
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM! films 
the text directly from the original or copy submitted. Thus, som e thesis and 
dissertation copies are in typewriter face, while others may be from any type of 
computer printer.

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality illustrations 
and photographs, print bleedthrough, substandard margins, and improper 
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript 
and there are missing pages, these will be noted. Also, if unauthorized 
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand corner and continuing 
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6" x 9” black and white 
photographic prints are available for any photographs or illustrations appearing 
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning 
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



University of Alberta

Modeling Transition Metal Compounds: Testing, Development, and Applications

by

Stephen Andrew Decker

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of 
the requirements for the degree of Doctor of Philosophy

Department of Chemistry

Edmonton, Alberta

Spring 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



National Library 
m ▼  I  of Canada

Bibliotheque nationale 
du Canada

Acquisitions and 
Bibliographic Services
395 Wellington Street 
Ottawa ON K1A0N4 
Canada

Acquisitions et 
services bibiiographiques
395, me Wellington 
Ottawa ON K1A0N4 
Canada

Your file Votre reference

Our file Notre reference

The author has granted a non
exclusive licence allowing the 
National Library o f Canada to 
reproduce, loan, distribute or sell 
copies o f this thesis in microform, 
paper or electronic formats.

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author’s 
permission.

L’auteur a accorde une licence non 
exclusive pennettant a la 
Bibliotheque nationale du Canada de 
reproduire, preter, distribuer ou 
vendre des copies de cette these sous 
la forme de microfiche/film, de 
reproduction sur papier ou sur format 
electronique.

L’ auteur conserve la propriete du 
droit d’auteur qui protege cette these. 
N i la these ni des extraits substantiels 
de celle-ci ne doivent etre imprimes 
ou autrement reproduits sans son 
autorisation.

0-612-59947-7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



University o f Alberta

Library Release Form

Name of Author: Stephen Andrew Decker

Title of Thesis: Modeling Transition Metal Compounds: Testing, Development, and 
Applications

Degree: Doctor of Philosophy

Year this Degree Granted: 2000

Permission is hereby granted to the University of Alberta Library to reproduce single 
copies of this thesis and to lend or sell such copies for private, scholarly or scientific 
research purposes only.

The author reserves all other publication and other rights in association with the copyright 
in the thesis, and except as herein before provided, neither the thesis nor any substantial 
portion thereof may be printed or otherwise reproduced in any material form whatever 
without the author’s prior written permission.

Stephen Andrew Decker 
5470 North Drive 
Manotick, Ontario 
K4M 1G7

/I/Q\]e^b<s j o  1999

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



University o f Alberta

Faculty o f Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate 
Studies and Research for acceptance, a thesis entitled Modeling Transition Metal 
Compounds: Testing, Development, and Applications submitted by Stephen Andrew 
Decker in partial fulfillment of the requirements for the degree o f Doctor of Philosophy.

Prof. M. Klobukowski

Prof. J. Takats

Prof. R. E. D. McClung 

Prof. W. Jaeger

Prof. j/.Ac. Tuszynski

on
ProfjM . C. Zemer

November . 1999

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



to my wife Wendy and my little girl Hannah

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A b stra ct

Advances in computer technology and computational chemistry software have 

enabled researchers to model large chemical systems, including transition metal 

compounds. The work in the current thesis focuses on the testing, development, and 

application of modem computational chemistry methods for modeling transition metal 

compounds.

The reliability of the model core potential (MCP) formalism, which reduces the 

number of electrons treated in the calculation, was tested in a systematic study involving 

small main group molecules and the tetrahalogen complexes of the Group 4 metals. The 

MCP geometric parameters were found to be in good agreement with experimental values, 

provided the penultimate («-/)p atomic shell of the metal was included in the calculation. 

The computational efficiency of the MCP formalism was improved further by redesigning 

the valence basis sets to incorporate L-shell structure. Results from atomic and molecular 

test calculations indicate no significant differences between values computed using the new 

L-shell basis sets and the conventional ones.

Carbonyl fluxionality in Mn2(CO)I0 and Mn2(CO)6(H2PCH2PH2)2, serving as a 

model of Mn2(CO)6(Ph2CH2Ph2)2, was studied at the density functional theory and 

PM3(tm) levels. The DFT approach was the most fruitful, predicting a barrier of 19 - 21 

kcal/mol for carbonyl migration in Mn2(CO)10, slightly below the upper limit for fluxional 

processes to be detected by NMR, in contrast to its observed rigidity. DFT calculations 

predicted a barrier of 13 kcal/mol for carbonyl migration in the model 

Mn,(CO)6(H2PCH2PH2)2 system, only 3 kcal/mol higher than the experimental estimate. 

The PM3(tm) semiempirical method predicted accurate molecular structures, but was less 

successful in computing the energy barrier. A hybrid DFT//PM3(tm) method, utilizing the 

energies from DFT calculations and the structures from PM3(tm) calculations, corrected the 

energy barriers.
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The origin of the increased reactivity of the alkyne complexes of the Group 8 

metals, M(CO)4(C2R-,), with respect to their parent carbonyl complexes, M(CO)s, was 

investigated at the DFT level. Calculated structures agreed well with experiment and the 

computed CO bond dissociation energy trends mirrored those found experimentally. 

Analysis of the metal-alkyne interaction revealed that the alkyne acts as a four-electron 

donor to stabilize the unsaturated MCCOljCCy^) dissociation product, resulting in the 

increased reactivity.
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Chapter 1

Introduction
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2

The astounding growth of computer technology over the last few decades has 
fueled tremendous advances in the field of computational chemistry. The computational 
chemist of today typically has access to computing resources powerful enough to enable 
them to study “real” chemical systems instead of very small diatomic and triatomic models 
of the molecule of interest. More chemists are turning to computers as an aid to 
understanding chemical problems than ever before and the acceptance of computational 
chemistry amongst the chemical community has mirrored this. The results of theoretical 
studies appear regularly in the mainstream organic and inorganic chemistry journals and are 
no longer confined to specialized journals read only by theoreticians. Computational 
chemistry has proven to be a beneficial tool for the pharmaceutical industry1 -2, and its 
importance to other industries has recently grown as well.3 Perhaps the best reflection of 
the growing role of computational chemistry was the 1998 Nobel prize in chemistry 
awarded jointly to John Pople, “for his development of computational methods in quantum 
chemistry”, and Walter Kohn, “for his development of density functional theory”.4

The chemistry of the transition metals has recently garnered a lot of attention from 
computational chemists.5*9 Transition metal complexes play an important role in a number 
of diverse fields ranging from biology to medicine to catalysis. The resourcefulness of the 
transition metal elements may be attributed to their ability to coordinate a variety of different 
ligands, in a number of molecular geometries, and to stabilize various oxidation and spin 
states.10 The metalloenzymes are an important class of enzymes in which the metal is the 
active site and the surrounding ligands act to bring the reactants together.1L’12 
Metallopharmaceuticals, such as the anti-cancer cis-platin drugs13’14, cis-PtCl2(NH3)2, and 
the technetium radiopharmaceuticals15 employed in medical imaging, play a significant part 
in the diagnosis and treatment of illness. Perhaps the most beneficial use of transition metal 
compounds, certainly in terms of economic impact, lies in the area of catalysis. A variety 
of transition metal heterogeneous and homogeneous catalysts are currently employed in 
important industrial processes including the polymerization of olefins, the hydrogenation of 
unsaturated hydrocarbons, and the Fischer-Tropsch reaction.11’16’17

Until now, theoretical studies focusing on the chemistry of organic compounds has 
been more prevalent than those dealing with the chemistry of the transition metal elements. 
The wealth of information gained in these theoretical organic investigations has shown that 
modem computational chemistry techniques, if used correctly, are able to provide 
quantitative predictions of molecular geometries, reaction enthalpies, activation barriers and 
bond energies.18 Routine theoretical analyses of organic compounds can now be 
performed using well benchmarked techniques implemented in a number of very user- 
friendly programs.19
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Unfortunately, the progress has been slower for the theoretical modeling of species 
containing transition metals. Methods which have proven to yield highly accurate results 
for organic molecules are often inadequate for treating transition metal systems since they 
must accurately describe the various chemical environments of the metal atom. 6,9,20 The 
computational chemistry methods currently used in modeling transition metal compounds 
encompass all levels o f sophistication from the most accurate quantum chemical ab initio 
and density functional theory methods, to the semiempirical and classical molecular 
mechanics schemes. Generally, the more comprehensive the method (i.e. fewest 
approximations), the more computationally demanding the calculations.

One of the primary problems encountered in modeling transition metal compounds 
is their large size, both in terms of the number of atoms and the number of electrons, which 
quickly drains computing resources. Open-shell systems, with unpaired electrons, which 
are quite common amongst transition metal compounds, require the use of more complex 
theoretical methods for proper treatment. Furthermore, the nature of the d electrons 
introduces a number of difficulties for the computational chemist interested in transition 
metal chemistry. The partially filled d shell of the metal atom usually leads to low lying 
electronic states upon formation of a complex, again requiring the use of more sophisticated 
methods.9*10 Relativistic effects become increasingly important as one descends the 
periodic table, and cannot be ignored when modeling the heavier transition elements.21

One approach which has been particularly beneficial in theoretical investigations of 
the chemistry o f the transition metals is the pseudopotential formalism. Details of the 
pseudopotential methods along with a brief overview of the computational chemistry 
methodologies employed in this thesis; the Hartree-Fock (HF) and post-Hartree-Fock 
methods, the density functional theory (DFT) approach, and the semiempirical methods are 
provided in the following sections.

1.1 The Hartree-Fock Method

The following material provides a simple description of the Hartree-Fock approach, 
and is based on the detailed accounts found in Szabo and Ostlund22, McQuarrie and 
Simon23, and Levine24. The time-independent, nonrelativistic Schrodinger equation for a 
closed shell molecule with n electrons and N  nuclei is given by:
H^{rx,r1,---1rn\Rx,R1,---1RN) = EiV{rl,r1,---,rn',Rx,R:L,---,RN). (1.1)

The Hamiltonian operator is defined as:
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fc 2  JV i * l2 n N  N  7  - 7  n  /V 7  2 n  n

( ‘ -2>
2  A = l  ^ A  ~ m e i  A =1 B > A  ^ A B  r = t  A = l '/A  (=1 y > i r ij

where rs denotes the coordinates of electron i with mass me and charge e, and RA denotes 
the coordinates of nucleus A  with mass MA and charge ZA. The first two terms in the 
Hamiltonian represent the kinetic energy of the nuclei (TN) and electrons (Te), respectively. 
The remaining terms represent the electrostatic repulsion between the nuclei (Vm ), the 
electrostatic attraction between the nuclei and electrons (VNe), and the electrostatic repulsion 
between the electrons (Vee), respectively.

The molecular Hamiltonian may be simplified by recognizing, via the Bom- 
Oppenheimer approximation, that the mass of the electron is much smaller than that of the 
nuclei and as such they move much faster. The nuclear coordinates can be regarded as 
fixed (Tn = 0) during the motions of the electrons, thereby simplifying the Hamiltonian by 
removing TN and regarding Vm  as a constant. The resulting electronic Hamiltonian has 
the form (in atomic units):

1 n n N  *7  n n i

# = - 2 Z v -2 - S £ t ~ + 2 2 ~ +vrAw. (i-3)
i = l  t '= l A = 1  LA i= I  i > j  i j

and the electronic Schrodinger equation may be expressed as:

“  » =  I (=1 A =  l i = l  i > j  ^7

The. wavefunction has a parametric dependence on the nuclear coordinates, represented 
collectively as R. Through Equation (1.4), the potential energy surface of a molecule can 
be mapped out as a function of the nuclear coordinates.

An exact solution to the electronic Schrodinger equation is possible only for the 
very simplest of systems (the H atom, the H2+ molecule, the harmonic oscillator, the rigid 
rotor, and the anharmonic oscillator), for all other systems only approximate solutions can 
be found. The Hartree-Fock (HF) method is a very popular method employed to obtain 
approximate solutions to the electronic Schrodinger equation. It has proven to be a 
valuable theoretical approach to the study of atoms and molecules and forms the basis of a 
number of more elaborate methods.
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In the HF method for a closed-shell system, the wavefunction takes the form of a 
single antisymmeterized product (a Slater determinant) of spin orbitals, yrfx}):

¥ f X i ) Vi ix2) ■ • Vi(xn)
¥liXy) v 2ix2) • ■ VliXn)

4
?II VyixJ tff3ix2) • • V l i Xn)

¥niXl) v * i x 2) ■ ■ VniXn)

= vkdetk i  (*> W iix 2) - ¥ n  (*„ )| (1.5)

Using the variational method, with the wavefunction of Equation (1.5) and the 
Hamiltonian of Equation (1.4), the problem of solving the rc-electron Schrodinger equation 

is reduced to the problem of solving n one-electron HF integro-differential equations of the 
form:
f i x i )y/i(x l ) =  ( x , )  , ( 1 . 6 )

where j i x j  is an effective one-electron operator known as the Fock operator, and i//;(x,) is 
a spin-orbital with orbital energy et. For a closed-shell molecule with n electrons, there is a 
total of n filled spin-orbitals. The spin-orbitals are taken as a product of an orbital and a 
spin function:

\cciwj) = <£,('})
V iixj ) =  <Pi{rj ) x - P iw j ) = <piirj y (1.7)

which gives rise to a total of 72 doubly occupied orbitals, ^(r,). By integrating over the 
spin functions and exploiting their orthonormality properties, the Fock operator can be 
expressed as:

H F
(>i). ( 1.8)

where the first two terms represent the kinetic energy and nuclear-electron attraction, and 
can be collectively denoted as h(rx). The last term in the Hartree-Fock potential, VHF (r,), 
models the electron-electron repulsion interaction, and represents the average potential felt 
by an electron at r, as it moves in the field created by the other (n-1) electrons. Hence, the 
instantaneous electron-electron interactions are modeled in an averaged way in the HF 
formalism. VHF (r,) is defined as:

nA
V ^ i r y ^ l J j i r y - K j W ,  

j=i
( 1-9 )

where Jfr{) and K frx) are the Coulomb and exchange operators, respectively, and are 
defined as:
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The Coulomb operator, / y(r,), represents the interaction between electron 1 and a “smeared 
out” electron distribution for electron 2, \<pj(r2)\2. The exchange operator, Kj(rx), arises 
from the necessity of the wavefunction to be antisymmetric with respect to the interchange 
of electrons and is harder to visualize. The HF equation may be written in terms of orbitals 
as:

At first glance, the HF equation appears to be a simple one-electron eigenvalue 
equation, but this is misleading since the Fock operator depends on the eigenfunctions,
0,(/*,), through the Coulomb and exchange operators. Hence, the HF equations are non
linear equations which must be solved iteratively.

Practical solution of the system of HF equations involves expanding the orbitals in 
terms of a set of K known basis functions {^(^i)}25'

where F is the Fock matrix, C is the matrix of molecular orbital coefficients, S is the 
overlap matrix, and e is the matrix of orbital energies. All of the matrices are of dimension 
KxK. The elements of the Fock matrix are defined as:

( 1. 12)

K

(1.13)

The resultant HF equations, known as the Hartree-Fock-Roothaan-Hall (HFRH)
equations, have the following form:

K K

/(>i ) X  Xs(n K - = £, X  &  (n K- (1.14)

The system of HFRH equations may be conveniently represented in matrix form: 
FC = SCe, (1.15)

Frs = ( x M \ f W \ x M ) )

(1.16)
yf

JZr(riM ri)Zs(ri)dri + X [2JXrWJjWXsWdrt -Ix'MKjOdXsWdr^
j=i

while the elements of the overlap matrix are defined as:
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s„ = { x M \ X s W )  = J  Z r W z M d r i ( 1- 17)

Solving the HFRH equations reduces to a matrix algebra problem of determining the 
matrices £ and C. However, since the Fock matrix elements depend on the expansion 
coefficients (C), which are the desired solutions, the HFRH matrix equation must be 
solved iteratively. The iterative technique, known as the self-consistent field (SCF) 
method, begins with an initial guess of the MO coefficients, C°, and continues until there 
are no significant changes in C from one iterative cycle to the next. Once converged, the 
total energy of the system, including nuclear-nuclear repulsion, is computed along with the 
expectation values of any desired molecular properties (e.g. the dipole moment).

Using spin-orbitals, the HF total energy of the system is given by:

where the following shorthand notation has been employed for the two-electron integrals 
(arising from the Coulomb and exchange operators):

For a closed-shell molecule with n electrons the same set of orbitals are used for the 
a  and (3 spin functions, resulting in the familiar chemical picture of a set of "/2 doubly 
occupied MOs. The HF method as applied to closed-shell systems is known as the 
restricted Hartree-Fock (RHF) method. For an open-shell molecule, in which the number 
of a  and |3 electrons differ, there are two possible approaches within the HF scheme. The 
first, known as the restricted open-shell Hartree-Fock (ROHF) method, treats all paired 
electrons the same as in the RHF scheme, giving rise to a set of doubly occupied orbitals, 
while the unpaired electrons are placed into unique orbitals. In the second approach, 
referred to as the unrestricted Hartree-Fock (UHF) method, different orbitals are used for 
the a  and (3 electrons. The UHF wavefunction has more flexibility than the ROHF 
wavefunction and as such will give a lower energy. However, the UHF wavefunction, 
unlike the ROHF (and RHF) wavefunction, is not an eigenfunction of the spin operator,
S2, and higher spin states may contaminate the UHF wavefunction. For example, a UHF 
calculation of a triplet state may be contaminated by the quintet, septet, etc. states.

Z  (V'f (*i) K ri )| V i  (*i)) + 7 X  X  [(£7 \[j )  ~  ( i f  b7>] + X  X
< = l ^  i = l  y = l  A = 1 B = 1

( 1-18 )

{ij\kl) = J  J i/a (x{ )y/j (x2) —  \f/k (x2 )dxidx1.
12

( 1-19)
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1.2 Post Hartree-Fock Methods (Electron Correlation Methods)

The presence of low lying electronic states in transition metal complexes makes the 
single-determinant HF representation of the wavefunction inadequate for these compounds, 
requiring a more complicated multi-determinantal wavefunction.9’10 Davidson20 has stated 
that for modeling transition metal compounds the ab initio Hartree-Fock method “is 
hopelessly in error”, and these sentiments have been echoed by other researchers as 
well.6-8

One of the most popular multi-determinant wavefunction methods used in modeling 
transition metal compounds is configuration interaction (Cl), which constructs an improved 
wavefunction by adding determinants for excited states to the HF determinantal 
wavefunction (XF0).18’22’24 The K  basis functions used in the MO expansion give rise to a 
total of 2K  spin-orbitals, of which the lowest n are occupied at the HF level. The 
remaining (2K-ri) orbitals are unoccupied and form the set of virtual spin-orbitals.
However, this is not the only possible configuration of the n electrons amongst the 2K  
spin-orbitals. Starting from the HF configuration (determinant), other configurations 
(determinants) can be generated by promoting electrons from the occupied spin-orbitals to 
the virtual spin-orbitals. The total wavefunction can then be expressed as a linear 
combination of Slater determinants for each configuration:

=«ol%}+E<l'i';}+E“5|'*'.l)+ I>,XK7)+ 5 > £ h £ ) + -  (L20)
ar a<b a<b<c a<b<c<d

r<s r<s<r r<s<t<u

where electrons are excited from occupied spin-orbitals, indexed by {a,b,c,d}, into virtual 
spin-orbitals, indexed by {r,£,/,«}. The Slater determinants are classified in terms of the 
number of electrons excited. A singly-excited determinant (vFat) is formed by exciting a 
single electron from an occupied spin-orbital \j/a to a virtual spin-orbital \jrr. A doubly- 
excited determinant (xPab,s) is formed by exciting two electrons from spin-orbitals \|/a and 
V|fb into virtual spin-orbitals \|/r and \j/s. A schematic of how singly- and doubly-excited 
configurations arise is given in Figure 1.1. Triply-, quadruply-, and n-tuply-excited 
configurations are formed in an analogous manner by exciting three, four and n electrons 
from the occupied spin-orbitals into virtual spin-orbitals. As the size of the molecule 
increases, the number of configurations in the wavefunction expansion grows very quickly 
and it soon becomes necessary to limit their number. The doubly-excited configurations 
make the largest contribution to the total wavefunction followed by the quadruple, single
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Figure 1.1: Schematic to illustrate how excited configurations are generated in a CISD 
calculation. (Adapted from Szabo and Ostlund22)
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and triple excitations.22 Not surprisingly, the most popular type of Cl calculation includes 
all singly- and doubly-excited configurations and is termed CISD.

The total wavefunction is determined via a linear variational method in which the 
wavefunction expansion coefficients {<zj are varied in order to minimize the energy of the 
system. If a complete basis set is employed, and all possible configurations are included, a 
Cl calculation will give the exact Bom Oppenheimer non-relativistic molecular 
wavefunction, xFtrue, and energy E ^ .  In practice, a finite basis set is employed and the 
number of configuration must be limited.

The difference between the HF energy (E0) and the exact non-relativistic energy 
(EtniC) of the system is referred to as the correlation energy (Ecorr). Normally, the exact 
energy of the system is not known, and a related quantity, the basis set correlation energy, 
is defined as the difference between the HF energy (E0) and the full-CI energy (ECI), 
computed with the same finite basis set. Comparing the CISD correlation energy (E0 - 
Ecisd) to the basis set correlation energy (E0-ECI) gives an indication of how well the CISD 
method approximates the full Cl method. Harrison and Handy26 have shown that for 
small molecules (less than 10 electrons) CISD recovers about 94 % of the basis set 
correlation energy, however the results worsen as the size of the molecule increases. For 
example, Sasaki27 has shown that CISD recovers 68-78 % of the basis set electron 
correlation energy in 50 electron molecules, while 55-67 % is recovered for molecules with 
about 100 electrons. The results are improved when triple and quadruple excitations 
(CISDTQ) are included in the wavefunction expansion. CISDTQ recovers 90-96 % of the 
basis set electron correlation energy for molecules containing 50 electrons, while 80-90 % 
is recovered for molecules containing 100 electrons.27

Unfortunately, the CISD method is computationally demanding, formally scaling as
K5, where K  is the number of basis functions, and therefore requires powerful computing
resources to treat large transition metal compounds. Mpller-Plessett perturbation theory is
an alternative approach to the incorporation of electron correlation effects which is much
less computationally demanding.22-24 If the HF wavefunction is a good representation of
the true wavefunction (i.e. the value of the expansion coefficient for the HF wavefunction,
a ,̂ is large relative to the remaining expansion coefficients) then one can consider electron
correlation to be a perturbation to the HF Hamiltonian:
H  = H - H W

- ± ± j r - ± ± [ W - K * U > ]  ° ' 21)
/ = l  j> i  r ij j= l  k = 1
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where H  is the true non-relativistic Hamiltonian and / / 0) is the sum of one-electron Fock 

operators. The perturbation FT is the difference between the true electron-electron 
repulsion and the HF model. In molecular calculations of transition metal compounds 
Mpller-Plessett corrections to the second-order (MP2) are commonly included. The MP2 
correction to the energy of the ground state of a molecule is given by:

where the shorthand notation of Equation (1.19) was employed for the two-electron 
integrals. MP2 calculations are similar in nature to CISD calculations, involving double 
excitations from the occupied spin-orbitals (a, b) to the virtual spin-orbitals (r, s).

The MP2 method behaves properly near the equilibrium molecular geometry, but 
tends to fail as the geometry is distorted far from the equilibrium.22*24 Bartlett has shown 
that the MP2 method, employing double-zeta plus polarization basis sets, recovers about 
85-95 % of the basis set correlation energy for small closed-shell molecules 28 The low 
computational cost of the MP2 approach, which scales as about K4, coupled with its ability 
to properly treat molecules at their equilibrium geometries, has led to its popularity in 
modeling transition metal complexes.

Other post-HF electron correlation methods exist which are extensions of the Cl 
method (e.g. MC-SCF, CAS-SCF and MR-CI), or are based on the coupled cluster 
formalism (i.e. CCSD(TQ)).22 However, these methods were not used in the work 
described in this thesis and will not be discussed.

1.3 Density Functional Theory

Over the last decade, density functional theory (DFT) has established itself as an 
alternative to the HF and post-HF approaches. The n-electron wavefunction (a Slater 
determinant or a linear combination of a number of Slater determinants) is at the centre of 
the conventional HF-based methods, and since each electron is expressed in terms of three 
spatial coordinates (and a spin coordinate) the wavefunction depends on 3n coordinates.
On the other hand, in the DFT formalism the ground state molecular energy, and all other 
molecular properties are determined by the electron density, p(x,y,z). Hence, DFT 
formally simplifies the computational problem by focusing on the three-dimensional

( 1-22)
n —I n AT—I K \{rs\ab)-{rs\ba f

Z '+ S b - e r - e s
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electron density, p(r), instead of the 3/z-dimensional wavefunction, T'fr,, r2, ..., rn), where 
r represents a point in cartesian space. Furthermore, the electron density, p(r), is a real 
physical quantity with a direct meaning, while the wavefunction, 'P(rI, r2, ..., rn), is a 
more abstract entity which is harder to conceptualize.7’8’29’32

The foundations of the DFT formalism are rooted in the seminal work of 
Hohenberg and Kohn33 who, in 1964, proved that the total energy of a molecule in a non
degenerate ground electronic state can be completely and uniquely determined through its 
electron density p(r). In other words, the energy of the system can be expressed as a 
functional of the electron density:
E0 = E 0[p(r)] . (1.23)

Unfortunately, the theorem did not indicate what the correct form of the energy functional 
is, nor did it provide the details necessary to determine it.

Kohn and Sham34 extended the Hohenberg-Kohn theorem by deriving a set of one- 
electron eigenvalue equations similar to the HF equations:

F KS(rl)yr*s(rl) = e*5Y is (rl), (1.24)

where is known as a Kohn-Sham (KS) orbital, with orbital energy £,°. The
electron density is defined in terms of the KS orbitals:

2
P (0  = £ k f ( / ; ) |  • (1.25)

i=i

The Kohn-Sham operator, F  (r,), is defined as:

F “ ('i) =  - 2 V f - | ; 3 L  + ^ / J(r1) + ^ c(n ). (1.26)
“ ar=l r\a j=l

The first two terms are the usual kinetic energy and nuclear-electron attraction terms, while 
the third term is the familiar Coulomb repulsion term defined in the DFT formalism as:

■ W  =  J — d v 2 -  (1-26)
r\i

The last term, Vxc(rx), is the exchange-correlation potential term.
In the DFT ansatz the ground state energy of the system is given by:

E° + U \ & r' )Pir' )dvldv1 + E 'Xp(rj\.
Z  .-=1 a = l  r\a  Z  r l 2

(1.28)

If the correct form of the energy functional, Exc[p(r)], is employed solutions of the Kohn- 
Sham equations will be the exact ground state energy and electron density. Unfortunately,
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the true form of Exc[p(r)] is not known, and approximate energy functionals must be 
employed.

The energy functional may be separated into exchange and correlation components: 
Exc[P(r )] = Ex[pir)\ + Ec[P(r)] - (1.29)
A number of approximate exchange and correlation functionals have been devised for use 
in molecular DFT calculations. The simplest of these approximate functionals depend 
solely on the electron density, and are termed local functionals. Slater’s exchange 
functional and the correlation functional of Vosko, Wilk, and Nusair (VWN) are examples 
of local density functionals. Local density functionals are based on fits to the 
homogeneous electron gas model, which models the electron density as uniformly 
distributed throughout space. However, the electron density distribution in a molecule is 
typically far from uniform and a number of approximate density functionals have been 
devised which attempt to correct for this non-homogeneity through an explicit dependence 
on the gradient of the electron density, Vp(r), in the functional. These density functionals 
are referred to as non-local or gradient-corrected functionals and a number of them have 
been derived for use in molecular DFT calculations including the exchange functional due 
to Becke (B), and the correlation functionals devised by Lee, Yang, and Parr (LYP), 
Perdew (P86), and Perdew and Wang (PW91). A number of studies have demonstrated 
the superiority of the gradient-corrected functionals over their local counterparts, 
particularly in calculating dissociation energies and reaction energies.35'38

Once an approximate exchange-correlation functional is chosen, the Kohn-Sham 
equations, Equation (1.25), are solved in a similar manner as that used in the HF approach. 
The KS orbitals, i a r e  expanded in terms o f a known basis set, (x /r ,)} :

K
) =  X  Xu Ol K i  ■ ( 1 -3°)

m=i

The expansion coefficients {c^} are solved for using the linear variational method. As in 
the HF method, an iterative procedure is required.

The DFT formalism has emerged as the method of choice for modeling transition 
metal compounds.8 In the density functional theory approach electron correlation effects 
are incorporated in a very straightforward way, by specifying the approximate correlation 
functional to be used. On the other hand, inclusion of electron correlation effects via the 
post-HF approach is not as easy, typically involving a number of difficult decisions to be 
made by the researcher which may have a significant impact on the results. The accuracy 
of the results from gradient-corrected DFT calculations has been shown to be comparable to 
that obtained with post-HF methods.7’8 However, the computational demands of the DFT
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approach are only slightly higher than that for the HF method. Research is currently under 
way to further improve the computational scaling of the DFT calculations. Along with the 
ease of incorporating electron correlation effects and the decreased computational demands, 
it has been shown that smaller basis sets, with fewer polarization functions, are required to 
obtain convergence of the results in DFT calculations than in the post-HF methods.

Generally, the quality of a DFT calculation depends directly on the approximate 
energy functional employed. Unfortunately, the DFT approach is not variational with 
respect to the choice of the approximate density functional. Essentially, there is no recipe 
for choosing the best approximate exchange-correlation functional and furthermore, an 
approximate density functional which works well for one molecular system may not 
necessarily work for another. A number of density functionals must be thoroughly tested, 
by trial and error, for each molecular system of interest. This is a significant drawback of 
the DFT approach and, in a sense, makes it more empirical than the wavefunction 
approach.

Questions have been raised regarding the applicability of the DFT formalism to 
studies of the excited states of molecules. The Hohenberg-Kohn theorem refers 
specifically to the ground electronic state of a molecule and it is not clear whether it can be 
extended to include the excited states of molecules. This issue has been addressed recendy 
using a dme-dependent DFT approach by Casida and co-workers.39'43 The exact meaning 
and nature of the KS orbitals has also been addressed recently by Hoffmann et a l44 The 
HF orbitals are routinely used to qualitatively describe changes in bonding and chemical 
reactivities, however, the use of the KS orbitals in this manner has not been as widely 
accepted. Formally the KS orbitals are constructs used to produce the total electron 
density, Equation (1.27), and should not be regarded in the same light as the HF orbitals. 
The KS orbitals have been shown to resemble the HF orbitals and one could argue that 
since DFT incorporates electron correlation effects, the KS orbitals are more suitable than 
their HF counterparts.

1.4 Sem iem pirical Methods

Semiempirical methods provide an economical alternative to the ab initio and DFT 
methods. In HF, post-HF, and DFT calculations, evaluation of the two-electron integrals:

(1.31)
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is a computationally demanding task. Semiempirical techniques employ a number of 
approximations based on the neglect of diatomic overlap (NDO) approximation to reduce 
the number of integrals which must be evaluated. Furthermore, the integrals retained are 
not evaluated, but rather are represented by parameters whose values are obtained by fitting 
to geometric structures, ionization potentials, electron affinities, and other molecular 
properties from experiment or high level ab initio calculations.45

Semiempirical methods have long been used in modeling organic chemistry, from 
the early qualitative schemes like the simple Huckel molecular orbital method used in 
treating conjugated and aromatic hydrocarbons, to the more quantitative schemes such as: 
MNDOn (modified neglect of diatomic overlap)46'51, AMI (Austin model 1)52>53, and 
PM3 (parameterized method 3)54. The application of semiempirical methods to molecules 
containing transition metal elements has not been as common and parameter sets for the 
transition metals are rarer than those for the lighter elements. The main problem in 
applying semiempirical methods to the transition elements is associated with the 
transferability of the atomic parameters. A single set of semiempirical parameters is defined 
for each atom and these parameters should be representative of the atom in a large variety of 
different molecules. This is challenging for the transition metal atoms, since they are found 
in such varied chemical environments (coordination geometries, ligand sets, spin and 
oxidation states). The PM3(tm) semiempirical method has been recently developed by 
researchers at Wavefunction Inc., and implemented into their program Spartan.55 
Parameters were derived by fitting to experimental structure and are currently available for 
about half of the transition elements. Unfortunately, the full details of the parameterization 
have not been published, and although a number of studies have appeared as of late56' 60, 
more work is needed to fully gauge its reliability. Another set of semiempirical parameters, 
known as ZINDO, have been derived for the first two transition series by Zemer and co
w o r k e r s . 6 1  >62  These parameter sets were specifically designed for the prediction of

2
spectroscopic properties of molecules, and have been implemented into the Cerius 
program package.63

The main advantage of semiempirical methods is their modest computational cost 
compared to ab initio HF and DFT methods. Semiempirical methods are said to 
incorporate “nature’s electron correlation”, since the atomic parameters are based on fits to 
experimental data. However, the overall accuracy of a semiempirical calculation relies 
heavily on the atomic parameters, and the best results are usually obtained for molecules 
which closely resemble the ones used in the parameter fitting process.
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1.5 Basis Sets

In both the wavefunction and DFT approaches, the molecular orbitals are expanded 
in terms of a known basis set. The choice of basis set plays a fundamental role in

determining the accuracy of the calculations. 18,22,64,65 Two types of basis functions are 
commonly employed in most HF and DFT based calculations: Slater Type Orbitals (STOs) 
and Gaussian Type Functions (GTFs). STOs are normally expressed in spherical 
coordinates as:
Xntm(r,6,<!» =  *U r)F ,m(0 ,0 ) (1.32)

Rnl(r) =  N rn- le (1.33)-  N rn- le~^

AT = (2C r*[(2n)!]-*  (1.34)

where Rnt{r) designates the radial function and Y[m{Q,0) is a spherical harmonic function, 

defining the angular component of the basis function. The indices n, £, m are the principal, 
angular momentum, and magnetic quantum numbers, respectively. The normalization 
constant is denoted by N, and £ is the exponent, determining the extent of the radial 
function. GTFs may also be expressed in terms of spherical coordinates as:

0 , <p) = K t ir)Ytm (6,0) (1.35)

Rnt(r) = N rn- le-arl (1.36)

Ar = 2n+I[(2/z-l)!!]- i (2 ;r r i a ^  , n = £ + l,£ + 3 J  + 5 ,--  (1.37)
where the same notation has been used with the exception of the exponent, which is 
denoted here by a  instead of £". In molecular calculations, GTFs are normally used in 
their Cartesian gaussian form:

= Nxly mz ne~arZ (1.38)

N  = (2k )7[(2£ - 1)!!(2m - 1)!!(2« -  l)!l] Ta  ^  (1.39)

where N  is the normalization constant, x'ymzn defines the angular portion of the gaussian 
function (with £+m+n=0 for an 5-type gaussian function, £+m+n= 1 for a p-type gaussian 
function, £+m+n=2 for a (7-type gaussian function, etc.), and the exponent again denoted 
by a .

In choosing a basis set two main considerations must be weighed against one 
another. First, the basis functions should have correct limiting properties (as r —> 0 and 
r  —» »). Secondly, it is desirable to use those basis functions which are the most 
computationally efficient in evaluating the time consuming two-electron integrals. The
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STOs are the most suitable choice to fulfill the first criterion, since they exhibit the proper 
“cusp” behaviour at the point nucleus:

while a GTF does not:

dYGTF(r') ’ iZ[s --- -2crrg~ar L 0= 0 . (1.41)
dr

An STO also decays exponentially at large values of r, while a GTF decays too fast. On 
the other hand integration over GTFs is much simpler than integration over STOs, leading 
to large savings in the computational cost. By employing a large number of gaussian 
functions it is possible to correct for the poor cusp and tail behaviour of GTFs. However, 
this quickly increases the computing time; consequendy, linear combinations of gaussian 
functions with fixed coefficients are used:

The superscript X  designates the type of gaussian function (s, p, d ,f, etc.). The expanded 
basis functions, 2 xCTF(r), are called contracted gaussian type functions (CGTFs) while 
those used in the expansion, Gx(a;r), are referred to as primitive gaussian type functions 
(PGTFs). The expansions are normally obtained by varying the exponents {O'} and 
contraction coefficients {d J c} to minimize Hartree-Fock atomic energies.

The nomenclature and symbols used to represent basis sets in quantum chemistry 
calculations are far from systematic; however, some terms commonly used in the literature 
are described below. A minimal atomic basis set is one in which the number of CGTFs 
equals the number of occupied atomic orbitals. A number of minimal basis sets have been 
devised including; the STO-3G basis sets of Hehre and co-workers66' 70 and the MINI-n 
basis sets of Huzinaga and co-workers64. The small size of these basis sets makes them 
favorable for calculations involving large molecules, but they are capable of qualitative 
results at best. Minimal basis sets do not have the necessary flexibility to expand and 
contract when the atom is placed in different chemical environments in a molecule. To 
correct for this a double-zeta atomic basis set can be used, where the number of CGTFs 
equals twice the number of occupied atomic orbitals. The contribution from the two 
CGTFs of the same symmetry is varied to produce a function intermediate between the 
two, as illustrated in Figure 1.2 (a). Related to the double-zeta basis sets are the split 
valence basis sets. Split valence basis sets consist of a minimal representation for the core 
atomic orbitals and a double-zeta representation for the valence atomic orbitals. There are

(1.40)

K
( 1 .4 2 )
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C! +  C2

(b) +  X

Figure 1.2: Schematic to illustrate basis set effects, (a) The effect of mixing two basis 
functions of varying exponents, as in a double-zeta atomic basis set, and (b) the effect of 
adding a polarization function to an atomic basis set. (Adapted from Hehre, Radom, 
Schleyer, and Pople18)
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many split-valence double-zeta quality basis sets including: the 3-21G71-75, 4-31G76*79, 
and 6-31G80"82 of Pople et al., the MIDI-n basis sets of Huzinaga and co-workers64, the 
VDZ basis sets of Ahlrichs et a/.83, and the DZ basis sets of Dunning and Hay84’85. Split- 
valence basis sets have been developed which are of triple-zeta (6-311G, VTZ86, cc- 
pVTZ87), quadruple-zeta (cc-pVQZ87), quintuple-zeta (cc-pv5Z87) valence quality and 
higher. The basis sets used to represent the occupied valence atomic orbitals may be 
expanded as desired, assuming the necessary computing resources are available.

The electronic charge distribution of atoms becomes highly distorted in a molecule, 
and atomic basis sets account for this by employing one or more polarization functions (i.e. 
a basis function with higher angular momentum quantum number I  than the highest 
occupied atomic shell). For example, a d-type polarization function is added to the basis 
sets of the main group elements, a p-type polarization function to the hydrogen basis set, 
and an f -type polarization function to transition metal atom basis sets. The polarization 
function mixes with the valence basis functions producing hybrid functions with an 
anisotropic distribution of electronic charge, as illustrated in Figure 1.2(b).

Basis sets used in molecular calculations should be well balanced, with basis sets of 
similar quality used for each atom in the molecule. Expansion of the basis set should be 
accompanied by the addition of appropriate polarization functions, to generate a high 
quality basis set. Typically, single polarization functions are added to valence double-zeta 
quality basis sets. Triple-zeta valence quality basis sets usually require the addition of two 
polarization functions to the heavy atom basis sets, along with a p polarization function to 
the hydrogen atom basis sets.65

The notation employed to describe CGTF basis sets is quite varied. One of the 
simpler schemes, and the one used throughout this thesis, will be described here. The 
popular 6-31G* split valence double-zeta plus polarization basis set of Pople and co
workers, consists of a single CGTF, comprised of six PGTFs, for each of the occupied 
core shells and two CGTFs, of three and one PGTFs, respectively, for each of the 
occupied valence shells of the atom, plus a single d polarization function added to all of the 
main group atoms. Using carbon as an example, another notation for the 6-31G* basis 
sets is (631/31/1*). This notation describes the contraction pattern of each atomic shell 
starting with the 5-shell, followed by the p- and J-shells, where slashes (/) are used to 
separate the shells. A general contraction pattern is expressed as
(n isn2s-"/n2p,23p---/,z3dn4d---), where the number of PGTFs used to represent the individual 
occupied s-, p-, and ^/-shells is given by {n2p,n3p,...} and {rc3d,n4d,...}. This
notation is advantageous in that it gives the number of PGTFs used in each CGTF. 
Polarization functions are represented by 1* in this notation. Hence, the (631/31/1*)
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notation for the 6-31G* basis set of carbon, indicates that there is a single CGTF expanded 
in terms of six PGTFs for the Is core shell, and two CGTFs, expanded in terms of three 
and one PGTFs, for each of the 2s and 2p valence shells. The single d  polarization 
function is represented by 1* in the r/-space.

1.6 Pseudopotential Methods

As mentioned earlier, one of the primary challenges of modeling transition metal 
compounds is their large size, both in terms of the number of atoms and the number of 
electrons. From a computational chemistry point of view, it is the large number of 
electrons which pose the main problem, since basis functions are employed to represent the 
occupied shells of each atom in the molecule. However, by realizing that the bonding 
between the atoms in a molecule arises primarily from the interaction of the valence atomic 
orbitals, with the core orbitals being inert, the computational cost can be reduced. The 
valence orbitals are more diffuse and able to deform as required for proper overlap with the 
orbitals on adjacent atoms to form a bond, while the core orbitals are contracted about the 
nuclei, and distort only slightly in the molecular environment. The core electrons act to 
effectively shield the nuclei, creating an effective nuclear charge in which the valence 
electrons move. This principle is convincingly demonstrated in the Periodic Table, where 
families of chemically related atoms (those in a single column) share identical valence 
electron configurations and, consequently, exhibit similar chemical properties. This 
principle can be exploited in computational chemistry through the use of pseudopotentials.

The idea behind the pseudopotential formalism, first introduced by Heilman88’89 in 
the 1930’s, is to reduce the computational expense of the calculation. By replacing the 
chemically inert core electrons with a suitable potential function only the valence electrons 
are treated explicitly in the calculation.

The wavefunction, for the core and valence electrons may be written as:
= 4  (1.2,•••,«„)] (1.43)

where vFcore and vFvaI represent antisymmetrized wavefunctions for the nc core and nv 
valence electrons, respectively.90-93 The symbol A is an antisymmetrizer enabling 
permutations between core and valence electrons. The exact wavefunction cannot be 
factored in this fashion but approximate wavefunctions, like the HF wavefunction, can 91 
The core potential acts to modify the one-electron Hamiltonian for the valence electrons as 
follows:
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(1-44)

where the last term represents the electron-electron interaction between each pair of valence 
electrons and the one-electron operator, h(r.), is given by:

The first term of h(r{) is the kinetic energy of valence electron i, while the second 
corresponds to the electrostatic attraction potential for a valence electron, i, interacting with 
an effective nuclear charge resulting from perfect screening of the nucleus by the nc core 
electrons. The term Vcore is the core potential, representing the Coulomb and exchange 
interactions between the core and valence electrons. This term is non-local in nature due to 
the exchange interaction, but is approximated in most pseudopotential methods by a 
simpler, local potential for computational efficiency. There are two pseudopotential 
techniques commonly employed: the model core potential (MCP) and the effective core 
potential (ECP). Typically, Vcorc is represented as a linear combination of gaussian-type 
functions, with adjustable parameters determined through fits to atomic Hartree-Fock 
calculations. The valence electrons not replaced by the core potential function are 
represented by basis functions as in all-electron calculations.

1.6.1 Model Core Potentials

The model core potential method was devised by Bonifacic and Huzinaga in the

mid-1970s94' 98 and has been reviewed recently90'93. The one-electron Hamiltonian, h(r{), 
in the model core potential formalism is given by:

where the core potential models the Coulomb and exchange interactions between the core 
and valence electrons, and the term PMCP is a projection operator which ensures that the 
valence orbitals remain orthogonal to the core orbitals, preventing them from collapsing 
onto the core region. It has the following form:

where (pc are fixed core orbitals obtained from reference atomic HF calculations and Bc is a 
constant defined as:

(1.45)

core (1.46)

(1.47)
c =  I
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(1-48)
The projection operator shifts the energy of any valence orbital which collapses onto a core 
orbital by the factor Bc, leaving the remaining valence orbital energies intact. The MCP 
method models the core-valence interactions with a local potential of the form:

where {Am;am} are the adjustable parameters. The parameters of the MCP core potential 

for each atom, {Am;am}, are optimized by fitting the valence orbital energies and shapes 
from reference atomic Hartree-Fock calculations. The following function is minimized:

where £vref and Rvref(r) are the orbital energy and radial function of the vvalence orbital, 
obtained from the reference atomic Hartree-Fock calculation, and evMCP and RvMCP(r;) are the 
corresponding values computed with the MCP. The radial functions are evaluated at 
discrete radial points, r., and the deviations between the orbital energies and radial functions 
are weighted using wv and Wv, respectively. The core orbitals in the projection operator 
are taken directly from the reference atomic HF calculations, and the value of f c is 
sometimes adjusted for molecular calculations. The valence electron shells not replaced by 
the core potential are represented by contracted gaussian basis functions, derived in the 
same manner used to derive all-electron basis sets.

The presence of the projection operator enables the valence orbitals to retain some 
of their nodal structure. The amount of nodal structure retained depends on the number of 
basis functions used for the valence shells. If the valence basis set is very flexible (i.e. 
contains a large number of primitive gaussian functions) the exact nodal structure of the 
valence orbitals may be reproduced. It is this feature of the MCP formalism which sets it 
apart from its ECP counterparts.

1.6.2 Effective Core Potentials

The following gives a brief overview of the ECP formalism, more detailed accounts 
are available from Krauss and Stevens", Cundari et al. 100 and Frenking et. al. 101 In the 
ECP approach none of the nodal structure of the valence orbitals is retained. The valence 
atomic orbitals from reference atomic HF calculations are converted to nodeless ECP 
pseudo-orbitals by maximizing the fit to the radial function of the reference valence orbital 
at large values of r. This ensures a very good representation of the ECP pseudo-orbital in

r* mm
(1.49)

(1.50)
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the valence region, at the expense of the region near the nucleus. For example, the radial 
function for the ECP valence pseudo-orbital of the 5s shell of iodine would contain no 
nodes, while that for the all-electron reference orbital would contain four nodes.

The ECP pseudo-orbitals (xv) and corresponding energy eigenvalues are used to 
generate a numerical potential, via “inversion” of the Hartree-Fock equations which 
amounts to determining a numerical ECP which will reproduce the reference atomic HF 
wavefunction and energy. The numerical potential must then be transformed into an 
analytical form for use in computational chemistry calculations. The analytical form of the 
ECPs usually takes the form of a linear combination of gaussian functions: 
r2Vt{r) = X A ( / n̂ ' ^ r: (1.51)

k

where n and £  are the principal and angular momentum quantum number, respectively, and 
A e and B( are the ECP core potential parameters.

A number of different techniques have been used to optimize the ECP parameters 
{Afk; Bfk}. The approach taken by Hay and W adt102*104 and by Ermler and 
Christiansen105*111 was to fit the numerical potentials to the analytical form of the core 
potential, Equation (1.51), using a straightforward least squares fitting procedure. 
Unfortunately, this approach can lead to a large number of terms in the core potential which 
decreases the computational efficiency when employed in molecular calculations. Stevens 
et al.112*114 took a slightly different approach, generating their ECP core potentials by 
fitting to the valence orbitals and orbital energies obtained from accurate all-electron 
reference calculations . These ECPs, called compact effective core potentials, contain a 
small number of terms, typically less than six. A third approach, taken by Stoll and 
Preuss115*121, minimizes the differences in atomic excitation energies computed from the 
ECPs and all-electron reference calculations.

As in the MCP method, the final step in ECP preparation involves the optimization 
of the valence basis sets for those electrons not replaced by the core potential via fitting to 
the results of atomic calculations, as in the generation of all-electron basis sets.

1.6.3 Q uasi-Relativistic Pseudopotentials

Relativistic effects are minor for compounds containing light elements, but their 
importance grows rapidly as one descends the rows of the periodic table. Relativistic 
effects are particularly important for the transition metal atoms, especially for members of 
the third row.9-10 Taking proper account of the major relativistic effects in computational 
studies of transition metal compounds presents another challenge to the computational
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chemist. The HF formalism can be expanded to incorporate the major relativistic effects 
(i.e. the mass-velocity and Darwin terms) yielding the Quasi-Relativistic-Hartree-Fock 
(QRHF) approach.122 In all-electron calculations solving the QRHF equations is very time 
consuming and is limited to atoms and small molecules. These effects may be incorporated 
indirectly through the MCP and ECP core potential parameters. If the reference atomic 
calculations used to derive the MCP and ECP core potential parameters were carried out at 
the QRHF level, the resultant core potential parameters will carry the major relativistic 
effects for the core orbitals. In subsequent calculations employing these pseudopotentials, 
the valence shells remain non-relativistic, but the core shells, for which the relativistic 
effects are largest, indirectly incorporate the relativistic effects. Pseudopotentials which 
indirectly incorporate relativistic effects in this manner are referred to as quasi-relativistic 
pseudopotentials.I23’124

1.6.4 Comparison of MCPs and ECPs

The results of molecular calculations employing pseudopotentials do not differ 
significantly from those in which all of the electrons have been treated explicitly (see for 
instance the review by Cundari et al. and the references contained therein100). 
Pseudopotentials afford a dramatic saving in computational cost without sacrificing 
accuracy, and as such have proven to be very popular in theoretical studies of transition 
metal compounds.

Studies performed thus far have shown that the incorporation of proper nodal 
structure into the MCP valence orbitals has not resulted in a significant increase in the 
accuracy of computed bond energies, geometries and spectroscopic parameters when 
compared to their ECP c o u n t e r p a r t s . 101’ 123 The advantage of employing valence orbitals 
with nodal structure is more apparent in calculations of expectation values which exhibit a 
stronger dependence on the behaviour of the electrons in the region close to the nucleus, 
such as spin-orbit coupling constants.126

Smaller basis set expansions are required for the valence orbitals in the ECP 
approach than in the MCP approach since fewer PGTFs are needed to expand a nodeless 
radial function than one containing multiple nodes. The smaller number of PGTFs reduces 
the computing time required for evaluating the two-electron integrals.

The use of pseudopotentials in modeling transition metal complexes raises the 
question of which electron shells should be included in the valence space. In general, there 
are two types of transition metal pseudopotentials: the large core and small core 
pseudopotential. In the large-core pseudopotential, the valence space contains only the ns
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and (n-l)d electron shells, with the remaining electronic shells replaced by the core 
potential. The small-core transition metal atom pseudopotentials also include the 
penultimate valence shell in the valence space. The (rc-l)p shell is included in the small- 
core transition metal atom MCPs, while both the (n-l)s and (rc-l)p shells are included in the 
small-core transition metal atom ECPs. The small-core pseudopotentials, with an extended 
valence space, are recommended over their large-core counterparts, even though they are 
more computationally demanding.101

MCPs have been derived for nearly all of the elements of the periodic table. All of 
the main group elements, transition metal elements and actinides have been parameterized 
and work is currently underway to parameterize the lanthanides.127*130 The MCP core 
potential parameters and valence basis sets have been incorporated into a number of 
common quantum chemistry programs including: CADPAC131, and the development 
version of GAMESS132’133 The ECPs of Hay and Wadt102*104 have been developed for 
all elements up to the lanthanides, while those of Stevens et al.112-114 have been developed 
for all of the elements, except the actinides. These two ECPs are very popular and have 
been directly implemented into the Gaussian134 and GAMESS programs. The ECPs of 
Ermler and Christiansen105*111 and Stoll and Preuss115*121 have been developed for all of 
the elements of the periodic table, and the latter have been included directly in the 
Turbomole135 and Molpro136 programs.

1.7 Interpreting the Energy and Wavefunction

Under the Bom-Oppenheimer approximation the electronic energy is computed at a 
fixed set of nuclear coordinates. If the energy is computed for a variety of nuclear 
coordinates then the potential energy hypersurface of the molecule may be mapped out. 
Hence, it is possible to optimize the geometry of the molecule by locating the set of 
coordinates which yield the minimum total energy. Although manually mapping out the 
computed energy at a number of geometric orientations is possible for very small 
molecules, a more automated procedure is required for larger systems. Geometry 
optimization amounts to minimization of the energy with respect to the nuclear coordinates:

w r °  ( 1 -5 2 )

where Xt represents a nuclear coordinate. Geometry optimizations may be carried out 
using numerical or analytical differentiation. Numerical differentiation approximates the 
required derivatives as:
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dE AE
(1-53)

dX; AX,

where AE is the change in the energy as the nuclear coordinate is modified by an amount 
AX; . For analytical differentiation the required derivatives are expressed in terms of an 
explicit formula. There is a dependence of the energy on the nuclear coordinates Xi in the 
two-electron integrals, as well as in the nuclear-electron attraction terms. Analytical 
gradient evaluation is more reliable than numerical differentiation and is currendy available 
in a variety of quantum chemistry programs.18’22

Chemically interesting points on the potential energy hypersurface are the local 
minima (corresponding to reactants, intermediates, and products as shown in Figure 1.3) 
and the first order saddle points (corresponding to transition states). Unfortunately, 
minimization o f the gradient of the energy does not give any indication as to what type of 
chemical entity the located stationary point corresponds to. Hence, once located, stationary 
points should be further analyzed via the second derivatives of the energy with respect to 
the nuclear coordinates (hessian) in order to characterize them. The hessian is normally 
computed via numerical differentiation of analytical gradients:

or via analytical second derivative evaluation. The vibrational frequencies are proportional 
to the hessian of the energy. At local minima, the second derivatives of the energy with 
respect to the nuclear coordinates are positive in all directions, resulting in all of the 
computed harmonic vibrational frequencies being real. At a transition state all of the 
harmonic vibrational frequencies but one are real. The single imaginary vibrational 
frequency corresponds to motion along the nuclear coordinate for which the transition state 
is a maximum.18 Higher order saddle points, with more than one imaginary frequency, 
may also be located during geometry optimization. Interpretation of these stationary points, 
in a chemical sense, is more difficult.

Prediction of molecular structures, relative energies and the nature of the species 
involved in chemical processes is the starting point for any theoretical investigation. 
However, calculations also provide important information regarding the nature of the 
bonding of chemical species. This is perhaps the most beneficial use of computational 
chemistry, although the interpretation of the numbers obtained from the calculations in 
terms of useful chemical concepts is not an easy task. The wavefunction or electron 
density (in the case of DFT) and the constituent molecular orbitals are available for

(1.54)
dX'dXj AX,
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Figure 1.3: The potential energy hypersurface (in three dimensions; for example two 
angles a  and p and the relative energy AE) for a hypothetical chemical reaction connecting 
one equilibrium (with a  = 10°, p = 10°) to a second equilibrium (with a  = 30°, P = 30°) by 
traversing a barrier (a transition state with a  = 20°, P = 20°). (Taken from the background 
material of the 1998 Nobel Prize in Chemistry Awards web site.4)
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interpretation at each stationary point. A number of different schemes have been developed 
to analyze the wavefiinction or electron density, in terms of simple chemical concepts. 
Population analysis, such as the natural bond orbital (NBO) analysis of Weinhold and co
workers137, yield atomic charges, bond orders and atomic densities useful in 
understanding the changes which occur during a chemical process. Bader’s atoms in 
molecules (AIM) method analyses the electron density topology of a molecule to gain 
information about the nature of the bonding between the atoms.138 Morokuma139d40 and 
Ziegler141 have both developed schemes which decompose the coordination energy into a 
variety of components related to aspects of chemical bonding. A particularly useful 
bonding analysis scheme, known as the charge decomposition analysis (CDA) scheme was 
developed by Frenking and co-workers to probe the nature of metal-ligand interactions.142

Computational chemistry allows the researcher to investigate all of the intricate 
details of a chemical process in a manner often not accessible to experiment. Reaction 
mechanisms can be mapped out, complete with changes in energy, molecular structure, and 
the nature of the bonding between constituent atoms as the reaction proceeds.

1.8 Scope of the Thesis

The present thesis focuses on the testing, development, and application of a variety 
of computational chemistry techniques for modeling transition metal compounds. One of 
the aims of the research was to gain an understanding of the advantages and limitations of 
the various theoretical methodologies commonly employed to study these compounds. The 
thesis is comprised of three sections: testing, development and applications. The first part 
involves benchmarking of the MCP technique with particular emphasis on species 
containing transition metals. The need for improved basis sets to regain the performance 
lost due to longer expansions of the MCP valence basis sets is addressed in the second part 
of the thesis, which reports the development of more computationally efficient MCP 
valence basis set for the main group elements. Finally, two particularly interesting 
problems in organometallic chemistry are studied in the applications section of the thesis.

A systematic study aimed at determining the reliability and predictive power of the 
MCP method in molecular calculations is reported in Chapter 2. The capabilities of the 
MCP method were initially tested on a variety of small molecules, a number of which are 
commonly found as ligands in transition metal complexes.143 The second phase of the 
benchmarking study focused on the group four metal tetrahalogen complexes (MX4, where 
M = Ti, Zr, Hf and X = F, Cl, Br, I) as a test of the MCP method in modeling small
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transition metal complexes. Of utmost concern in the benchmarking studies was the 
accuracy of the molecular geometries predicted using the MCP method. Whenever 
possible, comparisons are made to experimental structures, as well as those optimized 
using various ECP methods. Calculations for the small molecules were carried out at the 
HF, MP2 and CISD levels of theory, while those for the MX4 complexes were carried out 
at the HF and MP2 levels of theory.

Chapter 3 summarizes the development of new MCP valence basis sets for the main 
group elements which incorporate L-shell structure in order to improve computational 
efficiency. Details o f the procedure used to generate the new L-shell basis sets are given, 
along with the results of atomic and molecular calculations.

The results of a study focusing on the carbonyl scrambling phenomenon commonly 
found in organometallics is described in Chapter 4. Calculations were carried out at the 
DFT (with all-electron and ECP basis sets) and semiempirical, PM3(tm), levels to probe 
the carbonyl fluxionality in Mn2(CO)6(dppm)2 and its absence in the parent complex, 
Mn2(CO)10. A hybrid DFT//PM3(tm) methodology, where the less expensive 
semiempirical method was used to optimize the geometry, and the more accurate DFT 
method was used to compute the energy, was found to be a very useful and efficient 
approach for computing internal reaction barriers.59’144

In Chapter 5, the gradient-corrected DFT approach was employed, in conjunction 
with ECPs, to probe the increased reactivity of the alkyne complexes of the Group 8 
metals, M(CO)4(CjR2) where M = Fe, Ru, Os. The first bond dissociation energies of the 
alkyne complexes were computed and compared to those values found for the parent 
pentacarbonyl complexes, M(CO)5. The nature of the alkyne-metal bond was analyzed 
using the CD A scheme of Frenking and Bader’s AIM scheme in an effort to rationalize the 
experimental and theoretical findings.145

The common theme throughout the thesis is the critical evaluation of the computed 
results in an effort to ascertain the advantages and limitations of the various computational 
methods commonly employed in theoretical investigations of transition metal complexes. 
Theoretical results must be rigorously tested in order for the researcher to be fully confident 
in them and the chemical rationalizations which are made based on them. This was the 
driving force behind the MCP benchmarking studies. The aim of the two applied studies 
was to employ a number of popular computational chemistry methods to gain chemical 
insight from the numerical results.
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Chapter 2

Benchmarking of Model Core Potentials: 
Application to Small Molecules 

and the Group 4 Metal Halogen Complexes 
(MX4: M = Ti, Zr, Hf and X = F, Cl, Br, I)*

* Reproduced in part with permission from Decker, S. A.; Klobukowski, M.; Sakai, Y.; Miyoshi, E. 
Journal o f  Molecular Structure (Theochem) 1998, 451 , 215. Copyright 1998 Elsevier.
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2.1 Introduction

As discussed in Chapter 1, the pseudopotential formalism has been very successful 
in extending computational chemistry to the study of the structures, energetics, properties, 
and reactions of molecules containing transition metals.1'6 Pseudopotentials, such as the 
MCPs, are a necessity in studying such systems, where the molecules are typically large 
and contain a number of heavy atoms, both amongst the metal atoms themselves and in the 
main group elements present in the ligands. These methods are beneficial in that they 
reduce the number of basis functions required for modeling transition metal complexes and 
they provide a simple mechanism to incorporate relativistic effects, which are important for 
the heavy elements, into the calculations. Pseudopotentials enable one to probe the metal- 
dependent trends observed experimentally as one descends a column of the Periodic Table, 
with no increase in computational cost since all of the metal atoms contain the same number 
of valence electrons. Consider three identical complexes differing only in the metal atom 
(for example Ti, Zr, and Hf), the number of electrons, and more importantly the number of 
orbitals (and thus basis functions) nearly doubles as one goes from Ti to Zr and Zr to Hf. 
An all-electron HF calculation, which scales roughly as K4 (where K is the number of basis 
functions, and is related to the number of atomic orbitals), for the Hf complex will be 256 
times more computationally demanding than that for the Ti analogue, whereas the 
computational costs will be approximately the same for all three metal analogues if 
pseudopotentials are employed in the HF calculation.5

The present Chapter focuses on one of the two pseudopotential methods commonly 
employed in modem quantum chemistry calculations, the model core potential (MCP) 
approach, developed by Huzinaga and co-workers.7 A complete description of the MCP 
formalism was given in Chapter 1 (section 1.6), and will not be discussed in detail here. 
There are currently three versions of the model potential in use: version l 8’9, which was 
used in all of the calculations in this thesis, and is denoted simply as the model core 
potential (MCP) method, version 2, known as the ab initio model potential (AIMP) 
method10, and version 311. The three differ in the way the core-valence Coulomb and 
exchange interactions are accounted for. Version 1 represents the core-valence exchange 
interactions using a local potential (refer to chapter 1, section 1.6), while versions 2 and 3 
use a non-local representation of the potential function.1

Given the nature of approximations in the MCP method, both the parameters and 
valence basis sets should be benchmarked and, if necessary, calibrated before commencing 
actual studies of the organometallics. MCPs have been used in several benchmarking 
studies as well as in applications focusing on transition metal chemistry. The review article
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of Klobukowski et al. 1 gives a very good overview of the studies which have employed 
MCPs in studies of transition metal compounds. Miyoshi and Sakai carried out a detailed 
benchmarking of the MCP potentials and valence basis sets for a number of small transition 
metal complexes at the restricted Hartree-Fock (RHF) level using both large-core (denoted 
MCP-SD) and small-core (denoted MCP-SPD) metal atom MCPs.12 They found very 
good overall agreement between MCP-SPD geometries and harmonic vibrational 
frequencies and those computed using all-electron basis sets of similar quality. Frenking et 
al. 13 compared the performance of the SD- and SPD-type MCPs to the corresponding 
ECPs of Hay and W adt14-16 at the Hartree-Fock (HF) level, in a study involving 
complexes of the type Ti(CH3)n(Cl)4.n. They found the SD-type MCPs and ECPs to be 
inferior to their respective SPD counterparts, and they found a slight preference for the 
ECPs over the MCPs in predicting geometries, harmonic vibrational frequencies, bond 
energies, and reaction energies. MCPs were also employed by Sakai and co-workers in a 
number of studies focusing on the electron affinities of a number of transition metal 
complexes of the type MF6, MF6\  and MF62' (where M=Cr, Mo, and W )17*1̂  as wep as 
complexes of the type AuF6q (where q = 0, -1, -2, and -3)19. MCP calculations were 
carried out at the HF and configuration interaction (Cl) levels, and the results agreed well 
with experiment. The use of MCPs has not been restricted to HF and post-HF 
calculations, as several reports have appeared in the literature whereby the MCP formalism 
has been merged with density functional theory (DFT). Salahub et al.20, in a study of 
complexes of the type MCO, MCO+, M(CO)2, and M(CO)2+, showed that the DFT/MCP 
approach works quite well. Furthermore, Yang et a/.21-23, used MCPs in DFT studies of 
a number of triniobium clusters (NbsO, Nb30 +, Nb3C2, Nb3C2+, and Nb3N2). MCPs have 
been employed in a number of studies, both HF (and post-HF) based and DFT based, 
focusing on the chemisorption of atoms and small molecules on a variety of metal surfaces, 
including: Pt, Pd, Rh, Ni, Sc, Fe and Cu.24' 34

In the first part of this Chapter, results are reported for calculations on a number of 
ligands commonly encountered in organometallic chemistry, as well as their heavier 
homologues. The molecules studied include: homonuclear diatomics (Group 15: N2, P2, 
A s2, Sb2 and the halogens: F2, Cl2, Br2, 12); heteronuclear diatomics (CO analogues XY, 
where X=C, Si, Ge, Sn, and Y=0, S, Se, Te; and the mixed halogens); triatomic hydrides 
AH2 (OH2, SH2, SeH2, TeH2), triatomic oxides (C 02 and S 0 2), tetraatomic hydrides AH3 
(NH3, PH3, A sH 3, SbH3), tetraatomic analogues of NF3, and small hydrocarbons (C2H2, 
C2H4, CH2). With the exception of CH2, only ground electronic states were considered in 
this work. The reliability and accuracy of the MCPs in treating these small systems is 
gauged through predictions of geometric structures, as well as harmonic vibrational
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frequencies (for diatomic molecules). Discussion also focuses on the correlation energies 
computed using the MCP and ECP approaches, computed at the MP2 and CISD levels of 
theory.

The second part of the Chapter focuses on the reliability of the MCP method as 
applied to a set of small transition metal complexes, the Group 4 metal tetrahalogen 
complexes (MX4; M = Ti, Zr, Hf and X = F, Cl, Br, I). The geometries of these 
tetrahedral complexes were computed using small-core MCP and ECP approaches and 
compared, wherever possible, to experiment. Reaction energies for a simple set of halogen 
diatomic substitution reactions of the MX4 complexes, leading to the mixed halogen 
complex, MX2Y2, were also computed. These MX4 metal halogen complexes are 
commonly encountered as starting compounds in organometallic syntheses35, and 
experimental M-X distances are available for comparison.

2.2 Computational Methods

2.2.1 Small M olecules

A progression of methodologies was utilized to study the effectiveness of the model 
core potentials for the small main group molecules: Hartree-Fock (HF), Mpller-Plesset 
(MP2), and configuration interaction (CISD). MCPs were employed in all of the 
calculations, along with the effective core potentials of Stevens et a/.36' 38, which were 
used in several reference calculations. In the calculations, MCP valence basis sets of 
double-zeta valence (DZ) and triple-zeta valence (TZ) quality were used. The DZ basis sets 
were supplemented with a single d polarization function (denoted as DZld), while two d 
polarization functions were added to the TZ basis sets (denoted as TZ2d). All of the 
polarization functions were taken from the compilation of Huzinaga et al.39 For hydrogen 
atoms, standard DZV and TZV library basis sets were used.

Equilibrium geometries were optimized using a modified Powell method of 
searches along conjugate directions.40 For diatomics the total energy curve was fit at 
several points bracketing the equilibrium to a simple polynomial in r, and the harmonic 
vibrational frequency, C0c, was determined from:

1co = —  
e 2k

r  E \ r e) ^ 2
(2 . 1)
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where E ”{re) is the second derivative of the energy with respect to r, evaluated at re and p. 
is the reduced mass.41 Electron correlation energies were calculated using MCPs and 
compared to the values obtained using ECPs, at the MP2 and CISD levels.

All calculations were carried out using the development version of the GAMESS 
package.42’43

2.2.2 MX4 Molecules

As discussed in Chapter 1, the valence space for a transition metal atom 
pseudopotential may be defined as either the outermost ns and (n-l)d shells, termed an SD 
or large-core pseudopotential, or the {n-1)p shell and/or the (n-l)s shell may be included in 
the valence space and treated explicitly as well, yielding an SPD or small-core 
pseudopotential.5’6 Although, the SD-type pseudopotentials offer greater computational 
savings than their SPD counterparts, Sakai and Miyoshi17, as well as Frenking and co
workers13 have shown them to be inferior in predicting molecular properites of transition 
metal complexes, particularly for those in which the metal atom is in a high oxidation state. 
Our preliminary calculations on the MX, complexes using the MCP-SD and ECP-SD 
pseudopotentials are in line with these previous findings, with computed M-X distances 
typically deviating from experiment by 0.1 A or more. Hence, the SD pseudopotentials 
were not used further in the benchmarking study, and the results presented here employed 
only the SPD-type pseudopotentials. The small-core MCPs for Ti, Zr, and Hf, denoted 
MCP-SPD, treat ten valence electrons explicitly in the calculation (the {n-1)p6 ns2 {n-1)d2 
electrons). In the ECP of Stevens and co-workers36' 38, denoted ECP1-SPD, the metal 
atom valence configuration is defined as: {n-1)s2 (n-i)p6 ns2 {n-1)d \ thereby treating a total 
of twelve electrons explicitly in the calculation. The SPD-type ECPs of Hay and Wadt16, 
termed ECP2-SPD, define the metal atom valence configuration in a manner analogous to 
that used by Stevens, treating a total of twelve electrons explicitly. The valence space for 
the halogen atoms was identical for all of the pseudopotential methods employed, and 
consisted of the outermost seven electrons in the ns and np atomic orbitals. Quasi- 
relativistic pseudopotentials were used for the second and third row metal atoms, as well as 
for iodine.

The valence basis set contractions employed for the metal atom are displayed in 
Table 2.1. The naming convention adopted to describe the valence basis sets is similar to 
that used in describing the valence basis sets employed in calculations of the main group 
molecules. The terms DZ and TZ denote basis sets of double-zeta and triple-zeta quality, 
while If  and lp  designate the addition of f  and p type polarization functions, respectively,
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Table 2.1: Summary of the Metal Atom Pseudopotential Valence Basis Sets Employed in 
Calculations of the MX4 Complexes.

B asis Contraction Scheme

Ti Zr Hf

MCP-SPD
DZ (51/31/41) (71/41/41) (71/51/51)
D Zlf (51/31/41/1*) (71/41/41/1*) (71/51/51/1*)
DZlp (51/311741) (71/411741) (71/511751)
D Z lp lf (51/311741/1*) (71/411741/1*) (71/511751/1*)

TZ (411/211/311) (611/311/311) (61 1/411/411)
T Z lf (411/211/311/1*) (611/311/311/1*) (61 1/411/411/1*)
TZlp (411/21117311) (611/31117311) (61 1/41117411)
T Z lp lf (411/21117311/1*) (611/31117311/1*) (61 1/41117411/1*)

ECP1-SPD
TZ (4211/4211/411) (4211/4211/311) (4111/4111/311)
T Z lf (4211/4211/4 ll/ i* ) (4211/4211/311/1*) (41 11/4111/311/1*)

ECP2-SPD
DZ (441/311/41) (441/321/31) (441/321/21)
D Z lf (441/311/41/1*) (441/321/31/1*) (441/321/21/1*)
DZ’ (441/3111/31) (441/3111/21)
DZ’lf (441/3111/31/1*) (441/3111/21)

TZ (4311/311/311) (4311/321/211) (4311/321/111)
T Z lf (4311/311/311/1*) (4311/321/211/1*) (4311/321/111/1*)
TZ’ (4311/3111/211) (4311/3111/111)
TZ’ If (4311/3111/211/1*) (4311/3111/111/1*)
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to the basis set. The f polarization functions were taken from the compilation of Frenking 
and co-workers44, while the p polarization functions were taken from the compilation of 
Huzinaga and co-workers39. As seen from Table 2.1, DZ and TZ basis sets were used in 
calculations involving the MCP-SPD pseudopotentials. The MCP-SPD valence basis sets 
were also augmented by the addition of an f, a p, and both an f and a p polarization 
function. Metal atom valence basis sets of TZ and T Z lf quality were employed in 
conjunction with the ECP1-SPD pseudopotentials. The exponents of the of the outermost 
p basis functions (Ti 0.030, Zr 0.028, Hf 0.035) resembled the exponents of the p 
polarization functions employed (Ti 0.065, Zr 0.059, Hf 0.059), hence, a p polarization 
function was not added to the ECP1-SPD basis sets. Both DZ and TZ basis sets were 
employed in conjunction with the ECP2-SPD pseudopotentials. An f  polarization function 
was added to the DZ and TZ basis sets, yielding D Z lf and T Z lf basis sets, however, no p 
polarization functions were added since the exponents of the outermost p functions were 
again found to be close to those of the p polarization functions. In addition, basis set 
contractions denoted as DZ’ and TZ’ (as well as DZ’ If and TZ’ If) were employed in 
calculations involving the ECP2-SPD pseudopotentials in which the second-ourtermost p 
contracted function for Zr and Hf was further expanded. In all of the calculations, the 
valence basis sets for the halogen atoms were of double-zeta plus polarization quality, with 
a single d polarization function taken from the compilation of Huzinaga et al.39

Molecular geometries were optimized using a modified Powell method40 at the 
RHF and MP2 levels of theory, using the development version of the GAMESS 
package.42’43 The MX4 geometries were optimized under Td symmetry constraints while 
C2v symmetry was imposed on the MX,Y2 systems.

2.3 Results and Discussion

In order to assess the reliability of the MCP method, the average absolute errors of 
each molecular property (geometric parameter or harmonic vibrational frequency) was 
calculated for each family of compounds studied. For the main group molecules, the 
families of compounds used in averaging were: the homonuclear diatomics, the 
heteronuclear chalcogenide diatomics of Group 14, the mixed halogen diatomics, the 
diatomic ions, the triatomics, the tetra-atomics, and the hydrocarbons. Three families of 
compounds were defined for the MX4 molecules: the TiX4, ZrX4, and HfX4 complexes. 
The average errors c av(X) are defined as:
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Hf \ p c a l c   p e x p l

<Ja,(P -M \B ) =  j }  ' ' '■ (2.2)
1=1 ^

where /V is the number of molecules in the sample, and P is the property of interest (P = re, 
a>e, or bond angle 0e) evaluated using method M {M = RHF, MP2, or CISD) with 
associated basis set B.

2.3.1 Main Group M olecules

The structural results calculated with the MCP method are collected in Figures 2.1- 
2.6 and Tables 2.3 and 2.4, along with their respective experimental values. The harmonic 
vibrational frequencies for selected diatomic molecules computed using the MCP 
pseudopotential at the RHF, MP2, and CISD levels of theory, are given in Table 2.2. All 
of the experimental data was taken either from Huber and Herzberg45 or from the Landolt- 
Bomstein compilations.46*48

The equilibrium bond distances for the homonuclear diatomics computed using the 
MCP-DZld, MCP-TZ2d and ECP-DZld methods are ploltted as a function of the 
respective experimental distances in Figure 2.1. The average error in the MCP computed 
bond length, a av, is 0.06 A at the CISD/DZld level, and decreases to 0.04 A when the 
larger TZ2d basis set is used. At the CISD level the MCP harmonic vibrational frequencies 
remain too large by about 40 - 50 cm'1, as illustrated in Table 2.2. At all levels of theory 
employed, the distances predicted for the lighter systems (N2, P2, and F2) using the ECPs 
of Stevens are larger than those predicted using the MCPs, while the reverse relationship 
holds for the heavier diatomics (As2, Sb2, Cl2, Br2, and I2). Inclusion of electron 
correlation effects via the MP2 method results in computed distances which overshoot 
experiment. CISD performs much better in this respect, particularly with the larger, TZ2d 
basis set. The large error found for Sb2 reflects the fact that the experimental distance does 
not correspond to re, but rather to r2.45

The computed equilibrium bond distances for the chalcogenides of carbon, silicon, 
germanium, and selenium are plotted in Figure 2.2 as a function of the experimental 
distance. The average errors in the MCP bond length, CTav(re), are on the order of 0.02 A at 
both the CISD/DZld and CISD/TZ2d levels, while the deviations for the MCP computed 
vibrational frequencies differ by 35 - 45 cm'1. In general, the distances predicted by the 
ECPs of Stevens are larger than those predicted using the MCP method (with SnO being a 
notable exception). As with the homonuclear diatomics, the trend in MCP computed 
equilibrium distances amongst the different methods is: re(MP2) > rc(CISD) > re(RHF).
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Figure 2.1: Comparison of calculated and experimental bond lengths for the homonuclear 
diatomic molecules. Triangles, squares, and pentagons refer to HF, MP2, and CISD 
results, respectively; open, skeletal (centre connected to vertices), and solid refer to ECP- 
DZld, MCP-DZld, and MCP-TZ2d, respectively.
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Table 2.2: Summary of the Harmonic Vibrational Frequencies of Selected Diatomic 
Molecules.3

System RHF
D Z ld TZ2d

MP2
D Z ld TZ2d

CISD
D Z ld TZ2d

E xp t.b

n 2 2926 2742 2209 2148 2523 2471 2359
As, 498 497 356 368 445 452 430
Cl2 601 585 560 527 560 538 560

I2 236 231 221 214 218 214 215

CO 2470 2424 2131 2165 2271 2337 2170
SiS 814 826 739 754 770 787 750

GeO 1166 1171 972 978 1062 1109 986
SnS 502 508 451 455 473 478 487

C1F 887 904 782 779 797 832 786
IF 642 668 586 600 593 723 610
IC1 401 403 376 375 374 375 384

OH' 3900 3924 3753 3721 3705 3730 3700
NO+ 2950 2805 2169 2067 2588 2476 2376
CN' 2342 2335 1981 1975 2152 2075 2069c
CN+ 2279 2151 2265 2296 2128 2073 2033

a Harmonic vibrational frequencies are given in units of cm'1. b Experimental values taken 
from the compilation of Huber and Herzberg.45 c The experimental values given 
correspond to the X2£+ state of neutral CN 45
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Figure 2.2: Comparison of calculated and experimental bond lengths for the heteronuclear 
diatomic chalcogenides of the Group 14 elements. Triangles, squares, and pentagons refer 
to HF, MP2, and CISD results, respectively; open, skeletal (centre connected to vertices), 
and solid refer to ECP-DZld, MCP-DZld, and MCP-TZ2d, respectively.
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The MCP c av(re) and a av(coe) values for the mixed halogen diatomics (Figure 2.3 
and Table 2.2) were found to be in the range 0.04 to 0.06 A and 8 -3 6  cm"1, respectively. 
Comparison of the distances predicted using MCPs and ECPs indicates that as above, 
re(ECP) > re(MCP) (with the exception of C1F).

The interatomic distances predicted using the MCP pseudopotentials agree very well 
with experiment for the diatomic ions (Figure 2.4) with a av( r j  values less than 0.01 A, 
despite the fact that no diffuse functions were added to the basis sets for the negative ions. 
On the other hand, the MCP vibrational frequencies deviated from experiment by 60 - 90 
cm '1. For all of the diatomic ions studied, including the two anions for which no 
experimental data was available, SH" and CN", re(ECP) > re(MCP).

For the polyatomic molecules only structural data were reported, with the harmonic 
vibrational frequencies awaiting the implementation of MCP gradients into the 
GAMES S42-43 program. Computed structural parameters for the triatomic molecules, re 
and 0e, are plotted as functions of their experimental values in Figures 2.5 and 2.6, 
respectively. The MCP structures agree very well with experiment, exhibiting a av(rc:CISD) 
values of 0.005 to 0.01 A, and CTav(9e:CISD) values smaller than 1°. As in the diatomics, 
the distances predicted using the ECP formalism of Stevens were larger than those 
predicted using the MCP formalism (with the exception of TeH,).

Values for the bond lengths and bond angles of the tetratomic molecules studied are 
collected in Table 2.3. For molecules with ligands heavier than hydrogen only MP2 
calculations were performed due to computer limitations. For the tetratomic systems 
studied, the errors C7av(re) and <7av(0e) were found to be very small, 0.004 A and 0.2°, 
respectively, indicating very good agreement between the MCP calculations and 
experiment.

The results for the small sample of hydrocarbons studied are collected in Table 2.4. 
At the CISD level, values of orav(re) were between 0.005 and 0.01 A, while the computed 
bond angle for C2H4 agreed with experiment to within 1°. It is interesting to note that for 
the methylene radical CH2, electron correlation is critical for a correct value of the bond 
angle. It is also worth mentioning that the calculated singlet-triplet splitting was 11 
kcal/mol, in good agreement with the experimental value of 9 kcal/mol47

The basis set correlation energies calculated using the MCP-DZld and ECP-DZld 
pseudopotential methods are collected in Table 2.5 for a selected set of diatomic molecules 
(a more complete compilation is available in Appendix A), and Table 2.6 for the heavy- 
atom polyatomic hydrides studied. The results in Tables 2.5 and 2.6 show that, as 
expected from previous studies, Ecorr(M:ECP) > Ecorr(M:MCP), where M  = MP2, CISD. 
The only exceptions found were Cl2, SH2, Sb2, and BrCl (MP2). It has been shown
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Figure 2.3: Comparison of calculated and experimental bond lengths for the mixed halogen 
diatomic molecules. Triangles, squares, and pentagons refer to HF, MP2, and CISD 
results, respectively; open, skeletal (centre connected to vertices), and solid refer to ECP- 
DZld, M CP-DZld, and MCP-TZ2d, respectively.
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Figure 2.4: Comparison of calculated and experimental bond lengths for the heteronuclear 
diatomic ions. Triangles, squares, and pentagons refer to HF, MP2, and CISD results, 
respectively; open, skeletal (centre connected to vertices), and solid refer to ECP-DZld, 
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Figure 2.5: Comparison of calculated and experimental bond lengths for the triatomic 
molecules. Triangles, squares, and pentagons refer to HF, MP2, and CISD results, 
respectively; open, skeletal (centre connected to vertices), and solid refer to ECP-DZld, 
MCP-DZld, and MCP-TZ2d, respectively.
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Figure 2.6: Comparison of calculated and experimental bond angles for the triatomic 
molecules. Triangles, squares, and pentagons refer to HF, MP2, and CISD results, 
respectively; open, skeletal (centre connected to vertices), and solid refer to ECP-DZld, 
MCP-DZld, and MCP-TZ2d, respectively.
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Table 2.3: Calculated (MCP) and Experimental Structural Parameters for the tetratomic 
molecules studied.ab

System  Method re(A -B ) 0 e(B -A -B )
D Z ld TZ2d D Z ld TZ2d

RHF 1.3193 1.3200 102.8 102.7
MP2 1.3684 1.3831 102.1 100.7
Expt. 1.3648 102.4
RHF 2.0778 2.0591 99.9 100.4
MP2 2.0962 2.0807 99.6 99.4
Expt. 2.0430 100.1
RHF 2.3596 2.3522 99.9 100.2
MP2 2.3789 2.3744 99.9 99.4
Expt. 2.3290 99.7
RHF 2.7651 2.7304 99.2 99.8
MP2 2.7808 2.7478 99.3 99.6
Expt. 2.7190 99.7
RHF 1.0005 0.9980 108.1 107.2
MP2 1.0107 1.0087 106.6 105.9

CISD 1.0101 1.0062 106.5 106.2
Expt. 1.0016 106.7
RHF 1.4151 1.4112 95.1 95.3
MP2 1.4180 1.4159 93.5 93.5

CISD 1.4209 1.4180 93.5 93.8
Expt. 1.4130 93.5
RHF 1.5162 1.5204 94.2 94.3
MP2 1.5185 1.5263 92.6 92.5

CISD 1.5229 1.5299 92.5 92.7
Expt. 1.5130 92.1
RHF 1.7097 1.6970 93.1 93.7
MP2 1.7125 1.7027 91.5 92.1

CISD 1.7210 1.7085 91.5 92.2
Expt. 1.7039 91.6

NF,

PCI,

AsBr,

SbL

NH,

PH,

AsH,

SbH,

Values of re and 0e are given in units of A and idegrees, respectively. Experimental 

values taken from the Landolt-Bomstein compilation of structural data.46-48
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Table 2.4: Calculated (MCP) and Experimental Structural Parameters for the hydrocarbons 
studied.3*15

System Method r e(C -C ) 

D Z ld  TZ2d

r e(C -H ) 

D Z ld  TZ2d

0 e(H -C -H ) 

D Z ld  TZ2d

c 2h 2 RHF 1.2044 1.1744 1.0591 1.0513
MP2 1.2362 1.2054 1.0659 1.0575
CISD 1.2231 1.1910 1.0643 1.0551
Expt. 1.2031 1.0608

C2H4 RHF 1.3318 1.3102 1.0769 1.0712 117.1 116.8
MP2 1.3520 1.3292 1.0839 1.0770 117.5 117.3
CISD 1.3465 1.3217 1.0819 1.0743 117.2 117.0
Expt.c 1.3390 1.0850 117.8

c h 2 RHF 1.0725 1.0680 129.4 129.4
(3B,)

MP2 1.0776 1.0704 131.3 132.3
CISD 1.0809 1.0736 131.7 132.6
Expt. 1.0748 133.8

c h 2 GVBd 1.1002 1.0958 102.2 102.3
(‘A,)

CISD 1.1110 1.1034 101.8 102.0
Expt. 1.1075 102.5

a Values of re and 0e are given in units of A and degrees, respectively. b Experimental 
values taken from the Landolt-Bomstein compilation of structural data.46-48 c The 
experimental values correspond to r0 and 0O values. d Two-configurational GVP-PP 
wavefunction was used as the reference:
¥  =  c, t/̂  [la,2 lb; 2a;] + c2\p2 [ la2 lb; lfc,2 ].
There is no MP2 implementation for a GVB reference function in GAMES S.42’43
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Table 2.5: Valence Electron Correlation Energies (Ecotr, in Eh) of Selected Diatomic 
Molecules.

System Method Ecorr(EC P) Eeorr(MCP) AE acorr

n 2 MP2 0.3114 0.2960 0.0154
CISD 0.2857 0.2744 0.0112

A s 2 MP2 0.2209 0.2109 0.0100
CISD 0.2046 0.1952 0.0093

C12 MP2 0.2627 0.2735 -0.0107
CISD 0.2632 0.2706 -0.0073

Iz MP2 0.2027 0.1865 0.0161
CISD 0.2014 0.1883 0.0131

CO MP2 0.2791 0.2683 0.0108
CISD 0.2681 0.2579 0.0101

SiS MP2 0.2003 0.1981 0.0022
CISD 0.2027 0.2011 0.0015

GeSe MP2 0.1877 0.1803 0.0074
CISD 0.1871 0.1820 0.0051

SnTe MP2 0.1694 0.1603 0.0091
CISD 0.1679 0.1597 0.0082

C1F MP2 0.3095 0.3082 0.0012
CISD 0.3018 0.2993 0.0025

BrCl MP2 0.2478 0.2481 -0.0003
CISD 0.2478 0.2474 0.0005

IBr MP2 0.2175 0.2042 0.0134
CISD 0.2167 0.2059 0.0108

a Value corresponds to the difference in correlation energies computed from: 
AECOrr =  Ecorr{E C P ) -  Ecorr(M C P ).
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Table 2.6: Valence Electron Correlation Energies (Ecorr, in Eh) of the Heavy Atom Hydride 
Polyatomic Molecules.

S y s tem M ethod Ecorr(E C P ) Ecorr(M C P ) AE a*^corr

c 2h 2 MP2 0.2571 0.2551 0.0019
CISD 0.2517 0.2497 0.0021

c 2h 4 MP2 0.2689 0.2670 0.0019
CISD 0.2748 0.2721 0.0027

c h 2 MP2 0.0950 0.0930 0.0020
(3B j)

CISD 0.1125 0.1093 0.0032
c h 2 CISD 0.1125 0.1092 0.0033

('A,)*5

o h 2 MP2 0.1930 0.1880 0.0050
CISD 0.1948 0.1892 0.0056

s h 2 MP2 0.1383 0.1389 -0.0007
CISD 0.1521 0.1525 -0.0003

SeH2 MP2 0.1255 0.1231 0.0024
CISD 0.1389 0.1365 0.0024

TeH2 MP2 0.1124 0.1068 0.0056
CISD 0.1266 0.1209 0.0057

n h 3 MP2 0.1818 0.1796 0.0023
CISD 0.1895 0.1862 0.0032

p h 3 MP2 0.1277 0.1278 -0.0001
CISD 0.1467 0.1467 -0.0001

AsH3 MP2 0.1205 0.1171 0.0034
CISD 0.1387 0.1349 0.0038

SbH3 MP2 0.1080 0.1058 0.0021
CISD 0.1268 0.1248 0.0019

a Value corresponds to the difference in correlation energies computed from:
AEcorr =  Ecorr(ECP) — Ecorr(MCP). b There is no MP2 implementation for GVB reference 
functions in GAMESS.42’43
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previously that calculations employing pseudopotentials tend to overestimate electron 
correlation energies when compared to accurate all-electron calculations. This 
overestimation has been attributed to the reduced nodal structure of the pseudopotential 
valence orbitals involved in the calculation.49*61 As discussed in Chapter 1, since some of 
the valence orbital nodal structure is retained in the MCP formalism while all of it is lost in 
the ECP formalism, this overestimation should be more dramatic for the ECP 
pseudopotential methods than for the MCP pseudopotential method, and our calculations 
corroborate this.

2.3.2 M X4 M olecules

A. Geometries

To reduce the vast amount of results to a more palatable amount, crav(r.:MI5) values 
(where re refers to the M-X distance, M = RHF, MP2, and B is one of the pseudopotentials 
and corresponding basis sets in Table 2.1) were computed for the three families of 
compounds: TiX4, ZrX4, and HfX4 and are displayed graphically in Figures 2.7 - 2.9. In 
addition, c av(re:MIB) values, computed by averaging over all twelve MX4 complexes for 
each pseudopotential/valence basis set combination are compiled in Table 2.7. It should be 
mentioned that all of the experimental M-X distances were taken from the Landolt- 
Bomstein compilations.46*48 A complete listing of the M-X distances computed with the 
different pseudopotentials, at both the RHF and MP2 levels, is tabulated in Appendix A, 
along with their respective experimental values.

From Figures 2.7 - 2.9 the MCP-SPD predicted M-X distances agree very well 
with the experimental values, with CTav(r.:M:MCP-SPD) values below 0.05 A.
Furthermore, the errors averaged over all twelve MX4 species (Table 2.7) are between 0.02 
to 0.03 A, depending on the basis set contraction. Comparison of the <yav(re:M:MCP-SPD) 
values to those obtained using the two ECP approaches employed here, 
a av(re:M':ECPl-SPD) and crav(rff:M:ECP2-SPD), reveals that there is little difference 
between them, indicating equivalent accuracies of the M-X distances predicted using the 
MCP and ECP pseudopotentials.

The addition of an f  polarization function to the MCP-SPD metal atom basis sets 
reduces the M-X bond length by 0.005 to 0.03 A indicating d orbital participation in the 
bonding between the metal and the halogen. The addition of a p polarization function to the 
MCP-SPD Ti basis sets resulted in a slight reduction in crav(/y.MCP-SPD), while no 
significant effect was observed upon addition to the Zr and Hf basis sets. For ZrX4 and
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Table 2.7: Summary of the Deviations (in A) Between the Calculated and Experimental 
M-X Distances Averaged over all Twelve MX4 Complexes.3

M etal Atom 
Basis Set

CTav/al,(re:R H F) ^av/all^e* M P2)

M CP-SPD
DZ 0.023 0.016

DZlf 0.020 0.015
DZlp 0.030 0.021

D Z lplf 0.023 0.016

TZ 0.025 0.019
TZlf 0.026 0.025
TZlp 0.026 0.019

TZlplf 0.026 0.022
E C P1-SPD

TZ 0.025 0.018
TZlf 0.023 0.012

EC P2-SPD
DZ 0.027 0.016

DZlf 0.024 0.014
DZ’ 0.040 0.023

DZ’lf 0.034 0.016

TZ 0.027 0.012
TZlf 0.025 0.019
TZ’ 0.038 0.024

TZ’lf 0.031 0.012

3 Experimental values taken from the Landolt-Bomstein compilation of structural 
data.46'48
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HfX4 (Figures 2.8 and 2.9) values of CTav(re:MCP-SPD) are decreased slightly, if at all, 
upon expanding the metal atom basis set from double-zeta to triple-zeta quality for 
calculations carried out at the RHF and MP2 levels. For the TiX4 systems, changing to the 
larger triple-zeta valence basis sets actually increases the deviation between the computed 
and experimental Ti-X bond length values.

As mentioned previously, the partially filled d electrons of the transition metal atom 
usually lead to several low lying unoccupied molecular orbitals when ligands coordinate to 
the metal. These low-lying virtual orbitals are involved in low lying electronic excited 
states, making single-determinant RHF calculations unreliable for modeling transition metal 
complexes. The presence of these low lying excited states requires that electron correlation 
effects be incorporated into the calculation, either via the wavefiinction approach or via 
density functional theory.52'55 In general, better agreement was found between the 
computed and experimental M-X distances when the correlated MP2 method was utilized, 
than when the RHF method was employed.

B. Dihalogen Substitution Reaction Energies

To gauge the ability of the MCPs to model reactions of transition metal complexes, 
reaction energies, AEran, were computed for a very simple set of dihalogen substitution 
reactions of the type shown below

MX4 + Y2 ---------- ► MX2Y2 + X2

where M is Ti, Zr or Hf and X, and Y are Cl, Br or I.
A summary of the computed geometric parameters of the MX2Y2 complexes, as 

well as the dihalides, may be found in Appendix A. No experimental geometries could be 
found for these mixed halogen systems for comparison.

The reaction energy, AE^, was computed as the difference between the total 
energies of the products (MX,Y, and X2) and the reactants (MX4 and Y,), at their 
respective optimized geometries. Values of AE^ for all possible reactions involving TiX4, 
ZrX4, and HfX4, computed using the MCP-SPD, ECP1-SPD and ECP2-SPD 
pseudopotentials employing the TZ metal basis sets, are collected in Table 2.8. It should 
be added that AEran values computed using DZ metal basis sets induced only minor 
changes.

At both the RHF and MP2 levels of theory, all of the pseudopotentials predict a 
negative AEren value, hence the products are more stable than the reactants, for reactions in 
which the dihalide added, Y2, is lighter than the one departing, X2 (for example
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Table 2.8: Summary of the Computed AE^ Values (in kcal/mol) for the Dihalogen 
Substitution Reactions of MX4.a

M ethod Ti
R H F M P2

Z r
R H F M P2

H f
R H F M P2

MCP-SPD 22 17
MC14 + Br2 

18 16 19 18
ECP1-SPD 24 19 22 20 22 21
ECP2-SPD 30 23 27 24 29 26

MCP-SPD 52 41
MC14 + 12 

45 39 48 43
ECP1-SPD 52 40 49 43 50 45
ECP2-SPD 59 46 54 49 57 53

MCP-SPD -22 -17
MBr4 + Cl2 

-18 -16 -19 -18
ECP1-SPD -24 -18 -22 -20 -23 -21
ECP2-SPD -29 -22 -27 -24 -28 -26

MCP-SPD 31 23
MBr, + 12 

27 23 29 25
ECP1-SPD 29 21 27 22 28 24
ECP2-SPD 29 22 27 24 28 26

MCP-SPD -53 -38
MI4 + Cl2 

-45 -38 -49 -42
ECP1-SPD -53 -37 -49 -41 -50 -44
ECP2-SPD -59 -41 -54 -46 -57 -51

MCP-SPD -31 -22
MI4 + Br2 

-27 -22 -29 -25
ECP1-SPD -29 -20 -27 -22 -28 -24
ECP2-SPD -30 -21 -27 -23 -28 -25

a Ail AE„n values were computed using the TZ metal valence basis set.
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TiBr4 + Cl2). This is in agreement with what one would expect based on the experimental 
values of the average M-X bond enthalpies for the gas-phase MX4 complexes. The general 
trend amongst the experimental average M-X bond enthalpies is: M-Cl (Ti: 103, Zr: 117, 
Hf: 118 kcal/mol) > M-Br (Ti: 88, Zr: 101, Hf: 103 kcal/mol) > M-I (Ti: 71, Zr: 83, Hf: 86 
kcal/mol).56 The experimental dihalide bond dissociation energies vary as follows: Cl-Cl 
(58 kcal/mol) > Br-Br (46 kcal/mol) > I-I (36 kcal/mol).57 The substitution reaction may 
be summarized as the breaking of two M-X bonds and a Y-Y bond coupled with the 
formation of two M-Y bonds and an X-X bond. Since two M-X bonds are broken and two 
M-Y bonds are formed, while only a single X-X is broken and a single Y-Y bond is 
formed during the reaction, the metal-halogen bond strength will determine whether the 
product is favored or not with respect to the reactants. Thus, from the experimental bond 
enthalpies, the products will be favored when the halogen being added to the complex, Y, 
is lighter than the departing halogen, X, which our MCP and ECP calculations predict.

The AEran values computed with the MCP-SPD potential tend to be smellier than 
those computed using the ECP-SPD potentials. Although a number of exceptions exist, the 
following trend for the magnitudes of the AEran values was found:
MCP-SPD < ECP1-SPD < ECP2-SPD. Unfortunately, the lack of experimental 
thermodynamic data for these reactions precludes an assessment of the accuracy of the 
computed AE^ values. The variation amongst the AE^ values computed using the 
different pseudopotentials are usually small, on the order of 2-3 kcal/mol, but can be as 
large as 10 kcal/mol. The inclusion of correlation effects, at the MP2 level, results in a 
decrease in the magnitudes of the computed AE^ values, of about 5 to 10 kcal/mol, but 
may be as little as 1 kcal/mol or as large as 20 kcal/mol in some cases.

2.4 C onclusions

The MCP formalism (Version 1) performs very well in modeling the small 
molecules studied here. The results presented indicate that the model core potentials, 
employing double-zeta plus polarization and triple-zeta plus double polarization quality 
valence basis sets, predict geometric structures which agree very well with experimental 
data, typically within 0.02 A, although slightly worse agreement was obtained for the 
homonuclear diatomics. The agreement could be improved further, if larger polarization 
sets were used (in particular if f  polarization functions are added to the valence basis sets), 
however, such extensively polarized basis sets for ligands would lead to prohibitively large 
basis sets for post-HF calculations of organometallic compounds. For the molecules
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studied here inclusion of electron correlation effects at the CISD level is preferred to the 
MP2 level. The intruder core orbitals that could be present in the virtual space49 do not 
seem to cause any problems in the preseat calculations because of ineffective overlap 
between the valence and intruder core orbitals. For the set of small molecules studied here, 
the equilibrium bond distances predicted using the MCP formalism are generally smaller 
than those predicted using the ECP formalism of Stevens.

Values of the harmonic vibrational frequencies for the neutral diatomic molecules 
studied, obtained by differentiating the fitted polynomial representation of the potential 
energy surface near the equilibrium. In general, the MCP frequencies agreed with the 
experimental frequency values to within 50 cm'1. The agreement was poorer for the 
diatomic ions, with deviations from the experimental vibrational frequencies as large as 90 
cm'1 in some cases.

The electron correlation energies o f the small main group molecules computed using 
the MCP formalism are typically smaller than those computed using the ECP formalism of 
Stevens, at both the MP2 and CISD levels. This follows the trend found in previous 
studies by Klobukowski49, Teichteil50 and Pittel51.

Confident in the performance of the MCP method in dealing with small molecules, 
the benchmarking study was extended to a  systematic study of the Group 4 metal halogen 
complexes of the type MX4, where M = Ti, Zr, Hf and X = F, Cl, Br, I. The results 
obtained clearly indicate that the MCP formalism (Version 1) works well in modeling these 
small metal complexes, provided the outermost (n-1) p electrons are included in the valence 
space and treated explicitly. The MCP-SPD methodology predicts M-X bond distances to 
within 0.02 to 0.03 A of their experimental values, for all of the MX4 complexes. 
Preliminary calculations showed that the large-core, MCP-SD, metal atom potentials are 
inferior to their small-core counterparts and should be avoided in accord with the previous 
findings of Sakai and co-workers17 and Frenking et al. 13 There appears to be little 
difference between the accuracies of the M-X distances predicted by the MCP-SPD and the 
two ECP-SPD pseudopotentials of Hay and Wadt and Stevens et al.

The results for the MX4 systems indicate that the agreement between the MCP-SPD 
computed M-X distances and experiment does not improve significantly when the metal 
atom valence basis set is expanded from double-zeta to triple-zeta quality. The addition of 
an f polarization function to the MCP-SPD metal atom valence basis set resulted in a 
significant decrease in the M-X distance, while the addition of a p polarization function 
produced only minor changes.

The SPD pseudopotentials predict the direction of the set of dihalide substitution 
reactions in accord with that expected on the basis of experimental measurements of the
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M-X and X-X bond strengths. In general, the AEran values computed using the MCP-SPD 
potentials were smaller in magnitude than those computed using the ECP1-SPD and ECP2- 
SPD potentials. The inclusion of correlation effects, at the MP2 level, resulted in a 
substantial decrease in the magnitude of the reaction energy, by about 5 to 10 kcal/mol, 
regardless of the pseudopotential employed.
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3.1 Introduction

As discussed previously, the model core potentials reduce times of calculations by 
decreasing the number of electrons treated explicitly. It is possible to reduce the 
computational expense further by modifying the MCP valence basis sets to incorporate L- 
shell structure, whereby the s and p exponents of the primitive gaussian functions are 
constrained to be the same.1

Recall that the atomic (or molecular) orbitals, 0., are formed as a linear combination 
of atom-centred basis functions £  :

& a ) = 2 > Ma )S / - (3-D
H=I

In atoms, the basis functions (xp) usually take the form of gaussian functions defined as: 

X„(r,0,0) = Gn(m(r,d,(p) =  Rne(r)Ylm(e,(t>) (3.2)

RntCr) = N (n ,a )rn-'e-arl (3.3)

where n, /, and m are the principal, angular momentum, and magnetic quantum numbers, 
and a  is the gaussian exponent. Y(m{Q,(p) is a spherical harmonic function, representing 
the angular portion of the gaussian function. N(n,a) is the normalization constant:
Af(n,a) = 2B+l[ (2 n - l) ! ! r - (2 ^ )" 1a Ii¥U, n = e + l J  + 3,£ + 5,---. (3.4)

For practical reasons2, all of the radial functions for the ns atomic orbitals are expanded in 
terms of Is-type gaussian functions (i.e. /?, 0). Similarly, the radial component of the 
gaussian functions for the np atomic orbitals are expanded solely in terms of 2p-type 
gaussian functions (i.e. R2 l), those of the nd orbitals are expanded in terms of the 3d-type 
gaussians (i.e. R3,), and so on. For example the radial component of the gaussians for the 
3s and 3p atomic orbitals of an atom are represented as:
/C O O  = Ruo(r) = Af(l,a)c-ar* (3.5)

K ‘°pm{r) = R,.,(r) =  N Q .,a)re"*  (3.6)

with the normalization constants given by:

N(l,cc) = 22[(l)!!r*(27T)-*a^ (3.7)
-j 1 X «)

N (2 ,a ) = 2 [(3)!!]-*(2;r)-4c rr  . (3.8)
The atom-centred gaussian basis functions, ^ ( r ) ,  may be either individual gaussian 
functions (uncontracted) or a fixed linear combination of gaussian functions:

= • (3-9)
*=i
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Omitting the explicit dependence on r for simplicity:

X i  • (3-10)
Jfc=I

Zp (f) are called contracted gaussian type functions (CGTF), while the individual gaussian 
functions in the expansion, Gx(ak;r), are known as primitive gaussian type functions 
(PGTFs). The index X  is used to denote the type of gaussian function, Equation (3.2).
For CGTFs, the expansion coefficients, d ^x, are known and fixed at the values determined 
when the basis set was initially developed.3’4

For the first and second row elements of groups 13-18, the MCP valence space 
consists of the ns and np subshells (MCP-SP); for elements in rows three through five, the 
MCP valence space may comprise either the ns and np subshells, or the (n-1)d subshell 
may also be included along with the ns and np subshells (MCP-DSP). In both types of 
MCPs, the valence basis sets were originally designed with a different set of exponents for 
the PGTFs of the s and p subshells.5' 7 This can be seen in the MCP-SP valence basis set 
of carbon, given in Table 3.1, in its simplest minimal form. The CGTFs representing the 
2s and 2p atomic orbitals of carbon are given by the following expansions:
Zis = -0.08GSJ(36.199) -  0.26G, 2(5.179) + 0.65G,<3(0.436) + 0.45G, 4(0.138) (3.11)
Z2p = 0.05Gp a (8.428) + 0.26Gp2 (1.654) + 0.54Gp3 (0.443) + 0.38Gp4(0.126) (3.12)

where the exponents of the primitive gaussians are enclosed in parentheses, and the explicit 
dependence on r  is removed for simplicity. The subscript s, 1 defines the first s-type 
PGTF, etc. The 2s and 2p CGTFs are represented by an expansion in terms of four 
PGTFs, each with its own unique exponent. An L-shell MCP valence basis set for carbon 
is given at the bottom of Table 3.1: the exponents of the ns and np primitive functions are 
the same, but the contraction coefficients are different. The MCP L-shell minimal CGTFs 
for the 2s and 2p orbitals of carbon are expanded as:
Z 2l= ~ 0.11 Gsj (29.320) -  0.31Gsl (3.691) + 0.46G, 3 (0.730) + 0.72GsA (0.178) (3.13)
Z 2p = 0.0 lGp, (29.320) + 0 .14Gp-2(3.691) + 0.5 lGp 3 (0.730) + 0.56Gp 4 (0.178) (3.14)

using the same notation as above.
Two-electron integral evaluation is a necessary step in the SCF procedure as well as 

in calculating the first and second derivatives of the energy with respect to the nuclear 
coordinates (for optimizing structures and computing vibrational frequencies).3’4 Hehre 
and Pople1 showed that it is possible to improve the computational efficiency of two- 
electron integral evaluation if the basis set incorporates L-shell structure. The two-electron 
repulsion integrals take the form:
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Table 3.1: Sample MCP Valence Basis Sets for C.

Cs cp

Conventional MCP-SP Basis Set

36.199 -0.082
5.179 -0.258
0.436 0.647
0.138 0.455

8.428 0.050
1.654 0.264
0.443 0.542
0.126 0.380

L-shell MCP-SP Basis Set

29.320 -0.106 0.008
3.691 -0.309 0.141
0.730 0.457 0.510
0.178 0.718 0.556
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{Pr\st) = \\x 'p 0 )x 's (2) —  x X l)Z,(2)d r  (3-15)

where XP(0 is a CGTF on atom p  for electron i. If each of the CGTFs is expanded in 
terms of K PGTFs, then the two-electron integrals formally scale as K4, and their 
evaluation becomes quite laborious. Under the L-shell constraint, it is possible to use the 
information from the integrals involving the exponential over the s-type primitive functions 
in computing the integrals over the p-type primitive functions. Since the exponents for the 
s and p functions are identical, they will have the same radial behavior and may be treated 
as one function during evaluation of the exponential portion of the integral, thereby 
reducing the computational expense.

L-shell structure has been incorporated into a number of commonly used all
electron basis sets (STO-3G8' 12, 3-21G13' 17, 6-311G18' 22 etc.) and in the basis sets for 
the effective core potentials of Stevens and co-workers23'2^. Tests performed in the 
original papers have shown that the decreased flexibility associated with the L-shell basis 
sets (due to the common set of s and p exponents) does not result in any significant loss in 
accuracy when employed in molecular calculations. Many popular quantum chemistry 
programs make use of L-shell structure (GAMESS26’27, HONDO28, CADPAC29, 
Gaussian9430).

This chapter describes the results of re-parameterizing the MCP valence ns and np 
basis functions to incorporate L-shell structure for the elements of Groups 13-18, in order 
to take advantage of the efficient computer codes for two-electron integral evaluation. Even 
though the primary focus of the work in this thesis is transition metal complexes, atoms 
from the main group elements are normally present in the ligands in large numbers. As a 
result, much of the computational cost of calculations on transition metal complexes is 
associated with the presence of the main group elements. By incorporating L-shell 
structure into the MCP valence basis sets for the main group elements, the computational 
time of studies on transition metal complexes may be reduced.

The L-shell exponents were derived by simultaneously fitting, in a least-squares 
sense, the ns and np radial functions expanded in terms of the original MCP s and p 
PGTFs, under the constraint of a common set of exponents. The MCP core parameters 
were kept at their original values. Details of the fitting process are described in section 
3.2.1.

The newly developed L-shell MCP valence basis sets were tested in atomic 
calculations (section 3.2.2) for all of the main group elements, with the results compared to 
those obtained using the original MCP basis sets. In addition, the new L-shell MCP
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valence basis sets were evaluated in molecular calculations of the octahedral SF6, SeF6 and 
TeF6 systems (section 3.2.3).

3.2 Computational Methodologies

3.2.1 Fitting Procedures

The MCP L-shell valence basis sets were derived by simultaneously fitting the 
original MCP valence ns and np radial functions, under the constraint of a common set of 
exponent values. This procedure was analogous to that used by Dobbs and Hehre15' 17 to 
generate the all electron 3-21G basis sets from Huzinaga’s MINI basis sets.31

The original MCP valence basis sets of carbon, discussed above and given in 
Table 3.1, will be used to illustrate the fitting procedure. The original MCP 2s and 2p 
basis functions for C were used in their completely contracted, minimal form (i.e. a single 
contracted basis function for the 2s and 2p subshells) comprised of four PGTFs, each with 
its own unique exponent, giving the reference radial functions:

K l W  = %G,(.a iy,r)dl (3.16)
k=1 
Kp

K f  ( r )  =  ' £ 0 p ( a t . P - r K '  (3-17)
t = l

where Gt(cc^,\r) denotes a PGTF with exponent cĉ t and expansion coefficients dk , £=s, p. 
There are a total of Ks and Kp primitive gaussian functions in the expansions of the 2s and 
2p radial functions. For the MCP basis set of carbon, K. and Kp are both equal to four.

The 2s and 2p radial functions can be expanded in terms of the L-shell primitive 
gaussian functions in an analogous manner:

/ ^ f(r) = X ^ ( a y; r y ;  (3.18)
7= 1

C ( r ) =  i Gf (a ; 7 ^ '  (3-19)
7= 1

The L-shell PGTFs are denoted Gt(cc-,r), with expansion coefficients df, £=s, p. Notice 
that in this case the exponents (ap are the same for the s and p primitive functions, 
independent of the quantum number £. There are a total of J primitive gaussians used in 
each expansion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



75

(3.20)

The function to be minimized during the fitting process is the sum o f  the squares of
the deviation between the fitted and reference radial functions:
A = ws -As + wp -Ap

/=i (=i
where \vs and wp are weighting factors for the s and p contributions to A; they are defined 
as:

N,w.
Ns + Np

p N r + N„

(3.21)

(3.22)

Ns and N  are the number of s and p electrons for the atom, respectively, and. should not be 
confused with the symbol N  in the equation for A, Equation (3.20). The reference and 
fitted radial functions are evaluated at a total of N  radial points, r:.

Substituting the general form of the fitted radial function into A givesr

/=i 7 = 1

N
+ i*vX/ = I K r W ~ ' L G,(-a j - r ,K

7=1

(3.23)

The weighting factors, as well as the reference radial functions, are known. For a known 
set of exponents {o'} the value of A is minimized with respect to the linear coefficients

dA
ddk

dA

-  = 2 w TS S Amd

iV

= 2u> X

7 = 1

7

R"fW-'LGr(-al’V
7 = 1

x[-G,(O 'i ;/;.)] = 0 ; * = 1 ,2 , - , / ;

x [-G p (O'* ;/;-)] = 0 ; * = 1,2,

Re-arranging these equations gives the following sets of equations: 

{ r ^ a k-r;) =

(3.24)

(3.25)

1=1 7=1 

7  N
(3.26)

= I l G J(a t ;i;.)GI(aJ.;^)i/; ; * = 1 ,2 , - , /
7= 1  <=1 

7=1 y = I

= i yL G p(ak;ri)Gp(aJ-,ri)df ; * = 1,2, - - , /

N

i=l
(3.27)

7 =  1 1=1
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With the definition of the following matrix elements:
N

B t { k ) = Y . Rrt f ^ G ^ a ^  ; i  =  s ' P (3.28)
1=1

Ae(j,k ) = '£ rGe(a j ;ri)Ge(ak;ri) ; £ = s ,p , (3.29)

the Equations (3.26) and (3.27) take a compact form in matrix notation:
A td ( = B e ; £ = s ,p , (3.30)

and the desired solutions for the expansion coefficients {d'} are: 

d [ = A l' lB, ; £ = s ,p . (3.31)

The search for optimized exponents {c^} is performed using Brent’s method32. For each 
trial set of exponents, A is repeatedly minimized with respect to the expansion coefficients 
{d/}, Equations (3.20) to (3.31), until the exponents and expansion coefficients converge 
within assumed criteria.

The results of the L-shell fitting for the elements of Groups 13-18 are described in 
detail in section 3.3.1.

3.2.2 Atomic Calculations

As a first step in validating the new L-shell MCP valence basis sets, atomic 
calculations were performed for atoms from Groups 13 to 18. For each atom, a number of 
different contraction schemes were employed for the L-shell basis sets. The smallest MCP 
L-shell basis set employed was of minimal quality, denoted as n, whereby the single 
contracted L-shell basis function, as determined in the least-squares procedure was used.
If the L-shell contracted gaussian functions were expanded in terms of J primitive gaussian 
functions, the minimal (n) basis sets have a (ns/np) contraction pattern, where ns=np=J. In 
this notation, a basis set is defined with one s and one p contracted basis function, 
expanded in terms of ns and np primitive functions. A contraction scheme defined as 
(nsl/npl) would define a basis set with two s and two p contracted basis functions, in 
which the first CGTF is expanded in terms of ns or np primitive functions and the second 
CGTF is a single primitive function. If a d polarization function is added to the above basis 
set the contraction scheme would be written as (nsl/npl/l*), whereby the second slash 
defines the d-space and the asterisk signifies a polarization function. A double-zeta, n l  
type contraction, was used for the atomic calculations in which the outermost (smallest 
exponent) primitive function was uncontracted, giving a (nsl/npl) contraction, where 
ns=np=J-l. Uncontracting the two outermost primitive functions gives the n i l  L-shell basis
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sets with a (nsl l/npl 1) contraction pattern, where ns=np=J-2. The L-shell basis sets 
denoted as n21 are similar to the n i l  basis sets and have a (ns21/np21) contraction, with 
ns=np=J-3. The n l l l  L-shell basis sets were formed by uncontracting the three outermost 
primitives in a (nsl 1 l/npl 11) contraction pattern, where ns=np=J-3.

The atomic calculations were performed for atoms in their ground electronic states, 
at the ROHF level of theory, with a version of the general atomic program of Huzinaga, 
Klobukowski and Sakai33 modified to enable the use of model core potentials. The results 
are discussed in section 3.3.2.

3.2.3 M olecular Calculations

The MCP L-shell basis sets for the main group elements were tested further in 
molecular calculations of the neutral octahedral SF6, SeF6 and TeF6 molecules. The aim of 
these calculations was to determine if the imposition of shared s and p exponents in the L- 
shell basis sets results in any substantial loss in accuracy of computed molecular structures 
and vibrational frequencies. In addition, these calculations were used to gauge the 
improvements in computational efficiency gained by using the MCP L-shell basis sets in 
molecular calculations.

The AF6 molecular calculations were performed using the MCP-SP and MCP-DSP 
core potentials with the corresponding L-shell and conventional valence basis sets. The 
basis set contractions used for the central atom in the AF6 molecular calculations, along 
with the naming convention adopted for them, are given in Table 3.2. The conventional 
MCP-SP and MCP-DSP basis sets are labeled as SP-ni, SP-n il,  and SP-n21, and DSP- 
n l, DSP-n i l  and DSP-«2i, respectively. For fluorine the conventional MCP basis set 
was contracted as (31/31) and used in combination with the central atom SP and DSP 
conventional MCP basis sets. The notation: (nsl/npl/l* ; 31/31), (nsll/n pll/ l* ;  31/31),
(nsl l/npl 1/1*; 31/31) can be used to represent the conventional MCP-SP basis sets 
employed in the AF6 molecular calculations. The conventional MCP-DSP basis sets used 
in the AF6 calculations may be represented as: (nsl/npl/ ndl 1*; 31/31), (nsl l/npl 1/ ndl 1*; 
31/31), (nsl 1/^1 l/ndl 1*; 31/31). This notation describes the basis set contractions used 
for the entire AF6 molecule. The central atom basis set contraction is defined first, followed 
by the fluorine atom basis set contraction, separated by a semi-colon. The newly derived 
MCP-SP and MCP-DSP L-shell basis sets employed were labeled as SP_L-nf, SP_L- 
n l l ,  and SPJL-n21 and DSP_L-ni, DSP_L-n/7, and DSP_L-n2/, respectively. The MCP 
L-shell valence basis set for fluorine, used in combination with the SP_L and DSPJL 
central atom basis sets, contained five primitive gaussian functions, expanded as (41/41).
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Table 3.2: MCP Valence Basis Set Contractions Employed for the Central Atoms of SF6, 
SeF6 and TeF6.

Label S Se Te

SP-nl (31/31/1*) (41/41/1*) (51/41/1*)
SP-nl 1 (211/211/1*) (311/311/1*) (411/311/1*)
SP-n21 (121/121/1*) (221/221/1*) (321/221/1*)

DSP-nl (61/51/411*) (71/61/511*)
D SP-nll (511/411/411*) (611/511/511*)
DSP-n21 (421/321/411*) (521/421/511*)

SP_L-nl (41/41/1*) (41/41/1*) (51/51/1*)
SP_L-nl 1 (311/311/1*) (311/311/1*) (411/411/1*)
SP_L-n21 (221/221/1*) (221/221/1*) (321/321/1*)

DSP_L-nl (61/61/411*) (71/71/511*)
DSP_L-nl 1 (511/511/411*) (611/611/511*)
DSP_L-n21 (421/421/411*) (521/521/511*)
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The MCP-SP and MCP-DSP L-shell basis sets for AF6 may be denoted as: (L-nl/1*; L41), 
(L-nll/1*; L41), (L-n21/l*; L41) and (L-nl/ndll* ; L41), (L-nl l/ndl 1*; L41), (L- 
n21/ndl 1*; L41). The d polarization function on the central atom was taken from the 
compilation of Huzinaga and co-workers.31

The geometries of the octahedral AF6 molecules were optimized using analytical 
gradients as implemented in the CADPAC program.29 Harmonic vibrational frequencies 
were computed at the optimized geometries using analytical second derivatives.29 The 
calculations were carried out at the RHF and density functional theory (DFT) levels. For 
the DFT calculations, Becke’s three parameter gradient-corrected, hybrid exchange 
functional34 was utilized in conjunction with the non-local correlation functional of Lee, 
Yang and Parr35, commonly referred to as the B3LYP functional.

Timing runs were performed on a SUN Ultrasparc 10 with 128 MB of RAM to 
compare the performance of the conventional and L-shell MCP basis sets. During the 
course of these runs no other processes were run allowing nearly 100 % usage of the CPU.

The results of the geometry optimizations and harmonic frequency calculations are 
discussed in section 3.3.3, while those for the timings are discussed in section 3.3.4.

3.3 Results and Discussion

3.3.1 L Shell Fitting

The MCP-SP L-shell valence basis sets (SP_L) for the elements of Group 14 of the 
periodic table (C, Si, Ge, Sn, Pb) are displayed in Table 3.3. A complete listing of all of 
the MCP-SP L-shell basis sets are available in Appendix B. Also given in the tables are the 
values of A. Only the best L-shell basis sets, in terms of accuracy of the least-squares fit 
and computational cost, are shown.

For the first row elements, the optimum MCP-SP L-shell valence basis sets were 
obtained by fitting the reference radial function (expanded in terms of four s and four p 
primitives) with five primitive functions. An average A value of 2.44x1 O'3 was found for 
these fits, with values for the different atoms in the range 4.21xl0'4 to 4.26x1 O'4. Fits 
using four L-shell primitive functions were acceptable for some of the first row elements 
(B, C, N), but questionable for others (O, F, Ne).

For the second row elements, the MCP-SP reference radial functions (expanded in 
terms of four s and four p primitive gaussian functions) were fit well using five L-shell 
primitive gaussian functions. The L-shell basis sets containing four primitive functions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

Table 3.3: A Representative Sample of the Optimum MCP-SP L-Shell Valence Basis Sets.

N a C s C p
Aa

c
l 37.28756443 -0.07863158 0.00447533 0.19828017E-02

2 5.48854614 -0.25023051 0.07271160

3 1.40333400 -0.01999411 0.26824079

4 0.42680786 0.69269460 0.50971349

5 0.12849330 0.41980104

Si
0.37896052

1 59.95976956 0.06381545 -0.01786194 0.44608725E-01

2 6.28524227 -0.04375645 -0.15721876

3 1.66596897 -0.46216760 -0.04912570

4 0.25539492 0.73406876 0.59435329

5 0.08544019 0.44779459

G e

0.49533583

1 50.08457824 0.00703801 0.05262546 0.15274757E-01

2 8.04542517 0.22135588 -0.05363663

3 2.42445596 -0.58518014 -0.18558600

4 0.24009925 0.67260466 0.62626846

5 0.07700996 0.47366802

Sn
0.47764790

1 24.95176834 -0.15043389 0.01462768 0.28062097E-02

2 10.49131963 0.33146528 0.07259711

3 1.80898242 0.00722958 -0.25936823

4 1.32519990 -0.63653685 0.03091421

5 0.17105903 0.92133432 0.69502277

6 0.05322037 0.27295467 0.41187489
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Pb
1 167.14380202 0.03374899 -0.00300042 0.25183754E-02

2 34.43843758 -0.14813796 -0.02972776

3 8.67167765 0.26230812 0.13989692

4 3.61507485 0.19370804 -0.06569906

5 1.34132932 -0.86311655 -0.27211317

6 0.17518741 1.01849589 0.64041541

7 0.05689278 0.19584036 0.48047142

a Values correspond to the sum of the squares of the deviations between the L-shell and 
reference radial functions evaluated at each radial point in the grid, Equation (3.20).
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were not flexible enough to fit the original s and p primitives, resulting in a large average A 
value of 1.23x10'’, and individual values in the range 9.80xl0'2 - 1.76x10'’. The 
increased flexibility of the L-shell basis sets containing five primitive functions, improved 
the accuracy of the fits to the reference radial functions by about an order of magnitude 
(average A value of 1.77xl0'2 and individual values of 4.33xl0'3 - 4.46xl0'2). The 
increased flexibility outweighs the additional computational cost associated with an 
additional primitive function.

Satisfactory fits were obtained for the third row elements, when the reference radial 
functions, expanded using five s and five p primitive gaussians, were fit with five L-shell 
primitive functions. The average A value was 1.15xl0'2, with individual values between 
6.42xl0'4 and 1.55xl0'2. Better fits to the reference radial functions were obtained if a 
sixth L-shell primitive was employed (an average A value of 1.41xl0'\ and individual 
values in the range 1.04x1 O'3 to 2.25x1 O'3) but the added computational cost was deemed 
not necessary in this case.

For the fourth row elements, the reference radial functions, expanded in terms of 
six s and five p primitive gaussians, were fit well using six L-shell primitive functions, 
with the exception of I and Xe. The average A value for these fits was 3.73xl0'3, with 
individual A values of 2.81xl0'3 - 4.91xl0'3. For I and Xe unconstrained optimization 
converged to four terms. This problem was rectified by using a seventh primitive function 
in the least squares fits (A values of S^OxlCT1 and 8.3 lxlO"* for I and Xe).

The reference radial functions for the fifth row elements were expanded in terms of 
seven s and five p primitive functions. These were successfully fit using seven L-shell 
primitive gaussians, with an average A value of 2.42xl0'3, and individual values of 
2.04x1 O'3 to 2.98xl0'3.

A representative sample (Ge, Sn and Pb) of the MCP-DSP L-shell valence basis 
sets (DSP_L) are given in Table 3.4. A complete listing of all of the DSP_L basis sets is 
available in Appendix B. For these basis sets, L-shell structure was imposed on the ns and 
np subshells of the original MCP-DSP basis sets, keeping the (n-l)d primitive gaussian 
functions intact. As above, values of A are also included in the table. Only the optimum L- 
shell basis sets, in terms of accuracy and computational cost, are displayed.

For the third row elements, satisfactory fits to the reference radial functions 
(comprised of seven s and six p primitive functions) were obtained using seven L-shell 
primitive functions. An average A value of 3.09xl0'3 was obtained with individual values 
between 2.66xl0'3 and 3.33xl0'3.

In the case of the fourth row elements, satisfactory fits to the DSP reference radial 
functions (expanded in terms of eight s and seven p primitive gaussians) were obtained
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Table 3.4: A Representative Sample of the Optimum MCP-DSP L-Shell Valence Basis 
Sets.

N a Cs Cp cd Aa

G e
L 7

l 433.95753699 -0.03064237 0.00012487 0.33351300E-02

2 57.90269674 -0.00448577 0.06766028

3 16.79986773 0.18437122 -0.00543316

4 2.93909717 -0.26115159 -0.21538174

5 1.35072018 -0.31338912 0.02205936

6 0.23516329 0.81418056 0.59534843

7 0.07215178 0.37701010 0.50464304  

D 5

1 64.68981000 0.04148314

2 17.23871600 0.20000632

3 5.74528800 0.42195557

4 1.95628290 0.46240145

5 0.62347294

S n
L 8

0.20170133

I 1167.3462694 0.02208456 -0.00017264 0.31197295E-02

2 163.62294314 -0.00476628 -0.03502374

3 40.62021102 -0.13892294 0.00742133

4 10.08103646 0.31944181 0.13574029

5 2.92536012 0.05074317 -0.15342790

6 1.36050241 -0.71716513 -0.17314076

7 0.17891996 0.84811504 0.63833475

8 0.05803607 0.34734083 0.47128929

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



84

D 6

1 184.5279100 -0.01939517

2 50.37842000 -0.10614361

3 17.36772800 -0.20023220

4 2.68458570 0.44852175

5 1.03915190 0.52427474

6 0.36984112
Pb

L 9

0.18036569

1 5189.0091253 -0.01933773 0.00006906 0.20206700E-02

2 541.84252411 0.00179099 0.01478791

3 146.53024167 0.09484682 -0.00463845

4 38.54342693 -0.22729470 -0.05770203

5 7.64348648 -7.06638108 7.02169796

6 7.58994103 7.53136651 -6.89139258

7 1.42691801 -0.82254451 -0.30508114

8 0.17591141 0.94327938 0.61100348

9 0.05671249 0.24926751 0.50774940 

D 7

1 323.9735300 0.02747020

2 86.87383800 0.11884049

3 14.67477400 -0.12188661

4 9.20980570 -0.22690564

5 1.78420470 0.50246896

6 0.72224252 0.49116934

7 0.26678258 0.16060479

a Values correspond to the sum of the squares of the deviations between the L-shell and 
reference radial functions evaluated at each radial point in the grid, Equation (3.20).
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using eight L-shell primitive functions. An average A value of 3.39xl0'3 was obtained, 
with all o f the individual values in the range 3.05x10‘3 to 3.76xl0'3.

The reference radial functions for the fifth row elements, expanded in terms of nine 
s and eight p primitive functions were fit very well with nine L-shell primitive functions. 
The least-squares fits exhibited an average A value of 2.30xl0'3, with all of the individual 
values between 1.88xl0'3and 2.69xl0‘3.

3.3.2 A tom ic Calculations

The ns and np valence atomic orbital energies computed using the MCP L-shell 
basis sets, in a variety of contraction schemes likely to be used in molecular calculations, 
were compared to those orbital energies computed using the uncontracted conventional 
MCP basis sets. The deviations between the ns and np orbital energies (A£s and Aep) 
computed using the two families of basis sets are plotted against atomic number in Figures 
3.1 and 3.2 for the SP potential and Figures 3.3 and 3.4 for the DSP potential. The plots 
show a very good agreement between the L-shell and conventional orbital energy values 
with differences typically smaller than 25 mEh; the majority of which agree within 10 mE^ 
The es values predicted by the totally contracted SP_L-n basis sets for the late members of 
the third and fourth row, as well as those computed using the DSP_L basis sets for the late 
members of the fourth and fifth row elements are exceptions and have deviations as large as 
30-40 mE„.

Not surprisingly, the A£s and A£p values are largest for the minimal, SP_L-/z and 
DSP_L-n basis sets. A minimal basis set has the least flexibility, with only one contracted 
basis function to represent each of the ns and np subshells. The agreement is better for the 
extended SP_L and DSP_L basis sets ( n l , n i l , n21, and n l l l ) .

From the plots for the SP basis sets (Figures 3.1 and 3.2), the A£s and A£p are 
largest for the third row elements. Averaging the magnitudes of the Aes and A£p values 
over the elements of each row, for each basis set contraction employed, reveals the same 
finding. The average Aes and A£p values o f 10-25 mEh and 2-10 mEh, respectively, are 
largest for the third row elements. The first and fifth rows exhibit the best agreement with 
the reference orbital energy values, with average Aes and A£p values smaller than 3 mE,,. 
The agreement for the second and fourth row elements is intermediate, with average Aes 
and A£p values of 3-10 mEh and 1-3 mE,,, respectively. The variation amongst the different 
rows reflects the number of L-shell primitive functions used to fit the reference radial 
functions. The agreement is best for those L-shell basis sets which contain more L-shell 
primitive functions than in the conventional basis set, due to the increased flexibility. The
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SP_L basis sets for the elements of the third row contain the same number of primitive 
gaussian functions as the conventional SP basis sets, while the SP_L basis sets for the 
elements of the other rows contain additional primitive gaussian functions than found in the 
conventional basis sets.

The orbital energies predicted by the DSP_L basis sets (Figures 3.3 and 3.4) show 
the best agreement to the reference orbital energies for the third row elements (average Aes 
values of 1-4 mEh). The agreement for the fourth and fifth row is not as good, with 
average Aes values of 10-15 mEh, while the agreement for the np reference orbital energies 
does not vary amongst the rows, with average A£p values of 2-5 mEh. The DSPJL basis 
sets all contain more primitive gaussian functions than found in the conventional basis sets.

The results for the DSPJL basis sets reveal a characteristic trend in the Aes and Aep 
values across a row of the periodic table. The Aes values increase as one goes from left to 
right in the periodic table, while the Asp values decrease. These trends reflect the weights 
given to the s and p components of the L-shell radial function (ws and vvp, Equations (3.21) 
and (3.22)) during the least-squares fitting procedure, which is based on the number of 
valence ns and np electrons. As one goes across the row, the number of p electrons 
increases, and consequently more weight is given to the p component in the least-square fit. 
The exponents of the L-shell primitive functions for the elements to the right of the row will 
more closely resemble those of the conventional p primitive functions. Hence, the elements 
to the right of the row should be more capable of reproducing the reference ep values, at the 
expense of the es values. The trend is much less apparent for the SP_L basis set results, 
but is visible for the third row elements, for which the deviations are largest.

In summary, the newly developed MCP-SP and MCP-DSP L-shell valence basis 
sets performed very well in atomic calculations for the main group elements, reproducing 
the ns and np atomic orbital energies to within 25 mE,, of the values predicted by the 
conventional MCP valence basis sets. The agreement is improved when the L-shell basis 
sets are expanded beyond single-zeta quality, predicting orbital energies within 10 mE^ of 
the values computed using the conventional basis sets.

3.3.3 Molecular Calculations

The primary focus of the molecular calculations was to gauge the accuracy and 
effectiveness of the new L-shell basis sets. The results of the AF6 (A=S, Se, Te) geometry 
optimizations are summarized in Table 3.5 for the SP_L and DSPJL basis sets, along with 
those distances computed using the conventional MCP basis sets, for calculations carried 
out at the RHF and B3LYP levels of theory. Also given are the experimental S-F, Se-F and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91

Table 3.5: Summary of the Optimized A-F Distances (in A) in AF6 (A=S, Se, Te).

B asis S -F S e-F T e-F

R H F B3LYP RHF B 3LY P R H F B3LY P

SP-L-nl 1.561 1.612 1.688 1.740 1.873 1.929
SP_L-nl 1 1.560 1.610 1.681 1.735 1.869 1.924
SP_L-n21 1.561 1.612 1.685 1.735 1.872 1.929

SP-nl 1.564 1.616 1.691 1.745 1.891 1.950
SP-nl 1 1.563 1.613 1.684 1.741 1.870 1.928
SP-n21 1.564 1.616 1.685 1.740 1.882 1.944

DSP_L-nl 1.696 1.859
DSP_L-n 11 1.694 1.855
DSP_L-n21 1.694 1.858

DSP-nl 1.703 1.871
D SP-nll 1.694 1.852
DSP-n21 1.700 1.862

Expt. 1.5613 1.685a 1.824b

a Experimental values taken from the Landolt-Bomstein collection.36 b Experimental value 
taken from the work of Gimarc and co-workers.37
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Te-F bond lengths, even though good agreement cannot be expected if no polarization 
functions are added to the fluorine atom basis sets.

The A-F distances predicted by the SPJL and DSP_L basis sets agree very well 
with those predicted by the conventional SP and DSP basis sets. The distances predicted 
by the SP_L basis sets differ by less than 0.005 A for SF6 and SeF6, for all of the basis set 
contractions employed and at all levels of theory (RHF, B3LYP). The maximum deviation 
between the SP_L and SP predicted Te-F distances is larger (about 0.02 A). The 
agreement between the A-F distances computed using the DSP_L and DSP basis sets is 
also quite good, with deviations smaller than 0.007 A and 0.012 A for the Se-F and Te-F 
bonds, respectively. In all cases the A-F bond lengths predicted by the L-shell basis sets 
are slightly shorter than those predicted by the conventional basis sets.

The agreement between the calculated and experimental distances is poor, especially 
at the correlated level, with computed bond lengths longer than the experimental ones. The 
good agreement at the RHF level is fortuitous. Improved results require polarization 
functions on all atoms. In order to observe the effect of a single d-type polarization 
function on the fluorine atom, the structure of SeF6 was optimized using the following 
expanded SP_L and SP basis set contractions: (L41/1*; L311/1*), (L311/1*; L311/1*), 
(L221/1*; L311/1*) and (41/41/1*; 211/211/1*), (311/311/1*; 211/211/1*), (221/221/1*; 
211/211/1*), respectively. The d polarization function added to the fluorine atom basis set 
was taken from the compilation of Huzinaga.31 These expanded basis sets resulted in a 
reduction of the Se-F bond by 0.02 A, for both the L-shell and conventional basis sets, at 
the RHF level. At the B3LYP level the Se-F distance was reduced by about 0.015 A. It is 
worth noting that the MCP L-shell and conventional basis sets behaved in the same manner 
when changes were made to the basis set contraction scheme and polarization space.

The harmonic vibrational frequencies for the AF6 systems were computed with the 
L-shell and conventional MCP-SP valence basis sets and are compiled in Table 3.6. The 
harmonic vibrational frequencies for SeF6 and TeF6, computed at the RHF level using the 
L-shell and conventional MCP-DSP basis sets are given in Table 3.7. Again, the focus is 
on comparison of the frequencies computed using the L-shell and conventional basis sets.

As seen in Table 3.6 and 3.7, the SP_L and DSPJL basis sets successfully 
reproduce the conventional SP and DSP frequencies to within 25 cm'1 (with a few 
exceptions), depending on the molecule and the basis set expansion employed. In general, 
the frequencies computed with the L-shell basis sets are larger than those computed with 
the conventional basis sets.
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Table 3.6: Summary of the AF6 Harmonic Vibrational Frequencies (in cm'1) Computed 
with the MCP-SP Basis Sets.a

B asis t 2u

(v«)

TA 2g
(V5)

T IU
( v 4)

Eg
( v 2)

A ig
( v . )

T ,„
( v 3)

SP_L-nl 370 548

S F 6

RHF
643 732 839 1078

SP_L-nl 1 370 549 644 730 840 1075
SP_L-n21 370 548 644 732 840 1078

SP-nl 366 542 637 728 832 1077
SP-nl 1 367 544 639 727 833 1074
SP-n21 366 542 637 728 832 1077

SP_L-nl 316 472
B3LYP

554 623 703 922
SP_L-nl 1 319 473 555 623 706 924
SP_L-n21 317 472 555 622 704 922

SP-nl 312 465 547 617 697 919
SP-nl 1 314 468 550 619 700 922
SP-n21 312 465 548 617 697 919

SP_L-nl 292 413

S e F 6

RHF

459 713 756 867
SP_L-nl 1 292 420 468 712 759 857
SP_L-n21 294 415 462 718 762 871

SP-nl 284 406 452 704 743 849
SP-nl 1 287 414 459 707 752 849
SP-n21 286 413 458 711 753 854
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B3LYP
SP_L-nl 246 355 396 614 640 737
SP_L-n 11 246 359 402 616 642 733

SP_L-n21 248 358 400 621 648 744
SP-nl 237 345 387 601 625 716
SP-nl 1 238 350 391 605 629 718
SP-n21 239 350 392 607 631 721

TeF6

RHF
SP_L-nl 181 284 306 653 659 730
SP_L-nll 184 287 311 658 659 733
SP_L-n21 182 284 308 653 659 732

SP-nl 163 268 285 631 657 722
SP-nl 1 191 290 316 660 665 735
SP-n21 173 276 295 643 657 726

B3LYP
SP_L-nl 150 242 262 558 574 621
SP_L-nll 154 246 266 564 575 626
SP_L-n21 152 243 264 558 573 622

SP-nl 132 225 240 540 573 619
SP-nl 1 156 245 266 561 569 616
SP-n21 138 229 246 551 570 619

a The numbering scheme of Nakamoto38 is given in brackets.
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Table 3.7: Summary of the SeF6 and TeF6 Harmonic Vibrational Frequencies (in cm'1) 
Computed Using the MCP-DSP Basis Sets at the RHF Level of Theory.2

S ystem M C P 
B asis Set

t 2u

Cv«)
TA 2g
(V,)

T IU

(v4)
Eg

(v2)
A «g
(v.)

T , .
(v3)

SeF6 DSP_L-nl 275 405 446 705 745 836
DSP_L-nl 1 276 406 447 705 746 834
DSP_L-n21 276 406 447 706 748 835

DSP-nl 257 394 423 694 720 824
DSP-nl 1 272 403 441 694 732 825
DSP-n21 262 397 429 700 727 823

TeF6 DSP_L-nl 177 294 307 673 688 752
DSP_L-nll 183 296 311 678 692 750
DSP_L-n21 180 294 309 677 691 753

DSP-nl 157 281 289 659 663 748
DSP-nl 1 189 298 315 669 683 740
DSP-n21 175 289 302 674 677 741

3 The numbering scheme of Nakamoto38 is given in brackets.
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The inclusion of electron correlation via the density functional theory formalism 
causes a consistent reduction in the RHF values of the MCP-SP harmonic frequencies by 
as little as 30 cm '1 and as much as 150 cm'1, depending on the vibrational mode.

These results show that the shape of the conventional MCP potential energy 
hypersurfaces are well reproduced using the new L-shell basis sets.

3.3.4 T im ings

Despite the constraint of shared s and p exponents in the primitive gaussian 
functions, the newly developed MCP L-shell valence basis sets experience no significant 
loss in accuracy in computing atomic orbital energies, as well as molecular geometries and 
harmonic vibrational frequencies, when compared to the conventional MCP basis sets. The 
impetus behind the incorporation of L-shell structure into the MCP basis sets was to take 
advantage of the existing algorithms which improve the computational efficiency of two- 
electron integral evaluation. In this section we compare the timings of the conventional and 
L-shell MCP-SP basis sets in some routine molecular calculations on the SeF6 molecule. 
The following MCP-SP L-shell and conventional basis sets were employed: (L41/1*; 
L211/1*), (L311/1*; L211/1*), (L221/1*; L211/1*) and (41/41/1*; 211/211/1*), 
(311/311/1*; 211/211/1*), (221/221/1*; 211/211/1*) in computing single point energies, 
optimizing structures (gradient calculations), and computing harmonic vibrational 
frequencies (hessian calculations). The fluorine atom SP_L basis set used contained only 
four primitive functions, in order to constrain it to the same number of primitives found in 
the conventional basis set.

The timing results for SeF6 are displayed in Table 3.8 for calculations carried out at 
both the RHF and B3LYP levels of theory. At both levels of theory, the L-shell MCP 
basis sets show a substantial reduction in the time to perform gradient and hessian 
calculations compared to the time required by the conventional MCP basis sets. The 
gradient calculations for the SP_L basis sets are about 25 % faster than those employing the 
conventional SP basis sets, at the RHF level and about 20 % faster at the B3LYP level.
The speed of hessian calculations performed with the L-shell basis sets is increased by 
about of 40 % at the RHF level, and about 10% at the B3LYP level. The results also 
indicate a speed-up of about 15 % for the SCF procedure at the RHF level, when the L- 
shell basis sets are used. At the B3LYP level there is no apparent speed-up observed for the 
SCF procedure. The smaller times required for SCF make these times more prone to errors 
and therefore not as reliable as the gradient and hessian timings. In computational studies
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Table 3.8: Summary of MCP-SP SCF, Geometry Optimization and Hessian Timings for 
SeF6.a

B asis P ro p erty R H F

SP _L S P

A (% )b B3LY P 

SP _L  S P

A (% )b

n l SCF 5 6 +17 61 56 -9
Gradient 207 276 +25 337 410 +18
Hessian 162 280 +42 1203 1351 +11

n i l SCF 6 7 +14 61 59 -3
Gradient 229 290 +21 357 443 +20
Hessian 171 291 +41 1248 1423 +12

n21 SCF 6 7 + 14 58 58 0
Gradient 222 303 +27 350 460 +24
Hessian 166 304 +45 1257 1362 +8

Avgc SCF + 15 -4
Gradient +24 +21
Hessian +43 +10

a , . c . b * ,n,s Time(SP) — Time(SP L) cIn units of seconds. A (%) = --------------------------------- x 100%. Avg denotes the
Time(SP)

average values.
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probing chemical reactions and processes, much of the computational cost is associated 
with locating the local stationary points on the potential energy hypersurface, much more 
demanding than computing the total energy of a  molecule at a fixed geometry. Hence, the 
increased computational efficiency of gradient and hessian evaluation is important

3.4 Conclusions

The results presented in this chapter have shown that the L-shell MCP valence basis 
sets were successfully derived via simultaneously fitting the s and p exponents of the 
original MCP valence basis sets with a common set of exponents. L-shell valence basis 
sets were generated for both the MCP-SP and MCP-DSP potentials of the main group 
elements. Generally, it was necessary to use extra primitive functions in the L-shell basis 
sets to satisfactorily mimic the reference s and p  radial functions.

Atomic ROHF calculations for the main group elements in their ground electronic 
states show that the MCP L-shell basis sets were able to successfully reproduce the ns and 
np atomic orbital energies computed using the conventional MCP basis sets to within 25 
mEj,. Not surprisingly, the agreement improves as the MCP L-shell basis sets are 
expanded from a minimal contraction to double and triple-zeta contractions.

Geometry optimizations of the octahedral AF6 systems (A = S, Se or Te) revealed 
that the L-shell MCP basis sets predict A-F bond lengths very close to the values obtained 
using the conventional MCP basis sets. The A-F distances computed, at the RHF and 
B3LYP levels, using the L-shell and conventional MCP-SP basis sets deviate from one 
another by less than 0.005 A for the S-F and Se-F bonds, and by less than 0.02 A for the 
Te-F bond. The agreement between the A-F distances predicted by the conventional and L- 
shell MCP-DSP basis sets is also quite good, with Se-F and Te-F bond length deviations 
smaller than 0.007 A and 0.012 A, respectively.

The MCP-SP and MCP-DSP L-shell basis sets predicted very similar potential 
energy hypersurfaces near the minima as that found using the conventional basis sets: the 
harmonic vibrational frequencies agree to within 25 cm'1. In general, the frequencies 
computed with the L-shell basis sets are larger than those computed using the conventional 
MCP basis sets, indicating stiffer potential energy hypersurfaces.

Finally, the MCP L-shell basis sets were shown to be computationally more 
efficient than the conventional MCP valence basis sets, especially in the calculation of 
gradients and hessians. The L-shell basis sets displayed speed-ups of about 20 % in 
computing the gradient of the energy at both the RHF and B3LYP levels of theory, and
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10-40 % in computing the second derivatives of the energy, depending on the level of 
theory employed. The improvements in computing gradients and hessians with the newly 
derived L-shell MCP basis sets are very important since these calculations are more 
difficult, usually demanding about an order of magnitude more CPU time than the SCF 
process. Much of the computational cost in routine studies of chemical reactions and 
processes is associated with optimizing chemical structures and then characterizing the 
various local minima and maxima located on the potential energy hypersurface.
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Chapter 4

An Investigation into the Carbonyl Fluxionality 
of Mn2(CO)10 and Mn2(CO)6(H2PCH2PH2)2.*
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4.1 Introduction

Ever since its discovery in the mid 1950’s by Wilkinson and Piper1, ligand 
fluxionality in transition metal complexes has been a source of interest for the inorganic 
chemist. Ligand migration is quite universal and has been observed in a variety of 
transition metal compounds of varying nuclearity from mononuclear complexes to 
multicentre metal clusters.2’3

The conventional experimental means of studying the dynamic fluxionality of 
ligands is NMR spectroscopy. This detection scheme does however place some limitations 
on the process to be studied. If the exchange process is to be detected by NMR, it’s rate 
must fall within the range 10'1 to 106 s'1. Furthermore, the solvents employed restrict the 
range of temperatures at which the process can be followed, thereby imposing limitations 
on the activation energy. Generally, these dynamic processes must have an activation 
energy which falls within 3-25 kcal/mol in order for the process to be studied by NMR.2

Migration of the carbonyl group is the most common ligand exchange process 
studied and it has been observed in a large number of transition metal compounds. Dimer 
complexes are perhaps the best model systems to study, both experimentally and 
theoretically, in order to elucidate the mechanistic details of the ligand exchange process. 
Two mechanistic schemes are widely employed to describe carbonyl scrambling in 
binuclear complexes: pairwise exchange and one-for-one exchange. In the pairwise 
exchange mechanism, proposed by Adams and Cotton4 in the early 1970’s, two migrating 
carbonyl ligands are mutually exchanged between the two metal atoms. Symmetrical ligand 
bridges are opened and closed pairwise in a trans, co-planar, concerted fashion. This is the 
most common mechanism proposed for carbonyl migration, and may proceed from an 
initial all-terminal or symmetrically-bridging ground state. In the one-for-one mechanism, 
proposed by Evans et al. 5-6 for carbonyl exchange in trans~Cn5-C5Hs)2Rh2(CO)3 and 
(Ti5-C5H5)2Rh2(CO)2P(OC5H5)3, the migrating ligands are not co-planar and are exchanged 
unsymmetrically in a step-wise fashion.

The fluxional behaviour of the carbonyl ligands in the two Mn dimers, Mn2(CO)I0 
and Mn2(CO)6(dppm)2, where dppm denotes bis-(diphenylphosphino)-methane is 
particularly interesting. 13C and nO NMR studies have shown7’8 that the carbonyl ligands 
in Mn2(CO)I0 remain fixed up to the temperature of 130°C. Replacing four of the 
carbonyls with two bidentate dppm ligands induces fluxionality of the carbonyl ligands, as 
observed by 13C and 31P NMR at temperatures as low as -75°C.9 Marsella and Caulton9 
have proposed that carbonyl scrambling in Mn2(CO)6(dppm)2 proceeds via the pairwise 
exchange (merry-go-round) mechanism from the most stable all-terminal conformer
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through a symmetrically di-bridged transition state or intermediate with an energy barrier of
10.2 kcal/mol. They attributed the observed differences in fluxional behaviour between 
Mn2(CO)6(dppm), and Mn2(CO)10 to conformational differences. In the lowest-energy 
conformer of Mn2(CO)I0 the equatorial carbonyls are staggered and must undergo an initial 
rotation about the Mn-Mn bond to give the eclipsed conformation required for the merry- 
go-round scrambling of the carbonyls; this rotation then contributes to the overall activation 
energy for the exchange process. On the other hand, the six carbonyls in 
Mn2(CO)6(dppm)2 are believed to be already co-planar in the most stable conformation, and 
may proceed directly to scrambling without any prerequisite rotation about the Mn-Mn 
bond. Although there is no experimental structure for Mn2(CO)6(dppm)2, the crystal 
structure of Mn2(CO)5(dppm)2 shows the carbonyls to be co-planar with one of them 
bound to the metal in a semi-bridging mode.

The Mn2(CO)I0 dimer has been the subject of several theoretical studies, however, 
none of them have focused on the dynamic fluxionality of the carbonyl ligands. Electron 
diffraction studies, both in the gas phase10 and in the crystal1 ^ 2  show that it has one of 
the longest metal-metal bonds known, about 2.9 A, and the structure exhibits a 
characteristic bending of the four equatorial carbonyls towards the Mn atom to which they 
are not directly bound. A number of theoretical studies have focused on these unique 
structural features of Mn2(CO)I0.13' 16 A number of theoretical papers have also appeared 
which probe the photochemistry of Mn2(CO)10.17-20 Folga and Ziegler21, employing non
local density functional theory (DFT), computed the energy barrier for rotation about the 
Mn-Mn bond, going from the staggered (D^) ground state conformation to the eclipsed 
(D4h) conformation.

Density functional theory employing non-local, gradient-corrected functionals has 
become the method of choice for calculations involving small to medium-sized transition 
metal complexes.22 However, using the workstation hardware typically available in 
research groups, the computational cost of DFT (~ K3, where K is the number of basis 
functions) often makes it prohibitively expensive for modeling large transition metal 
systems. Semiempirical methods address the need for more cost-efficient computational 
techniques. The PM3(tm) method has recently been developed by Wavefunction Inc. and 
made available within the Spartan program.23 A survey of the literature shows only a few 
papers which have tested the reliability of this new semiempirical method for calculations 
involving transition metal elements. Adam and co-workers24 employed the PM3(tm) 
method to predict the molecular structures of some high- and low-spin nickel (II) teraaza- 
macrocycle complexes. Looking solely at geometric structures, they found PM3(tm) to be 
inferior to an MM2 force field derived specifically for macrocycles of low-spin nickel(II).
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Cundari and Deng25 found the PM3(tm) method to successfully reproduce the experimental 
geometries of nearly 100 different metal complexes, with accuracies similar to that found at 
the MP2 level employing ECP basis sets. B0rve et al.26 performed a comparative study of 
PM3(tm) vs. DFT in calculations of Ti, Cr, and Zr complexes. They found the PM3(tm) 
method to be quite successful in predicting geometries of stable, closed-shell complexes, in 
close agreement with both experiment and the DFT calculations. However, the PM3(tm) 
method gave poor relative energies and activation barriers for the ethylene insertion 
reactions studied. Single-point energy calculations, using non-local density functional 
theory at the PM3(tm) optimized geometries, yielded more reliable and accurate activation 
barriers, reasonably close to those obtained if the DFT method was used throughout.

In the present chapter, the DFT, PM3(tm), and the hybrid DFT//PM3(tm) 
approaches were used to study the carbonyl scrambling behaviour in Mn,(CO)I0 and 
Mn2(CO)6(dhpm)2, as a model of the experimental Mn2(CO)6(dppm)2 complex. Assuming 
that carbonyl scrambling proceeds via the planar, pairwise exchange (merry-go-round) 
mechanism, the process was simulated by obtaining optimized geometries, frequencies and 
energies of the conformers which play an integral role in the scheme. Calculations were 
also performed at the Hartree-Fock (HF) level to illustrate the importance of electron 
correlation in modeling transition metal containing systems.

4.2 Computational Methods

4.2.1 M n2(C O )10

Assuming that carbonyl migration follows the pairwise exchange mechanism 
calculations were carried out at the DFT, HF, and PM3(tm) levels of theory for the various 
conformers of Mn2(CO)10 involved in the migration process. For the DFT calculations, the 
gradient-corrected exchange functional of Becke27 was used in conjunction with the non
local correlation functional of Lee, Yang, and Parr28. (This combination is commonly 
referred to as the BLYP functional.) This functional has proven to yield reliable geometries 
and frequencies in a number of studies of transition metal carbonyls.29 Additional 
calculations were performed using the B3LYP functional, comprised of Becke’s three- 
parameter hybrid exchange functional30 in combination with the correlation function of 
Lee, Yang, and Parr28. For these calculations, an all-electron basis set of triple-zeta- 
valence quality, with two polarization functions (both p type) was used for the Mn atom, 
with a (533111/53 l* l* /3 11) contraction pattern. All-electron basis sets of double-zeta plus
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polarization (a single d polarization function) quality were employed for the C and O atoms, 
with the following contraction pattern (421/31/1*). This basis set was also used for the HF 
calculations. All atomic basis sets and polarization functions were taken from the 
compilation of Huzinaga and co-workers.31 Baerends et al. 16 in a previous study of 
Mn2(CO)[0 found that the addition of an f polarization function to the Mn basis set had no 
significant effect on the results, hence f  polarization functions were not used in the present 
work. The final molecular basis set for Mn2(CO)10 contained a total of 346 contracted 
Gaussian functions. All of the DFT calculations were carried out using the Gaussian 
9 2/D FT32 and Gaussian 9433 programs, while HONDO34 was employed for the HF 
calculations.

The unpublished PM3(tm) set of parameters, as contained within the Spartan 
program23 were employed. The choice of the semiempirical method was governed by the 
availability of parameters for the Mn atom.

All geometries were fully optimized using analytical gradient techniques, and the 
nature of the resulting stationary point was characterized by harmonic vibrational analysis, 
either using analytical second derivatives or via numerical evaluation of analytical first 
derivatives. In order to gain insight into the carbonyl scrambling mechanism, one must 
know not only the structures and relative energies of the species involved but also what, in 
chemical terms, the species correspond to.

4.2.2 M n,(C O )6(dh pm )2

To reduce computational costs, the phenyl rings of the bidentate dppm ligand were 
replaced with hydrogen atoms, resulting in the bis-(dihydrophosphino)-methane ligand, 
denoted as dhpm. Assuming that carbonyl scrambling in both the experimental 
Mn2(CO)6(dppm)2 and model Mn2(CO)6(dhpm)2 systems proceeds via the pairwise 
exchange mechanism, the geometries of the conformers which play an integral role in the 
scheme were optimized using the PM(tm) semiempirical method. In addition, since 
experimental structure data is available for Mn2(CO)5(dppm)2, structural parameters for 
Mn2(CO)s(dhpm)2 were obtained at the PM3(tm) level. All of the geometries, with the 
exception of one of the Mn2(CO)6(dhpm)2 conformers with constrained angles (see below), 
were fully optimized using analytical gradient techniques, and the nature of the resulting 
stationary point was characterized by harmonic vibrational analysis. The choice of 
semiempirical method was based solely on the availability of PM3(tm) parameters for Mn, 
and the Spartan program was used23.
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The total energies of the Mn2(CO)6(dhpm), conformers involved in the carbonyl 
migration process were computed via single-point energy DFT calculations at then- 
respective PM3-optimized geometries. A variety of density functionals were employed in 
this hybrid DFT//PM3(tm) method including: BLYP (Becke’s non-local exchange 
functional27 in conjunction with the non-local correlation functional of Lee, Yang and 
Parr28), BP86 (Becke’s non-local exchange functional27 coupled with Perdew’s non-local 
correlation functional35), B3LYP (comprised of Becke’s three-parameter hybrid gradient- 
corrected exchange functional30 coupled with the gradient-corrected correlation functional 
of Lee, Yang, and Parr28), and B3PW91 (Becke’s three-parameter hybrid gradient- 
corrected exchange functional30 in conjunction with the gradient-corrected correlation 
functional of Perdew and Wang36). In the DFT calculations the ECPs of Stevens et al.37~ 
39 were used for all heavy atoms, with the following contraction schemes for the valence 
space of the constituent atoms: (31/31/1*) for P, C and O and (4211/4211/3111) for Mn. 
The d polarization functions for the main group elements were taken from the compilation 
of Huzinaga and co-workers.31 The 3-21G basis set was used for the H atoms.40 All of the 
DFT calculations were carried out using the Gaussian94 program.33

4.3 Results and Discussion

4.3.1 M n ,(C O )I0

The structures of the three Mn2(CO)I0 conformers involved in the carbonyl 
migration process; staggered (D^), eclipsed (D4h), and bridged (D2h) are displayed in 
Figure 4.1. Values of the optimized geometrical parameters are presented in Table 4.1, 
along with the corresponding experimental values for the staggered conformer along with 
values from a number of previous theoretical studies. The following naming convention 
has been adopted to distinguish between the different carbonyl ligands in the three 
Mn2(CO)10 conformers. In the staggered and eclipsed conformers the axial carbonyls are 
defined to be co-linear to the Mn-Mn bond, while the remaining eight carbonyls are labelled 
as equatorial. In the bridged conformer bridged labels the two u^-CO ligands, terminal is 
used to label the four carbonyls co-planar to the two bridging carbonyls, and perpendicular 
labels the remaining four carbonyls.

The geometrical parameters of the staggered conformer predicted using the non
local DFT (BLYP) approach agree very well with those from experiment. The BLYP 
method predicts the Mn-Mn bond to be nearly identical to its gas-phase diffraction value,
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(b)

Figure 4.1: The three conformers of Mn2(CO)10 studied: (a) staggered (D^); (b») eclipsed 
(D4h); (c) bridged (D^).
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Table 4.1: Predicted Geometrical Parameters for the Three Conformers of Mn2(CO)10.a

This W ork

P aram ete r BLY P P M 3(tm )b H F  Z ie g le r ' R osad E x p t.e

Staggered (D^) Conformer
Mn-Mn 2.979 2.919 3.298 2.902 2.876 2.977
Mn-C„ 1.827 1.788 2.006 1.813 1.747 1.803
Mn-Ceq 1.874 1.852 2.028 1.859 1.799 1.873

1.165 1.168 1.111 1.158 1.172 1.147f
C -Oeq eq 1.162 1.161 1.116 1.153 1.169 1.147f
Ceq-Mn-Mn 86.6 86.8 84.2 85.0 86.1
O ^ - M n 177.2 179.8 176.1 175.9
Ceq-Mn-CM 93.4 93.1 

Eclipsed (D4h)
95.8

Conformer
93.0 93.4

Mn-Mn 3.116 2.966 3.518 2.965
Mn-Cffi 1.823 1.789 2.014 1.812
Mn-Ceq 1.874 1.851 2.031 1.850

1.165 1.169 1.111 1.157
C -Oeq eq 1.162 1.161 1.116 1.156
Cq -Mn-Mn 87.5 88.7 85.5 89.1
O ^ - M n 175.3 176.2 178.5 174.4
Ceq-Mn-C^ 92.5 91.3 94.5 90.9

Bridged (Da ) Conformer
Mn-Mn 2.846 3.062
Mn-Cperp 1.871 2.042
Mn-CIcrm 1.853 1.994
Mn-Cbr 2.109 2.214
C -O

Pc rP P « P
1.160 1.112

C -Oterm  te rm 1.160 1.112

c br- o br 1.183 1.153
C[erm-Mn-Mn 130.3 131.3
0 Ierm-CIerm-Mn 176.6 175.9
Cterm-M n-Cperp 88.3 89.9
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a Bond lengths in A, angles in deg. b A limitation of the Spartan program package and 
unavailability of the source code prevented selection of the correct electronic configuration 
in the conformer and made the study of the bridged structure impossible. c DFT 
study21 using nonlocal exchange and correlation functionals (the BP86 functional). d DFT 
study19-20 using a local spin density functional (the SVWN functional). c Gas phase 
electron diffraction study at room temperature.10 f Averaged distances.
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while the Mn-C and C-O distances appear to be slightly overestimated. At this level the 
computed bond distances deviate from experiment by an average of 0.01 A, while the bond 
angles agree to within 1°. Not surprisingly, our BLYP results are superior to the local DFT 
results of Rosa et al. 16,19 while there is little difference between the BLYP predicted values 
and those obtained by Folga and Ziegler21 using the BP86 functional. Direct comparisons 
of this sort are of limited value since the basis set was not kept constant in the different 
calculations.

The semiempirical PM3(tm) method also predicts the geometry of the staggered 
conformer in good agreement with experiment. The PM3(tm) parameterization leads to 
Mn-Mn and Mn-C distances which are too short, and overestimates the C-O distances. 
However, the PM3(tm) computed bond distances and bond angles deviate from their 
experimental values by an average of 0.03 A and 1°, respectively.

On the other hand, comparison of the calculated and experimental geometries of the 
staggered conformer convincingly shows the shortcomings of the HF method. The HF 
method predicts Mn-Mn and Mn-C bond distances which are too long by as much as
0.3 A. The calculated C-O distances are also slightly underestimated, although it is hard to 
make any strict comparison here as the gas phase diffraction data represent averaged 
values. The bond distances predicted by the HF method deviate from their experimental 
values by 0.15 A on average, with individual deviations as large as 0.32 A. The bond 
angles predicted by the HF method are more in accord with experiment, with errors of 
about 2° on average. Clearly, the ab initio HF method is unable to correctly describe the 
single metal-metal bond in Mn2(CO)10.

Conversion from a staggered arrangement of the carbonyls to a planar eclipsed 
conformation via rotation about the Mn-Mn bond, a necessary step if carbonyl scrambling 
in Mn2(CO)I0 proceeds via the pairwise exchange mechanism, induces large changes in the 
bond distances and angles, as illustrated in Table 4.1. The present calculations, as well as 
those of Folga and Ziegler21, show that rotation about the Mn-Mn bond results in a large 
increase in the Mn-Mn distance, as expected based on simple steric or electrostatic 
arguments. At the BLYP level, the Mn-Mn bond is lengthened by 0.04 A, while the 
PM3(tm) method predicts increase of 0.05 A from its value in the staggered conformation. 
The HF method predicts an increase of 0.22 A, leading to an incredibly long Mn-Mn bond 
of over 3.5 A for the eclipsed conformer. Interestingly, regardless of the computational 
method used, rotation about the Mn-Mn bond has only a slight effect on the Mn-C and C-O 
distances, as well as the bond angles.

The next step in the merry-go-round scrambling process involves the formation of 
the di-bridged conformer. Conversion of the eclipsed conformer to the bridged conformer
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results in a reduction of the Mn-Mn distance by 0.27 A and 0.46 A at the BLYP and HF 
levels, respectively. This decrease is not unexpected, since the presence of two p^-CO 
ligands will bring the Mn atoms closer together. Unfortunately, optimization of the 
geometry of the bridged conformer at the PM3(tm) level was unsuccessful due to 
convergence problems. At the BLYP level, the Mn-C distance of the equatorial carbonyls 
in the bridged dimer were predicted to be shorter than those of the staggered and eclipsed 
conformers. On the other hand, the Mn-C distance of the axial carbonyls were predicted to 
be longer than those of the staggered and eclipsed conformers. At the BLYP level of 
theory, the following trend was observed amongst the various Mn-C distances for the 
bridged conformer: Mn-Cbr > Mn-C^ > Mn-CH.

The relative energies of the three Mn2(CO)I0 conformers involved in the carbonyl 
scrambling process are given in Table 4.2. All of the methods employed predict the 
staggered conformation to be the ground state for Mn2(CO)l0. Subsequent characterization 
of the stationary points via harmonic vibrational analysis revealed it to be a local minimum 
on the potential energy hypersurface, at all levels of theory. The eclipsed conformer was 
predicted to lie about 5 kcal/mol above the staggered conformer using the BLYP and HF 
methods, while the PM3(tm) method predicts the energy gap to be twice as large. Folga 
and Ziegler21, using the BP86 functional, predict a surprisingly large energy difference of 
34 kcal/mol between the staggered and eclipsed conformers. The eclipsed conformer was 
found to be a genuine transition state at the BLYP and HF levels of theory, with imaginary 
harmonic frequencies of 28/ cm'1 and 33/ cm '1, respectively, while it was found to be a 
third-order saddle point, with imaginary frequencies of 47/ cm'1 and 30/ cm'1 (twice), at 
the PM3(tm) level. Examination of the normal mode associated with the single negative 
eigenvalue of the hessian matrix in the DFT and HF calculations, as well as the largest, 
most negative hessian eigenvalue in the PM3(tm) calculations, reveals that the eclipsed 
conformer is a transition state connecting two ground state staggered conformers. The 
motions of the nuclei in this vibrational mode are displayed in Figure 4.2. The bridged 
conformer is predicted to lie a further 14 kcal/mol above the eclipsed conformer at the 
BLYP level, while the HF method predicts it to he 47 kcal/mol above the eclipsed 
conformation. As stated earlier, optimization of the bridged species using the PM3 method 
was unsuccessful. Due to the prohibitively long computational time of evaluating the 
hessian with the DFT method, the hessian of the bridged conformer was evaluated using 
only the HF method, at the respective HF geometry. At this level, the bridged species 
corresponds to a second-order saddle point with associated imaginary frequencies of 370/ 
and 49/ cm'1. The normal mode at 370/ cm'1 corresponds to the desired carbonyl 
scrambling motion between two eclipsed conformers, as shown in Figure 4.3. It should be
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Table 4.2: Relative Energies of the Mn2(CO)10 Conformers.

C onfo rm er M ethod Relative Energy2

Eclipsed (D4h) DFT-BLYP 4.8
HF-SCF 5.3

PM3 10.8

Bridged (D^) DFT-BLYP 18.6
HF-SCF 52.2

a In kcal/mol, with respect to the staggered (Dw) conformer. The reference total energies 
are: E(BLYP) = -3433.75626 Eh, E(HF) = -3424.87128 Eh, AHf°(PM3(tm)) = -698.7 
kcal/mol.
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Figure 4.2: Motions of the nuclei in the harmonic mode corresponding to the single 
negative curvature of the HF and DFT potential energy surfaces in the eclipsed (D4h) 
transition state.
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Figure 4.3: Motions of the nuclei in the harmonic vibrational mode connecting the bridged 
(D^) and eclipsed (D4h) Mn2(CO)10 conformers.
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added that vibrational analysis of all three conformers indicates that the potential energy 
hypersurfaces near the stationary points are quite flat, with a large number of modes with 
small frequencies. For example, in the staggered conformer, there were 38, 34, and 44 
vibrational modes (over half of all modes) with frequencies smaller than 500 cm '1, as 
predicted by our DFT, PM3(tm), and HF calculations.

In summary, DFT calculations performed using the BLYP functional predict an 
energy barrier o f 19 kcal/mol for carbonyl migration in Mn,(CO)10. This energy barrier is 
increased to 21 kcal/mol if  the B3LYP functional is employed. Recall that the maximum 
value of AGra for a process, in solution, to be detected by NMR has been estimated to be 
25 kcal/mol. Our energy barrier estimates are close to this upper limit, but still lie below it. 
However, we have calculated only AE, and have not taken into account zero point energies 
or entropy changes, which may increase the barrier for carbonyl migration. Recall that 
Marsella and Caulton9 believed that it was the barrier to rotation about the Mn-Mn bond 
which prevented carbonyl migration in Mn2(CO)10, however our DFT calculations predict 
this activation barrier to be quite small, at only 5 to 6 kcal/mol, indicating that this rotation 
should be rapid.

4.3.2 M n2(C O )6(dhpm )2

The geometrical parameters of five different conformers of Mn2(CO)6(dhpm)2, as 
well as the lowest energy conformer of Mn2(CO)5(dhpm)2, calculated at the PM3(tm) level, 
are listed in Table 4.3. Also given in the Table are values from the experimental crystal 
structure of the related Mn2(CO)5(dppm)2 complex.41 Conformers A and B, Figure 4.4 (a) 
and (b), differing only in the orientation of the two methylene units, have a planar 
arrangement of the six CO ligands with two of them symmetrically bridging the Mn atoms. 
In conformers C and D, Figure 4.4 (c) and (d), all of the CO ligands are in the terminal 
position but they adopt a pseudo-staggered arrangement, similar to the staggered (D^) 
conformer of Mn2(CO)I0. In conformer E, Figure 4.4 (e), all o f the CO ligands adopt a 
planar arrangement and occupy terminal positions, as in the eclipsed (D4h) conformer of 
Mn2(CO)10. The following naming convention for the carbonyl ligands is used: in the all
terminal conformers (C, D, and E) the axial carbonyls are co-linear to the Mn-Mn bond, 
while the remaining carbonyls are labelled equatorial, in the planar, di-bridged conformers 
(A and B) bridged is used to label the two (J^-CO ligands while terminal labels the 
remaining four carbonyls. For the Mn2(CO)5(dhpm)2 complex (conformer F, Figure
4.4 (f)) bridged labels the lone jJ^-CO, axial labels the two CO ligands co-linear to the
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Table 4.3 Structural Parameters of the Mn2(CO)n(dhpm)2 Conformers (n = 6, 5).a

Parameter

n=6b n= 5c

F
PM3

ExptdA
PM 3e DFTr

B
PM3

c
PM3

D
PM3

E
PM3 DFT

Mn-Mn 2.988 2.878 2.986 3.101 3.101 3.077 3.288 3.328 2.934

M n-C „ 1.722 1.722 1.731 1.802 1.729 1.73

M n-C^ 1.743 1.825 1.742 1.818 1.817 1.821 1.852 1.728 1.67

M n-Cbf 2.112 2.096 2.112 2.042 1.93

M n-P 2.245 2.322 2.245 2.221 2.221 2.219 2.298 2.212 2.272

c»-o„ 1.194 1.193 1.192 1.191 1.194 1.20

C«,-Oeq 1.189 1.188 1.187 1.179 1.802 1.178 1.189 1.192 1.18

cbr- obr 1.198 1.211 1.195 1.232 1.10

p -c h 2 1.860 1.898 1.859 1.866 1.866 1.855 1.899 1.867 1.83

M n-M n-C^ 133.5 132.4 133.4 86.4 86.4 90.0s 85.8 96.4 94

Oeq-C^-Mn 178.1 179.3 178.1 175.8 175.8 174.8 174.4 170.9 176

Oax-C«-Mn 180.0 180.0 179.7 179.9 168.9 173

C>br-Cbr-Mn 135.0 136.6 135.0 125.5 173

P-CH,-P 113.4 106.3 113.5 115.5 115.5 112.4 108.1 117.9 113.2

M n-P-P-Mn 0.1 0.1 0.0 18.9 18.4 0.0s 0.1 0.1

Cjq-Mn-Mn-Cjq 0.1 0.1 0.0 19.6 19.2 0.0s 0.2 0.1

a Bond lengths in A, bond angles in degrees. b The Mn2(CO)6(dhpm)2 conformers are: A. 
cis-Mn2(CO)4(|J.2'CO )2(dhpm)2 (see Figure 4.4 (a)), B. trans-Mn2(CO)4(p2-CO)2(dhpm)2, 
(see Figure 4.4 (b)), C. cis-Mn2(CO)6(dhpm)2 (see Figure 4.4 (c)),.D. trans- 
Mn2(CO)6(dhpm)2 (see Figure 4.4 (d)), E. cis-Mn2(CO)6(dhpm)2 (planar, all-terminal, see 
Figure 4.4 (e)). c The lowest energy conformer of Mn2(CO)5(dhpm)2 (conformer F), 
Figure 4.5. d Values taken from the experimental crystal structure of the related complex 
Mn2(CO)5(dppm)2.41 e Values correspond to those obtained from optimization using the 
PM3(tm) semiempirical method. f Values correspond to those obtained from optimization 
at the DFT level of theory using the BLYP density functional. g Parameter fixed during 
optimization.
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(a)

(f)

Figure 4.4: The conformers of Mn2(CO)6(dhpm)2 and M n2(CO)5(dhpm)2 studied: (a) cis- 
Mn2(CO)4(fi2-CO)2(dhpm)2 (Conformer A), (b) trans-Mn2(CO)4(jJ.2-CO)2(dhpm)2 
(Conformer B), (c) cis-Mn2(CO)6(dhpm), (Conformer C), (d) trans-Mn2(CO)6(dhpm)2 
(Conformer D), (e) planar, all-terminal Mn2(CO)6(dhpm), (Conformer E), (f) cis- 
Mn2(CO)4(p2-CO)(dhpm)2 (Conformer F).
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Mn-Mn bond, and equatorial is used to represent the two remaining carbonyls.
Interestingly, whenever a geometry optimization was commenced from a structure 

in which the six carbonyls were co-planar, the carbonyls in the final optimized structure 
remain planar with two of them becoming symmetrically bridging (conformers A and B). 
This planarity was maintained even though no symmetry constraints were placed on the 
system (i.e. the C, point group was used). When an optimization was initiated from a 
structure in which the six carbonyls were pseudo-staggered, the final optimized structure 
was also pseudo-staggered with all of the carbonyls in the terminal positions (conformers C 
and D). The co-planar, all-terminal species (conformer E) could only be optimized by 
constraining certain angles. This behaviour is indicative of a very complicated potential 
energy hypersurface with a large number of local minima.

As illustrated in Table 4.3, the PM3(tm) method predicts structural parameters 
which agree reasonably well with the corresponding parameters of Mn2(CO)5(dppm), given 
the steric differences between the model and experimental bidentate phosphine ligands.
The PM3(tm) predicted Mn-Mn distance for the planar, all-terminal conformer (E) is 0.14

o

A longer than that found in the experimental structure, reflecting the presence of the semi
bridging CO ligand which will bring the Mn atoms closer together. As expected, the Mn- 
Mn distance predicted by the PM3(tm) method for the symmetrically bridging conformers 
is much closer to the experimental value, overestimating it by 0.05 A. The difference could 
be ascribed to either the shortcomings of PM3(tm), or to crystal packing effects, or both. 
There also appears to be a significant difference between the computed and experimental 
Mn-C distance for the equatorial or terminal CO ligands in both the bridged and all-terminal 
conformers. The experimental Mn-Cq  distances are shorter, by about 0.07 to 0.15 A, than 
the PM3(tm) computed values, and may be due to the different coordination at the Mn 
atoms in the model and experimental structures. One less equatorial CO ligand in the 
experimental species should make the Mn atoms more electron rich and thus more capable 
of back-donation to the remaining equatorial carbonyls, resulting in a shorter Mn-C^ 
distance. Overall, the agreement between the PM3(tm) computed values and experimental 
values for those geometric parameters least sensitive to the semi-bridging CO ligand and the 
differing steric demands of the phosphines (e.g. the Mn-CK, Mn-P, P-CH2, and C-O 
distances) is very good.

As a further test of the ability of the PM3(tm) method to predict geometric structures 
of transition metal complexes, one of the bridging CO ligands was removed from 
conformer A, and the resultant Mn2(CO)5(dhpm)2 complex optimized. This complex was 
labeled as conformer F, and is displayed in Figure 4.4 (f), as well as Table 4.3. As shown 
in Figure 4.4 (f), the lone bridging CO ligand is oriented symmetrically between the two
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Mn atoms, normal to the Mn-Mn bond. The experimental structure on the other hand, 
shows the semi-bridging nature of the |X>-CO ligand (being bound to one of the Mn atoms 
through the C atom and to the other through the C-O triple bond). Generally, there is good 
agreement between the PM3(tm) computed and experimental bond lengths, with deviations 
smaller than 0.06 A, with the exception of the Mn-Mn and Mn-Cbr distances, predicted to

o  e

be too long by 0.39 A and 0.11 A, respectively. Of course, the deviation between the 
computed and experimental Mn-C^-O^ bond angle is largest, 125° vs. 173°, reflecting the 
different bonding nature of the bridging carbonyl ligands. There is reasonable aggreement 
between computation and experiment for the remaining bond angles, with deviations 
typically less than 5°. It should be added that conformer F was found to be a minimum on 
the potential energy hypersurface, reached from several different initial geometries with no 
symmetry constraints imposed on the system (Ct symmetry). One of the lowest frequency 
modes at 42 cm'1 corresponds to the Mn-Mn stretch, indicating that the potential energy 
hypersurface is very flat and that the molecule may be easily compressed in the crystalline 
environment, perhaps explaining why our gas phase PM3(tm) calculations exaggerated the 
Mn-Mn distance. As shown in Table 4.3, this compression may be simulated in the gas 
phase by the addition of a second bridging carbonyl, as in conformers A and B.

A comparison of the Mn-Mn distance in the bridged (A and B) and non-bridged, 
all-terminal (C, D, and E) conformers shows that the formation of the (i2-CO ligands 
results in a shortening of the Mn-Mn distance by over 0.1 A. In accord with the available 
experimental data for symmetrically bridged species42 our PM3(tm) calculations predict the 
bridging carbonyls to have the longest Mn-C and C-O distances. Interestingly, the 
arrangement of the phosphine moiety remains nearly constant in all five of the 
Mn2(CO)6(dhpm), conformers studied. The Mn-P distance is shorter, by about 0.02 A, in 
the pseudo-staggered conformers (C and D) than in the planar, dibridged conformers (A 
and B). Furthermore, the P-CH2-P angle appears to be more affected by the planarity of 
the six carbonyls (conformers A, B, and E vs. conformers C and D), than the cis or trans 
arrangement of the methylene unit in the bidentate phosphine ligand (conformers A, C, and 
E vs. conformers B and D).

At the PM3(tm) level, the stationary points corresponding to the optimized 
geometries of conformers A, B, C, and D were found to be local minima by harmonic 
vibrational analysis. The stationary point for the planar, all-terminal conformer (E) was 
found to be a second-order saddle point, with imaginary frequencies of 25/ and 13/ cm'1. 
The normal mode for the frequency at 25/ cm'1 corresponds to scrambling of the CO 
ligands towards the planar, di-bridged conformer A, while the mode at 13/ cm'1 
corresponds to rotation about the Mn-Mn bond to form the pseudo-staggered conformer C.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



121

It should be added that, as found in the Mn2(CO)I0 conformers a large number of the 
computed vibrational modes, about one third, for each conformer of M n^C O ^dhpm ^ are 
smaller than 500 cm'1, indicating very flat potential energy hypersurfaces near the minima.

The relative energies of the conformers of Mn2(CO)6(dhpm)2 are displayed in Table 
4.4. Based on the PM3(tm) energies of the species at their respective PM3(tm)-optimized 
geometries (the PM3 (tm)//PM3 (tm) method) a planar arrangement of the CO ligands with 
two of them symmetrically bridging the two Mn atoms was found to be the most stable 
conformation (conformers A and B). At this level, the energy of the planar, all-terminal 
conformer (E) is predicted to be 32 kcal/mol higher in energy than conformer A. The 
PM3(tm)//PM3(tm) energies of the pseudo-staggered conformers (C and D) are predicted to 
be 29 kcal/mol higher than the energy conformer A. It should be added that the 
PM3(tm)//PM3(tm) method finds a slight preference for a cis arrangement of the methylene 
units in the two bidentate dhpm ligands, in agreement with the arrangement observed in the 
crystal structure of Mn2(CO)5(dppm)2.

The PM3(tm)//PM3(tm) results imply that carbonyl scrambling in the model 
Mn2(CO)6(dhpm)2 system proceeds from the co-planar, symmetrically bridged 
conformation (A) to the co-planar, all-terminal conformer (E) and back to conformer A, 
with an activation barrier of 32 kcal/mol. This energy barrier is higher than the upper limit 
for an NMR-detectable process2 (25 kcal/mol) and much higher than the barrier of 
10 kcal/mol for carbonyl scrambling in Mn2(CO)6(dppm)2 reported by Marsella and 
Caulton9. This overestimation of the energy barrier based on the PM3(tm) energies is 
consistent with the previous findings of Bprve et al,26 in modeling ethylene insertion 
reactions of some Ti, Zr, and Cr complexes. Following the recommendations of Bprve et 
al.26 the reaction barrier was computed using the hybrid DFT//PM3 scheme in which more 
accurate DFT energies are calculated for the conformers at their respective PM3(tm)- 
optimized geometries. The results of the hybrid DFT//PM3(tm) calculations are collected in 
Table 4.4. For all of the functionals employed, the DFT//PM3(tm) scheme predicts the 
planar, all-terminal conformer (E) to be the lowest in energy, lying 15-19  kcal/mol lower 
in energy than the planar, symmetrically bridged conformer (A). Furthermore, at this level, 
the pseudo-staggered conformer (C) was found to be slightly higher in energy (less than 1 
kcal/mol) than the lowest-energy conformer (E). Based on the computed energy 
differences, the DFT//PM3(tm) approach models the carbonyl scrambling in 
Mn2(CO)6(dhpm)2 as proceeding from the planar, all-terminal conformer E to the planar, 
di-bridged conformer A, and back to conformer E. This mechanism is similar to that 
predicted for carbonyl scrambling in Mn2(CO)10.43 Depending on the functional used, the 
DFT//PM3(tm) approach yields an energy barrier of 15 to 19 kcal/mol for carbonyl
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Table 4.4: Relative Energies of the Mn2(CO)6(dhpm)2 Conformers.

PM3b BLYPC B P 86C B3LY PC B 3P W 91C

B 0.1
C 29.3 -16.9 -14.2 -18.3 -16.2
D 29.3
E 32.2 -17.4 -14.9 -18.6 -16.8

(-13. l)d

a In kcal/mol, calculated with respect to conformer A, Figure 4.4 (a). b Values computed 
from the PM3(tm) energies at the respective PM3(tm)-optimized geometries. (The 
PM3(tm) reference energy is AHf° = -555.3 kcal/mol.) c Values computed from the DFT 
total energies, using the density functionals specified, at their respective PM3(tm)- 
optimized geometries. (The reference energies are: E(BLYP) = -381.53866 Eh;
E(BP86) = -382.69665 E„; E(B3LYP) = -382.03884 Eh; E(B3PW91) = -382.39817 Eh.) 
d Value computed from the BLYP energies at their respective BLYP-optimized geometries. 
(The BLYP//BLYP reference energy is E(BLYP) = -381.69354 Eh.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



123

migration in the Mn2(CO)6(dhpm)2 system, nearly halved with respect to the 
PM3(tm)//PM3(tm) barrier, and more in accord with Marsella and Caulton’s estimated 
barrier of 10 kcal/mol.

The energy barrier for scrambling is reduced to only 13 kcal/mol when the total 
energies of conformers A and E are evaluated at their respective DFT-optimized geometries 
(the DFT//DFT method). This further lowering of the DFT//PM3(tm) energy barrier upon 
re-optimization of the geometries using the DFT approach was not unexpected, since the 
PM3(tm) parameters were not trained on any bridging systems similar to the one studied 
here.44 From Table 4.3, the BLYP optimized Mn-Mn bond length in conformer A was 
predicted to be shorter than the corresponding PM3(tm) value, while in conformer E the 
BLYP method predicts a longer Mn-Mn bond than the PM3(tm) method. Furthermore, 
optimization of the geometries at the BLYP level also predicts longer Mn-C distances for 
the axial and equatorial/terminal carbonyls in conformers A and E, and a shorter Mn-Cbr 
distance in conformer A than those values obtained using the PM3(tm) method. There are 
also some differences between the geometry of the dhpm ligand as optimized at the DFT 
and PM3(tm) levels, as indicated by the significant changes in the Mn-P and P-CH2 
distances and the P-CH2-P angle.

4.4 Conclusions

The current gradient-corrected density functional theory calculations predict 
carbonyl migration in Mn2(CO)I0 to proceed from the most stable staggered (D^) 
conformation to the eclipsed (D4h) conformation, with a barrier of 5 kcal/mol, and then on 
to the bridged (D2h) conformation, with an additional barrier of 14 - 15 kcal/mol. The 
staggered conformer was found to be a local minimum on the potential energy 
hypersurface. The eclipsed conformer corresponded to a transition state for the simple 
rearrangement from one staggered conformer to another. The bridged conformer was 
found to be a second-order saddle point, at the HF level, with the largest negative curvature 
of the potential energy surface corresponding to the transition state for the carbonyl 
migration process connecting two eclipsed conformers. The fluxional process induces 
substantial changes in the Mn-Mn and Mn-C distances, and proceeds with an activation 
energy of 19 to 21 kcal/mol. This barrier for carbonyl fluxionality, calculated for the 
interconversion in the gas phase, is fairly close to the upper limit of 25 kcal/mol for 
processes in solution that may be followed by NMR spectroscopy2.
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Carbonyl migration in the Mn,(CO)6(dhpm)2 model system is predicted to proceed 
from the planar, di-bridged conformer (A) to the planar, all-terminal conformer (E) and 
back to conformer A at the PM3(tm)//PM3(tm) level. At this level the energy barrier for 
migration is predicted to be 32 kcal/mol, much larger than the experimental estimate of 10 
kcal/mol for the experimental Mn2(CO)6(dppm)2 system9. However, the energy barrier 
was halved, to 14 - 19 kcal/mol, when the energies of the conformers were evaluated using 
the DFT method at their respective PM3(tm)-optimized geometries. In addition, the relative 
energy ordering of conformers was altered, and carbonyl scrambling was predicted to 
proceed in a manner similar to that for Mn2(CO)10, from the planar, all-terminal 
conformation (E) to the planar, di-bridged conformation (A) and then back to the original 
conformation. Although, the DFT//PM3(tm) hybrid approach significantly improves the 
PM3(tm)//PM3(tm) energy barrier it still overestimates experiment by 5-10 kcal/mol. The 
energy barrier was further reduced to 13 kcal/mol, now overestimating experiment by only 
3 kcal/mol, when the energies of the conformers were evaluated at their respective DFT- 
optimizated geometries. This improvement was not unexpected, since the training set used 
to develop the PM3(tm) parameters contained more complexes with terminal carbonyls than 
bridging carbonyls, and as a result the lowest energy all-terminal conformer (E) should be 
better represented at the PM3(tm) level than the symmetrically bridged conformer (A). The 
remaining error may reflect differences in the potential energy hypersurfaces of the 
experimental Mn2(CO)6(dppm)2 and the model system, Mn2(CO)6(dhpm)2.

The results presented indicate that the DFT approach is indeed the method of 
choice, if the neccessary computer resources are available, yielding accurate geometries and 
energy barriers. The less computationally demanding PM3(tm) semiempirical method 
worked remarkably well in predicting molecular structures, but was less successful in 
predicting energy barriers. The PM3(tm) energy barriers may be corrected by employing 
the hybrid DFT//PM3(tm) method, in which the energies of the species are computed using 
the more accurate DFT approach at their respective PM3(tm) geometries. This hybrid 
DFT//PM3(tm) scheme should be a very useful one in studies of large transition metal 
complexes, taking advantage of the smaller computational demands of the PM3(tm) 
semiempirical method for the more involved geometry optimization task, as well as the 
ability of the PM3(tm) method to accurately predict molecular structures, while utilizing the 
energies from the more rigorous DFT approach. As expected, the single-determinant 
Hartree-Fock method was unsuccessful in modeling Mn2(CO)10 yielding poor geometries 
and a very large activation barrier for carbonyl migration.
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Chapter 5

The First Carbonyl Bond Dissociation Energies of 
M(CO)s and M(CO)4(C2H2) (M = Fe, Ru, Os): 

The Role of the Acetylene Ligand from a 
Density Functional Perspective.*

* Reproduced in part with permission from Decker, S. A.; Klobukowski, M. Journal o f  the American 

Chemical Society  1998, 120, 9342. Copyright 1998 American Chemical Society.
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5.1 Introduction

Transition metal carbonyls are among the best known and most widely studied 
organometallic complexes.1'5 They are commonly u_sed as starting materials in 
organometallic syntheses, and as catalytic precursors. However, they are typically 
saturated 18-electron species, and thus relatively inert.6 It has been known for some time 
that certain spectator ligands in a metal complex can facilitate, either sterically or 
electronically, dissociation of CO. Numerous papers have demonstrated that when the 
ancillary ligand is a 7t-donor ligand, such as a halide, acetate, or chelating amido group, 
then the carbonyl ligand in the cis position tends to be  labilized. This effect known as cis- 
labilization, has been observed and studied extensively via solution kinetics in d6 (Cr, W) 
and d7 (Mn, Re) complexes of the type M(CO)3L‘2 and M(CO)5L.7*12 The proposed 
rationalization of this effect involves a stabilization o f  the dissociative unsaturated 16- 
electron transition state via 7i-donation from the ancillary ligand. This hypothesis has been 
supported in theoretical studies by Lichtenberger and  Brown13 (with the Fenske-Hall 
method) and Davy and Hall14 (at the RHF level of theory), and the importance of K 
stabilization has recently been reviewed by Caulton.L5

Recently Takats and Jordan16’17 demonstrated that the presence of an Tf-alkyne 
ligand accelerates simple CO substitution reactions in  complexes of the type M(CO)4(Tp- 
alkyne), where the metal is a member of the iron triad and the alkyne is hexafluorobut-2- 
yne or acetylene. X-ray crystal structures of Ru(CO)4[C2(CF3)2] and Os(CO)4[C2(CF3)2] 
revealed trigonal bipyramid structures for the complexes, with the alkyne ligand occupying 
an in-plane equatorial site.18 The kinetics of the carbonyl substitution process, with 
phosphines or phosphites, was monitored using IR spectroscopy. It was determined that 
when the alkyne was hexafluorobut-2-yne (HFB), the phosphine/phosphite occupies an 
axial position (cis to the alkyne) in the monosubstituted product while both the axial 
positions are occupied by phosphine/phosphite groups in the di-substituted product. No 
further carbonyl substitution was observed beyond the disubstituted species in the HFB 
complexes.16 Synthetic studies of the acetylene complex of Os have indicated that the 
substitution of a second phosphine leads to both the expected di-substituted product along 
with a number of acyl complexes, in which a CO ligaoid has inserted into the metal- 
acetylene bond.17

All of the carbonyl substitution reaction rates were found to be independent of the 
nature and concentration of the incoming phosphine/phosphite group. This result, coupled 
with the positive value of AS*, led to the conclusion that the carbonyl substitution proceeds 
via a dissociative mechanism, in which the rate-determining step corresponds to loss of CO
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from M(CO)4(r|2-alkyne) leading to the monosubstituted product. Comparison of the 
dissociation rate constants for these alkyne-substituted species with that of their respective 
parent carbonyls, M(CO)5, indicated that the presence of the alkyne ligand has a profound 
influence. The rate constants for CO dissociation from the HFB complexes were found to 
be 3 x l0 13 (Fe), 2xl02 (Ru), and lxlO7 (Os) faster than those of the corresponding 
pentacarbonyl complexes. The kinetics data also showed that it is the lowering of AH* by 
3 -1 9  kcal/mol in the alkyne complexes relative to the pentacarbonyls that is responsible for 
the observed increased reactivity.16

In order to account for the increased reactivity of the alkyne complexes either: (1) a 
ground state destabilization effect or (2) a transition state stabilization effect may be 
invoked. According to Takats and Jordan16, there appear to be no significant geometric or 
spectroscopic differences between the M(CO)4[C2(CF3)2] and M(CO)5 reactant complexes 
to account for the increased CO lability. Hence, it was postulated that the increased CO 
lability must be due to stabilization of the dissociative 16-electron transition state, via 
increased 7t-donation from the alkyne ligand through participation of its 7t orbital 
perpendicular to the equatorial plane, in the direction of the vacated site. The variable 
electron donor ability of alkyne ligands in transition metal complexes, from two to four 
electrons, has been well documented.19 For example, Templeton and Ward20 have shown 
that l3C NMR can be used to gauge the number of electrons formally donated by the alkyne 
to the metal.

The present computational study was undertaken to provide computational support 
for the role of the alkyne in enhancing CO substitution rates in M(CO)4(r|2-alkyne) 
complexes. Although numerous theoretical papers have focused on the transition metal 
carbonyls, as illustrated in the review article of Veillard21, far fewer have centered on 
alkyne complexes. The bonding between acetylene and a naked metal atom (or cation) has 
been analyzed in several studies. For example, Mitchell et al.22 probed the bonding 
between Ni and acetylene, using non-local density functional theory (DFT). Bauschlicher 
et a l22 examined the bonding between acetylene and the cations of the first- and second- 
row transition series, using modified coupled-pair functional (MCPF) theory. Siegbahn24 
studied the C-H activation of acetylene by bare second-row transition metal atoms, at the 
CISD level of theory. Sellers25 modelled the binding of acetylene to the Pd(l 11) surface at 
the MP2 level. Perhaps most relevant to the present study are the reports from the groups 
of Geurts, Frenking, and Morokuma which have examined aspects of the metal-acetylene 
bond in various transition metal complexes. Geurts et al.26 examined the bonding between 
acetylene and Ni, in Ni(CO)2(C2H2), Ni(CNH),(C2H2), and Ni2(CNH)4(ji2-C2H2), at the 
local spin density level of theory. The transformation of coordinated rj2-acetylene to its
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vinylidene isomer in the Ru(II) complex, Ru(PH3)2C12(C2H2), and the Rh(I) complexes, 
Rh(PH3)2Cl(C2H2) and Rh(P(‘Pr)3)2(Cl)(C2H2), was studied by Morokuma and co
workers27’28 using the MP2 and IMOMM (MP2+MM3) methods. Frenking et a/.29*32 
using their recently developed charge decomposition analysis (CDA) scheme, probed the 
nature of the metal-acetylene bond in complexes of the type M X /Q K y , M X jC Q ty, and 
M(CO)5(C2H2), where M = Cr, Mo, W, and X = F, Cl. There are no theoretical papers 
which focus specifically on the d8 M(CO)4(C2R2) complexes of the iron triad studied 
experimentally by Takats and Jordan.16

5.2 Computational Methods

The present study focuses on the rate determining dissociative loss of CO from the 
alkyne complexes and the parent pentacarbonyls. Non-local, gradient corrected density 
functional theory was employed in conjunction with Frenking’s charge decomposition 
analysis scheme,33 and Bader’s atoms in molecules (AIM)34' 37 topological analysis of the 
electron density to probe the origins of the increased reactivity of the alkyne-substituted 
complexes. In order to reduce the computational complexity of the present DFT 
calculations, acetylene was chosen as a model of the hexafluorobut-2-yne alkyne ligand 
used in the kinetics study. A recent kinetics study involving the Os alkyne complexes17 
showed that changing the alkyne ligand from hexafluorobut-2-yne to acetylene resulted in 
only a minor reduction in the value of AfT for the CO dissociation from 23.8 kcal/mol to 
21.8 kcal/mol. Hopefully, the simplified acetylene model complex used in the calculations 
will not hinder comparison to the experimental hexafluorobut-2-yne complexes.

The primary basis set employed in the present study, denoted BS1, consists of the 
effective core potential (ECP) basis set of Stevens et a/.38-40 with a slight modification of 
the valence space to triple zeta quality for the main group elements and quadruple zeta 
quality for the metals. The basis was augmented with a single d polarization function on C 
and O, and a single p polarization function on H, all of which were taken from Huzinaga et 
al.41. For the metal atoms a total of 16 electrons were included in the valence space, with a 
contracted Gaussian basis set of triple-zeta valence quality for the s and p space, and of 
quadruple-zeta valence quality for the d space. The overall contraction for Fe is 
(4211/4211/3111), while for Ru and Os it is (4111/4111/2111). The valence electrons of 
C and O were described using a triple-zeta valence basis set with a (211/211/1*) 
contraction. The 4-31G basis set42 augmented with a p polarization function was used for 
the H atoms. To probe the metal-acetylene bonding with the CD A and AIM schemes the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



131

all-electron double-zeta plus polarization basis sets of Salahub et alA3 were used and 
denoted BS2. In the BS2 basis set Fe and Ru have contraction schemes of (63321/531/41) 
and (633321/53211/531) respectively (there was no basis set available for Os), while C and 
O have a (621/41/1*) contraction and H has a (41) contraction. It was necessary to replace 
the ECP basis set (BS1) with the all-electron basis set (BS2) because the AIM module as 
contained within the Gaussian94 package44 is limited to all electron basis sets.

A variety of different functionals were employed in the DFT calculations. The 
primary functional used in the calculations was the BLYP functional, comprised of Becke’s 
gradient-corrected exchange functional45 in conjunction with the gradient-corrected 
correlation functional of Lee, Yang and Parr46. This functional was used in all geometry 
optimizations and subsequent hessian calculations, as well as for determination of the CO 
bond dissociation energies (BDEs), the CO dissociation trajectories, and the CDA and AIM 
analyses. The BP86 (Becke’s non-local exchange functional45 coupled with Perdew’s 
non-local correlation functional47), B3LYP (Becke’s three-parameter hybrid gradient- 
corrected exchange functional48 Becke3, coupled with the gradient-corrected correlation 
functional of Lee, Yang and Parr46), and B3PW91 (Becke3 functional,48 coupled with 
Perdew and Wang’s non-local correlation functional49) functionals were employed to 
calculate the CO BDEs of the alkyne and parent carbonyl complexes from total energy 
differences at the respective BLYP optimized geometries. To test the validity of the 
assumption that the BLYP potential energy surface minima closely resemble those which 
would be obtained using other functionals, the geometries of several reactant and CO 
dissociation product complexes were optimized with the B3LYP functional and the 
resulting CO BDE determined. In all cases optimization of the geometries with the B3LYP 
functional resulted in no significant differences in the values of the CO BDEs when 
compared to those values obtained using the BLYP optimized geometries.

All geometries were optimized using analytical gradient techniques and the 
stationary points characterized by harmonic vibrational analysis, accomplished via 
numerical differentiation of the analytical first derivatives. The zero point energy 
corrections from the harmonic vibrational frequencies were included in the CO BDE 
determinations, for the BLYP functional only.

The Gaussian94 program44 was used throughout the study for all single point 
energy calculations, geometry optimizations, and hessian calculations, as well as for 
Bader’s AIM analysis. The CDA2.1 program50, was used in conjunction with the standard 
output of the Gaussian92 package51 to analyze the metal-acetylene bonding within the CDA 
scheme.
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5.3 Results and Discussion

5.3.1 Structures o f the Carbonyl Complexes

In order to calculate the first carbonyl BDE one must determine the total energies of 
the reactant complex, M(CO)5, and the CO dissociated products, M(CO)4 and CO. Hence, 
the first step involved optimization of their respective geometries in order to obtain the 
lowest-energy conformation in the ground electronic state.

A. M(CO)5

In the gas phase the saturated metal pentacarbonyls exhibit a D3h trigonal 
bipyramidal structure52’56, and as such they were optimized under D3h symmetry at the 
BLYP/BS1 level of theory. The corresponding optimized geometric parameters are given 
in Table 5.1, and compared with experiment and the results of previous theoretical studies. 
To allow for a comparison of the effects of different functionals, the Ru and Os analogues 
were optimized with the B3LYP/BS1 method, and the results are also presented in Table 
5.1.

Comparison of the calculated BLYP/BS 1 structural parameters and the experimental 
gas-phase diffraction values shows that the level of theory used here yields quite accurate 
geometries, with average deviations of the M-C and C-O bond lengths of 0.014, 0.042, 
and 0.030 A for the Fe, Ru, and Os analogues, respectively. The BLYP/BS 1 method 
consistently overestimates both the M-C and C-O bonds in all of the complexes. While the 
B3LYP/BS1 method still overestimates the M-C and C-O distances, the overall agreement 
with experiment is slightly improved, with average deviations of 0.031 and 0.026 A for the 
bond lengths of the Ru and Os analogues, respectively.

Both DFT methods correctly predict the experimentally observed trend of the M-C 
distances (axial vs. equatorial) for Ru(CO)5, Ru-C^ < Ru-Ceq, and Os(CO)5,
Os-Cax > Os-Ceq, although the magnitude of the differences is smaller than that observed 
experimentally. In the case of Fe(CO)5, the BLYP/BS 1 calculations predict the Fe-C^ 
bond to be slightly longer than the Fe-C^ bond, by only 0.003 A, in agreement with the 
trend from the experimental crystal structure53, but in disagreement with the trend found 
from the experimental gas-phase diffraction data54. In all of the M(CO)5 complexes, the C- 
O distances of the axial and equatorial ligands are nearly equal, both in the calculations and
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Table 5.1: Geometric Parameters3 o f M(CO)5 (D3h).

Method M -Cax M -C eq (C -0 )ax (C -0 )eq

F e(C O )s
BLYP6 1.837 1.834 1.159 1.162
BPSd/Ziegler' 1.817 1.813 1.153 1.156
SVWN/Delleyd 1.776 1.774 1.145 1.147
B VWN/Delleyd 1.846 1.851 1.154 1.159
BLYP/Delleyd 1.837 1.834 1.156 1.158
BP86/Delleyd 1.817 1.814 1.150 1.155
MP2/Frenkinge 1.688 1.766 1.176 1.166
MCPF/Bames' 1.878 1.847 1.168 1.177
Expt.(Gas8) 1.807 1.827 1.152 1.152
Expt.(Crystalh) 1.811 1.803 1.117 1.133

Ru(CO )s
BLYPD 1.994 2.010 1.157 1.162
B3LYP6 1.986 2.001 1.144 1.149
BP8 d/Ziegler3 1.968 1.960 1.150 1.157
SVWN/Delleyd 1.945 1.946
B VWN/Delleyd 2.013 2.025
BLYP/Delleyd 2.001 2.010
MP2/Frenkinge 1.943 1.952 1.162 1.165
Expt. (Gas') 1.941 1.961 1.126 1.127

O s(C O )5
BLYP0 1.992 1.983 1.159 1.165
B3LYP6 2.010 1.989 1.115 1.122
BPSd/Ziegler* 2.000 1.975 1.147 1.156
MP2/Frenkingc 1.963 1.945 1.163 1.168
Expt. (GasJ) 1.982 1.937 1.130 1.131

a All distances in A. b Results from the present study. c Values taken from the non-local 
DFT study of Ziegler et al.5'1 d Values taken from the DFT study of Delley et a/.58 e 
Values taken from the MP2 study of Ehlers and Frenking.59 ' Values taken from the 
correlated ab initio study of Bauschlicher and co-workers.63 8 Experimental gas phase 
diffraction values.53 h Experimental crystal structure values.54 1 Experimental gas phase 
diffraction values.55 J Experimental gas phase diffraction values.56
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experiment.
Availability of several previous computational studies of the metal pentacarbonyls 

of the Fe triad allows for a comparison of the accuracy of the geometries predicted by the 
DFT methods with a variety of correlated wavefunction methods. It should be noted that a 
direct comparison of the different methods is not entirely valid, since different basis sets 
were used in the various calculations. The previous non-local DFT calculations, in 
particular the BP86 calculations of Ziegler and co-workers57 and the BLYP and BP86 
calculations of Delley et a/.58, predicted geometries which are quite close to those from the 
present work. In the case of Fe(CO)5, the SVWN local DFT results show very poor 
agreement with the experiment; surprisingly, the agreement is remarkably good for 
Ru(CO)5. The geometries obtained by Frenking et al.59 with the MP2 method show very 
poor agreement for the first-row complex, but the agreement improves and matches the 
accuracy of the DFT calculations for the heavier congeners. Overall, the present 
BLYP/BS 1 and B3LYP/BS1 geometries show better agreement with experiment than the 
MP2 calculations of Frenking, perhaps reflecting basis set effects.

B. M(CO)4

The unsaturated M(CO)4 product complexes may be formed via loss of a CO ligand 
from either the axial or equatorial position in the parent pentacarbonyl. Poliakoff et 
al.60,61, in low-temperature matrix-isolation IR studies, have shown that in the case of Fe, 
the dissociation of CO proceeds via loss of an equatorial CO, leading to a distorted Td-like 
structure of C2v symmetry. Although there has been some controversy surrounding the 
ground electronic state of Fe(CO)4, the temperature-dependent magnetic circular dichroism 
experiments of Poliakoff and co-workers62 have conclusively shown it to be paramagnetic. 
These findings have been supported by a number of theoretical studies57-58’63*64 all of 
which predict Fe(CO)4 to have a 3B2 ground electronic state, and a distorted C2v structure. 
Bogdan and Weitz65-66, in transient infrared spectroscopy kinetics studies, have concluded 
that the unsaturated CO dissociation products of the Ru and Os analogues have singlet 
ground states. These findings are fully supported by the theoretical study of Ziegler and 
co-workers.57

The present BLYP/BS 1 calculations of the unsaturated M(CO)4 carbonyl 
dissociation products are in full agreement with the previous findings of a preference for 
the dissociation of a CO ligand from the equatorial position. The calculations predict 
Fe(CO)4 to have a 3B2 ground electronic state, while Ru(CO)4 and Os(CO)4 are predicted to 
have 1 At ground states. The lowest energy geometric conformer of each M(CO)4 complex
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is predicted to have a distorted Td-like, C2v structure, corresponding to the product formed 
by the removal of an equatorial CO from the parent pentacarbonyl. As expected, in 
forming the M(CO)4 complex the C^-M-C^ angle, denoted hereafter as a , compresses 
while the C^-M-C^ angle, denoted p, expands towards the vacant site. This characteristic 
structure is illustrated in Figure 5.1 for the Ru analogue, while the values of the geometric 
parameters for all three M(CO)4 complexes are collected in Table 5.2, along with the results 
of previous theoretical studies. It should be noted that all three of the lowest-energy 
M(CO)4 conformers in their respective lowest-energy electronic states correspond to 
minima on their respective potential energy surfaces, as confirmed by harmonic vibrational 
analysis. This supports the dissociative rate determining step proposed in the kinetics 
study.67’68 The corresponding ‘A, Fe(CO)4, and 3B2 Ru(CO)4 and 3B2 Os(CO)4 excited 
states (of G,v symmetry) are predicted to lie 4-18 kcal/mol above their respective ground 
states. The M(CO)4 geometric conformers of C3 symmetry, in which an axial CO has been 
removed, were found to lie even higher in energy than the C2v excited states. For example, 
in Fe(CO)4 the singlet and triplet states of the C3 conformers were 10 kcal/mol and 25 
kcal/mol higher in energy than the ‘A, excited state of the C2v conformer.

In general, the BLYP/BS 1 geometries of the M(CO)4 complexes are very similar to 
those found in previous theoretical studies, as illustrated in Table 5.2. Perhaps the largest 
exception to this generalization are Frenking’s59 MP2-optimized parameters for the 1 A, 
excited state of Fe(CO)4, and the C^-M-C^ (a) and C^-M-C^ (P) angles in the ‘A, 
ground state of Ru(CO)4. The BLYP/BS 1 M(CO)4 geometries appear to be slighdy more 
distorted from their respective parent pentacarbonyls than found in the previous ab initio 
or DFT calculations.

The present BLYP/BS 1 calculations, as well as the previous theoretical calculations 
predict significant differences in the geometries of the triplet and singlet electronic states of 
Fe(CO)4. The C-O distances and a  angles (C^-M -Q J are equivalent in the two states. 
However, the M-C distances are slightly shorter in the ‘A, excited state than in the 3B2 
ground state and there is a significant difference between the values of the P angle (C -M- 
C ) in the two states. It should be noted that Poliakoff et a/.60 have estimated values ofeq'
145° and 120° for the a  and P angles, based on their matrix isolation IR spectroscopy 
measurements. All of the computational results shown in Table 5.2 underestimate 
Poliakoffs value of the P angle.

Comparison of the BLYP/BS 1 optimized geometries of the three ‘A, M(CO)4 
complexes reveals that the spin-allowed dissociation of an equatorial CO ligand results in a 
larger compression of the axial ligands towards the vacant site in the Fe and Os complexes
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Table 5.2: Geometric Parameters1 of M(CO)4 (C2v)b.

Method M -Cax M -C eq (C -0 )ax ( C - 0 ) eq a* Pd

Fe(CO)4 (3B2)
BLYP* 1.881 1.852 1.161 1.163 146 98
BP86/Zieglerf 1.859 1.820 1.156 1.160 147 99
MCPF/Bames8 1.879 1.885 1.169 1.175 150 104

Fe(CO)4 (‘A,)
BLYP* 1.824 1.814 1.164 1.166 145 137
BPSb/Ziegle/ 1.834 1.793 1.153 1.160 167 129
MCPF/Bames8 1.910 1.875 1.181 1.178 151 125
MP2/Frenkingh 1.726 1.713 1.170 1.178 170 135

Ru(CO)4 ('A,)
BLYP* 1.987 1.971 1.160 1.164 158 143
B3LYP* 1.986 1.965 1.145 1.150 169 144

BPSb/Ziegler^ 1.991 1.991 1.149 1.153 167 144
MP2/Frenkingh 1.951 1.904 1.161 1.171 179 137

Os(CO)4 ('A,)
BLYP* 1.958 1.959 1.166 1.165 146 146
BPSb/ZiegleF 2.059 2.040 1.149 1.151 161 152
MP2/Frenkingh 1.942 1.909 1.165 1.172 157 138

a Bond lengths in A and angles in degrees. b Structures correspond to that formed by loss 
of an equatorial CO from M(CO)s. c The G^-M-C^ angle. d The Ceq-M-Ceq angle. * 
Results from the present study. f Values taken from the non-local DFT study of Ziegler et 
al.57 8 Values taken from the correlated ab initio study of Bauschlicher et al.63 h Values 
taken from the MP2 study of Ehlers and Frenking.59
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than in the Ru complex. Interestingly, the same trend is not observed for the expansion of 
the C^-M-C^ ((3) angle towards the vacant site, for which Os > Ru > Fe. For each of the 
metals of the triad, the spin-allowed dissociation process leads to a shortening of both of 
the M-C distances. However, the spin-forbidden CO dissociation leading to Fe(CO)4 in the 
3B2 state results in a lengthening of both of the M-C distances. Based on the predicted 
geometric changes of the triplet and singlet states of Fe(CO)4 it would appear that the spin- 
allowed and spin-forbidden CO dissociations proceed along quite different reaction 
pathways. As seen previously in the M(CO)5 complexes, the ‘A, Ru(CO)4 geometry 
optimized with the B3LYP functional yielded shorter C-O distances, with very little change 
in the M-C distances relative to the BLYP optimized geometries. At the B3LYP/BS1 level 
the C^-M-C^ (a) angle is predicted to be less compressed than in the BLYP/BS 1 structure.

5.3.2 Structures of the Alkyne Complexes

A. M(CO)4(C2H2)

The geometries of the saturated alkyne substituted complexes, M(CO)4(C2H2), were 
optimized under C2v symmetry, using the BLYP/BS 1 approach. The results are 
summarized in Table 5.3, and the structure of the Ru compound is shown in Figure 5.2. 
Geometric parameters optimized with the B3LYP method are also presented in Table 5.3, 
together with experimental parameters from the crystal structures of the related alkyne 
complexes Ru(CO)4[C2(CF3)2] and Os(CO)4[C2(CF3)2] .18

The BLYP/BS 1 method predicts the following trend for the M-C distances: Fe-C < 
Os-C < Ru-C. Iron, with the smallest covalent radius, would be expected to have the 
smallest M-C bond lengths. However, as the covalent radii of Ru and Os are 
approximately equal, the shorter Os-C bond may be an indication of stronger bonding 
between the metal and the CO and C,H2 ligands for Os than for Ru. The C-C distances of 
the bound acetylene ligand increase down the triad, and are substantially longer than in free 
acetylene, 1.202 A.69 As expected, co-ordination of acetylene to the metal has decreased 
the C-C bond order, and rehybridized the acetylenic carbons towards ethylenic sp2 carbons, 
as illustrated in Figure 5.2. There are no significant differences amongst the C-O bond 
lengths or the bond angles for the metals of the triad.

The agreement between the BLYP/BS 1 geometries and the experimental crystal 
structures of the Ru and Os hexaflurobut-2-yne complexes is good considering the 
significant differences between the model alkyne and the experimental one. In both the Ru 
and Os analogues, the BLYP/BS 1 calculations predict longer M-C and C-O distances than
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Table 5.3: Selected Geometric Parameters® o f M(CO)4(C,H2) (C2v).

Param eter F e

BLY P

Ru

BLYP E x p t.b BLYP

Os

B 3L Y P E x p t.b

1.843 1.993 1.967 1.989 1.981 1.972
M-Ceq 1.823 2.001 1.966 1.972 1.963 1.969
M-C* 2.140 2.264 2.125 2.247 2.220 2.142
(C-C)ac 1.265 1.271 1.276 1.283 1.276 1.276

(C-0)„ 1.159 1.158 1.130 1.159 1.145 1.128
(C-0)eq 1.164 1.162 1.129 1.165 1.152 1.115
C«-M -C„ 174 173 173 172 171 173
Ceq-M-Ceq 110 107 99 105 104 95
Cac-M-Cac 34 33 35 33 33 35
Cax'M-C^ 92 92 94 93 93 93
C*-M -Cac 87 87 87 86 86 87
Ceq-M-Cac 108 110 113 111 111 115

a Bond lengths in A . and angles in degrees. b Values correspond to the crystal structures of 
the related Ru(CO)4[C2(CF3)2] and Os(CO)4[G,(CF3)2] species.18
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observed experimentally. The only bond angle which is markedly different from its 
experimental value is the C^-M-C^ angle, perhaps due to the different steric and electronic 
demands of the model alkyne ligand and those of the actual complex. Again the overall 
agreement with experiment appears to be slightly better with the B3LYP functional than 
with the BLYP functional.

B. M (CO )3(C 2H 2)

As in the metal pentacarbonyls, CO dissociation may occur from either an axial or 
equatorial position in the parent M(CO)4(C2H2) complex. The axial CO dissociation 
products, optimized under Cs symmetry constraints, were found to be more stable by 10-20 
kcal/mol than the equatorial CO dissociation products. Harmonic vibrational analysis 
characterized all of the M(CO)3(C2H2) axial CO dissociation products as stable 
intermediates. This agrees with the experimental kinetics study of Takats and Jordan16, 
which showed that the rate determining step for the CO substitution reactions in the 
M(CO)4[C,(CF3)2] complexes was the dissociative loss of CO.

Loss of an axial carbonyl ligand results in the equatorial CO and acetylene ligands 
bending downwards out of plane towards the vacant axial site resulting in a distorted 
square-pyramidal type structure, as illustrated in Figure 5.3 for the Ru congener. The 
BLYP/BS 1 structural parameters are summarized in Table 5.4, along with the B3LYP/BS1 
values. Although there are no experimental structural data for these particular unsaturated 
alkyne tricarbonyl complexes, the crystal structures of the related
Fe(CO)2(P(C6Hu)3)[C2(CF3)2] and Os(CO)(P('Pr)3)2[C2Ph2] complexes exhibit a similar 
distorted square-pyramidal geometry and their relevant structural parameters are given in 
Table 5.4.70’71 The deviation between the experimental and calculated M-C distances is 
less than 0.05 A, while that for the C-C distance of the alkyne ligand is less than 0.02 A. 
The differences between the model complex and the experimental ones are too large to 
warrant any direct comparison of most of the angles. However, the computed Cac-M-Cac 
angle is within 1° of that found experimentally for both complexes. Not surprisingly, the 
largest differences are for the bend-back angle of the alkyne ligand, computed to be much 
smaller for acetylene than found experimentally, reflecting the varying steric, electronic, 
and environmental effects of the different alkynes.

A comparison of the optimized geometries of the unsaturated M(CO)3(C2H2) 
complexes with those of their parent molecules reveals the structural changes that occur 
upon dissociation of the axial carbonyl: contraction of the remaining M-C^ bond and of the 
M-Cac bonds, coupled with an elongation of the C-C bond of the acetylene ligand. There is
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Table 5.4:Selected Geometric Parameters1 of MtCO^CQHj) (Cs).

Parameter Fe Ru

BLYP

Os

BLYP E xp t.b BLYP B3LYP E xpt.0

M-C„ 1.778 1.900 1.905 1.896
M-Ceq 1.824 1.769 1.989 1.965 1.957 1.817
M-Cac 1.904 1.868 2.072 2.050 2.031 2.035
(C-C)ac 1.316 1.294 1.317 1.335 1.329 1.318

S01u

1.166 1.168 1.170 1.156
(C-0)eq 1.164 1.149 1.163 1.166 1.152 1.181
Ceq-M-Ceq 107 103 106 103 103
Cac-M-Cac 40 41 37 38 38 38

93 91 91 91 91
118 121 123 122
100 103 103 103 103

a Bond lengths in A and angles in degrees. b Values taken from the crystal structure of 
Fe(CO)2(P(C6Hu)3)[ri2-C2(CF3)2].70 The phoshphine occupies the axial position. The 
value for the angle actually corresponds to the P-M-C^ angle. c Values taken
from the crytsal structure of Os(CO)(P(‘Pr)3)2[Ti2-C2Ph2].71 The lone CO ligand occupies 
an equatorial position.
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little change in the M-C^ and C-O bond lengths upon CO loss. Hence, based on these 
structural changes it would appear that dissociation of the axial CO from the alkyne 
complexes increases the amount of bonding between the acetylene ligand and the metal, 
coupled with a decrease in the C-C bond order of the acetylene ligand. The structural data 
support the rationalization, proposed by Takats and Jordan16, for the increased CO lability 
of the alkyne complexes due to stabilization of the unsaturated transition state via an 
increased donation from the alkyne to the metal. Furthermore, the structural changes are 
consistent with an increased bonding character between the metal and the remaining axial 
CO. When compared to the BLYP optimized structures, the B3LYP functional predicts 
changes in the geometry of the unsaturated M(CO)3(C2H2) compound similar to those 
discussed above for the saturated alkyne complexes.

5.3.3 Carbonyl Bond Dissociation Energies

The first carbonyl bond dissociation energies (CO BDE) of the d8 M(CO)5 and 
M(CO)4(C2H2) species (where M = Fe, Ru, Os) are summarized in Table 5.5, along with 
the results of previous theoretical and experimental studies. The CO BDEs were calculated 
from the difference in total energies of the parent complex and the dissociation products at 
their respective optimized geometries. The BLYP/BS 1 geometries were used throughout. 
The validity of using the BLYP/BS 1 geometries as representative geometries for the other 
functionals was tested by optimizing the reactant and CO dissociation product of Ru(CO)s 
and Os(CO)4(C2H2) with the B3LYP functional. As shown in Table 5.5, the 
B3LYP/BS1//B3LYP/BS1 CO BDE values for Ru(CO)5 and Os(CO)4(C2H2) are 25.0 and 
15.2 kcal/mol respectively, and they are essentially identical to the values obtained using 
the BLYP/BS 1 geometries (B3LYP/BS1//BLYP/BS1), 25.2 and 15.0 kcal/mol. Hence, 
the errors introduced by not re-optimizing the geometries with each functional tend to 
cancel out when the CO BDE is computed.

All of the DFT calculations correctly predict a reduction in the first CO BDE values 
of the alkyne-substituted species relative to their respective parent carbonyl complex, by 
about 6-20 kcal/mol depending on the method and the metal. All of the DFT methods also 
predict the reduction in the CO BDE of the Ru alkynes to be the smallest among the metals 
of the triad (about 6-9 kcal/mol) while that for the Fe and Os alkynes is significantly larger 
(about 15-20 kcal/mol). These results are in accord with the kinetics studies which showed 
that the alkyne complexes had smaller AH4" values than the corresponding pentacarbonyls 
and that the increase in reactivity of the alkynes was spectacular for Fe, good for Os, and 
modest for Ru.16
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Table 5.5: First Carbonyl Bond Dissociation Energies (in kcal/mol) of M(CO)s and 
M(CO)4(C2H2).

M (C O )5 M (C O )4(C ,H 2)

M ethod Fe Ru Os F e Ru Os

Sa «I*b Sc r£d

P resent W ork
B L Y P 37.3 33.6 24.2 28.7 12.1 30.7 18.0 14.5

(34.5) (30.3) (22.4) (26.9) (10.5) (16.5) (13.1)
BP86f 46.1 42.6 31.6 37.0 17.8 22.6 19.7
B3LYPf 38.2 26.6 25.2 32.3 11.3 19.1 15.0

(25.0) (15.2)
B3PW91f 44.2 31.7 30.0 38.0 14.8 21.7 18.4
RHF 27.9 10.2 6.0

Previous W ork
BP86S 45.7 43.9 33.0 34.7
SVWNh 64 71
BVWNh 30 32
BLYPh 38 41
CISD' 35.7

(42.8)
c c s d c d 1' 46.5 30.9 42.4
MCPFk 39 23.9

Expt. 41.5 55 27.6 31.9 21.0 25.0 23.8
± 3.0' ±  l l m ± 0.4" ±  0.6° ± 0.5q ± 0.6q ± 0.2q

30.6P
(±0.3)

2 Value corresponds to the dissociation pathway leading to ‘A, Fe(CO)4 (loss of an
equatorial CO). b Value corresponds to the dissociation pathway leading to 3B2 Fe(CO)4 
(loss of an equatorial CO). c Value corresponds to the dissociation pathway leading to ‘A’ 
Fe(CO)3(C2H2) (loss of an axial CO). d Value corresponds to the dissociation pathway 
leading to 3A FeC 03(C2H2) (loss of an equatorial CO). '  The values in brackets include
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zero-point energy corrections. f Values computed from single point energy calculations 
using the specified functional at the respective BLYP optimized geometries, (i.e. BP86 
denotes results from BP86/BS1//BLYP/BS1) 8 Values taken from the non-local DFT 
calculations of Ziegler et al,57 h Values taken from the DFT study of Delley et a/.58 ‘ 
Values taken from the CISD study of Veillard and co-workers.64 The value enclosed in 
brackets includes the Davidson correction. j Values taken from the CCSD(T) calculations 
of Ehlers and Frenking.59 k Values taken from the Modified Coupled Pair Functional 
(MCPF) calculations of Bauschlicher and co-workers.63 1 Value determined from a pulsed 
laser pyrolysis study in the gas-phase by Lewis et al,72 m Value determined from a laser 
photoelectron spectroscopy study in the gas-phase by Engelking and Lineberger.73 " Value 
corresponds to AH* from the solution kinetics study of Huq et al.67 0 Value corresponds 
to AH* from the solution kinetics study of Pearson et al. 16 p Value corresponds to AH* 
from the solution kinetics study of Basolo and co-workers.68 q Value corresponds to AH" 
from the kinetics study of the related species M(CO)4[C,(CF3)2].16 Recent solution 
kinetics experiments have found a AH* value of 21.8 ±  0.2 kcal/mol for Os(CO)4(C2H,)-17
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As illustrated in Table 5.5, the different DFT functionals predict a wide range of CO 
BDE values, especially for the pentacarbonyls. It should be noted that a direct comparison 
of the calculated values to the experimental ones is not entirely valid for all the systems 
studied. For instance, the experimental values listed in Table 5.5 for the Ru and Os 
analogues of both the alkyne and carbonyl complexes were taken from solution kinetics 
study, and they correspond to AH* values and not to CO BDEs. Although the experimental 
CO BDE value for the dissociation to singlet Fe(CO)4 from the gas-phase laser pyrolysis 
study of Lewis et al.72 appears to be quite reasonable, the corresponding value for 
dissociation to the triplet state, as measured by gas-phase laser photoelectron spectroscopy 
by Engelking and Lineberger73, is certainly questionable. Not only is there a huge error 
associated with it, 11 kcal/mol (20% of the value), but this value implies that the triplet state 
is less stable than the singlet state, in contrast to the earlier findings of a triplet ground state 
of Poliakoff and co-workers62. It is likely that these experiments were probing an excited 
triplet state, rather than the ground electronic state.

The dependence of the calculated CO BDE values on the metal atom is shown in 
Figure 5.4 for both the pentacarbonyls and the alkyne complexes, along with the respective 
experimental trends. From Figure 5.4, one can see that the experimental CO BDE/AH* 
trends amongst the M(CO)s species; Fe > Os > Ru, and the M(CO)4(C2R2) species;
Ru > Os > Fe are faithfully reproduced by all of the non-local DFT calculations. A 
comparison of the CO BDEs computed from the different functionals shows several 
interesting features. It would appear that based on the metal dependence of the CO BDE 
values of the M(CO)5 compounds, it is possible to group the four different functionals into 
two sets. The metal dependence predicted by the BLYP and BP86 functionals mirror one 
another, and therefore form one set, while the B3LYP and B3PW91 form the other. On 
the other hand, the CO BDEs predicted by the BLYP/BS 1 //BLYP/BS 1 and 
B3LYP/BS1//BLYP/BS1 calculations, for both the pentacarbonyls and alkyne complexes, 
are always smaller in magnitude than those predicted by the BP86/BS1//BLYP/BS1 and 
B3PW91/BS1//BLYP/BS1 methods. Hence, it would appear that the exchange functional, 
Becke vs. Becke3, is crucial in determining the magnitude of the differences between the 
CO BDEs of the different metals, while the correlation functional affects the magnitudes of 
each individual CO BDE.

The compilation of CO BDE values in Table 5.5 allows for a comparison of a 
variety of different DFT and correlated wavefunction theory methods. However, since 
different basis sets were used in these studies, the differing values reflect more than mere 
differences in the methods themselves. Ziegler’s BP86 results57 show, not surprisingly, 
good agreement with the BP86 values. The CCSD(T)//MP2 computed values of Frenking
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Figure 5.4: First CO bond dissociation energies of M(CO)5 and MCCO^CCdH^). The 
values correspond to dissociation leading to the most stable products. The filled squares 
correspond to the BLYP/BS 1//BLYP/BS1 values, the filled triangles correspond to the 
BP86/BS1//BLYP/BS1 values, the filled pentagons correspond to the 
B3LYP/BS1//BLYP/BS1 values, the filled hexagons correspond to the 
B3PW91/BS1//BLYP/BS1 values, and the crosses correspond to the RHF/BS1//RHF/BS1 
values. The experimental values are represented by the open triangle symbols.
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et al.59, are larger than the BLYP and B3LYP values, but are in accord with the BP86 and 
B3PW91 values. Veillard et al.64 predict a value of 35.7 kcal/mol for the CO BDE of 
Fe(CO)5 to the triplet state at the CISD level of theory, while Bauschlicher and co
workers63 estimate it to be 23.9 kcal/mol, the lowest estimate. As discussed previously, 
Fe(CO)4 is known to possess a triplet electronic ground state with a fairly low-lying excited 
singlet state; the singlet-triplet energy gaps for Fe(CO)4 are summarized in Table 5.6. The 
BLYP and BP86 functionals predict a singlet-triplet splitting of the same magnitude but 
smaller than that predicted by the B3LYP and B3PW91 functionals. This suggests that the 
Becke3 functional has a tendency to destabilize the excited singlet state more than Becke’s 
original gradient-corrected functional. Interestingly, Delley et a/.58, using a variety of local 
and non-local density functionals, incorrecdy predict the singlet state to be lower in energy 
than the triplet state, by 2-7 kcal/mol. Bauschlicher et al.63 predict a fairly large Fe(CO)4 
singlet-triplet splitting of 15.1 kcal/mol, slightly larger but of the same order of magnitude 
as that from the present B3LYP and B3PW91 calculations. In the case of Ru(CO)4 and 
Os(CO)4, the current BLYP calculations predict the singlet state to be lower than the triplet 
state by 16 and 18 kcal/mol respectively. This is in agreement with the conclusions drawn 
by Bogdan and Weitz based on their transient ER spectroscopy studies.65-66

5.3.4 Reaction Profiles for CO Dissociation from M(CO)5 and 
M (C O )4(C 2H 2)

The differences between the present CO BDE values and the experimental AH* 
values are much smaller for the metal pentacarbonyls than for the alkyne-substituted 
complexes. The energy profile along the reaction coordinate for carbonyl dissociation from 
the pentacarbonyls must therefore be quite flat with the top of the barrier being nearly 
equivalent to the energy of the dissociation products, while that of the alkyne complexes 
must possess a barrier which relaxes down to the products. In order to test this, the CO 
dissociation reaction trajectories were simulated for each of the M(CO)s complexes and the 
Ru analogue of the alkyne-substituted complex via constrained geometry optimizations of 
the complexes at fixed distances between the departing CO ligand and the metal. The 
departing CO ligand was forced to dissociate along the M-C bond, thereby constraining the 
optimizations to C2v and Cs symmetry for the M(CO)5 and Ru(CO)4(C2H2) species, 
respectively. In addition, all of the CO distances were fixed.

Figure 5.5 displays the simulated CO dissociation trajectories along the spin- 
allowed singlet pathway for Ru(CO)5 and Os(CO)5. As expected, they are both flat,
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Table 5.6: Singlet-Triplet Spacings" (in kcal/mol) o f Fe(CO).,.

This W ork6 Previous Work

BLYP BP86 B3LYP B3PW91 BP86C SVW Nd BVWNd BLYP'1 M C P F

AE(T-S) -3.8 -3.4 -11.6 -12.5 -1.7 7 2 3 -15.1

a Computed as AE(T-S) = E(T) - E(S). If AE(T-S) < 0, the triplet state is more stable, if AE(T-S) > 0, the singlet state is more 

stable. b Values taken from the present study. The values of <S2> were in the range 2.02 - 2.05. 0 Value taken from the non

local DFT study of Ziegler et al.57 d Value taken from the DFT study of Delley and co-workers.58 e Value taken from the 

Modified Coupled Pair Functional (MCPF) calculations of Bauschlicher and co-workers.63
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Figure 5.5: CO dissociation trajectories for Ru(CO)s and Os(CO)s. The spin-allowed 
singlet pathways are shown. The energy is relative to that of the M(CO)5 reactant complex. 
The reaction coordinate corresponds to the distance between the metal and the exiting CO 
ligand. The isolated point around 9 A corresponds to the energy of the isolated dissociation 
products: *A, M(CO)4 + ‘S+ CO.
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featureless trajectories with no apparent energy difference between the barrier maximum 
and the dissociation products. The difference in the total energies of the isolated products 
and the reaction trajectories for large values of the reaction coordinate may be attributed to 
the optimization (fixed C-O distances) and symmetry (C,v) restrictions imposed. The 
maximum energy of the Ru(CO)s trajectory occurs when the departing CO is roughly 4.8 A 
from the metal, while in Os(CO)5 it occurs around 3.7 A. Although this is a very rough 
estimate of the position of the transition state, the earlier transition state for Os(CO)5 is in 
agreement with the conclusions drawn by Basolo and co-workers68, based on solution 
kinetics measurements. Initial characterization of these maximum energy points, via the 
energy hessian, revealed four imaginary frequencies for the dissociating Ru(CO)5 system, 
and three imaginary frequencies for the Os(CO)5 system. In both cases, all the imaginary 
frequencies were smaller than 50 cm'1. Due to the flat nature of the potential energy 
surfaces near the barrier maximum, no further attempt was made to locate the true transition 
state. However, it is this flatness of the reaction trajectories which validates a comparison 
of the computed CO BDEs to experimental AH* values. The reaction trajectory for CO 
dissociation from Fe(CO)5, shown in Figure 5.6, is more complicated due to the triplet 
ground electronic state of the unsaturated Fe(CO)4 product complex. Hence, it was 
necessary to simulate not only the dissociation of CO from Fe(CO)s to singlet Fe(CO)4, as 
done in the Ru and Os trajectories, but also the trajectory leading to 3B2 Fe(CO)4. This was 
accomplished by optimizing the geometry of the 3B2 Fe(CO)4 + ‘Z+ CO system as the CO 
ligand was gradually brought closer and closer to the 3B2 Fe(CO)4 fragment. The reaction 
trajectory along the ‘A, dissociation pathway is flat and featureless with no relaxation from 
the barrier to the products, as seen in the Ru and Os trajectories. The ‘A, pathway is 
predicted to be the lowest-energy reaction trajectory until the dissociating CO ligand 
becomes separated from the metal by about 3.5-4.0 A at which point the system would 
undergo a crossing to the 3B2 state, and continue to the lowest energy dissociation 
products, 3B2 Fe(CO)4 and 'Z+ CO. The reaction trajectory for a high lying 3A, excited 
state is also shown in Figure 5.6, however, it is most likely thermally inaccessible.

The simulated reaction trajectory for the dissociation of an axial carbonyl ligand 
from Ru(C0 4(C2H2) is displayed in Figure 5.7. Unlike the M(CO)5 carbonyl dissociation 
trajectories, the energy profile for this trajectory increases to a maximum and then relaxes 
down to the products. The extent of this relaxation is quite modest, about 2-4 kcal/mol.
The maximum occurs when the departing CO ligand is about 3.0-3.5 A from the metal. An 
estimated 21 kcal/mol barrier may be obtained from the plot, quite close to the value of 
25.0 kcal/mol obtained from kinetics measurements on the related Ru hexafluorobut-2-yne
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Figure 5.6: CO dissociation trajectories for Fe(CO)5. The energy is relative to that of the 
M(CO)5 reactant complex. The reaction coordinate corresponds to the distance between the 
metal and the exiting CO ligand. The isolated points around 9 A correspond to the energy 
of the isolated dissociation products: 'A, Fe(CO)4 + ‘Z+ CO and 3B2 Fe(CO)4 + IX+ CO.
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Figure 5.7: CO dissociation trajectory for Ru(CO)4(C,HE2). The energy is relative to that of 
the M(CO)4(C2H2) reactant complex. The reaction coordinate corresponds to the distance 
between the metal and the exiting CO ligand. The isolated point around 24 A corresponds 
to the energy of the isolated dissociation products: 'A ' Ru(CO)3(G,H2) + ‘ST CO.
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complex. The difference between the limiting value of the reaction trajectory and the 
energy of the isolated products can again be attributed to the symmetry (Cs) and structural 
constraints (fixed C-O distances) imposed during optimization. The calculations predict an 
earlier transition state and thus one of less bond-breaking character for the alkyne- 
substituted complex than for the pentacarbonyl, at least for the Ru species.

In summary, the computed CO dissociation reaction trajectories along the spin- 
allowed singlet pathways for all three of the M(CO)s complexes are predicted to be flat, 
with no apparent stabilization of the unsaturated M(CO)4 dissociation product with respect 
to the transition state, while in Ru(CO)4(C2H2) the unsaturated dissociation product is 
predicted to be stabilized by a few kcal/mol with respect to the transition state. As 
suggested by Takats and Jordan16, the alkyne ligand must be playing an active role in the 
stabilization of the unsaturated M(CO)30y-alkyne) intermediate. The origin of this 
stabilization is addressed in the following section.

5.3.5 T he Role o f the Acetylene Ligand

In order to probe the origin of the reduced CO BDE values of the alkyne complexes 
with respect to the parent pentacarbonyls, it was necessary to assess the role of the 
acetylene ligand in both the reactant complex, M(CO)4(C2H2), and the CO dissociated 
M(CO)3(C2H2) compound. Metal-olefin bonding is commonly described in terms of the 
well-known Dewar-Chatt-Duncanson model74 of synergistic alkene —> M G-bonding (i.e. 
donation from the occupied n  orbital of the alkene to an empty metal orbital of proper 
symmetry), and M —> alkene 7t-backdonation (i.e. donation from an occupied metal orbital 
of 7t symmetry into the empty n* alkene orbital). It is easy to extrapolate this model to the 
bonding between an alkyne and a metal, since the only difference is due to the presence of a 
second occupied k orbital which may donate to the metal, and a second 7t* orbital available 
to accept electron density from the metal. In the formal electron-counting scheme alkynes 
may be treated as a two-electron donor when only one of the K orbitals is involved in 
bonding to the metal and as a four-electron donor when both of its 7t orbitals actively 
donate to the metal atom. The reactant complex, M(CO)4(C2H2), is a saturated 18-electron 
species, with the acetylene ligand contributing two electrons. Removal of a carbonyl leads 
to M(CO)3(C2H2), which is formally an unsaturated 16-electron complex, if acetylene 
remains a two-electron donor. On the other hand, counting acetylene as a four-electron 
donor gives the complex a saturated 18-electron count. It is this variable electron-donor 
ability of the acetylene which has been proposed by Takats and Jordan to account for the 
observed increased reactivity of the alkyne substituted species with respect to the parent
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pentacarbonyl.16 The alkyne may act as a four-electron donor in order to stabilize the 
otherwise unsaturated CO dissociation transition state/product, thereby leading to an 
increased reactivity, and a decreased CO BDE. This stabilization is not available in the 
pentacarbonyl, since the CO ligand does not have a second low-lying orbital to participate 
in donation to the metal. In the present work, the charge decomposition analysis (CDA) 
scheme of Frenking et al., along with Bader’s atoms-in-molecules (AIM) analysis o f the 
electron density topology were used in order to probe the stabilization of M(CO)3(C2H2).

5 .3.5.1 CDA R esults

A. B ackground

Frenking’s CDA scheme attempts to quantify donor-acceptor molecular interactions 
in terms of common Dewar-Chatt-Duncanson model concepts (i.e. donation, backdonation, 
and repulsion). CDA gives quantitative information regarding the change in the electronic 
structure of a complex, AB, due to the interactions between the two fragments A and B, 
based solely on orbital interactions. It is a linear combination of fragment orbitals- 
molecular orbital method. The molecular orbitals of the complex AB in the original atomic 
orbital basis (atom-centred basis functions) are transformed to the fragment orbital basis 
set. The transformation matrix contains all of the information which connects the electronic 
structures of the two fragments, A and B, with that of the complex AB. The interpretation 
of this transformation matrix is simplified in the CDA scheme by partitioning it into terms 
common to the Dewar-Chatt-Duncanson model: donation (qd), backdonation (qb), and 
repulsive polarization (qr) between the two fragments. One fragment is defined to be the 
electron donor fragment, A, (for example a ligand) while the other fragment is the electron 
acceptor fragment, B, (for example the remaining fragment of the transition-metal 
complex). The donation term (qd) is then defined as corresponding to the interaction 
between the occupied orbitals of the donor fragment A and the unoccupied orbitals of the 
acceptor fragment B. Backdonation (qb) arises from the interaction between the occupied 
orbitals of the electron acceptor fragment B with the unoccupied orbitals of the electron 
donor fragment A. The repulsive polarization term accounts for the interaction between the 
occupied orbitals on both fragments. This partitioning is carried out for each MO of the 
complex, and summing the contributions from all of the MOs yields total amounts of 
donation, backdonation, and repulsion between the two fragments; e.g., for donation
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B. Q ualitative Aspects of Bonding

In the present study, the CDA scheme was used as a tool to characterize the nature 
of the acetylene ligand in both the reactant M(CO)4(C,H2) and CO dissociation product 
M(CO)3(C2H2). In each complex the acetylene ligand was defined as the electron donor 
fragment A, and the remaining metal-carbonyl fragment defined as the electron acceptor B. 
Table 5.7 summarizes the total amounts of donation, qd ( C ^  —» M), backdonation, qb 

(C2H2 <— M) and repulsion, qr (CjH2 M) for the Fe and Ru analogues of the reactant 
and CO dissociation product complexes, at the BLYP/BS2//BLYP/BS1 level of theory. 
Also given in Table 5.7 are the CDA results for Ru(CO)5 and its corresponding CO 
dissociation product, 'A, Ru(CO)4, in which an equatorial carbonyl ligand was defined as 
the electron donor fragment A and the remaining Ru(CO)n fragment the electron acceptor 
fragment B. As shown in Table 5.7, the loss of an equatorial CO from Ru(CO)s results in 
no significant change in the amount of CO —» M donation. There is, however, a decrease 

in the amount of CO t— M backdonation, perhaps not surprising since the electron density 
of the metal in the unsaturated CO dissociation product is expected to decrease upon CO 
dissociation. In addition there is a substantial increase in the CO <-> M repulsion upon CO 
dissociation, which may reflect the geometrical changes associated with the dissociation.

The loss of a carbonyl from Fe(CO)4(C2H2) and Ru(CO)4(C2H2) leads to an 
increase in the total amount of donation from the acetylene to the metal fragment by 0.16 
and 0.20 electrons, respectively, as seen in Table 5.7. With this increase in donation there 
is also an increase in the total amount of backdonation from the metal to the acetylene ligand 
of roughly the same magnitude, perhaps due to the presence of fewer 7t-acid CO ligands.
As intuitively expected, removal of a CO ligand results in a decrease in the repulsion 
between the acetylene ligand and the metal carbonyl fragment. These resuits appear to be 
consistent with the proposed hypothesis of a stabilization of the unsaturated CO 
dissociation product through an increased donation from the acetylene ligand to the metal. 
However, there is still no direct evidence for the participation of both K orbitals of the 
acetylene ligand. To gain a deeper understanding of the role of the acetylene ligand, 
especially in the unsaturated M(CO)3(C,H2) intermediate, each of the individual M-C2H2 
MO interactions was analyzed with the CDA scheme. As stated previously, C2H2 —» M 

bonding can take place through both K orbitals of the acetylene ligand: the 7tu orbital which 
lies in the equatorial plane and the K± orbital which is perpendicular to the equatorial plane. 

The corresponding antibonding orbitals, 7C*M and n*x, may accept electron density from the
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Table 5.7: Summary of Charge Decomposition Analysis.®* b*c

F e(C O )4(C 2H 2) F e (C O )3(C 2H 2)

qd 0.56 0.72

qb 0.35 0.51

qr -0.37 -0.25

Ru(CO)5 Ru(CO)4 R u (C O )4(C 2H 2) R u (C O )3(C 2H 2)

qd 0.30 0.30 0.42 0.62

qb 0.33 0.29 0.37 0.55

qr -0.10 -0.18 -0.32 -0.29

® Charge Decomposition Analysis scheme of Frenking and co-workers.33 b Results shown 
are for the charge decomposition analysis of the BLYP/BS2 density. c In units of 
electrons.
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metal through backdonation. These four Dewar-Chatt-Duncanson M-C2H2 interactions, 
referred to as: 7t-crd (C2H2 —» M, 7t„), 7t-7Ud (C2H2 —> M, 7tx), K*-Kb (M —» C2H2,7t*u), and 
7t*-5b (M —> C2H2, i n  the following discussion, are shown in Figures 5.8 and 5.9 for 
the M(CO)4(C2H2) and M(CO)3(C2H2) complexes. As shown in Figure 5.9 (a)-(d) it 
would appear that the two donor and two back-donor MO interactions in M(CO)3(C2H2) are 
hybrids of the original MO interactions in the saturated species, Figure 5.8 (a)-(d). The 
contributions qdi from the two C2H2 —» M interactions to the CDA donation term, qd, and 
the contributions qbi from the two corresponding M —> C2H2 interactions to the 
backdonation term, qb, are given in Table 5.8 for both the Fe and Ru analogues of the 
saturated and unsaturated alkyne complexes. Since the same bonding picture between the 
alkyne and the metal emerges for both the Fe and Ru analogues, only the results for the Fe 
complexes will be discussed in detail. In the saturated Fe(CO)4(C2H2) complex only one of 
the K orbitals, 7t„ (i.e. 7t-CTd interaction), is actively involved in donation of electron density 
to the metal, with a qdi value of 0.25 electrons. Upon removal of an axial CO, the second 
acetylene 7t orbital, tcx, becomes an active donor, and donates an equivalent amount of 
electron density to the metal as the tc,, orbital, with qdi values of 0.20 and 0.19 electrons, 
respectively. Hence, the role of the acetylene ligand changes along the CO dissociation 
pathway, going from a two-electron donor in the Fe(CO)4(C2H2) reactant complex to a 
four-electron donor and thereby stabilizing the CO dissociation product Fe(CO)3(C2H2). 
Interestingly, a similar picture of backbonding emerges from the CDA results, with only 
the 7t*u orbital accepting electron density from the metal in the reactant complex, while both 
n* orbitals actively accept electron density in the CO dissociated M(CO)3(C,H,) complex.
In summary, the CDA analysis of the individual Dewar-Chatt-Duncanson M-C2H2 
interactions provides semi-quantitative evidence for the hypothesis that it is the participation 
of both K orbitals of the alkyne which stabilizes the CO dissociated intermediate, thereby 
leading to reduced CO BDE values with respect to the parent pentacarbonyls. The CDA 
findings are in full agreement with the structural changes which occur upon CO 
dissociation.

5.3.5.2 AIM Results

A. Background

Bader’s atoms-in-molecules (AIM) analysis of the electron density topology was 
used as a further test of this transition state/product stabilization hypothesis. Using AIM 
theory the values of the electron density, p(r), and the Laplacian of the electron density,
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Figure 5.8: The four Dewar-Chatt-Duncanson type metal-acetylene MO interactions of the 
saturated M(CO)4(C2H2) complex: (a) C2H2 —> M 7tn-G donation, (b) C2H2 —> M kx-k 
donation, (c) C2H2 <— M 7t*„-7i backdonation, (d) C2H2 <— M 7t*x-S backdonation.
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Figure 5.9: The four Dewar-Chatt-Duncanson type metal-acetylene MO interactions of the 
unsaturated M(CO)3(C2H2) dissociation product, (a) C2H2 —> M 7tirtf donation, (b)
C2H2 —> M 7tj_-7t donation, (c) C2H2 M 7t*r 7t backdonation, (d) C2H2 <— M 7t*j_-5 
backdonation.
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Table 5.8: Charge Decomposition Analysis1 b-c of Metal-Acetylene Bonding in 
M(CO)4(C2H2) and M(CO)3(C2H2).

F e fC O U C .H J Fe(C O )3(C 2H 2)d R u (C O )4(C 2H 2) R u(C O )3(C 2H 2)d

Qdi*
i =  7T„-<Jd

0.25 0.19 0.17 0.11

Qdi*
1 —

0.02 0.20 0.01 0.14

Qbi*

1 = 7C V *b

0.35 0.20 0.36 0.17

Qbi* 

i =  tc’V S , ,

0.00 0.27 0 .0 1 0.33

a Charge Decomposition Analysis scheme of Frenking and co-workers.33 b Results shown 
are for the charge decomposition analysis of the BLYP/BS2 density. c In units of 
electrons. d The orbitals appear to be hybrids in the MCCO^CQH^) systems.
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V2p(r), at the critical points of the electron density topology (i.e. points where the gradient 
of the electron density, Vp(r), is zero) yield information regarding the bonding between the 
atoms in a molecule. Bader’s book37 provides a detailed discussion of the theory and its 
practical applications and shows that: (1) there exists a correlation between the value of p(r) 
at the (3,-1) bond critical points (BCP) of the topology, denoted as p(rc), and the strength 
of that particular bond; (2) negative values of V2p(r) are indicative of a build-up of electron 
density, while positive values indicate an area of electron depletion; (3) relatively small, 
positive values of V2p(r) are typical of closed shell interactions, while values which are 
large and negative are typical of shared, covalent interactions.

B. Analysis of the Electron Density Topology of M(CO)4(C2H2) and 
M (C O )3(C2H 2)

AIM analysis was employed to locate all of the critical points (rc) of the electron 
density in the saturated M(CO)4(C2H2) and the formally unsaturated CO dissociated 
M(CO)3(C2H2) complexes as well as the parent pentacarbonyls and their respective CO 
dissociated intermediates, at the BLYP/BS2//BLYP/BS1 level of theory. The p(rc) and 
V2p(rc) values were then used to gauge the changes in the electron density and the metal- 
ligand bonding which occur upon CO dissociation. The properties of the bond critical 
points are summarized in Table 5.9. The following discussion will focus on the Fe 
analogues, however the same discussion is applicable to the heavier Ru congeners.

In the iron carbonyl complexes, Fe(CO)5 and (‘A,) Fe(CO)4, (3,-1) bond critical 
points were located along each of the Fe-C and C-0 connections. At each of these BCPs, 
the values of the Laplacian are indicative of closed-shell type interactions. The dissociation 
of an equatorial CO in Fe(CO)5 causes only minor changes in the properties (< 0.01 
electron) of the electron density topology. For the alkyne-substituted complexes the 
electron density topology appears to be more complicated, since not only are (3,-1) BCPs 
located along each of the Fe-C, C-0 and C-C connections, but also a (3,+l) ring critical 
point (RCP) was located at the centroid of the metal-acetylene cyclopropene-like ring. As 
in the parent carbonyls, the V2p(rc) values at the Fe-C and C-O BCPs are indicative of 
closed-shell interactions. On the other hand, V2p(rc) values at the C-C and C-H BCPs are 
negative and relatively large in magnitude and are typical of shared, covalent interactions. 
CO dissociation from Fe(CO)4(C2H2) results in an increase in the value of p(rc) at the Fe- 
Cax BCP, while that for the Fe-Ccq BCP remains unchanged. The changes in the values of
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Table 5.9: Topological Properties at the Bond Critical Points3 of M(CO)s and 
M(CO)4(C2H2) and their CO dissociated products.b-c

Bond P(rc) V2p ( rc) P(rc) V 2p ( r c)

Fe(CO),5 Fe(CO)4(lAI)
Fe-C„ 0.125 0.621 0.133 0.584
Fe-Ceq 0.132 0.567 0.137 0.589
^ax'^ax 0.437 0.518 0.432 0.510

Q : q " O e q 0.433 0.503 0.430 0.510
Fe(CO)4(C2H2) Fe(CO)3(C2H2)

Fe-C , 0.124 0.612 0.146 0.650
Fe-Ceq 0.134 0.601 0.133 0.607
Fe-Cac 0.076 0.187 0.122 0.358

0.437 0.514 0.429 0.467
Q q ' ^ e q 0.432 0.479 0.432 0.487

Q i c “ Q » e 0.366 -1.108 0.341 -1.008
Cac-Fe-Cacd 0.075 0.115

Ru(CO) s Ru(CO) 4

Ru-Cax 0.117 0.460 0.122 0.444
R^-ceq 0.119 0.425 0.128 0.440

Q i x " Q i x 0.439 0.545 0.436 0.536

^ - 'e q '^ e q 0.434 0.523 0.432 0.506
Ru(CO)4(C2H2) Ru(CO)3(C2H2)

Ru-C^ 0.118 0.459 0.150 0.452
R“-Ceq 0.120 0.445 0.123 0.448
Ru-Cac 0.075 0.216 0.110 0.305

C a x - ° a x 0.439 0.540 0.427 0.463

Q : q - O e q 0.434 0.509 0.433 0.508
Cac-Cac 0.364 -1.105 0.342 -1.024
Cac-Ru-Cacd 0.073 0.103

3 Electron density topology analysis via Bader's Atoms in Molecules theory.37 b All of the 
data given correspond to the topological properties of (3,-1) bond critical points unless 
otherwise stated. c In atomic units. d Corresponds to the topological properties o f the 
(3,+l) ring critical point between the C2H2 ligand and the metal atom.
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p ( r c)  at the Fe-Cac and Cac-Cac BCPs are consistent with the structural and CDA findings of 
an increase in the amount of donation from the acetylene ligand to the metal: p ( r c)  at the Fe- 
Cac BCP is increased by 0.03 electrons, while that for the Cac-Cac BCP of the acetylene 
ligand is decreased by the same amount. Even the increase in the p ( r c)  value at the ring 
critical point upon CO dissociation is consistent with an increased amount of bonding 
between the acetylene ligand and the metal. Interestingly, the AIM analysis shows not only 
the increased C-,H2 —» M donation upon dissociation of CO, but it also indicates that this 
additional electron density appears to be funneled into the bond between the metal atom and 
the remaining axial carbonyl. In summary, the AIM results are in full agreement with the 
structural data and CDA findings, and fully support the rationalization of the decrease in 
CO BDE values of the alkyne substituted species.

5.3.6 Dependence of the CO BDEs on the Metal Atom

One last item which deserves comment is the marked metal dependence of both the 
calculated CO BDEs and the experimentally measured AH* values of the M(CO)s and 
MfCO^CCjKy systems. The different spin multiplicities of the M(CO)4 ground electronic 
states make it somewhat difficult to probe the origins of the metal dependence of the parent 
carbonyls. This is not the case for the alkyne substituted complexes, as CO dissociation 
leads to singlet ground states for each metal of the triad. Since the calculated CO BDE 
values were derived from the total energy difference between the reactant and CO 
dissociation product complexes, the metal dependence must manifest itself as either a 
ground-state destabilization effect in the reactant complex or as a stabilization effect in the 
CO dissociation product. The CDA analysis indicates that it is the participation of the 7tx 
orbital of the alkyne ligand in the 7tx - 7td interaction which stabilizes the formally 
unsaturated M(CO)3(C2H2) complex, thereby lowering the CO BDE. The CO BDE 
dependence on the metal may simply reflect a variation in the amount of 7tx C2H2 —> M 
donation. Hence, the MO energy gap for the interaction between the occupied 7tx orbital of 
the C2H2 ligand and the corresponding unoccupied orbital of correct k symmetry of the 
M(CO)3 metal fragment, was computed to give an indirect measure of the amount of 
C2H2 —» M donation. To a first approximation, the smaller the fragment MO energy gap 
the stronger will be the bonding between the two fragments. Pictorial representations of 
the occupied 7tx orbital of the acetylene ligand and the unoccupied M(CO)3 metal fragment 
orbital of correct K symmetry for overlap are available in Appendix C. The geometries of 
the two fragments were kept at their orientations in the M(CO)3(C2H2) complex. The metal 
dependence of the 7tx C2H2 —> M energy gap in MCCO^CQH,), calculated at the
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BLYP/BS1//BLYP/BS1 level of theory, is reported at the top of Figure 5.10. The trend in 
the K± C y i2 —> M energy gaps down the triad does indeed match that predicted for the CO 
BDE values and the experimental AH* trends, with Fe predicted to have the smallest gap, 
Ru the largest and Os an intermediate value. However, upon changing the form of the 
density functional to B3LYP there is not only an increase in the magnitudes of the MO 
energy gaps for each metal, but also a significant change in the metal dependence of them. 
The C2H, —» M energy gap for Fe is increased relative to the other two congeners, and it 
is predicted to be the largest of the triad, followed by Ru and Os. Changing from DFT to 
RHF, yet still employing the same basis set, results in a further increase in the magnitudes 
of the Kj_ C,H2 —> M energy gaps for each of the metals as well as a further increase in the 
gap for Fe relative to that of Ru and Os. It appears that as more Hartree-Fock exchange is 
incorporated, in going from BLYP to B3LYP to RHF, the magnitude of the %  C2H2 —> M 
energy gap for each of the metals is increased and that for iron is increased relative to the 
heavier congeners. Hence, the metal dependence of the 7tx MO energy gap varies as the 
method is changed. These results raise doubts regarding the utility of rationalizing 
chemical phenomena in terms of simple MO energy gap arguments.

5.4 Conclusions

A variety of non-local density functional theory calculations predict a decrease of 
the first carbonyl dissociation energy of the alkyne-substituted complexes M(CO)4(C2H2) 
of the iron triad with respect to the parent pentacarbonyl complexes, in full agreement with 
the results of a recent experimental solution kinetics study. The BLYP optimized 
geometries of the parent complexes, M(CO)s and MfCO^CQH^, and the CO dissociated 
products show good agreement with the available experimental data and with the results of 
previous theoretical studies. Carbonyl dissociation from Fe(CO)5 is predicted to be 
somewhat complicated by the triplet ground state of the dissociation product, however the 
CO dissociation products of the Ru and Os pentacarbonyls, as well as that of all of the 
alkyne substituted complexes, are predicted to have singlet ground states.

With the CDA partitioning scheme, it was shown that the lower CO BDEs of the 
alkyne-substituted species may be attributed to a stabilization of the formally unsaturated 
MfCO^CQH^ via an increased donation from the acetylene ligand to the metal. In the 
saturated MfCO^CCjH^ reactant complex the acetylene ligand is a two-electron donor, 
with only the tc,, orbital donating to the metal; on the other hand, in the CO dissociated
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Figure 5.10: The metal dependence of the C2H2 —» M Tt±-Kd fragment MO energy gap in 
M(CO)3(C2H2).
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product both 7t orbitals of acetylene donate electron density to the metal, thereby making 
acetylene formally a four-electron donor and stabilizing the CO dissociated intermediate. 
The results of the AIM topological analysis of the electron density of the alkyne-complexes 
are in full agreement with the CDA findings. The values of p(rc) at the M-Cac bond critical 
points increase while that at the C^-C^ bond critical point decrease upon removal of an 
axial carbonyl ligand from the Fe and Ru analogues of MCCO^CCTL). Even the increase 
of p(rc) at the M-acetylene ring critical point is consistent with an increase in the amount of 
bonding between the acetylene ligand and the metal. Furthermore, the structural changes 
predicted to occur upon CO dissociation were also in accord with the rationale of an 
increased donation from the alkyne.

The DFT calculations of the first CO BDEs consistentiy predict an Fe > Os > Ru 
metal dependence for the parent pentacarbonyls, and the reverse trend, Fe < Os < Ru, for 
the alkyne-substituted complexes, in accord with the trends observed experimentally. The 
different ground states of the M(CO)4 dissociation products complicated analysis of the 
metal dependence in the parent pentacarbonyls. Simple MO energy gaps for the critical 
C2H2 —> M 7t-7td interaction, accredited with stabilization of the unsaturated M(CO)3(C2H2) 
dissociation product, were computed for each metal of the triad. A correlation was found 
between the 7tx MO energy gaps and the computed CO BDE values when the BLYP density 
functional was employed. Iron was found to have the smallest MO energy gap, followed 
by Os and Ru. Upon increasing the amount of HF exchange from BLYP to B3LYP to 
RHF, the 7tx MO energy gap for Fe increased with respect to Ru and Os, such that it 
became the largest of the series, in disagreement with the trend predicted for the CO BDEs.
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The chapters presented in this thesis range from a benchmarking study to the 
development of new MCP valence basis sets, to two applied organometallic chemistry 
studies. Although each chapter is a separate entity, independent of the remaining chapters, 
there is a common theme of critical evaluation of the computational methods which 
permeates the entire thesis. In all of the chapters of the thesis, a multitude of methods were 
employed and compared against one another. One must always thoroughly test different 
computational chemistry methodologies in order to determine which will work best for a 
particular system of interest. Researchers must be first confident in the numerical results 
before any confidence can be placed in the conclusions and rationalizations which are 
drawn from them.

A number of important conclusions can be drawn from the work presented here. 
The model core potential (MCP) formalism was found to be a very effective approach for 
modeling simple transition metal complexes, provided that the penultimate (rc-l) p atomic 
shell of the metal atom is included in the valence space and treated explicitly in the 
calculation. The results presented do not show any significant advantage in using the 
model core potential formalism over the effective core potentials for computing molecular 
structures, despite the retention of some or all of the proper nodal structure for the valence 
atomic shells. More compuationally efficient MCP valence basis sets, incorporating L-shell 
structure were successfully derived for the elements of Groups 13 to 18. Use of the new 
MCP L-shell basis sets in atomic and molecular test calculations showed them to yield 
results which were not siginificantly different from the conventional MCP basis sets. 
Although density functional theory (DFT) is the current method of choice for modeling 
small to medium sized transition metal complexes1’2, the results of these DFT calculations 
are strictiy tied to the choice of the approximate density functional, as illustrated in the two 
applied studies presented here. For example, the carbonyl bond dissociation energy for 
Os(CO)s computed at the DFT level was found to be between 29 and 38 kcal/mol, 
depending on the functional employed. It is actually quite astounding how much molecular 
properties computed with density functionals can vary, and certainly enforces the need to 
use a variety of them in order to gain some confidence in the values obtained. The 
PM3(tm) semiempirical method3 proved to be a useful economical alternative to DFT for 
predicting molecular structures of transition metal complexes. However, its utility in 
computing accurate reaction barriers may be suspect. As found by B0rve and co-workers4, 
a much more suitable approach to computing reaction energy barriers involves computing 
the energy of the species using the more accurate DFT method, at the respective PM3(tm) 
geometries. This hybrid DFT//PM3(tm) approach takes advantage of the accuracy of the
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PM3(tm) geometries while employing the more rigorous DFT method for the less 
expensive single point energy calculations.

From a personal point of view one of the most interesting aspects of the current 
research was the investigation into the nature of the acetylene-metal interaction in the 
saturated and unsaturated alkyne complexes. The transformation of numbers into useful 
chemical concepts which can be understood by a broad range of chemists of varying 
backgrounds, although not an easy proposition, is where I believe computational chemistry 
makes its most valued contribution to the chemistry community.

6.1 Further Work

The MCP benchmarking study presented here is still in its infancy and much more 
work is needed to be fully confident in the performance of the MCP formalism for 
modeling transition metal compounds. The current study focused on a number of small 
molecules, some of which are commonly found as ligands in metal complexes, as well as 
the small MX4 halogen complexes of the Group 4 metals (Ti, Zr, and Hf). A much larger 
study encompassing a wider array of metal complexes, containing metals from all of the 
transition series, with a wide assortment of ligands, coordination geometries, and oxidation 
states would be extremely useful. A number of previous studies5-9 have tested the 
reliability of the MCP formalism in studies involving relatively small transition metal 
complexes, and it would be interesting to extend the studies to larger systems. In order to 
carry out such a detailed study, analytical gradients and hessians for the MCPs must be 
implemented into the GAMESS program10’1 since optimization of geometric structures 
using the non-gradient Powell method12 would be too cumbersome. Along with 
calculations carried out at the Hartree-Fock and post-Hartree-Fock level, calculations 
should also be carried out at the DFT level, employing a wide assortment of functionals, to 
gauge the performance of the MCPs in DFT calculations. In addition, it would be very 
interesting to see how well the newly developed MCP L-shell basis sets performed in these 
calculations, alongside the conventional MCP basis sets. One of the main problems 
associated with a study like this is the small amount of experimental data available for 
comparison purposes.

Another area which would be interesting to investigate further, which arose from 
the carbonyl scrambling work, would be a comparative study of reaction energy barriers 
computed using the PM3(tm)//PM3(tm), DFT//PM3(tm), and DFT//DFT approaches.
Given the sparse number of studies which have been devoted to evaluating the PM3(tm)
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semiempirical method4’13*15, a systematic study of this nature would be beneficial in 
understanding the strengths and shortcomings of the method.

The results of Chapter 5 pertain to only the first step of the phosphine substitution 
reactions of the alkyne complexes of the Group 8 metals, the dissociative loss of CO from 
M(CO)4(C2H2). However, kinetics data are available for the remaining steps of the 
substitution reactions,16’17 the successive dissociative loss of CO and the association of a 
phosphine ligand. Hence, the next logical step would be to continue onward in an effort to 
map out the entire reaction, predicting which sites are preferred for attack by the incoming 
phosphine ligands, and whether they are the same sites vacated by the exiting carbonyl or 
whether some sort of rearrangement must occur. Another interesting aspect for 
investigation would be to see how the singlet-triplet energy gap of the unsaturated Fe(CO)4 
species is altered when one of the carbonyl ligands is replaced with a phosphine, 
Fe(CO)3(PH3).

6.2 F inal Com m ents

The French chemist and physicist Joseph Louis Gay-Lussac prophesized in 1808 
that “we are perhaps not far removed from the time when we shall be able to submit the 
bulk of chemical phenomena to calculation”.18 Close to two hundred years later, Gay- 
Lussac’s statements are more true now than ever before. The field of computational 
chemistry has witnessed a tremendous growth over the last decade or so, but unfortunately 
it is still not possible to submit all chemical phenomena to computational modeling. 
However, with the continued advances in computer technology and computational 
chemistry methodologies, especially for studies of large chemical systems, we are 
hopefully very near the time when computer modeling will be of assistance to chemists 
from all fields of chemistry.
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Table A .l: Valence Electron Correlation Energies (Ecotr, in E,,) of the Homonuclear 
Diatomic Molecules.

M olecule M ethod Ecorr(E C P ) Ecorr(MCP) AE acorr

n 2 MP2 0.3114 0.2960 0.0154
CISD 0.2857 0.2744 0.0112

P2 MP2 0.2287 0.2242 0.0045
CISD 0.2187 0.2159 0.0028

A s 2 MP2 0.2209 0.2109 0.0100
CISD 0.2046 0.1952 0.0093

Sb, MP2 0.1988 0.2037 -0.0049
CISD 0.1826 0.1796 0.0030

f 2 MP2 0.3632 0.3488 0.0144
CISD 0.3490 0.3359 0.0131

C12 MP2 0.2627 0.2735 -0.0107
CISD 0.2632 0.2706 -0.0073

Br2 MP2 0.2329 0.2225 0.0104
CISD 0.2325 0.2239 0.0086

I2 MP2 0.2027 0.1865 0.0161
CISD 0.2014 0.1883 0.0131

a Value corresponds to the difference in correlation energies computed from: 
AEcorr =  Ecorr{ECP) -  Ecorr(MCP).
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Table A.2: Valence Electron Correlation Energies (Ecorr, in E J of the Heteronuclear 
Diatomic Molecules.

M olecule M ethod E corr(E C P ) Ecorr(M C P ) AE acorr

CO MP2 0.2791 0.2683 0.0108
CISD 0.2681 0.2579 0.0101

c s MP2 0.2389 0.2332 0.0057
CISD 0.2351 0.2303 0.0048

CSe MP2 0.2343 0.2249 0.0094
CISD 0.2270 0.2201 0.0070

CTe MP2 0.2338 0.2226 0.0112
CISD 0.2220 0.2126 0.0094

SiO MP2 0.2663 0.2604 0.0059
CISD 0.2494 0.2438 0.0056

SiS MP2 0.2003 0.1981 0.0022
CISD 0.2027 0.2011 0.0015

SiSe MP2 0.1900 0.1842 0.0058
CISD 0.1914 0.1872 0.0042

SiTe MP2 0.1825 0.1746 0.0079
CISD 0.1822 0.1757 0.0064

GeO MP2 0.2745 0.2580 0.0165
CISD 0.2506 0.2393 0.0113

GeS MP2 0.1991 0.1944 0.0047
CISD 0.1992 0.1962 0.0030

GeSe MP2 0.1877 0.1803 0.0074
CISD 0.1871 0.1820 0.0051

GeTe MP2 0.1789 0.1688 0.0101
CISD 0.1771 0.1695 0.0075

SnO MP2 0.2809 0.2774 0.0035
CISD 0.2493 0.2443 0.0050

SnS MP2 0.1932 0.1902 0.0030
CISD 0.1921 0.1891 0.0030

SnSe MP2 0.1802 0.1741 0.0061
CISD 0.1792 0.1736 0.0056
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SnTe MP2 0.1694 0.1603 0.0091
CISD 0.1679 0.159“7 0.0082

C1F MP2 0.3095 0.30822 0.0012
CISD 0.3018 0.2993 0.0025

BrF MP2 0.2954 0.28422 0.0112
CISD 0.2865 0.2763 0.0102

IF MP2 0.2797 0.2673 0.0124
CISD 0.2699 0.258C5 0.0113

BrCl MP2 0.2478 0.24811 -0.0003
CISD 0.2478 0.247^4 0.0005

IC1 MP2 0.2321 0.2299 0.0022
CISD 0.2318 0.2295 0.0023

IBr MP2 0.2175 0 .2042 0.0134
CISD 0.2167 0 .2059 0.0108

a Value corresponds to the difference in correlation energies comp uted from: 
AEcorr = Ecorr(ECP) -  Ecorr(MCP).
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Table A.3: Summary o f the Ti-X distances (in A) and total energies (in a.u.) of the TiX4
complexes.

Basis Set
Re

R H F
E Re

M P2
E

DZ 1.730

T iF 4
MCP-SPD

-134.30292 1.742 -135.29458
D Z lf 1.722 -134.32533 1.726 -135.37486
DZlp 1.734 -134.31084 1.749 -135.32208
D Z lp lf 1.725 -134.33219 1.732 -135.39958
TZ 1.714 -134.37914 1.724 -135.43080
T Z lf 1.704 -134.39648 1.706 -135.50974
TZlp 1.717 -134.38561 1.730 -135.45603
T Z lp lf 1.707 -134.40265 1.711 -135.53345

TZ 1.751
ECP1-SPD

-153.17082 1.769 -154.22500
T Z lf 1.744 -153.18150 1.757 -154.30843

DZ 1.735
ECP2-SPD

-455.59890 1.757 -456.63239
D Z lf 1.727 -455.61270 1.742 -456.71245
TZ 1.728 -455.60986 1.746 -456.68975
T Z lf 1.720 -455.62418 1.729 -456.78362

DZ

1.754

2.171

Expt.

TiC14
MCP-SPD

-97.51539

1.754

2.168 -98.39732
D Zlf 2.170 -97.52925 2.155 -98.47411
DZlp 2.178 -97.52081 2.177 -98.41526
D Z lp lf 2.176 -97.53398 2.162 -98.49070
TZ 2.155 -97.57470 2.149 -98.51926
T Z lf 2.152 -97.58260 2.135 -98.59483
TZlp 2.160 -97.57913 2.155 -98.53594
T Z lp lf 2.157 -97.58687 2.140 -98.61083

TZ 2.186
ECP1-SPD

-116.46936 2.181 -117.36527
T Z lf 2.184 -116.47338 2.171 -117.44864

DZ 2.158
ECP2-SPD

-116.61547 2.166 -117.43368
D Zlf 2.154 -116.62154 2.152 -117.51191
TZ 2.154 -116.61927 2.158 -117.48439
T Z lf 2.150 -116.62563 2.141 -117.57544

2.170
Expt.

2.170
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DZ 2.327

TiBr4
MCP-SPD

-90.53677 2.325 -91.33103
DZlf 2.327 -90.54922 2.314 -91.40759
DZlp 2.339 -90.54472 2.336 -91.35312
D Zlplf 2.337 -90.55582 2.321 -91.42761
TZ 2.313 -90.58997 2.305 -91.44739
TZlf 2.311 -90.59659 2.293 -91.52315
TZlp 2.321 -90.59600 2.313 -91.46765
T Z lp lf 2.318 -90.60231 2.299 -91.54245

TZ 2.337
ECP1-SPD

-110.29115 2.328 -111.14418
TZlf 2.335 -110.29407 2.317 -111.22761

DZ 2.323
ECP2-SPD

-109.46614 2.334 -110.25117
DZlf 2.320 -109.47059 2.321 -110.32848
TZ 2.320 -109.46861 2.328 -110.30003
TZlf 2.317 -109.47326 2.312 -110.38967

DZ

2.339

2.530

Expt.

TiI4
MCP-SPD

-83.40482

2.339

2.537 -84.15396
DZlf 2.533 -83.41618 2.526 -84.23069
DZlp 2.552 -83.42108 2.551 -84.18055
D Zlplf 2.550 -83.42943 2.535 -84.25359
TZ 2.517 -83.45122 2.513 -84.26376
TZlf 2.517 -83.45668 2.502 -84.34026
TZlp 2.533 -83.46316 2.524 -84.28738
T Z lplf 2.532 -83.46810 2.509 -84.36220

TZ 2.568
ECP1-SPD

-102.53812 2.554 -103.35841
TZlf 2.567 -102.54024 2.542 -103.44219

DZ 2.534
ECP2-SPD

-102.32651 2.548 -103.07795
DZlf 2.532 -102.32980 2.534 -103.15527
TZ 2.533 -102.32813 2.546 -103.12615
TZlf 2.532 -102.33154 2.529 -103.21541

2.546
Expt.

2.546
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Table A.4: Summary of the Zr-X distances (in A) and total energies (in a.u.) of the ZrX4
complexes.

Basis Set

R e

R H F

E R e

M P 2

E

DZ 1.932

Z rF4
MCP-SPD

-127.06656 1.935 -127.97058
D Zlf 1.907 -127.10142 1.903 -128.05668
DZlp 1.936 -127.07558 1.941 -127.99511
D Z lp lf 1.910 -127.10833 1.907 -128.07643
TZ 1.913 -127.11435 1.920 -128.07285
T Z lf 1.889 -127.14672 1.886 -128.16095
TZlp 1.915 -127.12075 1.925 -128.09327
T Z lp lf 1.891 -127.15214 1.890 -128.17794

TZ 1.917
ECP1-SPD

-142.17659 1.931 -143.13251
T Z lf 1.895 -142.20352 1.902 -143.22381

DZ 1.918
ECP2-SPD

-444.21298 1.929 -445.16311
DZlf 1.897 -444.24382 1.901 -445.25906
DZ’ 1.928 -444.23198 1.935 -445.20332
DZ’lf 1.921 -444.23677 1.928 -445.21363
TZ 1.908 -444.22232 1.919 -445.22097
T Z lf 1.889 -444.25294 1.891 -445.33206
TZ’ 1.921 -444.23751 1.934 -445.26268
TZ’ If 1.901 -444.26168 1.906 -445.35553

DZ

1.90

2.356

Expt.

ZrC14
MCP-SPD

-90.31077

1.90

2.344 -91.07897
D Zlf 2.347 -90.33125 2.319 -91.15768
DZlp 2.363 -90.31789 2.352 -91.09756
D Z lp lf 2.352 -90.33705 2.325 -91.17377
TZ 2.349 -90.35014 2.338 -91.17679
T Z lf 2.338 -90.36764 2.312 -91.25661
TZlp 2.354 -90.35548 2.343 -91.19325
T Z lp lf 2.342 -90.37224 2.316 -91.27136

TZ 2.353
ECP1-SPD

-105.48785 2.342 -106.26582
T Z lf 2.344 -105.49950 2.320 -106.35052

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



185

DZ 2.348
ECP2-SPD

-105.25477 2.339 -105.96925
D Zlf 2.334 -105.27071 2.313 -106.05875
DZ’ 2.359 -105.27504 2.344 -106.01482
DZ’lf 2.347 -105.28619 2.318 -106.09239
TZ 2.344 -105.25768 2.331 -106.02277
T Z lf 2.330 -105.27386 2.302 -106.12884
TZ’ 2.357 -105.27781 2.344 -106.07627
TZ’l f 2.345 -105.28903 2.319 -106.16479

DZ

2.32

2.505

Expt.

Z rB r4
MCP-SPD

-83.34098

2.32

2.491 -84.01171
D Zlf 2.500 -83.35831 2.471 -84.08884
DZlp 2.515 -83.34898 2.500 -84.03315
D Z lp lf 2.507 -83.36465 2.477 -84.10741
TZ 2.502 -83.37749 2.488 -84.10753
T Z lf 2.496 -83.39185 2.465 -84.18581
TZlp 2.508 -83.38314 2.493 -84.12633
T Z lp lf 2.501 -83.39659 2.469 -84.20272

TZ 2.502
ECP1-SPD

-99.31412 2.488 -100.03918
T Z lf 2.495 -99.32240 2.466 -100.12198

DZ 2.512
ECP2-SPD

-98.11261 2.500 -98.78110
D Zlf 2.501 -98.12494 2.474 -98.86875
DZ’ 2.522 -98.13225 2.502 -98.82667
DZ’lf 2.513 -98.14060 2.479 -98.90302
TZ 2.507 -98.11485 2.493 -98.83298
T Z lf 2.497 -98.12743 2.465 -98.93733
TZ’ 2.521 -98.13482 2.502 -98.88770
TZ’lf 2.511 -98.14328 2.478 -98.97566

2.465
Expt.

2.465
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DZ 2.702

ZrI4
MCP-SPD

-76.21719 2.692 -76.83304
D Zlf 2.703 -76.23192 2.675 -76.90902
DZlp 2.718 -76.23046 2.701 -76.85597
D Z lp lf 2.714 -76.24178 2.680 -76.92713
TZ 2.702 -76.25112 2.687 -76.92427
T Z lf 2.701 -76.26252 2.668 -77.00147
TZlp 2.713 -76.25903 2.693 -76.94215
T Z lp lf 2.707 -76.26872 2.670 -77.01650

TZ 2.729
ECP1-SPD

-91.56775 2.707 -92.24718
T Z lf 2.723 -91.57336 2.686 -92.32860

DZ 2.723
ECP2-SPD

-90.98025 2.707 -91.60103
D Zlf 2.715 -90.98937 2.684 -91.68661
DZ’ 2.732 -90.99877 2.705 -91.64542
DZ’lf 2.725 -91.00450 2.683 -91.72036
TZ 2.720 -90.98192 2.702 -91.65149
T Z lf 2.713 -90.99123 2.676 -91.75348
TZ’ 2.730 -91.00098 2.705 -91.70559
TZ’l f 2.723 -91.00681 2.682 -91.79240

2.660
Expt.

2.660
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Table A.5: Summary of the Hf-X distances (in A) and total energies (in a.u.) o f the HfX4
complexes.

Basis Set
Re

RHF
E Re

MP2
E

DZ 1.909

HfF4
MCP-SPD

-127.89448 1.912 -128.77145
D Zlf 1.885 -127.92544 1.880 -128.84628
DZlp 1.916 -127.90257 1.922 -128.79163
D Z lp lf 1.879 -127.93307 1.875 -128.86433
TZ 1.889 -127.94908 1.895 -128.88336
T Z lf 1.871 -127.98120 1.867 -128.96527
TZlp 1.895 -127.95500 1.906 -128.90042
T Z lp lf 1.874 -127.98614 1.874 -128.97893

TZ 1.891
ECP1-SPD

-144.11160 1.906 -145.00264
T Z lf 1.879 -144.14075 1.885 -145.09402

DZ 1.890
ECP2-SPD

-446.57920 1.902 -4 4 7 . 4 9 9 8 8

D Zlf 1.872 -446.61120 1.876 -447.59208
DZ’ 1.898 -446.59476 1.907 -447.53538
DZ’lf 1.879 -446.62020 1.881 -447.60869
TZ 1.885 -446.58528 1.895 -447.55893
T Z lf 1.868 -446.61637 1.872 -447.66445
TZ’ 1.895 -446.59741 1.908 -447.59550
TZ’lf 1.877 -446.62260 1.881 -447.67738

DZ

1.91

2.337

Expt.

HfC14
MCP-SPD

-91.12701

1.91

2.322 -91.86906
D Z lf 2.324 -91.14355 2.296 -91.93505
DZlp 2.347 -91.13414 2.331 -91.88411
D Z lp lf 2.319 -91.15027 2.286 -91.94884
TZ 2.326 -91.17110 2.313 -91.97635
T Z lf 2.320 -91.19122 2.293 -92.04917
TZlp 2.334 -91.17625 2.324 -91.98922
T Z lp lf 2.325 -91.19544 2.298 -92.06020

TZ 2.333
ECP1-SPD

-107.41410 2.322 -108.12715
T Z lf 2.327 -107.42932 2.302 -108.21166
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DZ 2.328
ECP2-SPD

-107.60713 2.317 -108.29521
DZlf 2.315 -107.62504 2.291 -108.38138
DZ’ 2.335 -107.62422 2.319 -108.33519
DZ’lf 2.324 -107.63684 2.296 -108.40065
TZ 2.326 -107.60857 2.313 -108.35040
T Z lf 2.313 -107.62654 2.288 -108.45290
TZ’ 2.335 -107.62551 2.322 -108.39748
TZ’lf 2.325 -107.63805 2.299 -108.47339

DZ

2.316

2.488

Expt.

H fB r4
MCP-SPD

-84.15300

2.316

2.472 -84.79672
D Zlf 2.481 -84.16612 2.450 -84.86017
DZlp 2.504 -84.16133 2.486 -84.81441
D Z lp lf 2.484 -84.17400 2.446 -84.87641
TZ 2.480 -84.19370 2.463 -84.90172
T Z lf 2.479 -84.21133 2.446 -84.97313
TZlp 2.490 -84.19953 2.475 -84.91676
T Z lp lf 2.486 -84.21589 2.452 -84.98593

TZ 2.484
ECP1-SPD

-101.23976 2.470 -101.89886
T Z lf 2.479 -101.25069 2.450 -101.97928

DZ 2.495
ECP2-SPD

-100.45995 2.479 -101.10037
D Zlf 2.485 -100.47418 2.455 -101.18408
DZ’ 2.501 -100.47664 2.480 -101.14031
DZ’lf 2.493 -100.48635 2.459 -101.20370
TZ 2.494 -100.46123 2.478 -101.15479
T Z lf 2.484 -100.47559 2.452 -101.25549
TZ’ 2.502 -100.47814 2.483 -101.20296
TZ’lf 2.494 -100.48782 2.460 -101.27749

2.465
Expt.

2.465
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DZ 2.690

H fI4
MCP-SPD

-77.02231 2.675 -77.60892
D Zlf 2.688 -77.03206 2.657 -77.66981
DZlp 2.722 -77.03733 2.694 -77.63204
D Z lp lf 2.701 -77.04635 2.659 -77.69049
TZ 2.683 -77.06070 2.665 -77.70981
T Z lf 2.686 -77.07565 2.651 -77.77970
TZlp 2.697 -77.06959 2.677 -77.72706
T Z lp lf 2.694 -77.08182 2.655 -77.79280

TZ 2.713
ECP1-SPD

-93.48979 2.693 -94.10121
T Z lf 2.709 -93.49785 2.673 -94.17886

DZ 2.709
ECP2-SPD

-93.32280 2.690 -93.91316
D Zlf 2.703 -93.33365 2.666 -93.99388
DZ’ 2.714 -93.33851 2.687 -93.95195
DZ’lf 2.708 -93.34538 2.666 -94.01294
TZ 2.709 -93.32391 2.691 -93.96681
T Z lf 2.702 -93.33490 2.664 -94.06457
TZ’ 2.714 -93.34001 2.690 -94.01432
TZ’lf 2.708 -93.34688 2.667 -94.08675

2.662
Expt.

2.662
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Table A.6: Summary o f the computed geometric parameters for the MX2Y2 complexes.3

Potential M -X M-Y
RHF MP2 RHF MP2

MCP-SPD 2.152

T iC I2B r2

2.149 2.316 2.305
ECP1-SPD 2.186 2.186 2.337 2.325
ECP2-SPD 2.153 2.162 2.322 2.323

MCP-SPD 2.150

T iC I2I,

2.153 2.522 2.508
ECP1-SPD 2.183 2.190 2.570 2.548
ECP2-SPD 2.151 2.167 2.539 2.534

MCP-SPD 2.311

T iB r ,I2

2.309 2.519 2.509
ECP1-SPD 2.334 2.332 2.571 2.551
ECP2-SPD 2.318 2.334 2.536 2.539

MCP-SPD 2.347

Z rC l2B r2

2.336 2.505 2.490
ECP1-SPD 2.351 2.341 2.503 2.488
ECP2-SPD 2.340 2.330 2.510 2.496

MCP-SPD 2.346

Z rC l2I2

2.335 2.706 2.689
ECP1-SPD 2.347 2.340 2.735 2.710
ECP2-SPD 2.338 2.329 2.726 2.707

MCP-SPD 2.501

Z rB r2I2

2.487 2.703 2.687
ECP1-SPD 2.407 2.485 2.733 2.709
ECP2-SPD 2.505 2.492 2.723 2.707

MCP-SPD 2.323

H fC I2B r2

2.310 2.484 2.466
ECP1-SPD 2.332 2.321 2.484 2.471
ECP2-SPD 2.323 2.311 2.496 2.480
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H fC l2I-2

MCP-SPD 2.321 2.308: 2.688 2.670
ECPl-SPD 2.328 2.318: 2.717 2.697
ECP2-SPD 2.321 2.310* 2.715 2.694

H fB r2I-j

MCP-SPD 2.478 2.462- 2.685 2.667
ECPl-SPD 2.479 2.466- 2.716 2.697
ECP2-SPD 2.491 2.475 2.712 2.693

a The TZ basis set for each pseudopotential was employed in all of the calculations.
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Table A.7 : Summary of the X-X bond distances o f the dihalides.

P o ten tia l C l2
R H F M P2

B r2
R H F MP2

I2
R H F M P2

MCP 2.015 2.040 2.301 2.324 2.701 2.728
ECP1 2.010 2.038 2.284 2.312 2.675 2.700
ECP2 2.005 2.028 2.315 2.335 2.687 2.708

Expt. 1.987 2.281 2.666
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Appendix B 

Supplementary Material for Chapter 3:
M C P L-Shell V alence Basis Sets for the M ain  G roup E lem ents
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Table B .l: Optimum MCP-SP L-Shell Basis Sets for the First Row Main Group Elements.

N a Cs cP Aa

B
1 33.78671932 -0.05808457 0.00131684 0.4I618703E-03

2 4.32145515 -0.24879413 0.05535667

3 0.89990390 -0.00702982 0.27553693

4 0.25364584 0.71148422 0.52382464

5 0.07949164 0.37666488

C
0.36951606

1 37.28756443 -0.07863158 0.00447533 0.19828017E-02

2 5.48854614 -0.25023051 0.07271160

3 1.40333400 -0.01999411 0.26824079

4 0.42680786 0.69269460 0.50971349

5 0.12849330 0.41980104

N
0.37896052

1 53.45925028 -0.07757986 0.00432313 0.27019110E-02

2 8.11548555 -0.25029454 0.07389636

3 2.07449391 -0.03670535 0.27646848

4 0.62126798 0.69509856 0.51470283

5 0.18206627 0.42755572

O
0.37021683

1 72.35429390 -0.07669689 0.00377995 0.35231996E-02

2 11.06193170 -0.25638608 0.07505261

3 2.76567893 -0.02909782 0.29107800

4 0.80381210 0.73499973 0.51320225

5 0.22536525 0.38363212

F
0.36800102

1 94.61052745 -0.07593851 0.00347848 0.42623695E-02

2 14.62209357 -0.25943848 0.07678135

3 3.60048325 -0.03085282 0.30050460

4 1.02791363 0.75419468 0.51411959

5 0.27999667 0.36505640 0.36356573
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N e
I 160.64134628 -0.05828653 0.00106795

2 21.61536409 -0.27443617 0.07062222

3 4.67984278 -0.02548416 0.31788223

4 1.25929417 0.75402723 0.52412743

5 0.33730191 0.35406004 0.34986959

0.17527789E-02

3 Values correspond to the sum of the squares of the deviations between the L-shell and 
reference radial functions evaluated at each radial point in the grid, Equation (3.20).
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Table B.2: Optimum MCP-SP L-Shell Basis Sets for the Second Row Main Group
Elements.

N a C s C p Aa

A1
1 59.37196043 0.07251255 -0.01081221 0.16200282E-0I

2 6.56937230 -0.00794469 -0.10542858

3 1.56442630 -0.40860578 -0.06246337

4 0.16567063 0.70854855 0.59117924

5 0.05208728 0.42890967

S i
0.50769974

1 59.95976956 0.06381545 -0.01786194 0.44608725E-01

2 6.28524227 -0.04375645 -0.15721876

3 1.66596897 -0.46216760 -0.04912570

4 0.25539492 0.73406876 0.59435329

5 0.08544019 0.44779459

P
0.49533583

1 53.78297465 0.04565604 -0.02100090 0.19307384E-01

2 7.26687095 -0.05289806 -0.14302227

3 2.05934389 -0.45514342 -0.05376293

4 0.37271946 0.63041872 0.57769220

5 0.11407603 0.57405262

S
0.53253268

1 39.22730848 0.04599138 -0.04535324 0.15904234E-01

2 6.91483623 -0.11559505 -0.18334703

3 2.16546416 -0.45780579 -0.01666263

4 0.46156173 0.72441024 0.60175518

5 0.13565549 0.51856189

Cl
0.50595462

1 37.85013534 0.02437561 -0.06827607 0.5991975 IE-02

2 7.28626551 -0.11371336 -0.22562148

3 2.64742215 -0.51284268 0.01141112

4 0.55734250 0.77832899 0.61041307

5 0.16244215 0.47547569 0.48718637
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Ar

1 43.76207317 0.00342157 -0.09922111

2 8.58356661 -0.06916196 -0.30536230

3 3.31897011 -0.59229665 0.01379160

4 0.67940212 0.78141944 0.61701443

5 0.19728793 0.47625778 0.46124550

0.43453580E-02

a Values correspond to the sum of the squares of the deviations between the L-shell and 
reference radial functions evaluated at each radial point in the grid, Equation (3.20).
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Table B.3: Optimum MCP-SP L-Shell Basis Sets for the Third Row Main Group
Elements.

N a C s C p Aa

G a
I 43.63293563 0.00510307 0.04961392 0.14503093E-01

2 8.25275058 0.16740447 -0.05311116

3 2.0935045 L -0.49909315 -0.15455634

4 0.17079091 0.76668525 0.63975169

5 0.05171428 0.36085515

G e
0.46767835

1 50.08457824 0.00703801 0.05262546 0.15274757E-01

2 8.04542517 0.22135588 -0.05363663

3 2.42445596 -0.58518014 -0.18558600

4 0.24009925 0.67260466 0.62626846

5 0.07700996 0.47366802

As
0.47764790

1 57.33119238 0.00415686 0.10840378 0.15521663E-01

2 11.58377829 0.29184778 -0.03723208

3 3.05824557 -0.61292415 -0.25198596

4 0.29517263 0.60581832 0.59421137

5 0.09830089 0.52716999

Se
0.49920438

1 62.37487055 0.00456968 0.09335685 0.10511049E-01

2 10.69373262 0.39157056 -0.03868328

3 3.43873129 -0.73970720 -0.27882126

4 0.35743195 0.63380137 0.62275504

5 0.11458014 0.51888313

B r
0.47773336

1 68.00898711 0.00560766 0.10665336 0.66551767E-02

2 10.24444266 0.40398557 -0.03442058

3 3.65498392 -0.78384656 -0.28485639

4 0.42276509 0.65991077 0.62462359

5 0.13300748 0.51745969 0.48460277
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Kr
1 72.85516559 0.00659348 0.10804412

2 10.48409523 0.47236687 -0.04098390

3 4.10131202 -0.87520295 -0.32687101

4 0.48961176 0.66777767 0.64837599

5 0.15519339 0.51896216 0.45708161

0.64300715E-02

a Values correspond to the sum of the squares of the deviations between the L-shell and 
reference radial functions evaluated at each radial point in the grid, Equation (3.20).
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Table B.4: Optimum MCP-SP L-Shell Basis Sets for the Fourth Row Main Group
Elements.

N a C s c P A“

In
1 26.27661760 -0.12750640 0.01568521 0.31851357E-02

2 9.08271886 0.32594138 0.07580539

3 1.80608718 -0.07082554 -0.20187122

4 1.23760183 -0.53169639 -0.00618563

5 0.13600229 0.91206005 0.64845443

6 0.04021969 0.24915833

Sn
0.46267320

1 24.95176834 -0.15043389 0.01462768 0.28062097E-02

2 10.49131963 0.33146528 0.07259711

3 1.80898242 0.00722958 -0.25936823

4 1.32519990 -0.63653685 0.03091421

5 0.17105903 0.92133432 0.69502277

6 0.05322037 0.27295467

Sb
0.41187489

1 25.98329175 -0.24082871 0.01564965 0.41157496E-02

2 11.88756832 0.48210341 0.13329786

3 2.95537674 0.21688070 -0.08080115

4 1.75844018 -0.97092198 -0.21780360

5 0.20857079 0.85837060 0.72005909

6 0.06745949 0.32535598

Te
0.38798265

1 26.78793583 -0.30589894 0.01517883 0.49113110E-02

2 12.94178028 0.57835739 0.15788722

3 3.15138977 0.35441433 -0.07522202

4 1.96961270 -1.14900432 -0.25508105

5 0.24450346 0.86976260 0.72143515

6 0.07729746 0.32962724 0.39253369
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I
1 34.65387656 -0.14715104 0.00260817 0.85987614E-03

2 14.22255074 0.15186887 0.16748243

3 8.42861332 0.36187858 -0.03456884

4 2.12370539 -0.84792975 -0.36161493

5 0.68330146 -0.11757362 0.08192655

6 0.26266413 1.01139218 0.71866422

7 0.08337510 0.24477909

X e
0.35232439

1 34.39369125 -0.15060049 0.00322150 0.83148630E-03

2 14.85904214 0.23372921 0.13798439

3 7.33837715 0.27529828 -0.03057592

4 2.27848797 -0.88375237 -0.36593137

5 0.68690151 -0.11585304 0.10460091

6 0.29324405 1.04535856 0.72307198

7 0.09332746 0.23026933 0.33169991

a Values correspond to the sum of the squares of the deviations between the L-shell and 
reference radial functions evaluated at each radial point in the grid, Equation (3.20).
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Table B.5: Optimum MCP-SP L-Shell Basis Sets for the Fifth Row Main Group Elements.

N a C s c P Aa

TI
l 170.66783496 0.02195753 -0.00250461 0.2046603 IE-02

2 31.59815730 -0.10731995 -0.02068835

3 8.08128337 0.20857599 0.10210111

4 2.75295700 0.18250861 -0.07498218

5 1.16269592 -0.80276684 -0.19103312

6 0.14992952 1.02126739 0.55403265

7 0.04494184 0.19376396

Pb
0.57112594

I 167.14380202 0.03374899 -0.00300042 0.25183754E-02

2 34.43843758 -0.14813796 -0.02972776

3 8.67167765 0.26230812 0.13989692

4 3.61507485 0.19370804 -0.06569906

5 1.34132932 -0.86311655 -0.27211317

6 0.17518741 1.01849589 0.64041541

7 0.05689278 0.19584036

Bi
0.48047142

1 170.20285397 0.04132919 -0.00280881 0.24495888E-02

2 37.07764558 -0.15836596 -0.03267191

3 9.31127025 0.24855852 0.13993099

4 3.79961187 0.26287984 -0.05249553

5 1.47909471 -0.93777490 -0.30349442

6 0.20199813 1.01947761 0.68334513

7 0.06870999 0.21037426 0.43664688
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Po
1 178.92448804 0.05631688 -0.00288437 0.29839554E-02

2 38.29497915 -0.20955639 -0.03996151

3 10.06662191 0.25317925 0.15985753

4 4.93357198 0.34400359 -0.03742553

5 1.64353429 -0.99169351 -0.33505625

6 0.22714581 0.98548416 0.67666280

7 0.07551653 0.24545604

At
0.44940470

1 179.12012213 0.05994793 -0.00179131 0.20423162E-02

2 41.16324517 -0.21935048 -0.05217571

3 10.84945164 0.15506488 0.19050010

4 6.37627828 0.47487430 -0.02506560

5 1.78924510 -1.05115467 -0.40248432

6 0.25803856 0.99819288 0.70825314

7 0.08603474 0.24192774

Rn
0.42165782

1 182.29780164 0.06342339 -0.00197120 0.25323715E-02

2 42.34915634 -0.22847354 -0.05142977

3 11.11943312 0.25056914 0.18947663

4 5.48557078 0.43572233 -0.02830651

5 1.89786852 -1.12399993 -0.40619747

6 0.28875863 1.00570230 0.70901512

7 0.09745212 0.25801373 0.42586332

a Values correspond to the sum of the squares of the deviations between the L-shell and 
reference radial functions evaluated at each radial point in the grid, Equation (3.20).
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Table B.6: Optimum MCP-DSP L-Shell Valence Basis Sets for the Third Row Main Group
Elements.

N a Cs C p cd Aa

Ga
L 7

l 408.19753787 -0.02822341 0.00016954 0.36548494E-02

2 52.91630124 -0.00671377 0.05909159

3 16.33638754 0.16476711 -0.00674411

4 2.53828165 -0.24545077 -0.19467558

5 1.25486929 -0.25119921 0.04248568

6 0.17288560 0.83295128 0.56867040

7 0.05081021 0.32091026 0.53278518 

D 5

1 55.74442400 0.04435306

2 14.72136100 0.20816348

3 4.83822720 0.43011852

4 1.60624470 0.45518338

5 0.49300476

G e
L 7

0.20447028

I 433.95753699 -0.03064237 0.00012487 0.33351300E-02

2 57.90269674 -0.00448577 0.06766028

3 16.79986773 0.18437122 -0.00543316

4 2.93909717 -0.26115159 -0.21538174

5 1.35072018 -0.31338912 0.02205936

6 0.23516329 0.81418056 0.59534843

7 0.07215178 0.37701010 0.50464304 

D 5

1 64.68981000 0.04148314

2 17.23871600 0.20000632

3 5.74528800 0.42195557

4 1.95628290 0.46240145

5 0.62347294 0.20170133
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A s
L 7

1 460.44487952 -0.03370940 0.00009123
2 62.86871446 -0.00280279 0.07537570

3 17.65290331 0.20275973 -0.00411358

4 3.32503174 -0.27479973 -0.23771802

5 1.48995464 -0.36513553 0.01027781

6 0.29824935 0.81064455 0.61394328

7 0.09407777 0.41041582 0.48682835 

D 5

I 73.80344300 0.03755337

2 19.80830300 0.18741540

3 6.67302060 0.42092312
4 2.31699190 0.46762162

5 0.75904038
S e

L 7

0.19885022

I 491.54168579 -0.03902990 0.00009459

2 67.65456975 -0.00288429 0.08593092

3 18.93731414 0.22834088 -0.00430574

4 3.61634776 -0.32180337 -0.27211386

5 1.60526197 -0.37818560 0.02616637

6 0.35054699 0.85721022 0.62732701

7 0.10812514 0.38594947 0.47355996 

D 5

1 81.06462500 0.03480829

2 21.94419400 0.16160560

3 7.47608730 0.41649021

4 2.64500010 0.48808581

5 0.88935110 0.18939191

0. 2793797IE-02

0 .31032613E-02
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B r

L 7

I 522.88452126 -0.04249585 0.00008903 0.30171822E-02

2 72.64909317 -0.00190643 0.09207375

3 19.96019653 0.24489620 -0.00414019

4 3.94105252 -0.34775849 -0.29534179

5 1.74752184 -0.39947549 0.03422224

6 0.40862491 0.88445351 0.64080212

7 0.12576419 0.37974885 0.45974433 

D 5

I 87.72113300 0.03587448

2 23.95176900 0.16268664

3 8.24795210 0.41705220

4 2.96786330 0.48689690

5 1.01966970
K r

L 7

0.18066116

1 555.70284866 -0.04427793 0.00007832 0.26614562E-02

2 77.85431432 -0.00107781 0.09703207

3 21.11100285 0.25776667 -0.00372774

4 4.29533396 -0.36599551 -0.31562129

5 1.90278202 -0.42305 L 68 0.04006609

6 0.47152179 0.90474226 0.65174978

7 0.14596657 0.37963497 0.44789003 

D 5

1 93.78921800 0.03586651

2 25.81470500 0.16178387

3 8.98154220 0.41985533

4 3.28364400 0.48497272

5 1.14933390 0.17260299

a Values correspond to the sum of the squares of the deviations between the L-shell and 
reference radial functions evaluated at each radial point in the grid, Equation (3.20).
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Table B.7: Optimum MCP-DSP L-Shell Valence Basis Sets for the Fourth Row Main
Group Elements.

N a Cs C P C d Aa

In
L 8

1 1117.0442479 0.01966417 -0.00028469 0.30479805E-02

2 148.55929144 -0.00285849 -0.03092569

3 40.38091438 -0.12128216 0.01002387

4 8.96467181 0.30704224 0.11769989

5 2.48975560 -0.03746868 -0.17385868

6 1.24029143 -0.55821986 -0.08670284

7 0.11777285 0.98462483 0.72117514

8 0.03535615 0.14982680 0.37864443 

D 6

1 127.85717000 -0.03010810

2 37.24200300 -0.12608501

3 14.38783300 -0.16625795

4 2.67764630 0.38303232

5 1.04357850 0.54604003

6 0.35436787
Sn

L 8

0.24174273

1 1167.3462694 0.02208456 -0.00017264 0.31197295E-02

2 163.62294314 -0.00476628 -0.03502374

3 40.62021102 -0.13892294 0.00742133

4 10.08103646 0.31944181 0.13574029

5 2.92536012 0.05074317 -0.15342790

6 1.36050241 -0.71716513 -0.17314076

7 0.17891996 0.84811504 0.63833475

8 0.05803607 0.34734083 0.47128929
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D 6

1 184.52791000 -0.01939517

2 50.37842000 -0.10614361

3 17.36772800 -0.20023220

4 2.68458570 0.44852175

5 1.03915190 0.52427474

6 0.36984112
Sb

L 8

0.18036569

1 1223.3165332 0.02466174 -0.00014483 0.31467307E-02

2 173.64795470 -0.00589779 -0.04030647

3 41.31296461 -0.15662879 0.00665315

4 11.04383151 0.34011307 0.14765647

5 2.96108496 0.08828888 -0.17138489

6 1.46875022 -0.80252407 -0.19186733

7 0.22132526 0.83316537 0.65077151

8 0.07471200 0.39197085 0.46172131 

D 6

1 194.91964000 -0.02197811

2 53.28818400 -0.12104670

3 18.44267800 -0.20157712

4 2.91543950 0.45397709

5 1.15571820 0.51750019

6 0.42230671
Te

L 8

0.17106669

1 1285.2402456 0.02757762 -0.00011136 0.35024665E-02

2 184.11310455 -0.00660271 -0.04350300

3 42.51564168 -0.17352089 0.00514624

4 11.98505609 0.36102162 0.15435041

5 3.04028661 0.14240350 -0.18702045

6 1.60974691 -0.90606253 -0.20575495

7 0.25787648 0.87352292 0.66864861

8 0.08428197 0.37792581 0.45269183
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D 6

1 205.81944000 -0.02143209

2 56.33698400 -0.10716096

3 19.56532700 -0.19519243

4 3.15080550 0.45564854

5 1.27440720 0.53072132

6 0.47585742
I

L 8

0.14959138

1 1348.8247679 0.03138053 -0.00005585

2 197.34423966 -0.00743423 -0.04238793

3 43.57762384 -0.19705890 0.00115526

4 13.11442767 0.38714616 0.15807805

5 3.08331726 0.26028506 -0.18428521

6 1.82315559 -1.04171680 -0.21193698

7 0.28993573 0.88312960 0.67350971

8 0.09687221 0.37543207 0.44675968 

D 6

1 217.16616000 -0.02146333

2 59.51167400 -0.12562314

3 20.73279000 -0.20961822

4 3.39043700 0.47139139

5 1.39448720 0.51030130

6 0.52917923
X e

L 8

0.14675376

1 1421.7310967 0.03417447 -0.00005590

2 205.53085789 -0.00724663 -0.05379954

3 46.45617371 -0.20978930 0.00224562

4 13.69308173 0.40978477 0.18690433

5 3.52437924 0.22850097 -0.20429699

6 1.93540698 -1.05885928 -0.24005182

7 0.33865649 0.88974180 0.68771859

8 0.11221288 0.39568354 0.44083615

0.37647857E-02

0.37311468E-02
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D 6

1 228.85114000 -0.02644112

2 62.78869200 -0.14125654

3 21.93966900 -0.21931414

4 3.63546940 0.47109020

5 1.51673200 0.50846285

6 0.58277731 0.13770055

a Values correspond to the sum of the squares of the deviations between the L-shell and 
reference radial functions evaluated at each radial point in the grid, Equation (3.20).
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Table B.8: Optimum MCP-DSP L-Shell Valence Basis Sets for the Fifth Row Main Group
Elements.

N a C s Cp cd Aa

TI
L 9

1 4989.7178509 -0.01461078 0.00007303 0.23407422E-02

2 515.55781201 0.00044629 0.01165427

3 148.59336424 0.07862011 -0.00394831

4 35.60660501 -0.20626271 -0.04996985

5 7.55343203 -1.10537130 2.06197680

6 7.36964429 1.52165572 -1.96116759

7 1.32173795 -0.72703451 -0.22953392

8 0.13811833 0.91147074 0.37858356

9 0.06527429 0.23167819 0.66562054 

D 7

1 313.58598000 0.02533901

2 84.04528200 0.10560821

3 14.10281600 -0.10409944

4 8.79926820 -0.22598258

5 1.66546970 0.49602270

6 0.65292509 0.49727494

7 0.23268302
Pb

L 9

0.17429536

1 5189.0091253 -0.01933773 0.00006906 0.20206700E-02

2 541.84252411 0.00179099 0.01478791

3 146.53024167 0.09484682 -0.00463845

4 38.54342693 -0.22729470 -0.05770203

5 7.64348648 -7.06638108 7.02169796

6 7.58994103 7.53136651 -6.89139258
7 1.42691801 -0.82254451 -0.30508114

8 0.17591141 0.94327938 0.61100348
9 0.05671249 0.24926751 0.50774940
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2 12

1 323.97353000

2 86.87383800

3 14.67477400

4 9.20980570

5 1.78420470

6 0.72224252

7 0.26678258

1 5405.1166260 -0.02206122

2 569.69063053 0.00265265

3 146.65763186 0.10825674

4 41.08421706 -0.24859384

5 8.49626174 -0.12927636

6 7.23264521 0.63854590

7 1.54022153 -0.89078289

8 0.20410949 0.94838836

9 0.06878569 0.26065384

1 334.89629000

2 89.78876500

3 14.96327000

4 9.40084710

5 1.90707050

6 0.78945303

7 0.29804339

0.02747020

0.11884049

-0.12188661

-0.22690564

0.50246896

0.49116934

0.16060479
B i

L 9 

0.00006438 

0.01749995 

-0.00432232 

-0.06796304 

0.42445640 

-0.27087520 

-0.35086048 

0.65932048 

0.45928725 

D 7

-0.02808847

-0.12894395

0.14948539
0.21585541

-0.51314762

-0.48522582

-0.14734203

0.18828764E-02
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1 5659.5256214 -0.02680745

2 594.48680667 0.00315385

3 150.33728987 0.12358667

4 42.80086321 -0.27698760

5 9.57521304 0.04410002

6 6.88470658 0.52328840

7 1.67415405 -0.96036144

8 0.23006375 0.97044852

9 0.07637472 0.25201950

1 345.97725000

2 92.79841300

3 15.29286800

4 9.675039600

5 2.029344600

6 0.856620200

7 0.329323960

1 5921.5702326 -0.02828177

2 620.05238021 0.00356703

3 153.81200691 0.13427029
4 44.62883676 -0.29975841

5 10.36882026 0.07880791

6 6.83952899 0.55098133

7 1.82274583 -1.03279375

8 0.26034788 0.97521671

9 0.08700788 0.26053218

Po
L 9 

0.00005925 

0.01988035 

-0.00412595 

-0.07790592 

0.26613072 

-0.09012958 

-0.38119489 

0.67905941 

0.44496157

D 7

-0.03185123

-0.15138881

0.19904440

0.19124470

-0.52252406

-0.47192548

-0.13954710
At

L 9 

0.00005232 

0.02283430 

-0.00381653 

-0.08908173 

0.25007826 

-0.04658995 

-0.41706638 

0.69154870 

0.43531823

0.23565889E-02

0.26926549E-02
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D 7

1 357.27673000 0.03226496

2 95.85673700 0.16061542

3 15.63088100 -0.23693505
4 9.93281670 -0.16990166

5 2.15430500 0.52786768

6 0.92420437 0.46940654

7 0.35987064
Rn

L 9

0.12680473

1 6243.3596693 -0.03140574 0.00005143

2 643.01693253 0.00349505 0.02575367

3 159.05690083 0.14489645 -0.00360330
4 46.43177147 -0.31601071 -0.09710743

5 10.82305508 0.08909346 0.26106672

6 6.98817009 0.58063273 -0.04315621

7 1.94852579 -1.09344623 -0.44784934

8 0.28883710 0.98735530 0.71076732

9 0.09752337 0.26119389 0.41847338 

D 7

1 368.73891000 0.03660534

2 98.94864400 0.17004438

3 16.21745300 -0.22151728
4 10.41379300 -0.18034541

5 2.27025000 0.55053651
6 0.98664347 0.45217501
7 0.38808435 0.12182520

0.24772619E-02

a Values correspond to the sum of the squares of the deviations between the L-shell and 
reference radial functions evaluated at each radial point in the grid, Equation (3.20).
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Appendix C

Supplementary Material for Chapter 5:
P ictoria l R epresen tations o f the  

7tx -7td F ragm ent M olecu lar O rbitals 

o f M (C O )3(C 2H 2)
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Figure C.l: The MO components of the C2H2^  M 7tx-7td interaction in M(CO)3(C2H2): (a) 

occupied 7t± orbital of C2H2, (b) unoccupied orbital of proper K symmetry of the M(CO)3 
fragment.
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