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ABSTRACT

A study of infinitesimal, reversible deformations of porous media is presented. The
volume averaging technique is used to provide the framework of the macroscopic
descriptions. The primary advantage of such an approach is that there is a connection with
the well established continuum descriptions at the pore scale (e.g. elasticity, single
continuum thermodynamics).

oscopic relations for equilibrium thermodynamics of porous media are revarwed.
The imemal encrgy for a porous medium is discussed in the context of a system consisting
of two superposed continua. The consequences of a unique energy potential for such a

sysiem is studied from a thermodynamic viewpoint.

A description of quasi-static deformations of a porous material consisting of a solid
frame completely saturated by a single fluid is presented. The initial purpose was to utilize
parameter values obtained in quasi-static experiments as estimates for the associated
parameters in the wave propagation theory. The results obtained from the quasi-static
deﬁiﬂhnhmmhmmymnuinmmﬁmm&uﬂinmhmm

propagation are based on the work of de Ia Cruz & Spanos (1985, 1989b). The system of
equations, for the fully saturated case, used here differ in two respects. Firstly, the fluid
bulk viscosity is now included. Semdly. macroscopic shear modulus and heat
conductivities are introduced as phenomenological parameters. Numerical exampies
illustrase the changes in the phase velocity, attenuation and/or quality factor due 0 these

A dexcription of low frequeacy wave propagation through a porous medium saturased
by two fluids is presented. Firstly, an approximation is obtained by using the equations for
ﬁﬁﬂﬂmﬂmﬂiﬂhmhﬁmfﬂﬁnlw
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CHAPTER 1
INTRODUCTION

1.1 Introduction

The study of the deformation of mch i: a mniti-diieiplimry ;ubjeet ll is of
fundamental importanc
hydrogeology (cf. review by Kﬁmpel. 1991). By lh,e namlg lhmngh which mi:—k: are
formed and the subsequent deformation and erosion, most rocks contain pores or cracks of
v;ryin; texture. Texture is a qualitative classification based upon sizes, shapes,

angements and distribution of the pores and cracks. These pores and cracks are filled
wiﬂiﬂuidlmhniir water, oil, various gases and even molien rock. In the study of
these rocks (which we will call porous rocks or porous media) the primary additional
complexity is in the description of the inseraction between the various pore fluids and the
materials which form the porous skeleton (primarily aggregates of various mincrals).
Several processes occurring within porous rocks are studied in all fields but with regard 1o

different applications.

Quasi-static loading is of importance, for example, 1o glacial rebound studies, land
subeideace, variation in aqifer capecity mmm , and sirength of meteials.

*’::*imhmmm mmum
d“wnﬂﬂy““hmmhﬁﬂmm
sitwations (Kimpel, 1991). The mechanical behavior of porous media has many added
recogaised the apperent correlation of carthquakes with injection of fluids in decp wells
Gﬂyddﬂlﬁ.iﬂ&h 1978; Rajendran & Talwani, 1992) and the possible
’ ’,;ﬂpl::lpﬂ.&ﬂﬁﬂpupﬂ(ﬁ.l’ﬂﬂn&
Booker, 1972; Schwarzschild, 1993). Ia Terzaghi's (1923) formulation, the concept of




effective stress was proposed as
o =t + xprdu (1.1)

compression), 8;; is the kronecker delta and X is the effective stress coefficient. The
interest in effective stress is that it should enable one to predict the values of density,
seismic velocity, porosity, etc., for any combination of confining and pore pressure after
making only a series of measurements without pore pressure (Robin, 1973). There is a
stress ( Biot & Willis, 1957; Nur & Byerlee, 1971; Carroll, 1979; Carroll & Katsube,
1983; Zimmerman et al., 1986; Zimmerman, 1991; Berryman, 1992). However, there
appears 10 be no unique law of effective stress, and such a law may not be very useful
except in the case where X = 1 (Robin, 1973).

The deformation of porous media subjected to mechanical stresses involves the
deformation of solid and fluid components as well as the interaction between these
description. Furthermos Mdbmfhﬂlﬂhynﬂn :luﬂdmﬂm
dﬁmnm Some experiments may be conducted 0 that the pore fluid is
ilbwdmfhwﬁdyﬂdﬁemmnmﬂyaﬂd "drained” experiments.
They are used 10 desormine various types of drained com bilities, Young's moduli and
Poisson's ratios. [f the fluid is restricted 10 remain withia the sample then the experiments
are classified as "wndrained." The characteristic parameters obtsined from such
Enperimen mmmﬁmm(ﬁ—_l. 1951a; Biot & Willis,
1957; Geortama, 1957; Zisnmerman, 1991) and measurements of various bulk moduli, and
mammmmmmﬁmgmﬁnd
current imecrest (see Zimmerman, 1991, for a comprehensive exposition).

m(lﬂl)mﬁld‘hhmﬁdmmhm
media. Biot's (1941) work is independent of any micro-modsl and assumes infinies
reversible and isothermal deformations of am isowopic porous mediem with an
incompressible pore finid. The flow of the fiuid through the posous skeleton is assumed 0
obey Dascy's law. The model was later generalized 10 include an anisowopic solid and 2




k]

compressible fluid (Biot, 1935, 1956a). The stress-strain lellﬂumhipl are introduced in
analogy with the theory of elasticity combined with phenomenological arguments as 10 the
effects of the pore fluid. The initial relationships contain ﬂve dininct physical constants.
Under the assumption of a unique energy potential for the porous media, the number of
physical constants is reduced to four. Other works which can be reconciled with Biot
(1941, 1955) are Gassmann (1951a), Geertsma (1957), Morland (1972), Brown &
Korringa (1975), Rice & Cleary (1976), Thomsen (198S), and Zimmerman et al. (1986)

The relationship between stress and strain in solids containing cracks has been
modelled quinf-. difﬁienﬂy 'ﬁie npprﬁ:h hem is to ébuin a d::mpnm of the ﬂuid flow

eacription dm;huelfemnimnppmmmlm
nmunic ) 'l‘hemthadufmhin;(l(eller 1964) has also
huq:plhdnﬂia,; rmination of elastic properties of maserials with cracks (Hudson &
addressed by Eshelby (1957), Walsh (1965a, 1965b), O'Connell & Budiansky (1974;
1977). Bnﬂmky & Q‘Emmll (19'76). Clnmjae eml (1972); and Hudson (1980,
independently through a
f;ﬁ; mmhmnﬂummﬁm mﬁheinﬁmnly
ted via fluid mass balance ( Dvorkin & Nur, 1993).

surveyed by Hashin (1963). The maserial is usually referred 10 as a composiee material and
is defined as consisting of two or more materials that form regions large enough 10 be
regarded as continua which are usually firmly boaded at the imerface (Hashin, 1983),
Thess include natural massrials such as porous and cracked rocks, polycrysialline
aggregates (metals), wood, as well as artificial maserials. This research is ariented towands
ﬁ“ﬂ_ﬂﬁ&ﬂ-—ﬁﬂﬁmuﬂﬂy ﬁ-ﬂ
mmiﬂ-mM(m:ff ianﬂ)lﬂil.




Analytic studies in this area are primarily oriented towards the prediction of material
propertics. These studies usually lead to the determination of bounds of "effective” elastic
coefficients (Paul, 1961; Walpole, 1966; Thomsen, 1972; Berryman, 1979; Willis, 1981;
also sce Watt et al., 1976 and Hashin, 1983, for comprehensive surveys). The most
useful bounds available depend on the relative amounts and the elastic properties of the
components. The first such bounds were presented in the work of Voigt (1910) and Reuss
(1929). Hill (1952, 1963) has shown that the Voigt and Reuss expressions are upper and
lower bounds respectively for the elastic moduli of a composite. Hashin & Shtrickman
(1961a, 1961b, 1962a, 1962b, 1963) developed new variational principles that led to
considerably tighter bounds. Experimental investigation of the Hashin-Shtrickman bounds
was carried out by Watt & O'Connell (1980) on two phase aggregates. A narrow range of
moduli estimates results only if the shear modulus of both phases are fairly closely
maiched. For samples where the shear moduli of the component phases varied by a factor
of 3 the uncertainty in theoretical prediction can be 10 times larger than the experimental
uncertainty. More restrictive bounds are available (Milton & Phan-Thien, 1982) but
require additional information about the composite not readily available or imposition of
specific assumptions about the geometry of the components in the aggregate.

1.3 Wave Propagstion

Wave propagation must be undersiood if seismic data are 10 be utilized efficiently for
imaging the interior of the earth, monitoring reservoir conditions (Dunlop er ol., 1991a,
19910), subsurface site evaluation and possibly mapping contaminated groundwater
aquifers. The usual observables for wave propagation are the phase velocity,
reflection/transmission coefficients and attenuation, of rotational (S) and dilatational (P)
waves.

In gencral, the displacement, velocity or a swress component of a wave travelling in the
positive x-direction is givea by an expression of the form

8= g(x-ct) (1.2)

whese the argument (x-ct) is called the phase of the wave function. If the time is increased



)

by At and x is increased by cAt such that the value of g(x-ct) does not change then the
velocity ¢ is termed the phase velocity. In the work considered here we will assume g to be
a plane wave of the form

g = Adeikep - @) (1.3)

where d and p are unit vectors defining the direction of motion and propagation
respectively. If p-d = O then the motion is transverse (rotational) and if p-d = | the
motion is longitudinal (dilatational). From the above expression the phase velocity in the
direction of propagation, p, is

c.(::) ) (1.4)

When a travelling wave strikes the interface between two media of different material
propertics part of the disturbance is reflected and part is transmitsed across the interface.
The reflection and transmission coefficients describe the partitioning of energy at an
inserface between two different media. For elastic media, these coefficients are functions of
the impedance (phase velocity x density) of both media as well as the angle of incidence.
These relations are sometimes known as Zoeppritz' equations. Theoretical expressions for
reflection and transmission coefficients in viscoelastic maerials (Lockett, 1962; Borcherdt,
1973,1986) as well as porous meserials (Deresiewicz & Levy, 1967; Ssbatier et al., 1986;
de la Cruz & Spancs, 1989s; Wu ¢t al., 1990; Caviglia ef al., 1992; de la Cruz et al.,
1992; Sharma & Vashisth, 1993) have also been developed. These expressions are usually
very complicated and can only be reconciled with the expressions obtained from elasticity
in restrictive limiting cases.

This partitioning of energy, commonly referred 10 as amplitude versus offset in
exploration seismology, is used in hydrocarbon exploration and in reservoir
characterization 10 extract reservoir properties from scismic data (Ostrander, 1984; Shucy,
1983; Mazsoui, 1990). The association of "bright spots,” arcas of large amplitude
reflections, with gas and/or oil filled reservoir rocks (Rosa et ol., 1983; Hwang & Lellis;
1988) was a primary inceative for a large amount of research into reflection/ransmission
cosfficients (Domenico, 1974; Clark,1992). Others (Plons, 1980; Plons ¢t of., 1990;
Nagy 2 al., 1990; Nagy & Adier, 1992) have used the onergy panitioning insight 10



nmlmmmdil(which will lﬂmfmﬂmhmu the mndP-wlve), Thi:!nmf
wark can not be explained by the Zoeppritz relations.

Wave attenuation in porous rocks consists of intrinsic attenuation and extrinsic or
goometric aticnuation. Intrinsic attenuation is the loss of encrgy which is converted to heat
due 10 interactions between the porous rock and the wave . The extrinsic attenuation is due
to spherical spreading of the wave and elastic sc*tering. The elastic scattering phenomen
nhpmdal!mlheannminlhgfi,ij,,ipiﬂpnsde:afthemﬁmmitdh
medium, their geometrical shape, and the size of the scatterer relative to the wavelength of
the incident wave (Kaul, 1993),

Goldberg & Zinser (1989) obtain P-wave attenuation values from resonant bar

eriments that were much smaller than in-situ attenuation values obtained from sonic
w:v;fmnmlly:h. They argue that the in-situ values are larger due 10 scattering from fine
mm“uﬂmmbMMwmmm&
Toksdz et al. (1990) determine shear wave attenuation as a function of frequenc
h&hﬂam mmmmnmmdhm
and 10 km in the crust. Xu & King (1990) measure the phase velocity and attenuation of
ﬁ?—mﬂmsﬁﬁmhpﬂm rize mﬂmli' % nﬁﬁifif :ﬂﬁﬂﬁe

per ’hhﬁwﬂﬁdﬂhﬁhmmﬁth&—mnhm
essurcs. Kuster & Toksbz (1974a, 1974b) measure phase velocity and atienustion of
m“mum&ﬂmmmhmm
V-ﬁ--ﬂiﬁ-ﬂllﬂhnwﬂnhm&jf mm Thy

Theories of elastic scattiering (Waterman & Trwell, 1961; Kuster & Toksls, 1974a;
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of an equivalent material. Many of the theories also assume that the scattered fields do not
interact; this is commonly known as single scattering theory. Recent theoretical
developments (Hudson, 1990b) have shown that if interactions between scatierers is
accounted for, and the calculations are carried out such that effective continua holds, then
the attenuation due to scatiering should be zero. However, the crack models of Hudson
(1990b) are currently under question (Sayers, 1993).

An understanding of extrinsic attenuation (scattering) is required so that it can be
estimated in a given attenuation measurement (discussed by Klimentos, 1991a) so that
correct values of the intrinsic atienuation may be obtained. The intrinsic attenuation is of
great importance because it can give additional information about the petrophysical
properties of rocks. Including intrinsic attenuation into the above plane wave expression
(1.3), one has

g = Adeargi(kap - =) (1.4)

30 that the amplitude decays as it propagates in space. The coefficient @ is the atienuation
coefficient. An aliernate way 10 describe the atienuation is 10 use the quality factor Q. The
Quality factor is defined as (Aki & Richards, 1980)

Q=22E (1.9)
AE

where AE is the energy dissipated per wave cycie and E is the total elastic energy of a wave
cycle. Assuming the above plane wave, one can rewrite (1.5) as

ii [
th (1.6)

where O is the anenuation coefficient and c is the phase velocity at the frequency f.

There are several mechanisms through which mechanical encrgy may be converted 10
homt. ﬁihhﬂﬁﬁnhﬂ“tﬁh“ﬂhhﬁ
crack surfaces or graia contaces ( Mindlia & Dersslewicz, 1953; Knopoff & McDonald,



non-linear mechanism (Duffy & Mindlin, 1957), independent of frequency, and the low
ﬁ'aquency msuunhn Iaqu ha ciupad (Diml, 19'79) Supﬁdﬂj evidenelé for l'uch a

The attenuation for low strains, < !0"i such as those associated with seismic waves,
appesrs to be independent of strain amplitude (Gordon & Davies, 1968; Mason & Kuo,
1971; Winkler & Nur, 1982; Winkler, 1983; Stoll, 1979; Murphy, 1982; Bulau et al.,
1984; Murphy et al., 1986). Furthermore, the mechanism is strongly inhibited by
moderate confining pressures (Winkler et al., 1979). Therefore, this mechanism may be
of importance in large amplitude laboratory experiments, but it is probably not important
for seismic losses in rocks in-situ.

Second is the viscous fluid-flow mechanism. It is associated with the relative motion
ﬂﬁeﬁmﬂﬂdﬂmmﬁbﬂgm mm&:mmhmmm
can be grouped into two casegories:
hmmmh(wm 1951 lmmngmumut
Budiansky, 1974, 1977; Mavko & Nur, 1979; Toksdz et al., 1979; .lulmmad 1979
Rouleau, 1993) the flow is “local” -dm:plnenh,,;,_ ml
distinguished from the pores. These micrg > models cracked
material” and contain paramet ,,m:ﬂkmnﬂnwmﬁmm

developed by Biot (1956b, 1956c, 1962a, 1962b). This work is based on the previous
model of Gassmann (1951a,1951b) for the propagation of elastic waves through a packing
dm The stress-straia relations were previously obtained by Biot (1941a, 1955).
popic “effective” parameters in Biot's wave propagation theory are related 0
NEasUremont hmmdmgwm(lmmumxvntuum
dm&lﬁn(lyl). The Biot model is semi-phe aological in nature and is
characterizod by two coupled differential vecior equations. 'lhmﬁihlindialﬁs
existence of two P-waves and ons S-wave. The model of Biot has besa applied w0
acoustics of marine sediments in a series of works by Swil (1989). Warner (1990),
him-(lm)iﬂmum—n.ahﬁhnl—!ﬁmmnh_“
ments performed on samples filled with liquid helium. Faag er ol.

rulation 10 anslyse in-situ pore pressure meassrements in marine
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sediments. Studies of the applicability of the Biot theory to low porosity materials
(Ogushwitz, 1983a), suspensions (Ogushwitz, 1985b), marine sediments (Ogushwitz,
1985¢) and sintered glass beads saturated with water (Berryman, 1980) indicate marginal
success. None of these studies examine the consequences of the assumption of an energy
potential as put forth by Biot.

Others have started with the equations governing each phase at the pore scale and have
used various homogenization theories in order to obtain a macroscopic description.
Burridge & Keller (1981) utilize the two space method of homogenization to derive a set of
equations governing the mechanical behavior of a fluid filled porous elastic solid. When
the dimensionless viscosity py/pH? (where ju is the fluid viscosity, py is the fluid
density, o is the angular frequency and H is a macroscopic scale length ) appropriate to the
large acale is small, and the medium is macroscopically uniform, the results are of the form
of Biot's (1962a). From comparison of their equations with those of Biot's they obtain
expressions for Biot's coefficients (sec Burridge & Keller, 1981: equations 43a-43h).

de la Cruz & Spanos (1985, 1989b) and Pride er al. (1992) construct the foundations
for a macroscopic description through the use of volume averaging. Pride et al. (1992)
make assumptions roquiring the equations of motion 10 be similar 10 those of Biot (1956b)
relations are the same as Biot's (1956b) and the definitions of the effective elastic moduli
are the same as given by Biot & Willis (1957). In the development of de la Cruz & Spancs
(lﬂ!b)ﬁymmnﬂgpudqhamwbhmhem:h
outset. With the reminder that the porosity is kinematically independent of the average
of equations can be written in the form of Biot's (1956b) subject 10 a compatibility
M(ﬁuﬂdthm&MIM)Mﬂnhmeh
chapter 4. A corres ace between the parameters is established (see de Is Cruz &
hg'n.lﬂmmﬁ), The macroscopic material shoar modulus in this model is
simply the shear modulus of the solid component weighted by the volume fraction of solid.
This model predicts the existence of two P-waves and two S-waves. The Biot model oaly
poedicts one S-wave. The second S-wave is the counterpart 10 Biot's P-wave of the sscond
kind . R exists due 10 the solid-fluid interaction and is highly ancauated. However , if the
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second S-wave does exist , it can be an additional energy loss mechanism operating in
various wave phenomena. Other studies (Liu & Katsube, 1990; Katsube & Carroll,
1987a, 1987b; Crochet & Nagdhi, 1966) using the theory of mixtures (sce Bedford &
Drumbeller, 1983 for a survey of the theory of mixtures) also support the notion of a
second S-wave.

Bes orapcioglu (1989) obtain a description for wave propagation in a saturated
cmmxﬁbkmnﬂinmby;ﬂﬁn;ﬁﬁﬁem&eaﬁcmuﬂmnm
balance equations for the solid matrix and the pore fluid. They obtain as limiting cases:

(1987), Mei & Auriault (1989), Kowalski (1992), and Nigmatulin & Gubsidullin (1992).
All above quoted macroscopic descriptions, including Biot's (1956b,1956¢c), are
formulated 0 describe wave propagation in the regime where the wavelength of disturbance

Smmmdfnm@mﬁn&ﬂmlﬁ!)hwmmmmmme
: croscopic models for the viscous fluid flow mechanism. This work
m“mfm!—mﬂy The macroscopic mode! is that of Biot (1956b, 1956¢).
The microscopic model is based on the assumption that the solid skeleton of a rock deforms
in a uniaxial mode parallel 10 the direction of wave propagation. The fluid which moves
perpeadicular 10 the direction of propagation, which they call "squirt” flow, is the
phenomenca which necessitates the microscopic model. The principle alteration from the
Biot model is the effect of squirt flow on the fluid dynamic pressure. The oaly formal
differonce is in the cosfficionts of the fiuid pressure equation. The coefficiont is a constant
hh“m“khmﬂdmﬂhhﬂ“mﬁﬂﬂl

thermoslastic sstenuation. This attenuation is dus 10 the fact that
2 . “ﬂ:“m“Uh“
ﬁﬂndﬂnqﬂl_n“h“ Eh-kinminw




wavelength of the waves considered in this work the temperature gradients are usually very
mﬂﬁﬁmﬁh&amﬂﬁ“;ﬁghﬂuﬁdﬁmhmiwmﬂlym
small. Therefore, the attenuation due 10 such heat conduction is usually negligible. Given
the different physical properties of the pore fluid and matrix material, comprising a porous
medium, they will also have different temperatures. The transfer of heat between
constituents can be substantia mﬂﬂsﬂnﬂdim(ﬁdgrnfﬁmﬂm)mﬂ
the large surface area of contact between the constituents. This transfer of heat ma;
mmnﬁmuﬁaﬁdﬂmﬂuﬂnﬂwwmﬂ;nﬁﬁmu{mmﬁ thtypemt‘

averaging sechnique. Nmﬁﬂghﬂﬂq(l%hﬂ“ﬁu&hnﬁﬂmﬁﬂ
probably not be important except for some deep earth situations. Further numerical

Budiansky er al. (1983) derive an effective frequency dependen :
mhmlmm:ﬂjﬁﬂnmwﬂdhmmﬂchﬂmaﬂbm
Numerical results indicase that this mechanism could be of importance o regions such as
the lower mantle. Vaisays (1968) studied the propagation of acoustic waves through a
atienustion due 10 phase transformation can be sufficiently large 10 contribue t0 seismic

ﬁ“hhﬁﬂ:ﬁnﬁfﬁhyﬁﬂhﬂ(ﬁﬁ.lﬁ)
The work presonted here will be directed towards the modelling of the intriasic attenuation
ﬁnhﬂdﬂfwmbﬁm.ﬁhﬁqnmymmpﬂq“nhﬂ

ﬁ-nhwﬁnhﬁmﬂ mmhbﬂhlh‘yﬁlﬂyﬂ
posous medium, such as the Biot (1956, 1956¢) theory, ﬂmhh-ﬂﬂlﬂ
phases by replacing the originsl fluid parameters and some of the macro > parammsters
with “effective” parameters (Prids et al., 1992; Semeulders e ol., lﬂz!ms—ﬂd
1988; Barryman & Thigpen, 1983; Mochisuki, 1962; Dutia & Odé, 19790, 1979 Duma &
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general descriptions are obtained when the fluids are treated independently. The
macroscopic descriptions are usually formulated through the use of some type of
homogenization scheme (Hawkins & Bedford, 1992; Santos et al., 1990s,1990b; Garg &
Nayfeh, 1986; Thigpen & Berryman, 1985 ). The goveming syumafaqulﬂﬁm in these

1.4 Experimental Data

A considerable amount of experimental data exists concerning the phase velocity and
atienuation of both compressional (P) and shear (S) waves. Experimental sechniques
employed are: (1) resonant bar (details can be found in Clark er al., 1980), covering an
approximate frequency range of 0.5 - 25 kHz, (2) pulse transmission technique
(Kaarsberg, 1975; Sears & Bonaer, 1981;Winkler & Plona, 1982), with a frequency range
of about 0.1 - SO MHz, and (3) others : forced torsional (Kampfmann & Berckherer,
198S) and the shock tube technique (van der Grinten et al., 1985, 1987) which measures
strain and the pore pressure at one end of a sample due a step like pressure gradiont at the
other end. Experimental problems associasted with the first two of these methods are
discussed by Niblett & Wilks (1960), and Wyllie ¢t al. (1962) as well as in numerous
texts on acoustics.

Experiments are performed 10 study the depeandence of attenuation (Q) and phase
velocity on frequency (Bulau et al., 1984; Winkler, 1986, 1985, 1983; Wang & Nur,
1990; Shankiand er al., 1993), temperature (Clark ¢f al., 1981; Jones & Nuwr, 1983;
Kampfmenn & Berckhemer, 1985; Wang & Nur, 1988; Vo-Thanh, 1992), pressure
(Wiskler & Plona, 1982; Jackson e al., 1984; Christonsen & Wang, 1985; OHana,
198S5), and the properties of the constituent maserials (Costley & Bedford, 1988; Vo-
Thanh, 1990; Prasad & Meissner, 1992; Vernik & Nwr, 1992).

Observation of the second P-wave (slow wave), predicied by Biot (1956b, 1956¢c)
propagating through a sample of sintered giass beads (Plona ,1900), resia bonded glase
beads and other synthetic samples (Plons ef ol., 1990) have been noted at ulirasonic
frequencies. Johnson & Plons (1982) conducted the experiment in fused and looes
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(unconsolidated ) glass bead samples. They did not observe the second P-wave in the
loose glass beads sample. The search for the second P-wave has associated this mode to
fourth sound in a porous "superieak” (Johnson, 1980; Johnson & Plona, 1982). Fourth
sound is the acoustic mode of propagation through a superfluid entrained by a porous
solid. For an account of studies of fourth sound see Wamer (1990). Such studies of the
2nd P wave lends strong support for the Biot theory.

The experimental data are sometimes used to construct empirical relationships. The
time average relationship of Wyllie et al. (1956) has been used to obtain porosities from
acoustic velocities. Han et al. (1986) obtain relationships for P and S-wave velocity as
functions of porosity and clay content by applying a least square fit to ultrasonic data.
Klimentos (1991b) obtains a relation for the velocity of compressional waves with respect
10 porosity, permeability and clay content. Freund (1992) obtains velocity relationships as
functions of porosity, clay content and confining pressure.

The influence of multiple (usually two) fluids saturating a porous medium on the
character (velocity and attenuation) of sound waves have been investigated experimentally
for quite some time. Changes in phase velocity and attenuation of sound waves, due %0
changes in saturation, are obeerved 10 be greatest at very low saturations or near complese
saturation. Knight & Dvorkin (1992) studied the dependence of seismic and electrical
properties of sandstones at very low saturations. They comtend that although scismic and
electrical properties vary with saturation through the entire range, the dependence at low
saturation is distinctly differeat than at higher saturations. Furthermore, the phase
velocities, for a water-air system, are larger when the sample is prepared through a
drainage process as compared 0 values from a sample prepared by the imbibition process.
For example, Knight & Nolea-Hoeksema (1990) investigated the variation in elastic wave
velocities with saturation (water-air) during a continuous imbibltion/drainage experiment.
Measured P-wave velocities obtained during drainage are larger then those obtained during
imbibition for ssturstions of 90 percent (maximum attained saturation) down 10 abowt 40
pescent. Below 40 percent saturation the velocities are similar for both imbibition and
deainags. The S-wave velocitiss exhibit a similer dependence on saturation and method of
saturating as the P-wave velocities.

From the discussion above it is evident that rock and composite materials ase extremely
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complex systems and therefore some simplified models must be studied. These models
will depend on the approach of the study (analytic, empirical, or numerical) as well as the
process which one is interested in. In order for the resulting theory 10 be valid one must
ensure that the physical assumptions used o construct the theoretical model describe the
mmdmm:wmﬂm The poroelastic model considered here
will consist of macr cally pous and isotropic porous rock saturated by one
nuHIMnmmnuids deMﬂﬂﬁmmobyMIhwuﬂ
will be noted at that time. The theoretical model will have an explicit dependence on the
maummwmmwmm This model can therefore
be used %0 optimize the extraction of information from say, high resolution seismic, sonic
log, VSP, and laboratory core data.

1.5 Outline of Thesls

In chapter 1, gﬁvﬁvﬂﬁﬁﬂiﬁ:ﬂuﬁﬁgﬁiﬂ&:ﬂﬁﬁiﬁﬂ
porous media and wave propagation through porous media is presented. Various processes
mmpﬂﬂnMﬂhmmmnm

h*lnﬂywmmhqﬂﬂﬂn
are discumed. A brief review of single continus nodynsmi hmm
hynbnhpnld‘mmph“ynﬁenlﬂmﬁthnﬁﬂﬁ. The

rrosponding relations for the fluid component are then wrested. Volume sveraged
oquations arc used 0 provide the linkage 0 pore scale thermodynamics. Plaally, the
internal energy for the posous mediem is discussed in the context of a system conslsting of
two superposed continea. mmﬂl#_ﬂﬂhﬂ!
systom is studied from a thermodynamic viewpoint.

In chapter 3 a description of quesi-static deformations of & porous maserial consisting of
::ﬁhc—hﬂy“bliﬂﬂihm-ﬁﬁj; piioa of
seisnal straing. The descripeion is based on the quasi-static Nmis of the low-frequenc
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wave propagation work of de la Cruz & Spanos (1985; 1989b). Both drained and
undrained compressibilities (bulk moduli) are considered. A continuous one-parameier
family of compressibilities is introduced to permit greater flexibility in experimental set-
ups. The problem of macroscopic shearing is analyzed. Formulas for “Young's modulus”
and "Poisson's ratio” for porous media under drained and undrained conditions are
detived. The results are compared to the work of Zimmerman (1986; 1991) and others.
Bxpressions for the induced pore pressure coefficient and the coefficient of effective stress
are also obtained.

In chapeer 4 the system of equations which form the basis of the description of low
frequency wave propagation is presented. Again these equations are based on the work of
de la Cruz & Spanos (1983, 1989b), but are modified to include the fluid bulk viscosity
and 10 accommodate phenomenological shear modulus and heat conductivities. The
theoretical basis for the modification is given as well as numerical examples illustrating the
changes in the phase velocity, asenustion and/or quality factor due 10 the modifications. In
the work of de la Cruz & Spanos (1989b) porosity is an independent dynamic variable.
They, however, introduce a relationship between porosity and the macroscopic
displacement vectors involviag two parameters, 8rand 8,. Expressions for 8;and 8, in
terms of static compressibilities, determined in chapier 2, are used as initial estimates and
sumerical examples are presented showing the sonsitivity on such parameters.

In chapter 5 a description of low frequeacy wave propagation through a porous
medium saturated by two fluids is presented. First, an approximation is obtained by using
the equations presented in chapter 4 and assuming that the two fluids form a composite or
eoffective fluid. Suitable expressions for the effective paramesers of the composite fluid are
derived and the underlying assumptions clearly stased. Brief discussions about the effects
on various macroscopic parameters are also presented. This analysis is based completely
on descriptions obmined from volume averaging. Second, the governing equations are
derived for the general case of wave propagation through 8 porous mediem saturated by
two fluids. Volums averaging is used 10 construct the basic equations and the approach
pasaliels that of chapter 4 (ses figuse 4.1).

Chapter 6 contains a brief review of the results obtained in this dissertation as well as
concluding remarks.



CHAPTER 2
THERMODYNAMICS OF DEFORMATION

2.1 Introduction
When viewed on a suitably large scale, awnﬂmhmdﬂmmmﬂ

1956¢; Keller, 1977, smmmnmnm&xeus l?ll dghﬁhuz!.
Spancs, 1989b). The most widely applied work is that of Biot. In his initial work on
poroelasticity, Biot (1941), "inuodmddnmnmhnofmuximnnpmﬂu
energy of the 20il” in order 10 obtain a relation between phenon DATN s and
wm&cmdw“b’m Thllﬂllhvd'mh
work (Biot, 1956b, 1936c, 1962a, 1962b) commences with use of the energy potential for
the porous medium. Therefore, it can be said that the Biot work is based on a

"macroscopic thermodynamics” (de Is Cruz ¢1 a/., 1993).

As mentioned in the introduction, other wave propagation theories (Burridge & Keller,
1981; de la Cruz & Spancs, 1989b) have been constructed in which the equations are of
similar form 10 those of Biot (1956b). From comparison of their final equations with those
of Biot they obtain exprossions for Biot's coefficients subject 10 certain coaditions. Of
course, comparing formulas and/or definitions in two theories and equating correspondiag
symbols does not necessarily prove that they are identical. Given the foundations of the
MWthMnMn;:fj[iiﬂmﬁ “macroscopic
thermodynamics”. The question then arises of how 10 express thermodynamic ideas using
mmumwhumm Formulatioas of
multiphase thermodynamics have appoared in the litsrature (Gurtin, 1968; Gurtia &
Swrvihers, 1990; Garcia-Colia & Uribs, 1991) and were developed primarily on the rigors
1974; Marle, 1982; Dullion, 1992) ase derived with application 10 heat wansfer or
wuhiphass flow in undeformabls povous media.
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Thclimﬂddlchpﬁilmﬂmnmlymhﬁd(deh&uzﬂgl 1993)
! , ' ynamics of porous media. The approach
mvﬂmnmﬂquﬂm:mpwﬁhhlhhpmmmkmmm
ﬂmnﬂ[ﬂﬂﬂhﬁﬁﬂmuﬂm A brief review of single continuum
s is presented, followed by a development of macroscopic thermodynamic
uhﬁnmfnnhgnluphue mmmn;mmmrxmnuummm
treated. Finally, the macro namics is used to construct an internal energy
fnlmnﬂlminmamxldniymmmdﬂn;ﬂm“mpudmmu

Implications of Biot's use of an energy potential is then discussed.

The principle objective in reformulating the problem at a larger scale is 10 filter out the
over abundance of physical detsil at the pore scale in such a manner that no specific
refereace 10 pore scale motions remains. Following the work of de la Cruz & Spanos

(1983, 1989b) an averaging procedure, called volume averaging, pionecred by Hubbard
(1956), Whitaker (1966, 1969) and Slattery (1969) is utilized.

the volums V is ascribed 10 a point x which uniquely defines V. For example, de la Cruz
& Spancs (1963) assume V 10 be spheres and cach V is specified uniquely by the centre of
the sphere x. Also by choosing spheres the problem of orientation is avoided. If we
assume Gy (x) 10 be a physical quantity of the fluid and that G¢ (x) equals zero everywhere
outside the fluid, then the volume average of Gg over any region V is defined as

©Gd=1 Lﬁr(ﬂd\' @b
whese (Og is a fuaction of the center of the volume eloments. If one assumes the conter of

the volums eloment is withia the solid and plots (Og as a function of the volume V one
might obiain a curve similer 10 figure 2.1 (Whitaker, 1969).
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)

.0 ve
Size of Volume V

Figure 2.1 Dependence of average on averaging volume.

Since the center of the volume V was assumed 10 be in the solid crmponent then (Gy is
zer0 at the origin. As one starts increasing the volume size, portions of the fluid are
contained within the volume, and (Gg) increases from zero through fluctuations due %0
random distribution of the fluid at the pore scale. For values of V larger than say,V®, the
pore scale variations are smoothed owt. Given that the dependence of the function (Gg on
volume clement size is always continuous the critical volume, V*, is the minimum volume
clement siac whese macroscopic varistions completely dominste microscopic changss rather
then a condition of continuity.

As one moves the volume clement 10 different locations in the porous medium, (Gg
becomes a continuous function of x. However, for values of V larger than V* the fuaction
(Gy) is independent of V. A precise value for V® cannot be desermined, but one can assume
that it must be orders of magnitude larger than the pore scale. However, if there are
structures mwuch larger than the volume cloment,V®, thea appropriste macroscopic
boundary conditions (ds la Cruz & Spancs, 1909) must bs ueed.

A related quantity, the phasic average, Uy is defined as

G -%( lq«-uv 22)
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where V¢ is the volume of fluid in the volume V. This is related to (Gy) as follows

Gr -,1‘(00 2.3

where 1} is the volume fraction of that phase.

In the development of the average equations one will be dealing with gradients and time
derivatives of such quantities. Slattery (1969) and Whitaker (1969) developed the

following relationships between the averages of derivatives and the derivatives of averages:

[a;c;dv-a‘ Ode+I Gen;dA 24)
v v s

L&.GMV- fo,dv-] GevadA . 2.5)
v [

Here, Agg refers 10 the area of the fluid-solid imerfaces, n is the unit normal on those
interfaces directed towards the solid, and v is the velocity of the fluid-solid imerface
clement.

If one is 10 describe some process in the porous medium, say the propagation of a
wave, then a lower bound on the scale at which deformations are described must be
imposed. As the frequency of disturbance is increased the amount of pore scale detail in
the macroscopic description must also be increased. Howeves, for a “homogencous”
medium, provided one deals with waveleagths much larger than the pore scale, the
equations are scale indepondent. Hence, application of this method is subject 10 the
condition on the scale of deformation

d<<L <) <«<D (2.6)
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where d is a pore scale dimension, L is the volume element scale dimension, A is the
wavelength of disturbance, and D is s characteristic macroscale.

2.3 Review of single continuum thermodynamics

The first law of thermodynamics states that an infinitesimal change in the internal
energy. U, per unit volume of the undeformed body (most common in descriptions of
solids), is oequal 0 the difference between the heat dQ acquired by the unit volume
considered and the work df done by the internal stresses (Landau & Liftshitz, 1973a); i.e.,

du=dQ-d 2.7

If it is assumed that the process is thermodynemically reversibie, then the second law states
that the amount of heat is

dQ=Tds 2.8)

where T is the temperature and S is the entropy. The work done is the product of the force
and distance moved, the force being measured in the direction of the line along which it is
acting. The force F is related 10 the imemal stresses t; by

"'-?: Q9

and thevefore a small amount of work dose 82 by the internal stresses per unit volums can
be wrinen as

u-ga-. @.10

where Su; is 2 small changs in the displacement vecior. If the medium is of infiniss extent
and is not deformed ot infinity then integrating over the entire body (performing an

intogeation by pasts) yields
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SR = -t Suy 2.11)

which is the work done 8% per unit volume in terms of the strain tensor, uj,. The strain

“&'i’(g—:’;*% . 2.12)

Substituting equation (2.8) and (2.12) into equation (2.7) we obtain a fundamental
thermodynamic relation for deformed bodies (Landau & Lifishitz, 1975a) as

dU = Tds + tuduy (2.13)
Two other thermodynamic quantities (path independent) are, the Gibbs' free energy G for
changes at constant volume. These are defined as follows (Tabor, 1991):

F=U-Ts 2.14)

GeU-taup-TS . (2.19)
These can be written in the form of equation (2.13) as

d¥ = -siT+tpduy (2.16)

The componeats of the stress tensor may be obtained by differentiating the internal energy
U (squation 2.13) with respect 10 components of the sirain tensor for constant enropy §
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Ty = —") (2.18)

wel2Z] . (2.19)
Ouix fr

ents of the strain tensor can be obtained by differentiating Gibbs' free
3 of the stress tensor, at constant

Similarly, the componer
g(qunﬁnnﬂ?)withmpenmﬂle,:: pNnen

U = - (ii)' . (2.20)

EX ,,ij,,'ihﬂzﬁsﬂﬁpfﬁhhﬂyiﬂmﬂﬁm“ﬁ
sidering an elastic body undergoing small constant
”j,hﬁnﬁsjyk:;: ,,,:;ymnmnamgum;.mm

%= 72 + oty - otduf+ LKy @.21)

ldﬁsefmu‘mh-ﬂﬂdﬂm Hﬂemmlmm

nperature during deformation then additional serms must be added 10 the free encrgy ©
mﬁﬂdﬂmaﬂhﬁeﬁphm The free energy is
thea writien as

ﬁsxm.'i'.n,-m.(.g%%r*%uqﬁ .22)

where G, is the thermal expansion cosfficient of the body. Using equation (2.19) and the
froe onergy (2.22) the swess tensor is
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= KT, - Tolbu + 2fuly - Jutdul Kot . (223)

From equation (2.16) the entropy S can be calculate from the free energy 7 as

.97
Se-5 2.24)

s0 that, using equation (2.22), the entropy for an elastic solid, S,, is
S = S(T,) + Kyaufy (2.29)

An alternate thermodynamic deformation, known as an adiabatic deformation, is
performed such that no exchange of heat between the body and its surroundings takes
place. Equation (2.8) requires that the entropy S be constant for such deformations. The
stress tensor for an adiabatic deformation may be written as

th = KiulBu + 2udul - 1uidu) (2.26)
where the adisbatic bulk modulus K2, is related 10 the isothermal bulk modulus K, by

T,

_Kl.;.kl'.-q-ﬁ @27
in which C} is the specific heat per unit volume at constant pressure. Many processes by
which elastic materials deform lie somewhere between the isothermal and adiabatic cases
discussed above. However, the process dependent correction to the bulk modulus
parameter, second term on right hand side of equation (2.27), is small for most elastic
materials and therefore the error associated with the deviation in bulk modulus is usually
small.

For fluids, the first law of thermodynamics (2.7) is commonly used as the basis for
coastructing an energy balance equation (Kundu, 1990). For a Newtonian fluid

undergoing small deformations the energy balance equation is
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;(%pw *Cf)* v {Vr%@w?*gr)] -p Vov+ ¥ (9T)+ V. (8- v) (228
where ¢; is the intemal energy per unit volume and the viscosity stress tensor, T, is

(2.29)

done by the pressure, the second term represents the heat acquired due to heat conduction
(it is assumed that the heat flux obeys Fourier's law), and the third term is the heating due
to viscous dissipstion.

The second law of thermodynamics (2.8) for a viscous fluid can be written as
%-ﬂ- v -(v;sp):%v '(:;V'l'f)*_-ll_;v {trv) (2.30)

where S is the fluid entropy per unit volume. The entropy production is due 10 heat
hand side).

ﬂdﬁ.'ﬁiﬁhﬂ‘ﬂ mnhhwhhﬂmm:

—hﬂ,ﬁiﬁﬁad (lﬁs)pn:ﬂhhmt_i. byig
o is of the form

il FO800
macroscopic solid stress ¢, through a small deformat




BR, = - | (e 8l - @ & Sokd’x .31

where a is a dimensionless constant, ¢ is the volume fmcﬁanoholid and U}, is the
average solid strain which is related to the average solid displacen

Uh = %@1& +u) 2.32)

Hence, when a deformation takes place, the volume fraction of solid (which related 0
porosity) as well as the (macroscopic) displacement &, are changed. The validity of
uation (2.31) will be shown through the use of volume averaged relations shortly.

Am“lnquﬂm "’(2.31)lﬁllldimnl" mes m copic relation for deformed porous

dU,= & ddy + T, dS, (2.33)

where U, and S, denote the macroscopic internal energy and the entropy of the solid
mmﬁﬁghhﬁxﬂmﬁﬂmmhﬂh:mmvﬂmﬂm

W) - a0- )8 (2.34)

,Fj = Uj - T. S‘ (2-35’

dF“ﬁdii;ﬁ- (2.36)



= m . 2.37)
duly

By hypothesis, when T, - T, =0, ¢ - ¢, =0, and W, = 0, there is no stress

ML 0. 2.38)
aak o= Ta a =0

The most general scalar function F, satisfying equation (2.38) that can be constructed out
of T, - T, and the symmetric «, is, 10 second order, of the form

FuTo ) = 72T + (T - T W+ (e - L uih? + @P 239

where the function 75(T,) is independent of ¥y, and where a; are constants. Using
equations (2.39) and (2.37) the stress tensor obtained through the thermodynamics is

Aoe (T Toba +20:@h -1 8T + 2008u [T 30 000)] . 240

The macroscopic solid equation of motion obtained on the basis of volume averaging is of
the form (de la Cruz & Spanos, 1989b)

%(6.5?) = d{e) + B} Q.41)

where B} is the body force representing the action of the fluid component (essontially the
Dercian resistance). For quasi-static processes, B} = 0 as discussed in chapeer 3. (¢h) is
the macroscopic stress tonsor (de Ia Cruz & Spancs, 1989b; Hickey ¢r al., 1993; and
derived in chapter 4) which is obtained from volume averaging (10 first onder) as

W) = ~0-KM.-T&*M°MI+%[‘5+’.T"] 24)

Assuming that &, is the same as (¥},) and compariag the two using equations (2.40) and
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(2.42) de Ia Cruz er al. (1993) obtain
"ok, (2.43)
=i (2.44)

4= %—o,ic. (2.4%)

a=--L . (2.46)

Here, K, is the isothermal bulk modulus of the solid maserial and a, is the coefficient of
thermal expansion of the solid material, and ) is a macroscopic shear modulus of the

The assumed macroscopic solid free energy F,, equation (2.39), is simply
Fu Toil) = 02T - 0Ka(Ty - Todh + pae(@e - L 8uil? + L 0K [RF 247)

=i+ %lu% (2.48)

From equation (2.35) the macroscopic solid entropy S, is calculased as

Sy=- @ (2.49)
T,




S, = aj;f‘) + hxnﬁ{ih + T] (2.50)

Olg

to first order.
In order to check the validity of the work relation postulated by equation (2.31) the
above macroscopic solid entropy equation (2.50), to first order, is obtained by de la Cruz
et al. (1993) by volume averaging the governing pore scale relation as follows. The

S, = [SAT,) + K,auh )1 - o) . (2.51)

per unit volume of the undeformed material, 10 first order, as given by equation (2.25)
above. mmmmmmmrsummmmndﬂm

the deformation.

Applying the averaging theorems of section 2.2, de la Cruz er al. (1993) obtain

-3

- fs

- 0 SITN1-T) + 0K ﬂ{ﬁ ﬁ%) 2.92)

The entropy of the body, 53, is the same function of sempersture at the macroscale and pore
scale. For macroscale entropy the value of the averaged solid teenperature, T, is wsed

insead of the pore scale solid temperature, T,. ﬁﬁﬁiﬂvﬁﬁﬂm
porows medium, de la Cruz o1 al. (1993) mukiply equation (2.52) by

L e @.59)



osl l+i?.)-¢.£('l‘.)+0.l<-o'(ﬁ%.+%) (2.54)

which shows that entropy,S,, given by equation (2.50) is indeed the macroscopic solid
entropy, and

":T(T" = S(T) (2.59)

is the free energy (per unit volume) of the solid maierial at semperature T, and zero
(microscopic) deformation, uy = 0. This is at zero microscopic deformation due 10 the
fact that the free energy, 73, of the initial stase has the same dependence on iemperature at
both scales. Furthermore, the entropy result supports the postulated relation (2.31) for the
macroscopic work, R,, and the macroscopic free energy, F;, relation (2.39).

By an argument similar 10 that which led 10 equation (2.47) for the macroscopic f
energy, de la Cruz e al. (1993) postulate for the macroscopic internal energy, u,, an
expression of the form (10 second order)

Us( Spily) = 0t8(S,) + 5i(S, - SD &) + (&}, - %&3;)2 +0fRP . @236

To desormine the constants §;, 52, and by, de la Cruz e1 al. (1993) compuic the siress from
macroscopic intemmal energy, U,( $,.8)), i.c.

= 9 Ud 8u.8y) (2.57)
9d,

30 that using equation (2.56) gives

ﬁ-h(&-%*%%@*zﬁh[ﬂn*.‘:‘] . (2.58)

Substisnting equasion (2.90), in the form



s,-5t= 00t TeT0 4 ok, 3, 2.9

into equation (2.58), where the heat capacity C} enters through the usual thermodynamic
relation

f 42 75(T,) > &l
Cs -T,—21-22 2.6(

gives
&= hoe GO T8, 26, - L 8u) + Bl26re 0K, [ﬁiﬁ%] . @61)

Comparison with the stress tensor, equation (2.42), obtained from volume averaging yields
the values for & :

b o= KaTo 2.62)

b =hu . 2.63)

b 'M" %‘] : 2.64)

Using the ratio of heat capacities (Zemansky, 1957),

%‘Ex'.‘ (2.65)

and equation (2.27) we have



k]|

by =ikl (2.66)
The internal energy (2.56) is found 10 be
Us( $,,2,) = o1£(S)) I%& (8, - 8 % + @ - L Bu)? + LaKUP 2.6

The above discussion is a detailed description of how de la Cruz er al. (1993) have
obtained the governing macroscopic equations describing the contribution of the solid
component in the equilibrium thermodynamics of porous media. The relations for the
contribution of the fluid component are now reviewed. de la Cruz et al. (1993) take the

volume average of equation (2.28)

-‘l’a] {%*—V {vf(zﬁpg) - VT + kv]} dv=0 (2.68)

and using oquation (2.3) and (2.4), obtain

ane *V{nvlq-&ﬁl I prv-mdA - J—LV(:FI‘;):WHV-D (2.69)

R

l.l

The aim is 10 obmin relations for equilibrium thermodynamics. Therefore the processes
considered are assumed 10 be suffici ,,’f'hﬂlﬁiﬂd Pr appear as factors of the
velocity in equation (2.69) they may be replaced by ; and Ps. Also the "kv" terms are
nogligibie for such processes. The term ‘avolving temperature is expanded as the sum of 8
hoat flux term and a heat sowrce term (the solid component acting as a sowrce). Kt is the hemt
ﬁﬁﬂhﬁiﬁh@gﬁd (lﬂi}ﬁnﬁhw m Uﬁgﬁvﬂ-—:
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[atne) &+5 2 a_n] &
[ x Pt an("p')ma &

(2.70)

*Vr[v('llf) H—EV(nm +prvﬂ]*ﬂ‘v'rvﬁ-0
By virtue of the macroscopic equations of motion (de la Cruz & Spanos, 1989b; Hickey et
al., 1993) the last ierm above contributes solely to kinetic energy and viscous dissipation,
nnﬂisdinlmld. 'l‘huldeliﬁu:eld (1993) interpret equation (2.70) to mean the
following them aamic relation,

d(ni;)-‘%l (B0 - prdn +8Qy . @m

The quantity 8Qy can be related 10 the entropy as follows. Let S¢ be the (microscopic)
Volume averaging, de la Cruz ¢t al. (1993) obtain

é(ﬁ)*v(ﬁ _%[“‘{,_‘:T"dv L[% =0 (2.72)
") v

C ]

semperature distribution is sufficiently smooth and its gradient sufficiently
mﬂhﬁ:hﬂl{l‘géﬂh@lﬂduu‘fp Thus with the help of the equation of
contingity, equation (2.72) is recast as

[a(;s,) %a% o [V(ﬂ-ﬁ) &V () ] %Q + viscous erm = 0 . (2.73)

ds la Cruz ¢t @l. (1993) inserpret (2.73) %0 meen

s -%ﬁ»tn . 2.74)
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Combining equations (2.71) and (2.74) yields

dlni)=e-Tes+p

Pt

& NPy - prdn + Trdnsp . 2.79)

energy and entropy (of the fluid component) per unit volume of the porous medium. For
N =1and V-0, de Ja Cruz er al. (1993) recover the familiar thermodynamic relation.

The mass of fluid in a unit volume of deformed porous medium is npy, whichhl
variable. To refer to0 the amount of fluid contained in a unit volume of the “unpert
medium, we have to multiply ne; by n.pfMmpy. [}eﬁmngmnﬁnespﬁuniwﬂmdﬂnid
in the unperturbed configuration

Ur s (nopfMmpone 2.76)

St % (opiMPM.S¢ @.7)

we fiad from (2.74) the relation
du,!np,("""_’" ), 1ds, @.78)
here). For cortaia purposes (Biot,1956b, 1956¢ ; de la Cruz & Spanos, 1989b) it is useful

U= -nprd iy + TrdS, 2.79)



C Vir*“';:‘" (2.80)

Clearly, equation (2.79) is the fluid counterpart of equation (2.33).

2.5 Internal Energy for Porous Media

In this section a porous medium is regarded as a system consisting of two superposed
continua. The intemnal energy density of such a porous medium and how it is relased 10 the
stresses and strains will be discussed. The motivation for such a discussion is that Biot
(1941) introduced the assumption of the existence of a potential energy for a porous
medium in his description of seismic wave propagation. From this assumption, Biot
reduced his number of independent macroscopic parameters, for a homogeneous isotropic
system, from five 1o four (Biot & Willis, 1957). de la Cruz & Spanos (1985) compare
their equations obtained through volume averaging 10 those of Biot (1956b) and deduce a
required compatibility condition which would in essence further reduce the aumber of
independent macroscopic paramesters. Therefore, it is of interest 10 see if the compatibility
relation obtained by de la Cruz & Spancs (1989b) has any connection with the assumption
of the unique energy potential.

With respect 10 Biot's (1956b) paper on low frequency wave propagation in fluid
saturated porous media, a potential energy W(V -84,if},) per unit volume of aggregate is
postulated 10 exist such that

ow
- -._ c.l
Pt WV (2.81)
and
oW
h=s——m~7~V. (2.82)
oy

Accordiag 10 Biot (1956b) the consequence of the existence of such a poseatial is the



s
equality of two parameters, namely
Q=Q (2.83)
where these have been introduced in the stress-strain relations

-Npr = QV -4, +RV i (2.84)

G = AT}S + 2Nu}, + Qui i . (2.85)

In the thermodynamic formulation de la Cruz ef al. (1993) discussed above, the fluid
internal energy, Uy, per unit volume of porous media in the unperturbed configuration is
given by equation (2.79)

dUr= -nprd o, + TrdS; (2.86)

-

rALZ T "':“ 2.87)

and the solid internal energy, U,, per unit volume of porous media in the unperturbed
configuration is given by equation (2.33),

dU,= & dd +T,dS, (2.88)
where
R -i’w%&% 2.89)

and ¢ = 1 - ). The stressss are givea by



- odUp
Npr = —— (2.90)
.1
and
-— 2.91)
LT
Hence, we can write
- a(Ur + Us)
Npr = (2.92)
IR
and
U+ U,)
h=—— . (2.93)
CL

In this sense the function Ur + U, may be regarded as an "energy potential” for the porous
medium, from which the fluid and solid stresses can be obtained by differentiation with
respect to the "strains” &, and &,. It is scen that equations (2.81) and (2.92) and
equations (2.82) and (2.93) are close in form, if we make the following correlations

W-Ur+ U, , (2.94)
GV e L
Ve—-Viae+ ™ 2.99)
and
N -N)
ﬁﬁ'%‘tﬁ . (2.96)

In Biot's (1956b) formulation, the varisble porosity.n, does not appear explicitly. One
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might attempt 10 introduce at the outset some relation, e.g. (de la Cruz & Spanos, 1989b)
n-no =8V, -8V, (2.97)

and use it 10 climinate N everywhere, so that Uy + U, becomes a function of V -iig and u},.
Carrying this out with the help of equations (2.86) and (2.88) we would find that

a(Ur+U,)
V. -y

— =y &[pﬁl )] (2.98)

aUﬁ-U;) - g. -8 [p.- + l_'L (2.99)

W, 3w

For Biot's (1956b) relations (2.81) and (2.82) 10 be valid, assuming we identify
W = UrtU,, and Biot's (1956b) average solid and fluid displacements as &, and &
respectively, it would then be necessary that 8, = 8; = 0. Given this constraint it appears
Mhmﬂnwpﬂﬂhh“dﬂh(l?ﬁ)ﬂmhm
changs in porosity occur during deformation. Continuing along the lines of the formaul

dﬂm(l?ﬂ)hﬂgym&ﬁmnﬂmmﬂﬁmurkunmh

%‘ﬁ' *"[3‘*3%0 av-.('s“ “[ 301»]"‘) @100

MMHﬁd’hwpﬂ. m&ﬂﬁmhm
from messurable compe

2000 mnhmm-bhﬂﬂm“ﬁmp‘-ﬂg
in the context of Biot (1956b).




Thg sum Uri-U. refers to the fluid and solid materials in a unit volume of the
u guration. After a deformation has taken place, each component will have
gaamidmmﬁm;mm That is, the original unit volume will have "bifurcated”

into (pantly overlapping) regions mapped out by the two velocity fields V¢ and ¥,. Only the
mﬂhmﬁihluﬂtvﬂuﬂﬁﬁiﬂmmmbmyamﬂmmm

W = (4p/9op)U; + (NPAMaPPIUr (2.101)

m.g_d(”.)*iﬁfﬁﬁﬁd(“p,) -
o0 (2.102)

+ & di, +T4S,- p,dn +Tedinso

hh“mpﬂﬂepmmmmﬁum:ﬂlmm“yby
imp sting with respect t0 the strains. This is due to fact that the chaage in

18y, represented by equation (2.102), is not solely due 10 the work done on the
mummmmmam both fluid and solid, ino the

2.6 Cenclusions

Wyaum«aum).uﬁq-ﬁu-ﬂmm

hermodynamic relations on the same
ﬁuh]nlmdi’.. mﬁmﬁemmmmhﬁmnm.
functional relation NP1, #.N) = 0 (de la Cruz er &).,1993). & scoms therefore reasonable
0 regand a relation such as (de la Cruz & Spancs, 1909)

% =8,V.7,-8V.¥ (2.103)



for mi'uhle vnlues afthe parameters &r and B. as merely ielecﬁng particular pmeene: o

For Biot's (1936b) relations (2.81) and (2.82) 10 be valid, assuming we identify
W = UrtU,, and Biot's (1956b) average solid and fluid displacements as &, and i
respectively, it would then be necessary that 8, = 8= 0. This is not the compatibility
condition which was deduced by de la Cruz & Spanos (1983) through comparison of final
equations for wave propagation. The other alternative is to associate Biot's V i and ),

with V - If-t-““:'” and U}, -LSH derived here. This would imply that Biot's
ic displacements are not simply average displacements of the components.

Allllm;h Biot's (l?&éh) final equations are of the correct form, his use of the energy
potential is questionabie.




CHAPTER 3
QUASI-STATIC DEFORMATIONS OF POROUS MEDIA

3.1 Introduction

Ziff,’,,ﬂmsmkillndkdbyexminmyﬁaﬂl In the
-uofcompodne materials a considerable amount of work has been published on bounds
of “effective” elastic mfﬂclenu (Walpole 1966; see also Hashin (1983) for a
comprehensive survey). Measurements of various bulk moduli, and derivations of
relationships between them have been reported for decades and are still of current interest
(nememnn(lﬂl)far;MSlvEExmm) Ti:mu]uﬁwnﬂmemﬁf
experiments arc also used to determine macrc i ameters required in wave
propagation theories (Biot & Willis, 1957; Yew&h;i 1976. 1973 Hickey et al., 1993)
However, there is concern of whether or not statically determined values for paramenes
may be applied 10 dynamic situstions (Detourney, 1993; Kimpel, 1991).

NMHmnﬂn-ﬁlﬁnm“h],,,,,—' '
various parameters. These parameters must reflect the deformation
wu“uumimmmm qucmk.ﬁ
components may change in relative proportions during a deformation. Such imeractic
mmm:&*mhﬁhm-ﬂm“um

parameters are required for an adequate description.

A description of quasi-static deformations of a porous material consisting of a solid
Mwmwnﬂhﬂﬂhm mm&mnh
(1983, 1989b). hhtﬁﬁ.ﬁﬂdﬂd’h—ﬂqhhﬂmﬂ
veloehyphysap’“mh ﬁi:’,i’ﬁnnymh“:i!ﬂ
-“Mmﬂﬂm. ang&mnﬂ-h
the shage of the pores or cracks, however the material must bohave in a8 macsoscopically
deﬁﬁr Purthermore, the porous medium is assumed 10 have &
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Various quasi-static experiments wiuch are used 10 quantify the additional degrees of
freedom associated with a fluid-filled porous medium are discussed. This leads 10 the
definition of various bulk moduli, "Young's “ moduli, "Poisson's” ratio, and shear
modulus which are analogous to elasticity. Both drained and undrained compressibilities
(bulk moduli) are defined and calculated. Relationships between these various
compressibilities are derived and compared 10 those cited in the literature (Zimmerman,
1986, 1991). The problem of macroscopic shearing is analyzed. Formulas for “Young's
are derived 10 provide an aliemase method of determining the shear modulus of a porous
sample. Other descriptive parameters such as induced pore pressure coefficient and

The description is based on the quasi-static limit of the low-frequency wave
propagation work of de la Cruz & Spanos (198S; l“)hn-gnﬂﬂedhmlﬂeﬁ:
fleid bulk viscosity and %0 accommodate phenomenological shear modulus and heat
conductivities. The theoretical basis for the modifica ”;!:;imhﬂnpzat The system
of equations is developed on & model which comtains no explicit assumption on pore
mmﬁ“ﬁﬂblﬂdumﬁmﬁmiﬂmﬂ

ornations, & well connected pore structure is further assumed,

In the followiag discussion, the parameters and variables are phasic averages,
in the form

52 .
%[m? o + (1-n0) p2 of] = 9 1, Ga.n



T = -No(Pr- Po By + Nabdr (Vj#v], - % v By + 8 e, + ;_")au

TR C P S -
+( ln‘m‘m - 'H“h* v % u, 6.,) (3.2)
+iane (4 + o - 3 By ) + (100K, - Ke(1-1o) ) By

An additional equation

¥ I\B'

=$ V-v, QIV'V[ ) (33)

is introduced (de la Cruz & Spanos, 1989b) to complete the system of equations. It is
assumed that there are parameters, 8gand §,. characteristic of the medium such that
equation (3.3) is valid for low-frequency waves and for quasi-static compressions of the
type discussed in this paper. The validity of such an equation and its possible process
dependence has been discussed in chapeer 2.

All compressions are 10 be isothermal and performed on a sample which initially
sustains a uniform pressure:

Pr=pPs=pe 3.4)
and for quasi-static processes set

=0 . 3.9)

Mm%‘.ﬂv-nbym&immﬂh
continuity oquations we find that the mass deasities respond 10 pressure changes accordl
)

n-ﬂ-%(n—m (3.6)



H
Pt -
Po- P8 = (Pa-PR) : a7

-

- pepe)
ffide

ﬂﬂ--x{ ngﬁ

(Ps-Po) (3.8)
: ]

The total or confining pressure of the porous medium is defined as
p=npr+(I-N)p, 3.9)
g0 that
P-Po=Ne(Pr-Po)+(I-NXPs-Ppo) - (3.10)

0 A3.11)

g

depondent mmmnum S0mpe ,,,,f,hmmh
:I’mﬂmﬂeﬂﬁ;m(ﬂiﬁizl) The notation used in the following
description is the same as Zimmermen ¢f al. (1986) and Zimmerman (1991). To clarify
the notation, say ia the bulk modulus K, the first subscript, x, represents the type of
vﬁ“ (ﬂﬂﬂh&“ﬁp‘pﬂ:dﬂ)ﬂhmﬂm

‘The drained bulk compression is characterised by the requirement that under a change
of the confining pressure, the mass of the solid is conserved, and the fluid pressure prep,
is maintnined. Sincs the equation of continuity can bs writes as
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;:-[(l-n) P ]+ V {(1-N) py v, =0 (3.12)

then in the drained bulk compression, the volume increment must be defined by ascribing
the displacement u, (and not for example (1-1,) u,) t0 each point on the closed surface.

Denoting the bulk modulus for this process by Ky (or compressibility by Cyc) one has
c .x;',-.J-(A!). (3.13)
(" Ve (ap o

Here, AV=V-V, represents the change in volume of the ovenall sample, V, is the initial
volume of the sample, the pressure, py, of the fluid in the pores is kept constant during the
deformation, and Ap represents the change in confining pressure (see figure 3.1).

in term of mass density

ekla—1 9. X
Cae = Ky “_M“ap[(l . Prepo . (3.14)

Using equations (3.7), (3.8) and (3.10), Cy can be readily expressed in terms of 8y and 8,
as
1-

-
| )
(1-n)K, 1.8 & |

N (1-n)

(3.19)

Cae

As well as the drained bulk modulus, Ky, discussed above, Zimmerman (1991) also
relationships among all four drained compressibilities. Hence, it is useful 10 obtain
expressions for such compressibilities in our framework and 0 verify the relationships.



I"hli!-unui
ﬁ Porous Sample

One compressibility commonly referred 10 in the literature as “psewdo-bulk
compressibility” hoﬁﬂbmﬂthﬁphh&vﬂmvﬁhncﬁgh

pore-pressure. The bulk modulus denosed here by Ky, , com ty by Cug. is defined

Con K i %LE i 3.16)

MAthﬁnph_dhuﬁl*V.hhﬂiﬂwﬂ—:d
the sample, p m the pressure which is kept constant during the
mass donsity




°
= ".———'L—— - - . N
Cep th (1-10) PE 3 [(1-n)p) . P=po 3.17)

Using equations (3.7), (3.8), (3.10) and (3.14), we find from equation (3.17) that

& &

Chp= Cac- G, + — K1 Ka (3.18)
ot 8.8
(1 "‘" % 1M

Comparing equation (3.18) to Zimmerman's (1991) relation 2.1 gives

Cop= Cuc- G, (3.19)

it is evident that they only become identical if

&- K
: X (3.20)

This constraint has been noted previously by de la Cruz & Spanos (1989b) as a
compatibility condition between their theory and that of Biot (1956b). Comparison 10 Biot
(1956b) will be discussed further in chapser 4. Finally, it will be shown that this constraint
is equivalent 10 the frequently used hydrodynamic limit condition, equation (3.77), below.

Another compressibility which is commonly referred 10 in the litcrature as the
“formation compaction” represents the change in pore volume , AV, of the sample due 10 a

change ia confining pressure. The magnitude of the change in pore volume, AV, is
usually obtained by measuring the volume of fluid exiting the sample during the
deformation. Hemce, the bulk modulus, K, . or compressibility, Cy,, associated with this
peocess is defimed by

C'-K:-.#(%‘Lu G.21)

whess V] is the initial volums of fiuid contained in the pores, Ap repressats the changs in
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confining pressure, and pr represents the pressure of the fluid in the pores and is kept

AVi=nV-n,V,

=N V-Vo) + Vdln-n.) (3.22)

Substituting equation (3.22) into equation (3.21) we obtain

(V-Vo) , (n-ﬂo)] ; 123
=l » PrPo . (3.23)
- [ Velp  Modp

and using definition (3.13) for Cyc and equations (3.8) and (3.10) one obtains

&
Cpc = Cac + e Y (3.24)
-t

Wikh the use of equation (3.15) and some algebra one obxains
NCpc= C. - G, (3.29)

Bquation (3.29) is Zimmerman's (1991) relation 2.7 obtained through the use of the

The final drained compressibility 0 be discussed is commonly referved 10 as the
“effective pore compression”. It is obtained by measuring the change in pore volume due
10 a change in pore-pressure. The associated bulk modulus, Kgp, or compressibility, Cp,.
is defined s

CpuKie v (%L (3.26)

where V7] is the initial volums of fluid contained in the pores, p represents the confining



pressure of the fluid in the pores, and AV is the change in pore volume. Substituting
equation (3.22) ineo equation (3.26), so that

(V-Vo) , (ﬂﬂ-)] _ -
Cop= P=po (3.27)
[ VoApr Mo Apr

and using definition (3.16) for Cpy and equations (3.8), (3.10) and (3.15), the relation

c”-%ic. (3.28)

is obtained. Equation (3.28) may be regarded as the third Zimmerman (1991) relation. If
's (1991) relation 2.8:

NeCpp = Coc - (1406) G, . (3.29)

Mﬂﬁhﬂ,m, rmen (!ﬂl) mgmﬂ l?).(!-?é);ﬂﬂﬂ). of
theee three only equation (3.19) requires the validity of condition (3.20).

Experimental measure 8 of the various drained bulk modull have been reported in
the Lisorature. Fgl(l”?)dﬁiﬂ, pasurements for the drained bulk comyp » Coor
and the pesudo bulk pesibilis %ﬁ“““lﬁﬂm
coafining pressures (p - n,) The ratio of Cyy and Cy; were obtained from the

surement nﬂaﬁnhﬂvﬁh“nﬂnﬂl’)pﬁﬁi
ve sebject int (3.20). The ratios of Cyy and Cy; measured were
M“nﬁmmmummmmh
the measured valus was larger than the calculats

Van dor Knapp (1999) experimentaily verified relationship (3.25) between G, and
Qﬁhlhﬁm-ﬁlﬂm The data appesr 10 support this reliiilinhip
mhhm-l:_nﬁ-n. Zimmorman ¢t ol. (1906) weoted relstion (3.29) by
pmparing his measwements of Cy, 0 mossurements of C,,, obtained by King (1969)
“ﬂﬂﬁﬁﬁ.hllﬁgﬁﬂ—, He conciuded that relation (3.19) was
valid, parsiculerly st effective pressuses 0ot 100 closs 10 3090
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Measurements on various sands (Hughes & Cooke, 1953) shows that Cy varies
exponentially with confining stress. C,, was measured by Fatt (1958) on four different
types of sandstones and concluded that this compressibility is a strong function of pressure
lﬁnem(wwhn’apﬂymliﬁﬂi). }hmmmmnm

samples. Yw&!oﬁ(lﬁl)mmtﬂmmm&uq.cg ofln

artificial rock, "Alundum”, and three natural sandstones, namely Berea, Pecos and Ohio.
The resulting pressure strain curves of Berea and Ohio sandstone showed considerable
lon-lluuity in the low m m;hl SImlhr m-li-ur hhlvhr e:lm ln

M&MIHZ).

Let's now consider a uniaxial compression, or a "Young's modulus” measurement
Mamh“ﬂmmmnqmmmdwﬂL
before the stress is applied and let the two sides normal 10 the x axis be subject 10 constant
uniform compressive stress p, ie. Ty = -p and Ty = 0, with drained condition (pg = po)
overywhers. The other sides are 10 be eatirely stress free: ty = t,; = 0 (see figure 3.2).
The stress tensor, equation (3.2), for the porous medium subject 10 a drained boundary
condition and for a quasi-static isothermal process is

Ty (o + -3 8) + (1)K - K nn) 18y . (3.30)

Using equation (3.3) for the change in porosity and then integrating with respect 10 time,

we fiad for the stress wasor uader drained coaditions 10 be
.8 T‘nﬁ
_ N (g €d 063

Ty = o (A + ;-3 8 + (10K, &
1-
e

o, in view of equation (3.15) for K,,.

e 4+ -3 8y + Keidy 0.52)



S0

The stress tensor is of the same form as the stress tensor for an elastic solid. The shear
modulus is represented by py and the bulk modulus is represented by Kpe. The
displacement u(x,y) satisfying the above boundary conditions, as well as the condition for
equilibrium, equation (3.11), is

Kuc+ln
P i 1|_,,,, , 3.33)

K-
w = (_“..&)p Y. (3.34)

o -(Ejz“—u)pz . (3.39)

Defining a Young's modulus for a drained porous medium, Ey,, in the conventional
manner, i.c. as the ratio of longitudinal stress 10 the longitudinal strain, where the strain is
the fractional change in leagth of the sample, gives

(ALAL), (3.36)

More information can be obtained from the uniaxial compression if one measures the
change in length of the sample perpondiculer 10 the direction of applied stress, i.e. uj or uj.
Defining a Poisson's ratio v, for a drained porous medium as the ratio of laseral
extmnsion (10 the corresponding longitudinel compression, gives us

(ALAL) 3.3



L]

fluid the stress tensor is of the same form as for elastic theory and therefore similar
relationships between "Young's" modulus, “Poisson's” ratio, drained bulk modulus and
shear modulus exist. The expression for "Poisson's"” ratio (3.37) has been used by Yew &
Jogi (1978) to obtain a value for the shear modulus, using a measurement of the drained
bulk modulus and assuming a value for “Poisson's” ratio.

HﬂﬁﬂuﬁhﬂlﬂnﬂﬂmmMImmmﬂ

Lﬁﬂﬁhﬂﬁh!ﬂﬁ“ﬁlmm“
fluid is aliowed 10 flow out of the sample, py = p,. The change in

ma sample is measured in the direction of applied stress (x-direction) and

in one direction perpendicules 10 the direction of applied stress (y-direction).

) compression, as defined in this paper, hmnﬁ
squiremen ﬂh“ﬂhmmmwiﬁﬁun;f”; h
u-wi. In the lab this is accomplished by enciosing the sampls in an impermesbls |
formable jacket. mmﬂhﬂ_mhﬂmhﬂyw
ﬂjhmmhﬁhhdﬁ

;E-sv ov)=0 3.38)



52

p=npr+(l-n)p, (3.39)

veanep? ve+ (1-n)ps v)lp . (3.40)

Cas. On¢ has

CunKiln 515 (%L (3.41)
where p is the medium pressure defined by equation (3.10), and
qs e, (3.42)

Let us establish that the undrained process is characterized by g=coastant. The
conservation of the 10l enclosed mass can be expressed as

[ner + (1-n)py) V = [nep? + (1-na)pf] Vo . (3.43)

In torms of q and p,, equation (3.43) becomes

(1-n)p, (14Q) V = (1-n)p8 (14G0) V, . (3.44)
Iif q=q,, then equation (3.44) gives
(AN V=(I-n)pf Vs . (3.49)

Combining squation (3.45) with equation (3.43) one also obtains
e V=nptV, (3.46)
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Using equations (3.6), (3.7) and (3.8) the change in density may be expressed as

](P? POV (Pr-Ppo)

3.47

*{( l-ﬂo)%' s ](P? P’)}(P- Po)

(3.48)

Ll(l-"n-(ll-ﬂa.c'[ ! gl_‘l{" (Pr-po)

mmmomp mmhmwnmdﬁm
P-Pe=8(p-po)+b(q- Qo) (3.9

from which ons identifies

Ku=2
a o N (3.50)
= MKy + (1- NIK, + (B¢ -8, X K, -K¢) .
NeKy + (1- NIK, dus 10 the combined effect of the solid shear modulus and pors sruceuss
on this macsoscopic deformation.

Unsing equations (3.15), (3.18), (3.23) and (3.28) the undrained compressibil



be written in serms of the four drained compressibilities as

C"""“Tc%%i - (3.51)

This expression was given in Zimmerman (1991). Cg of equation (3.51) may be
expressed in terms of two drained compressibilities, using relations (3.25) and (3.28)
without any constraint. Zimmerman (1991) derives an expression obtained earlier by
Gassmann (1951) by using his relations among the four drained compressibilities to
represent the undrained bulk modulus in terms of only one drained bulk modulus, i.e.

Mo CudCr - G) + CGdCos - G4) o
= G )+ (Cne - G (3.52)

This expression can oaly bs obtained in this analysis if one assumes relation (3.20). The
(1975), Rice & Cleary (1976), and Green & Wang (1986).

Let us now consider a uniaxial compression, or a “Young's modulus” measurement on
a sample in an undrained configuration. This type of compression can ot be performed in
the lab exactly as described here. This is becauss the sample’s initial coafiguration is
subject 10 a uniform pressurs configuration (equation 3.4) and therefore, as the stress is
applied 10 the eads of the sample, a possible increase in pore pressure would push the

We again consider a rectanguler block of porous medium with a square croes section of
widih L befoss the stress is applied and let the two sides normal 10 the x axis be subject w0
constant uniform compressive stress p, i.e. Sy = -p and Ty = 0. The other sides are 10 bs
ontisely stress-froe: Tty = T, = 0. The stress tonsor, equation (3.2), for the porous medium
subject 10 an undrained boundary condition and for & quasi-static isothermal process is

vy = elpr- po iy + e (W, + o, - § Bt (353
SRR, K-l o

undsained matesial 0 be
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ty = NeKnf By, + (1- 'I-K-llh&u + (KK, )In- 'hﬂu (.54)
W ICVRL TR “| 18y o

NP NPf o
(T, (1 n.;)ﬂ (3.59)

which can be written 10 first order as

ndprpf) + pitn-ne) _ (1-Maps-pt) - pAIN-N) (3.56)
neo! (1-nolp?

Usiag the volume averaged continuity equation for the fluid (4.4) and solid (4.3) the above

Vu,=Vau. 1.57)

(3.54) may be written in serms of the solid displacement vector only as

%y = [neke + (1-nK, + (K K831, 3, 358

o (o + -2 By

however, the torm in the first square bracket is simply the undrained bulk modwlus (3.50).
Therefose, the stross tonsor has the same form as the swrain tensor for an elastic solid, i.c.

ty = Kari By + poa (4 + 4, -3 By (.99

whess the shear modulus of ths posous sampls is repressated by jia and the bulk modulus

is sepresented by K. & will be shown in the next section thet the volume of a porous
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ﬁehﬁm:hmpin!ﬂnphdhmm

&-_L
iy (3.60)

Poisson's ratio v, for an undrained porous medium is the ratio of laseral extension to the

Vg E- —Mﬂj
ALL) 361

!c_lm

Z(Ka-'-lﬂu)

the same form as for clastic theory and therefore sinilar relationships bstween "Young's”
modulus, ° Pdnul mummﬁ_mm mnm
hhﬂhnhﬁﬂﬂhﬁ‘imhmm“ _

ﬂmhmmm—nmﬁmmnuﬁm
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3.5 Shear Deformatios
Consider a rectangular block of a porous medium subject 10 stresses at the boundary.
Let the cross section be a square of width L before the stress is applied and let the four
sides be subject 10 constant uniform shearing stress t, i.e. Tyy=Ty,=t and Ty,=Ty,=0 with
sides are to be entirely stress free: t,;=0 (see figure 3.3). The displacement w*(x,y)
satisfying the above boundary conditions, as well as the condition for static equilibrium,
equation (3.11), and vanishing identically when t = 0, is easily verified to be
W = by, 3.62)
uj = bx, (3.63)
i Efé,ﬁ . fi,,,
> 201 o) .64
wl/2122)=bls2 , (3.65)
wW(l/212)=bls2 , (3.66)
and similarly for the other comers. Thus, one diagonal is lengthened from Y2 L. 10
Li=¥Z L(1+b) (3.67)
while the other diagonal is shonened
Ly=/Z L{1-b) . (3.68)
The volums of the block is therefore unchanged (0 first order) and therefore it makes no
diffesence if this deformation is induced with the sample in a drained or undrained



[ -ﬁ'—: . (3.69)

Applying a pure shear on a sample as described above is difficult 10 perform in the
laboratory due 10 the fact that it is difficult not 10 change the volume. Therefore, it may be
best 10 obtrin the macroscopic shear modulus from the drained uniaxial deformation
described in section 3.3 .

{ pus medium with a square cross-section of
ring stress Ty = Tyx = T The volume of the block



The drained and the undrained moduli lie within a continuous family of
compressibilities which differ by the degree 10 which the fluid is free to flow out. We
define the family of compre s, C(O), by

&+ gjq 0 conm (3.70)

os by (3.7

e —1 4 11ma 1
o () a mm“l(l nes) 3.72)

Substituting equations (3.7), (3.8) and (3.9) im0 equation (3.72), the relation for ((O) is
fouad 0 be

oy (& o.&
00)= — 1 { K:" n{(‘; + K':']a} (3.73)

. S
(1-ne)1- 7L - A

0)=C-Cyp® 3.74)

ﬁ“ﬁlpﬂhmﬂm“mm “almost drained”
apesssions (1.e. ©=0) for 2 sumber of values of @. Then the slops of the O®) vs. @,
-ﬁh&pﬂﬁﬁ.&ﬂdmmnmgﬂ




8¢ by

KK -
bRl K+ R a7

o] Ked(1-M)Ks-Kee) |
8 = N reKoglKs - K + Keaa] ° 3.76)

To this point the family of compressibilities is quite general and two independent
parameters are required 10 fully describe this family. However, if one assumes that the
"hydrostatic limit", commonly referred 10 as the unjacketed or matrix bulk modulus, i.e.

O=], is

Key = K(1) = K, 3.1

then equation (3.73) readily yields equation (3.20). We see that condition (3.20) holds if
and oaly if assumption (3.77) holds.

Nur & Byerice (1971) present a very strong argument for the value of the unjackesed
bulk modulus as givea by equation (3.77). This assumption is the "boundary condition”
used by Zismerman (1991) in the description of static deformations and is based on the
work of Geertama (1957). This ensbies Zimmerman (1991) 10 determine relationships
between the four drained compressibilisies. K also enables the undrained bulk modulus 0
be writea as a function of one drained bulk modulus. A majority of the previous
theoretical analysis (Gassmana, 1951; Geertama, 1957; Biot & Willis; 1957; Carvoll, 1979;
Carvoll & Katsube, 1983; Katsubs, 196S; Zimmermen, 1986, 1991) have used this
sssumption. This assumption is in effect postulating & microscopically homogeasous solid
frams (Berryman, 1992). Several authors have recogaised the restrictive asture of this
sssumption (Morland, 1972; Rics & Cleary, 1976 Brown & Korriaga, 198S; Green &
Wang, 1986 Berryman & Milon, 1991). Biot & Willis (1957) also caution sbout the uee
of this assumption and illusirate the reduction of the sumber of parameters in the work of
Bict (1941).
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Van der Knapp (1959) performed unjacketed compressibility measurements on a
sample of Belait sandstone in an initial unstressed state (i.c. confining pressure and pore
pressure were both equal 10 atmospheric pressure) and an initial stressed state. The values
of the unjacketed compressibility for the sample in an initial unstressed state is

2.97x10 m3/MN (2.97x10°!! Pa'!) and in the prestressed state is 3.44x10°° m¥/MN
(3.44x10°"! Pa’!). Van der Knapp (1959) stases that the difference is within experimental
error. Using independent measurements of Cp and Cy,; and relation (3.29) a value for the
solid compressibility is obtained 10 be 3.02x10° m?/MN (3.02x10'!! Pa'!) which lies
between the obtained values for the unjacketed compressibility.

Fatt (1959) measured the unjacketed bulk compressibility for Boise sandstone with a
porosity of 26%. The measured value for the the unjacketed compressibility was
0.22x10% pei-! (3.19x10°!! Pu‘!), over a pressure range of 2000 (1.38x107 Ps) 1o 7000
psi (4.80x10 Pu), as compared o the compressibility of quartz or feldspar which is showt
0.20x10°¢ pei-! (2.90x10°!! Pa-!) (Fant, 1999). Nur & Byeriee ( 1971) observe a linear
stress strain relation for Westerly granite subject 10 an unjackesed test. They argue that the
compressibility value obtained, Cuy=2.2 Mb! (2.2x10'!! Pa'!), was equal t0 the
compressibility of the dry sample after cracks were closed and therefore support relation
3.7,

Yew & Jogi (1978) measure the unjacksted bulk modulus of an artificial rock
"Aluadum®, a sintered maserial mads up of over 9% ALO», and three types of aatwral
sandetones (Besea, Ohio, and Pecos). The axial sirain, under unjacketed conditions, varied
linsarly with pressure over the eatire rangs (0-50 MPa). The measured unjacketed bulk
modulus was 8.3x10'® Pa smaller in comperison 10 the value (Forsythe, 1999) of
3.0x10'! Pa for Al;Os. Berea sandstone is a fine-grained greywacke composed of 99%
qQuantz grains. The measured unjacketed bulk modulus was 4.4x10'® Py which is larger

than the 3.67x10'® Pa valus (Weast, 1969) for quartz. Ohio sandstone is a very fine-
grainsd rock. Most of the metrix material is quartz, clay and shals. The messured

wnjacketed bulk moduli was 3.3x10'® Pa which is less thea the 3.67x10'® Pa value
(Weast, 1969) for quartz. The Pecos is a reddish brows, calcareous sandstons.
Calcasecus denctss fine-grained, relatively homogensous rock composed mainly of caloiss.
K has a mossused unjacketed bulk modulus of 3.7x10'® Pa which is twice as small as the
7.3x10" Ps value (Forsythe, 1999) of caicits. The wss of the sssumpsion (3.77) or



(3.20), Koy = K,.dﬂlenlﬂememmucdonﬂm simplified relations between
poroelastic pars rs. However, it receives little support from the above experimenta
MEAsSuUrements.

nﬂlyduﬂhuhmﬂﬂﬂud‘ﬂuﬁm(lhiwm 19,57) lnﬁzﬂnlh:
amount of fluid which enters the pores of a unit volume of porous maserial, during a

14V, 31" Py -

Coj® -qu"“ o-bfe 3.79)

where Ap is the change in confining pressure and is equal 10 the change in pore pressure,
i.e. ©=l, V, is the initial volume of the sample, and AV, is the amount of fluid which
onters the porous sample. mamuﬂmmmmhm»

AVf = NV-V,) + Vin-n) + CVIApy (.79

o (3.79) and equation (3.78) and using definition (3.70) at O=1 one

Cly=mdCr- )+ T . (3.00)
Using equations (3.8) and (3.10) one obsins from equatios (3.80)

Ly =ndCrOn) + SB-Chy 381
% 1

which yields, with the substiswtion of equation (3.18),

Clay = MWl Ce - (1)) + (1-0,)(C, - X)) 0.82)
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discussed above for the matrix compressibility,oquation (3.82) gives

Clj = MlCs - G) (3.83)

3.7 Induced Pore Pressure Coefficient

A parameter which is deduced from the undrained compression has been described

previously in the literature (Skempton 1954; Rice & Cleary 1976; Dropek, Johnson &
Walsh 1978; Green & Wang 1986; McTigue 1986; Green & Wang 1990) as the pore-

pressure build up coefficient. This parameter is simply the value of © for which the family
constant, i.e. @ = 0, and therefore C(0) = Cyc. By setting C(6,) = Cy in equation (3.74)
the induced pore-pressure, @, is found 10 be

(3.84)

without any assumption as 10 what the value of C(0) is 8 @ = 1. This expression may be
mm—hmdmgm(iwﬂqmﬁq‘h;mm

Under the assumption that C(1) = C,, the induced pore pressure coefficient may be
mwm&m&hmﬂhmﬂﬁm (i.e.
equation (3.52) into equation (3.84)), as a unique function of the drained bulk modulus

(3.83)

This expression is also cbmined by Green & Wang (1906) based on the work of Browa &
Korringa (1975) for a material subject 10 the above assumption. k was also derived by
Bishop (1973, lﬁﬂﬁh“hh_ﬁﬁdaﬁ—ﬂm

l_dnh-ﬂl.-ijmmnh-m!lﬁ—ﬁﬁﬂﬁdﬂ
syathetic sandstonss (Wang, 1993; Gessn & Wang, 1986). The valus decvenses ©0 0.3 -
0.6 ot increased effactive pressuses (confining pressure minus pore presswrs) (Wang,
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1993). Mesti ¢t al.(1976) observe similar behavior during measurements on Berea
sandstone, Salem limestone, Vermont marble and Barre granite. They attribute the rapid
decrease in pore-pressure cosfficient, with increasing effective pressure, 10 the closure of

The imerest in an effective stress law is that it will enable one 10 predict the value of a
given property, i.c. density, porom'y, for any combination of pore and confining pressure,
first 10 recognize the importance of pore pressure was Terzagi (1923) who developed a
model of effective pressure for highly compliant maserials such as soils. Others recognised
the apparest correlation of earthquakes with injection of fluids in deop wells (Healy er al.,
pressure (Nur & Booker, 1972; Nur, 1972). In Terzagi's (1923) formulation the concept

off = ta + Xpeiu (3.86)

compression), 8y, is the kronecker delta and J is the effective stress coefficient. Terzagi
(1923) argwed that X should be equal 10 the porosity (1) 50 that the effect of pore pressure
is eliminated whea povosity goes 0 asro. However, his experiments supporsed values of
x=1.

ga& '3.87
1=1 K .57

whess K, is the bulk modulus of the grains and Ky, being the dry or drained bulk modulus
of the porous rock. Nur & Byeries ( 1971), and Biot & Willis (1957) have derived
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effective stress with respect 10 volumetric bulk and pore strains. The derivation has been
carried out within the framework of a micromechanical theory based solely on linear
elasticity. His derived value for % is the same as equation (3.87). He proves that if the
total volumetric strains are unique functions of the pressures, then the compressibilities
must depend only on the differential pressure. Carroll (1979) and Carroll & Katsube
(1983) generalize the effective stress law for anisotropic elastic deformations. Berryman
(1992) argues that the effective stress data on fluid transport through porous rocks cannot
be explained with theories based on a homogeneous solid frame. Berryman & Milwon
(1991) generalize the work of Gassmann (1951) o0 include two solid constituents in the

porous frame.

From the equation of effective stress we can write down the equation for an effective
pressure as

Pett = P - XPt (3.88)
where p is the applied pressure and py is the pore pressure. It should be noted that the
following derivation of effective stress is for quasi-static, reversible, infinitesimal

deformations. From the defiaition of the family of compressibilities (3.70) we can writke
the fractional volume change of a sample as

. %! = 0(0)Ap (3.89)

muma-% is kept constant. Substituting equation (3.74) for C(®) in
equation (3.99) and usiag the definition for © we obtain

.%-CJA’-%M’ : (3.90)

We have the effective presswss as
"'""ccf"' BN

Compering equation (3.91) 10 equation (3.88) we have

1= . 692)



If we assume relation (3.77), i.e. C(1) = C,, we can use relation (3. lﬂ)fqﬂ:.,in;j ation
(3.92) 10 obtain expression (3.87) for ) as derived by the other authors mentioned above.

Nur & Byeriee (1971) plot volumetric strain measurements, performed on Weber
equation (3.87) for X describes quite accurately the measured sirains, although some scatter
in data still exist. Other measurements (Dobrynin, 1985) performed on two consolidased
sandstones supports relation (3.87) for the coefficient of effective stress. A value of
al., 1963; Brace & Martin, 1968) appears to support a value of x=1. These
measurements can be explained by relation (3.81) if the bulk modulus of the porous rock is
much less than the bulk modulus of the mineral grains. Fatt (1959) presented data which
shows that ¥ decreases from 1.0, when confining pressure equals pore pressure, 10 sbout
0.70 when the confining pressure is much larger than the pore pressure.

3.9 Cenclusions

lmxnﬁwhvv-bumwm(mﬂh)mbﬂgﬂb:
found in the litsrature. In particuler, we verify all identities (see table 3.2) among drained
compressibilities given in, ¢.g., Zimmerman (1991), thus providing aa alternative rouss
Experiments are proposed for the determination of the macroscopic shear modulus, leading
0 astural expressions for "Young's modulus” and "Poissoa’s ratio” for the porous
medisn under drained conditions.

relation 90 the verious drained compeessibilities is verified. The description of “wadreined
Young's modulus” and “wadrained Poisson’s ratio” leads 10 relationships with an
“ﬂ*“-ﬂnhdm hﬂw
manﬂm-m ‘Ihﬂd’i P

aleo used 10 cbinin an expression for the pose-pressuss build wp cosfiicient.
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Two compressibilities are defined subject to an unjacketed test and are usually referred
10 as the coefficient of fluid content (Biot & Willis, 1957) and the matrix compressibility.
The use of the assumption that the matrix compressibility is equal to the solid grain
compressibility does enable the construction of more simplified relations between
porosiastic parameter. It also appears 10 be the assumption responsible for a compatibility
condition obtained by de la Cruz & Spanos (1989b) when comparing final equations
describing seismic wave propagation to those of Biot (1956b). If parameter values
obtained from quasi-static experiments are used in the dynamic equations, it appears that
the Biot theory is limited 10 systems for which K = K,. The sensitivity of the phase
velocity and attenuation due to deviations from such a constraint will be explored
numerically in chapeer 4.



Tent

Pr=Po

Tua=Tyy=0
)

Tuy=Tyy =t 0

o NP,
"iﬂil (1-n.)p? '
T (ALAL),
LT "-‘%j*

®-pn)

Table 3.1 Various quasi-siatic tests and associsted
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3 & o
By = KutiM
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o Cu-C
& = RdCi-C)

Cloy™ N CrO) + (1-0)(G-C(1)

x- g

CodCi - G) + CdCo - C,) *
Mol Cr - C) +(Ce - Cs)

Cu=®

that the relation is only ¥ C(1)

i-static poroelastic parameters. The * indicates



CHAPTER 4
WAVE PROPAGATION IN FULLY SATURATED POROUS MEDIA

4.1 Intreduction

The elastic model of wave propagation predicts one dilatational (P) wave and one
M(S)m(mnﬂn mmnnmm-ﬂmmn
mm: Wlﬂp@p&:hlvhmu;’;;”,' ’f,j mumubym
N:vzer Smi quuinn ltprdi:umdiii, DA wlulndmm-ﬁmd wave

&wiuhnﬁn ‘I'iie mnhﬂq ﬁmmml.h
mmﬂhmm Viscoelastic theory is concerned with maserials
whose response is dopendent on all past states of streas (Christensen, 1962). The stress-
mmmwmumm M“ﬂﬁn
hhﬁl-ﬂﬂh%“ﬂpﬂﬁmnﬂ:hﬂnﬁrﬂ
viscoclastic maserials.
MM*W*MﬂHMMQm
ﬁvﬁyhm Ths dispersion relations for dilatational and rotational plane
agating in a viscoslastic maserial are similar in form 10 those of the elastic case.
mn“m“ﬂmhm It should be mentioned that
the governing equation for waves is simply & stsement of Newton's second law and tha
the difference in the above models, i.¢. elastic solid, viscous fluid, and viscoslastic, lies
solely in the choice of the constitutive relation.

The simplest model wtilized for wave propagation in the carth is the elastic solid model.
As meationed previously, ﬁﬂpﬁhuﬂﬂm?mﬂm!m
and it does not allow for attenuation, and the waves are noadispersive. la the pest,
mhhﬂﬁhﬂl“mﬂym&uﬁﬁ
moduli of the mediom 10 be described by complex numbers (simplified viscoslestic
m mnhwmnﬁ-mmﬁiﬁm
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sysiems of inserest in exploration geophysics and seismically monitored oil recovery
extra degrees of freedom introduced in a multicomponent system can not be duplicased by

The first models for seismic wave propagation in porous media which involved two
coupled and interacting continua were proposed by Gassmann (1951a) and Biot (1956b,
1956c). Mmﬂy.mmhnﬁﬂnhmhcnahﬂnaﬂby:pplyﬁng vaﬂms

avcn;h. method, wbm Llu & Kﬂuhe (199()). lhmg L C_‘;:mll (I9!7:§ 1987b),
Crochet & Nagdhi (1966), and Green & Nagdhi (1965) use the method of mixtures o

In order to wtilize any of the above models, both the constitutive properties and
macroscopic properties of the porous medium must be desermined. Microscopic
constitutive properties are casily determined for simple systems, that is, for a porous
mediam consisting of weter and sand, routine measurements determine parameters such as
the deasity of the sand grains or the water, the viscosity of water, and so forth.
Mdlmmmﬁrﬁmuym Inhepuuha

mwmﬂnm_du mn
mmmhp—ihmum;ﬂﬂnm“
of this wave propagation model as well as the sigaificance of the genena




4.2 Formal Equations of de la Cruz & Spancs (1909)

In the work of de la Cruz & Spancs (1985, 1989b), the macroscopic continuum
equations which describe wave propagation in a fluid filled porous medium have been
constructed by using volume averaging (see section 2.1) in conjunction with physical
arguments. A porous medium is envisaged here as an elastic matrix whose pores are
imerconnected and are completely fllled with a viscous compressible fluid. The medium is
also assumed 10 be macroscopically homogeneous and isotropic. The steps used 0
formulate the final macroscopic equations are shown schematically in figure 4.1, along
with the model assumptions. This theory appears (0 have the advantage of relative
simplicity and physical transparency. The initial model of de la Cruz & Spanos (1985) did
not include the induced mass coefficient which expresses the effect of inertia at the fluid-
solid boundaries, but did include a viscous dissipation term within the fluid elemonts which
Biot (1956b, 1956¢c) neglected. In subsequent work, de la Cruz & Spanos (1989b)
included the induced mass coefficient through its basic pore scale origins usi g the same
nomenclature as Biot (1956b), and included thermomechanical coupling.
Thermomechanical coupling refers 10 the first order heating of the phases from
compression and the expansionyoontraction of the phases due 10 heating and cooling.

The resulting coupled, first order, macroscopic equations which describe wave
propagation in porous media saturated with a single viscous compressible fluid are (as per
de la Cruz & Spancs, 19850):

Equasions of motion

u-n.».% = (1-M)K,V (V) - K,V «1-M)0I V8, + hV(V+&,)
- (1-06) K VT, - ID4p 1Y

(4.1)

Nor 301 = NI 40 (VW + Y WTOT) - IO (42)
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Equations of contnuty

(P-MP” (('ll :I‘:; +V.§,=0 4.3)

195,190 ,v7e0 (4.4)
oo e f |
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an) === + @y (Ty-To) 4.5)

@s-po) =-Vis,+

z

-L—a' iav-ﬁ’ﬁ;;i +a— T (4.6)
:;;P‘ ve “-&ﬂ ae— Tt )

¥

Q- ﬂs)tl-&‘ﬁ-'l’-ﬁ.ﬂ{ﬂ-(l fl-)ﬁv'i‘] (1- no), V7T,

“.7

m#?‘ﬂﬂ; "';E"hr;ﬁr V-xd® .19 = 0 “8

M _ 8V, - 8V, . “9)
Py
Equation (4.9) has besn introduced 10 complets the systom of equasions. I is assumed that

hnmlﬁlﬂ &, characeeristic of the medium such that equation (4.9) is
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here. The thermodynamic foundations of these 8's were discussed in chapter 2 and it is

Pigure 4.1 Development of the theory.

mmmum“ﬂ-ﬂhﬁhhﬁmﬂ“
the coupling betwesn the constituents and represe ssions in serms of
wm-ﬂhgﬁhﬁﬁ,ﬂpﬁ. Thess expressions
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introduce the majority of the macroscopic paramesters in the theory, except for porosity. An

intorpretation of the introduced macroscopi

rmhmwMMM

the type of process taking place. These area insegrals are not all indepe
due 10 the pore scale boundary conditions. 'ﬁle:uhleplhghenby

ﬁ"-—{,—] [tpr - Pl - umaa
Ap

i?"%;[ [ + poBilmda

are relsted, due 10 the continuity of stress at the pore scale imerface, as
l?’ﬁai‘i" _

@-%L(Vln + viny - 2vinBu i

- L (u:n. + utm - JutnBa A

;) -@

4.10)

“4.11)

4.12)

4.13)

(4.14)

4.19)

on account of the continuity of displacements at the pore scale interface. The following two

00a integrals



JAn

®a -\l,-] K, VT, dA
At

(®) u . J®
due 10 the continuity of heat flux

l(!)..‘L'I (TeTo)dA
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(4.16)

(4.17)

(4.18)

4.19)

(4.20)

(4.21)
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4.3 Discussion of Fluid Bulk Viecosity

The equations presented above are gencralized to include fluid bulk viscosity, &,
(Hickey et al., 1991). The constitutive equation for a Newtonian fluid (pore scale) is

ol = pdu + pvivl - Oy - 4.22)

where the contribution in stress due 1 the viscosity , Oy, is

?n-u.(%-f%-%u.%'[nu.%. (4.23)

Heacs by volume averaging the last term in equation (4.23) the macroscale effect of the

@e2)-20284,

Applying the averaging theorem (2.4) 0 the first serm on the right hand side of equation
(4.24) ylelds

(4.24)

%“%’ '% [‘%"ﬂ"{i L‘ H-M] ; 4.29)

e
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sbetituting equation (4.26) into equation (4.24) the macroscopic expression representing
hmﬂmdhﬂkﬂmﬂyh

-%[%(ﬂﬂ) + %@n)] *{,—Lﬁ &gm 4.27)

Two additional terms in the fluid macroscopic equation of motion (4.2) are required. The
arca ineegral term on the right hand side of equation (4.27) is included in the macroscopic
terms which describe macroscopically viscous and inertial drag across all fluid-solid

imserfaces. mamaﬁm; pression for the viscous stress tonsor o, in

the area imegral I{"? (equation, 4.10) of de la Cruz & Spanos (1989b) by Gy of equation
(4.23).

In the work of de la Cruz & Spencs (1985, 1989b) the shear modulus of the porous
material surned out 10 be equal 10 the volume fraction of solid times the shear modulus of
the solid component. In thet description, the pore seructure and packing of the grains did
not alter the shear swength of the overall maserial as long is it did not alter the porosity. The
influsace of pore structure on shear stresses is accounted for by the surfacs integrals I
wd 1D, mmh&ﬁnnmnthmgmum 19090). la this
section the macroscopic shear modulus jiy is introduced as a phenomenoic parameter
(but is none the loss well-defined in torms of pore-scale quantities).

Formal arguments permit one 10 writs the additional shear sirain associated with the
coupling at ths pove scals interfaces, in the notation of ds la Cruz & Spancs (1909b),

QA1) crg(il + R 30 A)-of o Wi 3V 8] 020

whess ¢; and 03 (2 smposary notsion) are soms disssasionies
(&Mﬁﬂ—ﬂﬁﬂhﬁﬂiﬁuaﬁh
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The second term on the right hand side of equation (4.29) is proportional to fluid
displacements. At the beginning it was assumed that the fluid is a Newtonian fluid
implying that shear stresses are related 10 the shear rate i.c., proportional to velocity.

Therefore, this will impose that c2=0.
iu = (1-nadug(1+4c)) (4.30)
ation requires that (1-1,)4, be replaced by juy in equation (4.1). At the same

hqﬁ(i.!).hﬂuﬂqmﬂmﬂm acquires a new term involving space
derivatives of the solid velocity. The new term

M - ,)%[m +Wi-2na “.31)

arises from oquation (4.15) which fails 10 vaaish unless c) = 0, a condition which was
used in de la Cruz & Spancs (1989b) but which is now regasded as being 100 restrictive.
Aj“vﬁhﬁ“hmﬂumh“hﬁ-ﬂ:

sriments as described in section 3.5 or indirectly from a quasi-static uniaxial test as
described in section 3.3.

In analogy with the generalis ;,,dﬁsﬂeirmdﬂmhﬁem-}nﬁ:iﬂ
conductivities can bs introduced as | _ ,




)
il = (10K, (14¢,) (4.33)

where the dimensionless constants c,, ¢ reflect the pore scale behavior through the

‘%I (T - To) dA = NoorVTe - (1-n0)c, VT, (4.34)

50 that from relation (4.21), one has

eralizations will produce additional serms in the averaged heat equations (4.7) and
(tl.l);“llm“ndﬁmd nacroscopic parameters. Noead ef al. (1985) also
constructed the basis for a two-oquation model of transient heat conduction in porous media
using volume avenaging. However, RO attompt was made 10 evaluate the area intograls.
Given that two additional macroscopic parameters, defined by (4.32) aad (4.33), come
MhnhﬂgﬂmmniﬂﬂMMIﬁmﬂnh
two macroscopic heat conductivities might be related but there is no argument for such a

relationship at this tieme.

In most studies of heat transfer in porous mediem filled with & static fluid (Verms ¢f

al., 1991; srmen, 1909; Huang, 1971; Woodside & Messmer, 1961a, 1961b;
ﬁqﬁ)l“ﬂiﬂﬂﬂmmmm
parameter, woually referved 0 as the stagnant effective thermal conductiv :
Hsu & Cheng, 1990), is required. Mﬁhhﬁnhnhhh_y
wransport process can be characserissd by a single emperature (Nosad e ol., 1985). This
assumption is referved 10 as “local thermal equilibrium” Mﬂd 198S; Zarotd &
Carbonell, 1984). By reducing their two-equation model 10 s one-equation mode! Nosad
et al.(1985) show that

Vi + (1] T+ ¥ -&L AT -To- AT, THA = ¥ (V1) (4.36)



conductivity. Applying such an approach 1o the present analysis would lead 10 only one
degres of fresdom, which would be related 10 the stagnant effective thormal conductivity as

Mot - (1M -y

The generalization 10 include convection has been addressed by Yoshida et al. (1990)
and Hsu & Cheng (1990). This generalization still contains only one effective thermal
conductivity. Huang (1971) states that with the flow rates normally observed in thermal
processes, stagnant effective thermal conductivities are usually adequate 10 describe the

=41 l(pr-poibu - dulonda (438)
ff“--g,-] [ + pbubn d “m
At

by one continuum on the other across the intorfaces due 10 aay motion. de la Cruz &
Spancs (1989b) argue that this body force may be expanded as follows;

-{,—I loe-mite-ollnarne By v 02007  wao
) ,
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Physically, the first term in the expansion represents the momentum transfer between the
fluid and solid across the solid-fluid interfaces during wave propagation. This is a
significant actenuation mechanism which is known as Darcian resistance. 1t is dependent
on the relative solid-fluid velocity (due to invariance) and is therefore also dependent on the
relative phase angles. It becomes the dominant atienuation mechanism at low viscosities
(Hickey, 1990).

The parameter K is a scalar quantity, as long as the volume elements are assumed large
enough that the porous medium is macroscopically homogencous and isotropic.
Permeability is also a parameter used 10 quantify the resistance 1o flow of a fluid through «
porous medium. It is a function of the size, orientation, distribution, and connectivity of
the pores. It has been introduced previously in Darcy's equation,

q:-% (Ypr- prs) (4.41)

which is based on a classical experiment performed by Darcy (1856). The fluid pressurc is
denoted by pe and has units Pa, ji¢ is the fluid viscosity in Pa s, q is the Darcy velocity in
nVs, P is the density of the fluid in kg/m3, g is the acceleration due to gravity in mvs2, and
K is the permeability in m2. There are several methods of measuring permeability based on
different forms of Darcy's equation. Most are performed by flowing a fluid of known
Mmlmfﬁ i ,;;nnmﬂﬂmmm“uhm

"Lj'uflha;; jom. Gmhmmmwlwhmﬂdiﬁm&
mimmmmmmkhmgmums 1989b) suggest
that the permeability value obtained through a Darcy experiment might be used as an
estimats for the parameter, K, in the expansion (4.40). However, it is imporant 10
remember that this parameter is introduced 10 represent the momentum transfer between the
fiuid and solid components during a seismic disturbance. As an extreme example consider
-mmmnmmm In such a material the Darcy

Biot (1956¢c) extended the action that fluid-flow through a porous medium could
doviate from Poiseuille type flow during the passage of a seismic wave. In onder 0
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account for such flow behavior, Biot (1956¢) introduced a "dynamic viscosity operator”
which is of importance in regions other than low frequency (Warner, 1990). The theory
was divided into two regimes, a high and a low frequency regime. In the high frequency
regime (Biot, 1956¢), the fluid-flow is not of the Poiseuille type and the dynamic viscosity
operator is of importance. In the low frequency regime (Biot, 1956b) the fluid-flow is
Poiseuille type and the dynamic viscosity operator is simply equal to one. In order to
quantify the separation of these two regions a "viscous penetration depth” (Wamer, 1986)
is defined by

8= ;%'6 (4.42)

It is argued that the fluid is viscously locked to the solid matrix if it is within 1 distance less
than a viscous penetration depth from the pore wall. The critical frequency separating the
two regimes, defined as the frequency at which the viscous penetration depth is equal 10
one pore radii, is given by

""'p% 4.43)

where R is a typical pore radius. For frequencies larger than the critical frequency, the

radius 8, and subjected 10 an oscillatory pressure gradient. From this model he obtained
the following expression for the dynamic viscosity operator, F(y), as

F(y) ‘l-z-T(v) (4.44)
iy
whese T(x) can be: writion in terms of Kelvia functions as
m_hu"vo-ihi‘y .(4.45)

bery+ibeiy
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v=8 ‘ﬂf (4.46)
We )

The dynamic viscosity operator will be complex valued in most cases. For application 10
porous media Biot (1956c) accounts for the size of the pores and geometry of the pore
structure by assuming @ to be some characteristic parameter. This requires that the

with a distribution of pore sizes. The above expression, although quite complicated, does
not account for the geometry of the pore structure for a medium witk: a distribution of pore
sizes.

Johnson et al. (1987) derived an expression for the dynamic viscosity operator. In its
simplest form (after Wamner, 1990), this expression is

L
. ] 2 _
F(u,.(.*.&ﬁ'nr wan

WA}
which requires a measurement of the Darcy permeability of the medium, K, as well as
additional measurements of tortuosity (high frequency limit), a, and of the characteristic
throat size, A.

de la Cruz & Spanos (1989b) argue that inertial coupling can be accounted for by an extra
term that is proportional 10 the relative acceleration. They have used the symbol p,
because, when comparison with Biot's (1956b) theory is meaningful, it is exactly the
induced mass coefficient, p) 3, of Biot.

Landau and Lifshitz (19750) derived an expression for p) 2 based on a model of a rigid
sphere oscillating in an incompressible perfect fluid. This discussion yields an upper
bounad for p13, nemely p 2 <0, which is determined by the directions of the applied forces
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Assuming that the porous medium can be regarded as a collection of spheres (radius of b)
and neglecting interaction between spheres, the induced mass coefficient may be written as
(Mochizuki, 1982)
P12(w) = - (a(w) - I)Mepr . (4.48)
The coefficient, a,, is
a(w) = 1- F(w) (1-1M) (4.49)

with

(4.50)

Johnson er al. (1987) write the dynamic tortuosity a(w) as

a(w)=a + —— F(w) ; (4.51)
wKp}

therefore @ is the high frequency limit of a(ws). More elaborate functions for the dynamic
tortuosity are derived by Johnson er al. (1987) by accounting for the fractal nature of the
pore surfaces. In general, a is restricted 10 be greater than unity and depends on the
topology of the interconnected pore spaces.

poves oriented in a random fashion, and calculases the induced mass coefficient as a
that their axes are in throe perpendicular directions and one axis parallel 10 the motion, then
in the low froquency limit the induced mass coefficiont, P, 2, is

Pu--% . 4.52)
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The tortuosity, a (high frequency limit) is also related to electrical conductivity of a
porous medium. Assuming that the solid is an insulator the relation is (Brown, 1980)

a=n,0 (4.53)
where (2 is the ratio of the electrical conductivity of the porous medium to the electrical
conductivity of the pore fluid.

Johnson (1980) applies the Biot theory 10 fused glass bead samples filled with a
mp:ﬁ’lnid He:lmwnimthemwmy.u as defined by equation (4.50), can be obtained
from m s of the 2nd P-wave velocity, using the following relationship

112 . Y(slow wave or fourth sound)
a v (fuid) (4.54)

Velﬂi’ tymm rem Bﬁiigtoffuied;lusheidmnp’””les of variou 'spm \ iliesﬁnging

mmity m as pnmmy increases. V;lu:s obtained for mumny mnged fm 3,84
down 10 1.75. The values obtained from the use of the superfluid agree with values
obtained from electrical conductivity measurements on these fused glass bead samples.
Using 2nd P-wave velocity measurements on water filled fused glass bead samples (Plona,
1980), and relation (4.54) Dutta (1980) predicted tortuosity values of 2.1, 2.2, and 3.3 for
Plona’s three samples.

The importance of the induced mass, py2, and dynamic viscosity on wave velocities

and their relation 10 tortuosity are still under investigation (Champoux & Stinson, 1992). h
hMympﬂﬂemmdﬂlmmnuwithnmmimmlm:wnve
riment, since its origins lie in the relative accelerations which occur during
NG '—mydhmmmm:ﬁy
mrﬂhidﬂmmgm:mmlymeﬂuddanntyﬁghih
associated with such an approximation.
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4.7 Evaluation of the Area Integrals 1 and I®

An additional parameter is introduced when de la Cruz & Spanos (1989b) explicitly
take into account thermo-mechanical coupling. The physical argument for its introduction
it very similar to that for the permeability, aside from the fact that it deals with heat
conduction rather than momentum transfer across the solid-fluid interfaces.

When the equniam descﬁbing the themhmics af the mﬂﬁmems (ﬂuid and

!“"’ and !“’. These two mtegnls are equal and opposite and represent the heat l,nmfer
from one component to the other across the microscopic interfaces. Hence, the fluid
component acts as an additional heat source for the solid and vice-versa. As discusscd by

de la Cruz & Spanos (1989%), these heat exchange terms between components should
vanish if and only if the macroscopic component temperatures are equal (T =T,). It is
therefore argued by de la Cruz & Spanos (1989b), that these terms may be represented by a
first order scalar proportional 10 (T, - T;) and therefore they obtain

19w I ktVTr-dA=y(T,- Ty (4.5%)
JAs

where 7Y is the positive empirical paramete
represented by this serm should contribute 10 the attenuation

v=O|xAAVL) (4.56)

miﬁqnd(lﬂ!)mﬂmnwﬁﬁumm
are occwrring. Usiag osder of magnituds appra ' ical syses




’R

of interest is established in terms i+ < wsantity. The frequency below which
there will be approximate equalir wture 1 approximated as

- Y (4.57)

where pc is some effective vaimr - 1 mdwm. A dimensionless quantity is then defined
as the ratio of @cr to the fregmenc .  deformation. Based on crude estimates for the
surface are per unit volume of g . i, figure 4.2 (after Hickey et al., 1991) is a phot
of the dimensionless quantity equated to unity versus the three variables, frequency,
surface coefficient of heat transfor, and the effective heat capacity. The upper left portion
of the ;mph represents the combination of parameters where the wave is oscillating in a
teristic time which is less than the time required for significant transfer of thermal
enﬁ'yhetwen the phases. Conversely, the lower right portion of the graph represents the
combination of parameters where the wave is propagating in a characteristic time which is
greater than the time for the significant transfer of thermal energy between the phases.

"~ .1  Log(Effective Hea
‘:% “*”,1 Capacity/nit volume)
. pe [JAm*K))

RALA S LA B} LA & &)

L

L

-

o

L

- L
4
’

L

4

4

¥ [WAm*K))



89

a scismic disturbance.

Intercomponent heat conduction is present only when thermomechanical coupling is
included and induces significant changes in attenuation of the 1st P-wave within the seismic
frequency range. It can be approximated by equation (4.56) and becomes more important
for small pore sizes. The frequency at which the equality of component temperatures exists
depends on Y. No independent experiment for measuring this parameter exists at this time.
It should be related 10 the stagnant effective thermal conductivity.

ve Factor (8)

4.8 Solid Complisnce Factor (3,) and Fluid Compl

From the thermodynamics (de la Cruz er al., 1993) discussed in chapter 2, the
porosity, 1, enters the macroscopic description on the same footing as displacements and
denmy In order to obtain a complete set of equations describing the propagation of a
dilatational wave de la Cruz & Spanos (1989b) adopted relation (4.9). It is argued that
such a relation is a process dependent statement and suitable values of 8, and 8y will depend
on the process considered. Using the above relationship (4.9), de la Cruz & Spanos
(1989b) considered the case where the two average pressures, Py and Py, are regarded as
approximatcly equal. Neglecting thermal effects in equations (4.5) and (4.6) they obtain a
jonshig ﬁt%‘ with the following definite expressions for 8, and 8y:

(4.58)

&= Mo (1 - no) (4.59)

Although equation (4.9) probably represents the simplest physical statement
mﬁgeﬁhpﬂydﬂh“ﬂhm“hm
ﬂnmmw-,,, - (periment is not straightforwasd. In chapeer
Shpﬂh“”’ minte mﬁ:ﬁ“ﬁnﬁiﬂdm




Ku, and a drained bulk modulus, Kpc, which are well known in the geophy--ical literature.
The undrained bulk modulus is defined as the bulk modulus measured by compressing the
porous sample where the fluid is not permitted to flow across the closed surface at which
the compression takes place. The drained bulk modulus is defined as the measured bulk
modulus when fluid is permitied to flow across lhe closed surface at which the
mpression takes place. Hence, both of these macrosce hi
ltllic experiment if a sample of the porous medium is readlly available. The relationships
between the static compliance factors and the drained and undrained bulk moduli are

(K, - Kui(K, - Kn/(1-110))

8 = (110 = ROMK, - Kno) (4.60)
and

(K. Kr)(lf Kh.-.)

ssuming that the bulk modulus value obtained in a hydrostatic unjacketed experimen, i.c.
Kﬂhhvﬂuﬁﬂﬁmm“ﬁm:ﬂﬂm:(mmm16)th=nm=needs

odybmﬂzhﬁﬂhﬂknﬁﬂuﬂhmnﬂuﬁwmmw;uu

&_ (1)K, - Ka.;]f 4.62)

ﬁﬂﬁlblﬂﬂihhvﬂmﬂhﬁ ﬁEmmﬂhvﬂmﬂ
the 8's is illustratod in the description of macroscopic capillary pressure betwoen two fluld
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4.9 Generalized Equations for Wave Propagation in a Porous Medium
Saturated by One Fluid
Modifications o0 the system of equations governing low frequency wave propagation in
a porous medium which is saturated by a single fluid, as described in the previous sections
of this chapeer, are incorporased resulting in the following system of equations:
Equations of motion

J_
(1- ﬂn)P:
a!

= (1-N)K. V[ Veii, - ) ’,“:1 mlVG, + KV (VE,)]
" (4.63)

2 =
+ 08 (,3,) ip,;%(vrv.) - (1)K, VT,

n@rivf = -No Vipr +Molds (V% + % V(Vevp)) +n6E(V [Vovy + L1 a“
x e a! (4.64)

B g - 1l (9%, + 14 V0] - M ;. ¥,) 4 9122 - WL
Bt~ (1l (V75 4 15 VO] - 2891 %) + 1o 9 W)

(E: -p) MM o 0
5t dm ' (4.65)

19 .19,  vv=0 4.66
P?;pf 'hiﬂ* V=0 (4.66)

L - M-n) ' g9
K!@ P) =-VE,+ a- Mm'd‘f‘f.) (4.67)

a - a,, a i E iy
—B=-VV-L e "t 4.
% f N ”‘l Qr— it “.68)

-
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Heat equations

aT 2 e
(1= NPyt =2+ (1- Mo Ky 0y (V3 ~ ) KV

+ ,—'g Ixks -Nokr) V2T¢- v (TeT) =0

4.69)

n,p;c‘ ? -NoTo a% - K‘MVZT} + -EL Ixp - (1-N0)%) VLT'. +XTeTH=0 Q.70

Porosity equation

;—"- = a.v.v. - &VQV‘ . (47 1)

Comparison with Biot's theory (1956b, 1956¢c) is possible by ncglecting
thermomechanical coupling and bulk viscosity. Assuming the correlation between
variables of this work and the Biot (1956b) theory (cf. table 4.1) the equations 6.7 of Biot
are writien as

2
(1.,‘0),,,9_';1 = NV2§, +VH{A+NIV+&, + QVeii( |
X » 4.72)
+ TWrV.) 'plzg'r'-l"vl)
and
2
Ml’a_:" sV[Q'Veu, + RVeyq | - g—:ﬁ(‘irvu)
X “.73)

*912%(77-7-)

Assuming that equations (4.72) aad (4.73) ase identical 10 equations (4.63) and (4.64)
respectively thea equating coefficients results in relationships between parameters which
are prosented in table 4.2. Furthermore, two terms preseat in the fluid equation motion
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term and represent viscous dissipation within the fluid which is not directly related to
relative fluid-solid motions. The other term was the additional coupling term introduced
into the fluid equation motion as a consequence of the generalization of the shear modulus
(section 4.4).

Biot Present work

o oo
& =

FRPE

K, (uF(x))
B
P12

® 5
o 0

Q
N
K

= 20
E
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In addition, Biot's assumption of a unique energy potential imposes the following
constraint on his parameters:

Q=Q' 4.74)

in the context of such a comparison this imposes the condition (previously oained in
chapter 3 as equation (3.20))

% - % (4.79)

for the two theories to describe equivalent physical sysiems. [t should be emphasized that
the use of such an energy potential, from a thermodynamic point of view, leads 0
somewhat ambiguous conclusions as discussed previously in chapter 2.

Methods for the measurement of the elastic cocfficients, A, N, Q, and R, of Biot's
theory were described by Biot & Willis (1957). The clastic cocfficients are related 10 the
quasi-static values (notation has been changed 10 correspond to the presemt work and
definitions of the various parameters are given in chapter 3) of jacketed compressibility
coefficient, Cy. (defined by equation 3.13), the unjacketed compressibility caefficient,C
(quﬂm ﬁn.mmaﬁﬁaumuamd (deiﬁnai byeqniiim 3. m

are independent and obtain the relationshi fwﬂieehmmmwhlchnmm
in table 4.3. Using the quasi-static description presented in chapser 3 relationships for
Biot's A, N, Q and R are descrmined and presemted in tabie 4.4, ltwuﬂmnmmmﬂy.
in chapeer 3, that even under goneral quasi-static conditions the above static compres:

coefficients are not independent. ﬁ-wﬁemﬂnmmc{,, is
related 10 the unjacketod compressibility,Con;. by equation (3.82). Substituting for CL,,,
using oquation (3.83), in the nm of Biot & Willis (1957), uble 4.2, and
compariag 0 the expressions obtained here, table 4.4, the expressions for A, Q, and are

equal only if

Cy=C, (4.76)
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which is the necessary quasi-static assumption for condition (4.75) to hold. Under such an
tion, the determination of Biot's elastic coefficients requires only two independent
. its and the comresponding relations are presented in table 4.5.

N=py

Q= nJl Mo~ (::..::"'2’!"L

Clnj + Cunj = Cla/Cic

ASw/Coc + T8 + (1Mo 1-Conf/Coc) 5
d-.ﬂ?-. C"'-Fb i

Table 4.3 Elastic coefficients for the Biot th in serms of quantitics measurable
in quasi-static experiments as derived by Biot & Willis (1957).
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(Hlun + ﬂacl C3/Coe
. Nd1-No-Co/Che)

( 1-0)Cs + NeC - CEICI:

o (1-Tlof+ NeCo/Che - (1-NJC/Che 2.
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soefficients for the Biot theory in terms of quantitics measu
- c experiments under the condition that C,,,; = C,. Fwnmh;emﬂitmng
apmmmmmmmwmghm&wnnmgmmmﬁm_

lpuﬂn;ﬂﬁiﬂmﬂﬂhhﬁbiﬂthmyfmaﬁnmdymvcmmh
nparison of Biot's (1936b) equations and the system of equations derived here reveals

that the nption of an energy posential as put forth by Biot is much more restrictive than
was plwioully though. This restrictive nature becomes evident if quasi-siatic
measurements are used for the elastic coefficients in the wave propagation theory. It
appears that the expressions for the elastic coefficients in terms of measurable quasi-static
mmwm&m(lm)nmmuhnmmc_,-c.

4.10 Numerical Examples

The numerical examples were programmed in FORTRANVS and executed on the
University of Alberta mainframe computer. The sieps taken 10 obtain the final phase
velocity and attenuation values are outlined in figure 4.3. To study the propagation of a
rotational wave the system of equations for the vector potential y is considered. The
ﬁhﬂd“ﬁﬂﬁ“ﬂhhﬂgﬂﬂbﬁhmﬁ icating that
chanical coupling as proposed here doss a0t affect the rotational waves. Also the

tion 90 incheds bulk viscosity doss not affect the rotstional waves. The resulting
“myﬁmmﬁyﬁ;; tions, theveby implying the presence of




Figure 4.3 Schematic for numerical procedure used 10 calculate atieauation and



The description of dilatational waves is obtained by siudying the system of equations
for the scalar potential . Due to the complexity of this determinant a numerical solution
with numerical consistency checks, in various limiting cases, was constructed. The
method of obtaining a solution for the dilatational waves is structured on the cofactor
expansions of determinants (Campbell, 1977). For the non-thermal dilatational waves, the
dispersion relation implies the presence of two dilatational waves. When therm nical
coupling is included the dispersion relation suggests the presence of four dilunkmal
waves. Twnnfﬂlei: mmnpﬂnnﬂly mechanical in naturc whereas the other two are

in Ei: ldid lidlci‘ ﬂuid limiu (Hk:kcy l?@)

The numerical solutions are used to illustrate the significance of the generalizations
carried out previously in this chapeer, i.c. incorporation of bulk viscosity, generalization of
shear modulus, and generalization of heat conductivities. Also, to show how the phase

The model used consists of a porous skeleton made up of quartz grains and has
thermal i’i’:,:tﬁrﬁxnﬂlmmmnﬂel&mmﬁmﬂm
mﬁm First, water is used 10 ropresent a fairly incompressible and inviscid
fluid. Physical and thermal parameters as well as macroscopic parameters which are
dependent on the fluid are presented in table 4.7. Second, air is used (10 represent a
compeessible and inviscid fluid (cf. table 4.8 for parameters); and third, bitumen is used to
mnmﬂﬁgﬂw(ﬂ table 4.9 for parameters). The induced

posfficient is approximated wsing equation (4.52), and an order of magnitude estimate
hﬂﬂﬁﬁaﬂndh“hﬁqmﬂ.ﬁ)




Property Symbol Value SI units
Solid constituent
Density Ps 2650 kg/m3
Bulk Modulus K, 3.3 x 1010 Pa
Shear modulus Ms 2.3 x 100 Pa
Specific heat o] 755 J(kg°O)"’
Thermal expansion a, 3.4x107 °C-!
Thermal Conductivity K, 8.4 W(m°C)"!
Macroscopic
Ambient icmperature To 20 °C
Porosity Mo 28
Permeability K 1.0x 1013 m?
Shear modulus [T 49x 10° Pa
Drained bulk modulus Kae 7.1x 10° Pa
Macroscopic solid thermal conductivity 14, 42 Wm*C)"!

Table 4.6 Physical properties for Berea sandstone. The constituent properties are
sssumed 10 be those of quartz and the values of the macroscopic properties are similar %o
those of a consolidated Berea sandstone.
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Property Symbol Value SI units

Density Pt 1.21 kg/m?
Bulk Modulus K A
Shear viscosity My 1.8x 10¥ Pas
Bulk viscosity & 3.5x 103 Pas
Specific heat c 1000 J(kg°C)"
Thermal expansion ay 3.4 x 10 oC!
Thesmal Conductivity K¢ 2.5x 102 w(m°C)"

Induced mass P12 0.1 kg/m3
Coefficient of heat transfer ¥ 1.0x10'2 W(m*C)"!
conductivity ki, 2neke (4x10%) WOy

Swagnant effective thermal conductivity  Keer 2.4 W(m*C)"

dependent on the pore fluid.



Symbol

Density
Bulk Modulus

Shear viscosity

Bulk viscosity
Specific heat

1ismﬂeqﬂmhn
Thermal Conductivity

Fluid constituent
Pr
K¢

Me
&
c
ar
Ky

1.8x10°
1000
5000
1670

30x 104
0.1

kg/m?

Pas
Pas
JkgeC)”'
QC' ]
wme)"'

-82.5
1.0x10"12
%hﬁ(amn
?

Table 4.9 Physical properties for bitumen and the properties of the porous medium
which are dependent on the pore fluid.
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cfﬁeqmy mm“hmtygfﬂievm;nm.fmﬂgdmdiﬂmtm
sets considered, are presented in table 4.10. The phase velocities of the 1st P wave, 1st S
wave and 2nd S wave are found to be approximately constant in the frequency range of 0 -
1000 hz. The actual frequency dependence of the 2nd P wave is shown in figure 4.4. For
the frequency dependence is similar.

Fluid Ist P wave 1st S wave 2nd P wave 2nd S wave
—_—— (&) —mis) {m/s) (m/s) -
Water 2857.0 1479.8 [0.1-26. S] 24

Air 26189 1570.0 [0.2-6.5) 35.8
Bitumen 2806.6 1480.7 (0.002-0.08] 7.9

Table 4.10 Phase velocities of the various seismic waves propagating through a porous
mdimutmﬂdwiﬁﬂi:miﬁedﬂnﬂ. lfﬂnenmﬂei:ﬂj ificantly dispersive, the

The attenuation and 1000/Q of the 15t P wave as a function of frequency for the waser,
Hm.mdﬁrﬁllﬁlam.ﬁenho“inﬂm45 figure 4.6 and figure 4.7

octively. All three cases show an increasing attenuation with frequeacy and a 1000/Q
mm, roximesely linearly with frequency. In the water and air filled cases
there is significant relative motion between the solid and fluid theroby making the Darcian
resistance the important attenuation mochanism. In the bitumen case, due 10 its high
vheuhy ﬁnﬂﬂnﬂﬁemhﬂanﬂvﬁylﬂgwwﬂﬁum
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The attenuation and 1000/Q of the 1st S wave as a function of frequency for the water,
bitumen and air filled cases are presented in figure 4.8, figure 4.9 and 4.10 respectively.
The frequency dependence of the 1st S8 wave is similar to the 1st P wave and the
mechanisms mponﬂble in each case are die same as discussed for the Ist P wave.

Altlm;h the ina:lunim respm:ible are tlle same and lhe fmqngncy dependencs i:
similar, it is interesting 10 calculase the ratio of 1000/Q for the 1st S wave to 1000/Q for the
15t P wave. In the water filled case a large ratio, ~13, is obtained whereas in the air filled
case the ratio is ~1 and in the bitumen case the ratio is small at ~0.7.

The attenuation and 1000/Q of the 2nd P wave as a function of frequency for the
bitumen case is presented in figure 4.11. The frequency dependence of the attenuation is
different than the 15t P and S wave; however, the 1000/Q still increases in a linear fashion
with increasing frequency. For the case of the water (figure 4.12) filled porous medium

the 1000/Q of the 2nd P wave is different in that it decreases in an approximate lincar
mmmm hdﬂl&ﬁﬂdm(ﬁm4lz) lm:lfﬂr,hﬂl’

nmwnmmﬁmm ﬁizﬂmkumﬁdﬁ:

wmﬁpﬂ%ﬂhmm, ’,jf:,;pnmmmnnu:
4.11 mmdmmmmmmmmmm

of the 1t and 2nd P wave is increased by less than 1%.
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Fluid 1st P wave 2nd P wave 3rd P wave 4th P wave
I (mA) (m/s) (ms) ()
Water 2857.3 [0.1-26.6) 0.6 [0.003-0. ()S|

Air 26189 [0.2-6.5) 133.3 {0.006-0.20)
Bitumen 2807.3 {0.005-0.2) 0.7 0.003-0.08)

Table 4.11 Phase velocities for the various seismic P waves propagating through a
porous medium saturated with the specified fluid when thermomechanical coupling is
included. If the mode is significantly dispersive, the numbers in parentheses are the range

of phase velocities for a frequency range | - 1000 Hz.

(l?l?b)inmdm;l ltdﬂimaﬂemnmhﬂ waves l!ll it mummmn
significantly 10 the attenustion of the dilstational waves. The significance of bulk viscosity
in a water filled sample is illustrased figure 4.14 which shows atienuation as a function of
frequency for various ratios of bulk 10 shear viscosities. The effect of bulk viscosity is
Wfﬁmﬁgmﬁlmhdﬁsmfﬁhﬁmiﬁlﬁhmmhuhﬁ
pacies. This small effect of bulk viscosity is due 10 the fact that water is fairly
compressible and since it has a small shear viscosity it may flow before it actually
compresses. In the case where the fluid is highly viscous, as for bitumen (figure 4.15),
although it is fairly incompressible its viscosity impedes it from flowing and the effect of
bulk viscosity is much larger. To further illustrate the coupling between flow and the
bulk 10 shear viscosity for various permesbilities. Normalization is carried owt with respect
10 the attenuation when the bulk viscosity is assumed 10 be aero. As the flow is restrictod,
i.c. small permeabilitics, th= aticaustion increases as the ratio of bulk 10 shear viscosity

xompressibility of the frams also has an effect on the role which bulk viscosity
ﬁyi ﬁi&l?hiﬁﬂmm“hmdﬂﬁﬁ
viscosity for various values of drained bulk moduli. In this graph “wacon ' refers
E;h“diﬂﬂﬂ.ﬁﬂmhhm“hﬁm




and "highly consolidated” is a drained bulk modulus equal 10 the weighted by volume
fraction of the solid component (Kye= (1-N)K,). As the frame becomes more
compressible, the fluid must support more of the deformation as the wave passes and will
therefore compress by a greater amount and due to the bulk viscosity the atienuation will
increase. This is illustrated in figure 4.17 by an increase in atenuation with decreasing
drained bulk modulus. The change in attenuation due 10 the extra compressibility of the
Mismmhmﬂgeﬂﬁdm;ﬂgﬂuuﬂmthﬂ;mﬂ&
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4.14 Auenustion versus frequency for the 1st P wave for several ratios of
viscosity 10 shear viscosity. Water has a measured viscosity ratio of 2.3,
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.18 Aunenustion versus frequency for the 1st P wave for several ratios of
ty 90 shear viscosity. The effect of bulk viscosity is much larger than for
itumen has a measured ratio of 5 but is strongly temperature dependent.
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introduction of a material shear modulus was conducted i section 4.4. As a conssquence
of this goneralization, there appeared an additional term ia the equation of motion for the
fluid which only vanishes if jipg= (1-Mo): and it should contribute 10 attenuation of the
waves. The introduction of the maserial shear modulus affects both dilatational and
rotational waves. The phase velocity and atsonuation, as a function of normalised maserial
shear modulus, of the 15t P wave, st S wave and 2nd P wave propagating in a water filled
sample are presemted in figuses 4.18, 4.19 and 4.20 respectively. The phase velocity of the
Ist P wave and 1t S wave increases dramatically with increasing maserial shear modules.
The increase in the phass velocity of the 20d P wave is loss substantial. The attonuation of
the 1t P wave exhibits 2 minisum in the low material shear modulus segime and incrensss
continually aferwends. Civen that the sasursting fiuid is waser, the sttenustion is conwolied
by the relative motion of the fluid and solid. Making the solid more rigid will couss larger
selative motion betwesn the component phasss thessby incrsssing the ansaussion of the 1at
P wave. The attonustion of the 1t $ wave increasss with decressing material shear
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modulus. In the low maserial shear modulus regime the attenuation increases very rapidly,
which is not surprising since this mode must vanish as the shear strength of the maserial
modulus; however the increase is not as rapid as the 13t S wave.

The 13t S wave attenuation versus frequency for three values of material shear modulus
is presented in figure 4.21. The associated 1000/Q is shown in figure 4.22. Here "rigid”
refers 10 maserial shear modulus value equal 10 a weighted by volume of the solid portion
(= (1-Mp)084), “actual” is the value in table 4.6, and "compliant™ refers t0 a small value of
much larger increases are observed for a compliant sample. Quite interesting is the
behavior of 1000/Q. Although the attenuation is a strong function of material shear
modulus, 1000/) increases with frequency but does not appear to have the material shear

Saturating the porous sample with a viscous fluid reduces the amount of relative motion
pﬁvﬁynﬂmcﬂﬁlnrmnl, gmmm
ependence on material shear
nﬂuhﬂiﬂ:nhmﬂhﬂm(ﬂm“!}. ﬁmﬁ;hmh
much different. For the bitumen case, the attenuation decreases with increasing meserial
shear modulus which is opposite 10 what occurs for the water filled case. As mentioned
My.ﬁlﬁﬂiﬂﬁ%hﬂﬂﬂﬂﬂmhﬁﬂw By
shearing of the fluid which in tura would cause a reduction in attenuation. The presence of
& viscous saturating fluid on the 1st S wave is illustrated by a graph of attenuation and
phase velocity versus normalized material shear modulus (figure 4.24). The dependence of
phase velocity on maserial shear modulus is the same as in the waser filled case ( figure
4.19). The atscauation as & function of meterial shear modulus is also the same as in the
bitumen filled case, the sttenuation increase at low material shoar modulus is much faster.




115

Velocity (mvs]
:

00 02 04 06 08 1
B/ (-0,
Figure 4.18 Phase velocity and attenuation of the 15t P wave versus a normalized

material shoar modulus. Saturating fluid is water and the frequency is 100 Hz.
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Figure 4.22 Inverse Q of the 15t S wave versus frequency for three different value
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maserial shear modulus. Phase velocity | iscs and the atienuation tends 0 zero as
e ; ,,jﬂuidi;htmnllﬂmeﬁqmyu 100 Hz.

In order 10 obtain a complete set of equation
waves de la Cruz & Spancs (1989b) introduced

where 8, and &; are dimensios arameters. [t was argued (see section 4.8)
ﬁ-ﬁlnﬂnhlmm;:i“f:',ﬂﬂﬁﬂeﬁhﬁd&.m&win
depead oa the process conside Previous numerical studies (Hickey, 1990) have
m&ﬂ&ulmmdvﬂSGEMMEMyﬁ,’ tions
Eh@mmﬁ:ﬂmkm T!mmmu
usually a drained bulk modules mees
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Assuming this unique unjacketed behavior, the sensitivity of the phase velocity and
attenuation of the 1st P wave and 2nd P wave to variation of values obtained from drained
static experiments, as estimates for 8, and &y, are presented in figures 4.25 and 4.26
respectively. The drained bulk modulus has been normalized by volume fraction times
solid component bulk modulus, and the ratio corresponding to the actual measured K is
about 0.2. The phase velocity of the 15t P wave increases with increasing drained bulk
modulus in a near linear fashion. The 135t P wave attenuation shows a minimum in the low
dnained bulk modulus regime and then increases with increasing drained bulk modulus.
This type of 1st P wave attenuation dependence was previously noted for variations in
material shear modulus (figure 4.18). The 2nd P wave atienuation decreases and the phase
velocity increases when the drained bulk modulus increases. The attenuation of the st P
wave as a function of frequency for three different values of drained bulk modulus is
modulus. No variation in 1st P wave velocity with frequency is observed for the three
different values of drained bulk modulus.

2010*
1 1.510% >

1.0 104

4s0107
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mre 4.26 Phase velocity and attenuation of the 2nd P wave versus a normalized
drained bulk modulus for a frequency of 100 Hz. Saturating fluid is water and the
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The presence of a viscous saturating fluid changes the dependence of the attenuation on
drained bulk modulus. Figure 4.28 shows the phase velocity and attenuation of the 1st P
dependence is considerably different, as compared to the water filled case, in that it
docreases with increasing drained bulk modulus. Again, this change in attenuation
dependence when the saturating fluids are changed is very similar 10 what occurred with the
material shear modulus as previously discussed sbove. It is not totally surprising that some
similarities exist in the dependencies of the P wave phase velocity and attenuation on

oy — — 2.5 10°
2010°
1.5 10°

1.0 10°

;-] wonemeary

5010

YTt rrrrryrrrerm
01 0203 04 05 06 0.7 08 09 1

Ky, / (10K,
“m!’hﬁ.

as the frame becomes less cc
is 100 Hz.

In the sbove calculations of 8, and &y using the drained bulk modulus, it was assumed
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is therefore of interest 10 examine the sensitivity of the P waves 10 variations of unjackesed
bulk modulus. Figure 4.29 illustrates the dependence of the 15t P wave phase velocity and
attenuation to variations in unjacketed bulk modulus. A lower bound on the unjacketed
bulk modulus is required which is

Koc € (1-N0)Kuw - @7

The phase velocity decreases when the unjacketed bulk modulus decreases from a value
oqual 1o that of solid bulk modulus. The overall change in velocity over the range of
unjacketed bulk modulus considered is about 10%. The attenuation behavior is more
compilex. Decreasing the unjacketed bulk modulus causes a small initial increase in
attenuation. Decreasing the value of unjacketed bulk modulus to less than SO% its
maximum causes a very fast decrease in attenuation. The 2nd P wave phase velocity and
attenuation are shown as functions of unjacketed bulk modulus in figure 4.30. The phase
velocity decreases when the unjackesed bulk modulus approaches the solid bulk modulus
value. An ovenall change of about 20% is observed. Lt is interesting 10 note that increasing
the unjacketed bulk modulus causes a decrease in the 2nd P wave velocity, but that
increasing the drained bulk modulus causes an increase in phase velocity (figure 4.26).
Similarly, the atcauation of the 2nd P wave increases as the unjacketed bulk modulus
increases, whereas in figure 4.26, the attenuation decreases with increasing drained bulk
modulus.

The dependence of the phase velocity and attenuation of the 15t P wave on unjackesed
bulk modulus whea the saturating flusd is highly viscous, i.c. bitumen, is shown in figure
4.31. The phase velocity depeadence is similar 10 the water filled case (figure 4.29). The
attesuation decreases with increasing unjackesed bulk modulus. This dependence is
opposits 10 what is cbeerved in figure 4.29 for a water filled sample. This dramatic change
in anenustion dependence when the viscosity of the fluid is changod has also been cbeerved
for the drained bulk modulus and the maserial shear modulus and the same explanation may
bs weed heve.
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Figure 4.31 Phase velocity and attenuation of the 1st P wave versus normalized
sted bulk modulus. mlﬂﬂduhnmnﬂfmmklmm

MﬁnthmﬁmL& ltq:pnnindgf,;, h whiehupm
the momentum transfer between the fluid and solid across the solid-fluid imesfaces during
wave propagation. Givea the condition that the wavelength of disturbance be orders of
magnitude larger than the pore scale, de la Cruz & Spanocs (1985, 1989b) sugpest that the
mmmmbmm:mﬂ;hmm lnt:lm
frequency regime (Biot, 1956b) the fluid-flow is Poissuille typs and the Darcy permeability
is adequate. Ia the high frequency regims (Biot, 1936c), the Nuid-flow is not of the
Poiseuills type and the Darcy permesbility is not adequate. In order 10 quantify the

tion of these two regions a “viscous pensiration depth” (Warner, I!ﬁ)hﬁﬂ,ﬁ
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8'%F @1

It is argued that the fluid is viscously locked to the solid matrix if it is within a distance less
two regimes, defined as the frequency at which the viscous penetration depth is equal 10

h-—— (4.78)

attonuation of the Ist P wave and Ist 8 wave are shown in figures 4.32 and 4.33
wave is cbesrved for a permesbility neer 10-'* m2, ‘l‘hphnnhﬁyﬂﬁﬁm
vﬁydﬁ lanthﬂﬂlﬂ'*f noability Mhhﬁﬂ!i
mhvﬁyﬂﬁln!mhﬁ-ﬂhﬂhﬁiﬁi srmeability regim
The maxisum in attenuation and abrupt changes in velocity corresponds 0
hmnl’)vﬁl-ﬂ*haﬂmm&_
as the disturbance, i.e. 100 Hx. Therefore, according 10 Biot (1956¢) the fluid-flow is not

dhmwhmvﬂ_mi—m“ﬂﬁﬁm
prmsability is not adequate. Ia the more typical permesbility rangs, 10712 10°15 m3,
-ﬁh-ﬂ-ﬁhhﬁyq_hﬁﬁ-ﬁﬁnﬁmﬁ
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1st P wave (see figure 4.32). The 2nd P wave vanishes in the low permeability limit since
its phase velocity tends 10 2er0 and its attenustion goes 10 infinity. This is because the solid
and fluid are viscously locked together in the low permeability regime. A large increase in
2nd P wave phase velocity, mhuﬁdl@mﬁ.mn:pﬁwqaﬂﬂ'“m’
As meationed previously, this permeabilit sponds 10 the transition between Biot's
bﬂndhpfmymm Famhﬂtyvﬂumﬁﬁl(r“mzmﬂﬂ

The frequency / permeability effect on the crossover frequency as observed from phase
velocity and attenustion of the 15t P wave is shown in figures 4.3 and figures 4.36. The
magnitude of the change in phase velocity of the 1st P wave, associated with the mass
mhmethﬁmEyhlﬁmddmmhiMﬁ
larger frequencies for smaller permesbilities as displayed in figure 4.35. Major changes in
m“gnﬂmmmtﬁ)—im&nm,m
the changes 10 move 10 higher frequeacies. This behavior is simply due 0 the fact that
and solid 10 becoms decoupled.

wrating the sample with a less viscous fluid, e.g air, causes the attenuation peak of
ﬁln!m(@dﬁﬁln!m(@4ﬂ)mmnﬁﬁ
permsability value 108 m2, Therefore, a crossover frequency of 100 Hz for the air filled
sample requires a permenbility of 10° m2. The changs in Ist P wave phass velocity is
_lrﬁ-hﬁmﬂﬂdm The phase velocity of the 1st $ wave shows no
cornibls changs. Kk should be noted that the crossover frequency as modelied by Biot
(Iﬁ)EMbhlﬂnﬂHMEﬁiﬂydmﬁﬁH

chasacterized by differont fluid-flow behavice. In the low frequency regime the fiuld is
viscously locked 1 the solid frams and thesefoss the phass velocities ase lower dus 10 the




jonal drag force and higher effective mass. In the high frequenc

ﬂﬂnmﬂddﬁyﬁﬁnﬁhﬁdwmﬁnlmmbﬁm

velocities are observed. Other recent models (Dvorkin & Nur, 1993) have been proposed
mvinr Eﬁhﬁiﬂ@vmﬁnﬁﬂﬁmdﬂmiﬂwlﬂﬁqﬁﬁnlhﬁm ﬁglmg

mumm&unmmnq@ummmnmhMMm
10 equilibrase and the fluid is in a relaxed state. The characteristic frequency in these
iﬂﬂIhdﬁmﬂuﬂmmm}fGEhmwhiMMhﬂﬂl
increasing permeability. This is the opposite as what has been shown here. However, the
m&:mmﬂQmm One must remember that the values for compliances
of the porous medium, i.e. §,, &md M, have been obiained from quasi-static
measuroments which do not incorporate relaxation. The relaxation phenomena in the work
d‘Mﬁle(lm)mbmruhﬁhmnmmm&Lmﬂ

&. The macroscopic shear modulus will not be altered by the work of Dvorkin & Nur
(1993).
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The induced mass coefficient is introduced to account for inertial coupling between
phases. A large amount of work has been published which links the induced mass
coefficient 10 a parameter characteristic of the solid frame, known as tortuosity (see section
4.5). In most cases this tortuosity parameter must be calculated from wave propagation
data. Given the expressions developed in the literature for the induced mass coefficient it
appears that a conservative range of values would be

NPt SP1250 . 4.78)

The 1st P wave phase velocity versus frequency is displayed in figure 4.39 for three
different values of induced mass coefficient. The induced mass coefficient values
mmnm median, ndwpsvﬂngufﬂgm“(d'ﬂ) 'nl:pllue
than 1%. The change ia phase velocity occurs due 10 the unco d‘ﬁsnﬂlﬂmﬂi
10 the phase velocity the anenuation increases as the frequency approaches the hundreds of
2610, mmﬂmmw;fmﬂﬂw“hm ”””
(4.78) for a frequency of one megahertz.

'IHMMﬂm&blnSm“ﬁtuhﬁn“
of induced mass cosflicient are shown in figure 4.41 and 4.42 respect . The phase
vﬂymhhﬁﬂﬁwmﬂhmn“ﬁv&ud
induced mass coefficiont closer 10 2er0. The attenustion also sases in the high
frequency regime. ﬁm:xm:nﬁ-uhmnwhnhﬁhh
m_mﬁinﬂn-nnm-ahbﬁHﬁdhm_

officient. The phase velocity and ansaustion of the 2ad P wave versus frequency for
h“ﬂhﬁﬁ“m—hhhm-imm
Decressing the valus of the induced mass cosfficient canses 2 20% increase in anenuation
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For an air filled sample, i.c. less viscous saturating fluid, the dependence of the phase
velocity and atienuation on frequency is similar to the water filled sample; however, the

The coefficient of heat transfer, v, was introduced when thermon cal coupling
was accounted for. It is only present in the description of the dilatational waves. Its effect
on the phase velocity and attenuation of the 15t P wave is illustrated by figure 4.45. This
figure shows the normalized attenustion and normalized phase velocity as a function of
wcfﬁdmdhmmuaﬂmﬂndnqkﬂlﬁqmdlm}h The
phase velocity and attenuation are normalised by dividiag by the correspo values
without thermomechanical coupling; the later values are referred 10 as mn-dlmnnl The
mmw.mmmmmmmmmm-nﬂ

heumvdule'\V(m"C) For coefficient of heat transfer values less than
lo'W(m"C) lhcmhwm;uuﬂlhd:m For values larger than
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i’:iﬁmqliuwnlthdgnﬁbhﬁmmuﬁ
m—mmmm, sraction of the phases due 10 heating and
mnmmummuummma
the phases. Figure 4.46 shows the 15t P wave phase velocity and attenuation (normalize
with respect 10 non-thermal values) versus the fluid thermal expansion, aty. Both the phase
velocity increases by about 6% whereas the attenuation increases by about two and a half
phase velocity and normalised atsenuation of the 15t P wave versus solid thermal expansion
hﬁnhﬁmhﬁ Here, the phase velocity increases by about 12% and the
,,mwmm;gm-ﬂumm;mmm

1 , —r—y—r——r—y | _
3.0 104 uur‘ 12 ur’ 23107 3010°
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The gencralization of the macroscopic heat equations in section 4.6 introduced two
show no changes in attenuation or phase velocity due 10 variations in macroscopic fluid
thermal conductivity or macroscopic solid thermal conductivity. The coefficient of heat
transfer was adjusted 30 that the thermal solutions differed substantially from non-thermal
solutions; however, 8o changes in the phase velocity and attenuation of the 15t and 2ad P
waves were observed due 10 variations in the macroscopic heat conductivities. ﬁlly
different values of solid and fluid thermal expansion were used such that thermomechas
coupling was important. Aﬂ.h”mnvﬁ“hmm-i
attenuation was observed due 10 changss in solid and fluid macrosce
conductivities.
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4.11 Conclusions

The theory for wave propagation in porous media developed by de la Cruz and Spanos
(1985, 1989b) is based on the fundamental equations governing each component at the
pm:eﬂa Assuming the structures are much smaller than the wavelength of disturbance,
he macroscopic equations are obtained by volume averaging the component equations and
appropriate boundary conditions. The system of equations (4.63) to (4.71) displayed in
section 4.8 differ from the system of de la Cruz & Spanos (1989b) in two respects.
Firstly, the fluid bulk viscosity is now included. Secondly, macroscopic shear modulus
jin and heat conductivities i}, Kf; are introduced as phenomenological perameters (but are
mhhuﬂmhmﬂmmqmm) The complete set of coupled
MACTOSCOPIC equations now contains eight empirical parameters, namely; permeability, K,
hﬂuedmmfﬂdmgp;;.:dﬂmﬂmfw 8, fluid compliance factor, &,

pecopic shear modulus iy, heat conductivities . x{,, and the coefficient of heat

transfer, .

mmammhmmmmdmnmmm
nponents and the coupling between the two. For the cases studied, thermomecha
mnmmah,,; -dmwhchynmem.dmp
wave. The phass velocities of the 1t S and P waves ase froquency independent, within the
ﬁ—cymp(&lmﬂx).ﬁrhﬂm The attenuation of the 15t S and P
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mﬂafuhﬁmﬂmﬂuﬂm“ﬁ; mmm“uﬂmddn Ist
mﬂgvhmdqﬁmm;ﬂuﬁ

Utilizing quasi-static experiments, the solid compliance factor, 8,, and fluid the
mumgfm &myh detormine ﬁmmmﬂ:mmmmm

m&uhmﬂmdﬂnmﬁdﬁuﬂﬂclﬂﬂummifﬁ

sufficienty similar. Numerical simulations show that significan mhmmg
and attenuation occurs when the drained bulk modulus deviates from the quasi-static value.
Gimglinmgnnﬂmﬂﬂielquivemmchnﬁinmm&mdﬂmh
spendent on the viscosity of the saturating fluid. Another assumption commonly used in
klﬁmhhhwhﬁmﬂﬂu&hmwlﬂhh&m
of the solid component. Such an assumption greatly simplifies the problem because now
one only requires a measurement of drained bulk modulus. Numerical calculations show
ﬁnhphnwhﬁy ndm ' ﬂhdﬂlﬂuﬂmnmmﬂﬁnh

: '_ﬂﬁdmm

mmmhmmm’mmb’ ermeoat
the casos studied. Mhmvﬂlﬂh“hhmmm
m_mp.,mm_—_nmhmﬂw‘m

pomponent conduction coefficient, ¥, is only present whea therme
ﬂhmm ijfﬁ“ﬁmdﬁrﬁhhﬁ
MﬁthEﬁﬂm mmnﬂm
emperntuses are equal is dependent on this parameter. Generalisstion of the heat equations
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introduced the macroscopic heat conductivities K}, and x{;. These two parameters appear
unimportant with respect 10 altering the phase velocity and attenuation of the dilstational
waves.

It is natural 10 seek connection with Biot's theory. This was done in section 4.6 . In
particular the consequence of assuming an energy potential in the sense of Biot (1941) was
investigated. While this assumption appears t0 be a useful approximation in specific
circumstances, the consequences are much more restrictive than were previously cited.
This restrictive nature becomes evident if quasi-static measurements are used for the elastic
cosfficients in the wave propagation theory. It appears that the expressions for the elastic
coefficients in terms of measurable quasi-static values given by Biot & Willis (1957) are
only valid in the case where Cy=C,.



CHAPTER §
SEISMIC WAVE PROPAGATION FOR PERMEABLE MEDIA
CONTAINING TWO FLUID PHASES

5.1 Introduction

e;p:idlylnumeimmm wﬁeﬁemﬂudﬂmmﬂuﬁim
antially (Hickey e al., 1991). In this chapeer, the form of the macroscopic equations

mmm&mmawnﬂnﬁm:ﬂmmﬂdmndm

influonce on scismic wave propagation is examined. The motivation for this study is that
mnMMhﬁhmHMMMmmm
fluids, such as water, oil and gas. One of the fluids may be at conaate or irreducible
saturstion under certaia coaditions. mmmmwﬂh-ﬂu
ﬁmt.hnyhf ’[;fjj-veudbyﬂaﬂhm Another interestin

mmmmmmﬂmmmm
These include many types of groundwater contamination, such as the seepage of oil (the
two fluids are immiscible) into an aquifer. Other processes which are related 10 the
production of oll and gas are, for example, initial pempiag of oll from a reservoir reduces
the rescrvoir presswse enabling gas 10 coms out of solution, secondary recovery techniques
ﬁtnﬂhﬁjaf!ﬂﬂifi;,ﬂ“wm;ﬂm

character (phass velocity and aenuation) of sound waves has beea studied in the

141
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hhmyﬁrgﬂimm Changes in phase velocity and atienuation of sound waves,
dumehnpin saturation, are observed to be greatest at very low saturations or near

Knight & Dvorkin (1992) measured various seismic and electrical properties of
sandstones at very low saturations. They contend that although seismic and electrical
properties vary with saturation throughout the entire range, the dependence at low
saturation is distinctly different than at higher saturations. They attribute the decrease in
velocity and rapid increase in stienuation (as measured by Pandit & King, 1979; Clark er
al., 1980; Murphy, 1982) of P-waves with increasing saturation 10 a reduction in grain
contact stiffness due 10 the absorption of water at the grain contacts. It is concluded that
this phenomenon exists over a range of saturations corresponding 10 the transition from a
&yﬁfﬂ.nhmbymm“m and then to the appearance of bulk

wgmmlgnuM)Mmz f;,;,]; elastic v
with saturation (water-air) during a continuc m'ﬁe
mmwy Vnﬂhﬁagmuhsity.vs.memmdy

B8ic mhlﬁkﬂﬁﬁmmh@kﬂg 'l‘ha:,,'i;
ﬁﬂlﬂlﬂhhmm&amdmm ﬁdbym;h
deionized water. A“mmd‘mhmmmm
For the drainags part of the experimont the saturation is aliered by drying the sample.
mm&m-mwmnmﬂnm&ﬁhﬂn
ascerwin waiformity of ssturation.

mm;mmvpmmy Dﬂumwm
down 0 sbout 40%. Below 40% sasurstion the velocities are similar for both imbiblsion
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Vs exhibits a similar dependence on saturation and method of saturating as Vp. The
values of Vg are similar for saturations up to about 50% water saturation for both
imbibition and drainage. At larger saturations, Vs values measured during drainage
imbibiton, Vg during imbibition increases sharply at a saturation of about 70%, it is also
noted that a sudden large drop in the amplitude occurs just prior to the increase in Vg and
Vp. This decrease is 50 large that it inhibited collection of Vs data in that range.

Khalatbari ef al. (1991) use the ultrasonic pulse transmission (1 MHz shear wave
transducer) 1o investigate the the effects of fluid viscosity and saturation on P-wave and $-
wave velocities in Fontainebleau sandstone. The P-wave data is obtained from S-wave
converted 10 P-wave. Thg aturating fluid is glycerol and the viscosity effect is modelled
by varying the temperature. Measurements are performed at 8 saturations ranging from
oven dry 10 100% saturasted. The P-wave velocity increases continuously with increasing
the fully saturated is ~35% larger than the dry value and appears 10 be indepeadent of
viscosity. The S-wave data looks similar 10 the P-wave data. ms-wﬁ:yﬂﬂiefuﬂy
MMH—ASEWFMM&?VQIEHW&BB,_,, endent of

Vo-Thanh (1991) measured the shear wave attenuation and velocity of s Berea
sandstone partially sasurated with glycerol over a range of semperatures (-80 °C w 80 °C ).
The range in tomperature is primary used 10 obtain a range of viscosities. The
being in the range of 1500 Hz 10 3100 Hz, at sevea discrese glycol saturations of 0, 13, 23,
36, 9 and 69%.

Vs showed a strong temperature dependence ¢
ﬂﬁ“mﬁeﬁ-“mm:mmm
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Yin et al. (1992) measure the effects of partial liquid/gas saturation on the extensional
wave attenuation in Berea sandsione. The resonant bar method is utilized 1o obtain

casurements on two samples with different boundary conditions (enclosing jackets), to
examine such dependence. Both samples have similar non-zero extensional quality factor,
Qg', which remains constant from 20% to 70% brine saturation (little data exist below
20%). At larger saturations a maximum in Q5 is observed. These maxima are strongly
dependent on the boundary conditions. The sample with a "constant pressure” boundary
has the larger peak and is located at about 97% saturation, whereas the other sample with
the "no flow" boundary has a smaller peak at a brine saturation of abowt 85%.

urements were also performed for increasing (imbibition) and decreasing
(m)mm During drainage a peak in Q' is observed at about 85% brine
saturation. The attenuation peak for imbibition appears 10 shift 10 a higher saturation
however the data are somewhat sparse. The explanation presenied was that the gas

Yin et al. (1992) also use the forced deformation measurement technique 10 measus
the froquency depeadence as well as saturation dependence of exicasional wave

ustion. The saturation dependence of Q' is similar 10 what is observed using the
resonant bar method. Basically Q' is constant for saturations between 20 and 80% with a
maximum in Q5 occurring noar the 93% saturation. Measurements made at 2000 Hz, 700
Hz, and 100 Hz illustrats a strong dependence on froquency. Firstly, Qp is larger at higher
frequencies for all satwrations. Secondly, the maximum in Qy' decreases dramatically with
decreasing frequency such that o maximum in Qg is observed frequency of 100 Hz.

ﬁﬁ-ﬂ(mmmﬁilmmm Am-plsdm
assuring small (10%) swrain amplitudes. “Young's” modull and shear moduli decrease with
incosasing water saturation from 0 00 50 % and are thon independent of water comtont.
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Several samples exhibit 8 maximum in Q' as a function of frequency. The peak
becomes larger in magnitude and moves towards lower frequencies as the saturation is
increased. No peaks are observed in the shear quality factor, Q;!, for these samples. A
quartzite sample has two peaks, one at low frequency and one at high frequency in both Q'
and Qi'. Both peaks increase in magnitude and the high frequency peak moves to lower

Bacri & Salin (1986, 1990) present experimental data, for an oil-water saturated porous
medium, which were collected using the ultrasonic pulse transmission technique
(frequency of 400 kHz). Velocity data are collected during drainage from 100% water
saturation 0 an irreducible water saturation of about 35%. The velocity decreases
ontinuously with decreasing water saturation. The change in velocity is about 10% over
the range of saturation. During the injection of water into a fully oil saturated sample
(imbibition) the velocity decreases with increasing water saturation. The velocity at full oil

imbibition aad “flow". In the flow technique brine and nitrogen are mixed prior w0
injection. A profile of the saturation along the sample is measured usiag an X-ray
mm It shows varistions in saturation, with larger variations at low
: ,1,*,,“&@&&&:@&6@& then the pore
mhiﬂ-ﬂibmmdhﬁ. The X-ray measusements show a more

Ultrasosic m sments are takea on samples which are dry, and at seven other
mmmmsmmﬁhﬁm For the Onawa sand sampls
saturated by “flow" the compressional wave velocity remaing fairly constant (~4100 Ahec)
up 10 about & $5% brine saturation where it increases very quickly 10 near meximam
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velocity (~6800 fi/sec) at 97% saturation. Measured shear wave velocities decrease
uniformly with increasing saturation from 2744 fi/sec for 0% saturation (dry) to 2628 ftsec
for 100% brine saturated sample.

The glass bead sampie is used to illustrate the dependence of the velocity on the method
of saturation, i.c. imbibition and "flow". The compressional wave velocity, at comparable
saturation (~935%), is larger when the sample filled by “flow” than when the sample is filled
by imbibition process. The shear wave velocity appears 1o be independent of the method
of filling. It is argued that when the sample is filled by “flow", the gas preferentially secks
the larger pores, whereas during imbibition the water and gas are more uniformly
distributed within the pores.

Although seismic properties vary with saturation throughout the entire range, the
dependence at low saturation is distinctly different from that at higher saturations (Knight &
Dvorkin, 1992). In the very low saturation range, rapid decreases in V), and V, and
associated increases in Q' and Q3! are observed with the addition of a small amount of
water. At incermediate saturations both P and S waves appear 10 have a similar dependence
on saturation, i.c. small decreases in phase velocity and slight increases in Q! with
incroasing saturation. At near complete saturation, the phase velocity and Q! for the waves
depead upon the method by which the sample was saturated. The phase velocities, for a
compared 10 values from a sample prepared by the imbibition process. The P-wave
appears 10 exhibit this process dependence more strongly than do the S-waves

approech is 10 wtiliss a theory for a fully saturated porous media, such as Biot (1956b,
l”ﬁc).-dmhhwwmumuaﬁhdﬂﬂm
and soms of ths macroscopic parameters with “effective” parameters (Domenico, 1974;
Whits, 1975; Dutta & Seriff, 1979; Dutia & Ode, 1979a, 1979b; Mochizuki, 1962;
Berryman & Thigpen, 196S; Berryman «¢ ol., 1988; Smeulders et ol., 1992; Prids ot ol.,
b“dhmﬂ”uwm—iﬂqm
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whereby the fluids are treated independently, with the use of some type of homogenization
scheme (Thigpen & Berryman, 198S; Garg & Nayfeh, 1986; Santos ¢f al., 1990a,1990b;
Hawkins & Bedford, 1992) or through micro-mechanical modeling (Mavko & Nur, 1979).
The goveming system of equations in these formulations contains numerous parameters
which are not well undersiood and experimental procedures for their measurements are
usually not presented .

In this chapeer low frequency wave propagation through a porous medium saturated by
two fluids will be discussed. First, an approximation will be obtained by using the
equations presented in chapter 4 and the assumption that the two fluids form a composite or
effective fluid. Suitable expressions for the effective parameters of the composise fluid will
be derived and the underlying assumptions clearly stated. Brief discussions about the
effects on various macroscopic parameters are also presented. This analysis is based
completely on descriptions obtained from volume averaging. Second, the governing
oquations will be derived for the general case of wave propagation through a porous
medium saturated by two fluids. Volume averaging is used 10 construct the basic equations
and the approach paraliels that of chapter 4 (sce figure 4.1). The expansion of the
intoraction imsegrals will be discussed and some insight into the paramesers introduced will

be given.

$.2 Compesite Fiuid Mede!

As spproximation of the dymamics of porous media saturased by two fluids can be
obtained by wtilizing a composite fluid model and the equations derived in chapeer 4. In
order 10 model the two-fluid mixture s a singie fluid, the fluid demsity, py, fluid bulk
wmodulus, Ky, fluid bulk viscosity, §s, and the fluid shear viscosity, ji¢, in the equations
pressnted in chapter 4 becoms repressatative “effective” parameters.

In the description of a porous medium saturated by two fluids, ssveral new

macsoscopic quansisies will emser the description nsmrally through the uss of the volums
averaging procedure and will be defined at the outset. The volums fraction of fluid | is
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ﬂ‘-%' ‘ iln 2;--- (5;')

where V; is the volume of fluid / within the volume V of porous media. For the two-fluid
by
N=M+n; (5.2)

The fluid saturation, denoted by 8;, which represents the volumetric proportions of fluids
is given by

s Vi o1 a
S; v i =1,2,. (3.3)

and is simply related 10 volume fractions through the porosity by
ni=ns, . (5.4)

inating equation (3.4) into equation (5.2) gives

S +8§;=1 (5.5)
which can be used 10 replace S; by (1 - S;) whenever it appears.
The deasity of the fluid will be expressed as
Pr=8ip1 +(1-8))p2 (5.6)

modulus will in general fall betwesn 10 an upper imit, KY', given by
KY = 8K, +(1-8;)K; (5.7)

and & lower lmic, K}, given by
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1.5 ,08)
K}' K, + roul (5.8)

Let us however, derive a unique expression, starting with the usual definition of fluid bulk
modulus

K;' =1 4Y1 (5.9
Vf Ap'

and assume that the volume averaged pressures in each fluid phase are the same, ie.

Pr=p)=p2 (5.10)

This implies that surface tension does not plays a significant role in the compression of the
two fluid phases. The change in total fluid volume may be written as

AVi= AV, + AV, S.11)

Substituting equation (S.11) into equation (5.9) and using the assumption of equality of
pressures (3.10) yields

-1 _-14V; 1 AV
M Ve -

Utilizing equation (5.3) and the definition of the bulk modulus for fluid one and two,
equation (5.12) gives

-xl;-%?%ﬂ (5.13)

which is simply the lower bound presented above. if serface tension plays a significant
role in the compeession of the fluid composiss, then the bulk moduius would be larger,
since addisional forces would bs sequired 10 deform the imserface between the fluids.
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When bulk viscosity is included the total fluid-pressure is altered. Assuming a time
harmonic deformation of the form el the total fluid-pressure is relased 10 the dilation of the
fluid as (trace of the fluid viscosity sensor)

K¢ = K¢ + i . (5.1%)

m“hﬁmkr tgmunmkmmmy

L .5, (1) (5.16)
K Ky K;

The construction of a total effective viscosity for a fluid composise, with negligible
Udey & Spanos (1993). Their analysis begins with the oquations of motion (developed by
de la Cruz & Spanocs, 1983; others) governing flow of two immiscible fluids

TP TR 517
i | K|2!2 VPI (5.17)

l't‘; .,-ig. =-VP, (5.18)

“mmhmmmignﬁcﬂﬂm-itgn—ﬂ
ﬂﬁhnﬂﬂhﬂh“ﬂmﬂm Aﬁ;hmﬁﬁ-
(5.10). Wich such an assumption Udey & Spancs (1993) show that
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. 5 W «
Kiz WKz (5.19)

Furthermore, assuming that only fluld one contacts the solid matrix, Udey & Spanos
(1993), show that

1 .81 (5.20)

, ll (5.21)
d

S W 1 EE_J_ (5.22)

where A and B are functions of saturation and K is the absolute permeability. Therefore
88 that surface tension is negligible and that only fluid one contacts the solid it is

pﬂenﬁﬁﬁmmﬁ 17) and (5.18) in the form of Muskat's equations,

q=- !:"IIEVPI (5.23)

qr= - Kakyp, (5.24)

K = $,A(8)) (5.29)
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M2 o nes .
K= ﬂ—l $:A(S;) + B(Sy) . (3.26)
The t1otal Darcy velocity as given by Udey & Spanos (1993) is
= +q (3.27)
which can be written with the use of equations (5.23) and (5.24) as
- x(Ku s Ka)gp
. (m *uz) P (5.28)

total effective viscosity may be viewed in terms of contributions of two relative

% A(Sl) B(Si)

posfficient, py 2. is a macroscopic parsmeter which was discussed in
nﬁi_!i V-imnpﬂnﬁhm“mtmhﬁ
Nesraturs contais the fluid density and the fluid viscosity. To obtsin an estimate of the
induced mass coefficient the above effective fluid deasity and effective fluid viscosky
should bs used. This is a cruds approach and the models (or assumptions) used 10 obiain
the engressions for the induced mass cosfficient should be compared 10 the assumptions
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(8, and &) are to h determined from quasi-static measurements. In the drained
compressibllity experiments, the sample should be filled t0 the appropriate saturation and
with the correct fluid wetting the solid. Ammnmmmﬂmﬁ
not be used as the drained bulk modulus. The usual hydrostatic compression assumy

K(1) = K, (3.31)

compression experiment. This type of measurement will at least incorporate changes in

lthﬁﬁl:lbmﬂgn,,,;,,t,,jmmmmmmd
the solid metrix are not sufficient conditions for writing the two interacting flulds as a
singls fluid. An uaderlylng sssumption must also be mads with respect 10 the relative
map—anmnﬁhmwm Givea the different
sibilities of the fluids we are no more justified in using the effective fluid

timation than we would bs 10 write the interacting solid and fluid continua prosented

acroscopic equations governing ssismic waves in porous media should reflect the
“ﬂ“ﬂﬁmﬂdﬁm Honos in attompts
nmh“kﬁ“nnﬁhn“mﬂhﬂ

m Hﬁﬁiiﬁ“ﬁh@:l_ﬂm lﬁ)
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proposed a system of equations for low frequency seismic waves propagating in
homogeneous porous media saturated with a single fluid phase. These equations were
further generalized and presented in chapeer 4.

The porous medium considered in this section consists of a homogeneous isotropic
elastic solid and the pore space is filled with two immiscible viscous fluids. The pores are
assumed to be of random sizes, shapes, orientations, and orders of magnitude smaller in
scale than the wavelengths of the waves being considered. The three components are
assumed (0 be microscopically homogeneous as well as macroscopically homogeneous in
that the unperturbed proportions of the three phases do not vary with position.
Furthermore, the porous matrix is assumed to have a uniform porosity at the macroscale
and the fluid phases are assumed 10 be uniformly distributed in order 10 avoid the additional
macroscopic parameters which are required when porosity gradients or saturation gradients
are present. The deformations will be assumed such that thermomechanical coupling can

be ignored.

$§3.2 Velume Averaging of Pore scale Equations

The steps required 10 formally recast the pore scale equations in a macroscopic form,
using the volume averaging techaique, as outlined ia chapter 2, are given. In the equations
a subscrigt or bracketed superscript 1 will correspond 10 fluid one, a subscript or bracketed
superscript 2 will correspond 10 fluid two, and a subscript or bracketed superscript s, will
correspond 10 the solid material which makes up the porous skeleton.

New macroscopic variables which emer the description aaturally through the use of the
volume aversging procedure were discussed in section 5.2. For example, the volume
fraction of fiuid one, 1)), enters in the relation betweon two averaged quantities obtained

through volums averaging, namely
@)= . (5.32)

In fluid flow experiments it is common 10 use saturation, which is relsted 0 volums
fractions thwough the porosity as given by equation (5.4). In the case considered heve the
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porosity will vary due 10 the fact that the frame is deformable and therefore volume
fractions will be used.

The volume average of the continuity equation for fluid one is

{’_] (%*V'(Pl'i))dviﬂ . (5:33)
v

Applying the theorems (2.4) and (2.5) to equation (5.33) yields
ﬂ"'] P dv]“"] piv'n dA--L[ P1viw dA
v v v],
) ¥a Ais (5.34)
*v{ll""‘) dV]+J_I Pivi® dA-t-ll Pivi'n dA=0
J JA12 A

where A is the surface area between fluid one and fluid two, and Ag is the surface area
between fluid one and the solid. In this case the ares insegral terms which arise from the
(2.1) and (5.32) one obtains
b1 + 21 =0 . (5.39)
& 3, P .

keeping only first osder terms, equation (5.35) may be rewrinien as

vﬁ%iwprgm MotV ¥ =0 . 5.36)
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P2+p3—M2+njp} V¥V2=0 . (3.37)

¥l
:W__Lm

For the solid phase the volume average of the continuity equation is the same as in chapter
4, i.c.

_I'P: ﬂ’ﬂn _r 14
+V.v,=0 s.
R FA AL (5.38)

where 1| is the porosity of the deformed porous medium.

The definition of bulk modulus (with reference 10 an isothermal process) for fluid one
can be written for small deformations as

K= (—&gj (5.39)
| PY

Volume averaging equstion (5.39) and keeping only first order senms leads 0

azl

Taking the derivative with respect to time and substituting for the deasity using equation
(5.36), the pressure equation for fluid onc is

(3.40)

Rngs. - VL %m i (5.41)

Al

Similarty, for fluid two we have

S‘" V- %gm (5.42)
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and for the solid the pressure equation we have

e = ((',' 3 (5.43)

Applying the volume averaging procedure 10 the equation of motion for fluid one gives

p.— M = (e} - a%w-{,—] [(pr-PD 8w - o] an
o Au (5.44)

[(PI M -ty ’]ﬂkﬂA
Aﬂ

Mﬁﬁmmhm(SH)mﬂgfﬂm”(pﬁnﬂhvﬂm)m Erie 'ﬁi’l

mﬂﬁdmpﬂiﬂﬁm itisdn:ply;h;dyfmee(d:h&u&&m
19890).

() :&.iﬁﬁn*u{ﬁl@-gti}?h] +& %Lv}"-ﬁm

o8 [ '(I)M*n] I (v‘”n;i-v{" z&,,gn.’m

Ay
+|.nvl (v‘"g-t-v‘“ z&.vg“w .
A

(3.43)

Miqmﬂ“)ﬂﬂﬂ).“maﬂ)mﬁwﬂ

md’hm
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Similarly, the averaged equation of motion for fluid two is

(5.46)

—v‘ -hﬁ[ﬂ’#&m* l'z‘.* IAl] 'ﬁ;ﬁ* Fiiilgl

ﬁm avm a;(z) (5.47)
*+ lil 3!. ; l.k 2. + nl -

The volume average of the equation of motion for the solid (after linearization) is
(l-mb%%i'-&%[ﬂfﬂ-)ﬁ}h o H:‘z] 66

mmmnmquﬂyﬁ.nmmnu

microscopic equations and lincarizing. It should be nosed that in decompo -
nhﬁnﬂmﬂm@ﬁ)ﬂuﬂ)kﬂmimm Furlhe

mﬂummﬂmm“mmﬁmﬁm).tblm
decompositioas should produce ideatical results 10 first order (Eastwood, 1991). T}
mmﬂ“ﬂhﬁﬁhﬂmﬂﬁlﬂmmﬂﬂllm@!ﬂ
intograls. Thess area integrals represent the componen hmndgmm
inserfaces and therefore their evaluation will depend on the boundary conditic
scale.

(5.48)




The arca insegrals are subdivided into groups denosed by superscripts A, B, C. The
relative volumetric proportions of the phase during deformation. In order 10 account for all
hﬂﬁhﬁhhmﬁﬁhﬂuﬂhhmmﬂnlﬁﬁlﬁ.
mquhu&HlHﬂMﬂnﬂwﬂbyuj acoment u,
mnﬁmmlﬂmmﬁﬁ(ﬁh&u&ﬁuulﬂ)
Mmmmuﬁmhmmmqhm:m-mh

e =) W nBudA=nn,) . (3.49)
IN

For fluid two, the combination of area integrals 1£, and 14, covers all of the fluid two
mmvﬁmhnmﬂgamdumﬁﬂmmmm
over a surface element dA by the velocity v(2), therefore

l#.*-%--{,—[bvf”m-a?—a‘—’ : (5.50)

Similarty, in order 10 account for all the fluid one surface it is necessary 10 combing the
swrface ares in comact wish the solid, 1), and the surfacs area in contact with fluid two 1.

l‘.‘.q{,--‘l,-l ﬁ“lﬂnﬂ-a—;,“—' (5.51)
A ,,

The “B" group of asea integrals ase second rank wnsors that account for additional
shear siraing of the pesous material dus 10 poss structuss and component intesaciion at pese




hcroscopic shear deformation in fully saturated porous media, the most general

expansions would be

scale interfaces. Following the argument presented in section 4.4, for generalized

T8

jueel3E 55
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where the c's are dimensionless constants. If one assumes the no-slip condition at the pore
scale imerfaces, these integrals are not all independent. The relationships between the
various inegrals as a consequence of such a condition are given in table 5.1.

Fluid 1/ Solid v,--%gl [?. =- g l’l e(!mi 5‘1'"- egi)- iém‘
G{m- GS“)

Fluid 2/ Solid Vz--gl. g =-- % | ) oW D), g D),
cfte i

Fluid 1/ Fluid 2 vy=-v2 Nh=- 8 of1Vm fV), f1Da cf20),
1D {20

Table 5.1 Relationships betwesn area integrals as a consequence of the no-slip
boundary condition at the pore scale interfaces.

The sum of the issegral I, and 12, should represont the alteration in shear deformation of
the solid component, namely

M.,,,,.,{;L e g T
+(l-n.k('“*4";[§; 53:. 9‘%]

in chapter 4 thees terms msust bs 2050, hance

el (534

(3.33)
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cftVe 4 (5.5%)
Rooe Oonafetoce) B, BB 20,00

Substituting expression (5.36) into the equation of motion for the solid (5.48) and
combining shear torms one may define a macroscopic shear modulus, jy, 8s

ot = (1Ml 14t Dacs?) (5.57)
as was performed in chapter 4. An estimate of this m > shear modulus may be

mm.m&mmmmvﬁimmm

Using the relationships betweon the constants given in table 5.1 and equations (5.54)
and (5.55) the general expansion for fluid one is given by

Rele ﬁ“ o D a0
Muu 4:2;{ ;."'T‘TT n’e&“’-& 412){,5_‘;: + T.iﬁ 23, ' 11

PRI B
and for fluid two the gencral expansion is givea by,

B+ B Y i D
ww'{“‘ o T fug
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Substituting the expansion (5.58) into the equation of motion (5.46) for fluid one, the first

10 distribution) may be defined:
et = N1 (14<{s 1), (5.60)

The socond term represents the shear stress induced into fluid one due 0 the rase of
shearing of fluid two and the third term represents the shear stress induced in fluid one due
t0 the rate of shearing of the solid.

Similarly for fluid two, an effective viscosity 43, (due to distribution) is defined:
W) 8. 7124180, A(12) g
Mot = NB2(14cfV+ 4P (5.61)

To this point, the expansions for the "B" group of intsgrals may be written in a form
such that there is 8 minimum of four independent parametors introduced. These are '),
the fluids due 10 deformation of the inserface betwoon the fluids as a consequence of solid
is the same as presented in chapeer 4.

on the other across the interfaces due 10 any motion. Following Eastwood (1991) these
surface insegrals are decomposed in a more gencral form then originally considered by de la

=[P - V- GNP« o - o - V] s
B[P - - N oo - 3 o] e



1[N0 - VP - VT«

Ly —

= [@:n?? Q‘f”\ﬁ . Q‘.Z"v??] + ipg"gvgn ot u§@ . dzn%?]

- [  {3) ~{83) (1) ~l82). F, 8, a_?‘ (8 “m [ ) ai
15, = [ QAP - QDD . ] o [ 94 pf 2); (0. o2 ;vgz)]

on Q- VPP - QN [ 2 o220 - 2

o012 ;"f" _ pgma . P‘."’%Vf"]
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(3.62¢)

(5.62d)

(3.62¢)

(5.620

In order %0 obtain the total force per unit volume on the solid we must add the force exersed

E‘ﬁ*%

R0, QR D), @), (WD), (1)
= GV V- QNP ol oS- oS

Eiﬁi*ﬁi

= QY- N QP ol G - 130

K=5K+4

= QNP- QV("- QN o iR - o2

7,i7 M) ;l.ti!.‘.z
@ ;¢ ii=s512 1wk

(3.63)

(5.64)

(5.63)

(5.66)
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These forces should be invariant in different reference frames (Galilean invariance).
For example let us consider the body force represented by IS. If the reference frame is
chosen 10 move at say the solid velocity, V*), then IS is

6= - QT oA o0 HY- QHD (568
If the frame is moving at the fluid one velocity, V(1) then I is

e QA IR o0 B0 o020 o020 500

The two expressions (3.68) and (5.69) however must be oqual and the conditions imposed
on the cocfficients are

Q' =Q+ ¥ (5.700)

sed by IS and IS results in the following

oqualitics:

AP+ g (5.700)

P =QP+Q? . (5.70c)
P =P 4 p¥ (S.71a)

p(i“ - p‘i“ + p(z!’ . (5.71)
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Pu) -pi® 4 pd (3.71¢)

group of insegrals will introduce six Q's and six p's.

The conditions imposed between the various "C” insegrals due 10 continuity of stress st
the pore scale interfaces are summarized in table 5.2. The boundary condition between
fluid one and fluid two is for the case where the two fluids are miscible. For immiscible
fluids, this boundary condition is dependent on surface tension. 'I’I'iemi’fncelenﬂmi:m
mh scomposed in terms of the macroscopic veciors present in the macrosc
UMyﬁh ecom ,,,nﬂnindiempnﬂﬂmmlmfm
Wﬂﬂlm Mfm.ﬂ;ﬂmmhnnlhmmwmgmhu

The relationships presented in tabic 5.2 can be combined 10 obtain two additional

%’*%"*@’*Q‘,"!O (5.72)

Q-+ Q)+ QP =0 (5.73)

Assuming that surface tension is negligible does not aler the form of the eguations but doe
m&mﬂMQ’lnfmm&zlﬂdnhmﬂﬁp
(5.73). Similiar relations exist for the p's. For the remain *fdﬁgchlpu“will
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PudSold ohm= (00 pibulm e, GUeg?, QiVegi
qpu qm pP up(1®
(ll)ip(ll) p(ll)!. P""

Puid2/Solid ofm= [0 -puln  1G= -5, QVa?, Qi Vu-Qi™
Q-z)_q(:zn iﬂ)_p(i-)

(82)__.(20) _(s2)__(2s)

Py =P P =P,
, (D - , 3 3
Pluid 1/ Pluid 2° P 'P:‘;i;"‘ ;= -15, Qa3 Q(u)_qczn
[ 206k ) Mg
%ﬂ).qﬂl) (ﬂL Pg"
p(lll)-p(lil) p(u)-p(zn

Table 5.2 Relationships between ares iniegrals as a consequence of the continuity of
mmm:ﬁmﬂﬁm The conditions at the fluid | - fluid 2
interface are valid only if the fluids are miscible.

Selective adhesion between solid and one of the fluids is a fairly common observation.
It is of imerest 10 examine if such wettability of the solid can reduce the number of

indopendent parameoters in the above expansions. The assumption that the solid is in
contact with only fluid one requires that all 1,7 and 13, integrals vanish. This does not aleer
;g._-ge,-o (5.74)

eV edPa a0 . (5.79)



Condition (S.54) leads t0
o L ()
while condition (3.55) gives

'csm'c(z'"‘%‘;h’io -

(3.76)

3.7

The assumption that fluid one wets the solid alters the expressions for the effective

coefficients 10 be
pn = (1 - nold1 + )
we = (1 + ') |
and

12w nua(l + )

G“’-Q‘.‘I’:Q‘f:’sﬂ ‘
G"’-Q‘F’-@“’io .

peP = p M api? up

(5.7%a)

(3.78b)

(5.7%¢)

(5.79)

(5.80a)

(5.80b)

(5.80c)



PO w39 & @) L0 | (5.80d)

The constraints given by (5.80) do not reduce the number of independent coefficients and
we still have six Q's and six p's.

5.3.4 Conclusions

Volume averaging is used to construct a sysiem of equations 1o describe low frequency
wave propagation through a porous medium saturated by two fluids. The coatinuity
equations are reproduced exactly. Volume averaging the equations of motion and the

The arca imtegrals produced as a consequence of volum. averaging represent the
tonsors, and reprosent additional shear deformations due 10 the interactions and distribution
mﬂmun. m—qdﬂd'hvbguﬂinﬂxdym!bymd‘
hﬁtﬁm“h“ﬂhﬁpﬂmm mm“ﬂm
mmmhﬁsmhmunmm The most goneral
mm&mmmﬁimnMMyﬂ

dhm lfhinn—-lh -ﬂﬁmh-ﬁlﬂlhﬁ-ﬂwﬂ‘
independent Qs can be seduced 10 four as well as the anumber of independent p's .



170

$4 Ueneral Equations for Wave Propagation in s Porous Medium
The system of equations, governing low frequency wave propagation in a porous
medium satursted by two fluids, as described in the previous sections of this chaper are as
N=N; +n; (3.81)

(1 n.m—i.‘-x.g[( n.);!-h. (n- m]&pd.ﬁ“ )

el 45

(s) ;ﬁm -m, +o® s(am -=m, (5.82)

2-m 3?"? N
‘ﬂPY -V, %:E 'ﬂ—ﬁ—h*

'ﬂﬁﬁ @

-(1 n-h-(d'“*é'*’ [? E“ ]*QE"(?‘;‘L?%")
Ql“-'ﬂ)‘-'m,*pgn -)em,,_ )-m,

(5.83)

1)9(-
a
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F ()] 3w WV N‘"]
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(5.84)
s 25 g
+ d,’{v“”&f’) + pgz)g(\-,?),;?)) . p(lz)g‘;?).;(‘z))
Equations of continuity
@:-p3) (M-N) x»
o an) tom "0 (5.83)
1)
1% ,19, & 586
oo’ ™ (5.86)
19,19, F°,
fa a0 (.87)
Presswre Equasions
-K%m'") .'V".#(('::B (3.“)
icl?:_.'_" "W",,"fg"' (3.89)
L L = v -Lg.
K2 ;m v Ba T (5.90)
Porosity equation

%"‘v"" “BiVen - 0w, B9



Saturasion (volume fraction) equation
a;' = O,Vev, + 0,Vevy - 9,Vev, . (5.92)

hm»m.m:gdequﬁmsdewﬁbingdnmminnnhdihmm

porosity equation (5.91) fora porous medium saturated by two ﬁuid; muim thnee
macroscopic parameters in its most gencral form. Similiar t0 the case considered in chapter
4, this equation should be regarded as a process dependent statement rather than an actual
equation of stase for the porous medium. Suitable values of 8,, 8y, and 8; will depend on
the process considered. The saturation equation is also required because the relative
proportion of fluids may change during deformation. Again this equation should be
regarded as a process depondent statement. The use of such a siatement in the description
of capillary pressure (Spanos ef al., 1993) for incompressible flow of two fluids illustrates
thet the actual values for 0,, 0, and 0, will depend on the process.

5.3 Speciel Limiting Cases of General Equations

Given the complexity of the general sysiem of equations it is neccssary 10 check
validity in various limiting cases. The first case 10 consider is when the volume fraction of
one of the fluids, say fluid two, goes 10 zcro, i.c.

N0 (5.93)
and from equation (5.79) it is required that

In this limit, the system of equations (5.81) 10 (5.92) should reduce 10 the sysiem of
equations (4.63) 1 (4.68) governing wave propagation in a porous medium saturated by
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one fluid. As the volume fraction of fluid two gnes 10 zero the interfaces in contact with
fluid two must also vanish, which requires that all area insegrals over such interfaces be
zero, i.e.

By B 112, 15,20 ;& =A,B,C. (5.99)
The maserial shear modulus is modified 1o be

= (1o 14ch) | (5.96)
u =N (5.97)
and the effective fluid viscosity of fluid two (5.61) sends 10 zero. All equations for fluid
two can be shown 10 vanish. In this limiting case, the macroscopic continuity equation and
pressure equation for the solid remain unchanged and are the same as derived in chapeer 4.

The solid equation of motion (5.82) may be writen as
nn.m i = K.};[u-ug-s.. m-n.)]a.-e-Q“’(V‘" )
o 3350 oot

uqﬁuﬁné"-(lndp‘;’:u mﬂmﬂmmﬁgmmhﬁl
ﬂﬁmmhmnm(dﬁ) (tﬂ)hﬁdthhﬂﬂn
considered in chaper 4. ’]iggp:imdm(sn)nybm&:hmhh

of equation (4.64), ic.

(5.98)
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f ) M ] |
ﬂ-ﬁ%‘n“ ﬂ.g;‘l—&i* , ] + QT HM) 4pf! )g(;}-)_v{n’

o N5 P! *u.;ﬂ-ﬁ? a_g:‘ﬂ 3%“—)&1. ] (3.99)

M
mé(un a Th)l-l-)g—;[ T 3&3‘1

by using equation (5.96) and requiring that Qg)i 0 and p;" =0. Again, this simply
implies that these two parameters must depend on the volume fraction of fluid two.

The porosity equation (5.91) and the saturation equation (3.92) should be identical
staements and be equivalent 10 equation (4.71), i.c.

%" «8,Vev, - 8Vev; | (5.100)

3.=9,, (5.101a)

Si=0, =8, (3.101b)

8;=0;=0 (5.101¢)
inthe imitas 13 — 0.

The second limit which is considered is when the properties of the two fluids approach
each other. Again, in this limi¢, the system of cquations (5.82 10 5.92) should reduce 10 the
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ﬂ%ﬁ*ﬂ?% *p?(n‘.‘?f‘iwa%ﬂ;)-o (5.102)

which, when compared 10 the continuity equation for one fluid, requires the velocities 1o be
NV = v 4 7@ | (5.103)

Combining the pressure equations for the two fluids in a similiar fashion requires that the
pressures be related as

pr="p1 +N2p2 . (5.104)

The oquation of motion for the solid (5.82) can be writien as
u-vm%n.- - K- [u-n.)’%u -m-n.)]& + (et
o B 15 bttty

(5.109)

Q@ .
Y .9
n N (5.106e)

® )
0 .02 (5.106b)

M %

The sum of the equation of motion for fluid one and fluid two may be written as
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)

(s.10M

using the above velocity (5.103) and pressure (S.104) relations. In this limit the effective

viscosities are relsted as

) ,@

and the mobility coefficients, Q's, must be related by
OO %(Qn* Qd"-¢?)= '%qn*_ Q-
1 ) | ¥ N
d.”-Q‘g"-'-!—id." m%:)
S0 e T
and, also for the p's,

Qs = (s 0-¢7) = ™ o0

pﬂ) pm fl:Pm :: (2)

The porosity equation (5.99) can be in the same form as in chapeer 4, i.c.,

a9, - 4ve7

(5.108)

(5.109)

(5.110)

(5.111)

5.112)
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Two separass limits have been studied. In both cases, the goneral system of equations
reduces 10 the case where only one fluid saturates the porous medium. Several
relationships between the parameters has been deduced which appear 10 be valid only in the
limits. Given the amount of independent parametors, other limiting cases will have 10 be
addressed in onder 10 obtaia a clearer understanding of their relationships. At thet time an
anempt st deacribing experimental procedures for their measurement should be carried out.

5.6 Conclusions

Experimental measuroments surveyed in the literature indicase that the presence of an
addicional fluid or incomplete saturation greatly modifies the character of seismic waves
propagating through a porous medium. The scismic properties vary with satmuration
through the entire rangs; however, the greatest variation in phase velocity and attenuation
cocur at very low saturation (nearly empty) or near complets saturation. In the very low
saturation rangs, rapid decvessss in V), and V, and associated increases in Q) and Q5! are
cbesrved with the addition of a small amount of water. At near complete saturation, the
phass velocity and Q! for the waves depend upon the method by which the sample was
saturated. The P-wave appears 10 exhibit this process dependence more stroagly thaa do
the S-waves.

An approximation of e dynamics of porous media saturated by two fluids has been
cbiained by wiilizing a composite fluid model and the equations derived in chapter 4. This
iavolves replacing the the fluid parameters of the single fluid model, the equations
prosented in chapter 4, with “effective” fluid parameters. The effects o the macroscopic
parammeters can oaly bs postulated. This composies fluid model contains assumptions such
a8, surface tension is not important, and the solid mawix is in contact with oaly ons of the
fluide. This model should bs used 10 cbtsin an approximets descriptiva of the gross
processes and it should not be expecied thet it be abls 10 describe, for example, the
differences in phass velocity dus 10 the method of sampie sasturation by a simple alteration
of the pasameters.
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AMqumhn:wudeﬁvedfa:mﬂuﬂmmﬂﬂgﬂn

fluids. mm“wmmmmMMf; neten
were constructed from very goneral physical requirements. It was assumed however, din
dnmmhhlﬂmpmnmymdﬂmhﬂuﬁphmhmﬁmydhﬂhﬁ
hmumu-ﬂﬂm m "’;mwhigh:emnmwhmmly

In order to obtain a compiete set of cquations describing the propagation of a
dilatational wave, a porosity equation (5.91) and a saturation equation (5.92) must be
introduced. Similiar 10 the case considered in chapeer 4, this equation should be regarded
as a process dependent statement. A saturation equation is also required because the
nldwpupaﬂoadﬂﬂﬂlﬁychn;edmnjﬁm Again this equation should
be regarded as a process dependent staicment. Thmﬂm:mmﬁe
description of capillary pressure (Spancs, 1993) for incomg ble |
illustrases that the actual values for 0, n..ndm-ﬂdﬁuhpm

Two separass lLimits have been studied. In both cases, the general system of equations
reduces 10 the case where only one fluid saturates the porows medium. Gh-ﬁ:ii: t
d“mhhﬂmdmﬁﬂh‘“ﬂm
©0 bs addvessed in cader 10 obtain a clearer understanding of their inservel
tims an attompt at deecribing experimen 'MEﬁémﬁnﬁIh
casried out.







CHAPTER ¢
CONCLUSIONS

The simplest model utilized for the carth is an elastic solid model. As mentioned
previously, for wave propagation, this model predicts the existence of one P wave and one
S wave, does not allow for attenuation, and the waves are nondispersive. In the past,
attenuation has been added into the single continuum model by allowing the bulk and shear
moduli of the medium to be described by complex numbers (simplified viscoelastic
approximation). However, it is very difficult to make an association between the measured
atienuation and the actual physical mechanism responsible. Furthermore, most physical
systems of interest in exploration gecophysics and scismically monitored oil recovery
processes involve a single fluid phase or multiple fluid phases in a porous medium and the
extra degrees of freedom introduced in a multicomponent sysiem can not be duplicated by
any single continuum model.

The first models for seismic wave propagation in porous media which involved two
coupled and imteracting continua were proposed by Gassmann (1951a) and Biot (1936b,
1956c). More recently, macroscopic models have been obtained by applying various
homogenization schemes 10 the governing equations st the small scale. However, the Biot
(1936b, 1956¢) theory is still the most widely used.

The Biot model is semi-phenomenological in nature and is characterized by two
onc S-wave. The stress-strain relations were previously obtained by Biot (1941a, 1955).
In the development of the stress-strain relations Biot (1941) introduced the assumption of
the existence of a potential encrgy of the soil in order t0 obtain a relation betwoen
phonomenalogical paramesers and thereby reducing the number of macroscopic paramosers
by oms. The majority of his later works (Biot, 1956b, 1956c, 1962a, 1962b) comn
with use of the energy poteatial for the porous media.

examing the consequencs of the assumption of an energy potential as put forth by Biot.
Using recently developed (de la Cruz ¢1 al., 1993) macroscopic relations for oquilibrium
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thermodynamics of porous media, the internal encrgy for a porous medium is discussed in
the context of a system consisting of two superposed continua with implications to Biot's
use of an energy potential.

If the internal ecnergy of a porous medium is idemify as sum ﬁf l.he internal ener[ies of

simply the phasic averages, &, and uy; then 8, = 8¢ =0 is reqmmd for Bmu relations
(2.81) and (2.82) to be valid. Hence the use of an energy potential in the context of Biot
(1956b) would require that no change in porosity occur during deformation. The other

alternative is to associate Biot's V -y and U, with V ¢ + “““" and U}, - %8 "—g' )

derived here. This would imply that Biot's macroscopic displacements are not simply
average displacements of the components. Although Biot's (1956b) final equations are of
the correct form, his use of the encrgy potential appears 0 introduce inconsistencies.

The description of quasi-static deformations of a porous maserial presented in chapeer 3
is based on the quasi-static limit of the low-frequency wave propagatic mkd‘m‘.ht'hu
& Spanos (1985;1989b). The deformation of the porous material involves the deforms
of solid and fluid components as well as the interaction between these components. Su;h
im-ractions require additional maserial parameters for an adoquase description. Because of
the pore fluids' ability o flow, compressibility experiments are conducted 30 that the pore
fluid is allowed 10 flow freely out of the sample, these are called “drained” experiments. If
the fluid is restricted to remain within the sample then the experiments are classified as
"undrained”.

mmamm;mmnm&:ﬁhﬂm

-ﬁ
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contact with sthose found in the liscrature. In particular, all identities (see table 3.2) among
drained compressibilities given in ¢.g. Zimmerman (1991) are verified, thus providing an



altemative route towards them. It is shown that, for a porous medium under drained
conditions, the stress tensor is of the same form as for elastic theory and therefore similar
relationships between "Young's” modulus, "Poisson's” ratio, drained bulk modulus and
shear modulus exist.

related to one drl.ineﬂ bulk mmiulus sub]m 10 an assumplmn ahmu the h:hn,vmr uf lhc
sample in the hydrostatic limit (Kys; = K(1) = K,). The description of "undrained Young's
modulus” and "undrained Poissons ratio” leads to relationships with the undrained bulk
modulus which are analogous to those of elasticity.

For greater experimental flexibility, a one parameter family of compressibilities is
introduced which includes the drained and the undrained compressibilities as members.
The family of compressibilities is used 1o obtain expressions for the induced pore pressure
coefficient and the coefficient of effective stress. These expressions reduce o the common

The use of the assumption, Ky, = K(1) = K, in the hydrostatic limit allows the
construction of more simplified relations between poroclastic parameters. The validity of
such an assumption is still under debase and the error associated with this assumption when
describing a porous medium subject 10 a quasi-static process requires further experimental
investigation.

mmmﬂ:ﬂminchnsal lnﬂzmkcfd:hémzismﬂm
1989b), the macroscopic continuum equations which describe wave propagation in a fluid
Mmm&nmmmwmmm(gmum
mmwnﬁﬁﬁhﬁ'nuhm&hmm
compeession and the ex ontraction of the phases due 10 heating and cooling.

Ths first goneraliaation is 10 include bulk viscosity, §;. Nwmerical simulations illustrme
that the bulk viscosity, &;, increases the atienuation of the 15t P wave and its effect becomes
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more significant when the saturating fluid has a large viscosity. Furthermore, effects of
bulk viscosity are larger in samples with small values of drained bulk modulus or small

permeabilities.

The second generalization is to introduce a macroscopic shear modulus py as a
phenomenclogical parameter (but is none the less well-defined in terms of pore-scale
quantities). The macroscopic shear modulus, py, alters the values of phase velocity and
attenuation of both rotational and dilutational waves. The phase velocity of the 1st P wave
and 1st S wave increases dramatically with increasing material shear modulus. The
attenuation of the 15t S wave increases with decreasing material shear modulus. In the low
maserial shear modulus regime the attenuation increases very rapidly, which is not
surprising since this mode must vanish as the shear strength of the material vanishes. Fora
water filled sample, the atienuation of the 1st P wave exhibits a minimum in the low
material shear modulus regime and then increases continually afterwards. The change in
atienuation of the 1st P wave with respect to changes in material shear modulus differ

substantially, depending on the viscosity of the saturating fluid.

The third generalization introduces macroscopic heat conductivities g, {4 into the
heat equations. These appear only when thermomechanical coupling is considered and will
therefore only affect the dilatational waves. For the cases considered in the numerical
simulations, these two parameters are unimportant with respect 1o aleering the phase
velocity and attenuation of the dilatational waves.

Utlizing quasi-static experiments, the solid compliance factor, 8, and fluid compliance
factor, 8¢ may be determined from values of a drained bulk modulus, Ky, and an
unjacketed bulk modulus, K. Using this approach assumes that the processes governing
the compression of the samples during quasi-static loading and wave propagation are
sufficiently similar. Numerical simulations show thet significant changes in dilatational
phase velocity and attenustion occur when the drained bulk modulus deviates from the
quasi-static value. Changes in attonuation of the 15t P wave due 10 changes in drained bukk
modulus arc depeadent on the viscosity of the saturating fluid. Another assumption
commonly wsed in the Nscrature is thet the unjacketed bulk modulus, Koy, is simply equal
0 the bulk modulus of the solid componeat. Such an assumption grestly simplifies the
problem becauss sow ome oaly requires 2 measurement of drained bulk modulus.



183

Numerical calculations show that the phase velocity and attenuation of the P waves are very
sensitive to changes in the value of unjacketed bulk modulus. As in the case of the drained
bulk modulus, changes in attenuation with respect to changes in unjacketed bulk modulus
are dramatically different for saturating fluids of different viscosities.

There are three other macroscopic parameters in the system of equations goveming low
frequency wave propagation. Numerical studies show that the permeability, K, has
significant effects on the attenuation of both 1st S and 1st P waves within the seismic
frequency range but requires large permeabilitics for the cases studied. Changes in phase
velocities can be neglected for the cascs studied. The induced mass coefficient, pj2, only
becomes important at frequencies in excess of 104 hz and therefore can be considered
unimportant for scismic waves. In laboratory experiments, especially if the 2nd P wave is
of imerest, a value for the induced mass coefficient will be required. The intercomponent
conduction coefficient is only present when thermomechanical coupling is included. The
empirical thermal parameter, ¥, can change the attenuation of the P waves but has little
effect on the phase velocity for the models considered. The frequency at which compa

temperatures are equal is dependent on this parameter.

Experimental measurements surveyed in the literature indicate that the presence of an
additional fluid or partial saturation greatly modifics the character of scismic waves
propagating through a porous medium. The scismic propertics vary with saturation
through the entire range; however, the greatest variation in phase velocity and aticnuation
occurs at very low saturation (ncarly empty) or near complete saturation. In chapeer 3, an
approximation is obtained by using the equations presented in chapier 4 and the assumption
that the two fluids form a composite or effective fluid. This analysis is based solely on
descriptions obtained from volume averaging. The composite fluid model contains
assumptions such as segligible surface tension and the solid matrix is in contact with only
ons of the fluids. This mode! should only be used 10 obtain approximase de tions of
the groes features of the wave propagation process.

A gomeral system of equations is derived for a porous medium consisting of a
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very general physical requirements. In order to obtain a complete set of equation:
describing the propagation of a dilatational wave, a porosity equation (5.89) and a
saturation equation (5.90) must be introduced. Similar to the case considered in chapter 4,
these equations should be regarded as process dependent statements. Two limiting cases

are considered. Given the amount of independent parameters in the general system of
equations, other 'imiting cases will have to be addressed in order to obtain a clearer

understanding of their inter relationships. At that time an attempt at describing experimental
procedures for their measurement should be carried out.

The volume averaging sechaique can be used to provide the framework for macrossspic
theories of interacting continua The primary advantage of such an approach is that these is
a connection with the well established continuum descriptions at the pore scale (e.g.
elasticity, single continuum thermodynamics). The laws which hold for each component at
the pore scale cannot be violated in the macroscopic description. Such a requirement places
restrictions on the form of the macroscopic equations as well as the values for the
macroscopic parameters. Interacting continua are characterized by separate vector fields.
The greatest difficulties arise in formulating the interaction between these fields.
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