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Abstract

General Game Playing (GGP) deals with the design of players that are able to play any discrete,

deterministic, complete information games. For many gameslike chess, designers develop a player

using a specially designed algorithm and tune all the features of the algorithm to play the game as

good as possible. However, a general game player knows nothing about the game that is about to be

played. When the game begins, game description is given to the players and they should analyze it

and decide on the best way to play the game.

In this thesis, we focus on two-player constant-sum simultaneous move games in GGP and how

this class of games can be handled. Rock-paper-scissors canbe considered as a typical example of a

simultaneous move game. We introduce the CFR algorithm to the GGP community for the first time

and show its effectiveness in playing simultaneous move games. This is the first implementation of

CFR outside the poker world. We also improve the UCT algorithm, which is the state of the art in

GGP, to be more robust in simultaneous move games.

In addition, we analyze how UCT performs in simultaneous move games and argue that it does

not converge to a Nash equilibrium. We also compare the usageof UCT and CFR in this class of

games. Finally, we discuss about the importance of opponentmodeling and how a model of the

opponent can be exploited by using CFR.
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Chapter 1

Introduction

1.1 Introduction

For many years artificial intelligence researchers built specialized game players that focused on the

complexities of a particular game. For example Deep Blue andChinook play the game they are

built for, viz. chess and checkers respectively, at an expert level [6, 30].1 However, part of their

success is due to the knowledge engineering that has been done by their developers. Therefore

most of the interesting game analysis task is done by humans instead of the programs themselves.

The idea of using game playing to evaluate progress in AI and pushing game analysis toward the

program instead of the human resulted in the concept ofGeneral Game Playing(GGP). GGP is

the idea of having a player capable of playing any game that isdescribed using a predefinedGame

Description Language(GDL). Since general game players do not know the game they are going

to play in advance, there cannot be specialized algorithms for solving a particular game hardcoded

in their nature. However, to perform well they should incorporate various AI technologies such

as knowledge representation, reasoning, learning, and rational decision making. Barney Pell first

suggested in1993 the differentiation between whether the performance of an agent in some game

is due to the general success of the AI theories it embodies, or merely to the cleverness of the

researcher in analyzing a specific problem in [27]. He introduced a variant of GGP under the name

of “Metagame” which addressed the domain of symmetric chess-like games [27]. He also proposed

a Prolog-like game description language for defining the game logic.

In this chapter we will first consider the GGP competition andthe characteristics of the games

used in the competition in Section 1.2. We will then review the Game Description Language used

for describing the games in the GGP competition in Section 1.3 and the gaming infrastructure in

Section 1.4. In Section 1.5 we define what we mean bysimultaneous move games, the class of

games that we will focus on in this thesis. We detail the contributions of this thesis in Section 1.6.

1Chinook is a perfect checkers player that plays at superhuman level.
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1.2 GGP Competition and Games’ Characteristics

To encourage research in GGP, there has been an annual competition at the AAAI (Association for

the Advancement of Artificial Intelligence) conference since2005 with a $10, 000 grand prize. All

the games in the competition are guaranteed to befinite. They all have a finite number of states, one

distinguished start state, and a finite set of terminal states. All the games are alsosynchronous, mean-

ing that all the players take an action at every step simultaneously (often allowing “no-operation” as

an action choice). Every game must also be discrete, deterministic, complete information, playable,

and weakly winnable (or strongly winnable in single player games). Playability and winnability are

defined as follows in the game description language specification [26].

Definition 1 A game isplayable if and only if every player has at least one legal move in every

non-terminal state.

Definition 2 A game isweakly winnable if and only if, for every player, there is a sequence of joint

moves of all players that leads to a terminal state of the gamewhere that player’s goal value is

maximal.

Definition 3 A game isstrongly winnable if and only if, for some player, there is a sequence of

individual moves of that player that leads to a terminal state of the game where the player’s goal

value is maximal.

An abstract definition of the games used in the GGP competition is given in [16] usingfinite state

machines(FSM).2 The components of the FSM describing a game are the followingas described in

[16]:

• S, a set of game states.This is the set of states of the FSM (Q).

• r1, . . . , rn, then roles in an n-player game.

• A1, . . . , An, n sets of actions, one set for each role.

• l1, . . . , ln, where eachli ⊆ Ai×S. These are thelegalactions in a state where eachli defines

the legal action of theith player in all the states of the game. Every(a1, . . . , an) ∈ l1×. . .×ln

is a member of the FSM alphabet (Σ).

2Due to Sipser [35], afinite state machineor finite automaton is a5-tuple(Q,Σ, δ, q0, F ), where

1. Q is a finite set called thestates,

2. Σ is a finite set called thealphabet,

3. δ : Q × Σ → Q is thetransition function ,

4. q0 ∈ Q is thestart state, and

5. F ⊆ Q is theset of accept states.

2
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Figure 1.1: The FSM representation of a game adapted from [16].

• η : A1× . . .×An×S → S, an update function mapping.This is the FSM transition function

defining how the transitions between different states are made according to the actions being

selected by different players (δ).

• s0 ∈ S, the initial game state.This is the start state of the FSM (q0).

• g1, . . . , gn, where eachgi ⊆ S × [0 . . . 100]. Everygi defines the outcome for theith player.

• T ⊆ S, a set corresponding to the terminal states of the game.This is the set of accept states

of the FSM (F ).

Figure 1.1 shows the FSM representation of a two player game.In this game, we haveS =

{a, b, c, d, e, f, g, h, i, j, k}, s0 = a, andT = {c, e, k}. Different shadings ofc andk indicate that

these states are the significant states,i.e. winning states, for different players. Transitions between

states are shown with arrows that are marked with the respective action chosen by different players

(first-player/second-player). Each player has two different actions,viz. {x, y}, which are not legal

in all the states. For example the first player can only take action x in stated, while both of his

actions are legal in statef . Using the FSM representation, required properties of the games can also

be checked.

• For a game to be finite, no cycles can exist in the FSM graph.

• Game playability requires that there is at least one outgoing edge from every non-terminal

state.

• Game winnability requires that for every player, there is a path in the FSM graph from the

starting state to the significant state of that player where the player’s goal value is maximal. If

3



this path only depends on the player’s own actions then the game is strongly winnable for that

player. Otherwise the game is a weakly winnable game for thatplayer.

It should be noted that the FSM description is very similar tothe traditional extended normal

form description in game theory. However, the FSM representation uses a graph representation

while the extended normal form uses a tree representation and the outgoing edges at each node are

the actions of the player who has to move at that node. The FSM representation fits the synchronous

nature of the games in GGP better than the sequential tree representation of the extended normal

form. However, the extended normal form can also be used for describing a game. We will use the

tree representation in the following chapters.

1.3 Game Description Language

TheGame Description Language(GDL) in the GGP competition is a variant ofDatalogthat allows

function constants, negation, and recursion [26]. TheKnowledge Interchange Format(KIF) is used

for GDL representation. GDL describes the game state in terms of a set of true facts. The transition

function between states is described using logical rules inGDL that define the set of true facts in the

next state in terms of the current state and the actions performed by all the players (thenext3 relation

is used for this purpose). GDL also contains constructs for distinguishing between initial states as

well as goal and terminal states. Items in the GDL are either facts or implications. Facts include role

definition, initial state description, and game specific facts. Implications can be action definitions,

action effects, axioms, goal or terminal state description, and game specific relations.

Each game description is a set of terms, relational sentences, and logical sentences which contain

a set of variables, constants, and logical operators. Language keywords are as follows:

• role(< a >) means that< a > is a role (player) in the game.

• init( < p >) means that the datum< p > is true in the initial state.

• true(< p >) means that the datum< p > is true in the current state.

• does(< r >, < a >) means that player< r > performs action< a > in the current state.

• next(< p >) means that the datum< p > is true in the next state.

• legal(< r >, < a >) means it is legal for< r > to play< a > in the current state.

• goal(< r >, < v >) means that player< r > would receive the goal value< v > in the

current state.

• terminal means that the current state is a terminal state.

• distinct(< p >, < q >) means that the datums< p > and< q > are syntactically unequal.

4



1. (role xplayer)
(role oplayer)

2. (init (cell 1 1 blank))
(init (cell 1 2 blank))
(init (cell 1 3 blank))
(init (control xplayer))

3. (successor 1 2)

4. (<= (legal ?p (mark ?x ?y))
(true (cell ?x ?y blank))
(true (control ?p)))

5. (<= (next (cell ?m ?n x))
(does xplayer (mark ?m ?n))
(true (cell ?m ?n blank)))

6. (<= (next (cell ?m ?n blank))
(does ?p (mark ?j ?k))
(true (cell ?m ?n blank))
(or (distinct ?m ?j) (distinct ?n ?k)))

7. (<= (next (control oplayer))
(true (control xplayer)))

8. (<= open
(true (cell ?m ?n blank)))

9. (<= (goal xplayer 100)
(line x))

(<= (goal xplayer 50)
(not (line x))
(not (line o))
(not open))

10. (<= terminal
(line x))

Figure 1.2: Sample GDL code from tic-tac-toe game description. Words with Boldface font are
keywords.

5



Figure 1.2 shows a sample of GDL code from thetic-tac-toegame description. The relations in

part1 define the roles of the games, which arexplayerandoplayer in this game. The initial state

is defined using theinit keyword. For example in the initial state in Figure 1.2, cells are blank at

first andxplayer is in control (relations in part2 of Figure 1.2). There can also be game related

facts in the game description similar to part3 in Figure 1.2.4 Actions are defined using thelegal

keyword. For each action the preconditions for taking that action are also defined. It is defined in

Figure 1.2 part4 that a player canmarka cell if it happens to be blank and the player is in control

of the game at that step. The names which start with a questionmark in the GDL are variables. The

effects of taking an action are defined using thenextrelation. In part5 of Figure 1.2, it is stated that

a cell will be marked withx if it happens to be blank and then marked byxplayer. The axioms of

the world are also defined using the next relation (e.g.part6 of Figure 1.2). For example part6 of

Figure 1.2 indicates that a cell remains blank if it is blank and no player marked that cell. Game

related relations can also be defined in a game similar to part8 of Figure 1.2 that says the board is

still open as far as there are blank cells. Goal and terminal states are defined usinggoalandterminal

keywords respectively (e.g.parts9 and10 in Figure 1.2). Interested readers are referred to [26] for

a comprehensive discussion about Datalog as well as the GDL used in the GGP competition. A

complete description of tic-tac-toe in GDL is given in Appendix A.

1.4 Game Management Infrastructure

In the GGP competition at the AAAI conference there is aGame Master(GM) which is responsible

for providing players with the game description and ensuring that each player takes a legal action

at each step. Each game consists of two phases, setup and play. At the beginning of each game,

the description of the game is given to players using GDL, andplayers have a specific amount of

time, called thestart-clock, to analyze the game structure and set up any infrastructurethey will

need during the game. After the set up phase and during the playing phase, each player has limited

amount of time, called theplay-clock, to submit its action at each step. If a player fails to submita

legal action by the end of play-clock, the GM considers a random legal action as the action chosen

by the player. After each step the GM informs all players about all actions that were performed by

all players. All the communications between the GM and players are over TCP/IP connections. The

GM is responsible for checking that the state of the game and moves submitted by all the players are

legal at all steps of the game. A schematic view of the competition setup is given in Figure 1.3.

3nextis a keyword in GDL.
4These three groups were the facts in code segment given in Figure 1.2. The rest of the code segment consists of implica-

tions.

6



Figure 1.3: Schematic view of GGP competition from [16].

1.5 Simultaneous Move Games

As stated in Section 1.2, all the games in the GGP aresynchronousand require all the players to

take an action at every step simultaneously. Turn taking games are described in GGP by defining a

no-operationfor the player who does not have control. Therefore, although every game is described

as a simultaneous game between all the players, not all of them are necessarily simultaneous move

games. We consider the following definition forsimultaneous move games.

Definition 4 A multiplayer game in the GGP is asimultaneous move game if and only if, there is

at least one time in the game when two or more players can alterthe state of the game on the same

move.

The class of games that we deal with in this thesis are two-player constant-sum simultaneous move

games. We will consider the computation of Nash equilibriumin this class of games, which we will

discuss why it is reasonable in Chapter 3 Section 3.6.1. Our focus will be on two-player constant-

sum simultaneous move games because of the fact that in multi-player general-sum games, the

final Nash equilibrium is not well-defined and can be different based on the assumptions that one

player can make about other players,e.g.whether other players make a coalition against us or not.

From now on, whenever we mention simultaneous move games we mean two-player constant-sum

simultaneous move games unless clearly stated.

7



1.6 Thesis Overview and Contributions

In Chapter 2 we present previous work in the GGP domain. In Chapter 3 we analyze the UCT

algorithm, which is the state of the art algorithm used in GGP. We explain how it fails in simultaneous

move games. We consider enhancements that improve the quality of UCT in simultaneous move

games and make it more robust. However, we show that even the enhanced version of UCT will

not converge to the Nash equilibrium in general and the solution that it converges to is brittle. We

describe the CFR algorithm in Chapter 4 and consider how it can be used in GGP. We implemented

CFR to be used in GGP. The drawbacks of using plain CFR and the need for opponent modeling

is discussed in Chapter 5. Finally, we argue how the CFR algorithm can be used to exploit the

UCT algorithm. Experimental results for each of the aforementioned sections are also provided. We

will wrap the thesis with a discussion of the challenges for playing simultaneous move games and

definition of trends for future work.

The major contributions of this thesis are as follows.

1. We provide an implementation of a general game player thatuses CFR to play the games.

This is the first time that CFR has been used in GGP and it demonstrates that CFR is a general

algorithm and can be widely used in domains other than poker,which it was developed for at

first. In addition, we will discuss in Chapter 4 that using CFRin GGP is more convenient than

its usage in poker because all the games in GGP are deterministic.

2. We show that the performance of the CFR player is robust. Wealso show that there are

situations where the performance of the CFR player is betterthan an enhanced UCT player.

3. We discuss the importance of opponent modeling and how CFRcan be used to exploit a known

model of an opponent. We show that the solution that UCT converges to in simultaneous move

games can be exploitive and this situation can be easily exploited by CFR.

1.7 Summary

In this chapter we introduced General Game Playing (GGP) as well as game characteristics and

features. We also briefly reviewed the Game Description Language as well as the infrastructure

used in the AAAI competition. We also defined the class of games that will be our main focus and

briefly reviewed our contributions.
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Chapter 2

General Game Players

2.1 Introduction

A general game player is an agent that interacts with its environment without having prior knowledge

about it. At the beginning of each match, each player receives the game description and must play as

well as possible while adhering to the rules of the game. It ischallenging to develop such an agent

because the specification of games that an agent is going to face is not known beforehand. Therefore

designers cannot simply take advantage of unique features of a particular game by hardcoding them

into their players. This means if you are a chess master, yourplayer will not necessarily play

chess well unless you can detect that a game is actually chess. A general game player must read a

game description in GDL and extract game features from it andtry to play well either alone or in

collaboration with teammates and possibly against opponents according to the game rules.

Different approaches have been used to create general game playing programs. In this chapter

we review different approaches that have been tried in development of the general game players as

well as how different researchers have tried to improve the quality of GGP programs.

2.2 Early Work on General Game Players

The first general game player was theMetagamerthat Pell developed to handleMetagamein Sym-

metric Chess-Like games (SCL-Metagame) [27]. His player ismore important from the historical

point of view than the technical perspective. The player hada search engine based on theminimax

algorithm with alpha-beta pruning. The search engine was guided using a heuristic generator. The

heuristic generator used a combination of general featuresdefined by Pell (the human designer)

that he considered to be useful to look at in the class of SCL-Metagames. These features included

mobility, centrality, andpromotionthat were trying to capture the following information aboutthe

game.

• Mobility was a notion of the number of moves available to the player. It was assumed that

having more moves is generally better because it gives the player more options to choose
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from.

• Centrality gave bonus to positions with more pieces at the center of the board or closer to the

center. The idea was that more centrality will increase mobility as central cells on a chess

board have access to all the directions if they are not blocked. In addition, the longest shortest

path to any other cell is shorter from a more centralized cell. Therefore a player can get to

different parts of the board in fewer number of steps.

• Promotion accounted for how different pieces on the board can be promoted to new pieces.

A weighted sum of the combination of the features was then used by the heuristic generator as the

final heuristic. Pell defined the weights for each feature manually and set up a tournament between

players with different weight settings to show how they would perform.

2.3 The First Generation of General Game Players

The announcement of a new GGP competition in2005 drew attention of many researchers toward the

development of general game players. Initially, most program developers tried to develop heuristics

for a game by extracting features from the game description [8, 32, 23, 19]. However, in contrast

to Pell’s approach which had SCL-Metagame features encodedin the program, they were trying to

extract useful features of the game from the game description. The heuristics were then used in

conjunction with a classic search algorithm (e.g.alpha-beta) to play the game. Therefore, devising

a good heuristic was a key factor in the success of their approaches. However, inventing a good

heuristic is a challenging problem since the game that is going to be played by the player is unknown

beforehand.

Clune tried to extract features by analyzing the game description, considering the stability of

various components [8]. The idea was that the components that do not change drastically from a

state to the next state are the important features of the game. He then used those features to build an

abstract model. The final heuristic was then built using the cost of solving the problem in the abstract

model. His approach was heavily dependent on his feature extraction and the abstract model being

built. Clune implemented his ideas in a player calledCluneplayerand participated in several GGP

competition, winning the2005 competition and placing second in the2006 and2008 competitions.

Schiffelet al.also used structure detection to extract game features,e.g.a board, from the game

description [32]. In addition they utilized the percentageof goal satisfaction as a metric to derive

heuristic to search the state space and bias their search toward states that most likely would satisfy

the logical description of the goal of the game. They used fuzzy logic in their computation. They

computed a ratio of truth for the atoms of the goal and assigned a truth value to the goal based on a

set of predefined rules. However, the problem of implicit goal description could not be addressed in

their approach. Schiffelet al. implemented their ideas in a player calledFluxplayerand participated

in several GGP competition, winning the2006 competition.
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Kuhlmannet al. tried to extract features of a game by assuming some syntactic structure in the

GDL [23]. They verified the resulting features by running a number of internal simulations. If

the features held throughout the simulations, they assumedthat the extracted features were correct.

However, their approach was brittle facing an adversarial game description, since it solely relied

on the syntactic structure of the GDL. For example, they assumed that a successor relation is a

relation with a name and arity of two.1 With this assumption if just a dummy variable is added to the

successor relation, then it cannot be defined as a successor relation anymore using their approach.

In addition, they statically chose how different features would be weighted in a game. Therefore,

based on whether a feature must be weighted positively or negatively in a game, their weighting

could be wrong. Kuhlmannet al. implemented their ideas in a player and participated in several

GGP competitions, but never won or played in the finals.

Kaiser tried to extract features,e.g.pieces and motions2 in games, by computing the variance

of the parameters of the relations and comparing states generated from random plays of the game

[19]. He built some heuristics using extracted knowledge,e.g.distance between states and to the

target, piece counts, etc. He searched the state space usingthe derived heuristics to reach the goal.

However, his approach was limited by the number of plays thathe could run and how well he could

explore the state space. Games whose states were not fully described at each step were difficult to

handle using his approach as well.

All the players that are based on classical search methods use a heuristic function derived from

the game description. The heuristic is a critical part of these players. However, deriving a good

heuristic by analyzing the game description is a complex task. In addition, players are given a

scrambled version of the game description during the competition, to prevent any human interven-

tion in interpreting the game description. Obtaining a goodheuristic only by relying on the game

structure is a hard task to accomplish as well because the game description can also be adversarial

by containing useless rules and variables included in the game description to fool the player. Al-

though extracting features and detecting objects in the game description is a complicated task to be

achieved, but players based on classical search methods that use these techniques are still successful

and among the top players (e.g.Fluxplayer and Cluneplayer).

2.4 Monte-Carlo Based Players

After the success of Monte-Carlo search methods in Go [14], researchers started investigating its

usage in GGP. Go is a strategic two-player turn-taking boardgame. It has simple rules, but has

a large branching factor. In addition, no efficient evaluation function approximating the minimax

value of a position is available [14]. Therefore, using Monte-Carlo simulation to evaluate the value

of a position in a match paid off andMoGo, which is a Monte-Carlo based program, is currently one

1(successor first second)
2Motion detection is concerned with detecting the pieces that move around and how they move.
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of the strongest Go players [14].

Monte-Carlo based methods need no specially designed evaluation function at leaf nodes of the

game tree, because random simulations are used to acquire a value. This feature greatly simplifies

the design of general game players, since game description analysis is no longer mandatory. How-

ever, a player with a better understanding of the game description can exploit that knowledge and

be a better player by using it during simulation and doing a better trade off between exploration and

exploitation. UCT is a fairly simple and effective Monte-Carlo tree search algorithm [22]. It is a

kind of best-first search which tries to balance deep searches of high-winrate moves with exploration

of untried moves. Since there is no need for an evaluation function in Monte-Carlo based methods,

UCT was a natural choice for use in GGP. A thorough discussionof UCT will be given in Chapter

3.

Hilmar and Björnsson developed the first Monte-Carlo player, calledCadiaPlayer[12]. Starting

in 2007, they used the UCT algorithm to play every game regardless ofwhether it is a single-agent,

two-player constant-sum, two-player general-sum, or multi-player game [12]. They became the

champion in the first year (2007) that they entered the competition, and with some minor changes

to their program, they also won in2008 [5]. That they were able to won with a “knowledge-free”

solution demonstrates how hard it is to extract knowledge from the game description and build

a useful heuristic to be used in conjunction with classical search methods. After the successful

appearance of CadiaPlayer, many more contestants were drawn toward using UCT in their players.

2.5 Using Reinforcement Learning for General Game Playing

Levinson performed an early investigation of Reinforcement Learning (RL) [37] for GGP3 in 1995

and also reviewed different approaches for the developmentof a general game player [25]. Levinson

used conceptual graphs in his work. He discussed a model calledMorph, which was an application

of adaptive-predictive search methods for improving search with experience. He also proposed an

improvement over the stated original Morph model and demonstrated usage of its improved version

in the development of an RL general game player.

Asgharbeygiet al.developed a relational temporal difference learning agentfor GGP [1]. Their

agent was composed of an inference engine, a performance module, and a learning element. It

also used an external state transition simulator. Their inference engine generated all next states and

their performance module decided which action to take. The learning element interacted with the

simulator and performed relational temporal difference updates on utilities, which in turn controlled

the state-value function. They also exploited the relational structure of game descriptions as well as

attempted to generalize across different ground literals for each predicate.

Defining initial values on which an RL general game player should base its action selection

policy is an issue that Banerjeeet al. addressed in their work in2007 [4]. They proposed a way

3The GGP that Levinson considered was different from the AAAIGGP competition.
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of transferring value-functions from the games previouslyplayed by the agent to a new game, by

matching states based on a similarity measure in an abstractrepresentation, calledgame independent

features, using game-tree lookahead structure. They claimed that the agent learns faster when it uses

knowledge transfer and also can exploit opponent weaknesses if it faces the same opponent in future.

The main advantage of the Banerjeeet al.work over the Asgharbeygiet al.work was that it did not

need to define game-specific or opponent-specific features for the transfer to be successful.

Banerjeeet al. did similar work in value function transfer for GGP in earlier work [3]. In

their former work they used a Q-learning RL agent. Most of ideas were similar in both works, but

they used a handcrafted game-tree structure in the former and also proposed a method for defining

board games and taking advantage of symmetry in those games.They also compared their agent

benefiting from feature transfer against an agent using symmetry transfer, and showed that feature

transfer outperforms symmetry transfer agent. In the latter work they did a better abstraction of

game specific features and transferred game-independent features to a wider range of new games.

Kuhlmannet al. performed transfer learning using a graph-based domain mapping that con-

structed a mapping between source and target state spaces inGGP [24]. They first represented game

description in GDL using a directed graph, calledrule graph, and then used isomorphism over rule

graphs to define identical games. They also generated variants of games played before and checked

them against the new game through rule graph isomorphism to find any similarities. In their ap-

proach, if the new game was identical to the previously played game, then they would take full

advantage of it, but there was no difference between similarand identical games in the Banerjeeet

al. work. Kuhlmannet al. transfered the state-value function versus the state-action value function

used by Banerjeeet al..

Although the RL approach may seem promising, no general gameplayer using RL has entered

the competition and shown reasonable performance yet.

2.6 Other Approaches to GGP

In addition to the approaches for developing general game players that have been reviewed, there

have been other approaches considered.

Reisingeret al. suggested the use of a coevolutionary approach to evolve populations of game

state evaluators that can be used in conjunction with game tree search [28]. Their approach was

very simple. They started with a population of neural networks which had state variables as the

inputs and evaluated value of the state as the output. They tried to update the neural networks by

adding/removing connections and changing weights to come up with a good game state evaluators.

They did the mapping for the inputs randomly and used random players evolving simultaneously

through coevolution to evaluate their game state evaluatorpopulation during coevolution.

Sharmaet al.considered the use of anAnt Colony System(ACS) to explore the game space and

evolve strategies for game playing [34]. In their approach they assigned different roles to each ant
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and tried to update the level of play by updating the knowledge of ants through number of iterations.

However, they did not considered the amount of time needed totrain the ants, therefore it is hard to

tell how their approach was.

Kissmannet al. tried to fill the gap between the planning and GGP community bytrying to

generate an instantiated game description in a format closeto a planner input [21]. They generated an

output similar to PDDL that could be used in any player or solver that needed the game description

in instantiated form. However, their instantiating process seems time consuming and the resulted

instantiated game description can be huge based on the number of objects in the game and arity of

the relations.

2.7 Improving the Level of GGP

In addition to the effort that has been put in developing general game players, there is work that

has investigated how to improve the performance of general game players. Work has been done

in the context of knowledge representation, reasoning, knowledge extraction, and so on. Kirciet

al. successfully applied learning based on state differences [20]. They learnt both defensive and

offensive features. Finnssonet al.compared four different approaches for controlling Monte-Carlo

tree search [13]. These approaches differed in how the back-propagation and updates are done.

Schiffel et al. tried proving features in GGP using Answer Set Programming [33]. Schiffel also

considered detecting symmetries in a game using GDL [31]. Inaddition, work has been done to

simplify game descriptions by breaking it into smaller games if it is possible. Coxet al.and Gunther

et al.considered game factoring and game decomposition [10, 17].

2.8 Conclusion

In this chapter we reviewed different approaches to the development of general game players and

considered their advantage and disadvantage. In addition we considered how different researchers

have tried to improve the quality of GGP by trying to focus on aspecific aspect of the GGP.
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Chapter 3

Universal Solution:
the UCT Algorithm

3.1 Introduction

In this chapter we will consider and analyze the UCT algorithm in simultaneous move games. We

will briefly review the background literature on the UCB algorithm that UCT is based on (section

3.2). We will describe the UCT algorithm (Section 3.3) and discuss its different properties (Sections

3.4.1 through 3.4.4). Finally we will consider the usage of UCT in simultaneous move games and

its weakness and strengths (Section 3.6).

3.2 Background

The multi-armed bandit problem is an example of a problem where an agent tries to optimize his

decisions while improving his information about the environment at the same time. If we consider

a K-armed bandit, we are dealing withK different slot machines whose outcomes follow different

unknown distributions with different expected values. Optimal play for aK-armed bandit is to select

the arm with the highest payoff at each step of play. However,since we do not know the distribution

of outcomes for different arms, the goal is to be as close as possible to the optimal play based on

our past experiences. By careful tuning how much we exploit the best known arm versus exploring

the other arms, we can bound the regret that results from selecting a suboptimal action (pulling the

suboptimal arm). UCB1 (Upper Confidence Bound) is an algorithm that balances exploration and

exploitation. It achieves a logarithmic bound in the numberof plays on the expected regret after that

number of plays [2]. It considers a bonus for selecting each action which is directly proportional to

the number of plays and inversely proportional to the numberof times that a specific action has been

selected previously. Therefore, actions that have been rarely selected will get a higher bonus to be

selected and explored.
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3.3 UCT Overview

UCT (UCB applied to Trees) is an extension of the UCB1 algorithm to trees. It gradually expands

the game tree by adding nodes to it. UCT considers every interior node in the tree as an independent

bandit and its children (available actions at that node) as the arms of the bandit. While searching in

the tree, UCT selects an action that maximizes the combination of the player’s utility and a bonus

similar to the one in UCB1 that is used to balance between exploration and exploitation. Implied in

this selection rule is the assumptions that a player has about his opponents. When the search reaches

a non-terminal leaf node, a Monte-Carlo simulation from that node to a terminal state is carried out.

The value that results from the simulation is then used to update the values of all nodes along the

path from the root of the tree to the node that leads to that simulation. UCT is an iterative algorithm.

It searches through the tree, does simulations at non-terminal nodes and adds new nodes to the tree.

Tree expansion will continue until the whole tree is expanded or a memory or time limit is reached.

Proofs of convergence and regret bounds can be found in [22].

3.4 UCT Variants

The UCT algorithm was originally proposed for single-agentdomains [22]. However, single agent

UCT can be easily modified to be used in multiplayer games by changing the search policy in the

tree. It has been applied in domains with more than one agent (e.g. computer Go [9, 15]) and

produced notable results. It has also been used in the general game playing competition and yielded

superior results for three successive years [12].

In the original version of UCT and in its simplest (and usual)implementation, UCT only consid-

ers its own utility (and not the opponents’ utility) for action selection. Tree expansion is also done

in a sequential manner by considering the moves of every player at a different step. We call this

sequential tree expansionsequencing. Although it does well in a sequential two-player constant-

sum game, turning a simultaneous move game to a sequential game can be troublesome. One major

drawback is that when we assume that a game is sequential we are assuming information about how

our opponent behaves in a game and that we know what he does in astep before we make our deci-

sion. For example, consider the simple matrix game shown in Table 3.1. The first row and column

in Table 3.1 are the actions of players and the values in each cell are the payoffs for taking the joint

actions crossing at that cell. The row player gets the first value while the column player gets the

second one. Assume that we are playing as the row player. If weuse sequencing and minimax in

UCT to decide what action to take, both of our actions will be considered equally good. Because

the opponent can always select an action that results in0 points for us. However, if we do not use

sequencing and consider our actions and opponent’s actionssimultaneously and maximize our own

score, we selecta2 with no doubt. In this case if the opponent happens to be imperfect, we can gain

100 points.
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b1 b2

a1 0, 100 0, 100
a2 100, 0 0, 100

Table 3.1: The payoff matrix of a simple simultaneous move game.

The pseudocode for one iteration of our variant of the UCT algorithm is given in Algorithm 1.

We use a maximization policy while searching in the game tree, which is every player is trying to

maximize his own score. The policy for searching the game tree is given in lines 19-28 of Algorithm

1. In single agent case, only the value of the single player inthe game is considered while traversing

the tree. It should be noted that for two-player constant-sum games, the selection rule between

children of a node corresponds to the minimax rule. When a game is two-player constant-sum,

maximizing your own score corresponds to minimizing the opponent score at the same time and that

is the way the selection rule is applied in Algorithm 1.

Each iteration of the UCT algorithm involves three phases oftree search, simulation, and value

update. The first part of each UCT iteration (lines 2-10) is the tree search. As long as all the children

of a node are expanded, the best child is selected to be followed in the new trajectory in this iteration.

The UCT bonus is also taken into consideration for the selection of the best child to be followed (line

22). Regular UCT players just consider an exploration bonusfor their own actions. However, we will

consider an exploration bonus for all players. At a leaf nodewhen there are unexpanded children,

a random child is selected for expansion. This new child is also added to the tree. Regular UCT

players, unlike us, usually do not consider all the children(every combination of move selection

for different players) before going deeper in the game tree.Therefore, their tree expansion can be

misleading based on how lucky they were in the first time that they tried a move. The second part

of each UCT iteration (lines 11-16) is the simulation. If thecurrent node is already a terminal state,

then the value is just retrieved (line 12). However, if the leaf node is not a terminal state, a Monte-

Carlo simulation is done from the leaf node to a terminal state to get a value for the current trajectory

(lines 14-15). The third part of each UCT iteration (line 17)is the value update. The value that is

gathered in the second phase is used to update the value of nodes along the trajectory in the game

tree.

3.4.1 Multiplayer Games and Opponent Modeling

In general game playing the value of the goal is defined for different players in a terminal state.

Thus, our program keeps values for each player instead of just keeping the value for the player who

is to move in order to do more sophisticated opponent modeling. In multiplayer games, the number

of children can be as large as the product of available actions for each player. Therefore, we keep

the values for different actions of different players instead of keeping them for each combination

of actions. This will also enable us to do more sophisticatedopponent modeling than merely con-

sidering that everybody is playing against us (the paranoidassumption [36]) like what most of the
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Algorithm 1 One iteration of the UCT algorithm.
1: procedure UCTITERATION( )
2: current← root
3: while in the treedo
4: if all joint moves have been exploredthen
5: current← GETBESTCHILD (current)
6: else
7: current← GETCORRESPONDINGCHILD (current,random-unexplored-joint-move)
8: ADDTOTREE(current)
9: end if

10: end while

11: if current is terminalthen
12: values← GETGOALVALUES(current) ⊲ Returns the goal values for different players.
13: else
14: terminalNode← MONTECARLOSIMULATION ( )
15: values← GETGOALVALUES(terminalNode)
16: end if

17: UPDATEVALUES(current, values)
18: end procedure

19: procedure GETBESTCHILD (current)
20: for every playerp do
21: for every actiona of playerp do

22: values[a]← value-of-a +C

√

ln(number of visits tocurrent)
number of times playerp has selected actiona

23: end for
24: moves[p]← actions-of-p[argmax{values}]
25: end for
26: best← GETCORRESPONDINGCHILD (current,moves)
27: return best
28: end procedure

29: procedure UPDATEVALUES(current, values)
30: while current is notroot do
31: current-selected-action-value← ⊲ value of the selected action atcurrent

WEIGHTEDAVERAGE(current-selected-action-value,
current-selected-action-counter,values)

32: current-selected-action-counter← current-selected-action-counter +1
33: current-visits← current-visits +1
34: current← current-parent-in-this-iteration
35: end while
36: end procedure
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Figure 3.1: Game tree of a sample general-sum game.

general game players do.

In single agent games there is no need for opponent modeling and in two-player constant-sum

games opponent modeling is limited, although work has been done in that area [7, 11]. In the single

agent case, we try to maximize our own score. The situation isthe same for two-player constant-sum

games. By following the maximization strategy, we also achieve the minimization of the score of our

opponent in two-player constant-sum games since the game isconstant-sum. However, in two-player

general-sum games and in multiplayer games there is nobestmodeling, which means there is no

unique modeling with guaranteedbestpayoff regardless of whatever the other players do, although

the paranoid assumption can be used, which guarantees a minimum playoff [36]. Therefore, if we

have an incorrect model of our opponent(s), then we may suffer greatly. For example in the game

tree of a sample general-sum game that is shown in Figure 3.1 if the opponent (p2) is trying to

minimize our score (p1), then we are confident to get at least50 points by selecting the right branch.

However, if the opponent is trying to maximize his own score then we can get80 points by selecting

the left branch. This conflict in action selection arises from the fact that the game is general-sum.

Since we are dealing with simultaneous move games in this thesis and computing Nash equilib-

rium is a logical way to play these games as we will discuss later in Section 3.6.1, we use the tree

search policy that gets us closest to a Nash equilibrium in a game. Nash equilibrium is a state that no

player can increase his payoff by unilaterally changing hisstrategy, therefore assuming that every

player plays to maximize his own payoff is logical to be used during tree search.

3.4.2 Exploration vs. Exploitation

The square root bonus added to the value of a node on line 22 is used to balance between exploitation

and exploration. It is directly proportional to the number of times a state (parent) is visited and

inversely proportional to the number of times a specific action (child) is selected. By exploiting the

best action repeatedly, the bonus for selecting other actions will become larger. Therefore, exploring

other actions become more favorable. The constant factor,C, defines how important it is to explore

instead of selecting the greedy action. The higher the valueof C, the more exploration will be done.

Although we can change the value ofC to tune exploration versus exploitation, we should also

take the range of the value of outcomes into consideration. If the value ofC is not comparable with
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C 1 40 100

1 NA 12, 88 21, 79
40 93.5, 6.5 NA 67, 33
100 91.50, 8.5 34, 66 NA

Table 3.2: Comparing the usage of variable values ofC in Connect4.

the range of values, then exploration can be over emphasizedor under emphasized. For example

settingC = 10000 or C = 1 while the range of values is comparable with100 will result in too

much or too little emphasis on exploration. Therefore, although settingC = 40 can be logical in

GGP while the range of values is usually from0 to 100, if all the outcome values in a game are in

the0 to 10 interval, then a smaller value forC can be more suitable. Thus a variable value ofC,

dependent on the game and the game context, seems to be more desirable. A comparison between

different setting of values forC is made in Table 3.2 in Connect4. The values in Table 3.2 are

averaged over100 games with start-clock equal to30 seconds and play-clock equal to10 seconds

and memory limit of2 gigabytes. Values in Connect4 range from0 to 100 andC = 40 is the best

value as discussed earlier.

3.4.3 Playout Policies

Different policies can be used to do the Monte-Carlo simulation. The simplest one is to select

random actions for each player at each step. However, one canuse a more informed approach by

selecting the best action if the simulation runs into a node that has been visited before during the

search (the idea of using transposition table [29]). In addition, history heuristic about actions can be

used in the playout as well [29].

3.4.4 Updating Values

The outcome that results from a simulation will be used to update the values of the nodes along the

path from the root in the search tree (line 17). Updates can simply be a weighted average. However,

if the game is single-player and there is no uncertainty in the game, maximization between the old

value and the new one can be used as the update rule, since in the single player case, the only

concern is to achieve the highest possible outcome. In addition, a discount factor can be used during

the update process to favor shorter solutions over longer ones.

3.5 UCT Example

We demonstrate how UCT expands and explores the game tree fortic-tac-toe. The rules of the game

are the same as regular tic-tac-toe and the first player who gets a line on the board is the winner.

The winner gets100 points while the loser gets0 points. A draw result is50 points for each player.
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Figure 3.2: UCT game tree expansion in tic-tac-toe.

Since this game is two-player constant-sum, we will only consider the values for the first player.1

During the first nine iterations of UCT, since all the children of the root have not been expanded

yet, a new child of the root is added to the game tree at each iteration. A Monte-Carlo simulation

is carried out for each of them to get a value. Suppose after nine iterations the game tree and the

values of nodes are analogous to what is shown in Figure 3.2(a). Without loss of generality and for

simplicity, assume that the children that are not shown in Figure 3.2(a) have taken the value of zero.

In the tenth iteration, the best child is selected for expansion. Since the UCT bonus is equal for all

the children at this point, the child with the highest value,which is the left-most one is selected for

expansion. Therefore, one of its children is added to the tree and a simulation is performed to get

a value. We assume that the simulation from the newly added node results in a loss and thus the

value of its parent is decreased to50. In the eleventh iteration, the root node has two children with

the value of50. However, the UCT bonus for the right-most child is bigger than the bonus for the

1It should be noted that in this game, no two different joint moves will result in the same next state. Therefore, the number
of visits to a child can be considered as the number of times that a particular action has been selected.
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Figure 3.3: Resulted UCT game tree for simultaneous tic-tac-toe after exploring all the joint moves
at the root of the tree.

left-most one as it has received less exploration. Therefore, the right-most child is selected to be

followed in the trajectory in the eleventh iteration. The game tree after this iteration is shown in

Figure 3.2(b).

UCT iterations continue as long as there is time left. New nodes are also added to the tree as

long as there is sufficient memory. When a memory limit is reached, no new nodes are added to the

tree and only the values of the nodes currently in the tree areupdated. After the first move is taken

in the game, the game tree above it that cannot be reached any more will be removed. This frees

memory for new tree expansion and addition of new nodes to thetree. These steps will be repeated

while the game is being played. When time is up for move selection at each step, the child with the

highest value is selected as the move to be played.

3.6 UCT in Simultaneous Games

The pseudocode that was presented in Algorithm 1 can be used for simultaneous move games.

The only difference is that in turn-taking games, only one player has a chance to select his move,

while the others select theno-operationmove. In simultaneous move games, all the players have

meaningful moves to take that can change the state of the game. In addition, each game state

in simultaneous move games can be the result of more than one joint move, because joint moves

depend on all players and different complementary joint moves can result in a same game state.

To clarify the usage of UCT in simultaneous move games we willconsider its usage in simul-

taneous tic-tac-toe. The rules and outcomes of simultaneous tic-tac-toe are the same as the regular

one in Section 3.5. However, both players mark the board simultaneously and, if both of them mark

the same cell, then the cell will remain blank. In addition, if both players get a line on the board,

then it counts as a draw.

The tree expansion part is the same as in regular turn-takinggames. The resulting game tree

after all the joint moves at the root of the tree have been explored is shown in Figure 3.3. Although

we have9×9 = 81 different joint moves at the root, there are only9×8+1 = 73 different children

because of the contraction of identical game states to a single node in the tree. All the joint identical

moves (those where both players mark the same cell) result inthe left-most child marked with a

star in Figure 3.3. After all the different joint moves have been explored, tree expansion continues
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rock paper scissors

rock 50, 50 25, 75 100, 0
paper 75, 25 50, 50 45, 55

scissors 0, 100 55, 45 50, 50

Table 3.3: Biased rock-paper-scissors payoff matrix.

deeper in the game tree and the trajectories are selected based on the selection rule (lines 19-28 in

Algorithm 1).

3.6.1 Balanced Situation

When we have no model of our opponent and nogoodstrategy to play a game, which is usually

the case in GGP, playing according to a non-losing strategy is rational if such a strategy exists. A

non-losing strategy will not lead us to a loss if we follow it while playing the game, assuming that

the game is not a forced loss. It would also be better if the opponent cannot gain any advantage by

unilaterally changing his strategy against us. If our strategy has all of these properties then we are

playing according to a Nash equilibrium strategy. Therefore it is convenient to find and follow a

Nash equilibrium in a game. Unfortunately UCT does not converge to a Nash equilibrium in general

and the situation that it converges to can be easily exploited if it is known beforehand. We now give

an example that UCT does not converges to a Nash equilibrium.This example serves as a counter

example that UCT does not converge to a Nash equilibrium in general. How UCT can be exploited

will be shown in Chapter 5.

Rock-paper-scissors with biased payoff as shown in Table 3.3 is an example of a game that UCT

gets into a balanced non-Nash equilibrium situation instead of converging to the true mixed strategy

Nash equilibrium.2 The rules of the game are the same as a regular rock-paper-scissors while the

outcomes are biased according to how you win the game. There is only one Nash equilibrium in this

game which is a mixed strategy with action probabilities as follows.

P (rock) = 0.0625 P (paper) = 0.6250 P (scissors) = 0.3125

The expected value of Nash equilibrium for this game is50. One possible trace of UCT withC = 40

will be as follows.

(p, r), (r, p), (p, p), (s, r), (s, s), (r, s), (p, s), (s, p), (r, r), (r, r), (p, p), (r, r), (p, p), (r, r), (p, p),

(r, r), (p, p), (r, r), (p, p), (r, r), (p, p), (r,r),(p,p),(s,s),(r,r),(p,p),(s,s),. . .

At first 9 moves, UCT explores all the different combinations of move selection for both players.

By the end of the initial exploration, UCT uses the value of each action and its exploration bonus

to select an action for each player. The expected value of each action, the number of times each

action has been selected, and the values computed by UCT to define the next best move are given in

Table 3.4 starting at step9. Since the game is symmetric and during the iterations we assume that

2The purpose of this part is to give a counter example that UCT does not compute the Nash equilibrium in general.
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step(N)
values(Qa) counters(Ca) Qa + 40×

√

lnN/Ca next actions
r p s r p s r p s

9 58.33 56.67 35.00 3 3 3 92.56 90.90 69.23 (r, r)
10 56.25 56.67 35.00 4 3 3 86.60 91.71 70.04 (p, p)
11 56.25 55.00 35.00 4 4 3 87.22 85.97 70.76 (r, r)
12 55.00 55.00 35.00 5 4 3 83.20 86.53 71.40 (p, p)
13 55.00 54.00 35.00 5 5 3 83.65 82.65 71.99 (r, r)
14 54.17 54.00 35.00 6 5 3 80.70 83.06 72.52 (p, p)
15 54.17 53.33 35.00 6 6 3 81.04 80.20 73.00 (r, r)
16 53.57 53.33 35.00 7 6 3 78.74 80.52 73.45 (p, p)
17 53.57 52.86 35.00 7 7 3 79.02 78.31 73.87 (r, r)
18 53.13 52.86 35.00 8 7 3 77.17 78.56 74.26 (p, p)
19 53.13 52.50 35.00 8 8 3 77.40 76.77 74.63 (r, r)
20 52.78 52.50 35.00 9 8 3 75.86 76.98 74.97 (p, p)

21 52.78 52.22 35.00 9 9 3 76.04 75.48 75.30 (r, r)
22 52.50 52.22 35.00 10 9 3 74.74 75.66 75.60 (p, p)
23 52.50 52.00 35.00 10 10 3 74.90 74.40 75.89 (s, s)
24 52.50 52.00 38.75 10 10 4 75.05 74.55 74.40 (r, r)
25 52.27 52.00 38.75 11 10 4 73.91 74.69 74.63 (p, p)
26 52.27 51.82 38.75 11 11 4 74.04 73.59 74.85 (s, s)

Table 3.4: Values in a sample trace of UCT withC = 40 in biased rock-paper-scissors and compu-
tation of next best action to be selected in the next iteration.

both players are using UCT, the values for both players will be identical. This equality of values

on both sides results in both players selecting joint identical move,e.g.(r, r) which represents both

players playing rock. Action selection will be done based onthe values computed by UCT, which

is the sum of expected value of an action and its UCT bonus (fourth column in Table 3.4). The

maximum value in fourth column, which is the action to be selected next, is shown in boldface font.

At step9, rock has the highest value among all the actions and the UCT bonus is equal for all the

actions. Therefore,(r, r) is selected. This selection results in paper having a higherUCT bonus

that compensates for its lower value and leads to its selection. Action selection between rock and

paper is switched until their expected values are lowered3 enough that the UCT bonus for scissors

can compensate its selection (step23). From step21, which is specified by double lines in Table

3.4, UCT gets into a cycle that does not exist.

After this sequence, the values (sum of the goal value and UCTbonus for each action) for

both players in UCT will be identical which will result in both players playing the same during UCT

iterations and cycling through a balanced situation. This means that players will select joint identical

moves. Since the value that the players get is equal to the expected value of the Nash equilibrium

that player can get, both players will besatisfiedand not willing to deviate from their strategy. In

addition, players will not get out of the balanced situationcycle, because the exploration in the UCT

algorithm is deterministic. Exploration is deterministicdue to the fact that it is governed by the UCT

bonus and because both players play the same, the UCT bonus for different actions of each player

3The result of playing joint identical moves is50 which is less than the expected values of rock and paper at this point.
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rock paper scissors

rock 50, 50 0, 100 100, 0
paper 100, 0 50, 50 0, 100

scissors 0, 100 100, 0 50, 50

Table 3.5: Regular rock-paper-scissors payoff matrix.

will be the same.

If we consider action selection ratios as the probability ofchoosing each action, we will get equal

probabilities for each of the different actions as(1/3, 1/3, 1/3) (the first, second, and third arities

are probabilities of selecting rock, paper, and scissors respectively).4 It is clear that this probabil-

ity setting is not a Nash equilibrium, because either playercan increase his payoff by unilaterally

skewing his action selection probability toward paper.

The balanced situation that the players arrive at is dependent on the way a player models the

other player. The value ofC for each player can be considered as the simplest notion of opponent

modeling in the UCT algorithm. For example if we considerC = 100 for the first player and

C = 50 for the second player, then the probability settings for thefirst and second players after

approximately one million iterations will be(0.07, 0.12, 0.81) and(0.03, 0.46, 0.51) respectively.

Therefore if UCT plays as the first player, the second player can exploit UCT by skewing his action

selection probability toward rock. On the whole, the balanced situation that UCT converges to is not

necessarily a Nash equilibrium and can be exploited.

In addition, in the situations where UCT converges to the Nash equilibrium,e.g.regular rock-

paper-scissors5 whose payoff matrix is shown in Table 3.5, the way it converges to the Nash equi-

librium can just be a result of luck. For example, looking into the logs of the matches of the regular

rock-paper-scissors reveals that there are cases that UCT gets stuck in selecting joint identical moves,

e.g.(r, r). Because UCT gets50 points simply by playing joint identical moves, which is equal to

the expected value of the Nash equilibrium, it will not change the way it plays. Therefore in the

best case (after running for sufficient time), UCT samples all the joint identical moves equally and

comes up with(1/3, 1/3, 1/3) probability setting for the Nash equilibrium. It samples all the moves

equally because of the UCT bonus.

It must be mentioned that UCT exploration is not random. It isa deterministic process controlled

by the UCT bonus at each step. Therefore, when UCT gets into a cycle that the values of UCT

bonuses for different actions repeat themselves, UCT cannot get out of the cycle. One way to solve

the problem is to change the exploration in a way that will result in actually exploring every possible

situation sufficient number of times. However, we will consider another algorithm, called CFR, that

actually computes a Nash equilibrium.

4The resulted probability setting does not suggest that UCT selects its action using that distribution. Because the proba-
bility setting is generated considering the UCT bonuses while the final action will be selected solely based on the valuesof
different actions.

5The only Nash equilibrium in the regular rock-paper-scissors is(1/3, 1/3, 1/3) whose expected value is50.
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3.7 Conclusion

In this chapter we analyzed the UCT algorithm. We argued thatit is not the best algorithm to be used

everywhere,e.g.simultaneous move games, since it does not compute the rightvalue everywhere,

e.g.Nash equilibrium in case of simultaneous move games. In addition we showed that when it

converges to the Nash equilibrium in a game, it can be just outof luck and cannot be relied.
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Chapter 4

Computing Nash Equilibrium:
the CFR Algorithm

4.1 Introduction

In this chapter we will describe the CFR algorithm and consider its use in simultaneous move games

in GGP. At first we give a brief overview of the CFR algorithm (Section 4.2). After explaining

immediate counterfactual regret, which is the cornerstoneof the CFR algorithm, in Section 4.3, we

will describe the algorithm in Section 4.4. We give exampleson how to use CFR in Section 4.5.

Finally we will consider how the CFR algorithm can be used in GGP (Section 4.6).

4.2 Overview

As discussed in Section 3.6.1, playing according to a Nash equilibrium in an unknown simultaneous

move game is a reasonable strategy. However, if the game is complex (e.g.the state space is large)

then we cannot compute a precise equilibrium. Instead, we can use anǫ-Nash equilibrium strategy,

whereǫ is an indication of how far we are from an equilibrium. Since we will not lose anything

by following a Nash equilibrium strategy,ǫ can be considered as the amount that we will lose if we

happen to play against a best response to our strategy. In fact ǫ is a measure of how exploitable we

will be by following anǫ-Nash equilibrium strategy [38].

CFR (CounterFactual Regret) is an algorithm for finding anǫ-Nash equilibrium. It is currently

the most efficient algorithm known and it can handle the largest state spaces in comparison to other

available methods [38]. It also has the nice property of being incremental, meaning that the longer

it runs the closer it gets to the Nash equilibrium in the environment which it is dealing with.

4.3 Immediate Counterfactual Regret

Regret is related to the difference between the maximum reward a player could have obtained versus

what he did obtain. Counterfactual regret is a measure that defines how much a player regrets not
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Figure 4.1: A partial game tree.

taking an action (and that is why it is called counterfactual). In the computation of the counterfactual

regret for a player in a specific point in a game, it is assumed that the player himself has played to

reach that point of decision making while all the other players have played according to their strategy

profile.1

Immediate counterfactual regret of a player after a number of iterations is also defined analo-

gously. It is the average of the player’s maximum counterfactual regret over all the iterations that it

is computed for. A formal definition of counterfactual regret can be found in [38]. We will demon-

strate how to compute counterfactual regret with an example.

Let us compute the counterfactual regret at the node which isrepresented by the dashed circle

in the partial game tree shown in Figure 4.1. Each node is marked with the player who has to make

a decision at that point. The probability of taking each action according to the current strategy of

the player is given beside each edge. Dots in the upper part ofthe tree mean that there are other

choices that have not been shown. Dark filled nodes at the bottom of the tree are terminal nodes

and the goal value for each player is given below these nodes.It should be noted that the game is

constant-sum. If we compute the expected value for each of the different actions available to player

1A strategy profile for each player defines the probability of the player taking each action at each step of the game.
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p1 at our desired node we have

E(a) =
1

2
×60+

1

2
×30 = 45 , E(b) =

1

2
×70+

1

2
×80 = 75 , E(c) =

1

2
×10+

1

2
×20 = 15

According to current strategy probability setting ofp1, the expected value of our desired node is
1
3 × 45 + 1

3 × 75 + 1
3 × 15 = 45. The counterfactual regret of an action in a state is the difference

between the expected value of that action in that state and the expected value of the state where the

player can choose that action. Counterfactual regret of an action in particular state for a player is

also weighted by the probability of other players reaching that state if they happen to play according

to their strategy at that time. Therefore,p1’s counterfactual regret of each action in our desired node

will be as follows.

cfr(a) =
2

5
×(45−45) = 0 , cfr(b) =

2

5
×(75−45) = 12 , cfr(c) =

2

5
×(15−45) = −12

2
5 is the probability ofp2 getting to the desired node. Therefore,p1 regrets not taking actionb more

than the other two actions. We explain the CFR algorithm and show how counterfactual regrets that

were computed here can be used to compute the final strategy profile to play a game.

4.4 The CounterFactual Regret Algorithm

Zinkevichet al.state three theorems in [38] that relate immediate counterfactual regret andǫ-Nash

equilibrium. Those theorems are as follows and are the theoretical foundations of the CFR algorithm.

Theorem 1 In a two-player constant-sum game at a specific time step, if both players’ average

overall regret is less thanǫ, then their average strategies are a2ǫ equilibrium.

Theorem 2 Average overall regret is bounded by the sum of the independent immediate counterfac-

tual regret values.

Therefore, if we minimize the immediate counterfactual regret at each node the average overall

regret will be minimized. To minimize the immediate counterfactual regret we just need to minimize

the counterfactual regret for every action of a player at each time step, since immediate counterfac-

tual regret is the average of the player’s maximum counterfactual regret over all the iterations that it

has been computed for. One way for counter factual minimization is to set the probabilities for the

next iteration based on the regrets in the current iteration. Thus the probability of selecting an action

with positive regret can be set relative to the ratio of its regret value to the sum of the positive regrets

of all actions. If there is no action with positive regret then a uniform probability distribution over

all actions can be used. If we set the probabilities in this way then our average overall regret will be

decreased according to Theorem 3.

Theorem 3 If a player selects actions based on the probability settingthat is set to minimize the

player’s regret at each step (i.e. as just discussed) then the player’s regret will be decreased relative

to the square root of the number of iterations.
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The pseudocode for one iteration of the CFR algorithm is given in Algorithm 2. Proofs of

convergence and bounds on how close it will get to a Nash equilibrium can be found in [38].

Algorithm 2 One iteration of the CFR algorithm.
1: procedure CFRITERATION( )
2: if root= NULL then
3: BUILD TREE( )
4: end if

5: COMPUTEEXPECTEDVALUES(root)
6: RESETALL REACHINGPROBABILITIESTOZERO( )
7: for each playerp do
8: root.playersOwnReachingProbaility[p]← 1
9: root.reachingProbability[p]← 1

10: end for
11: COMPUTEREACHINGPROBABILITIES(root)
12: UPDATEPROBABILITIES(root)
13: end procedure

At each iteration of the algorithm, CFR computes the expected value for different actions of

every player at each node (lines 10-16 in Algorithm 3). The overall expected value for each player

is computed as well (lines 17-19 in Algorithm 3). It also computes the reaching probability to

each node in the tree for different players. However, as CFR deals with counterfactual regret, the

probability for each player is computed as if that player played to reach that node while other players

have played based on their current strategy (lines 3 in Algorithm 4). In addition, it keeps track of

the probability of reaching a specific node, based on the player’s own strategy, to compute the final

probability for action selection (line 4 in Algorithm 4). Counterfactual regrets are computed using

the reaching probabilities and the difference between expected values for taking a specific action

versus following the current strategy (lines 8-13 in Algorithm 5). CFR keeps track of cumulative

counterfactual regret for every action of every player at each node of the tree. Action probabilities

for the next iteration are computed based on the cumulative counterfactual regret. The probabilities

of all the actions which have negative regrets will be set to zero as the player is suffering by taking

those actions based on the current probability settings (line 19 in Algorithm 5). The probabilities

of the actions which have positive regrets will be set according to the value that the player regrets

them (line 17 in Algorithm 5). However, if there is no action with positive regret, then the player will

switch to randomization between all of his actions using a uniform distribution (line 24 in Algorithm

5).

It should be noticed that the game is not actually being played during the computation, but the

algorithm is tuning probabilities for the players to minimize their immediate counterfactual regret.

While the algorithm is tuning the probabilities, it also gathers information to compute the final prob-

abilities (lines 3-6 in Algorithm 5). The average strategy over all the iterations will be considered

as the final probabilities for selecting each action while a player is actually playing the game. The
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Algorithm 3 Computing expected values in CFR.
1: procedure COMPUTEEXPECTEDVALUES(root)
2: for each childc of root do
3: COMPUTEEXPECTEDVALUES(c)
4: end for

5: for each playerp do
6: for eacha ∈ actions(p) do
7: root.actionExpectedValue[p][a]← 0
8: end for
9: end for

10: for each childc of root do
11: for each playerp do
12: pAct← c.action[p]
13: prob← Πop6=proot.actionProbability[op][c.action[op]]
14: root.actionExpectedValue[p][pAct] += prob× c.expectedValue[p]
15: end for
16: end for

17: for each playerp do
18: root.expectedValue[p]←

∑

a∈actions(p) root.actionProbability[p][a]× root.actionExpectedValue[p][a]
19: end for
20: end procedure

Algorithm 4 Computing reaching probabilities in CFR.
1: procedure COMPUTEREACHINGPROBABILITIES(root)
2: for each childc of root do
3: c.reachingProbability[p] +=

root.reachingProbability[p]×Πop6=p root.actionProbability[op][c.action[op]]
4: c.playersOwnReachingProbaility[p] =

root.playersOwnReachingProbaility[p]× root.actionProbability[p][c.action[p]]
5: if ALL PARENTSCOMPUTATIONAREDONE(c) then
6: COMPUTEREACHINGPROBABILITIES(c)
7: end if
8: end for
9: end procedure
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Algorithm 5 Updating probabilities in CFR.
1: procedure UPDATEPROBABILITIES(root)
2: for each playerp do
3: for eacha ∈ actions(p) do
4: root.cfrActionProbability[p][a] +=

root.playersOwnReachingProbability[p]× root.actionProbability[p][a]
⊲ Keeps track of accumulative probabilities to extract probability of actions at last

5: end for
6: root.cfrReachingProbability[p] += root.playersOwnReachingProbability[p]

⊲ The final probability for playerp taking actiona will be cfrActionProbability[p][a]

cfrReachingProbability[p]

7: sum← 0
8: for eacha ∈ actions(p) do
9: root.regret[p][a] += root.reachingProbability[p]×

(root.actionExpectedValue[p][a] - root.expectedValue[p])
10: if root.regret[p][a] > 0 then
11: sum += root.regret[p][a]
12: end if
13: end for
14: if sum> 0 then
15: for eacha ∈ actions(p) do
16: if root.regret[p][a] > 0 then
17: root.actionProbability[p][a]← root.regret[p][a] / sum
18: else
19: root.actionProbability[p][a]← 0
20: end if
21: end for
22: else
23: for eacha ∈ actions(p) do
24: root.actionProbability[p][a]← 1/|p’s actions|
25: end for
26: end if
27: end for
28: end procedure
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Figure 4.2: Rock-paper-scissors game tree for CFR. Dark nodes are terminal.

probability of selecting an action in the average strategy is the probability of selecting that action in

each strategy during all the iterations, weighted by the probability of the strategy reaching that point

of decision making.

4.5 CFR Example

4.5.1 First Example

We consider the game of rock-paper-scissors to illustrate how CFR works (refer to Figure 4.2).

Assume the first player’s (p1) action probabilities are(1, 0, 0) (the first, second, and third arities

represent the probability of playing rock, paper, and scissors, respectively) and the second player’s

(p2) action probabilities are(0, 1, 0). Considering the probability settings, the expected valuefor p1

playing rock will be as follows.2

Ep1(r) = Pp2(r) × goalp1(r, r) + Pp2(p)× goalp1(r, p) + Pp2(s)× goalp1(r, s)

= 0× 50 + 1× 0 + 0× 100

= 0

The expected value for playing paper and scissors will be50 and100 respectively. Therefore the

current expected value for the first player will be as follows.

Ep1 = Pp1(r) × Ep1(r) + Pp1(p)× Ep1(p) + Pp1(s)× Ep1(s)

= 1× 0 + 0× 50 + 0× 100

= 0

The counterfactual regret for each of the available actionsto p1 will be as follows.

cfrp1(r) = Ep1(r) − Ep1 = 0− 0 = 0

cfrp1(p) = Ep1(p)− Ep1 = 50− 0 = 50

2goalp1: p1’s goal value,r: playing rock,p: playing paper,s: playing scissors,(r, r): a state where both players play
rock (the first and the second arities correspond to thep1 andp2 actions respectively).
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Figure 4.4: Three different moves ofx-player in simultaneous tic-tac-toe.

cfrp1(s) = Ep1(s)− Ep1 = 100− 0 = 100

Therefore, the action probabilities forp1 will be updated for the next iteration as follows.

(0/(100 + 50), 50/150, 100/150) = (0, 1/3, 2/3)

Similar computations will be done for the second player and his action probabilities will be updated

as well before the next iteration.

4.5.2 Second Example

We consider simultaneous tic-tac-toe to illustrate how CFRworks in a more complex game. The

rules of the game are the same as the regular tic-tac-toe except if both players mark the same cell, the

cell will remain unmarked in the next step. Wins, draws, and losses result in a reward of100, 50, and

0 respectively. If both players manage to complete a line of their own, the game will be considered

as a draw. A partial game tree of the game is shown in Figure 4.3. Expected values for each player

are given beneath each leaf node. Identical states are not coalesced for simplicity. Assume both

players select their actions at each step using a uniform distribution. We describe how to compute

counterfactual regret and update action selection probabilities for the actions3 shown in Figure 4.4

at the node marked with star in Figure 4.3. Let us assume the expected value for thex-player at the

stared node is50. The expected value forx-player playinga1 is 51.67.

Ex(a1) = Po(a1) × Ex(a1x, a1o) + Po(a2) × Ex(a1x, a2o) + . . . + Po(a9) × Ex(a1x, a9o)

3a1-a9 correspond to marking each of the cells in the tic-tac-toe board.
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=
1

9
× 50 +

1

9
× 55 +

1

9
× 50 +

1

9
× 55 +

1

9
× 35 +

1

9
× 60 +

1

9
× 50 +

1

9
× 60 +

1

9
× 50

≈ 51.67

Let us assume thatEx(a2) = 45 andEx(a5) = 65. Therefore, the counterfactual regret for each of

the actions under consideration will be as follows.

cfrx(a1) =
1

9
× (51.67− 50) ≈ 0.19

cfrx(a2) =
1

9
× (45− 50) ≈ −0.56

cfrx(a5) =
1

9
× (65− 50) ≈ 1.67

Let us also assume that the sum of the positive regrets of the other actions ofx-player is0.57. Thus,

the new probabilities for each of the actions under consideration will be as follows.

Px(a1) =
0.19

2.43
≈ 0.08 , Px(a2) = 0 , Px(a3) =

1.67

2.43
≈ 0.69

This kind of computation will be done for other actions ofx-player as well as those of theo-player

and all the probabilities will be updated before starting the next iteration.

4.6 CFR in GGP

CFR was originally designed for poker which is an imperfect information game [38]. The current

state of a game in an imperfect information game is based in part on hidden information. Therefore

the current state of the game can only be defined to be among a set of states at any moment in the

game. Each set of these states is called an information set.

Definition 5 An information set for playerp in a game is a collection of game states among which

p cannot distinguish.

For example at the beginning of a poker game all the states that can be built based on the player’s

own set of cards and different assumptions for the cards in the opponent’s hand can be considered as

an information set. Figure 4.5 shows a chance node and information sets in an imperfect information

game. The game tree in Figure 4.5 is a partial game tree that just shows one step of the game. Each

player can take2 different actions which are represented by the edges markedwith the action names.

Decision making nodes are shown with circles and the player who must take an action is given in

the circle. Because of the hidden information (caused by thechance node), players can end up in

subtrees that are in the same information sets (same dashed shapes) and are not distinguishable.

However, the only source of imperfect information in GGP is the result of simultaneous actions

taken by different players. This simplifies the use of CFR in GGP since there is no hidden infor-

mation in the game except the nondeterminism of what action the opponent will select at each step.

Therefore, each information set in GGP is in fact a unique state. In GGP when we reach a state, we
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Figure 4.5: Demonstration of chance node and information sets in an imperfect information game.

exactly know where in the game we are and we do not need a complete history of our match from

the beginning of the game to find it out. Thus we can truncate parts of the tree that are not reachable

anymore and resume tree expansion for new states. Therefore, the determinism of the games in GGP

suits CFR very well.

An example that compares the importance of history in an imperfect information game even

without any chance nodes versus a perfect information game is given in Figure 4.6. The game trees

are partial game trees that just show two steps of the games and we use the same conventions as

in Figure 4.5. To improve the distinction of information sets at the leaf nodes in Figure 4.6(a),

the number of the information set that each node belongs to isgiven instead of grouping the states

in the same information set using dashed shapes. Dashed lines are used in Figure 4.6(b) to show

simultaneous moves and the fact that players have no knowledge about the action that the other

player takes in the same step.

The partial game tree given in Figure 4.6(a) corresponds to the following game. It is a two-player

simultaneous move game in which each player has3 cards. At the beginning, each player decides

to put aside one of his cards without informing the other player. Therefore, the first move of both

players is hidden. Then, on each turn each player plays one card. The first player who plays the card

that the other player has put aside at the beginning wins the game. If both players’ guesses happen to

be correct in the same step or they put aside the same cards, the game is a draw. Since there is hidden

information,e.g.a hidden move, in an imperfect information game, after taking actions we can only

say in what information set we are and not the specific state. For example, a trivial information set

is the first time thatp2 must take an action. Since he does not know about the action thatp1 is going

to take, all the three nodes at depth one of the tree are in the same information set (root is at depth

zero). However more interesting information sets are wherethe players take their second action.

Due to the fact that the first action of each player is hidden, information sets are separated based on
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(a) Partial game tree sample of imperfect information game.

(b) Partial game tree sample of perfect information game.

Figure 4.6: Information set depiction in imperfect and perfect information games.

3
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the action that the player has taken himself (depth two of thetree). This fact is true at the third time

thatp1 wants to take an action (at the leaves). All the nodes in the same information set share the

same information. For example in any of the leaf nodes in information set number1, p1 knows that

he has hiddena1 and playeda2 while p2 has not hiddenb2. Solving this game using CFR requires

the whole game tree to be aware of the history of the game.

However, this game cannot be used in GGP, because no hidden move is permitted in GGP.

Therefore, at the end of every step each player knows what others have done and every information

set will just be a single state. The game tree for the transformation of this game into GGP context

(first action is also known) is given in Figure 4.6(b). As it can be seen, every time thatp1 must take

an action, the game state can be defined as a single node. Therefore, there is no need to keep the

whole tree and tree expansion can be done sequentially by removing obsolete nodes and adding new

ones.

Although determinism of the games in GGP makes the application of CFR easier on one hand,

but on the other hand using any abstractions while dealing with games in GGP is not as easy as

using abstraction in specific games,e.g.poker, to shrink the state space. In poker, the game is

known in advance and well designed abstractions can be used,but in GGP no good way of doing the

abstraction is known. Therefore, CFR must deal with a game tree that will grow as the state space

grows.

CFR expands the game tree at first by considering all the jointmoves of the different players

at each step of the game. However, if the whole game tree is toolarge to fit in memory, we only

expand the tree to a certain depth. Since we need return values for different players at the leaf

nodes, simulations can be done to obtain these values. A simulation involves playing a sample

match from the leaf node to a terminal node. In poker since thecomputation is done offline, as

much as time and memory that is required can be used to computethe final strategy to play the

game. However, in GGP the player must submit his moves beforea time limit is reached. Therefore

deciding on the size of the tree that we must deal with is a critical issue. The smaller the tree is,

the faster it will be to do an iteration over the tree and the values will converge faster. In case of

partial trees, we will have non-terminal leaves in our tree that we need to evaluate. We must do

simulations to acquire a value for our CFR computation. If wejust expand a small portion of the

game tree then the simulation trajectories will be longer and the outcome is more variable (compared

to shorter trajectories) implying that we will need a highernumber of simulations. Thus, although

the probabilities that CFR computes will converge faster, they will be farther from the actual values

that we must converge to. The reverse is true if we expand a larger portion of the tree. While it

takes longer to converge, we will converge to a higher quality solution. Therefore, there is a trade

off between how fast we can get a stable probability setting versus how good the result will be.

In addition to selecting an appropriate depth for tree expansion in CFR, all the simulations at leaf

nodes can be either done at first or during each iteration for CFR when we run into a non-terminal
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leaf node. While the first approach is faster, the second approach will result in better long-term

quality since the quality is not bounded by the simulations that have been done at first.

In the next chapter we will present experimental results that show how CFR plays against UCT in

simultaneous move games. In addition, we will consider situations where CFR has a great advantage

over UCT.

4.7 Conclusion

In this chapter we described counterfactual regret and the CFR algorithm for computingǫ-Nash

equilibrium. We gave examples on how to compute counterfactual regret and how the algorithm

works. We explained the usage of CFR in GGP and different trade-offs that should be considered.
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Chapter 5

Experimental Results

5.1 Introduction

In this chapter we provide experimental results showing howCFR players with different settings

perform against each other. Experimental results demonstrating the performance of a CFR player

versus a UCT player are also provided. We give an example thatusing a CFR player instead of

a UCT player result in great advantage as well. In addition, we discuss how following a Nash

equilibrium may not be the best strategy in all situations. We will then explain how a known model

can be used by CFR for exploitation while managing not to havea brittle strategy that is exploitable

itself. Finally, we present experimental results demonstrating the effectiveness of our approach, but

pointing to further open issues.

5.2 CFR Demonstration

5.2.1 CFR convergence rate

To give an idea about how quickly we converge to a Nash equilibrium in a game, we computed the

MSE of the estimated probabilities over iterations until convergence to an equilibrium for biased

rock-paper-scissors (discussed in Section 3.6.1),9 repetition of repeated rock-paper-scissors, and

Goofspiel with5 cards.

Repeated rock-paper-scissors is a regular rock-paper-scissors repeated for specific number of

times (9 times in our case). After the last repetition, the player whowon more rounds gets100

points and the loser gets0 points. Draws result in50 points for each player. The GDL for repeated

rock-paper-scissors is given in Appendix B.

Goofspiel, also known as theGame of Pure Strategy(GOPS), is a card game for two or more

players. The variant that we are considering here is a two player game with three suits of cards,

all facing up. Therefore there is no hidden information in the game. The number of cards can be

variable,e.g.from ace to5 inclusive. Each player owns a suit and the third suit is on theground in a

specific order. For convenience, we assume that the third suit is in order (from ace to5). At each step
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Figure 5.1: CFR convergence rate.

game # nodes
# terminal MSE < 0.01 MSE < 0.001

nodes # iterations time (sec) # iterations time (sec)

biased RPS 10 9 17 ≈ 0 87 ≈ 0
9 round RPS 220 55 45 ≈ 0 236 0.02

5 card Goofspiel 2, 936 138 1, 114 1.16 29, 730 31.09

Table 5.1: Convergence rate of CFR in trees with different sizes.

of the game, each player selects a card in his hand and both players announce their selected cards

simultaneously. The player who selects a higher card will gather the card placed on the ground from

the third suit and acquire as many points as the value of the card (1 to 5 for ace to5). Picking up

cards will be done in the order they are placed on the ground (from ace to5 in this example). For

example, at the first step if one player plays ace and the otherone plays2, the player who plays2

will get the ace from the third suit and accumulates1 point. If both players happen to have the same

card, no one will win the card from the third suit and all threecards will be discarded. At the end

of the game, the player with the higher points wins100 points and the other player gets0. A draw

results in50 points for each player. The GDL for Goofspiel with5 cards is given in Appendix C.

The graph in Figure 5.1 shows the result for CFR convergence rate for the three aforementioned

games. Both axis are in logarithmic scale. The horizontal axis is the number of iterations and the

vertical axis is the MSE of our estimation of a Nash equilibrium probabilities. Total number of

nodes as well as terminal nodes in the tree of each game are given in Table 5.1. Number of iterations

and time in seconds until MSE is less than0.01 and0.001 are also given. Tree sizes seem small (in

comparison to poker), but larger tree sizes (comparable to poker) are GGP inefficient since all the

computations are done online during the game.
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In these experiments, we let CFR converge to an equilibrium at first. Then we record the prob-

ability setting of the equilibrium and run CFR again. In thisphase, we also compute an estimation

error at desired iterations. LetS be the set of all game states andA(i, s) be the set of all actions

that playeri can take in states. Also assume that the probability of selecting actiona in states by

playeri in iterationT is PT
i (s, a). We useP ∗

i (s, a) to refer to the final probability that playeri uses

to select actiona in states when CFR has converged to an equilibrium. The error that we compute

is defined as follows.

1

N

∑

i∈players

∑

s∈S

∑

a∈A(i,s)

(

PT
i (s, a)− P ∗

i (s, a)
)2

(5.1)

where

N =
∑

i∈players

∑

s∈S

|A(i, s)| (5.2)

We assume to be in an equilibrium if the following condition holds.

max
i∈players

(

max
s∈S

(

max
a∈A(i,s)

∣

∣PT
i (s, a)− PT−1

i (s, a)
∣

∣

))

≤ ǫ (5.3)

Equation 5.3 simply states that the maximum amount of changein the probability of selecting an

actiona at any states by any playeri in the game between two consecutive iterations (T − 1, T )

must be less than or equal toǫ for the situation of CFR to be considered as converged. We used

ǫ = 10−6 in our experiments and initialized the probabilities usinguniform distribution except for

repeated rock-paper-scissors that uniform distribution is a Nash equilibrium. We set the probability

of selecting the first action at each step,e.g.paper, equal to one while initializing the probabilities

for rock-paper-scissors.

It can be seen that CFR converges faster in smaller games. Butthe interesting point is that while

convergence needs a lot of iterations,e.g.millions of iterations in Goofspiel with5 cards, the MSE

decreases rapidly at the early stages (the MSE drops to less than0.001 after approximately30, 000

iterations in almost30 seconds1). However, it should be mentioned that these graphs are not an

indication of how the quality of the solution found by CFR improves over time. The best response

must be computed for that purpose, because there can be more than a single Nash equilibrium in a

game. Therefore, it can be the case that while CFR is getting closer to a Nash equilibrium, it is in fact

getting farther from another Nash equilibrium. Fortunately, CFR will not just wander around and the

more iterations that CFR runs, the closer it gets to a Nash equilibrium as discussed in Section 4.4.

In addition, it should be noted that although we may suffer against a best response, but opponents

cannot compute the best response against us. Because they donot have a model of us in advance

and they cannot build one in the current setting of the competition that most games are played only

once against a specific player.

1Comparing the number of iterations and the time that CFR requires to lower error margins in the Nash equillibrium,viz.
MSE less than0.01 and0.001, also gives a good idea about the CFR convergence rate.
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Figure 5.2: CFR players with different tree sizes playing against each other in repeated rock-paper-
scissors (9 repetitions) (start-clock= 30sec and play-clock= 10sec).

5.2.2 The Effect of Tree Size in CFR performance

To demonstrate how the size of the tree can effect the qualityof a CFR player in GGP, we compare

how CFR players with different limits on tree sizes (game trees that are expanded to different depths)

play against each other. The policy that we used to get a valueat non-terminal leaf nodes during

CFR computations was to run1000 simulation for each leaf in batches of25 simulations. We stop

simulations when the difference between the running average of values from one batch to the next

was smaller than1 point. The results for such tournaments for9 repetitions of repeated rock-paper-

scissors and Goofspiel with5 cards are given in Figures 5.2 and 5.3. We initialized the probabilities

in Goofspiel with5 cards using uniform distribution. But we set the probability of selecting the first

action at each step,e.g.paper, equal to one while initializing the probabilities for rock-paper-scissors

since the uniform distribution is itself a Nash equilibriumin this game.

In both graphs (Figures 5.2 and 5.3) each line represents a player with a specific depth limit on the

tree expansion. The legends that describe which line corresponds to what depth of tree expansion are

given on the right hand side of the graphs. In both graphs, thehorizontal axis indicates the depth of

tree expansion being used by the opponent and the vertical axis indicates the score. Therefore, each

point in the graphs corresponds to a match between two restricted depth expansion CFR players (one

corresponding to the depth of the line representing a specific depth and the other one corresponding

to the player in the horizontal axis). The values in the vertical axis corresponding to each point

represent the average score that the line player obtained over100 games. Both games are constant-

sum and the values sum up to100. Values greater than50 and less than50 can be considered as wins

and losses respectively. Therefore, the higher the line is,the better the player corresponding to that
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Figure 5.3: CFR players with different tree sizes playing against each other in Goofspiel with5
cards (start-clock= 30sec and play-clock= 10sec).

line is (or the lower the values in a column is, the better the player corresponding to that position in

the horizontal axis is). Based on the graphs the player with depth7 in rock-paper-scissors and depth

3 in Goofspiel are the best players among their groups. In Section 4.6 we discussed about trade-offs

in depth selection and depths7 and3 are the breakpoints in these two games. However, it should

be mentioned that the differences less than4 points are only50 percent statistically significant at

most. Greater differences are more than85 percent statistically significant using the t-test. Since

many of the differences are small, it can be considered that the simulation policy used at leaf nodes

were effective as well. In addition, the fact that the games are not adversarial,e.g.the advantages

in a game does not turn into disadvantages because of a specific setting at a particular state, is well

suited for the sampling approach at the leaf nodes in partialtrees.

It is intuitive that the larger the tree is the better the quality of the player must be. However,

according to the results in the graphs in Figures 5.2 and 5.3,it is better not to expand the whole tree

when there is not enough time to run sufficient number of iterations to converge to anacceptable

probability setting. Therefore, if we increase the time, the quality of the players with deeper trees

must improve. To test this hypothesis, we ran the same experiments with longer start-clock. The

results are presented in Figures 5.4 and 5.5. As it can be seen, in both games the quality of the

players with deeper trees improved.

The lines that separate the statistically significant differences (more than54 or less than46 for

repeated rock-paper-scissors) are shown in Figures 5.2 and5.4. If we compare the graphs, the player

with the whole tree (depth9) loses statistically significant against players with smaller trees in the

former, while he improves his performance given the longer stat-clock in the latter. Using a60

second start-clock, the player with the whole tree only loses against one player with partial tree
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Figure 5.4: CFR players with different tree sizes playing against each other in repeated rock-paper-
scissors (9 repetitions) (start-clock= 60sec and play-clock= 10sec).

start-clock (sec) play-clock (sec) CFR UCT

repeated rock-paper-scissors (9 repetition) 30 10 52 48
simultaneous breakthrough (3x5) 30 10 48.25 51.75

simultaneous tic-tac-toe 30 10 50 50
Goofspiel (5 cards) 30 10 55 45
Goofspiel (7 cards) 60 10 53.25 46.75

Table 5.2: Comparing the usage of CFR and UCT in several simultaneous move games.

(depth7), which is not statistically significant anymore. Similarly, comparing Figure 5.3 and 5.5

shows improvement in players with deeper trees in Goofspielwith 5 cards. It can be seen that the

deeper the tree is expanded, the better the performance of the player become for longer start-clock.

5.3 Comparing CFR Against UCT

To demonstrate how a CFR player performs against a UCT playerin a simultaneous move game, we

performed experiments with repeated rock-paper-scissors, simultaneous breakthrough, simultaneous

tic-tac-toe, and Goofspiel with5 and7 cards.

Breakthrough is a game played on a regular chess board. However, each player has two rows of

pawns instead of regular chess pieces as shown in Figure 5.6.Pawns can move ahead one square

either straight or diagonally, but captures must be done diagonally. The first player who manages to

get one of his pawns to the last row of the opponent wins the game.

Simultaneous breakthrough is a variant of the breakthroughgame in which both players move

simultaneously. If both players move to the same cell simultaneously, the conflict will be resolved

by considering theprivilegeof the players. The player who has the privilege will get his piece settled
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Figure 5.5: CFR players with different tree sizes playing against each other in Goofspiel with5
cards (start-clock= 60sec and play-clock= 10sec).

Figure 5.6: Breakthrough inital state.
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in the cell. At the first state of the game, the first player has the privilege. The privilege switches

between players after each collision. In addition, if both players manage to get to the last row of the

opponent, the game will be considered as a draw. The GDL for simultaneous breakthrough is given

in Appendix D. Since the way that we changed the game to a simultaneous move game results in

the state space growth, we used smaller board size that is easier to handle,e.g.3× 5.

Simultaneous tic-tac-toe is a simultaneous variant of regular tic-tac-toe. However, if both players

mark the same cell, the cell will remain unmarked in the next step. The game ends after9 steps. The

player who manages to form a line gets100 points and the loser gets0 points. If no line is formed or

both players form a line of their own, the game counts as draw resulting in50 points for each player.

Table 5.2 shows the results that are averaged over200 games, with each player playing100 times

on each side in case the outcome of a game is biased toward a specific seating. The length of the

start-clock and play-clock is also given in the table. In these experiments an implementation of UCT

(as described in Chapter 3) is used versus an implementationof CFR (as discussed in Chapter 4).

The UCT player is an enhanced version of our general game player that participated in the2008

GGP competition. Uniform distribution is used to initialize the initial probabilities in CFR except

for repeated rock-paper-scissors that uniform distribution is a Nash equilibrium. We used longer

start-clock for Goofspiel with7 cards in order to let CFR build the whole game tree.

The best result for CFR is in Goofspiel with5 cards where there is a10 point difference in the

scores. This is more than95 percent statistically significant using the t-test. However the difference

in none of the other games is statistically significant. Therefore the only conclusion that can be

drawn from these set of experiments is that given enough amount of time, CFR can compete with

UCT. In addition, CFR performing slightly better in Goofspiel with 7 cards where the start-clock

was just enough to build the game tree, is an indication of theimportance of initial values in CFR.

Uniform initialization seems to payoff in Goofspiel with7 cards.

To compare how the length of start-clock and play-clock can effect the quality of UCT and CFR,

we ran experiments with different settings of start-clock and play-clock in Goofspiel with5 cards.

The results of such experiments are given in the graphs in Figures 5.8 and 5.7. In both graphs, the

vertical axis is the score of the player averaged over200 games. The horizontal axis is play-clock

in Figure 5.8 and start-clock in Figure 5.7.95 percent confidence interval around each data point is

also shown. As it can be seen in the graphs, neither CFR nor UCThas a clear advantage over the

other one for different settings of play and start clocks. However it can be said that the performance

of both algorithms improves given more time. It should also be stated that the probabilities in CFR

are initialized using uniform distribution in these experiments and when the time is too short to

do any iterations, uniform distribution is actually used for action selection. Not surprisingly, UCT

does not perform well given very short time and therefore both algorithms can compete again. Thus

performing slightly better for very short times does not necessarily imply that CFR has an advantage,

but is an indication of the effect of good initialization.
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Figure 5.7: Comparing CFR and UCT in Goofspiel with5 cards for start-clock= 30sec and different
play-clocks.

Figure 5.8: Comparing CFR and UCT in Goofspiel with5 cards for different start-clocks and play-
clock= 10sec.
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start-clock (sec) play-clock (sec) number of games CFR UCT

30 variable 1400 52.55± 1.88 47.40± 1.88
variable 10 1800 51.10± 1.66 48.86± 1.66

Table 5.3: CFR vs. UCT comparison for different settings of start and play clocks in Goofspiel with
5 cards.

players start-clock (min) play-clock (sec) player1 player2 player3

CFR - UCT1 - UCT2 3.5 10 81.5 50.1 51.7
CFR - UCT1 - UCT2 10 10 79.9 46.6 50.1
UCT - CFR1 - CFR2 3.5 10 72.1 68.3 72.7
UCT - CFR1 - CFR2 10 10 50 79.8 70.6

Table 5.4: CFR vs. UCT comparison in three-player smallest.

Although the difference between the performance of CFR and UCT is not statistically significant

for most of data points in either case to suggest any patterns, but the lines representing the perfor-

mance of each algorithm do not cross in Figure 5.7 while they do several number of times in Figure

5.8. This may suggest that CFR is more robust to variable play-clocks. Table 5.3 gives the average

score over all the games in either case with95 percent confidence intervals. All differences are more

than95 percent statistically significant using t-test. As it can beseen, CFR is slightly stronger given

a30 second start-clock in Goofspiel with5 cards for variable play-clock (the95 percent confidence

intervals for CFR and UCT are(50.67, 54.43) and(45.52, 49.28) respectively that do no intersect).

5.3.1 2009 GGP Competition

In addition to considering two-player constant-sum games (Table 5.2), we also considered a three-

player version of the game calledsmallestthat was used in the GGP competition in2009. The game

is fairly simple. At each step of the game, every player must announce a number from1 to 10. The

player who announces the smallest unique number will get10 points. For example if player1, 2,

and3 announce1, 2, and3 respectively, player1 will get 10 points. However, if player3 decides

to announce1 while player1 and2 still announce1 and2, then player2 will get 10 points. If all

the players announce the same number, no player will get any points for that round since no player

announced a unique number. The game ends when the first playergets100 points or25 steps are

passed.

The results for two different seatings in this game are givenin Table 5.4. There are one CFR

player and two UCT players in the first seating, while there are two CFR players and one UCT player

in the second one. We initialized the probabilities in CFR players using a uniform distribution. Two

different time settings were used for each seating. The shorter, i.e.3.5 minutes, start-clock is set to

be just enough for CFR to build the entire game tree.

It can be seen that when short start-clock is used and there isonly one CFR player in the game,

CFR wins (with30 points difference in the scores). However, when there are two CFR players
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b1 b2

a1 23, 77 77, 23
a2 73, 27 27, 73

Table 5.5: The payoff matrix of a simple game.

involved, the match is basically a tie for all the players. This suggests that while the uniform initial-

ization is good in this game (former seating), when CFR does not have enough time to do sufficient

number of iterations it can do poorly (latter seating). These results are analogous to the results in

the GGP competition in2009 where random player beat every other player.

However, using a longer start-clock changes the results. Infact, a10 minute start-clock can be

considered as an example of a case where UCT player does not compete with CFR player given a

long start-clock. In both seating when a10 minute start-clock is used, the CFR players outperform

the UCT players by a large margin (almost30 points in former and20 points in the latter seating).

The reason for the strength of the CFR players in this game is that the UCT players play determin-

istically. Therefore, when there is another player who plays identical to a UCT player in this game,

can make him suffer. This is in contrast to CFR that randomizes between its actions to gain more

points when it is givenenoughtime to runenoughnumber of iterations. Unfortunately, we have not

integrated CFR in our general game player that competed in the 2009 GGP competition. If we had

done the integration, we might have won the competition.

5.4 Exploiting the Opponent

In any game that involves other agents than the player himself, knowledge about the models of

the other players can be very beneficial. If models of the other players are known, then the player

can adapt his strategy to gain an advantageous outcome basedon his knowledge. For example, a

model could be exploited to take advantage of defects in the opponent’s strategy. However, just by

following a Nash equilibrium strategy we will not be able to exploit an opponent’s strategy.

As an example, consider the payoff matrix of a simple game shown in Table 5.5. There is only

one Nash equilibrium for that game with the expected value of50 for both players. The mixed

strategy action probabilities are as follows.

P1(a1) = 0.46 , P1(a2) = 0.54

P2(b1) = 0.5 , P2(b2) = 0.5

Suppose the first player tends to selecta2 all the time. If we just follow the mixed strategy proba-

bilities for action selection we will only get12 × 27 + 1
2 × 73 = 50 points versus the potential73

points that we could have got if we had used our knowledge about our opponent properly.
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5.5 Exploiting UCT

We discussed in Section 3.6 that UCT will not necessarily converge to a Nash equilibrium. But if

we just adhere to the Nash equilibrium while playing againstUCT, we are only guaranteed to get

the Nash equilibrium expected value. However, if we could model the probability distribution that

UCT converges to, we could exploit UCT and gain more than whatwe could gain just by following

the Nash equilibrium.

If we have a model of the probability distribution for actionselection by UCT (or any other

player), then exploiting UCT by CFR is straightforward. We set the probabilities for the player that

UCT is going to play his role in the game equal to the probabilities that we assume UCT will use

to actually play the game. Then we use CFR to compute the probabilities for the player that we

will play his role in the game while keeping the probabilities for the opponent (in this case the UCT

player) fixed. Finally we use the new probabilities to play the game. This approach will result in a

best response to the probability setting assumed for UCT. However, since it is an open question as

to what solution UCT converges to in simultaneous move gamesin general and the distribution of

probabilities is not known in advance, we cannot compute thebest response to UCT for every game.

In addition, the opponent may not be even using UCT. Therefore, using the best response approach

can be brittle and can suffer greatly if the assumed model is wrong.

To address the latter problem, it is desirable to exploit a known opponent but still be close to

a Nash equilibrium so as to not be exploitable to a large extent. Two approaches can be taken to

exploit an opponent and still not suffer greatly if the modelis wrong. One of them is to compute

both the best response and a mixed strategy Nash equilibriumand alternate between them. We

can assume different probabilities for using each of the probability distributions to achieve different

levels of trade-off between exploitation and exploitability. Another approach is to assume that with

probabilityp our opponent adheres to what we assumed, and with probability 1 − p the player tries

to minimize his regret and play a Nash equilibrium. Afterward, we can use this new model of the

opponent to compute a mixed strategy Nash equilibrium to play the game (this new equilibrium

is called a restricted Nash equilibrium). Different variations of p can lead to different levels of

exploitation and exploitability. In poker the latter approach has been shown to be superior to the

former [18].

The results for computing the restricted Nash equilibrium for biased rock-paper-scissors (dis-

cussed in Section 3.6.1) are given in Table 5.6. The first column shows how much we trust our

model (different values ofp). The second column, named exploitation, shows the score for different

degrees of UCT exploitation by CFR. The last column, named exploitability, shows the score if the

CFR player which is exploiting the UCT player happens to playagainst the best response to itself.

The results are averaged over100 games. A30 second start-clock and10 second play-clock was

used. As our model of the opponent, we assumed that UCT will select rock all the times. The dif-

ference between the scores of CFR and UCT are more than99 percent statistically significant when
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model confidence (p) exploitation (CFR vs. UCT) exploitability (CFR vs. best response)

1 75− 25 45− 55
0.75 75− 25 45− 55
0.5 74.5− 25.5 49.5− 50.5
0.25 73.25− 26.75 50.15− 49.85
0 50.25− 49.75 52.35− 47.65

Table 5.6: Exploitation vs. exploitability in biased rock-paper-scissors.

Figure 5.9: Exploitation vs. exploitability in biased rock-paper-scissors.

we are using a model (p > 0) using the t-test. It can be seen that if we have access to the model

of the opponent (p > 0), we can benefit greatly. However, if we rely too much on the model and

we happen to play against an opponent that knows about our assumed model, we can suffer badly2

(p = 0.75 andp = 1).

If we consider the best response (p = 1) and the mixed strategy Nash equilibrium, we can

achieve any exploitation and exploitability trade-off by different mixing in between. The straight

line between(47.65, 50.25) and(55, 75) in Figure 5.9 corresponds to this mixing.

Using these two approaches, we will be in a safe margin if our model of the opponent happens

to be wrong. As can be seen in Figure 5.9 the curve for the restricted Nash equilibrium approach is

above the line of the mixing approach for biased rock-paper-scissors. This means that in the CFR

algorithm, if we give up a small amount for being exploitablewe can exploit a UCT player a lot.

The results for computing the restricted Nash equilibrium for Goofspiel with5 cards are given in

Table 5.7. This results are also averaged over100 games. A one minute start-clock and a20 second

play-clock was used. As our model of the opponent, we assumedthat UCT will select the action

with the highest probability at each step. It must be mentioned that our assumption about the model

210 points is the most that can be suffered according to the payoff matrix (Table 3.3) and we suffered that much by relying
too much on the model.
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model confidence (p) exploitation (CFR vs. UCT) exploitability (CFR vs. best response)

1 77− 23 0− 100
0.75 60.5− 39.5 15.5− 84.5
0.5 51− 49 37.5− 62.5
0.25 48− 52 53− 47
0 50− 50 50− 50

Table 5.7: Exploitation vs. exploitability in5 cards Goofspiel.

Figure 5.10: Exploitation vs. exploitability in Goofspielwith 5 cards.

of the UCT player can be wrong. It can be seen that the best response to UCT player (p = 1) can

exploit UCT the most (77 to 23), but is very exploitable itself (losing100 to 0). However, we cannot

exploit UCT very much by not relying on the model (p = 0.25), but we will not be exploitable

either.

If we consider mixing between the best response (p = 1) and the mixed strategy Nash equilib-

rium, we can achieve any exploitation and exploitability trade-off between their extreme points. The

straight line between(50, 50) and(100, 77) in Figure 5.10 corresponds to this mixing. Although

the restricted Nash equilibrium method outperformed the mixing approach in biased rock-paper-

scissors, but as it can be seen in Figure 5.10 the curve for therestricted Nash equilibrium approach

is below the line of mixing approach for Goofspiel with5 cards. Therefore it is better to use the

mixing approach in this game. This can be due to the fact that our model of the UCT in this game

is wrong. In addition, it must be considered although our assumption about the model of the UCT

player can be wrong, but we use the right model when we are computing the best response to the

CFR that is exploiting UCT, which is not available to the players in the real competition. However,

the nice property of giving up a small amount of exploitability and exploiting to a large extent is not

true in this game and the best that we can do using the perceived model is the linear trade-off in the
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mixing approach.

Therefore an inaccurate opponent model can lead to poor performance in a restricted Nash equi-

librium. In addition, the quality of the model has a direct effect on the performance, independent of

the method we use to exploit that model. Thus we will be betteroff if we have a better model of our

opponent. However, since we still do not have a model for UCT in simultaneous move games and

we do not know the characteristics of the balanced situationthat UCT converges to, trying to build

a good model and defining the characteristics of the balancedsituation is promising future work.

5.6 Conclusion

In this chapter we gave experimental result showing how different settings can effect a CFR player.

We also provided experimental result showing how CFR performs against UCT. We gave an example

that using UCT can be disadvantageous while using CFR would be very beneficial. In addition, we

explained why following a Nash equilibrium may not be the best strategy in a situation. We also

described how to exploit an opponent with a known model by using CFR while we do not endanger

ourselves into being exploitable.
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Chapter 6

Conclusion and Future Work

In this thesis we focused on simultaneous move games in GGP. We argued that plain UCT is not

sufficient to be used in simultaneous move games. We explained a variant of the UCT algorithm

to be used in this class of games. We discussed that even the enhanced variant of UCT does not

converge to Nash equilibrium in general.

We demonstrated the CFR algorithm and explained how it can beused in GGP. We discussed the

simplifications and challenges that face the use of CFR in GGP. We also discussed why it is advan-

tageous to use CFR instead of UCT for solving simultaneous move games. We gave experimental

results for a game used in the last general game playing competition that showed how using UCT

can make an agent suffer greatly.

In addition, we explained why following a Nash equilibrium may not be the best strategy all the

times. We also discussed how UCT can be exploited by CFR.

We did not develop a model for UCT neither characterized the balanced situation that it con-

verges to. It is an open question that if it is possible to derive a model for how UCT plays in simul-

taneous move games or characterize the balanced situation that it converges to. Having the model

or the characteristic of the balanced situation, CFR can be used easily to exploit it as explained in

Chapter 5.

We did not propose a smart way of tree expansion for CFR. A beneficial future work is to define

how time management should be done in a CFR player and what portion of time should be devoted

to tree expansion, simulations, and iterations.

Another interesting future work is to solve simultaneous move games with Linear Programming

(LP). Since all the games in GGP are perfect information games, LP can be used to solve simulta-

neous move games using a bottom-up fashion in the game tree. Solving the problem using LP starts

at the leaf nodes and the result of the subgame just solved will be used to solve the subgame just

before that in the game tree after all the subgames of the parent subgame are solved. This approach

has the benefit of being accurate versus the incremental approach of CFR, but the player must have

enough time to complete one sweep of the whole game tree.

Simultaneous move games are basically more complex than sequential games, because of the
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higher branching factor resulted from consideration of allthe different combination of moves of dif-

ferent players. Therefore solving simultaneous move gamesand playing acceptable requires longer

start-clock and play-clock. In addition, in simultaneous move games we deal with probabilities and

playing a game only once cannot tell anything about the strength of a player. Thus, to get a more

statistically significant result in the competition, we hope to see that a game is played more than just

once.

Finally if we do any opponent modeling, it will be very beneficial to know the player that we

are playing against so that we can use our models. Therefore,providing the information about the

players that are playing a game during the start-clock can beadvantageous and omit the need for

player detection in addition to opponent modeling.
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Appendix A

Tic-tac-toe GDL

; players
(role xplayer)
(role oplayer)

; initial state
(init (cell 1 1 b))
(init (cell 1 2 b))
(init (cell 1 3 b))
(init (cell 2 1 b))
(init (cell 2 2 b))
(init (cell 2 3 b))
(init (cell 3 1 b))
(init (cell 3 2 b))
(init (cell 3 3 b))
(init (control xplayer))

; player moves
(<= (next (cell ?m ?n x))

(does xplayer (mark ?m ?n))
(true (cell ?m ?n b)))

(<= (next (cell ?m ?n o))
(does oplayer (mark ?m ?n))
(true (cell ?m ?n b)))

; game axioms
(<= (next (cell ?m ?n ?w))

(true (cell ?m ?n ?w))
(distinct ?w b))

(<= (next (cell ?m ?n b))
(does ?w (mark ?j ?k))
(true (cell ?m ?n b))
(or (distinct ?m ?j)
(distinct ?n ?k)))

(<= (next (control xplayer))
(true (control oplayer)))

(<= (next (control oplayer))
(true (control xplayer)))
(<= (row ?m ?x)
(true (cell ?m 1 ?x))
(true (cell ?m 2 ?x))
(true (cell ?m 3 ?x)))
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; game concepts
(<= (column ?n ?x)

(true (cell 1 ?n ?x))
(true (cell 2 ?n ?x))
(true (cell 3 ?n ?x)))

(<= (diagonal ?x)
(true (cell 1 1 ?x))
(true (cell 2 2 ?x))
(true (cell 3 3 ?x)))

(<= (diagonal ?x)
(true (cell 1 3 ?x))
(true (cell 2 2 ?x))
(true (cell 3 1 ?x)))

(<= (line ?x)
(row ?m ?x))

(<= (line ?x)
(column ?m ?x))

(<= (line ?x)
(diagonal ?x))

(<= open (true (cell ?m ?n b)))

; player moves
(<= (legal ?w (mark ?x ?y))

(true (cell ?x ?y b))
(true (control ?w)))

(<= (legal xplayer noop)
(true (control oplayer)))

(<= (legal oplayer noop)
(true (control xplayer)))

; goals
(<= (goal xplayer 100)

(line x))
(<= (goal xplayer 50)

(not (line x))
(not (line o))
(not open))

(<= (goal xplayer 0)
(line o))

(<= (goal oplayer 100)
(line o))

(<= (goal oplayer 50)
(not (line x))
(not (line o))
(not open))

(<= (goal oplayer 0)
(line x))

; terminal conditions
(<= terminal (line x))
(<= terminal (line o))
(<= terminal (not open))

60



Appendix B

Repeated Rock-paper-scissors GDL

(role first)
(role second)

(init (counter 0))
(<= (init (score ?player 0))

(role ?player))

(<= (next (counter ?x2))
(true (counter ?x1))
(successor ?x1 ?x2))

(<= (next (score ?player ?x2))
(role ?player)
(true (score ?player ?x1))
(successor ?x1 ?x2)
(win ?player ?opponent)
(role ?opponent)
(distinct ?player ?opponent))

(<= (next (score ?player ?x1))
(role ?player)
(true (score ?player ?x1))
(not (win ?player ?opponent))
(role ?opponent)
(distinct ?player ?opponent))

(<= (legal ?player rock)
(role ?player))

(<= (legal ?player paper)
(role ?player))

(<= (legal ?player scissors)
(role ?player))

(<= (goal ?player 100)
(role ?player)
(true (score ?player ?x1))
(true (score ?opponent ?x2))
(role ?opponent)
(distinct ?player ?opponent)
(greater ?x1 ?x2))

(<= (goal ?player 50)
(role ?player)
(true (score ?player ?x1))
(true (score ?opponent ?x1))
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(role ?opponent)
(distinct ?player ?opponent))

(<= (goal ?player 0)
(role ?player)
(true (score ?player ?x1))
(true (score ?opponent ?x2))
(role ?opponent)
(distinct ?player ?opponent)
(greater ?x2 ?x1))

(<= terminal
(counter 9))

(successor 0 1)
(successor 1 2)
(successor 2 3)
(successor 3 4)
(successor 4 5)
(successor 5 6)
(successor 6 7)
(successor 7 8)
(successor 8 9)

(<= (greater ?x1 ?x2)
(successor ?x2 ?x1))

(<= (greater ?x1 ?x2)
(successor ?x3 ?x1)
(greater ?x3 ?x2))

(<= (win ?player ?opponent)
(does ?player rock)
(does ?opponent scissors))

(<= (win ?player ?opponent)
(does ?player paper)
(does ?opponent rock))

(<= (win ?player ?opponent)
(does ?player scissors)
(does ?opponent paper))
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Appendix C

Goofspiel with 5 Cards GDL

(role first)
(role second)

(init (current g1))
(init (lastwinner NULL))
(init (position g1 c1))
(init (position g2 c2))
(init (position g3 c3))
(init (position g4 c4))
(init (position g5 c5))

(<= (init (points ?player 0))
(role ?player))

(<= (init (hand ?player c1))
(role ?player))

(<= (init (hand ?player c2))
(role ?player))

(<= (init (hand ?player c3))
(role ?player))

(<= (init (hand ?player c4))
(role ?player))

(<= (init (hand ?player c5))
(role ?player))

(<= (next (current ?g2))
(true (current ?g1))
(succ ?g1 ?g2))

(<= (next (position ?g ?c))
(true (position ?g ?c)))

(<= (legal ?player (drop ?c))
(role ?player)
(true (hand ?player ?c)))

(<= (next (hand ?player ?c))
(role ?player)

(true (hand ?player ?c))
(does ?player (drop ?cc))
(distinct ?c ?cc))

(<= (next (lastwinner ?player))
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(role ?player)
(win ?player ?opponent)
(role ?opponent)
(distinct ?player ?opponent))

(<= (next (lastwinner NULL))
(role ?player)
(not (win ?player ?opponent))
(role ?opponent)
(distinct ?player ?opponent)
(not (win ?opponent ?player)))

(<= (next (points ?player ?new))
(role ?player)
(true (points ?player ?old))
(win ?player ?opponent)
(role ?opponent)
(distinct ?player ?opponent)
(true (current ?g))
(true (position ?g ?c))
(value ?c ?delta)
(diff ?new ?old ?delta))

(<= (next (points ?player ?old))
(role ?player)
(true (points ?player ?old))
(not (win ?player ?opponent))
(role ?opponent)
(distinct ?player ?opponent))

(<= (diff ?v2 ?v1 ?delta)
(inc ?v1 ?v2 ?delta))

(<= (diff ?v3 ?v1 ?delta)
(successor ?v2 ?v3)
(successor ?dd ?delta)
(inc ?v2 ?v3 1)
(diff ?v2 ?v1 ?dd))

(<= terminal
(true (current g6)))

(<= (goal ?player 100)
(role ?player)
(true (current g6))
(true (points ?player ?p1))
(true (points ?opponent ?p2))
(distinct ?player ?opponent)
(greater ?p1 ?p2))

(<= (goal ?player 0)
(role ?player)
(true (current g6))
(true (points ?player ?p1))
(true (points ?opponent ?p2))
(distinct ?player ?opponent)
(greater ?p2 ?p1))

(<= (goal ?player 50)
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(role ?player)
(true (current g6))
(true (points ?player ?p))
(true (points ?opponent ?p))
(distinct ?player ?opponent))

(<= (greater ?c1 ?c2)
(successor ?c1 ?c2))

(<= (greater ?c1 ?c3)
(successor ?c1 ?c2)
(greater ?c2 ?c3))

(value c1 1)
(value c2 2)
(value c3 3)
(value c4 4)
(value c5 5)

(succ g1 g2)
(succ g2 g3)
(succ g3 g4)
(succ g4 g5)
(succ g5 g6)

(successor 0 1)
(successor 1 2)
(successor 2 3)
(successor 3 4)
(successor 4 5)
(successor 5 6)
(successor 6 7)
(successor 7 8)
(successor 8 9)
(successor 9 10)
(successor 10 11)
(successor 11 12)
(successor 12 13)
(successor 13 14)
(successor 14 15)

(inc 0 1 1)
(inc 1 2 1)
(inc 2 3 1)
(inc 3 4 1)
(inc 4 5 1)
(inc 5 6 1)
(inc 6 7 1)
(inc 7 8 1)
(inc 8 9 1)
(inc 9 10 1)
(inc 10 11 1)
(inc 11 12 1)
(inc 12 13 1)
(inc 13 14 1)
(inc 14 15 1)

(<= (win ?player ?opponent)
(does ?player (drop c5))
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(does ?opponent (drop c1)))
(<= (win ?player ?opponent)

(does ?player (drop c5))
(does ?opponent (drop c2)))

(<= (win ?player ?opponent)
(does ?player (drop c5))
(does ?opponent (drop c3)))

(<= (win ?player ?opponent)
(does ?player (drop c5))
(does ?opponent (drop c4)))

(<= (win ?player ?opponent)
(does ?player (drop c4))
(does ?opponent (drop c1)))

(<= (win ?player ?opponent)
(does ?player (drop c4))
(does ?opponent (drop c2)))

(<= (win ?player ?opponent)
(does ?player (drop c4))
(does ?opponent (drop c3)))

(<= (win ?player ?opponent)
(does ?player (drop c3))
(does ?opponent (drop c1)))

(<= (win ?player ?opponent)
(does ?player (drop c3))
(does ?opponent (drop c2)))

(<= (win ?player ?opponent)
(does ?player (drop c2))
(does ?opponent (drop c1)))
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Appendix D

Simultaneous Breakthrough GDL

(role white)
(role black)

(init (cellholds 1 1 white))
(init (cellholds 2 1 white))
(init (cellholds 3 1 white))
(init (cellholds 1 5 black))
(init (cellholds 2 5 black))
(init (cellholds 3 5 black))

(init (dominant white))

(<= (legal white (move ?x ?y1 ?x ?y2))
(true (cellholds ?x ?y1 white))
(plusplus ?y1 ?y2)
(cellempty ?x ?y2))

(<= (legal white (move ?x1 ?y1 ?x2 ?y2))
(true (cellholds ?x1 ?y1 white))
(cell ?x2 ?y2)
(plusplus ?y1 ?y2)
(plusplus ?x1 ?x2)
(not (true (cellholds ?x2 ?y2 white))))

(<= (legal white (move ?x1 ?y1 ?x2 ?y2))
(true (cellholds ?x1 ?y1 white))
(cell ?x2 ?y2)
(plusplus ?y1 ?y2)
(plusplus ?x2 ?x1)
(not (true (cellholds ?x2 ?y2 white))))

(<= (legal black (move ?x ?y1 ?x ?y2))
(true (cellholds ?x ?y1 black))
(plusplus ?y2 ?y1)
(cellempty ?x ?y2))

(<= (legal black (move ?x1 ?y1 ?x2 ?y2))
(true (cellholds ?x1 ?y1 black))
(cell ?x2 ?y2)
(plusplus ?y2 ?y1)
(plusplus ?x1 ?x2)
(not (true (cellholds ?x2 ?y2 black))))

(<= (legal black (move ?x1 ?y1 ?x2 ?y2))
(true (cellholds ?x1 ?y1 black))
(cell ?x2 ?y2)
(plusplus ?y2 ?y1)
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(plusplus ?x2 ?x1)
(not (true (cellholds ?x2 ?y2 black))))

(<= (next (dominant white))
(true (dominant black))
(does white (move ?x1 ?y1 ?x2 ?y2))
(does black (move ?x3 ?y3 ?x2 ?y2)))

(<= (next (dominant black))
(true (dominant white))
(does white (move ?x1 ?y1 ?x2 ?y2))
(does black (move ?x3 ?y3 ?x2 ?y2)))

(<= (next (dominant white))
(true (dominant white))
(does white (move ?x1 ?y1 ?x2 ?y2))
(does black (move ?x4 ?y4 ?x3 ?y3))
(distinctcell ?x2 ?y2 ?x3 ?y3))

(<= (next (dominant black))
(true (dominant black))
(does white (move ?x1 ?y1 ?x2 ?y2))
(does black (move ?x4 ?y4 ?x3 ?y3))
(distinctcell ?x2 ?y2 ?x3 ?y3))

(<= (next (cellholds ?x2 ?y2 ?player))
(role ?player)
(does ?player (move ?x1 ?y1 ?x2 ?y2))
(role ?opponent)
(does ?opponent (move ?x3 ?y3 ?x4 ?y4))
(distinct ?player ?opponent)
(distinctcell ?x2 ?y2 ?x4 ?y4))

(<= (next (cellholds ?x2 ?y2 ?player))
(role ?player)
(does ?player (move ?x1 ?y1 ?x2 ?y2))
(role ?opponent)
(does ?opponent (move ?x3 ?y3 ?x2 ?y2))
(distinct ?player ?opponent)
(dominant ?player))

(<= (next (cellholds ?x5 ?y5 ?state))
(true (cellholds ?x5 ?y5 ?state))
(does white (move ?x1 ?y1 ?x2 ?y2))
(does black (move ?x4 ?y4 ?x3 ?y3))
(distinctcell ?x1 ?y1 ?x5 ?y5)
(distinctcell ?x2 ?y2 ?x5 ?y5)
(distinctcell ?x3 ?y3 ?x5 ?y5)
(distinctcell ?x4 ?y4 ?x5 ?y5))

(<= terminal
whitewin)

(<= terminal
blackwin)

(<= terminal
(role ?player)
(nocell ?player))

(<= (goal white 100)
whitewin

(not blackwin))
(<= (goal white 100)

(nocell black)
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(true (cellholds ?x ?y white)))
(<= (goal white 50)

whitewin
blackwin)

(<= (goal white 0)
(not whitewin))

(<= (goal white 0)
(nocell white))

(<= (goal black 100)
blackwin

(not whitewin))
(<= (goal black 100)

(nocell white)
(true (cellholds ?x ?y black)))

(<= (goal black 50)
whitewin
blackwin)

(<= (goal black 0)
(not blackwin))

(<= (goal black 0)
(nocell black))

(<= (cell ?x ?y)
(x ?x)
(y ?y))

(<= (cellempty ?x ?y)
(cell ?x ?y)
(not (true (cellholds ?x ?y white)))
(not (true (cellholds ?x ?y black))))

(<= (distinctcell ?x1 ?y1 ?x2 ?y2)
(cell ?x1 ?y1)
(cell ?x2 ?y2)
(distinct ?x1 ?x2))

(<= (distinctcell ?x1 ?y1 ?x2 ?y2)
(cell ?x1 ?y1)
(cell ?x2 ?y2)
(distinct ?y1 ?y2))

(<= (nocell ?player)
(role ?player)
(not (true (cellholds 1 1 ?player)))
(not (true (cellholds 2 1 ?player)))
(not (true (cellholds 3 1 ?player)))
(not (true (cellholds 1 2 ?player)))
(not (true (cellholds 2 2 ?player)))
(not (true (cellholds 3 2 ?player)))
(not (true (cellholds 1 3 ?player)))
(not (true (cellholds 2 3 ?player)))
(not (true (cellholds 3 3 ?player)))
(not (true (cellholds 1 4 ?player)))
(not (true (cellholds 2 4 ?player)))
(not (true (cellholds 3 4 ?player)))
(not (true (cellholds 1 5 ?player)))
(not (true (cellholds 2 5 ?player)))
(not (true (cellholds 3 5 ?player))))

(<= whitewin
(x ?x)
(true (cellholds ?x 5 white)))
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(<= blackwin
(x ?x)
(true (cellholds ?x 1 black)))

(plusplus 1 2)
(plusplus 2 3)
(plusplus 3 4)
(plusplus 4 5)
(x 1)
(x 2)
(x 3)
(y 1)
(y 2)
(y 3)
(y 4)
(y 5)
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