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ABSTRACT

An approach to quantum field theory known as
hyperquantization is reviewed. This formalism is then
applied to the quantum electrodynamics of a spin 1/2
field. The result is a gauge invariant theory contain-
ing an operator S whose matrix elements agree with those
of the conventional S-matrix of quantum electrodynamics,
but in which the use of an indefinite metric can be
avoided. Furthermore, the approach is used to quantize
the system of interacting electromagnetic and spin 3/2
fields, and it is found that the well-known difficulty

of negative field anticommutators does not arise.
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1. INTRODUCTION

The theory of quantized fields involves two inter-
related mathematical systems. First there is the general
scheme of field operators satisfying equations of motion
and commutation relations, and second, the linear vector
space with its associated probability interpretation repre-

1)

senting the guantum states. In the conventional approach
to quantum field theory one begins with the equations of
motion for the fields in the Heisenberg picture, and
attempts to set up commutation relations in such a way
that these equations of motion are compatible with the
Heisenberg equation. The linear vector space is then
constructed using the Fourier coefficients of the fields.
While this procedure is satisfactory for comparatively
simple systems, it leads to difficulties when dealing
with ﬁore complicated interactions such as those involving
higher spin £ie1d82) or non-local interactions.3)’4)
In this thesis we shall describe a somewhat diffe-
rent approach to quantum field theory. It begins with the

»
introduction of creation and annihilation operators ),

*)

Technically, we should say raising and lowering
operators since no particles are created or destroyed.
However, to be consistent with other literature on the
subject we shall continué to say creation and annihila-

tion operators.



satisfying appropriate commutation relations, from which
a general Fock space is constructed. Since the creation
and annihilation operators do not satisfy equations of
motion, the space so formed has, as yet, no connection
with a physical system. The so called physical states
are then formed from those vectors of the general space
which satisfy certain supplementary conditions. It is
these conditions which correspond to the equations of
motion in the conventional theory. The energy-momentum
operator for the system is defined in such a way that the
defining commutation relations of the creation and anni-
hilation operators lead identically to the Heisenberg
cquaticn. It turns out that this theory is the same as

3) and Coesters), and is called

that proposed by Klein
hyperquantization.
Chapter 2 reviews the general theory of hyper-
quantization.7) The phfsical states satisfying the
supplementary conditions are explicitly constructed and
shown to be eigenstates of the energy-momentum operator.
Field operators are introduced such that their matrix
elements between physical states yield the wave functions
of the system. The matrix elements of simple products of
these operators are found to satisfy equations analogous

to the Matthews-Salcm equations for time-ordered products

of field operators in the conventional theory.a)



For intcracting systems, the states are explicitly
constructed by means of an operator S. It is this opera-
tor which is the analogue of the S-matrix in ordinary
quantum field theory. It will be pointed out that the
proof of the relativistic invariance of the S-matrix of
hyperquantization is relatively straightforwvard, whereas
the proof of conservation of probability (corresponding

9) 14

to unitarity in the usual theory) is complicated.
second quantization the opposite is true. Unitarity is
easily proven whereas relativistic invariance can only

be shown to given orders in the perturbation expansion.lo)
The reason for the simplification as regards the relati-
vistic invariance in hyperquantization is that, as we shall
see, it involves no non-relativistic operations such as
chronological ordering, and terms depending on the normals
to space-like surfaces do not arise as they do in the con-
ventional theory when dealing with derivative couplings

and non-local intetactions.*)

It may be asked to what extent hyperquantization

can reproduce the well-established results of ordinary

.
) In this sense hyperquantization may be said to

correspond to the so called T*-product formulation of

the usual theory.ll)



field theory. The fact is that for simple systems the
results of this formalism can be shown to agree with

those of Feynman-Dyson S-matrix theory.g)

In particular,
as will be shown in Chapter 3, the S-matrix elements of
hyperquantization agree completely with those of the
usual theory in the case of an electromagnetic-spin 1/2
interaction. In demonstrating the agreement between the
two theories of quantum electrodynamics, we must take
care on certain points. Since in hyperquantization there
is no field equation, concepts such as current conservation
and gauge invariance have to be reexamined. We shall see
that, while the local current operator is not conserved,
its expectation value between physical states is.
Furthermore, we shall see that the expectation value of
the electromagnetic potential is indeterminate to the
extent that the four-divergence of an arbitrary c-number
may be added to it. Corresponding to the gauge invariance
of the usual theory, the S-matrix elements are not depen-
dent on this arbitrary c-number. Conservation of probabi-
lity (unitarity) can, in this case, be inferred from the
exact agrcement of the S-matrix elements with those of
conventional quantum electrodynamics.

An important aspect of hyperquantization is the
fact that the field operators satisfy an extremely simple
algebra. In fact, the commutators or anticommutators of

these opcrators are identically zero for arbitrary space=



7)

time separations. Now, Johnson and Sudarshan have shown
that, in the case of an electromagnetic-spin 3/2 inter-
action, quantization using standard techniques leads to
fermion anticommutators which are non-positive-definite.z)
Indeed, by a suitable choice of Lorentz frames, they can
always be made negative. Because of the simpler field
algebra involved, we might expect that this problem would
not arise at all if the same system were hyperquantized.
That this is in fact the case will be shown in Chapter 4.
Unfortunately, the situation as regards the con-
servation of probability is not as simple as for the
electromagnetic-spin 1/2 interaction, because no S-matrix
elements have been found in thc usual thcory with which
to compare our own. No general proof of this condition

has as yet been found and we must rely on perturbation

expansion arguments to demonstrate it.



2. A REVIEW OF HYPERQUANTIZATION

We shall here present the theory of hyperquantiza-
tion as formulated by Y. Takahashi7) following Coester's

6)

original paper on the subject. The basic idea of hyper-
quantization is to introduce creation and annihilation
operators from the outset, to construct a general Fock
space using these operators, and from this space to select
the physical subspace by imposing supplementary conditions.
It is these supplementary conditions which replace the
equations of motion of conventional field theory. As we
shall see, in this formalism the field operators obey a
much simpler algebra than do their counterparts in the

usual theory, whereas the linear vector space involved

becomes more complicated.

2.1 The Wave Equation

In this section we state some of the properties of
the wave equation of the form

A uixy = 0 (2.1.1)

where uér)(x) is a wave function of the point X in four
dimensional Minkowski space, J stands for a kinematical
label such as momentum Or angular momentum, r indicates

a spin orientation, and A(3) is a linear operator over



the space of the wave functions. The material in this
section is well known and is presented here only for
convenience and clarity. Derivations and explanations
may be found in reference 1.

We restrict ourselves to operators A(3) which

satisfy the following conditions:

(A) There exists a nonsingular matrix n such that
a1 = na(-2) (2.1.2)
(B) A(3) is of the form

L)
AGB) = J A eeey 3, .. d (2.1.3)
g=0 Y1 Y2 M1 Uy

(C) The Klein Gordon divisor d(3) exists such that
A(3)d(3) = d(3)A(3) =0- m° (2.1.4)

(D) The unitary, symmetric charge conjugation matrix C

exists such that
t -1
(nA(3)) " =p C nA(-3) C (2.1.5)
where

p = 1 for fields with integer spin
= -1 for fields with half odd-integer spin .
(2.1.6)



The quantity defined by

ru(a,-S) -A,t Aw(av-ﬁv) + wa(avax-avtxévﬁxn...
(2.1.7)
where Au u have been symmetrized with respect to the
1... z
indices, plays a role in the following discussion. It

satisfies the identity

A@3) - A(-3) = (3, + 5u)ru(a.-$) . (2.1.8)

Equations (2.1.1), (2.1.4), and (2.1.8) may be rewritten

Rl =0, (2.1.9)
F()d() = d@)A(3) =0 - n , (2.1.10)
K@) - K= = (3, + 51,058 (2.1.11)

respectively where

R(3) =nA@d) ., (2.1.12)
de) = an~t (2.1.13)
fu(a.-S) - nru(a.-t) . (2.1.14)

and it is this latter notation which is more convenient
for use in the following discussion.
Now let us take u}t)(x) in (2.1.9) to be a positive

frequency wave function and define its charge conjugate



T TR SR

function
viF x) = ¢ w0, . (2.1.15)
which satisfies

Av; P = 0 (2.1.16)

by virtue of (2.1.5) and (2.1.9). These functions satisfy

the normalization and closure conditions

~4f 40, (x)u“’(x)r 2,5t V) = (2.1.17)

Sperebage !

~4f 0, (x)v"’(x)r (3,508 ) = -p8 18550 4 (2.1.18)

-if do, (x)v“’(x)r @, -5tV =0 (2.1.19)
zJ u"’(x)u“’ (y) = 1d@aM x-y) (2.1.20)
)
t -
ZJ vé')(x)vér) (y) = -ioa(a)A( ) (x-y) (2.1.21)

and can also be shown to obey

t + . -
wiF) y) = Ja oy a0, x1ufF) F, (3,-5)3 ) x-y)
o
(2.1.22)
0§ ) = [y oy oy AR (y-x)F, (@, -Drugt o
(2.1.23)

t t
(r) () (OF (a,- -
vyl oy) = -]xo<yodox(x)vJ (x)F, (3,-5)3) 8 x-y),

(2.1.24)
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(r) - - 3 (- )T _ty,(7)
vt (y) ]xo,yo do, (x)3(-2) 8y x)T, (2, vy (x)
(2.1.25)

where Ac is the causal Green's function of the Klein-

Gordon equation and, therefore, obeys

Aama -y = 64 -y (2.1.26)

2.2 Hyperauantization of Fields

Hyperquantization of a field begins not with an
equation of motion, as would the conventional quantization
of the same field, bu£ with the introduction of creation
and annihilation operators, depending on points in

Minkowski space, and satisfying the relations
a (x)ag(y) - pral(yra (x) = 5u35(“(x-y) (2.2.1)
b (x)bg (¥) - o't (y)by (x) = 8,084 Gx-y) (2.2.2)

with similar commutators of other combinations of these
operators vanishing. Here a and 8 are labels denoting
different components of the same field as well as diffcrecnt
fields. These labels will be suppressed in the following
discussion. The constant p' is t1, and we shall fix it
later according to (2.2.38).

The creation operators, a? and b*, can now be used

in conjunction with the vacuum 2, defined by



a(x)ﬂo = b(x)ﬂ° =0, | (2.2.3)

to construct the orthonormal vectors of a Fock space in
the usual manner. Since the'§perators in (2.2.1) and
(2.2.2) do not satisfy any equations of motion, the space
so constructed has no physical significance. The physics

is brought in by selecting vectors N which satisfy the

conditions

R()a(x)p =0 , (2.2.4)
and

bx)X(-5)a =0 . (2.2.5)

These vectors Q can be explicitly constructed by means of

the operators
INTIM 4, 4. ()
Aj = [a"x a” (x)u;"" (x) ' (2.2.6)
TIM ot ot
By =p [d'x v (x)b" (x) . (2.2.7)

J

To see this we note that (2.2.1) and (2.2.2) give

+ +

ataal™) - o'alt) atx) = wd® ) (2.2.8)
t t t

buB{T) - o'B{T) am) = ovy™ ) (2.2.9)

and that consequently

t t
Faalf) - p'a.;" f(3)alx) = K(a)ué"’(x)-o, (2.2.10)

J

11
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- t t - t -
bR (<018 - o8I bK(-8) =pviT K-E) =0,

(2.2.11)
by virtue of (2.1.9) and (2.1.16). Therefore, we have

()t

(r)*-
K(a)a(xmJ = p'Ay A(d)a(x), (2.2.12)

which proves that if a vector 1 gsatisfies (2.2.4) the
véctor A}‘)?n does also. Similarly, if Q satisfies (2.2.5),
Since the vacuum Qo obviously satisfies
(2.2.4) and (2.2.5) as a consequence of (2.2.3), we con-

clude that the vectors

mm nn
t t
m (r.) n (s;)
D S S A, i 1 ij 2, (2.2.13)
/mT /nT i=1 Vi jm1 Ky

and any linear combination of thém will satisfy these
conditions, and will be called physical state vectors.
We now define the momentdm operator Pu such that

the Heisenberg equation is satisfied. That is

-13ua(x) = [a(x),Pul ' (2.2.14)

-iaub(x) = [b(x),Pu] ' (2.2.15)

with similar relations for a*(x) and b*(x). It is easily

seen that the operator
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1 .7.4 + +
P, Lifatxa" -5 pac + b (x) (-3 )b (x))

(2.2.16)
satisfies the above equations. This is not a unique cons-
truction, however, since the addition of a c-number to
(2.2.16) will leave (2.2.14) and (2.2.15) unchanged. We
can make it unique, in the absence of massless particles
by requiring its vacuum expectation value to be zero.

The problem in the presence of massless particles is as
yet unresolved, and we shall not consider it further
except to say that it is present in ordinary quantum field
theory as well.*)

In the same way, we note that the operator

Q= Id‘x{a*(x)a(x) - b b)) (2.2.17)
satisfies

a(x) = fa(x),Q) ., (2.2.18)

-b(x) = [(b(x),Q) . (2.2.19)

and will, therefore, be jdentified with the charge operator.
It can be shown that the vectors (2.2.13) are
eigenvectors of the momentum and charge operators. To

prove, for instance, that they are eigenvectors of HE-iP‘,

*
) The requirement that the four-momentum and angular
momentum satisfy the Poincaré commutation relations does,

however, result in a unique Pu'
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we proceed as follows: Suppose a state 91, say, is an

eigenstate of H with eigenvalue E. That is,

Hﬂl = Enl . (2.2.20)
Then it follows that

t t
(r) - (r) (r)
HAJ Ql (H,A, ]Ql + E Ay Ql . (2.2.21)

Now using (2.2.6) and (2.2.14) we find

+ ® t
A}r) = =i _1 d‘x u}r)(x) g% a*(x)ﬂ1 + E Aér) 01

- -4 -'{d‘x < {at (x)u}” (x) )9,

-+ Jatx atx) 2w ;"(x)nl+sAJ”n. (2.2.22)

It can be shown7)

that the expectation value of the first
term in the final expression above vanishes, although we
shall not give the proof here. Therefore we shall eliminate

it. Then, noting that

1847 x) = it (x) (2.2.23)
where E, is the frequency of the wave function u(r) we
have

H A"’ Q, = (25 + zn“" L (2.2.24)
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f
and similarly for B{F) @ . Now, it is obvious from (2.2.3)

1.
and (2.2.16) that

Hﬂo = 0 . (2.2.25)

Hence, (2.2.13) and (2.2.24) give
“n(tlalyoco ran’ slxlooo'smxm)

n m
-{ XE + I E }Q‘r J ,...,IJ ;1 8 K ,...8 K)
i=1 Jyg j=1 Kj 171 nn 171 mm
(2.2.26)
which completes the proof.
As is easily verified, the norm of the vectors

(2.2.13) is infinite. To avoid this difficulty, we

introduce the dual vectors

ﬁ(rlJl,...ran; slxl...smkm)

t t
n . (r)) m _ (s)
S S U A ML By ) By (2.2.27)
/ml /1l i=1 i j=1 3
with
‘(r)* t,..\% £ (%)
A, - f,f: -if do, (x)a (x)T, (3,-d)uz"" (x) (2.2.28)
0N @ 7 5.5t
By - zi: 1] d0, (X)vy (x)T, (3,-9)b" (x) . (2.2.29)

We can now prove, for instance, that
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(@(rds ), B35 D) = 8 18550 o (2.2.30)

(@ 5 8K), R( 38'K') = 8_ . Spps o (2.2.31)

but the details of this will be left for the next chapter.
More generally, it can be shown that the orthonormaliza-
tion condition holds between f and fi. Accordingly, we
define the matrix elements of operators by sandwiching

them between ﬁ and . For example, consider the operators

oix) = atx) + 4 [ ax' d@a_x-x1bTx") (2.2.32)

$x0) = o'bix) + 1 [ atx" aT s (x'-x3(-0) . (2.2.33)

The non-vanishing matrix elements of these operators are

given by
(@, ¢(x) a(x35)) = ui™ ) (2.2.34)
A 3 T
@(eas 1, $x) 8 ) = [ oy (xug™ T, (0=
x B (x*=x)3(-3)
t
- ol 0, (2.2.35)

where we have used (2.1.22). Similarly,

e (s)*
(no, ¢(x)0( ;8K)) = pp' vk (x) . (2.2.36)



@5 sK), ¢(x) A) = vés)(x) . (2.2.37)

Equations (2.2.34)-(2.2.37) show that, if we assume the

relation between spin and statistics

p =p' (2.2.38)
we have

(@, ¢(x) 8(xd; )) = (x5 ), 400 2" (2.2.39)
(B 1 sK), $(x) 8) = (B, 3(x) a( 5 sK)*. (2.2.40)

More generally, as will be shown in more detail for the

gpecific case dealt with in the next chapter,

(@020 (x))eeed(x)) $ly ). -0 lyy)if))

- (ﬁl,.o(ym .o o(yl)o(x )...o(xl):ﬁ y* . (2.2.41)

That is, ¢ (x) behaves like the Hermitian conjugate of ¢ (x)
when sandwiched between physical states in a normal pro-
duct. These operators, which we shall henceforth call the

field operators, satisfy the remarkably simple commutation

relations
e (x)ely) - p'e(y)a(x) =e(x)ely) - o' ely)dix) =0, (2.2.42)

e(x)o(y) - p'élylolx) =0 (2.2.43)

17
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as is readily verified using (2.2.1) and (2.2.2) along
with the definitions (2.2.32) and (2.2.33). As mentioned
previously, it is this simple operator algebra which is
the basis for the usefulness of hyperquantization in dis-
cussing the electromagnetic-spin 3/2 interaction.

In the presence of an interaction we select state

vectors which satisfy the conditions
(A(a)a(x) + J(x)}y = 0, (2.2.44)
(p'b(x)K(-5) + Jx)}Y = 0, _ (2.2.45)

where J(x) and J (x) are sources of the fields ¢ (x) and
¢ (x) which we shall assume are derivable from a functional

B(x) of ¢(x), ¢ (x) and their derivatives according to the

formal relation

sH(x) = J(x)8F(x) + T(x)s(x) + (divergence term). (2.2.46)

As w2 shall demonstrate for the electromagnetic spin 1/2
interaction in the next chapter, the states Y can be

explicitly constructed according to

Y = 880 (2.2.47)
with
g = oxp (-i(H + ﬁo)) (2.2.48)
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where

i=-if afxH (2.2.49)

and ﬁo is a c-number constant defined such that

(R, s no) = 1. (2.2.50)
We shall see that the quantity

(g ¢ (%)) 00 0xp) blyy) .- 8Ly )Y (2.2.51)

satisfies an equation jdentical with that derived by
Matthews and Salam for the chronological product of
operators in ordinary field theory. For instance,7)
K(2) (.0 IFNY) = 16 (x-y) (R,,1) - (R IKIEWIT)
(2.2.52)

while in ordinary theory, if ¥(x) ijs a field operator and
> repkesents an arbitrary state with |0> the vacuum state,

we have

Fr<olrwm o @ > = 15“’(x-y><o|>-<o|T(a(x).v*(y)l> .
(2.2.53)

Purthermore, we observe that the Wick expansion thcorem
holds for simple products of operators (2.2.32) and
(2.2.33), i.e.”

LX) B (x') = 1@(x)B(x'): 4 13(2)a_(x-x") o (2.2.54)
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and in general

$(x)) .. 0 (x )8 y)) .. B lyy) = £ (X)) oo 0 Uxp)0lyy) e Blyp):
e 101 L d(2) 8 (x)my)) 10 (%) . 0 (xp)Eyp) e B yy) s

+ .. (2.2.55)

So we see that the simple product of the operators ¢ and

; correspond to the chronological product of field opera-

tors in the interaction picture in the conventional theory.
The observations of the previous paragraph can be

used to show the equivalence, to n'th order in the pertur-

bation expansion, of the matrix elements of the operator

S in (2.2.48) and those of the S-matrix in ordinary field

theory.g)

In the following chapter it is this equivalence
which will be used to show that the conservation of pro-

bability condition

@, s, sa) = (B 0 (2.2.56)
n

holds. This condition corresponds to unitarity in the
ordinary theory, and will be called the unitarity condi-
tion when no confusion is caused thereby. When no S-
matrix expansion exists in the ordinary theory, as is the

case for the electromagnetic-spin 3/2 interaction.z)

the
proof of (2.2.56) is not so straightforward. We shall

return to this problem in Chapter 4.
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It is notable that our "interaction Hamiltonian"”
H(x) does not contain the normal-dependent terms present
in the ordinary theory when higher spin interactions or
derivative couplings are present. Nor is there any chrono-
logical ordering of the field operators in S. This is
because all the field operators either commute or anti-
commute making the algebra of these operators much simpler
than in conventional theory. It is for this reason that
hyperquantization might be expected to be useful in deal-
ing with the spin 3/2 field discussed in Chapter 4. To
pay for this simplification we must deal with a linear
vector space whose structure has become more complicated.

Since our S-matrix elements contain no non-
relativistic operations, such as chronological ordering,
it might be expected that the relativistic invariance of
the S-matrix can be proved more straightforwardly than
in conventional field theory, where it can only be demons-
trated to givenorders in the perturbation expansion.
That tﬁis is indeed the case has been shown by Y. Takahashi
and R. Gourishankar. Since their proof is rather lengthy,
and since the details of this proof are not necessary to
an understanding of the remainder of this thesis, it is
omitted here. The interested reader is referred to ref.9.

In the course of the proof, the above authors

have derived the relationsg)
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(s, M,;)) = 0 , (2.2.57)
(s, ] = 0 , (2.2.58)
(s, @) = 0 , (2.2.59)

which imply the conservation of angular momentum, energy-
momentum, and charge respectively. Since hyperquantiza-
tion is essentially an S-matrix theory, the conservation
of local quantities at a point is not required and, in
general, will not hold. What is required, rather, is
the conservation of global quantities asymptotically
which is insured by equations such as (2.2.57)-(2.2.59).
In the following chapter we shall apply the
formalism presented here to hyperquantize the system
of interacting electromagnetic and spin 1/2 fields.
We shall show that our treatment can reproduce exactly
the results of ordinary quantum electrodynamics and,
in so doing, justify our use of hyperquantization in
treating the problem of the electromagnetic-spin 3/2

interaction in Chapter 4.
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3. THE ELECTROMAGNETIC-SPIN 1/2 INTERACTION

The purpose of this chapter is to demonstrate that
quantum electrodynamics can be reproduced exactly using

the method of hyperquantization.lz)

In particular, we
shall show that our S-matrix elements agree completely with
those of the ordinary theory. The theory presented below
has the advantages, however, that the Gupta-Bleuler inde-
finite metric need not be introduced, and that the proof
of covariance is greatly simplified as mentioned previously.
Furthermore, since we can demonstrate the exact agreement
of our S-matrix elements with those of the conventional
theory, it follows that conservation of probability
(unitarity) is satisfied.

Because in our formalism there is no field equation,
the conservation of "current” and gauge invariance have
to be reexamined. We shall investigate these problems as
well as deriving Dysons equations for propagators and the
vertex, and the Ward-Takahashi identity.

In order to establish the notation to be generalized
to the electromagnetic-spin 3/2 interaction in Chapter 4,

we shall repeat some of the arguments of Chapter 2.

3.1 Formulation

We shall formulate the quantum electrodynamics of
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*
a spin 1/2 field. ) The first step is to introduce the
creation and annihilation operators depending on points

in four-dimensional Minkowski space and satisfying the

relations
(a (x), af(y)} = 6,58 (x-y) (3.1.1)
' t (4)
lcu(x). c:(y)] = éuv6(4)(x-y) (3.1.3)

with similar commutators or anticommutators vanishing.
Here a and B are spinor indices and u and v are vector
indices with all indices running from 1 to 4. We have
assumed the relation between spin and statistics. The
creation operators a:(x), b:(x) and c:(x), together with

the vacuum Qo defined by

aa(x)ﬂo = 0 , (3.1.4)
bu(x)ﬂo = 0 , (3.1.5)
cu(x)ﬂo = 0 , (3.1.6)

can be used to establish a general Fock space. This Fock

space is then given physical significance by restricting

") Note that in this formalism the Gupta-Bleuler in-

definite metric can be avoided. This was conjectured by

H. Umezawa.
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the states O to satisfy the conditions,

(ya + m) a(x)2 =0, (3.1.7)
b(x)(-yd + ma =0 , (3.1.8)
Dcu(x)n =0, (3.1.9)
aucu(x)n =0 . (3.1.10)

These states can be explicitly constructed by using the

spinor and vector wave functions satisfying

(yo + m)u;r)(X) =0
r,s = 1,2 (3.1.11)
(ya + m)vés)(x) =0

and

t=1,2,3,4 (3.1.12)
(t) -
au “ku (x) 0

together with the normalization and closure conditions

1]dox(x)u(r)(x)yxu(r ) (x) = 20(p)6 o8 (pp') 4 (3.1.13)
ifdo, (x)v(')(x)yxvé' ) (x) = 2u(p)é .8 (pp") (3.1.14)
-ildox(x)ukt)(x)(a -3 )u,“t ) (x) = 2|k|gy 8 (K-k*), (3.1.15)

2173127 w{F el e = sitya-ma ™ (xext) = 18 x=xt),
(3.1.16)



3
-1 Iy v;s)(x);;s)(x')= £ iya-m)a ™) (x=x) = 187 (xexts
8 -

(3.1.17)
3
a3k (t) . =(E) 0y = (+) o
{ I’ﬂ?f Uy (x)u, (x*) i ‘auo p'" (x-x'), (3.1.18)
wvhere
alr) (x) = o0 yy (3.1.19)
P P 4
= (8) oy o (87 '
vq (x) vq (x)y‘ R (3.1.20)
* .
= () 1y = o(t)
Sest ) = uyg (x)g,, - (3.1.21)
For this purpose, we define
('t 4 t,. (D)
A = fa'x a (xju "' (x) (3.1.22)
P P
+ 2 -
a® o _jatx 72 o’ ), - (3.1.23)
q q
w?t P P )
Cy = Ja¥x e (x)uyy (x) . (3.1.24)
Bquations (3.1.1) to (3.1.3) then imply
t
(atx), A =ufF (3.1.25)
P P
+ .
{(b(x), n;" ) = -v;')(x) , (3.1.26)

* .



Hence we find, with the aid of (3.1.11) and (3.1.12),

- (ya+m)a (x) Aé"* - Aér)*(ya+m) a(x) (3.1.28)
-b (x) (-y3+m) aé”* - nés’* b(x) (-y3+m) , (3.1.29)
and

c,, (x) cét’* - cét)* Oc, (x) - (3.1.30)

Since the vacuum Q2 defined by (3.1.4)-(3.1.6) obviously

gatisfies the restrictions (3.1.7)-(3.1.10), the vectors

.n(m:nzl) H Q(plrl,...pmrm; 93898} kltl"'kltt)

+ +
[ (t;) m (r.) n (8,)
L L 1 i T A d 1B F R
/IT /ol /n1 i=1 i j=1 Pj k=1 %

(3.1.31)
will also satisfy those conditions and will be referred
to as the physical states of the system. The proof
involves only the repeated use of (3.1.28)-(3.1.30).

As was shown in Chapter 2, these vectors are
eigenstates of the energy-momentum and charge operators

P, = - %]d‘x {a?(x)(au-su)a(x) + b*(X)(au'su)b(x)

t -
+ cp(x)(au Su)cp(x)) ) (3.1.32)

27



and

Q= e[d‘x {a*(x)a(x) - hﬁ(x)b(x)} ' (3.1.33)

which satisfy the relations

-1 aua(x) = [a(x), Pu] ' (3.1.34)

-1 aub(x) = [b(x), Pul ' (3.1.35)

-1 aucp(x) = [cp(x), Pu] ' (3.1.36)
and

e a(x) = [a(x), Q) . (3.1.37)

-e b(x)= [b(x), Q) . (3.1.38)

As indicated in Chapter 2, the norm of the vectors
(3.1.31) is infinite. To render the states normalizable
we define a set of dual vectors given by

t t t
()" m ,(tj) n .(s,)

ék n A nBs )

Q(minst) =
i jm=1 Py k=1 Ix ©

1 1 1 ;
/IT /al /nl  i=l
(3.1.39)

with

()t
aér) - lim 1I°dox(x)a*(x)y‘yxuér’(x) . (3.1.40)

[+ Rand

t+ t
a(s) (s) +
Bq = ‘l,u-ifodax(x)vq x)y,b" (x) (3.1.41)

28
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*
3t = 1im -ijodok(x)c:(x)guv(ax-sk)uét)(X) . (3.1.42)

o+®

By virtue of the normalization conditions (3.1.13)-(3.1.15),

the above operators satisfy

cie') Loty _ oate gty o
(Ags ', ag ) (By% "4 B ) 20(p) 6,16 (p-P")
(3.1.43)
1.
At t .
lCé. ’, c; ') = 2|k|gyy 8(k-Kk") (3.1.44)

from which it follows that the physical states satisfy,

for instance, the orthonormalization conditions

(itpr: ), alp'r's 5)) = 2w(p)é . 8(p=p') (3.1.45)
(@G( 3q8:), 0(;q'8'3)) = 2w(qg)d .. 8(g=a") (3.1.46)
@ s skt), 80 sk't'))= 2|k|g 8 (k=K . (3.1.47)

The following remarks are in order. The wave
functions satisfying the first of equations (3.1.12) with
the normalization and closure conditions (3.1.15) and

(3.1.18) may be written

u::)(x) - (2n) 32 e:t)(k) eikx (3.1.48)

(1)

where e‘l and etz) are two space-like vectors perpendi-

cular to ku' and
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k + n (nk)

(3) () =
e,V (k) = Hmpfy— (3.1.49)
e:‘)(k) =n, ’ (3.1.50)

with n, a unit time-like vector. Equations (3.1.48)-
(3.1.50) indicate that uéa)(x) and ué:)(x) will not
satisfy the second of equations (3.1.12) separately.
Consequently, the state constructed in (3.1.31) will not
satisfy (3.1.10) unless we restrict ourselves to t, t' =
1,2, and take a certain linear combination of t = 3 and

t = 4. In any case, we have

@ skt), BG k't)) =2]k|6, 8 (k-kK"), t = 1,2,
(3.1.51)

which is positive-definite.

Notice further that the definition of the dual
vector which gives the orthonormalization conditions
(3.1.45), (3.1.46), and (3.1.51) is not unique. For
instance, we may add to the vector ﬁ(pr; ;) the quantity

&) (or; 1) = fJadx a*(x)y4yxu;"(x)aAA(x)no, (3.1.52)

where A(x) is an arbitrary scalar which vanishes at
|x]+=. This will not affect the normalization (3.1.45)

because



(5(1) (pr;: ). a(p'r's 3))

(") (x)0,)

- (QO.IG‘XSAA(X)GQI)(X)Yxa(x)Ide'a*(x')up.

= -fa%xA (x) axﬁér)(x)vxu;f')(X)

- —fatxn )8 {F) o) [yaem) - (~y§m 1ulT) 0

u
P

=0 . (3.1.53)

We shall eliminate this arbitrariness by requiring the
states fi to satisfy the conditions

ax)fi = b(x)fi =0 for X, o . (3.1.54)

The meaning of this condition will become ciear in the
discussion of gauge jnvariance. With this restriction
the dual vectors are given uniquely by (3.1.39).

For the discussion of interacting ficlds we intro-

duce the field operators

- 4 -y)c'

Au(x) cu(x) + [a"y D (x y)c"(y) ' (3.1.55)
six) = atx) - ifa'y sctx-y)b*(y) . (3.1.56)
$(x) = -blx) - ifaty atis ty-x) o (3.1.57)

which obviously satisfy

lAv (x), A\O (x) ] = 0o o (3-1-58)

31
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Wix), viy)) = (p(x), vy} = ($x), J(y)} =0, (3.1.59)

and also

Dhu(x) = Ucu(x) + ic:(x) ’ (3.1.60)
auhu(x) = aucu(x) +i[d4yach(x-y)c:(y) . (3.1.61)
(ya+m)y (x) = (ya+m)a(x) - ib' (x) , (3.1.62)
3 (x) (=y5+m)= =b (x) (-y5+m) - ia' (y) . (3.1.63)

As is readily verified, the non-vanishing matrix elements

of Au(x) are given by

, ()
(nol Au(x)n(o itk)) ukl-l (x) (3.1.64)

vt

@G ostk), A xI0,) = Gét’(x) - ult g, . (3.1.65)

so Ai(x)(1-1,2,3) and A‘(x) are hermitian and anti-hermi-
tian respectively when sandwiched between 0 and fl. In
the same way we find that 5(x)y‘ is the hermitian conju-
gate of ¥ (x) when sandwiched between states.

The interaction between y (x) and Au(x) can be dealt

with as follows: Defining
I(x) = -ievxv(x)hx(x) ' (3.1.66)

f(x) = -ie 3(x)yxax(x) , (3.1.67)



3, (x)=-ie ﬁ(x)yxw(x) ' (3.1.68)

we impose the following field conditions on the state

vectors
{-(ya+m)a(x) - I(x)}¥ =0 , (3.1.69)
{(b(x) (-=y§+4m) - I(x)}¥ =0 (3.1.70)
(e, (x) - I, )Y =0, (3.1.71)
(3,6, 0 - Jatya D (x-y)3, (x)}¥ = 0 (3.1.72)

which may be rewritten

(- (ya+m) ¥ (x) - T(x)}Y = ivt (x)y (3.1.73)
(=¥ (x) (-ya+m) - T(x))}¥Y = iat (x)y , (3.1.74)
+

gt ) Cira ot
(auhu(x) Jja yd D (x y)Ju(y)}V ifa yach(x ylc, ()Y .

(3.1.76)
as a consequence of (3.1.60)-(3.1.63).
" As in Chapter 2, we construct the states Y expli-

citly. They are given by

Yy = 84 , (3.1.77)

with
8 = exp [-i(H + ﬁo)l (3.1.78)

33
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where

A= fa'x 3 a0 (3.1.79)

ﬁo being a c-number constant such that

(ﬂo, SQO) =1 . (3.1.80)

To verify that ¥ given by (3.1.77) satisfies (3.1.72) for

instance, we note that
1] 4 ' '
[3,c,(x), H] = [ax'3 (x")3 [c, (x), A, (x')]
= ifa*x'3_ (x")3 D_(x'-x) (3.1.81)
v v ec

from which we find
exp(iH)aucu(x)exp(-iH)

= 3ucu(x) - iaulcu(x)c H)

‘ 0 (] .
= aucu(x) + [d"x ach(x-x )Ju(x ) . (3.1.82)

Since Ju(x) and H commute as a consequence of (3.1.58) and

(3.1.59), we obtain with the help of (3.1.10)
- ‘ _ L
[aucu(x)exp( id) - [a yach(x y)Ju(y) exp(-iH))Q

- exp(-iﬁ)aucu(x)ﬂ =0 , (3.1.83)

and hence (3.1.72).

It is this quantity § whose matrix elements Qetween
Q and @ agree with those of the S-matrix in the usual quan-
tum electrodynamics. We shall postpone this argument until

later.
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3.2 Current Conservation and Gauge Invariance

The fact that there is no field equation for ¥ (x)
and Au(x) casts some doubt upon the validity of current
conservation and gauge invariance. We may expect that
the current Ju(x) would be conserved when operated on
the state vector Y on account of the field conditions
(3.1.73)-(3.1.76) . However, the situation is not as
simple as one can hope, since the field conditions (3.1.73)-
(3.1.76) have non-vanishing terms on the right hand side
which have no counter part in field equations in the
Heisenberg picture in ordinary quantum electrodynamics.

Indeed, if we calculate anJu(x)Y, we obtain

9 Jv(x)v

" -ie ;(x)yu(au+§u)W(x)Y

= fe ¥(x) (- (yd+m) + (-y§+m) Yy (x) ¥
= ie p(x){I(x) + ibT(x))y
+ 1o px)(I(x) + iaT(x))y
e (afxatx) - BT x)Bx)}Y
+ 1efaty atis ty-xibT o0y
- tefaly ats_x-yipTip)r . (3.2.1)

Thus we see that the "current® is not conserved in the

ordinary sense. However, if we multiply (3.2.1) from
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the left by  and make use of the condition (3.1.54) we

obtain

(Q,auJu(x)Y) =0, X, ¥ =, (3.2.2)

which corresponds to the condition of current conservation
in the usual theory. The exclusion of the point X, ==
causes no trouble as will be seen below.

Next let us investigate what analogue the gauge
invariance of ordinary quantum electrodynamics has in
our formalism. For this purpose it is convenient to use
() n

]
a different set of vectors e:t) in place of eu

(3.1.48). The new vectors are given by

el)' o) (3.2.3)
] H
(2)' _ _(2)
e! e! , (3.2.4)
. 3
el u Ll (. M)y o ¥, (3.2.5)
u /2 ¥ M vZ (nk)
. k + 2n_(nk)
el oL (oM, M)y v ¥, (3.2.6)
u /72 ¢ ¥ v/Z (nk)

and the wave function is now expressed as

u{:"(x) - (21)"3/2 eL"' R (3.2.7)

In this case the second of equations (3.1.12) eliminates
only the t = 4 component of the wave function so that

may now contain states with t = 3. 0 may be written as
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Q = nTxn‘3’ , (3.2.8)

where QT contains only particles described by the wave
functions uét'z)(x), and 9(3) only those described by
uéz)(x). We expand 9(3) as

a3 2o+ fa*keM o) + fa3kfadk c P,k ) ok kD He e,

(302.9)
with
s = fatxe! v o,
ok, k') = ]d‘xc:(x)ué:)(x)[d‘x'cz(x')ué{l(x')ﬂo,
etc. (3.2.10)

As is easily verified, the states (3.2.10) have zero norm
so that the expansion coefficients in (3.2.9) are arbitrary.

Taking fi to contain no particles we obtain, using
(3.1.55), (3.2.5) and (3.2.8)-(3.2.10)

@, “u(*)“) = [d3k(no, Cu(x)]d‘X'c:(x')uéa)(x')Qo)C(l)(k)

+ Ja% (@, 1-1]do, (x1533) (x*) (2,-F )e, (x*)]
« 1fatyo_x-yrct (nae o
Jatkic ™M wrutP ) + ¢ 005 oo
e a2k —2— (¢ pok o s )k e 1R%)

vZ (nk)
= 3, Ax) (3.2.11)
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where
V2 (nk)
(3.2.12)
Obviously
OA(x) = O .

From the above calculations it is seen that what corres-
ponds to the arbitrariness of gauge of the electromagnetic
potential in ordinary theory is the arbitrariness of the
expansion coefficients C(l)(k) of (3.2.9) in hyper theory.
Denoting the second term in the expansion (3.2.9)

by 0(1) we may calculate the following two quantities:
' 1 3, ~(1 an 4 1 3
(i, 560y = a ke M k) @iy, sfa xcu(x)uéu’(xm,r)
- -1fa’kfatxc V) ) (g, 3, (x)sagugy) )

ky

4 []
= -fa%" (Rg, I (x)80y)

2,1 (2n)"¥2[a% —2— c'V) (x)et*¥)
72 (nk)

4_ 1
= [a"x m.r.auau(x)snr)

-3/2,,3 1l (1) ikx
{(2%) da’k ———=—— C (k)e )
I /2 (nk)

(3.2.14)
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A.A(l) . '(3)
(e, sag) = (g, (-ifdo, (x)up™ (x) (2,-5,) ¢, (x) 1Sy

4 a0 -3/2.3 1

- - A" %x(0.,3 J (x)80,) [ (27) da’k
T uw T I /% (nk)
x c)* ()eikxy | (3.2.15)

where use has been made of the commutation relations

(s, c*(xn = -1 8J (x) , (3.2.16)
u u
4 ' -
[cu(x), S) = S]d X Ju(x )Dc(x‘ x) . (3.2.17)

Eqs. (3.2.14) and (3.2.15) together with (3.2.12) yield

& (1) a'2(1) 4. Q"
Qg S6 " 'fg) + (e ", S0p) = ja *(“r'au"u""s"r“‘-("’ .

(3.2.18)
If we assume that A(x) satisfies
A(x) =0 for |x| + =, (3.2.19)
then (3.2.18) and (3.2.2) give us
By, seMag) + @M, sap = 0. (3.2.20)

Therefore, from (3.2.8) and (3.2.9), the S-matrix element

between two arbitrary states and ' is given by

@, 5) = (B, say + (By, se‘Mag 81, sap)

.3
- (@, 82y) . (3.2.21)
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which shows that our S-matrix is "gauge invariant® in

that it does not depend on the arbitrary function Alx) .

3.3 Dysons Equations and the Ward-Takahashi Identity

Having investigated gauge invariance and current
conservation, we now derive Dyson's equations as well as
the Ward-Takahashi identity. Hereby, the equivalence of
our formalism to the ordinary theory is established.

We first note the equations

- (ya+m) (¥ (K)F (DY) =80, 1T (¥ + 18 ey

(3.3.1)
4 .
DR, A, (A (YY) = (85,3, (XA, (Y)¥) + 16,84 x-y),
(3.3.2)
0. (8 A (A, ()Y ) =13 84 (x-y) (3.3.3)
pro'u v o v

which follow from (3.1.69)-(3.1.72) and (3.2.1). If we

define
-1 B (x-y) = (B W (X)IF (YY) (3.3.4)
]
10l = (A, A A (Y (3.3.5)

4 2,4 2 4 " Yoy "o ' - ' ‘.
iefax'a"y'da"z s _(y-y')T (y'-x’'ix 2')8 (z'-2)D_, (x x)

= (B, A IV(YIVEIY) (3.3.6)

and substitute these into (3.3.1) and (3.3.2) we obtain
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(ya+m)s;(x-y)- ]d‘x'{‘(x—x')sé(x'-y)+ s ) (x-y), (3.3.7)

' (xev) = [dd%" -x')D" - (4) (-

D¢, (x-¥) = 7T o (x=x")Dg , (x'=y) + 8,6 (x-y)
(3.3.8)

where

2*(x-x') = -iezjd‘yd4z'yus;(x-x')rv(y'-t; z'- x')

x D;vu(z'- x) , (3.3.9)

nuv(x—x')-:iezjd4y'd4z' Tt[yusé(x-y')rv(y'-x'; x'-2z')

x s;(z'- x)] . (3.3.10)

I1f we transform (3.3.7) and (3.3.8) into momentum space
and divide by (iyp+m) and kz, respecéiQely, we arrive at
Dyson's equations for the propagators and the vertex.

In order to derive the Ward-Takahashi identity, we

use (3.1.72) to obtain

Oau(no. Au (x)v(y)wz)vo) = (Qo. v(y)w(z)auJu(z)Yo)
(3.3.11)

If we now use (3.2.1) and shift the creation and annihila-

tion operators to the left we arrive at

03, (R, A, (x)¥ (y)¥ (2)7,) = -e (@, v 21 )64 (z-x)

reay, v 2r )6 iy-x) .
(3.3.12)
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Then substituting (3.3.4) and (3.3.6) and transferring

to momentum space we have finally

=1

-1
1Pv(p: q)(p-q)v =S, (p) - Sc (q) ., (3.3.13)

which is just the Ward-Takahashi identity.l)
From the above it is seen that our formalism is
completely equivalent to Dyson's. Therefore the re-

normalization program can be carried out in exactly the

same manner.

3.4 The S-matrix

We shall now show that the matrix elements of the
quantity S defined by (3.1.78) with (3.1.79) agree with
the S-matrix elements in the conventional approach to

quantum electrodynamics. Using the commutation relations

t
e, x), i) = with (3.4.1)

(t) 40p (x-y)ct - 3
(&), (1fa%yp (x-y)c (¥)}]) = Uy t(x) ,  (3.4.2)

we find that,

(' (s 3qy...q0), ¢ A (A (X)) 2 20 1gy...qy))

n . ,
- 121 jzl (l-Gij)(ﬁ'(i 'qIOOoq-)' ﬂ(} ,qloa.qj-l'

(tj) (ty)
qj+1"'qi-l' qi+1"'qn)’ukju (xl)ukiv (x,)
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n m
+ ILIT: M- DU LR M X I 1 SPRY PR
121 jzl 1 j-1¢ 95+41°°*Wm 1 i-1

_(t;) (ty)
Jare e Ond gy B2V oy O

n m
+ ] @G :qi...q;_l, q3+1-..q;). Q0 3dy...Q5_ 10

i=1 3j=1
-(t:'j) (ty)
qi+1"'qn))uk;u (xl)“kiv (x,)
n ° ’ ' ' . '
+ 121 jzl(l-éij)(n (: ;qlocoqj_ll qj+1...qi_1,
. (k) ()
q1+1---qm). ¢ ’ql"’qn))“kiu (”1’“k5v (x5),

where the q's indicate specifications of both k and t.
Comparison with the similar equation for (ﬁ(; qu...qn). H

Av(xz) Au(xl) : Q' (s ;qi...q;)) yields

(ﬁ-(; ;qi...q;), : Au(xl)AV(xz) : Q0 'ql"‘qn))'

= B0 aye..ay) et Ay (XA (X)) R G 1ay. e ag)) 90,90,
(3.‘03)
In general we have

@, Au

(xl)Auz(xz)...Aun(xn) : Q)*

1

- (8, : Apn(xn)-..npz(xz)hpl(xl): 2 )qpnun---qplul .

(3.4.4)
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Moreover,it follows from (3.1.55) that
Au(xl)Av(x2)= : Au(xl)Av(xz): + iDc(xz-xl)Guv ¢ (3.4.5)
and in general

Avl(xl)huz(xz)...h (xn) = 3 Au (xl)...Au (xn) s +

M l n

n

iDc(xz-xl) : Au (x3)...Au (xn)-: +..0. (3.4.6)

3 n

Therefore, the product of operators on the left side of
(3.4.6) corresponds to the chronological product of the
interaction picture operators in ordinary field theory.

In the same way it can be shown that @(x)y4
behaves like the hermitian conjugate of y¢(x) when it
occurs in a normal product sandwiched between Q and {,
and that the Wick expansion in normal products holds for
products of these operators.

From the foregoing discussion it follows that the
matrix elements of the operator S in (3.1.78) agree with
the S-matrix elements in the usual theory. We shall
demonstrate this agreement to second order.

The second order term in the expansion of our S-

matrix is given by

2
(2) _ (-e) 4 4. .2 .o .
8§ = 1—77- [a®x,a Xg3W (X)) Y ¥ (X1)A (%)) 330 (%)Y ¥ (X)), (x;):
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2
- gl jatx atx, (s A (x)DA (x)): + 4D, (xy-x)) 6 )

x{-b(xl)yua(xl) - i!d‘y1b+(Ylhhsc(xl-yl)b(xl)

1jd‘zla*(zl)yusc(zl-xl)a(xl)

4

*
faty atz a" (z))y 5 (2;-x))8 (x) -y )b (v)))

x

(-blx,)y alxy) = ifaly,p iy )y 5. (x,my,)bixy)

1fatz,aT(z,)y 5 (2p-x,)axy)

t t
- d‘y2d4zza (zz)yvsc(zz-xz)Sc(xz-yz)b (y,)}

- l:%%i jd‘xld4x2{: Au(xl)AV(xz) : + icuvbc(xz-xls}
x {5 k)Y ¥ () )9 (X)) Y0 (X)) 1 =18 (x)=X))
x 19lx))y, v b (X))
+ 18 (x,-x,) yuv(xl)i(xz)yv:'fSc(xl-xz)sc(xz-xl)yuyv).
(3.4.7)

where we have used equations (3.1.55)-(3.1.57) and (3.4.5)

along with the easily derived relations

i(xl)t(xz) = 3 3(xl)t(x2) 2 + 18 (xy-%)) (3.4.8)
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and
V(X I0(xy) = 2 vx))0(xy) : = 18, (x)-x)) . (3.4.9)

Prom (3.4.5), (3.4.8) and (3.4.9) we see that the contrac-

tions of the various field operators are given by

W(xl)w(xz) = isc(xz-xl) ' (3.4.10)
v(xl)W(xz) - -isc(xl-xz) ' (3.4.11)
A (xl)Av(xz) = i&uvbc(xz-xl) R (3.4.12)

and in the same way we find

) )w(x) )0 (x))¥ (xy) = S (xymx) )8 (x)-x,) (3.4.13)
| SSmSSS— |

putting (3.4.10)-(3.4.13) in (3.4.7) we see that to second
order our S-matrix elements agree with those in ordinary
quantum electrodynamics.

From this agreement of the matrix elements it
follows that our S-matrix satisfies conservation of pro-

bability; i.e.,

1@, sa)vd . sa)) = (@, 9)) , (3.4.14)
n

g(ﬁz. sa ) (f,, sa)* = (A, 0)) , (3.4.15)
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corresponding to the unitarity of the S-matrix in the usual
theory.

We have applied the general theory developed in
Chapter 2 to the quantum electrodynamics of a spin 1/2
field and have shown that the matrix elements of our S
agree with those of the conventional S-matrix. We have
also shown that the formalism is gauge invariant. Dyson's
equations for propagators and the vertex, and also the
Ward-Takahashi identity have been derived. One advantage
of our formalism is that the indefinite metric does not
have to be referred to. We note, however, that it is very
difficult in our formalism to prove the spectral represen-
tation of propagators. This is because the causal propa-
gator appears directly in our formalism without referring
to the positive and negative frequency propagators. A
proof of the spectral representation is usually carried
out by asserting that the positive and negative frequency
propagators separately satisfy the spectral representation
and then combining these two to form the causal propagator.
We cannot use this argument here.

Now that we have demonstrated that the electromag-
netic field can be hyperquantized consistently in a gauge
invariant manner, and indeed that the results of quantum
electrodynamics can be exactly reproduced using this
formalism, we shall proceed to apply this technique to
the electromagnetic-spin 3/2 interaction where ordinary

quantization procedures fail.
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4. THE ELECTROMAGNETIC-SPIN 3/2 INTERACTION

In this chapter we shall apply the technique of
hyperquantization to the system of an electromagnetic

field coupled to a spin 3/2 field.'?)

This system
presents problems when handled using conventional quan-
tization procedures as will be explained shortly. We
shall see that the difficulties inherent in the use of
the ordinary theory will not arise in our formalism.
However, the proof of probability conservation (unitarity)
is not as straightforward as it was for the electromagnetic-
spin 1/2 coupling. This is because we cannot compare our
S-matrix clements with those of the conventional theory
since the latter have not been found. No general proof
of unitarity has been forthcoming. In this chapter we
demonstrate it to lowest order in the perturbation expan-

sion.

4.1 The Johnson-Sudarshan Inconsistency

The system of a spin 3/2 field interacting with an
electromagnetic field cannot be quantized by conventional
methods. The reason for this was pointed out by Johnson

and Sudarshanz)

and is explained below. A knowledge of
the explicit calculations involved is not necessary for

an understanding of this thesis and will not be given here.
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The reader wishing a detailed knowledge of these calcu-

lations is referred to the original paper.z)
According to the Schwinger's action principle,14)

the variation of the action integral over a volume bounded

by two space-like surfaces may be expressed as

o
2
§ | a%x L(x) = Gloy) - Gloy) (4.1.1)

%
where %, and o, are space-like surfaces bounding the volume
of integration, £(x) is the Lagrangian for the system, and
G is the generator of the transformation giving rise to the
variation. Thus, the variation in the field operators

undergoing this transformation is given by
Svw(ix) = [y(x), G] . (4.1.2)

Equations (4.1.1) and (4.1.2) will determine both the
equations of motion and the field commutation or anti-
commutation relations.

Under Lorentz transformations the Rarita-Schwinger
field has components which transform as spin 1/2 and spin
3/2 fields. It turns out that these components are not
independent, but are related by equations of constraint.
Therefore, the variations of these components cannot be
done independently in (4.1.1). Taking the constraints

between these variations into account, Johnson and Sudarshan
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have shown using (4.1.1) and (4.1.2) that, when the
Lagrangian Z{x) contains coupled electromagnetic and

spin 3/2 fields, the requirement that the anticommutators
of the fermion field operators be positive definite demands
that

m? > 2 [e | (4.1.3)

everywhere. Here m and e are, respectively, the mass and
charge of the fermion field and H is the magnetic field
intensity. However, we can always find a Lorentz frame
in which (4.1.3) is violated. So we have an inconsistency
when ordinary quantization procedures are applied to this
system.

Now, as we have seen previously, the field commu-
tators or anticommutators are fixed at zero in the formalism
of hyperquantization. In the case of the electromagnetic-
spin 3/2 interaction, therefore, the aforementioned diffi-
culty of negative anticommutators will not arise. 1In the
following sections we shall investigate the hyperquantiza-
tion of this interaction to determine whether other incon-

sistencies are present.

4.2 Pormulation

Let us consider the interaction of the Rarita-
Schwinger and electromagnetic fields. The electromagnetic

field can be hyperquantized in a gauge invariant manner
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as was shown in Chapter 3, and no further discussion on
this point will be given here.
As usual, we begin by introducing the creation

and annihilation operators obeying

(a(x), a:(y)} - 6006(4)(x-y) , (4.2.1)
by, i) = 8 8 ey (4.2.2)
(cu(x). c:(y)l = Guv6(4)(x-y) ' (4.2.3)

with similar commutators or anticommutators of other
operator combinations vanishing. Here u,v,0, and p

are vector indices running from 1 to 4, and spinor indices
have been suppressed. In constructing the above relations
we have assumed the relation between spin and statistics.

The vacuum state no is defined such that

aa(x)ﬂo = bo(x)no =0 , ‘ (4.2.4)

and this state, together with the creation operators, may
be used to construct a Fock space which is as yet not
connected with physical reality. From the states of this
space, we now select the physical states which satisfy

the restrictions



Aop(a)ap(x)ﬂ =0, (4.2.6)

bp(x)Apo(-Sm- 0, (4.2.7)

Oc (x)n =0 ,
U (4.2.8)

Ducu(x)ﬂ- o .

with?

- - 1 - 1 -

Aop(a) (yam)sop + 3-(10390- ypao) T Y (yo m)yp .
(4.2.9)

The operator (4.2.9) satisfies the identity

A(3)a(3) = d(3)A(3) =0 - m2 , (4.2.10)

with the Klein-Gordon divisor d(3) given byl)
a (3) = -(y3-m)($ -lvv 4o (v 3 - ¥,0
op op 3 Y%7 T 3m ‘Te% o’

2 2 2
- -3-1- aoapl - -3:5 (0O-m )[(Yuap - 1930)

+ (yo-m) vy, - (4.2.11)

The two oporatorsl)

; 1 1
ru.op - Yucop + k§ (chou + YDGDD) 3 YGYquc (4.2.12)

and

Moo * 9opY4 v (4.2.13)

52
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can be shown to satisfy the relations

M) - A(=T) = (3, + Su)ru , (4.2.14)

and

A1 = nac-a) . (4.2.15)
Moreover, the energy-momentum and charge operators,
I YL t - t -
P, slatxtal x) (0 -3 paj(x) + by(x) (3, § b, (x)

+ c{(x)(a -su)cx(x)} , (4.2.16)

M
and

4, (.t t
Q = efda"x {a_(x)a (x) = by (x)b,(x)} , (4.2.17)

are easily seen to obey

-iauao(x) = [ao(x), Pul ' (4.2.18)
-iavbo(x) = (b, (x), Pul ' (4.2.19)
-13ucx(x) = [c, (x), Pul ' (4.2.20)
ea (x) = la, (x), Q) (4.2.21)
-eb  (x) = (b, (x), Q] ., (4.2.22)
0 = [c,(x), Q . (4.2.23)

with similar equations for a:(x), b:(x), and cI(x). Por
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example, taking the Hermitian conjugate of (4.2.21)

gives

ea:(x) - [a:(x), Ql . (4.2.24)

The states 0 satisfying (4.2.6)-(4.2.8) and the

dual states {l are constructed from products of the

operators
(0 _ rabeat () ()
Ay Ja xag (x)ug (x) , (4.2.25)
()t _ _atey (8) bt
Bq ja XYoo (x)b_ (x) (4.2.26)
GM 4, 0 (E)
Cy = [aTxc (x)uy " (x) , (4.2.27)
and
syt _ t ()T (r)
A iidax(x)ao(x)rxlopupp (x) , (4.2.28)
~(r)t t (7 t
B, = 1£dox(x)vqo(x)rx'°pbp(x) ] (4.2.29)
()t t (t)
et - -iidox(x)cu(x)guv(ax-sx)ukv (x) , (4.2.30)

regpectively acting on the vacuum 158 in the same way as
in Chapter 2. The wave functions under the above integrals

obey
(r) - (s) -
Aop(a)upp (x) Aop(a)vqp (x) o, (4.2.31)

Dué:’(x) - 3u“£:)‘”’ =0, (4.2.32)
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together with normalization and closure conditions similar

to (3.1.13)-(3.1.18). For example

(r')

~1fao, ()G (E) Gar, ult) () = 20(R)8 8 (ppt), (4:2.39)

A,0p p'

P
o | (r) '(r) ("’) '
g 33757 ¥oo (x)us (x') = idop(a)A (x-x')

(4.2.34)

As in Chapter 3, the orthonormalization conditions for the

physical states can now be shown to be
(fpr; : ), R(p'r's 5 )) = 2w(p)é, .. 8(p-p")
@R ;as; ), 90 :q's'; )) = 2uw(g)s_ .8(q-9") .

@5 axL), 805 ak't")) = 2]k|8 Sk,

where

r,r',s,s' =1,2,3,4,
t't. = 1,2 .

" we now introduce the field operators

0 (x) = agx) + 1fa'x'a, @18 (x-xtIb](x*)

k4
é'),

;o(x) - —bc(x) + 1]d4x°a:(x')Ac(x-x')dpo(-
4 et
A, x) = c,(x) + ifa’x' D (x-x')e  (x')

for which we have

(4.2.35)

(4.2.36)

(4.2.37)

(4.2.38)

(4.2.39)

(4.2.40)

(4.2.41)
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(9 () ¥, (x)) = (Fg (x) 9 (x")) = (v, (%), ¥, (x*)} =0,

(4.2.42)

lhu(x).hp(x')l = lAu(x) ,wp(x')l = [Au(x).wp(:c')l =0,
(4.2.43)

To obtain the interacting states of the system, we

make the substitution 3 -+ 3-ieA in (4.2.6) and (4.2.7)
with the result

Ay, (320, (x) + 35 (x) - ib! (x)1¥ = 0 , (4.2.44)
v, (IR o -5) + 3, () - 1al (x))¥ = 0, (4.2.45)
where
Jo(x) = ~ie rk,op*p(X)Ax‘X) . N (4.2.46)
3, (x) = -ie § 0T, oAy (X) (4.2.47)

use having been made of (4.2.39)-(4.2.41). The states 4

satisfying (4.2.44) and (4.2.45) are given explicitly by

Yy = 82 , (4.2.48)
with

§ = expl-i(H + i;)l , (4.2.49)

B o= -fady v, o (4.2.50)

and “o a c-number constant such that

8y 800) = 1. (4.2.51)
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It is the operator S which corresponds to the S-
matrix in the conventional theory, and which will be

the object of discussion in the next section.

4.3 The S-matrix

From the foregoing formulation it can be seen that
the Johnson-Sudarshan difficulty, which besets the con-
ventional approach to the quantization of the Rarita-
Schwinger field, does not arise in the hyperquantized
formalism. This is because we fixed our field operator
commutation relations (4.2.42) and (4.2.43) at the begin-
ning, and we do not find Lorentz frames in which they
become negative. However, we are, as usual, faced with
the task of showing that the operator S, defined by (4.2.49),

satisfies
(. sa,)* (@, sa,) = By, 0y) (4.3.1)
n

corresponding to S-matrix unitarity in the usual theory.

We have thus far been unable to prove this condition in

general, and we content ourselves here with an explicit

demonstration to second order in the perturbation expansion.
Equation (4.3.1) is satisfied to second order pro-

vided that

@, s, + (0, s"’nl) =0, (4.3.2)



where, according to (4.2.49), (4.2.50) and (4.2.46),

2 -~ -~
g(2) . %r]d4xd‘y t $(X)T, ¥ (X)A, (x) P (Y)T ¥ (YA (y) = .

(4.3.3)
In the usual way, we can expand the matrix elements of

this operator in normal products to give
@, 5P,y = Latxaly @y, ¥ 00w 0§ "I v )
+ 15§00 1,3 ()8 (x-y) T, ¥ (y) 2
+ 15 (07T, A-2) 8, (x-y) Ty v (x) 5
+ Tr(3(-3) 8 (x-y)T,d(3)8_ (x-y)T )
x (A, (x)A (y): + 18, ,D,(x-y)10y) . (4.3.4)

In writing (4.3.4) we have used the contraction formulas

z -1

@y, ¥ (X)0 (y)In""0 ) = id ()8, (x-y) (4.3.5)
: -1

(B Vg (xXIn "9 (¥)8,) = =18 (-)8 (x-y) (4.3.6)

(0,0 A, (X)A_(y)R)) = 48 ,D (x-y) . (4.3.7)

Now, (ﬁl, 8(2)02)' is found by taking the complex con-

jugate of the above expansion and making the substitution

58
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1 — 2. To do this we note that, as shown in Chapter 2,
i'a(x)n-1 behaves as the Hermitian conjugate of ¥ (x) when
sandwiched between states in a normal product. Further-

more, using the relation
@ent = @™t = acn , (4.3.8)
which follows from (2.1.2) and (2.1.4), we find

-~ -1 o
(ﬂopwo(X)WD(y)n Qo)* = -ldpo( A (x y) o (4.3.9)

~ -1 3 *
(B ¥, (x)n Wp(y)ﬁo)* = idop(a)Ac(x-y) H (4.3.10)

and from (3.4.3) we have

(G0 :h, (OA_(y):0))* = gy g, (@), 1A (YIA (x):0)). (4.3.11)

Using the above formulas together withl)

=t t .- - = =
Tx - [nfxl gxpnrp gkprp ’ (4.3.12)

we can generate the matrix element

) §

2 -~ - j a»
@, 5200 = Spfatxaly (@, b n I @F 0TI V00

- 115(y)n'lf‘a(-a)A;(x-y)fﬂ (x) s

129 (x)n"1F,3(2) 8% (x-9I T w(x) s

+ 1r(F d(-3)8 (x-y) T d(3) 8 (x-y))

| ]
lth‘(y)hx(x)z - 16‘ch(x-y)lﬂl) (4.3.13)



60

The sum on the left hand side of (4.3.2) is obtained

directly from (4.3.4) and (4.3.13). The term in each

of these equations with no contractions is zero by energy-

momentum conservation, and will not be considered further.
We shall now investigate the terms in the sum

(4.3.2) and show them each to be zero. The first such

term we consider is

2 -~ -] e
1, = Sfatxaty:§ 0n T 0 )8 (AT v () :
x {iGKch(x-y) - iGKAD;(x-y)} (4.3.14)

where we have made the interchanges x «— y and x « ) in
(4.3.14), and sandwiching between ﬁz and Ql is implicit.
The quantity in curly brackets in (4.3.14) may be rewritten

*
16‘ch(x-y) - iéKch(x-y)

=18, (- 5 D) (x-y) - Bx-y) - 3 D) (x-y) + Bix-y))

KX[
- (1) ..

LY (x-y) (4.3.15)
where use has been made of the identityl)

D (x) = - %o‘“(x) -Bx) (4.3.16)

(1)

with the real functions D and D giveh by
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p) (x) = L fatx sxPrek® (4.3.17)
(2n)
Bix) = —Lpp [at Jet* (4.3.18)
en? =k

P denoting the principal part of the integral. Putting
(4.3.15) in (4.3.14) and noting the delta function in
(4.3.17), we see that I1 contains both fermions and the

photon on-shell and is therefore zero by energy-momentum

conservation.

Another term in the sum (4.3.2) is
e, 4 4. =, =1z

I, = 5fa"xa"y:¥ (x)n T,{id(3) 4 (x-y)

- 13(3)aZ (x-y) }T v (y)::A, (X)A _(y): . (4.3.19)
Por the factor in curly brackets above we have

®

13(3) 8 (x-y) - 1d(2)4_ (x-y)

= 130 1- 8 x-y)- Bex-y) - § 6V (xoy) + Bx-y))

= 3(3) &A1) (x-y) (4.3.20)

use having been made of the equationsl)

B (x) = - % 2 (x) - Bix) (4.3.21)
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2t (x) = ?;lyg [atps (p24m?)elP* (4.3.22)
n
) = —2o e falp s eipx (4.3.23)
(2n) I p_ +m

Equation (4.3.20) substituted into (4.3.19) indicates
that I, again contains three on-shell particles, and is
therefore zero. An identical argument shows that the

term

2 ~ - -
1, = & [atxaty:d (n I L D8 xy)

- 13(-3)87 (x-y) }T)¥ (x) : :A) (X)A (y): (4.3.24)

of (4.3.2) also vanishes.

We have yet to consider the terms which have two
internal lines. Let us first examine the one correspon-

ding to the fermion self-energy, namely
e2 [ .4_.4 - -1z = =
1, = - & Ja'xa'y @, 9 00T TT\ER)8 x-WIT ¥ y):
% 8,\Dc (x-¥)9,)
2
[ 4 .4 (r) - (r) -
- - -!-Id xd'y upl (x)fxa(a)bc(x y)fxupz (y)D (x-y) .

(4.3.25)

Making the substitutions

i ) - (20)"32 o17) (p)elP* , (4.3.26)
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-4,.4 1 ipx
. B (x) = =(2m) "Jd'p 55— e ' (4.3.27)
¢ I p2+m -ie€
D (x) = -(2m 4t F— ek* (4.3.28)
k- ie

and performing the integrations over x and y, we obtain

2
1= - S 72173 fatpatks (4) (k+p-p,)6 4 (p,-k-p)
n

t -
() dip) 5 _1_ (@
xw Ty 5= Ty T u gy

p +m-ie

(2n)
) o) a(i(;:f%)) Ful® ) ——
X u u .
3 S (k-py) 24m®-ic A 2 S

(4.3.29)

We can use (4.3.8) and (4.3.12) to show that the numerator

of the above integral is real as follows:
't = (r) t
(u (p,)T,dtip)Fiu™ " (p)))
e u® o) F g FupT g 0™ )
u P1' %) P ugux P1

t
= ul®) (e F AT uP pp . (4.3.30)

Por simplicity we shall examine the integral (4.3.29) in
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the particular frame P™ 0 and define the real quantity

(r)"'

L 6@ p-pu® T,

2
D(ik) = -[5
(2n)

x @i k-p;T,u'" (p)] : (4.3.31)

pl=0

Equation (4.3.29) then takes the form

D(ik) 1

i i (4.3.32)
o -k24zmk +k2+m2 ic k2+k2 -ie

3
I,= [a’k[dk

The denominator in the above integral can be split into

partial fractions in the form

2+ ie)k 1 K2+ ic 1
= . + [ Zm-k ] .
2m(5z+ c2) -x2+57-1e 2m (k+e 2) ° :;Z+zmxo+52-1e
(4.3.33)
so that
| ( D(ik)k,  D(ik)(2m-k ] }
1, [a%k c(x?) dak (4.3.34)
‘4 x5+k7-1e -_7¥2mx +k5-1e o
where
2
Gk = L e | (4.3.35)
- k +¢

The integrals in (4.3.34) are not convergent. We may,
however, put in a real cutoff which will not affect the

reality properties which are the objects of interest here.
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With this in mind, we shall perform the ko integration
indicated as though the cutoff factor were already
absorbed in the quantity D(ik). The first and second

integrals have poles at

ko= t(|k| - 16), $ = 3kT (4.3.36)

-~

and

ko- mz ( +m- - 1i8"')

=mz: (E - i8'), &'= ;% , (4.3.37)

respectively. Therefore, choosing to close the contours

in the lower half plane, we have

D(ik)k (4.3 )
= -xi[D(ik)] . 4.3.38
“k2ex2-1c ko= Ik] - 18 *
and

D (1k) [2m-k ] neEtis"

4o Y FemT S DEK) )y apep-ist E-IET

(4.3.39)

Putting (4.3.38) and (4.3.39) in (4.3.34) and taking the
limit ¢ + 0, we have finally

3
i 47k m-E
D R AL I s X

(4.3.40)
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which is pure imaginary. Consequently, the fermion self-

energy term in (4.3.4) cancels the corresponding term in
(4.3.13) when they occur in the sum (4.3.2).
The photon self-energy term in (4.3.4) is given by

2
1= & fatxaty @, Tr(@-2)8 x-pIF A8 x-1IT )

x :Ax(x)AK(y):Ql)

e (.4 4 = 3 = ()
= & fa%xa®y Tr(d(-2)a (x-y)T,d(2) 8, (x-y)T Jup, " (xduy, ().

(4.3.41)
Substituting (4.3.27) and
ut ) = (2m)~3/2 e:t)(k)eikx (4.3.42)
in (4.3.41) and integrating over x and y we obtain
=(t) (t)
L a2 € (k)e, " (k) 54 (kek®
5" 3 (k=k )
2(2%) [2w (k)]
o Tr@ep) T ddx-p)F}
. (4.3.43)

x Ja - —3 %
I P (p°+m-ie) [ (k-p) “m"-ic]

Now,
l;{t)(k)oit)(k)Tt(akip)fxa(i(k-p))f‘}lf
(t) 1y alt) 2 ) i
=e  (kle "' (kg , Tr(f g, 31 (k-p))Tg4,d(-ip))

=(t) (t) - -
= 8 re gt (k) Tr(d-ip) T atik-pnITg),  (4.3.44)
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where we have used the cyclic property of the trace.

Therefore, we may define the real quantity

< (t) (t)
e2 e, (k)e.< (k)

R(ip) = . 5 64 (k-x*)Tr(d(-1p) T,d (4 (k-p)IT ),
2(2n) (2w (k)]
(4.3.45)
and rewrite (4.3.43)
(p“+m“~ie) [ (k-p) “+m“-ie)
(c, (p)p..+ c,(p)IR(ip)
- Idap {Idpo 1'% (o} 2'%
“Pt W- ie
[c,(p)p.+ c,(pP)]R(ip)

-pi+ 2up_+ We- 2k.p-ic

where the final form was obtained by splitting the deno-

minator into partial fractions, and where

w =k =/ X2, (4.3.47)
W= /§5+ 2 , (4.3.48)
e, = -¢; = 3¢ (wlw®W?- x.p?) + ¥} , (4.3.49)

1

2.2
€, = wp {(k.p) [wW

- ®k.p?) + ik.pre} , (4.3.50)

ey = 35 1203 k.p1WBWP-(x.p)?s 10?120%-K.plc), (4.3.51)
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with
b =otwt +e?) - ket . (4.3.52)

The first and second integrals in curly brackets in (4.3.46)

have poles respectively at

€
po i(w-iﬁ) ’ G'ﬁ ’

and

Po= + (JGQ- 2(5.2) + ;5 - i§' , 6' = 2 .
2/E%-2 (k. p) +w?

Consequently, if we note that the quantities defined by
equations (4.3.47)-(4.3.51) are real in the limit as ¢+ 0,
it follows that I5 is pure imaginary by the same procedure
as was used to obtain (4.3.40). This means again that in
the sum (4.3.2) this term will cancel the corresponding
term from (4.3.13).

As a final point we note that the terms in (4.3.4)
and (4.3.13) with no external lines need not be considered
since they will be eliminated by an appropriate choice of
H, in (4.2.49) so that (4.2.51) is satisfied.

This completes the demonstration that to second
order in the perturbation expansion conservation of pro-

bability is satisfied. No complete proof of untarity has

been forthcoming and it remains an interesting problem for



further investigation. It is an interesting point that
the demonstration given depends on the spin-statistics
relation (2.2.38) being satisfied. Otherwise, for example,
we could not show that @(x)n-l behaves as the Hermitian
conjugate of ¥ (x) when sandwiched between states in a

normal product.

4.4 Spin 3/2 Compton Scattering

It is desirable to give an example of a practical
calculation using the foregoing formalism. For this
purpose we shall consider the simplest interaction between
the electromagnetic and spin 3/2 fields, namely the scat-
tering of a photon from a spin 3/2 particle with a spin
3/2 intermediate particle. From (4.3.4) the matrix element

for this interaction is

<Q'(p'r'; :k't')|s|a(pr; ;kt)>
- fa'xady<h (p'r's sk't) |ie?:§ (xm T 3 (3) 8  (x-y)
x B yly)::a, (A _(y):]f(pr; ikt)> (4.4.1)

where p,p',r,r',k,k',t, and t' are the initial and final
fermion four-momenta, the initial and final fermion spins,
the initial and final photon four-momenta, and the initial

and final photon spins respectively.
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Now from (4.2.25)-(4.2.30) we have

<a|| = <ﬁ(por|, :k't')l - <nolxéf')é’£?')
- <_|[-ifdo @ @F  a (@
ol Tl P’ H,0p P
£y
o x [=ifdo(x)u X2, =3 )g, S (x)] (4.4.2)
t ot
o> = |a(pr; :kt)> = Aér) ¢\ |

4 1 (x) 4+ (t)
[fa"za  (z)ug (z))[[@"xc (x)uy (x)1|a>. (4.4.3)

Substituting (4.4.2), (4.4.3) and (4.2.39)-(4.2.41) in
(4.4.)), and making use of the commutation relations
(4.2.1)-(4.2.3) as well as the conditions (4.2.4) and
(4.2.5), we obtain

i'|s|a> = iezjd‘xd4y

x [do, (z) (£ )F 8 (203 (-2)F,d )8, (x-p)T 0T (y)
I o, (z)ug, 2)T 8 (z-x A o (x=y)T u "ty

t

N ,
x ful® o fao, xuft)) (x50 (y-x" g,

f <+
+ uéz)(y)ldcv(x')néfzbd(ac-a;)bc(y-x')gpxl

4 4, t(r") (r)
= [a"xd yu,, (x)F,d ()8, (x-y) T u " (y)

et

N Yyl ), (a4

ot
« oy ot w4 ug




where use has been made of equation (2.1.22). In (4.4.4)

we now make the replacementsl)
i () = -/1% ul®) (p) &iPY , (4.4.5)
uéf')f(x) - -/1% u(r')*(g') eiP'x | (4.4.6)
u¥) (x) = % et) olkx , (4.4.7)
GH 1 (') -ik'y , (4.4.8)

Uk W= S e

d(2)8,(x-y) = - (2—1)7 Ja'p elPxY) —2-3—‘m-§P-iL ¢ (4.4.9)
" p -ie

where V is the volume of quantization and w and w' are the
initial and final photon energies respectively. On per-

forming the integrations over x and y, we have

1
TN

<q'|s|n> = -ie? -%- (2m)4 Id‘p
v

eyt
x (6“)((]*)“'?')6“) (q*k'-p)u(t.) (B.)

x F.e d(i F. e'u(t)(p)
p tm -ic =

+
+ 6(‘)(q-k'-p')6(‘)(q-k-p)u(r.) (El)

du

L-T.e W ey . (4.4.10)
peem“-ic

x T.e



72

The integration over p then gives

<@t |s|a>= -i6 ) (prx-p'-k') t. (4.4.11)
where
2 4
e (27) " =(r") dli(p+k)])
te;, = u (p') [T.e' l.e
i ;;I Yww " - (p+k) +m?

+r.e SR ¢ oy g . (4.4.12)

(p=k') “+m
The total cross-section is then give by1°)
(2n)* (2n)° (27) £1

(4.4.13)

where v is the relative velocity of the incident particles

and in this case

As usual we shall average over initial spins and sum over

final spins. For this purpose we calculate the quantity

4 4 4 4
1l 2 1l =(r') dli(p+k)
te, |© = u (p')(T.e’ r.e
1 :gl r'zl' ti 1 rzl r'gl e (ptk) “+m
+T.e _91112§£L§ r.e'lu(r)(g)ﬁ(')(g)
(p=k') “+m
(i (p+k ai ) gy 2
x [l.e -1-—27—1% r.e'+r.e' -1—12—7-L% l.eju Qﬂ[
(p+k) “+m (p-k*)“+m W P R

(4.4.14)
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1l
We now make use of the relation )
(r) -(r) 1
u (p)u (p) = a(ip) - (4.4.15)
A
to obtain
4 4
1l 2 1 dli(p+k)
[te |€ = Tr{[T.e’ —L—% T.e
i rzl r'zl £fi 1 (p+k) %+m
afi(p-k')}] a(i
+ T.e r.e']-eraL
(p-k ') 2+m? Po
d|i(g+k)! d|i(g-k')!
x [T.e T.e' +Tl.e' r.el}
(p+k)2+m (p-k')2+m
x | et (2n28]
—‘ . (‘.4016)
2V ww'

In the rest frame of the target (p = 0) this becomes

4 4 ‘
1 2 1 a[i(p+k)]
|t = —= Tr{(l.e’ T.e
1 rzl r'zl fil 64m w
- r.e 44 w'*' r.e'} a(ip)
., dlip’ ed (2n)8
x [e e e') --(3‘(.:—-1} =7 249, (4.4.17)

Therefore, averaging over initial spins and summing over

final spins in (4.4.13) we find through the use of (4.4.17)

4 3
do e 1 d . (] (3) pUpey I - ._ ]
w = -1—.;-‘? :5: I —Pi— IU dw' Trl }6 (5 P k )c(m*u Po w').,

(4.4.18)
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where { )} denotes the quantity in curly brackets in (4.4.17)

and
dn = siné 46 d4¢

where 6 is the angle between the initial and final photon
directions and ¢ is the azimuthal angle about the direction
of the incident photon. Use of the Compton formulalo)

wm
" m*¥w(l - cos8) ' (4.4.19)

allows us to perform the integrations in (4.4.18) with the

result
2
do e w',2 (t') 4[i(p+k)] (t)
- — (—) Tr{-T.e T.e
an 2048n“m* ¥ t,iz:'-l w

+ 1.t ALRTk)] r o(t")) qip)

x (-r.e(t) Alilptk)] p o(t")

+ r.elt") 9-1-11-5-'."—"-1 r.e't) awupn} , (4.4.20)

where we have averaged over initial and summed over final
photon polarizations, and energy-momentum conservation

holds so that

p' = p- k + k. . (‘0‘021)



75

Note that if 1/w is factored out of the trace in
(4.4.20), and the factors w'/w which occur are replaced
according to (4.4.19), there will be no explicit variable
denominator under the trace. Moreover, if the trace is
expressed in terms of y=w/m, the only quantities which will
contribute to the denominator are powers of w'. Thus, it
can be seen from (4.4.19) that the denominator will be some
power of [1 + y(1 - cosf)). Then, if multiply by the
appropriate power of [1 + Y(1 - cosf)]}, what remains as
the trace term will be a rational polynomial in y and cosé.
With these facts in mind a numerical analysis of (4.4.20)
was done as explained in what follows.14)

The parameters in (4.4.20) may be explicitly cons-
tructed as explained in reference 1. We find that we may

take

0 ) [ 0 )
0 w' 8ind
k= ’ k' = v (4.4.22)
w w' cosf
iw | | iw’ )
4 -1 3 r 0 )
0 -1
efl) . el? . . (4.4.23)
0 0
\ o J \ o 4
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B!
~-cosb 0
1) . , el?'). , (4.4.24)
s8in® 0
| 0 | 0
p= (0, 0, 0, im) . (4.4.25)

A 1l/w was factored from the trace in (4.4.20). Using
(4.4.21)-(4.4.25) the trace was then calculated for
various values of 6 and y on the I.B.M. 360/67 computer
in double precision (16 significant figures). The result-
ing data points were multiplied by successive powers of

[1 + y(1l - cosé)) until a fit was obtained to a rational
polynomial in y and cosé. The fitted expression was put
into (4.4.20) to give the result

2 j=1 k-1
ao Ro 7 6 Cjk (cosf)

- ' (4.4.26)
an - 182 jzl kzl f1 +vy( - coseifg

where
e? (4.4.27)
R, = —% . .4.27
o 4%m
Y =uw/m , (4.4.28)

and
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[ 81 0 81 0 0 0]
243 -243 243 -243 (] (]
564 -696 487 -486 243 0
c= |723 -1305 796 -326 243 -8l (4.4.29)
527 -1284 1010 -244 7 (]
206 -638 700 -300 38 -6
| 50 -172 224 -132 30 0

Results calculated from (4.4.26) agreed with those
computed from (4.4.20) to a minimum of 12 significant
figures which is well within error limits due to round-
off by the computer.

A straightforward but tedious integration of (4.4.26)

gives the total cross-section

2
2"R, 2 2 3
A U] {-—7———-——1 ({486 +3,888y + 12,219y" + 18,927y
3y“ (1+2y)
+ 15,500y% + 8182y° + 4344y6
+ 1,440y7 + 232¢% + 1447

- LogUe2y) (162 + 162y + 23y - &y® - 30yl (4.4.30)
Y

Note that for y = 0, (4.4.26) is identical to the

differential cross-section for spin 1/2 Compton scatter-

10)

ing, and is symmetrical about 6 = %/2. The total



cross-section in this case is therefore equal to the
" Thompson cross-section. However, putting 6 = 0 in

(4.4.26) we find

2
ao R 7

%= =7 j£1 ey V7 (4.4.31)
which shows that at zero scattering angle the differential
cross-section increases with increasing incident energy,
whereas in the spin 1/2 case it is energy independent.lo)

This completes our study of the electromagnetic-
spin 3/2 interaction. A discussion of what we have
accomplished and of the results we have obtained follows

in the next chapter.
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5. DISCUSSION

We have hyperquantized the system of a Rarita-
Schwinger field interacting with the electromagnetic
field, and have shown that the Johnson-Sudarshan incon-
sistency does not arise. The reason for this may be
stated as follows: In conventional quantum field theory
the field operator commutation relations are determined
in such a way that they are consistent with the equations
of motion. On the other hand, in hyperquantization the
commutation relations are given at the outset and the
physical state vectors are determined so as to satisfy
the supplementary conditions. Thus the way in which
kinematics and dynamics are separated is completely
different in the two theories.

As we have seen, the presence of negative fermion
anticommutators, when the Schwinger action principle is
used to quantize the electromagnetic-spin 3/2 system,
is due to the dependence of these anticommutators on
the dynamics of the interaction. Johnson and Sudarshanz)
have shown that this dynamical dependence arises for any
field with half-odd-integer spin greater than 1/2.
However, because the field anticommutators are fixed in
hyperquantization, they can never depend on the dynamics

of an interaction.
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The major difficulty in hyperquantization is that
no general proof has been found that the S-matrix satis-
fies conservation of probability which corresponds to
unitarity in the usual theory. 1In thce case of the
electromagnetic-spin 1/2 interaction we were able to
prove it by showing the exact agreement of our S-matrix
elements with those of conventional quantum electrodynamics.
The situation is more complicated for the electromagnetic-
spin 3/2 interaction. No S-matrix elements have been found
using conventional methods with which to compare our own,
and we have so far only been able to verify conservation
of probability using the perturbation expansion.

In other respects the S-matrix of hyperquantization
is a much simpler object than that of ordinary quantum
field theory. 1Its relativistic invariance can be proven
directly without recourse to the perturbation expansion.g)
This is because non-relativistic operations such as
chronological ordering do not enter. Nor does the inter-
action Hamiltonian contain terms depending on the normals
to space-like surfaces. One might expect this simplifi-
cation to prove very useful since the S-matrix is a most
powerful tool for dealing with strong interactions.

Indeed, we have seen that hyperquantization is
essentially an S-matrix theory. Conservation laws, such
as that of the current in quantum electrodynamics, are
not required to hold at a point but only asymptotically

when bracketted between states.
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As a final point it is worth noting that, since
normal dependent terms are absent from the theory,
hyperquantization may prove very useful for dealing with
non-local interactions provided a more general proof can

be found that unitarity is satisfied.



APPENDIX

NOTATION AND CONVENTIONS

The following notation and conventions are used

throughout this thesis.
1) Natural units are employed in which fi=c=1.
2) There is an implicit summation over repeated indices.

3) The fourth component of a four-vector is imaginary.

Por example

xu = (x, ix)) . (A.1)

and no distinction is made between contravariant and

covariant four-vectors.
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4) The volume elements which occur in integrals are denoted

by
4
a'x = dx  dx, dx, dxy (A.2)

3

a’p = dp, dp, dp, ' (A.3)

and similarly for other vectors.

$) Por the four-gradient differential operator operating
to the right we use

9 3
T S LR S (A.4)
J 3 v g 9
0w 5;: = (V', -4 ;;;) (A.5)
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6) The differential operator $u operates on functions
standing to its left. For example, if f(x) and g(x)

are arbitrary functions
f(x)sug(x) = [3,£(x)] glx) (A.6)
£ (x) (au+§u)g<x) =3, [£(x)g(x)] . (A.7)

7) The D'Alembertian operator is defined by

cl-aa-vz-—f32 (A.8)
uu ax . .
o

8) We define the matrix guv such that
9y = 1 for u=v=1,2,3
=-] for u=v=4
= 0 for upv . (A.9)

9) A space-like surface in four dimensional Minkowski space
is denoted by o, or, if we wish to specify that the
surface passes through a point x, by 0(x). Moreover,
we define a four-vector differential surface area at

the point x by

dcv (x) = (dx,dx.dx , dx,dx jdx . dxldxzdxo,-idxldxzdxa).
(A.10)
10) We employ the standard conventions
(A, B] = AB - BA , (A.11)
{A, B} = AB + BA , (A.12)

where A and B are operators.



11) The symbol t denotes hermitian conjugation while *
denotes complex conjugation,

4
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