in chemoresistance of EOC has not 

been reported. In our laboratory, RUNX3 was found to be expressed in primary 

EOC cells isolated from ascites of EOC patients, but not in normal OSE cells
274

. 

In addition, RUNX3 was found to be localized in the nucleus in primary EOC 
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cells
274

, which is consistent with the localization reported by Lee et al. and 

supports the functional role of RUNX3 as a transcription factor
190

. In this thesis, 

functional validation of the role of RUNX3 in chemoresistance to carboplatin was 

pursued. Previous results in our laboratory and results from the current study 

(Figures 3.1 and 3.2) have shown that RUNX3 expression is markedly elevated 

in A2780cp cells compared to A2780s cells. These data are supported by the data 

from the GEO database for the cisplatin-resistant A2780cp70 cells and 

chemoresistant EOC tissues compared to their respective controls
284

.   

To validate the role of RUNX3 in chemoresistance, both gain- and loss-of-

function studies were subsequently conducted. Overexpression of RUNX3 

rendered A2780s cells more resistant to carboplatin (Figure 3.4). In addition, 

overexpression of dnRUNX3 and, to a lesser extent, knockdown of RUNX3 were 

able to partially sensitize A2780cp cells to carboplatin (Figures 3.5 and 3.8). 

Taken together, the expression and functional analysis suggest that RUNX3 

contributes to carboplatin resistance of EOC cells.  

Yano et al observed that dnRUNX3 is more potent in inhibiting TGFβ-

induced apoptosis of gastric cancer SNU16 cells than the antisense DNA against 

RUNX3 and suggested that dnRUNX3 may also inhibit the function of other 

RUNX proteins 
276

. dnRUNX3 is a truncated protein that contains the Runt DNA 

binding domain, but lacks domains located at the carboxyl terminus, including the 

activation domain. dnRUNX3 has been shown to inhibit the activity of RUNX 

proteins likely via competing for the RUNX DNA binding sites 
177,290,297

. The 
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three RUNX proteins (RUNX1-3) have been shown to have overlapping and 

distinct biological functions depending on cell context 
289

.  

Our results showed that RUNX1 is also expressed in A2780cp cells at a 

slightly higher level compared to A2780s cells (Figures 3.1 and 3.2). Thus, the 

less pronounced effect of RUNX3 knockdown on carboplatin resistance could be 

due to either the incomplete knockdown of RUNX3 or the compensation for 

decreased RUNX3 expression by RUNX1 or both. On the other hand, 

overexpression of dnRUNX3 likely inhibits both RUNX3 and RUNX1 functions, 

and thus renders A2780cp cells more sensitive to carboplatin. Therefore, a 

therapeutic strategy that inhibits the activity of all RUNX proteins could be a 

more effective approach to sensitize EOC cells to carboplatin.  

 IAPs that include cIAP1, cIAP2, XIAP and survivin inhibit apoptosis by 

interfering with caspase activation
291

. The microarray data have also shown that 

cIAP2 expression is elevated in A2780cp cells compared to A2780s cells
274

, 

which was confirmed by qRT-PCR and Western blotting (Figure 3.10). 

Upregulation of cIAP2 has been associated with cisplatin resistance in prostate 

cancer and lung cancer 
298,299

 and inhibition of IAPs including cIAP2 results in 

increased apoptosis in EOC cells
300

. Here, it has been shown that changes in 

RUNX3 levels are associated with changs in cIAP2 expression; overexpression of 

RUNX3 increases the expression of cIAP2 in A2780s cells and dnRUNX3 

decreases the expression of cIAP2 in A2780cp cells (Figure 3.11). Interestingly, 

we also found that carboplatin treatment decreases the expression of cIAP2, 

suggesting that downregulation of cIAP2 can be one mechanism for carboplatin to 
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induce apoptosis in A2780cp cells (Figure 3.12). In addition, our finding that 

dnRUNX3 decreases the expression of cIAP2 and potentiates carboplatin-induced 

downregulation of cIAP2 in A2780cp cells suggests that dnRUNX3-induced 

sensitization of A2780cp cells to carboplatin could be at least partially attributed 

to the downregulation of cIAP2. Further studies are required to determine the role 

of cIAP2 in carboplatin resistance in A2780cp cells.  

Cancer cells develop a variety of mechanisms to reduce platinum toxicity, 

including decreasing intracellular platinum accumulation and inhibiting platinum-

induced apoptosis
83,110,120

. In this study, we report a role for RUNX3 in inhibiting 

carboplatin-induced apoptosis in A2780cp cells. However, the underlying 

mechanisms await further investigation. Additionally, it is important to confirm 

the role of RUNX3 in carboplatin resistance in other EOC cell lines. The 

interaction between cancer cells and the tumor microenvironment plays an 

important role in chemoresistance; therefore, it is also important that the role of 

RUNX proteins in carboplatin resistance be tested in pre-clinical in vivo models. 

In this regard, it is our future interest to test whether dnRUNX3 can sensitize 

A2780cp xenografts to carboplatin in mouse models.   

Given the multifactorial nature of resistance to platinum-based 

compounds
83,110,120

, it becomes crucial to identify all potential mechanisms 

contributing to the resistance. Identifying the major mechanisms governing the 

resistant phenotype in a given patient will lead to the development of the best-

suited combination therapy that achieves an optimal therapeutic outcome. This 
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copes with the emerging trend of precision oncology that aims at effectively 

managing cancer heterogeneity and drug resistance
301

. 

4.2 The role of Wnt/β-catenin signaling in EOC resistance to carboplatin 

Another pathway found to be differentially activated between the two cell 

lines used in this study is the Wnt/β-catenin signaling pathway. This pathway has 

been reported to play a role in the development of chemo-, radio- and 

immunoresistance in several malignancies
302-307

. Although many studies 

investigated Wnt/β-catenin signaling in the context of pathogenesis and 

progression of EOC (Section 1.4.5), its role in EOC resistance to 

chemotherapeutics is reported only in few studies. In this context, endothelin A 

receptor/β-arrestin signaling was found to induce EMT and chemoresistance to 

cisplatin via activation of Wnt/β-catenin signaling pathway in EOC cells and in a 

mouse xenograft model
161,308

. In another study, the PPARγ ligand rosiglitazone 

reversed the resistance of A2780 cells to taxol by downregulating FZD1 and 

thereby inhibiting the Wnt/β-catenin pathway
309

. In addition, activation of Wnt/β-

catenin-ATP-binding cassette G2 signaling was reported to be one mechanism 

through which c-Kit induces chemoresistance and TIC of ovarian cancer cells
310

. 

Moreover, genetic silencing or chemical inhibition of DVL-1 was reported to 

sensitize paclitaxel-resistant A2780 cells through downregulation of AKT/GSK-

3β/β-catenin signaling
311

. 

In our laboratory, IPA analysis of microarray data (Figure 3.13) and 

subsequent validation by qRT-PCR  showed that several components of Wnt/β-

catenin signaling are differentially expressed between A2780s and A2780cp cells 
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in a pattern that suggests higher activity of this pathway in the cisplatin-resistant 

cell line
274

. In this thesis, further confirmation of that higher activity was pursued 

using different strategies.  

To gain further insight into Wnt/β-catenin signaling activity, β-catenin 

localization was assessed by ICC. The results showed that β-catenin is localized 

in the nuclei in A2780cp cells, whereas it was localized in the membranes in 

A2780s cells (Figure 3.14). This suggests an increased Wnt/β-catenin signaling 

activity in the chemoresistant cell line as compared to its sensitive counterpart. 

This finding is consistent with the previous studies by Lee  et al. and Wang et al. 

which reported a positive correlation between β-catenin nuclear localization and 

poor prognosis in EOC
312,313

. Conversely, Bodnar et al. reported an association 

between membranous immunohistochemical staining of β-catenin and resistance 

to platinum chemotherapy in advanced EOC
314

. In addition, Usongo et al. 

reported that Wnt3a- or LiCl-mediated activation of canonical Wnt signaling 

enhanced OSE proliferation by promoting G1 to S phase cell cycle progression 

independently of β-catenin/TCF-driven transcriptional changes
315

.  

To determine the involvement of β-catenin in this higher activity, we 

measured β-catenin transcriptional activity using a LEF/TCF-driven luciferase 

reporter assay. The transcriptional activity of β-catenin of A2780cp cells was 

found to be approximately 4-fold greater than that of A2780s cells (Figure 3.15). 

This confirms that nuclear localization of β-catenin in A2780cp cells is associated 

with increased transcriptional activity, and therefore β-catenin/TCF might mediate 

the higher activity of Wnt/β-catenin signaling. Taken together, these findings 
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suggest that Wnt/β-catenin signaling is more active in A2780cp cells and 

therefore might contribute to the development of resistance to platinum 

chemotherapeutics.  

To test the potential utility of targeting Wnt/β-catenin signaling in reversing 

platinum resistance, the β-catenin inhibitor CCT036477 was combined with 

carboplatin at different concentrations of both drugs and CI was assessed using 

the Chou-Talalay method
282

. Synergism was observed at relatively high doses of 

CCT036477 (20 and 30 μM). The extent of synergism, as assessed by CI value, 

was marked at all carboplatin combinations with 30 μM CCT036477 except the 

50 μM carboplatin concentration (Figure 3.17 and Table 3.2). Our results are 

supported by previous reports of EOC cells sensitization to chemotherapeutics by 

shRNA- and siRNA-mediated knockdown of β-catenin
316,317

. Since CCT036477 

acts by suppressing β-catenin- and TCF-induced transcription, it is tempting to try 

other inhibitors that target different signaling nodes of Wnt/β-catenin signaling
206

. 

In this respect, the small-molecule anthelmintic drug niclosamide was reported to 

inhibit ovarian tumorsphere formation and sensitize primary EOC cells to 

carboplatin via inhibition of the Wnt/β-catenin signaling pathway
318

. Niclosamide 

acts on targets upstream to β-catenin; more specifically it acts by downregulating 

DVL2 expression
319

 and degrading the coreceptors LRP 5/6
320

. Given the 

heterogeneity of EOC, it will be a more effective strategy to target more than one 

signaling pathway based on gene expression profiling and assessment of major 

determinants of EOC resistance on a personalized basis.  
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The Wnt extracellular modulators  sFRPs,  DKKs and WIF-1 negatively 

regulate  the activity of Wnt signaling
220

.  In the context of EOC, DKK2 was 

reported to be epigenetically silenced by hypermethylation in EOC and the extent 

of hypermethylation positively correlated with higher grades and stages of the 

disease. Moreover, the re-expression of DKK2 led to inhibiting the proliferative 

and invasive capacity of SKOV3 and ES-2 cell lines
269

. In another study, DKK1 

was found to be overexpressed in ovarian serous papillary adenocarcinoma, and 

DKK1 expression was positively correlated with the FIGO stage
271

. In addition, 

SFRP4 and SFRP5 were found to be positively associated with chemosensitivity 

and favorable prognosis in independent reports
160,273,321

. In our laboratory, 

microarray data and subsequent validation by qRT-PCR have shown that SFRP1, 

SFRP3, DKK1 and DKK3 were downregulated in the chemoresistant A2780cp 

cells as compared to A2780s cells
274

. DKK1 and SFRP1 were selected for further 

analysis of their role in the chemoresistance of EOC cells because they have not 

been studied previously in this context. DKK1 and SFRP1 downregulation in 

A2780cp cells was confirmed by Western blotting (Figure 3.16). Gain- and loss-

of-function experiments of DKK1 and SFRP1, alone and in combination, in 

A2780cp and A2780s cells, respectively are planned to assess their specific roles 

in chemoresistance. 

4.3 Potential crosstalk between RUNX transcription factors and Wnt/β-

catenin signaling 

RUNX transcription factors were reported to exert a number of their effects 

via interaction with Wnt/β-catenin signaling 
169,176,180

. In an attempt to explore the 
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potential crosstalk between RUNX3 and Wnt/β-catenin signaling in EOC cells, 

we compared the transcriptional activity of β-catenin between A2780s/Vector and 

A2780s/RUNX3 cells using LEF/TCF-driven luciferase reporter assay. β-catenin 

transcriptional activity was not significantly different between the two cell lines, 

which suggests that the chemoresistance induced by RUNX3 overexpression is 

independent of Wnt/β-catenin signaling (data not shown). As mentioned above, 

chemoresistant EOC is characterized by heterogeneity, and it is possible that 

different subpopulations of cells develop resistance via distinct molecular 

mechanisms. 

4.4 Conclusions and future directions 

In conclusion, EOC is a heterogeneous disease and carboplatin resistance of 

EOC is multifactorial. Here, two novel and independent molecular mechanisms 

are investigated, namely RUNX3 overexpression and activation of Wnt/β-catenin 

signaling. First, we confirmed that RUNX3 expression is higher in the 

carboplatin-resistant A2780cp cells compared to the carboplatin-sensitive A2780s 

cells. Carboplatin treatment induces RUNX3 expression in A2780s cells. 

Functionally, overexpression of RUNX3 renders A2780s cells more resistant to 

carboplatin and dnRUNX3 increases the sensitivity of A2780cp cells to 

carboplatin. Carboplatin sensitivity induced by dnRUNX3 overexpression was 

associated with cIAP2 downregulation, suggesting cIAP2 may have a role in 

carboplatin resistance. Because knockdown of RUNX3 alone is not sufficient to 

profoundly sensitize A2780cp cells to carboplatin, likely due to compensation by 

the expression of RUNX1, targeting all RUNX proteins could be an effective 
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strategy to tackle the chemoresistance. Second, Wnt/β-catenin signaling is more 

active in A2780cp cells compared to A2780s cells as assessed by localization and 

LEF/TCF-driven transcriptional activity of β-catenin. This higher activity is 

independent of RUNX3 overexpression and may be limited to subpopulations of 

EOC cells. Chemical inhibition of Wnt/β-catenin signaling by CCT036477 

sensitizes A2780cp cells to carboplatin in a synergistic manner especially at high 

concentrations. The synergistic potential of other Wnt/β-catenin inhibitors needs 

to be assessed in the future. The Wnt negative regulators SFRP1 and DKK1 are 

downregulated in A2780cp cells, and their specific roles in EOC chemoresistance 

to carboplatin need to be determined through appropriate functional and 

mechanistic studies.  Given the multifactorial nature of EOC resistance, the 

genetic profile of chemoresistant patients should be assessed to pinpoint the major 

determinant mechanisms of resistance and tailor the best-suited combination 

therapeutics on an individualized basis to achieve optimum therapeutic outcomes. 
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