University of Alberta

SIMULTANEOUS MOVE GAMES IN GENERAL GAME PLAYING

by

Mohammad Shafiei Khadem

A thesis submitted to the Faculty of Graduate Studies anddtel
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

(©Mohammad Shafiei Khadem
Spring 2010
Edmonton, Alberta

Permission is hereby granted to the University of Albertaraiies to reproduce single copies of this thesis

and to lend or sell such copies for private, scholarly orrgdie research purposes only. Where the thesis is

converted to, or otherwise made available in digital forime, niversity of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rightssociation with the copyright in the thesis, and
except as herein before provided, neither the thesis nosanstantial portion thereof may be printed or
otherwise reproduced in any material form whatever witlbatauthor’s prior written permission.



Examining Committee

Jonathan Schaeffer, Computing Science

Nathan Sturtevant, Computing Science

Bora Kolfal, Accounting and Management Information SysteBchool of Business

Duane Szafron, Computing Science



Abstract

General Game Playing (GGP) deals with the design of playersare able to play any discrete,

deterministic, complete information games. For many gdikeshess, designers develop a player
using a specially designed algorithm and tune all the featof the algorithm to play the game as
good as possible. However, a general game player knowstgodhiout the game that is about to be
played. When the game begins, game description is giveretpllyers and they should analyze it

and decide on the best way to play the game.

In this thesis, we focus on two-player constant-sum simelt&is move games in GGP and how
this class of games can be handled. Rock-paper-scissobgeeamsidered as a typical example of a
simultaneous move game. We introduce the CFR algorithmatGtBP community for the first time
and show its effectiveness in playing simultaneous movesgarthis is the first implementation of
CFR outside the poker world. We also improve the UCT alganrittvhich is the state of the art in
GGP, to be more robust in simultaneous move games.

In addition, we analyze how UCT performs in simultaneous exgemes and argue that it does
not converge to a Nash equilibrium. We also compare the usg€T and CFR in this class of
games. Finally, we discuss about the importance of oppamedeling and how a model of the
opponent can be exploited by using CFR.
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Chapter 1

Introduction

1.1 Introduction

For many years artificial intelligence researchers buiiciized game players that focused on the
complexities of a particular game. For example Deep Blue @nichook play the game they are
built for, viz. chess and checkers respectively, at an expert level [61 3wever, part of their
success is due to the knowledge engineering that has beenbyotheir developers. Therefore
most of the interesting game analysis task is done by hurmaisad of the programs themselves.
The idea of using game playing to evaluate progress in Al arghipg game analysis toward the
program instead of the human resulted in the concegaieral Game PlayingGGP). GGP is
the idea of having a player capable of playing any game thdéssribed using a predefin€ame
Description LanguagéGDL). Since general game players do not know the game theegaing

to play in advance, there cannot be specialized algorittomsdiving a particular game hardcoded
in their nature. However, to perform well they should inamate various Al technologies such
as knowledge representation, reasoning, learning, amah&tdecision making. Barney Pell first
suggested in993 the differentiation between whether the performance ofgantin some game
is due to the general success of the Al theories it embodremenely to the cleverness of the
researcher in analyzing a specific problem in [27]. He intied] a variant of GGP under the name
of “Metagame” which addressed the domain of symmetric clikegyames [27]. He also proposed
a Prolog-like game description language for defining theebooic.

In this chapter we will first consider the GGP competition #ém& characteristics of the games
used in the competition in Section 1.2. We will then review ame Description Language used
for describing the games in the GGP competition in Secti@ahd the gaming infrastructure in
Section 1.4. In Section 1.5 we define what we mearsinyultaneous move gamekbe class of

games that we will focus on in this thesis. We detail the dbutions of this thesis in Section 1.6.

1Chinook is a perfect checkers player that plays at superhueval.



1.2 GGP Competition and Games’ Characteristics

To encourage research in GGP, there has been an annual ¢ontthe AAAI (Association for
the Advancement of Artificial Intelligence) conferencecg8005 with a$10, 000 grand prize. All
the games in the competition are guaranteed tfirtite. They all have a finite number of states, one
distinguished start state, and a finite set of terminal stat# the games are algynchronousmean-
ing that all the players take an action at every step simetiasly (often allowing “no-operation” as
an action choice). Every game must also be discrete, detistinj complete information, playable,
and weakly winnable (or strongly winnable in single playangs). Playability and winnability are

defined as follows in the game description language spetificf26].

Definition 1 A game isplayable if and only if every player has at least one legal move in every

non-terminal state.

Definition 2 A game isnveakly winnable if and only if, for every player, there is a sequence of joint
moves of all players that leads to a terminal state of the gamere that player’s goal value is

maximal.

Definition 3 A game isstrongly winnable if and only if, for some player, there is a sequence of
individual moves of that player that leads to a terminal staf the game where the player’s goal

value is maximal.

An abstract definition of the games used in the GGP compeiiigiven in [16] usindinite state
machinefFSM) 2 The components of the FSM describing a game are the folloagérdescribed in
[16]:

e S, a set of game stateshis is the set of states of the FSI)Y).

e r,...,Ty,, then roles in an n-player game.

e Aq,..., A,, nsets of actions, one set for each role.

e [1,....1l,, where eacli; C A; x S. These are thkegalactions in a state where ealdefines
the legal action of th&" player in all the states of the game. Evédy, ..., a,) € [y x...x1,

is a member of the FSM alphabét)(

2Due to Sipser [35], finite state machineor finite automaton is a5-tuple (Q, 3, 6, qo, F'), where
1. Q is afinite set called thetates
. Y is afinite set called thalphabet,

2
3. §:Q x X — Q@ is thetransition function,
4. qo € Q is thestart state, and

5

. F C Q is theset of accept states
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Figure 1.1: The FSM representation of a game adapted frojn [16

e n: A x...x A, xS — S, an update function mappinghis is the FSM transition function
defining how the transitions between different states amena@cording to the actions being

selected by different players)(

sg € S, the initial game stateThis is the start state of the FSMy].
® gi,...,9n, Where eacly; C S x [0...100]. Everyg; defines the outcome for th&" player.

e T C S, aset corresponding to the terminal states of the gahhés is the set of accept states
of the FSM ).

Figure 1.1 shows the FSM representation of a two player gdméhis game, we havé =
{a,b,c,d,e, f,g,h,i,7,k}, so = a, andT = {¢, e, k}. Different shadings of andk indicate that
these states are the significant stateswinning states, for different players. Transitions betwee
states are shown with arrows that are marked with the raspexttion chosen by different players
(first-player/second-player). Each player has two difiesetions viz. {z,y}, which are not legal
in all the states. For example the first player can only taktmmaa: in stated, while both of his
actions are legal in stateé Using the FSM representation, required properties of #mees can also
be checked.

e For a game to be finite, no cycles can exist in the FSM graph.

e Game playability requires that there is at least one outgeifge from every non-terminal

state.

e Game winnability requires that for every player, there isathgn the FSM graph from the

starting state to the significant state of that player wheeeptayer’s goal value is maximal. If



this path only depends on the player’s own actions then threedga strongly winnable for that

player. Otherwise the game is a weakly winnable game forplager.

It should be noted that the FSM description is very similathte traditional extended normal
form description in game theory. However, the FSM represt@nt uses a graph representation
while the extended normal form uses a tree representatithenoutgoing edges at each node are
the actions of the player who has to move at that node. The Epkésentation fits the synchronous
nature of the games in GGP better than the sequential treesetation of the extended normal
form. However, the extended normal form can also be useddseribing a game. We will use the

tree representation in the following chapters.

1.3 Game Description Language

The Game Description Languad&DL) in the GGP competition is a variant Batalogthat allows
function constants, negation, and recursion [26]. Khewledge Interchange Form&KIF) is used
for GDL representation. GDL describes the game state indefra set of true facts. The transition
function between states is described using logical rul€ih that define the set of true facts in the
next state in terms of the current state and the actionseefby all the players (theex€ relation
is used for this purpose). GDL also contains constructs ifgmdjuishing between initial states as
well as goal and terminal states. Items in the GDL are eithetsfor implications. Facts include role
definition, initial state description, and game specificga¢mplications can be action definitions,
action effects, axioms, goal or terminal state descrip@m game specific relations.

Each game description is a set of terms, relational sengeand logical sentences which contain

a set of variables, constants, and logical operators. Lagpgkeywords are as follows:
e role(< a >) means thak a > is arole (player) in the game.
¢ init( < p >) means that the datur p > is true in the initial state.
e true(< p >) means that the datura p > is true in the current state.
e doesk r >, < a >) means that player » > performs actior a > in the current state.
e next(< p >) means that the datura p > is true in the next state.
e legal(< r >, < a >) means itis legal fok r > to play< a > in the current state.

e goal(< r >,< v >) means that playex r > would receive the goal value v > in the

current state.
e terminal means that the current state is a terminal state.

e distinct(< p >, < ¢ >) means that the datums p > and< ¢ > are syntactically unequal.



1. (role xplayer)
(rol e oplayer)

2. (init (cell 1 1 blank))
(init (cell 1 2 blank))
(init (cell 1 3 blank))
(init (control xplayer))

3. (successor 1 2)

4. (<= (legal ?p (mark ?x ?y))
(true (cell ?x ?y blank))
(true (control ?p)))

5. (<= (next (cell ?m?n x))
(does xplayer (mark ?m ?n))
(true (cell ?m ?n blank)))

6. (<= (next (cell ?m ?n bl ank))
(does ?p (mark ?j ?k))
(true (cell ?m ?n bl ank))
(or (distinct ?m ?j) (distinct ?n ?k)))

7. (<= (next (control oplayer))
(true (control xplayer)))

8. (<= open
(true (cell ?m ?n blank)))

9. (<= (goal xplayer 100)
(line x))
(<= (goal xplayer 50)
(not (line x))
(not (line 0))
(not open))

10. (<= termna
(l'ine x))

Figure 1.2: Sample GDL code from tic-tac-toe game desoriptiwords with Boldface font are
keywords.



Figure 1.2 shows a sample of GDL code from titetac-toegame description. The relations in
part1 define the roles of the games, which apayerandoplayerin this game. The initial state
is defined using thait keyword. For example in the initial state in Figure 1.2, elie blank at
first andxplayeris in control (relations in par2 of Figure 1.2). There can also be game related
facts in the game description similar to parin Figure 1.2* Actions are defined using tHegal
keyword. For each action the preconditions for taking titéiba are also defined. It is defined in
Figure 1.2 partt that a player camarka cell if it happens to be blank and the player is in control
of the game at that step. The names which start with a queastéoh in the GDL are variables. The
effects of taking an action are defined using tiegtrelation. In parb of Figure 1.2, it is stated that
a cell will be marked withe if it happens to be blank and then markedxpfayer The axioms of
the world are also defined using the next relatierg(part6 of Figure 1.2). For example pagtof
Figure 1.2 indicates that a cell remains blank if it is blamkl ao player marked that cell. Game
related relations can also be defined in a game similar tospafrEigure 1.2 that says the board is
still open as far as there are blank cells. Goal and termiatds are defined usimggpalandterminal
keywords respectivelye(g.parts9 and10 in Figure 1.2). Interested readers are referred to [26] for
a comprehensive discussion about Datalog as well as the GbBd in the GGP competition. A

complete description of tic-tac-toe in GDL is given in AppenA.

1.4 Game Management Infrastructure

In the GGP competition at the AAAI conference there Game Maste(GM) which is responsible
for providing players with the game description and enguthrat each player takes a legal action
at each step. Each game consists of two phases, setup andApléne beginning of each game,
the description of the game is given to players using GDL, @laglers have a specific amount of
time, called thestart-clock to analyze the game structure and set up any infrastrutiesewill
need during the game. After the set up phase and during thimglphase, each player has limited
amount of time, called thplay-clock to submit its action at each step. If a player fails to sulamit
legal action by the end of play-clock, the GM considers a eaméegal action as the action chosen
by the player. After each step the GM informs all players aladiactions that were performed by
all players. All the communications between the GM and piagee over TCP/IP connections. The
GM is responsible for checking that the state of the game amgmsubmitted by all the players are

legal at all steps of the game. A schematic view of the cortipetsetup is given in Figure 1.3.

3nextis a keyword in GDL.
4These three groups were the facts in code segment giventineFig2. The rest of the code segment consists of implica-
tions.
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Figure 1.3: Schematic view of GGP competition from [16].

1.5 Simultaneous Move Games

As stated in Section 1.2, all the games in the GGPsgreehronousnd require all the players to
take an action at every step simultaneously. Turn takingegaame described in GGP by defining a
no-operatiorfor the player who does not have control. Therefore, althagry game is described
as a simultaneous game between all the players, not all of #re necessarily simultaneous move

games. We consider the following definition fdmultaneous move games

Definition 4 A multiplayer game in the GGP issimultaneous move game if and only if, there is
at least one time in the game when two or more players can #itestate of the game on the same

move.

The class of games that we deal with in this thesis are twgepleonstant-sum simultaneous move
games. We will consider the computation of Nash equilibrinrhis class of games, which we will
discuss why it is reasonable in Chapter 3 Section 3.6.1. @uusfwill be on two-player constant-
sum simultaneous move games because of the fact that in-ptajgr general-sum games, the
final Nash equilibrium is not well-defined and can be différeased on the assumptions that one
player can make about other playezgy.whether other players make a coalition against us or not.
From now on, whenever we mention simultaneous move gameseae two-player constant-sum

simultaneous move games unless clearly stated.



1.6 Thesis Overview and Contributions

In Chapter 2 we present previous work in the GGP domain. Inp@hne8 we analyze the UCT
algorithm, which is the state of the art algorithm used in G@®explain how it fails in simultaneous
move games. We consider enhancements that improve theygolCT in simultaneous move
games and make it more robust. However, we show that evemtieneed version of UCT will
not converge to the Nash equilibrium in general and the mwiubhat it converges to is brittle. We
describe the CFR algorithm in Chapter 4 and consider hownibeaused in GGP. We implemented
CFR to be used in GGP. The drawbacks of using plain CFR anda&é for opponent modeling
is discussed in Chapter 5. Finally, we argue how the CFR #lfgorcan be used to exploit the
UCT algorithm. Experimental results for each of the aforetimmed sections are also provided. We
will wrap the thesis with a discussion of the challenges fayimg simultaneous move games and
definition of trends for future work.

The major contributions of this thesis are as follows.

1. We provide an implementation of a general game playerubas CFR to play the games.
This is the first time that CFR has been used in GGP and it damadesthat CFR is a general
algorithm and can be widely used in domains other than pekdch it was developed for at
first. In addition, we will discuss in Chapter 4 that using GREGP is more convenient than

its usage in poker because all the games in GGP are detetiminis

2. We show that the performance of the CFR player is robust. ald& show that there are

situations where the performance of the CFR player is b#tter an enhanced UCT player.

3. We discuss the importance of opponent modeling and howd2RRe used to exploit a known
model of an opponent. We show that the solution that UCT cgy@sto in simultaneous move

games can be exploitive and this situation can be easilyégdlby CFR.

1.7 Summary

In this chapter we introduced General Game Playing (GGP)eakas game characteristics and
features. We also briefly reviewed the Game Description Lagg as well as the infrastructure
used in the AAAI competition. We also defined the class of gathat will be our main focus and

briefly reviewed our contributions.



Chapter 2

General Game Players

2.1 Introduction

A general game player is an agent that interacts with itsenment without having prior knowledge
about it. At the beginning of each match, each player resd¢hvegame description and must play as
well as possible while adhering to the rules of the game. dhilenging to develop such an agent
because the specification of games that an agent is goingddsfaot known beforehand. Therefore
designers cannot simply take advantage of unique feat@ieeparticular game by hardcoding them
into their players. This means if you are a chess master, ptayer will not necessarily play
chess well unless you can detect that a game is actually.cAegsneral game player must read a
game description in GDL and extract game features from ittantb play well either alone or in
collaboration with teammates and possibly against oppsreatording to the game rules.

Different approaches have been used to create general dayiegoprograms. In this chapter
we review different approaches that have been tried in dpweént of the general game players as

well as how different researchers have tried to improve tradity of GGP programs.

2.2 Early Work on General Game Players

The first general game player was tletagametthat Pell developed to handMetagamen Sym-
metric Chess-Like games (SCL-Metagame) [27]. His playendse important from the historical
point of view than the technical perspective. The player&adarch engine based on thaimax
algorithm with alpha-beta pruning. The search engine wadeglusing a heuristic generator. The
heuristic generator used a combination of general feateéaed by Pell (the human designer)
that he considered to be useful to look at in the class of S@talfames. These features included
mobility, centrality, andpromotionthat were trying to capture the following information abdtug

game.

e Mobility was a notion of the number of moves available to tteypr. It was assumed that

having more moves is generally better because it gives tgeplmore options to choose



from.

e Centrality gave bonus to positions with more pieces at tinecef the board or closer to the
center. The idea was that more centrality will increase fitgtas central cells on a chess
board have access to all the directions if they are not bbhckeaddition, the longest shortest
path to any other cell is shorter from a more centralized cEfierefore a player can get to

different parts of the board in fewer number of steps.
e Promotion accounted for how different pieces on the boandegpromoted to new pieces.

A weighted sum of the combination of the features was thed bgehe heuristic generator as the
final heuristic. Pell defined the weights for each featureuady and set up a tournament between

players with different weight settings to show how they vebpérform.

2.3 The First Generation of General Game Players

The announcement of a new GGP competitio2(d05 drew attention of many researchers toward the
development of general game players. Initially, most paogdevelopers tried to develop heuristics
for a game by extracting features from the game descrip8o82, 23, 19]. However, in contrast
to Pell's approach which had SCL-Metagame features enciodb@ program, they were trying to
extract useful features of the game from the game desanipfidhe heuristics were then used in
conjunction with a classic search algorithed.alpha-beta) to play the game. Therefore, devising
a good heuristic was a key factor in the success of their @gbes. However, inventing a good
heuristic is a challenging problem since the game that isgytw be played by the player is unknown
beforehand.

Clune tried to extract features by analyzing the game datsmni, considering the stability of
various components [8]. The idea was that the componentsithaot change drastically from a
state to the next state are the important features of the gdmthen used those features to build an
abstract model. The final heuristic was then built using thet of solving the problem in the abstract
model. His approach was heavily dependent on his featuraaixin and the abstract model being
built. Clune implemented his ideas in a player call@ddneplayerand participated in several GGP
competition, winning th&005 competition and placing second in th@)6 and2008 competitions.

Schiffelet al. also used structure detection to extract game featargs board, from the game
description [32]. In addition they utilized the percentageyoal satisfaction as a metric to derive
heuristic to search the state space and bias their searelnd@tates that most likely would satisfy
the logical description of the goal of the game. They usedyuagic in their computation. They
computed a ratio of truth for the atoms of the goal and assligrnteuth value to the goal based on a
set of predefined rules. However, the problem of implicitigtescription could not be addressed in
their approach. Schiffadt al.implemented their ideas in a player calleldixplayerand participated

in several GGP competition, winning tB606 competition.

10



Kuhlmannet al. tried to extract features of a game by assuming some syagaticture in the
GDL [23]. They verified the resulting features by running amoer of internal simulations. If
the features held throughout the simulations, they assuh@dhe extracted features were correct.
However, their approach was brittle facing an adversaaahg description, since it solely relied
on the syntactic structure of the GDL. For example, they mgslithat a successor relation is a
relation with a name and arity of twoWith this assumption if just a dummy variable is added to the
successor relation, then it cannot be defined as a successtiom anymore using their approach.
In addition, they statically chose how different featuremud be weighted in a game. Therefore,
based on whether a feature must be weighted positively cativedy in a game, their weighting
could be wrong. Kuhimanet al. implemented their ideas in a player and participated inrséve
GGP competitions, but never won or played in the finals.

Kaiser tried to extract features,g.pieces and motiodsn games, by computing the variance
of the parameters of the relations and comparing stategatederom random plays of the game
[19]. He built some heuristics using extracted knowledzg, distance between states and to the
target, piece counts, etc. He searched the state spacethisidgrived heuristics to reach the goal.
However, his approach was limited by the number of playshkatould run and how well he could
explore the state space. Games whose states were not fatlyilied at each step were difficult to
handle using his approach as well.

All the players that are based on classical search meth@&da beuristic function derived from
the game description. The heuristic is a critical part oséhplayers. However, deriving a good
heuristic by analyzing the game description is a complek.tda addition, players are given a
scrambled version of the game description during the coitigrgtto prevent any human interven-
tion in interpreting the game description. Obtaining a ghedristic only by relying on the game
structure is a hard task to accomplish as well because the dastription can also be adversarial
by containing useless rules and variables included in timeegaescription to fool the player. Al-
though extracting features and detecting objects in theegdascription is a complicated task to be
achieved, but players based on classical search methddssththese techniques are still successful

and among the top players.¢.Fluxplayer and Cluneplayer).

2.4 Monte-Carlo Based Players

After the success of Monte-Carlo search methods in Go [B$earchers started investigating its
usage in GGP. Go is a strategic two-player turn-taking bgare. It has simple rules, but has
a large branching factor. In addition, no efficient evalmatiunction approximating the minimax

value of a position is available [14]. Therefore, using Maftarlo simulation to evaluate the value

of a position in a match paid off andoGa, which is a Monte-Carlo based program, is currently one

(successor first second)
2Motion detection is concerned with detecting the piecesrimve around and how they move.
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of the strongest Go players [14].

Monte-Carlo based methods need no specially designedagiailfunction at leaf nodes of the
game tree, because random simulations are used to acquitee This feature greatly simplifies
the design of general game players, since game descriptalpsis is no longer mandatory. How-
ever, a player with a better understanding of the game ge&uorican exploit that knowledge and
be a better player by using it during simulation and doingttebérade off between exploration and
exploitation. UCT is a fairly simple and effective Monte+@atree search algorithm [22]. Itis a
kind of best-first search which tries to balance deep seamftggh-winrate moves with exploration
of untried moves. Since there is no need for an evaluatioctimmin Monte-Carlo based methods,
UCT was a natural choice for use in GGP. A thorough discussidCT will be given in Chapter
3.

Hilmar and Bjornsson developed the first Monte-Carlo ptagalledCadiaPlayer{12]. Starting
in 2007, they used the UCT algorithm to play every game regardlessether it is a single-agent,
two-player constant-sum, two-player general-sum, or inplétyer game [12]. They became the
champion in the first yeaR(07) that they entered the competition, and with some minor ghan
to their program, they also won 2008 [5]. That they were able to won with a “knowledge-free”
solution demonstrates how hard it is to extract knowledgenfthe game description and build
a useful heuristic to be used in conjunction with classiegreh methods. After the successful

appearance of CadiaPlayer, many more contestants were tvasard using UCT in their players.

2.5 Using Reinforcement Learning for General Game Playing

Levinson performed an early investigation of Reinforcetararning (RL) [37] for GGP in 1995
and also reviewed different approaches for the developofengeneral game player [25]. Levinson
used conceptual graphs in his work. He discussed a modebtdadérph, which was an application
of adaptive-predictive search methods for improving deavith experience. He also proposed an
improvement over the stated original Morph model and detnatesl usage of its improved version
in the development of an RL general game player.

Asgharbeyget al. developed a relational temporal difference learning ag@r&GP [1]. Their
agent was composed of an inference engine, a performancelenaihd a learning element. It
also used an external state transition simulator. The@rérfce engine generated all next states and
their performance module decided which action to take. Eaenling element interacted with the
simulator and performed relational temporal differencéatps on utilities, which in turn controlled
the state-value function. They also exploited the relaiatructure of game descriptions as well as
attempted to generalize across different ground lite@géch predicate.

Defining initial values on which an RL general game playerustidase its action selection

policy is an issue that Banerjext al. addressed in their work i2007 [4]. They proposed a way

3The GGP that Levinson considered was different from the AGEP competition.
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of transferring value-functions from the games previoyddyed by the agent to a new game, by
matching states based on a similarity measure in an abstfaetsentation, calleghme independent
featuresusing game-tree lookahead structure. They claimed teatdknt learns faster when it uses
knowledge transfer and also can exploit opponent weaks#sstaces the same opponentin future.
The main advantage of the Banergteal. work over the Asgharbeyagit al. work was that it did not
need to define game-specific or opponent-specific featuralsddransfer to be successful.

Banerjeeet al. did similar work in value function transfer for GGP in earliwork [3]. In
their former work they used a Q-learning RL agent. Most of&le/ere similar in both works, but
they used a handcrafted game-tree structure in the forntealan proposed a method for defining
board games and taking advantage of symmetry in those gahhey. also compared their agent
benefiting from feature transfer against an agent using stmyriransfer, and showed that feature
transfer outperforms symmetry transfer agent. In therattark they did a better abstraction of
game specific features and transferred game-independeutds to a wider range of new games.

Kuhlmannet al. performed transfer learning using a graph-based domairpimgghat con-
structed a mapping between source and target state spas€difi24]. They first represented game
description in GDL using a directed graph, caltete graph and then used isomorphism over rule
graphs to define identical games. They also generated t@négames played before and checked
them against the new game through rule graph isomorphisnmdioainy similarities. In their ap-
proach, if the new game was identical to the previously plagame, then they would take full
advantage of it, but there was no difference between siraildridentical games in the Banerjee
al. work. Kuhlmanret al. transfered the state-value function versus the stateragtlue function
used by Banerjeet al..

Although the RL approach may seem promising, no general gdayer using RL has entered

the competition and shown reasonable performance yet.

2.6 Other Approaches to GGP

In addition to the approaches for developing general gamgept that have been reviewed, there
have been other approaches considered.

Reisingeret al. suggested the use of a coevolutionary approach to evolvelgtigns of game
state evaluators that can be used in conjunction with gaegedearch [28]. Their approach was
very simple. They started with a population of neural neksowrhich had state variables as the
inputs and evaluated value of the state as the output. Thel/ts update the neural networks by
adding/removing connections and changing weights to cqmeith a good game state evaluators.
They did the mapping for the inputs randomly and used randaiyeps evolving simultaneously
through coevolution to evaluate their game state evalyetpulation during coevolution.

Sharmeet al. considered the use of @mnt Colony SysteifACS) to explore the game space and

evolve strategies for game playing [34]. In their approdaytassigned different roles to each ant
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and tried to update the level of play by updating the knowéegitants through number of iterations.
However, they did not considered the amount of time need&ditothe ants, therefore it is hard to
tell how their approach was.

Kissmannet al. tried to fill the gap between the planning and GGP communityripng to
generate an instantiated game description in a format tdasplanner input [21]. They generated an
output similar to PDDL that could be used in any player or enthat needed the game description
in instantiated form. However, their instantiating pra&esems time consuming and the resulted
instantiated game description can be huge based on the naitlgects in the game and arity of

the relations.

2.7 Improving the Level of GGP

In addition to the effort that has been put in developing gaingame players, there is work that
has investigated how to improve the performance of genenalegplayers. Work has been done
in the context of knowledge representation, reasoningyieage extraction, and so on. Kiret

al. successfully applied learning based on state differer@@ls [They learnt both defensive and
offensive features. Finnsset al. compared four different approaches for controlling Mo@&rlo
tree search [13]. These approaches differed in how the peamikagation and updates are done.
Schiffel et al. tried proving features in GGP using Answer Set Programmagj. [ Schiffel also
considered detecting symmetries in a game using GDL [31]adidition, work has been done to
simplify game descriptions by breaking it into smaller garfié is possible. Coxet al.and Gunther

et al.considered game factoring and game decomposition [10, 17].

2.8 Conclusion

In this chapter we reviewed different approaches to theldpweent of general game players and
considered their advantage and disadvantage. In addigconsidered how different researchers

have tried to improve the quality of GGP by trying to focus mpacific aspect of the GGP.
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Chapter 3

Universal Solution:
the UCT Algorithm

3.1 Introduction

In this chapter we will consider and analyze the UCT alganith simultaneous move games. We
will briefly review the background literature on the UCB aliglom that UCT is based on (section
3.2). We will describe the UCT algorithm (Section 3.3) anstdiss its different properties (Sections
3.4.1 through 3.4.4). Finally we will consider the usage &fTUin simultaneous move games and

its weakness and strengths (Section 3.6).

3.2 Background

The multi-armed bandit problem is an example of a problemre/la@ agent tries to optimize his
decisions while improving his information about the enairent at the same time. If we consider
a K-armed bandit, we are dealing with different slot machines whose outcomes follow different
unknown distributions with different expected values. i@t play for aiK -armed bandit is to select
the arm with the highest payoff at each step of play. Howesiece we do not know the distribution
of outcomes for different arms, the goal is to be as close asiple to the optimal play based on
our past experiences. By careful tuning how much we exgieittest known arm versus exploring
the other arms, we can bound the regret that results fromtsedea suboptimal action (pulling the
suboptimal arm). UCB1 (Upper Confidence Bound) is an algorithat balances exploration and
exploitation. It achieves a logarithmic bound in the numifgrlays on the expected regret after that
number of plays [2]. It considers a bonus for selecting eatlowhich is directly proportional to
the number of plays and inversely proportional to the nurebémes that a specific action has been
selected previously. Therefore, actions that have beetyraelected will get a higher bonus to be

selected and explored.
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3.3 UCT Overview

UCT (UCB applied to Trees) is an extension of the UCB1 alhanmito trees. It gradually expands
the game tree by adding nodes to it. UCT considers everyianteode in the tree as an independent
bandit and its children (available actions at that nodehasatms of the bandit. While searching in
the tree, UCT selects an action that maximizes the combimafi the player’s utility and a bonus
similar to the one in UCB1 that is used to balance betweeroeapbn and exploitation. Implied in
this selection rule is the assumptions that a player hastdlimapponents. When the search reaches
a non-terminal leaf node, a Monte-Carlo simulation front tide to a terminal state is carried out.
The value that results from the simulation is then used tatgthe values of all nodes along the
path from the root of the tree to the node that leads to thailaiion. UCT is an iterative algorithm.

It searches through the tree, does simulations at non#t@imodes and adds new nodes to the tree.
Tree expansion will continue until the whole tree is expahoiea memory or time limit is reached.

Proofs of convergence and regret bounds can be found in [22].

3.4 UCT Variants

The UCT algorithm was originally proposed for single-aggmtnains [22]. However, single agent
UCT can be easily modified to be used in multiplayer games lapgimg the search policy in the
tree. It has been applied in domains with more than one agegtcomputer Go [9, 15]) and
produced notable results. It has also been used in the dgiaena playing competition and yielded
superior results for three successive years [12].

In the original version of UCT and in its simplest (and usirallementation, UCT only consid-
ers its own utility (and not the opponents’ utility) for amti selection. Tree expansion is also done
in a sequential manner by considering the moves of everyeplaya different step. We call this
sequential tree expansi@equencing Although it does well in a sequential two-player constant-
sum game, turning a simultaneous move game to a sequential ¢gn be troublesome. One major
drawback is that when we assume that a game is sequentiabvassuming information about how
our opponent behaves in a game and that we know what he does$dp before we make our deci-
sion. For example, consider the simple matrix game showmlel3.1. The first row and column
in Table 3.1 are the actions of players and the values in eglthre the payoffs for taking the joint
actions crossing at that cell. The row player gets the firktevavhile the column player gets the
second one. Assume that we are playing as the row player. ifssesequencing and minimax in
UCT to decide what action to take, both of our actions will lbasidered equally good. Because
the opponent can always select an action that resulipmints for us. However, if we do not use
sequencing and consider our actions and opponent’s asliongtaneously and maximize our own
score, we seleet, with no doubt. In this case if the opponent happens to be ifapemwe can gain

100 points.
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L[ b [ b |
a1 | 0,100 | 0,100
az | 100,0 | 0,100

Table 3.1: The payoff matrix of a simple simultaneous movaga

The pseudocode for one iteration of our variant of the UCDadlgm is given in Algorithm 1.
We use a maximization policy while searching in the game, tndeich is every player is trying to
maximize his own score. The policy for searching the ganeigrgiven in lines 19-28 of Algorithm
1. In single agent case, only the value of the single playtvargame is considered while traversing
the tree. It should be noted that for two-player constant-games, the selection rule between
children of a node corresponds to the minimax rule. When aeg@ntwo-player constant-sum,
maximizing your own score corresponds to minimizing theammnt score at the same time and that
is the way the selection rule is applied in Algorithm 1.

Each iteration of the UCT algorithm involves three phaseseas search, simulation, and value
update. The first part of each UCT iteration (lines 2-10) ésttiee search. As long as all the children
of a node are expanded, the best child is selected to be fadlanthe new trajectory in this iteration.
The UCT bonus is also taken into consideration for the sieleci the best child to be followed (line
22). Regular UCT players just consider an exploration béoitheir own actions. However, we will
consider an exploration bonus for all players. At a leaf natien there are unexpanded children,
a random child is selected for expansion. This new childss aldded to the tree. Regular UCT
players, unlike us, usually do not consider all the childfevery combination of move selection
for different players) before going deeper in the game tiideerefore, their tree expansion can be
misleading based on how lucky they were in the first time thay tried a move. The second part
of each UCT iteration (lines 11-16) is the simulation. If therent node is already a terminal state,
then the value is just retrieved (line 12). However, if thafleode is not a terminal state, a Monte-
Carlo simulation is done from the leaf node to a terminakstaet a value for the current trajectory
(lines 14-15). The third part of each UCT iteration (line 1¥}he value update. The value that is
gathered in the second phase is used to update the value & atmhg the trajectory in the game

tree.

3.4.1 Multiplayer Games and Opponent Modeling

In general game playing the value of the goal is defined fdedifit players in a terminal state.
Thus, our program keeps values for each player instead fgeping the value for the player who
is to move in order to do more sophisticated opponent moglelmmultiplayer games, the number
of children can be as large as the product of available azfioneach player. Therefore, we keep
the values for different actions of different players imsteof keeping them for each combination
of actions. This will also enable us to do more sophisticaiggonent modeling than merely con-

sidering that everybody is playing against us (the paraassimption [36]) like what most of the
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Algorithm 1 One iteration of the UCT algorithm.
1: procedure UCTITERATION()
2: current— root
while in the treedo
if all joint moves have been exploréten
current— GETBESTCHILD (current)
else
current— GETCORRESPONDINGCHILD (current,random-unexplored-joint-move)
ADDTOTREE(current)
end if
10: end while

©o NGO R®

11 if currentis terminalthen

12: values—— GETGOALVALUES(current) > Returns the goal values for different players.
13: else

14: terminalNode— MONTECARLOSIMULATION ()

15: values— GETGOALVALUES(terminalNode)

16: end if

17: UPDATEVALUES(current, values)

18: end procedure

19: procedure GETBESTCHILD (current)
20: for every playeip do

21 for every actiora of playerp do

22 values[a}— value-of-a +C\/ numberl72)(fntlljrrr?(=?se Lgy\g:ﬁ;cg:{é%?gd actiom
23: end for

24: moves[p]— actions-of-parg max{valueg|

25: end for

26: best— GETCORRESPONDINCCHILD (current,moves)

27: return best
28: end procedure

29: procedure UPDATEVALUES(current, values)
30: while currentis notroot do
31: current-selected-action-valye > value of the selected action@&itrrent
WEIGHTEDAVERAGE(current-selected-action-value,
current-selected-action-counter,values)

32: current-selected-action-counter current-selected-action-countei +
33: current-visits— current-visits +1
34: current— current-parent-in-this-iteration

35: end while
36: end procedure
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pl-goal 40 80 50 60
p2-goal 20 50 30 70

Figure 3.1: Game tree of a sample general-sum game.

general game players do.

In single agent games there is no need for opponent modetitgnatwo-player constant-sum
games opponent modeling is limited, although work has beee th that area [7, 11]. In the single
agent case, we try to maximize our own score. The situatithreisame for two-player constant-sum
games. By following the maximization strategy, we also aehithe minimization of the score of our
opponentin two-player constant-sum games since the gacnagsant-sum. However, in two-player
general-sum games and in multiplayer games there isestmodeling, which means there is no
unigue modeling with guarantebestpayoff regardless of whatever the other players do, althoug
the paranoid assumption can be used, which guarantees muninplayoff [36]. Therefore, if we
have an incorrect model of our opponent(s), then we may isgftsatly. For example in the game
tree of a sample general-sum game that is shown in Figuref 3k iopponent (p2) is trying to
minimize our score (p1), then we are confident to get at lapbints by selecting the right branch.
However, if the opponentis trying to maximize his own sctw@ntwe can get0 points by selecting
the left branch. This conflict in action selection arisesrfrihie fact that the game is general-sum.

Since we are dealing with simultaneous move games in thiistlaed computing Nash equilib-
rium is a logical way to play these games as we will discuss lat Section 3.6.1, we use the tree
search policy that gets us closest to a Nash equilibrium emnaeg Nash equilibrium is a state that no
player can increase his payoff by unilaterally changingstriategy, therefore assuming that every

player plays to maximize his own payoff is logical to be usadrm tree search.

3.4.2 Exploration vs. Exploitation

The square root bonus added to the value of a node on line 22dkta balance between exploitation
and exploration. It is directly proportional to the numbétimes a state (parent) is visited and
inversely proportional to the number of times a specificac{child) is selected. By exploiting the
best action repeatedly, the bonus for selecting othermtidll become larger. Therefore, exploring
other actions become more favorable. The constant faCtatefines how important it is to explore
instead of selecting the greedy action. The higher the \@ldg the more exploration will be done.
Although we can change the value@fto tune exploration versus exploitation, we should also

take the range of the value of outcomes into consideratfahelvalue ofC' is not comparable with
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(c [ 1 [ 40 [ 100 |
1 NA 12,88 | 21,79

40 93.5,6.5 NA | 67,33
100 || 91.50,8.5 | 34,66 | NA

Table 3.2: Comparing the usage of variable value§' @ Connect4.

the range of values, then exploration can be over emphasizedder emphasized. For example
settingC' = 10000 or C = 1 while the range of values is comparable witbD will result in too
much or too little emphasis on exploration. Therefore,@lthh setting” = 40 can be logical in
GGP while the range of values is usually frénto 100, if all the outcome values in a game are in
the 0 to 10 interval, then a smaller value far can be more suitable. Thus a variable valu€of
dependent on the game and the game context, seems to be rawablde A comparison between
different setting of values fo€ is made in Table 3.2 in Connect4. The values in Table 3.2 are
averaged ovet00 games with start-clock equal 8% seconds and play-clock equal 16 seconds
and memory limit of2 gigabytes. Values in Connect4 range frorto 100 andC' = 40 is the best

value as discussed earlier.

3.4.3 Playout Policies

Different policies can be used to do the Monte-Carlo sinioifat The simplest one is to select
random actions for each player at each step. However, onasmsma more informed approach by
selecting the best action if the simulation runs into a nd@ has been visited before during the
search (the idea of using transposition table [29]). In taidlj history heuristic about actions can be

used in the playout as well [29].

3.4.4 Updating Values

The outcome that results from a simulation will be used toat@the values of the nodes along the
path from the root in the search tree (line 17). Updates eaplgibe a weighted average. However,
if the game is single-player and there is no uncertainty engame, maximization between the old
value and the new one can be used as the update rule, since gintfle player case, the only

concern is to achieve the highest possible outcome. Iniaddé discount factor can be used during

the update process to favor shorter solutions over longes.on

3.5 UCT Example

We demonstrate how UCT expands and explores the game triée-fac-toe. The rules of the game
are the same as regular tic-tac-toe and the first player wisagkne on the board is the winner.

The winner getd 00 points while the loser getspoints. A draw result i50 points for each player.
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Counter: 9

Value: 16.7
1 X 1 X 1
100 0 50 X
(a) Game tree after expanding all the children of the root.
Counter: 11
Value: 22.7
2 X 1 X 2
50 0 75 X
1 X|O 1 O
0 100 X

(b) Expanding game tree based on values and UCT bonus.

Figure 3.2: UCT game tree expansion in tic-tac-toe.

Since this game is two-player constant-sum, we will onlysider the values for the first player.
During the first nine iterations of UCT, since all the child&f the root have not been expanded
yet, a new child of the root is added to the game tree at eacdtida. A Monte-Carlo simulation
is carried out for each of them to get a value. Suppose after itérations the game tree and the
values of nodes are analogous to what is shown in Figure)3\&{ighout loss of generality and for
simplicity, assume that the children that are not shown gufé 3.2(a) have taken the value of zero.
In the tenth iteration, the best child is selected for exfmamsSince the UCT bonus is equal for all
the children at this point, the child with the highest valwhjch is the left-most one is selected for
expansion. Therefore, one of its children is added to theedred a simulation is performed to get
a value. We assume that the simulation from the newly adddd nesults in a loss and thus the
value of its parent is decreasedd®. In the eleventh iteration, the root node has two childret wi
the value of50. However, the UCT bonus for the right-most child is biggearthihe bonus for the

11t should be noted that in this game, no two different joinvewill result in the same next state. Therefore, the number
of visits to a child can be considered as the number of timaisaiparticular action has been selected.
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Counter: 73

T

X0 X o O|X X| 0O

o[ X

Figure 3.3: Resulted UCT game tree for simultaneous tigdaafter exploring all the joint moves
at the root of the tree.

left-most one as it has received less exploration. Theeefiie right-most child is selected to be
followed in the trajectory in the eleventh iteration. Thargatree after this iteration is shown in
Figure 3.2(b).

UCT iterations continue as long as there is time left. Newesoare also added to the tree as
long as there is sufficient memory. When a memory limit is healc no new nodes are added to the
tree and only the values of the nodes currently in the treejpglated. After the first move is taken
in the game, the game tree above it that cannot be reached amywill be removed. This frees
memory for new tree expansion and addition of new nodes ttréfee These steps will be repeated
while the game is being played. When time is up for move select each step, the child with the

highest value is selected as the move to be played.

3.6 UCT in Simultaneous Games

The pseudocode that was presented in Algorithm 1 can be wsesinfiultaneous move games.
The only difference is that in turn-taking games, only oreypl has a chance to select his move,
while the others select theo-operationmove. In simultaneous move games, all the players have
meaningful moves to take that can change the state of the.gamaddition, each game state
in simultaneous move games can be the result of more thanoartenjove, because joint moves
depend on all players and different complementary joint@saan result in a same game state.

To clarify the usage of UCT in simultaneous move games weaaitisider its usage in simul-
taneous tic-tac-toe. The rules and outcomes of simultantotac-toe are the same as the regular
one in Section 3.5. However, both players mark the boardlsameously and, if both of them mark
the same cell, then the cell will remain blank. In additidriyath players get a line on the board,
then it counts as a draw.

The tree expansion part is the same as in regular turn-tajanges. The resulting game tree
after all the joint moves at the root of the tree have beenarglis shown in Figure 3.3. Although
we haved x 9 = 81 different joint moves at the root, there are ofily 8 + 1 = 73 different children
because of the contraction of identical game states to é&gmugle in the tree. All the joint identical
moves (those where both players mark the same cell) restheiteft-most child marked with a

star in Figure 3.3. After all the different joint moves haweeh explored, tree expansion continues
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| | rock | paper | scissors]
rock 50,50 | 25,75 | 100,0

paper || 75,25 | 50,50 | 45,55
scissors|| 0,100 | 55,45 | 50,50

Table 3.3: Biased rock-paper-scissors payoff matrix.

deeper in the game tree and the trajectories are selected baghe selection rule (lines 19-28 in
Algorithm 1).

3.6.1 Balanced Situation

When we have no model of our opponent andgood strategy to play a game, which is usually
the case in GGP, playing according to a non-losing strateggtional if such a strategy exists. A
non-losing strategy will not lead us to a loss if we follow ibike playing the game, assuming that
the game is not a forced loss. It would also be better if theoappt cannot gain any advantage by
unilaterally changing his strategy against us. If our sggthas all of these properties then we are
playing according to a Nash equilibrium strategy. Therefibis convenient to find and follow a
Nash equilibrium in a game. Unfortunately UCT does not cog@éo a Nash equilibrium in general
and the situation that it converges to can be easily expldfteis known beforehand. We now give
an example that UCT does not converges to a Nash equilibrithis. example serves as a counter
example that UCT does not converge to a Nash equilibrium iregd. How UCT can be exploited
will be shown in Chapter 5.

Rock-paper-scissors with biased payoff as shown in TaBlesin example of a game that UCT
gets into a balanced non-Nash equilibrium situation irstdaconverging to the true mixed strategy
Nash equilibriun? The rules of the game are the same as a regular rock-pajgsessivhile the
outcomes are biased according to how you win the game. Tsierdy one Nash equilibrium in this

game which is a mixed strategy with action probabilitiesaoivs.
P(rock) = 0.0625 P(paper) = 0.6250 P(scissors) = 0.3125

The expected value of Nash equilibrium for this gam&isOne possible trace of UCT with = 40
will be as follows.

;7). (r,p), (0, p), (5,7), (5, 8), (r,5), (P, 5), (5,p), (r,7), (7, 7), (0, p), (7, 7), (P, p), (7, 7), (P, D),
(r,7), (p,p), (1, 7), (P, ), (r,7), (P, P), (1), (P.P).(S,5),(r,1).(P.P).(S.S), -

At first 9 moves, UCT explores all the different combinations of mosieation for both players.
By the end of the initial exploration, UCT uses the value afteaction and its exploration bonus
to select an action for each player. The expected value df aetion, the number of times each
action has been selected, and the values computed by UCTine tiee next best move are given in

Table 3.4 starting at stejp Since the game is symmetric and during the iterations wenasshat

2The purpose of this part is to give a counter example that U@&E ot compute the Nash equilibrium in general.
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step(N) values(Q,) counterC,) || Qq + 40 x \/In N/C, next actions
r | p | s r{p]s r | p | s
9 58.33 | 56.67 | 35.00 3 3 3 92.56 | 90.90 | 69.23 (ry7)
10 56.25 | 56.67 | 35.00 4 3 3 86.60 | 91.71| 70.04 (p,p)
11 56.25 | 55.00 | 35.00 4 4 3 87.22 | 85.97 | 70.76 (ry7)
12 55.00 | 55.00 | 35.00 5 4 3 83.20 | 86.53 | 71.40 (p,p)
13 55.00 | 54.00 | 35.00 5 5 3 83.65| 82.65 | 71.99 (ry7)
14 54.17 | 54.00 | 35.00 6 5 3 80.70 | 83.06| 72.52 (p,p)
15 54.17 | 53.33 | 35.00 6 6 3 81.04 | 80.20 | 73.00 (ry7)
16 53.57 | 53.33 | 35.00 7 6 3 78.74 | 80.52| 73.45 (p,p)
17 53.57 | 52.86 | 35.00 7 7 3 79.02| 78.31 | 73.87 (ry7)
18 53.13 | 52.86 | 35.00 8 7 3 77.17 | 78.56 | 74.26 (p,p)
19 53.13 | 52.50 | 35.00 8 8 3 77.40| 76.77 | 74.63 (ry7)
20 52.78 | 52.50 | 35.00 9 8 3 75.86 | 76.98 | 74.97 (p,p)
21 52.78 | 52.22 | 35.00 9 9 3 76.04| 75.48 | 75.30 (ry7)
22 52.50 | 52.22 | 35.00 || 10 | 9 3 74.74 | 75.66| 75.60 (p,p)
23 52.50 | 52.00 | 35.00 || 10 | 10 3 74.90 | 74.40 | 75.89 (s,s)
24 52.50 | 52.00 | 38.75 || 10 | 10 4 75.05| 74.55 | 74.40 (ryr)
25 52.27 | 52.00 | 38.75 || 11 | 10 4 73.91 | 74.69| 74.63 (p,p)
26 52.27 | 51.82 | 38.75 || 11 | 11 4 74.04 | 73.59 | 74.85 (s,s)

Table 3.4: Values in a sample trace of UCT with= 40 in biased rock-paper-scissors and compu-
tation of next best action to be selected in the next itematio

both players are using UCT, the values for both players vélidentical. This equality of values
on both sides results in both players selecting joint idahtinovee.qg.(r, r) which represents both
players playing rock. Action selection will be done basedhrmvalues computed by UCT, which
is the sum of expected value of an action and its UCT bonugtffatolumn in Table 3.4). The
maximum value in fourth column, which is the action to be stgld next, is shown in boldface font.
At step9, rock has the highest value among all the actions and the Wdilisis equal for all the
actions. Therefore(r, r) is selected. This selection results in paper having a hig@®F bonus
that compensates for its lower value and leads to its selectction selection between rock and
paper is switched until their expected values are loweesugh that the UCT bonus for scissors
can compensate its selection (s&%). From step21, which is specified by double lines in Table
3.4, UCT gets into a cycle that does not exist.

After this sequence, the values (sum of the goal value and b@ius for each action) for
both players in UCT will be identical which will result in Hoplayers playing the same during UCT
iterations and cycling through a balanced situation. Theans that players will select joint identical
moves. Since the value that the players get is equal to thecéegh value of the Nash equilibrium
that player can get, both players will Batisfiedand not willing to deviate from their strategy. In
addition, players will not get out of the balanced situatigole, because the exploration in the UCT
algorithm is deterministic. Exploration is determinigdige to the fact that it is governed by the UCT

bonus and because both players play the same, the UCT bandifféoent actions of each player

3The result of playing joint identical moves3® which is less than the expected values of rock and papersapdfit.
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| | rock | paper | scissors]
rock 50,50 | 0,100 | 100,0
paper || 100,0 | 50,50 | 0,100
scissors|| 0,100 | 100,0 | 50,50

Table 3.5: Regular rock-paper-scissors payoff matrix.

will be the same.

If we consider action selection ratios as the probabilitytadosing each action, we will get equal
probabilities for each of the different actions @g3,1/3,1/3) (the first, second, and third arities
are probabilities of selecting rock, paper, and sciss@paetively)? It is clear that this probabil-
ity setting is not a Nash equilibrium, because either plager increase his payoff by unilaterally
skewing his action selection probability toward paper.

The balanced situation that the players arrive at is deperatethe way a player models the
other player. The value af for each player can be considered as the simplest notionpuframt
modeling in the UCT algorithm. For example if we considér= 100 for the first player and
C = 50 for the second player, then the probability settings forftrst and second players after
approximately one million iterations will b@.07,0.12,0.81) and (0.03,0.46, 0.51) respectively.
Therefore if UCT plays as the first player, the second plagarexploit UCT by skewing his action
selection probability toward rock. On the whole, the ba&hsituation that UCT convergesto is not
necessarily a Nash equilibrium and can be exploited.

In addition, in the situations where UCT converges to thelNaguilibrium, e.g.regular rock-
paper-scissofswhose payoff matrix is shown in Table 3.5, the way it convergethe Nash equi-
librium can just be a result of luck. For example, lookingittie logs of the matches of the regular
rock-paper-scissors reveals that there are cases that BX§$tgck in selecting joint identical moves,
e.g.(r,r). Because UCT getsD points simply by playing joint identical moves, which is edjto
the expected value of the Nash equilibrium, it will not charige way it plays. Therefore in the
best case (after running for sufficient time), UCT sampléthal joint identical moves equally and
comes up witH{1/3,1/3, 1/3) probability setting for the Nash equilibrium. It sampleltlaé moves
equally because of the UCT bonus.

It must be mentioned that UCT exploration is not random. dtdketerministic process controlled
by the UCT bonus at each step. Therefore, when UCT gets intala that the values of UCT
bonuses for different actions repeat themselves, UCT daget@ut of the cycle. One way to solve
the problem is to change the exploration in a way that williles actually exploring every possible
situation sufficient number of times. However, we will cateianother algorithm, called CFR, that

actually computes a Nash equilibrium.

4The resulted probability setting does not suggest that Ugldcss its action using that distribution. Because the g@rob
bility setting is generated considering the UCT bonusedenthi final action will be selected solely based on the vaties
different actions.

5The only Nash equilibrium in the regular rock-paper-saisse(1/3, 1/3, 1/3) whose expected value 6.
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3.7 Conclusion

In this chapter we analyzed the UCT algorithm. We arguedtishot the best algorithm to be used
everywherege.g.simultaneous move games, since it does not compute thevadint everywhere,
e.g.Nash equilibrium in case of simultaneous move games. Intiaddive showed that when it

converges to the Nash equilibrium in a game, it can be jusbbluick and cannot be relied.
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Chapter 4

Computing Nash Equilibrium:
the CFR Algorithm

4.1 Introduction

In this chapter we will describe the CFR algorithm and coaisits use in simultaneous move games
in GGP. At first we give a brief overview of the CFR algorithme¢8on 4.2). After explaining
immediate counterfactual regret, which is the cornerstdriee CFR algorithm, in Section 4.3, we
will describe the algorithm in Section 4.4. We give exammashow to use CFR in Section 4.5.

Finally we will consider how the CFR algorithm can be used BR5(Section 4.6).

4.2 Overview

As discussed in Section 3.6.1, playing according to a NasHilequm in an unknown simultaneous
move game is a reasonable strategy. However, if the gameriple® (.g.the state space is large)
then we cannot compute a precise equilibrium. Instead, weisa are-Nash equilibrium strategy;,
wheree is an indication of how far we are from an equilibrium. Since will not lose anything
by following a Nash equilibrium strategy,can be considered as the amount that we will lose if we
happen to play against a best response to our strategy.tlaifaa measure of how exploitable we
will be by following ane-Nash equilibrium strategy [38].

CFR (CounterFactual Regret) is an algorithm for finding-asash equilibrium. It is currently
the most efficient algorithm known and it can handle the Istrgtate spaces in comparison to other
available methods [38]. It also has the nice property of @p@iicremental, meaning that the longer

it runs the closer it gets to the Nash equilibrium in the emwinent which it is dealing with.

4.3 Immediate Counterfactual Regret

Regret is related to the difference between the maximumrdeavalayer could have obtained versus

what he did obtain. Counterfactual regret is a measure #faias how much a player regrets not
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Figure 4.1: A partial game tree.

taking an action (and that is why it is called counterfagtualthe computation of the counterfactual
regret for a player in a specific point in a game, it is assurhatlithe player himself has played to
reach that point of decision making while all the other playeave played according to their strategy
profile !

Immediate counterfactual regret of a player after a numb&emations is also defined analo-
gously. It is the average of the player's maximum countéu@aegret over all the iterations that it
is computed for. A formal definition of counterfactual reigran be found in [38]. We will demon-
strate how to compute counterfactual regret with an example

Let us compute the counterfactual regret at the node whiokpiesented by the dashed circle
in the partial game tree shown in Figure 4.1. Each node is edankth the player who has to make
a decision at that point. The probability of taking each@ttccording to the current strategy of
the player is given beside each edge. Dots in the upper pdneafee mean that there are other
choices that have not been shown. Dark filled nodes at therhatf the tree are terminal nodes
and the goal value for each player is given below these ndtshould be noted that the game is

constant-sum. If we compute the expected value for eacheddifferent actions available to player

1A strategy profile for each player defines the probabilityhef player taking each action at each step of the game.

28



pl at our desired node we have

1 1 1 1 1 1
E(a):§><60+§><30:45 , E(b):§><70+5><80:75 , E(c):§><10+§><20:15

According to current strategy probability settingdf, the expected value of our desired node is
% x 45 + % X 75+ % x 15 = 45. The counterfactual regret of an action in a state is thefice
between the expected value of that action in that state anexpected value of the state where the
player can choose that action. Counterfactual regret ofciorain particular state for a player is
also weighted by the probability of other players reachieg state if they happen to play according
to their strategy at that time. Therefopd,s counterfactual regret of each action in our desired node

will be as follows.
2 2 2
cfr(a) = gx(45—45) =0 , cfr(b)= gx(75—45) =12 , cfr(c) = SX(15_45) =—12

% is the probability ofp2 getting to the desired node. Therefgsé regrets not taking actiohmore
than the other two actions. We explain the CFR algorithm dwasvhow counterfactual regrets that

were computed here can be used to compute the final stratefie po play a game.

4.4 The CounterFactual Regret Algorithm

Zinkevichet al. state three theorems in [38] that relate immediate cowattrél regret ané-Nash

equilibrium. Those theorems are as follows and are the #tieai foundations of the CFR algorithm.

Theorem 1 In a two-player constant-sum game at a specific time stepotli players’ average

overall regret is less than, then their average strategies ar€aequilibrium.

Theorem 2 Average overall regret is bounded by the sum of the indepemaenediate counterfac-

tual regret values.

Therefore, if we minimize the immediate counterfactuale¢@t each node the average overall
regret will be minimized. To minimize the immediate coufdetual regret we just need to minimize
the counterfactual regret for every action of a player ahdage step, since immediate counterfac-
tual regret is the average of the player’s maximum counteréd regret over all the iterations that it
has been computed for. One way for counter factual miningaas to set the probabilities for the
next iteration based on the regrets in the current iterafitws the probability of selecting an action
with positive regret can be set relative to the ratio of igre¢value to the sum of the positive regrets
of all actions. If there is no action with positive regretiihee uniform probability distribution over
all actions can be used. If we set the probabilities in thig than our average overall regret will be

decreased according to Theorem 3.

Theorem 3 If a player selects actions based on the probability setthrag is set to minimize the
player’s regret at each step (i.e. as just discussed) thempthyer’s regret will be decreased relative

to the square root of the number of iterations.
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The pseudocode for one iteration of the CFR algorithm isrgiveAlgorithm 2. Proofs of

convergence and bounds on how close it will get to a Nashibguiin can be found in [38].

Algorithm 2 One iteration of the CFR algorithm.
1: procedure CFRITERATION()

2: if root= NuLL then

3 BUILD TREE()

4 end if

5: COMPUTEEXPECTEDVALUES(root)

6: RESETALL REACHINGPROBABILITIESTOZERQ( )
7 for each playep do

8: root.playersOwnReachingProbaility — 1

o: root.reachingProbabilify] — 1

10: end for

11: COMPUTEREACHINGPROBABILITIES(root)
12: UPDATEPROBABILITIES(root)

13: end procedure

At each iteration of the algorithm, CFR computes the exmkgtdue for different actions of
every player at each node (lines 10-16 in Algorithm 3). Theraill expected value for each player
is computed as well (lines 17-19 in Algorithm 3). It also carntgs the reaching probability to
each node in the tree for different players. However, as C&&tsdwith counterfactual regret, the
probability for each player is computed as if that playeyptato reach that node while other players
have played based on their current strategy (lines 3 in Alyor4). In addition, it keeps track of
the probability of reaching a specific node, based on thegpkpwn strategy, to compute the final
probability for action selection (line 4 in Algorithm 4). @noterfactual regrets are computed using
the reaching probabilities and the difference between eeplevalues for taking a specific action
versus following the current strategy (lines 8-13 in Alglom 5). CFR keeps track of cumulative
counterfactual regret for every action of every player aheaode of the tree. Action probabilities
for the next iteration are computed based on the cumulativaterfactual regret. The probabilities
of all the actions which have negative regrets will be set@as the player is suffering by taking
those actions based on the current probability settings (0 in Algorithm 5). The probabilities
of the actions which have positive regrets will be set acioartb the value that the player regrets
them (line 17 in Algorithm 5). However, if there is no actionttwpositive regret, then the player will
switch to randomization between all of his actions usingiéoum distribution (line 24 in Algorithm
5).

It should be noticed that the game is not actually being plalieing the computation, but the
algorithm is tuning probabilities for the players to minaitheir immediate counterfactual regret.
While the algorithm is tuning the probabilities, it also lgats information to compute the final prob-
abilities (lines 3-6 in Algorithm 5). The average strategyioall the iterations will be considered

as the final probabilities for selecting each action whildayer is actually playing the game. The
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Algorithm 3 Computing expected values in CFR.

1: procedure COMPUTEEXPECTEDVALUES(root)

2:
3:
4:

10:
11:
12:
13:
14:
15:
16:

17:
18:

19:

for each childc of root do
COMPUTEEXPECTEDVALUES(c)
end for

for each playep do
for eacha € actiongp) do
root.actionExpectedVal(g[a] < 0
end for
end for

for each childc of root do
for each playep do
pAct «— c.action[p]
prob«— II,,.,rootactionProbabilitjop][c.actiorfop]]
root.actionExpectedValue[p][pAct] += prob c.expectedValue[p]
end for
end for

for each playep do
root.expectedValug] <
3. cactions,) Foot-actionProbabilityf][a] x root.actionExpectedValug] a]
end for

20: end procedure

Algorithm 4 Computing reaching probabilities in CFR.

1: procedure COMPUTEREACHINGPROBABILITIES(root)

2:
3:

© e NOoO

for each childc of root do
c.reachingProbability[p] +=
root.reachingProbability[pk11,,-, root.actionProbability[op][c.action[op]]
c.playersOwnReachingProbaility[p] =
root.playersOwnReachingProbaility[p]root.actionProbability[p][c.action[p]]
if ALLPARENTSCOMPUTATIONAREDONE(C) then
COMPUTEREACHINGPROBABILITIES(C)
end if
end for

end procedure
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Algorithm 5 Updating probabilities in CFR.

1: procedure UPDATEPROBABILITIES(root)

2:
3:
4:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

for each playep do

for eacha € actiongp) do
root.cfrActionProbability[p][a] +=
root.playersOwnReachingProbability[p]root.actionProbability[p][a]
> Keeps track of accumulative probabilities to extract piulity of actions at last
end for
root.cfrReachingProbability[p] += root.playersOwnReiag Probability[p]

. o . . . cfrActionProbabilityp)[a]
> The final probability for playep taking actiona will be cfrReachingProbability]

sum«— 0
for eacha € actiongp) do
root.regret[p][a] += root.reachingProbability[g]
(root.actionExpectedValue[p][a] - root.expectedVap]e[
if root.regrefp][a] > 0 then
sum +=root.regret[p][a]
end if
end for
if sum> 0 then
for eacha € actiongp) do
if root.regrefp][a] > 0 then
root.actionProbability[p][a}- root.regret[p][a] / sum
else
root.actionProbability[p][a}— 0
end if
end for
else
for eacha € actiongp) do
root.actionProbability[p][a}- 1/|p’s action$
end for
end if

end for

28: end procedure

32



100-0 50-50 0-10

r-s r—r r-p
p-r pP=p p-s
s-p s-s s—r

Figure 4.2: Rock-paper-scissors game tree for CFR. Darksiate terminal.

probability of selecting an action in the average strategié probability of selecting that action in
each strategy during all the iterations, weighted by théabdity of the strategy reaching that point

of decision making.

4.5 CFR Example
45.1 First Example

We consider the game of rock-paper-scissors to illustrate 6FR works (refer to Figure 4.2).
Assume the first player'sp() action probabilities arél, 0,0) (the first, second, and third arities
represent the probability of playing rock, paper, and sciggespectively) and the second player’s
(p2) action probabilities aré0, 1, 0). Considering the probability settings, the expected vidug1

playing rock will be as follows.

Epi(r) = Ppa(r) x goalp (r,7) + Ppa(p) x goalyi (r, p) + Ppa(s) x goalp (r,s)
O0x50+1x04+0x100

= 0

The expected value for playing paper and scissors wibband 100 respectively. Therefore the

current expected value for the first player will be as follows

Ep Ppi(r) x Ep1(r) + Pp1(p) x Ep1(p) + Ppi(s) X Epi(s)

= 1x0+0x50+0x 100

=0
The counterfactual regret for each of the available actiopd will be as follows.
cfrp(r)=Ep(r)—E,n=0-0=0

cfrp1(p) = Epi(p) — Ep1 =50 — 0 = 50

2goaly1: pl's goal value,r: playing rock,p: playing papers: playing scissors(r,r): a state where both players play
rock (the first and the second arities correspond tgthandp2 actions respectively).

33



/\\

X|0
o o e
X|0 X/ [0 X X X X X X
[0) 0] 0] e o o
o (o) o Ol X
50 55 50 55 35 60 50 60 50 55 50
[¢] 50 45 50 45 65 40 50 40 50 45 50

Figure 4.3: Simultaneous tic-tac-toe partial game tre€feR.
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Figure 4.4: Three different moves ofplayer in simultaneous tic-tac-toe.

cfrpi(s) = Epi(s) — Ep1 = 100 — 0 = 100

Therefore, the action probabilities fpt will be updated for the next iteration as follows.
(0/(100 + 50),50/150,100/150) = (0,1/3,2/3)

Similar computations will be done for the second player asdhtion probabilities will be updated

as well before the next iteration.

4.5.2 Second Example

We consider simultaneous tic-tac-toe to illustrate how QFdRks in a more complex game. The
rules of the game are the same as the regular tic-tac-topkbeth players mark the same cell, the
cell will remain unmarked in the next step. Wins, draws, arssés resultin a reward v60, 50, and

0 respectively. If both players manage to complete a line eif thwn, the game will be considered
as a draw. A partial game tree of the game is shown in FigureEkBected values for each player
are given beneath each leaf node. Identical states are atesoed for simplicity. Assume both
players select their actions at each step using a unifortritiiton. We describe how to compute
counterfactual regret and update action selection préibbebifor the actiond shown in Figure 4.4
at the node marked with star in Figure 4.3. Let us assume thectad value for the-player at the

stared node i50. The expected value far-player playinga1 is 51.67.

E.(al) = P,(al) X Ex(ale,als) + Po(a2) X Ex(aly,a2,) + ...+ Ps(a9) x Ez(als, a9s)

3a1-a9 correspond to marking each of the cells in the tic-tac-toardho
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1 1 1 1 1 1 1 1 1
§><5O—|—§><55+§><5O—|—§><55+§><35—|—§><60—|—§><50+§><60—|—§><50

~ b51.67

Let us assume thd, (a2) = 45 andE, (a5) = 65. Therefore, the counterfactual regret for each of

the actions under consideration will be as follows.

x (51.67 — 50) ~ 0.19

O =

cfry(al) =

cfry(a2) = = x (45 — 50) = —0.56

1

9
1

efra(aB) = 5 x (65— 50) ~ 1.67

Let us also assume that the sum of the positive regrets otlitiee actions of:-player is0.57. Thus,

the new probabilities for each of the actions under conatitar will be as follows.

0.19 1.67

Py(al) = 5 n 008 Pia2)=0 . Pu(ad) = 570~ 0.69

This kind of computation will be done for other actionsieplayer as well as those of theplayer

and all the probabilities will be updated before starting lext iteration.

46 CFRIinGGP

CFR was originally designed for poker which is an imperfeébimation game [38]. The current
state of a game in an imperfect information game is basedriropahidden information. Therefore
the current state of the game can only be defined to be amontga states at any moment in the

game. Each set of these states is called an information set.

Definition 5 Aninformation set for playerp in a game is a collection of game states among which

p cannot distinguish.

For example at the beginning of a poker game all the statésdinebe built based on the player’s
own set of cards and different assumptions for the cardsiopiponent’s hand can be considered as
an information set. Figure 4.5 shows a chance node and iatiwmsets in an imperfect information
game. The game tree in Figure 4.5 is a partial game tree thiagliows one step of the game. Each
player can take different actions which are represented by the edges mavitkdhe action names.
Decision making nodes are shown with circles and the player must take an action is given in
the circle. Because of the hidden information (caused bychi@ce node), players can end up in
subtrees that are in the same information sets (same dashgéesy and are not distinguishable.

However, the only source of imperfect information in GGPhis tesult of simultaneous actions
taken by different players. This simplifies the use of CFR fBRzsince there is no hidden infor-
mation in the game except the nondeterminism of what actieropponent will select at each step.

Therefore, each information set in GGP is in fact a uniqueesta GGP when we reach a state, we
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Figure 4.5: Demonstration of chance node and informatitiaean imperfect information game.

exactly know where in the game we are and we do not need a ctanfpstory of our match from
the beginning of the game to find it out. Thus we can truncatis pdthe tree that are not reachable
anymore and resume tree expansion for new states. Thergferdeterminism of the gamesin GGP
suits CFR very well.

An example that compares the importance of history in an ffepeinformation game even
without any chance nodes versus a perfect information gameeén in Figure 4.6. The game trees
are partial game trees that just show two steps of the gantewanse the same conventions as
in Figure 4.5. To improve the distinction of information seit the leaf nodes in Figure 4.6(a),
the number of the information set that each node belongsdivésn instead of grouping the states
in the same information set using dashed shapes. Dashaddieaused in Figure 4.6(b) to show
simultaneous moves and the fact that players have no kngelabout the action that the other
player takes in the same step.

The partial game tree given in Figure 4.6(a) correspondsstédilowing game. Itis a two-player
simultaneous move game in which each playerdaards. At the beginning, each player decides
to put aside one of his cards without informing the other ptaylherefore, the first move of both
players is hidden. Then, on each turn each player plays ade The first player who plays the card
that the other player has put aside at the beginning winsaheeglf both players’ guesses happen to
be correctin the same step or they put aside the same caedmte is a draw. Since there is hidden
information,e.g.a hidden move, in an imperfect information game, after talictions we can only
say in what information set we are and not the specific stateekxample, a trivial information set
is the first time thap2 must take an action. Since he does not know about the activpitiis going
to take, all the three nodes at depth one of the tree are irathe snformation set (root is at depth
zero). However more interesting information sets are witieeeplayers take their second action.

Due to the fact that the first action of each player is hiddeformation sets are separated based on
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(b) Partial game tree sample of perfect information game.

Figure 4.6: Information set depiction in imperfect and petinformation games.



the action that the player has taken himself (depth two ofré. This fact is true at the third time
thatpl wants to take an action (at the leaves). All the nodes in theesaformation set share the
same information. For example in any of the leaf nodes inrmfdion set number, p1 knows that
he has hidden; and played:, while p2 has not hidden,. Solving this game using CFR requires
the whole game tree to be aware of the history of the game.

However, this game cannot be used in GGP, because no hiddes isypermitted in GGP.
Therefore, at the end of every step each player knows what®ttave done and every information
set will just be a single state. The game tree for the transdition of this game into GGP context
(first action is also known) is given in Figure 4.6(b). As ihdze seen, every time that must take
an action, the game state can be defined as a single node.fdrbetbere is no need to keep the
whole tree and tree expansion can be done sequentially byvirgiobsolete nodes and adding new
ones.

Although determinism of the games in GGP makes the appticati CFR easier on one hand,
but on the other hand using any abstractions while dealinly games in GGP is not as easy as
using abstraction in specific gamesg. poker, to shrink the state space. In poker, the game is
known in advance and well designed abstractions can be lseit, GGP no good way of doing the
abstraction is known. Therefore, CFR must deal with a gaseettrat will grow as the state space
grows.

CFR expands the game tree at first by considering all the jooes of the different players
at each step of the game. However, if the whole game tree ikatge to fit in memory, we only
expand the tree to a certain depth. Since we need returnsvédualifferent players at the leaf
nodes, simulations can be done to obtain these values. Aaiowinvolves playing a sample
match from the leaf node to a terminal node. In poker sincectiveputation is done offline, as
much as time and memory that is required can be used to cortipfinal strategy to play the
game. However, in GGP the player must submit his moves baftinee limit is reached. Therefore
deciding on the size of the tree that we must deal with is é&atitssue. The smaller the tree is,
the faster it will be to do an iteration over the tree and thieeswill converge faster. In case of
partial trees, we will have non-terminal leaves in our tie@t tve need to evaluate. We must do
simulations to acquire a value for our CFR computation. Ifjust expand a small portion of the
game tree then the simulation trajectories will be longerthie outcome is more variable (compared
to shorter trajectories) implying that we will need a highember of simulations. Thus, although
the probabilities that CFR computes will converge fasteaytwill be farther from the actual values
that we must converge to. The reverse is true if we expandgadamortion of the tree. While it
takes longer to converge, we will converge to a higher qualiution. Therefore, there is a trade
off between how fast we can get a stable probability settargws how good the result will be.

In addition to selecting an appropriate depth for tree exjmmin CFR, all the simulations at leaf

nodes can be either done at first or during each iteration f& @hen we run into a non-terminal
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leaf node. While the first approach is faster, the secondaagirwill result in better long-term
quality since the quality is not bounded by the simulatidrad have been done at first.

In the next chapter we will present experimental resultsshaw how CFR plays against UCT in
simultaneous move games. In addition, we will considessituns where CFR has a great advantage
over UCT.

4.7 Conclusion

In this chapter we described counterfactual regret and e &lgorithm for computing-Nash
equilibrium. We gave examples on how to compute countaréacegret and how the algorithm
works. We explained the usage of CFR in GGP and differenetcfts that should be considered.
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Chapter 5

Experimental Results

5.1 Introduction

In this chapter we provide experimental results showing KR players with different settings
perform against each other. Experimental results demativegrthe performance of a CFR player
versus a UCT player are also provided. We give an exampleugiag a CFR player instead of
a UCT player result in great advantage as well. In additioa,discuss how following a Nash
equilibrium may not be the best strategy in all situationg. Will then explain how a known model
can be used by CFR for exploitation while managing not to lzalvgttle strategy that is exploitable
itself. Finally, we present experimental results dematstg the effectiveness of our approach, but

pointing to further open issues.

5.2 CFR Demonstration
5.2.1 CFR convergence rate

To give an idea about how quickly we converge to a Nash eqjuililbin a game, we computed the
MSE of the estimated probabilities over iterations untihaergence to an equilibrium for biased
rock-paper-scissors (discussed in Section 3.6.Igpetition of repeated rock-paper-scissors, and
Goofspiel with5 cards.

Repeated rock-paper-scissors is a regular rock-papesessirepeated for specific number of
times QO times in our case). After the last repetition, the player wiom more rounds gets00
points and the loser gefspoints. Draws result iB0 points for each player. The GDL for repeated
rock-paper-scissors is given in Appendix B.

Goofspiel, also known as th@ame of Pure Strateg§fGOPS), is a card game for two or more
players. The variant that we are considering here is a twpeplgame with three suits of cards,
all facing up. Therefore there is no hidden information ia tame. The number of cards can be
variable e.g.from ace to inclusive. Each player owns a suit and the third suit is orgifoeind in a

specific order. For convenience, we assume that the thirgssniorder (from ace t8). At each step
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Figure 5.1: CFR convergence rate.
ame # nodes # terminal MSE <0.01 MSFE < 0.001
9 nodes | #iterations| time (sec)| # iterations| time (sec)
biased RPS 10 9 17 ~0 87 ~0
9 round RPS 220 55 45 ~0 236 0.02
5 card Goofspiel| 2,936 138 1,114 1.16 29,730 31.09

Table 5.1: Convergence rate of CFR in trees with differerdsi

of the game, each player selects a card in his hand and batlrplannounce their selected cards
simultaneously. The player who selects a higher card wihgeahe card placed on the ground from
the third suit and acquire as many points as the value of ttte(¢ado 5 for ace to5). Picking up
cards will be done in the order they are placed on the grouodi(fce td5 in this example). For
example, at the first step if one player plays ace and the otheplay<2, the player who playg
will get the ace from the third suit and accumulatgmint. If both players happen to have the same
card, no one will win the card from the third suit and all thoeeds will be discarded. At the end
of the game, the player with the higher points wir¥ points and the other player gdts A draw
results in50 points for each player. The GDL for Goofspiel wiitards is given in Appendix C.
The graph in Figure 5.1 shows the result for CFR convergeaatedor the three aforementioned
games. Both axis are in logarithmic scale. The horizonta exthe number of iterations and the
vertical axis is the MSE of our estimation of a Nash equilibri probabilities. Total number of
nodes as well as terminal nodes in the tree of each game amigifable 5.1. Number of iterations
and time in seconds until MSE is less tHafl and0.001 are also given. Tree sizes seem small (in
comparison to poker), but larger tree sizes (comparableken) are GGP inefficient since all the

computations are done online during the game.
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In these experiments, we let CFR converge to an equilibritfinst. Then we record the prob-
ability setting of the equilibrium and run CFR again. In thizase, we also compute an estimation
error at desired iterations. Lét be the set of all game states add, s) be the set of all actions
that playeri can take in state. Also assume that the probability of selecting action states by
playeri in iterationT is PT (s, a). We useP; (s, a) to refer to the final probability that playeuses
to select actiom in states when CFR has converged to an equilibrium. The error that wepce

is defined as follows.

% o> Y (Prs,a) - Pis.a)’ (5.1)

i€players s€S a€ A(i,s)

where

N= Y > |AG,s)| (5.2)

i€players s€S
We assume to be in an equilibrium if the following conditiarids.

max (max ( max [P/ (s, a) — PiT_l(s,a)’)) <e (5.3)

i€players \ s€S \a€A(i,s)

Equation 5.3 simply states that the maximum amount of chamg¢jee probability of selecting an
actiona at any states by any player in the game between two consecutive iteratidfis{1,7")
must be less than or equal ¢dor the situation of CFR to be considered as converged. Wd use
e = 1079 in our experiments and initialized the probabilities usimgform distribution except for
repeated rock-paper-scissors that uniform distributscam Nash equilibrium. We set the probability
of selecting the first action at each stepy.paper, equal to one while initializing the probabilities
for rock-paper-scissors.

It can be seen that CFR converges faster in smaller gamesh®urteresting point is that while
convergence needs a lot of iteratioagy.millions of iterations in Goofspiel witls cards, the MSE
decreases rapidly at the early stages (the MSE drops tahas8.001 after approximately0, 000
iterations in almosB0 secondy. However, it should be mentioned that these graphs aremot a
indication of how the quality of the solution found by CFR irapes over time. The best response
must be computed for that purpose, because there can be maora single Nash equilibrium in a
game. Therefore, it can be the case that while CFR is getirsgcto a Nash equilibrium, it is in fact
getting farther from another Nash equilibrium. Fortungt€FR will not just wander around and the
more iterations that CFR runs, the closer it gets to a NasHilegum as discussed in Section 4.4.
In addition, it should be noted that although we may suffeilagt a best response, but opponents
cannot compute the best response against us. Because they kdave a model of us in advance
and they cannot build one in the current setting of the coitipethat most games are played only

once against a specific player.

1Comparing the number of iterations and the time that CFRires|to lower error margins in the Nash equillibriuwiz.
MSE less thar®).01 and0.001, also gives a good idea about the CFR convergence rate.
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Figure 5.2: CFR players with different tree sizes playingiagt each other in repeated rock-paper-
scissors (9 repetitions) (start-cloek30sec and play-clock= 10sec).

5.2.2 The Effect of Tree Size in CFR performance

To demonstrate how the size of the tree can effect the quElayCFR player in GGP, we compare
how CFR players with differentlimits on tree sizes (gamedrihat are expanded to different depths)
play against each other. The policy that we used to get a \&@lauen-terminal leaf nodes during
CFR computations was to rur®00 simulation for each leaf in batches 2 simulations. We stop
simulations when the difference between the running aweodgalues from one batch to the next
was smaller than point. The results for such tournaments aepetitions of repeated rock-paper-
scissors and Goofspiel withcards are given in Figures 5.2 and 5.3. We initialized théabdities

in Goofspiel with5 cards using uniform distribution. But we set the probapibit selecting the first
action at each step,g.paper, equal to one while initializing the probabilities fock-paper-scissors
since the uniform distribution is itself a Nash equilibriimthis game.

Inboth graphs (Figures 5.2 and 5.3) each line represengéyarphith a specific depth limit on the
tree expansion. The legends that describe which line quorets to what depth of tree expansion are
given on the right hand side of the graphs. In both graphddigontal axis indicates the depth of
tree expansion being used by the opponent and the vertisahabcates the score. Therefore, each
pointin the graphs corresponds to a match between twoctestrilepth expansion CFR players (one
corresponding to the depth of the line representing a spefgfith and the other one corresponding
to the player in the horizontal axis). The values in the eaitaxis corresponding to each point
represent the average score that the line player obtairesd 0 games. Both games are constant-
sum and the values sum up1t@0. Values greater thas0 and less thafi0 can be considered as wins

and losses respectively. Therefore, the higher the lirthésbetter the player corresponding to that
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Figure 5.3: CFR players with different tree sizes playingiagt each other in Goofspiel with
cards (start-clock= 30sec and play-clock= 10sec).

line is (or the lower the values in a column is, the better tlaggr corresponding to that position in
the horizontal axis is). Based on the graphs the player véagih in rock-paper-scissors and depth

3 in Goofspiel are the best players among their groups. In&@edt6 we discussed about trade-offs
in depth selection and deptfisand3 are the breakpoints in these two games. However, it should
be mentioned that the differences less thHgmints are onlys0 percent statistically significant at
most. Greater differences are more tig&npercent statistically significant using the t-test. Since
many of the differences are small, it can be considered ligasimulation policy used at leaf nodes
were effective as well. In addition, the fact that the ganresret adversariak.g.the advantages

in a game does not turn into disadvantages because of a spg&tifing at a particular state, is well
suited for the sampling approach at the leaf nodes in parnties.

It is intuitive that the larger the tree is the better the gyaif the player must be. However,
according to the results in the graphs in Figures 5.2 andtis3petter not to expand the whole tree
when there is not enough time to run sufficient number of ftena to converge to aacceptable
probability setting. Therefore, if we increase the times tjuality of the players with deeper trees
must improve. To test this hypothesis, we ran the same erpats with longer start-clock. The
results are presented in Figures 5.4 and 5.5. As it can be seéoth games the quality of the
players with deeper trees improved.

The lines that separate the statistically significant défifiees (more thab4 or less thant6 for
repeated rock-paper-scissors) are shown in Figures 5.2.4ntf we compare the graphs, the player
with the whole tree (depth) loses statistically significant against players with dararees in the
former, while he improves his performance given the longat-cock in the latter. Using &0

second start-clock, the player with the whole tree only dosgainst one player with partial tree
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Figure 5.4: CFR players with different tree sizes playingiagt each other in repeated rock-paper-
scissors (9 repetitions) (start-cloek60sec and play-clock= 10sec).

| || start-clock (sec) play-clock (sec)] CFR | UCT |

repeated rock-paper-scissors (9 repetitign) 30 10 52 48
simultaneous breakthrough (3x5) 30 10 48.25 | 51.75
simultaneous tic-tac-toe 30 10 50 50
Goofspiel (5 cards) 30 10 55 45
Goofspiel (7 cards) 60 10 53.25 | 46.75

Table 5.2: Comparing the usage of CFR and UCT in several samebus move games.

(depth7), which is not statistically significant anymore. Similgrtomparing Figure 5.3 and 5.5
shows improvement in players with deeper trees in Goofspibl 5 cards. It can be seen that the

deeper the tree is expanded, the better the performance pfaier become for longer start-clock.

5.3 Comparing CFR Against UCT

To demonstrate how a CFR player performs against a UCT playesimultaneous move game, we
performed experiments with repeated rock-paper-scissionsiitaneous breakthrough, simultaneous
tic-tac-toe, and Goofspiel with and7 cards.

Breakthrough is a game played on a regular chess board. Hoyeach player has two rows of
pawns instead of regular chess pieces as shown in FiguréPaW8ns can move ahead one square
either straight or diagonally, but captures must be dongadially. The first player who manages to
get one of his pawns to the last row of the opponent wins theegam

Simultaneous breakthrough is a variant of the breakthrgaghe in which both players move
simultaneously. If both players move to the same cell siamglbusly, the conflict will be resolved

by considering therivilegeof the players. The player who has the privilege will get hécp settled

45



56

; N

——
50 ¢4 2
-3
4

I
\\~

Opponent (depth of the tree)

Score

Figure 5.5: CFR players with different tree sizes playingiagt each other in Goofspiel with
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Figure 5.6: Breakthrough inital state.



in the cell. At the first state of the game, the first player tmesgrivilege. The privilege switches
between players after each collision. In addition, if bdéyprs manage to get to the last row of the
opponent, the game will be considered as a draw. The GDL fiaulshneous breakthrough is given
in Appendix D. Since the way that we changed the game to a @mebus move game results in
the state space growth, we used smaller board size thatiés &mbandleg.g.3 x 5.

Simultaneous tic-tac-toe is a simultaneous variant ofledic-tac-toe. However, if both players
mark the same cell, the cell will remain unmarked in the nteqt. SThe game ends afteésteps. The
player who manages to form a line gét®) points and the loser gefigpoints. If no line is formed or
both players form a line of their own, the game counts as deswlting in50 points for each player.

Table 5.2 shows the results that are averaged2ifegames, with each player playingo0 times
on each side in case the outcome of a game is biased towardificspeating. The length of the
start-clock and play-clock is also given in the table. Irstihexperiments an implementation of UCT
(as described in Chapter 3) is used versus an implementitiGfR (as discussed in Chapter 4).
The UCT player is an enhanced version of our general gamepthgt participated in th2008
GGP competition. Uniform distribution is used to initi@ithe initial probabilities in CFR except
for repeated rock-paper-scissors that uniform distrdsuts a Nash equilibrium. We used longer
start-clock for Goofspiel witlT cards in order to let CFR build the whole game tree.

The best result for CFR is in Goofspiel withcards where there is # point difference in the
scores. This is more th&3 percent statistically significant using the t-test. Howete difference
in none of the other games is statistically significant. Ef@e the only conclusion that can be
drawn from these set of experiments is that given enough atmdutime, CFR can compete with
UCT. In addition, CFR performing slightly better in Goofepivith 7 cards where the start-clock
was just enough to build the game tree, is an indication ofrttportance of initial values in CFR.
Uniform initialization seems to payoff in Goofspiel withcards.

To compare how the length of start-clock and play-clock déecethe quality of UCT and CFR,
we ran experiments with different settings of start-clookl @lay-clock in Goofspiel witlh cards.
The results of such experiments are given in the graphs r€835.8 and 5.7. In both graphs, the
vertical axis is the score of the player averaged @@@rgames. The horizontal axis is play-clock
in Figure 5.8 and start-clock in Figure 59 percent confidence interval around each data point is
also shown. As it can be seen in the graphs, neither CFR nor tiSTa clear advantage over the
other one for different settings of play and start clockswigeer it can be said that the performance
of both algorithms improves given more time. It should alscstated that the probabilities in CFR
are initialized using uniform distribution in these expeeints and when the time is too short to
do any iterations, uniform distribution is actually used &ation selection. Not surprisingly, UCT
does not perform well given very short time and thereforéladgorithms can compete again. Thus
performing slightly better for very short times does notessarily imply that CFR has an advantage,

but is an indication of the effect of good initialization.
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Figure 5.7: Comparing CFR and UCT in Goofspiel witbards for start-clock= 30sec and different
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Figure 5.8: Comparing CFR and UCT in Goofspiel witlbards for different start-clocks and play-
clock = 10sec.
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| start-clock (sec) play-clock (sec)| number of gameg CFR | UCT |
30 variable 1400 52.55+1.88 | 47.40 + 1.88
variable 10 1800 51.10 £ 1.66 | 48.86 + 1.66

Table 5.3: CFR vs. UCT comparison for different settingstaftsand play clocks in Goofspiel with
5 cards.

| players || start-clock (min)| play-clock (sec)| playerl | player2 | player3 |
CFR-UCT1-UCT2 3.5 10 81.5 50.1 51.7
CFR-UCT1-UCT2 10 10 79.9 46.6 50.1
UCT - CFR1 - CFR2 3.5 10 72.1 68.3 72.7
UCT - CFR1 - CFR2 10 10 50 79.8 70.6

Table 5.4: CFR vs. UCT comparison in three-player smallest.

Although the difference between the performance of CFR & I3 not statistically significant
for most of data points in either case to suggest any pattbutghe lines representing the perfor-
mance of each algorithm do not cross in Figure 5.7 while tleegeveral number of times in Figure
5.8. This may suggest that CFR is more robust to variable-gliagks. Table 5.3 gives the average
score over all the games in either case Wiitpercent confidence intervals. All differences are more
than95 percent statistically significant using t-test. As it carsben, CFR is slightly stronger given
a 30 second start-clock in Goofspiel withcards for variable play-clock (tH# percent confidence
intervals for CFR and UCT arg0.67, 54.43) and(45.52, 49.28) respectively that do no intersect).

5.3.1 2009 GGP Competition

In addition to considering two-player constant-sum garieble 5.2), we also considered a three-
player version of the game callschallesthat was used in the GGP competitior2ib09. The game
is fairly simple. At each step of the game, every player masbance a number fromto 10. The
player who announces the smallest unique number willl§gtoints. For example if player, 2,
and3 announcd, 2, and3 respectively, playet will get 10 points. However, if playe8 decides
to announcd while playerl and2 still announcel and2, then player2 will get 10 points. If all
the players announce the same number, no player will get @imygspfor that round since no player
announced a unique number. The game ends when the first gletsdi00 points or25 steps are
passed.

The results for two different seatings in this game are givehable 5.4. There are one CFR
player and two UCT players in the first seating, while theesgtano CFR players and one UCT player
in the second one. We initialized the probabilities in CFRyprs using a uniform distribution. Two
different time settings were used for each seating. Theteshoe. 3.5 minutes, start-clock is set to
be just enough for CFR to build the entire game tree.

It can be seen that when short start-clock is used and therdyisone CFR player in the game,

CFR wins (with30 points difference in the scores). However, when there a@®WR players
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L[ b [ b |
a1 | 23,77 | 77,23
as | 73,27 | 27,73

Table 5.5: The payoff matrix of a simple game.

involved, the match is basically a tie for all the playersisiduggests that while the uniform initial-
ization is good in this game (former seating), when CFR da¢fiave enough time to do sufficient
number of iterations it can do poorly (latter seating). Ehessults are analogous to the results in
the GGP competition iB009 where random player beat every other player.

However, using a longer start-clock changes the resultfadin al0 minute start-clock can be
considered as an example of a case where UCT player doesmpet®with CFR player given a
long start-clock. In both seating when @ minute start-clock is used, the CFR players outperform
the UCT players by a large margin (alm@stpoints in former an@0 points in the latter seating).
The reason for the strength of the CFR players in this ganteistiie UCT players play determin-
istically. Therefore, when there is another player who glagntical to a UCT player in this game,
can make him suffer. This is in contrast to CFR that randomietween its actions to gain more
points when it is giveenoughime to runenougmumber of iterations. Unfortunately, we have not
integrated CFR in our general game player that competeciatho GGP competition. If we had

done the integration, we might have won the competition.

5.4 Exploiting the Opponent

In any game that involves other agents than the player hfmsebwledge about the models of
the other players can be very beneficial. If models of thergtleers are known, then the player
can adapt his strategy to gain an advantageous outcome bades knowledge. For example, a
model could be exploited to take advantage of defects in pip@ent’s strategy. However, just by
following a Nash equilibrium strategy we will not be able @it an opponent’s strategy.

As an example, consider the payoff matrix of a simple gamevatio Table 5.5. There is only
one Nash equilibrium for that game with the expected valugOofor both players. The mixed

strategy action probabilities are as follows.
P1 (al) = 0.46 N Pl (ag) =0.54

Py(b1) =05 ,  Py(by) =05

Suppose the first player tends to selectll the time. If we just follow the mixed strategy proba-
bilities for action selection we will only ge} x 27 + % x 73 = 50 points versus the potentiaB

points that we could have got if we had used our knowledge tadimppponent properly.
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5.5 Exploiting UCT

We discussed in Section 3.6 that UCT will not necessarilyweage to a Nash equilibrium. But if
we just adhere to the Nash equilibrium while playing agahSf, we are only guaranteed to get
the Nash equilibrium expected value. However, if we couldleidhe probability distribution that
UCT converges to, we could exploit UCT and gain more than wieatould gain just by following
the Nash equilibrium.

If we have a model of the probability distribution for actiealection by UCT (or any other
player), then exploiting UCT by CFR is straightforward. Vés the probabilities for the player that
UCT is going to play his role in the game equal to the probaddithat we assume UCT will use
to actually play the game. Then we use CFR to compute the pildles for the player that we
will play his role in the game while keeping the probabibtier the opponent (in this case the UCT
player) fixed. Finally we use the new probabilities to plag fame. This approach will result in a
best response to the probability setting assumed for UCWeder, since it is an open question as
to what solution UCT converges to in simultaneous move gamgeneral and the distribution of
probabilities is not known in advance, we cannot computd#st response to UCT for every game.
In addition, the opponent may not be even using UCT. Theeeiming the best response approach
can be brittle and can suffer greatly if the assumed modetasgu

To address the latter problem, it is desirable to exploit awkmopponent but still be close to
a Nash equilibrium so as to not be exploitable to a large éxt@wo approaches can be taken to
exploit an opponent and still not suffer greatly if the modalvrong. One of them is to compute
both the best response and a mixed strategy Nash equilindralternate between them. We
can assume different probabilities for using each of théalpdity distributions to achieve different
levels of trade-off between exploitation and exploitahilAnother approach is to assume that with
probabilityp our opponent adheres to what we assumed, and with prolyabiitp the player tries
to minimize his regret and play a Nash equilibrium. Afterdiamve can use this new model of the
opponent to compute a mixed strategy Nash equilibrium tg fila game (this new equilibrium
is called a restricted Nash equilibrium). Different vainas of p can lead to different levels of
exploitation and exploitability. In poker the latter appoh has been shown to be superior to the
former [18].

The results for computing the restricted Nash equilibriambiased rock-paper-scissors (dis-
cussed in Section 3.6.1) are given in Table 5.6. The firstmolgshows how much we trust our
model (different values gf). The second column, named exploitation, shows the scouifferent
degrees of UCT exploitation by CFR. The last column, namgdogability, shows the score if the
CFR player which is exploiting the UCT player happens to @gginst the best response to itself.
The results are averaged ovl0 games. A30 second start-clock anth) second play-clock was
used. As our model of the opponent, we assumed that UCT Métseock all the times. The dif-

ference between the scores of CFR and UCT are moredthparcent statistically significant when
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| model confidence (p] exploitation (CFR vs. UCT)] exploitability (CFR vs. best responsg)

1 75— 25 45 — 55
0.75 75— 25 45 — 55
0.5 74.5—25.5 49.5 — 50.5
0.25 73.25 —26.75 50.15 —49.85

0 50.25 —49.75 52.35 —47.65

Table 5.6: Exploitation vs. exploitability in biased roplper-scissors.
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Figure 5.9: Exploitation vs. exploitability in biased replaper-scissors.

we are using a modep(> 0) using the t-test. It can be seen that if we have access to tigelm
of the opponenty > 0), we can benefit greatly. However, if we rely too much on theleti@and
we happen to play against an opponent that knows about oumassmodel, we can suffer badly
(p=0.75andp = 1).

If we consider the best responge £ 1) and the mixed strategy Nash equilibrium, we can
achieve any exploitation and exploitability trade-off bifferent mixing in between. The straight
line between(47.65,50.25) and (55, 75) in Figure 5.9 corresponds to this mixing.

Using these two approaches, we will be in a safe margin if cedehof the opponent happens
to be wrong. As can be seen in Figure 5.9 the curve for theicesdrNash equilibrium approach is
above the line of the mixing approach for biased rock-pajgéssors. This means that in the CFR
algorithm, if we give up a small amount for being exploitabie can exploit a UCT player a lot.

The results for computing the restricted Nash equilibriom3oofspiel with5 cards are given in
Table 5.7. This results are also averaged av¥eérgames. A one minute start-clock and@second
play-clock was used. As our model of the opponent, we assuhadJCT will select the action

with the highest probability at each step. It must be memtibihat our assumption about the model

210 points is the most that can be suffered according to the payatfix (Table 3.3) and we suffered that much by relying
too much on the model.
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| model confidence (p] exploitation (CFR vs. UCT)] exploitability (CFR vs. best responsg)

1 77— 23 0 — 100
0.75 60.5 — 39.5 15.5 —84.5
0.5 51 —49 37.5—62.5
0.25 48 — 52 53 — 47

0 50 — 50 50 — 50

Table 5.7: Exploitation vs. exploitability if cards Goofspiel.
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Figure 5.10: Exploitation vs. exploitability in Goofspiglth 5 cards.

of the UCT player can be wrong. It can be seen that the besbmespo UCT playery( = 1) can
exploit UCT the mostq7 to 23), but is very exploitable itself (losint00 to 0). However, we cannot
exploit UCT very much by not relying on the model & 0.25), but we will not be exploitable
either.

If we consider mixing between the best response-(1) and the mixed strategy Nash equilib-
rium, we can achieve any exploitation and exploitabiligde-off between their extreme points. The
straight line betweei(50, 50) and (100, 77) in Figure 5.10 corresponds to this mixing. Although
the restricted Nash equilibrium method outperformed thrimgi approach in biased rock-paper-
scissors, but as it can be seen in Figure 5.10 the curve foettiected Nash equilibrium approach
is below the line of mixing approach for Goofspiel withcards. Therefore it is better to use the
mixing approach in this game. This can be due to the fact thatmmdel of the UCT in this game
is wrong. In addition, it must be considered although ouuaggtion about the model of the UCT
player can be wrong, but we use the right model when we are abngpthe best response to the
CFR that is exploiting UCT, which is not available to the @eyin the real competition. However,
the nice property of giving up a small amount of exploitapitind exploiting to a large extent is not

true in this game and the best that we can do using the pedceivdel is the linear trade-off in the
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mixing approach.

Therefore an inaccurate opponent model can lead to poarmpeathce in a restricted Nash equi-
librium. In addition, the quality of the model has a diredeet on the performance, independent of
the method we use to exploit that model. Thus we will be betffiaf we have a better model of our
opponent. However, since we still do not have a model for U€Simultaneous move games and
we do not know the characteristics of the balanced situatiahUCT converges to, trying to build

a good model and defining the characteristics of the balasitgation is promising future work.

5.6 Conclusion

In this chapter we gave experimental result showing hovedsffit settings can effect a CFR player.
We also provided experimental result showing how CFR perfagainst UCT. We gave an example
that using UCT can be disadvantageous while using CFR waailgeby beneficial. In addition, we
explained why following a Nash equilibrium may not be thettstgsategy in a situation. We also
described how to exploit an opponent with a known model byagi§iIFR while we do not endanger

ourselves into being exploitable.
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Chapter 6

Conclusion and Future Work

In this thesis we focused on simultaneous move games in G@Rarguied that plain UCT is not
sufficient to be used in simultaneous move games. We explanariant of the UCT algorithm
to be used in this class of games. We discussed that even lla@asd variant of UCT does not
converge to Nash equilibrium in general.

We demonstrated the CFR algorithm and explained how it carsbé in GGP. We discussed the
simplifications and challenges that face the use of CFR in.G®Ralso discussed why it is advan-
tageous to use CFR instead of UCT for solving simultaneougengames. We gave experimental
results for a game used in the last general game playing ditropghat showed how using UCT
can make an agent suffer greatly.

In addition, we explained why following a Nash equilibriunaymnot be the best strategy all the
times. We also discussed how UCT can be exploited by CFR.

We did not develop a model for UCT neither characterized #diartced situation that it con-
verges to. Itis an open question that if it is possible towea model for how UCT plays in simul-
taneous move games or characterize the balanced situlgbii tonverges to. Having the model
or the characteristic of the balanced situation, CFR cansked easily to exploit it as explained in
Chapter 5.

We did not propose a smart way of tree expansion for CFR. Afi@al€future work is to define
how time management should be done in a CFR player and whigdpof time should be devoted
to tree expansion, simulations, and iterations.

Another interesting future work is to solve simultaneousengames with Linear Programming
(LP). Since all the games in GGP are perfect information gare can be used to solve simulta-
neous move games using a bottom-up fashion in the game whén@the problem using LP starts
at the leaf nodes and the result of the subgame just solvédbevilsed to solve the subgame just
before that in the game tree after all the subgames of thexpsmbgame are solved. This approach
has the benefit of being accurate versus the incrementabagipof CFR, but the player must have
enough time to complete one sweep of the whole game tree.

Simultaneous move games are basically more complex tharesdgl games, because of the
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higher branching factor resulted from consideration offaldifferent combination of moves of dif-
ferent players. Therefore solving simultaneous move gandglaying acceptable requires longer
start-clock and play-clock. In addition, in simultaneousv& games we deal with probabilities and
playing a game only once cannot tell anything about the gtreaf a player. Thus, to get a more
statistically significant result in the competition, we ledp see that a game is played more than just
once.

Finally if we do any opponent modeling, it will be very ben&fldo know the player that we
are playing against so that we can use our models. Thergfareiding the information about the
players that are playing a game during the start-clock caadvantageous and omit the need for

player detection in addition to opponent modeling.

56



Bibliography

[1] Nima Asgharbeygi, David Stracuzzi, and Pat LangleyaRehal temporal difference learning.
In ICML '06: International Conference on Machine Learnimqgages 49-56, 2006.

[2] Peter Auer, Nicold Cesa-Bianchi, and Paul Fischer. it€&itime analysis of the multiarmed
bandit problemMachine Learning47(2-3):235-256, 2002.

[3] Bikramjit Banerjee, Gregory Kuhlmann, and Peter Stowalue function transfer for general
game playing. INCML workshop on Structural Knowledge Transfer for Machirearning
June 2006.

[4] Bikramjit Banerjee and Peter Stone. General game lagrosing knowledge transfer. In
International Joint Conference on Artificial Intelligenckanuary 2007.

[5] Yngvi Bjornsson and Hilmar Finnsson. Cadiaplayer: falation-based general game player.
IEEE Transactions on Computational Intelligence and Al sinGes 1:4-15, March 2009.

[6] Murray Campbell, A. Joseph Hoane Jr., and Feng hsiung Heep blue.Artificial Intelli-
gence 134(1-2):57-83, 2002.

[7] David Carmel and Shaul Markovitch. Incorporating oppohmodels into adversary search.
In AAAL Vol. 1, pages 120-125, 1996.

[8] James Clune. Heuristic evaluation functions for gehgame playing. IPAAAI, pages 1134—
1139, 2007.

[9] Rémi Coulom. Efficient selectivity and backup operatior Monte-Carlo tree search. Gom-
puters and Gamegpages 72-83, 2006.

[10] Evan Cox, Eric Schkufza, Ryan Madsen, and Michael Geratls. Factoring general game
using propositional automatarhe 1JCAI Workshop on General Game Playing (GIGA;09)
pages 13-20, 2009.

[11] H. H. L. M. Donkers, H. Jaap van den Herik, and Jos W. H. Mekwijk. Selecting evaluation
functions in opponent-model searctheoretical Computer Scienc@49(2):245-267, 2005.

[12] Hilmar Finnsson and Yngvi Bjornsson. Simulation-edspproach to general game playing.
In AAAI, pages 259-264, 2008.

[13] Hilmar Finnsson and Yngvi Bjornsson. Simulation aohin general game playing agents.
The IJCAI Workshop on General Game Playing (GIGA,@2)ges 21-26, 2009.

[14] Sylvain Gelly and Yizao Wang. Exploration exploitation Go: UCT for Monte-Carlo Go. In
The NIPS On-line trading of Exploration and ExploitationN&hop December 2006.

[15] Sylvain Gelly, Yizao Wang, Rémi Munos, and Olivier Tayd. Modification of UCT with
patterns in Monte-Carlo Go. Technical Report 6062, INRIfgrice, November 2006.

[16] Michael R. Genesereth, Nathaniel Love, and Barney. B#heral game playing: Overview of
the aaai competitionAl Magazing 26(2):62—72, 2005.

[17] Marting Gunther, Stephan Schiffel, and Michael Thiesxc Factoring general game3he
IJCAI Workshop on General Game Playing (GIGA'O8ages 27—-24, 2009.

[18] Michael Johanson, Martin Zinkevich, and Michael Bawgi Computing robust counter-
strategies. In John C. Platt, Daphne Koller, Yoram Singed, 3am T. Roweis, editordlIPS
MIT Press, 2007.

57



[19] David M. Kaiser. Automatic feature extraction for antanous general game playing agents.
In Autonomous Agents and Multiagent Systgmages 1-7, 2007.

[20] Mesut Kirci, Jonathan Schaeffer, and Nathan Sturtev&eature learning using state differ-
ences.The IJCAI Workshop on General Game Playing (GIGA,@#)ges 35-42, 2009.

[21] Peter Kissmann and Stefan Edelkamp. Instantiating@g#gamesThe IJCAlI Workshop on
General Game Playing (GIGA'09pages 43-50, 2009.

[22] Levente Kocsis and Csaba Szepesvari. Bandit basedeévarlo planning. IrEuropean
Conference on Machine Learningages 282—-293, 2006.

[23] Gregory Kuhlmann and Peter Stone. Automatic heuristigstruction in a complete general
game player. IRAAI, pages 1457-1462, 2006.

[24] Gregory Kuhlmann and Peter Stone. Graph-based domappimg for transfer learning in
general games. |&uropean Conference on Machine Learnimpgges 188-200, September
2007.

[25] Robert Levinson. General game-playing and reinforeettearning. Computational Intelli-
gence 12:155-176, 1996.

[26] Nathaniel Love, Timothy Hinrichs, David Haley, FEric l8afza, and Michael
Genesereth.  General Game Playing: Game Description Language Specifica-
tion. Stanford Logic Group, Computer Science Department, StdnfUniversity,
http://games.stanford.edu/language/specsgelc2008 03.pdf, March 2008.

[27] Barney Pell. Strategy Generation and Evaluation for Meta-Game PlayiRtaD thesis, Uni-
versity of Cambridge, 1993.

[28] Joseph Reisinger, Erkin Bahceci, Igor Karpov, anddridukkulainen. Coevolving strategies
for general game playing. I@omputational Intelligence and Games, 20péages 320-327,
2007.

[29] Jonathan Schaeffer. The history heuristic and alpdta-search enhancements in practice.
Pattern Analysis and Machine Intelligendel (11):1203-1212, 1989.

[30] Jonathan Schaeffer, Yngvi Bjornsson, Neil Burch, ko Kishimoto, Martin Muller, Robert
Lake, Paul Lu, and Steve Sutphen. Solving checker&l@A\l, pages 292—-297, 2005.

[31] Stephan Schiffel. Symmetry detection in general gamagipg. The IJCAI Workshop on
General Game Playing (GIGA'09pages 67—74, 2009.

[32] Stephan Schiffel and Michael Thielscher. Automatinstouction of a heuristic search function
for general game playing. IICAI Workshop on Nonmontonic Reasoning, Action and Change
(NRACO7)Hyderabad, India, 2007.

[33] Stephan Schiffel and Michael Thielscher. Automatesbtlem proving for general game play-
ing. InInternational Joint Conference on Atrtificial Intelligenqeages 911-916, 2009.

[34] Shiven Sharma, Ziad Kobti, and Scott D. Goodwin. Kna¥ge generation for improving sim-
ulations in uct for general game playing. Aastralasian Conference on Atrtificial Intelligence
pages 49-55, 2008.

[35] Michael Sipserlintroduction to the Theory of Computation, Second Editi@ourse Technol-
ogy, February 2005.

[36] Nathan R. Sturtevant and Richard E. Korf. On prunindntégues for multi-player games. In
AAA|, pages 201-207, 2000.

[37] Richard S. Sutton and Andrew G. Bartd&Reinforcement Learning: An IntroductionrMIT
Press, Cambridge, MA, 1998.

[38] Martin Zinkevich, Michael Johanson, Michael Bowlirgnd Carmelo Piccione. Regret mini-
mization in games with incomplete information. NdPS 2007.

58



Appendix A

Tic-tac-toe GDL

; players
(rol e xplayer)
(rol e oplayer)

cinitial state

(init (cell 11 b))
(init (cell 12 b))
(init (cell 1 3 b))
(init (cell 2 1 b))
(init (cell 2 2 b))
(init (cell 2 3 b))
(init (cell 3 1 b))
(init (cell 3 2 b))
(init (cell 3 3 b))

(init (control xplayer))

; player noves

(<= (next (cell ?m ?n x))
(does xplayer (mark ?m ?n))
(true (cell ?m?n b)))

(<= (next (cell ?m ?n 0))
(does opl ayer (mark ?m ?n))
(true (cell ?m?n b)))

; gane axi ons

(<= (next (cell ?m ?n ?w))
(true (cell ?m?n ?w))
(distinct ?w b))

(<= (next (cell ?m ?n b))
(does ?w (mark ?j ?k))
(true (cell ?m?n b))

(or (distinct ?m?j)
(distinct ?n ?k)))

(<= (next (control xplayer))
(true (control oplayer)))

(<= (next (control oplayer))
(true (control xplayer)))
(<= (row ?m ?x)

(true (cell ?m1 ?x))
(true (cell ?m 2 ?x))
(true (cell ?m3 ?2x)))
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, game concepts

(<=

(<=

(<=

(<=

(<=

(<=

(<=

(colum ?n ?x)

(true (cell 1 ?n ?x))
(true (cell 2 ?n ?x))
(true (cell 3 ?n ?x)))
(di agonal ?x)

(true (cell 1 1 ?x))
(true (cell 2 2 ?x))
(true (cell 3 3 ?x)))
(di agonal ?x)

(true (cell 1 3 ?x))
(true (cell 2 2 ?x))
(true (cell 3 1 ?x)))
(l'ine ?x)

(row ?m ?x))

(l'ine ?x)

(colum ?m ?x))

(l'ine ?x)

(di agonal ?x))

open (true (cell ?m?n b)))

; player noves

(<=

(legal ?w (mark ?x ?y))
(true (cell ?x ?y b))
(true (control ?w)))

(<= (legal xplayer noop)
(true (control oplayer)))
(<= (legal oplayer noop)
(true (control xplayer)))
; goals
(<= (goal xplayer 100)
(line x))
(<= (goal xplayer 50)
(not (line x))
(not (line 0))
(not open))
(<= (goal xplayer 0)
(line 0))
(<= (goal oplayer 100)
(line 0))
(<= (goal oplayer 50)
(not (line x))
(not (line 0))
(not open))
(<= (goal oplayer 0)

(l'ine x))

; termnal conditions

(<=
(<=
(<=

termnal (line x))
termnal (line 0))
termnal (not open))
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Appendix B

Repeated Rock-paper-scissors GDL

(role first)
(rol e second)

(init (counter 0))
(<= (init (score ?player 0))
(rol e ?pl ayer))

(<= (next (counter ?x2))
(true (counter ?x1))
(successor ?x1 ?x2))

(<= (next (score ?player ?x2))
(rol e ?player)
(true (score ?player ?x1))
(successor ?x1 ?x2)
(wi n ?player ?opponent)
(rol e ?opponent)
(distinct ?player ?opponent))
(<= (next (score ?player ?x1))
(rol e ?player)
(true (score ?player ?x1))
(not (win ?player ?opponent))
(rol e ?opponent)
(distinct ?player ?opponent))

(<= (legal ?player rock)
(role ?pl ayer))

(<= (legal ?player paper)
(role ?player))

(<= (legal ?player scissors)
(role ?player))

(<= (goal ?player 100)
(rol e ?player)
(true (score ?player ?x1))
(true (score ?opponent ?x2))
(rol e ?opponent)
(distinct ?player ?opponent)
(greater ?x1 ?x2))

(<= (goal ?player 50)
(rol e ?player)
(true (score ?player ?x1))
(true (score ?opponent ?x1))
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(<=

(<=

(successor
(successor
(successor
(successor
(successor
(successor
(successor
(successor
(successor

(<=

(<=

(<=

(<=

(<=

(rol e ?opponent)

(distinct ?player ?opponent))
(goal ?player 0)

(rol e ?player)

(true (score ?player ?x1))
(true (score ?opponent ?x2))
(rol e ?opponent)

(distinct ?player ?opponent)
(greater ?x2 ?x1))

term nal
(counter 9))

1)
2)
3)
4)
5)
6)
7)
8)
9)

O~NOOULA WNE O

(greater ?x1 ?x2)
(successor ?x2 ?x1))
(greater ?x1 ?x2)
(successor ?x3 ?x1)
(greater ?x3 ?x2))

(wi n ?player ?opponent)
(does ?pl ayer rock)

(does ?opponent scissors))
(wi n ?player ?opponent)
(does ?pl ayer paper)

(does ?opponent rock))
(wi n ?player ?opponent)
(does ?pl ayer scissors)
(does ?opponent paper))
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Appendix C

Goofspiel with 5 Cards GDL

(role first)
(rol e second)

(init (current gl))

(init (lastwi nner NULL))
(init (position gl cl))
(init (position g2 c2))
(init (position g3 c3))
(init (position g4 c4))
(init (position g5 c5))

(<= (init (points ?player 0))
(role ?pl ayer))

(<= (init (hand ?player cl))
(role ?pl ayer))

(<= (init (hand ?player c2))
(role ?player))

(<= (init (hand ?player c3))
(role ?pl ayer))

(<= (init (hand ?pl ayer c4))
(role ?pl ayer))

(<= (init (hand ?pl ayer c5))
(role ?player))

(<= (next (current ?g2))
(true (current ?gl))
(succ ?gl ?g2))

(<= (next (position ?g ?c))
(true (position ?g ?c)))

(<= (legal ?player (drop ?c))
(rol e ?player)
(true (hand ?player ?c)))

(<= (next (hand ?player ?c))
(rol e ?pl ayer)
(true (hand ?pl ayer ?c))
(does ?player (drop ?cc))
(distinct ?c ?cc))

(<= (next (lastw nner ?player))
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(rol e ?player)

(wi n ?pl ayer ?opponent)

(rol e ?opponent)

(distinct ?player ?opponent))

(<= (next (lastw nner NULL))
(rol e ?player)

(not (wi n ?player ?opponent))
(rol e ?opponent)

(distinct ?player ?opponent)
(not (wi n ?opponent ?player)))

(<= (next (points ?player ?new))
(role ?player)
(true (points ?player ?old))
(wi n ?player ?opponent)
(rol e ?opponent)
(distinct ?player ?opponent)
(true (current ?g))
(true (position ?g ?c))
(value ?c ?delta)
(diff ?new ?o0ld ?delta))

(<= (next (points ?player ?old))
(rol e ?player)
(true (points ?player ?old))
(not (win ?player ?opponent))
(rol e ?opponent)
(distinct ?player ?opponent))

(<= (diff ?v2 ?vl ?delta)
(inc ?2vl ?v2 ?delta))

(<= (diff ?2v3 ?vl ?delta)
(successor ?v2 ?v3)
(successor ?dd ?delta)
(inc ?2v2 ?v3 1)

(diff ?v2 ?vl ?dd))

(<= ternina
(true (current g6)))

(<= (goal ?player 100)
(rol e ?player)
(true (current g6))
(true (points ?player ?pl))
(true (points ?opponent ?p2))
(distinct ?player ?opponent)
(greater ?pl ?p2))

(<= (goal ?player 0)
(rol e ?player)
(true (current g6))
(true (points ?player ?pl))
(true (points ?opponent ?p2))
(distinct ?player ?opponent)
(greater ?p2 ?pl))

(<= (goal <?player 50)
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(rol e ?player)

(true (current g6))

(true (points ?player ?p))
(true (points ?opponent ?p))
(distinct ?player ?opponent))

(<= (greater ?cl ?c2)
(successor ?cl ?c2))

(<= (greater ?cl ?c3)
(successor ?cl ?c2)
(greater ?c2 ?c3))

(value c1 1)
(value c2 2)
(val ue c3 3)
(value c4 4)
(val ue c5 5)

(succ gl g2)
(succ g2 g3)
(succ g3 g4)
(succ g4 gb)
(succ g5 g6)

(successor 0 1)
(successor 1 2)
(successor 2 3)
(successor 3 4)
(successor 4 5)
(successor 5 6)
(successor 6 7)
(successor 7 8)
(successor 8 9)
(successor 9 10)

(successor 10 11)
(successor 11 12)
(successor 12 13)
(successor 13 14)
(successor 14 15)

(inc 0 11)
(inc 1 2 1)
(inc 2 3 1)
(inc 3 4 1)
(inc 4 51)
(inc 5 6 1)
(inc 6 7 1)
(inc 7 8 1)
(inc 8 9 1)
(inc 9 10 1)

(inc 10 11 1)
(inc 11 12 1)
(inc 12 13 1)
(inc 13 14 1)
(inc 14 15 1)

(<= (win ?player ?opponent)
(does ?pl ayer (drop c5))



(<

(<

(<

(<

(<

(<

(<

(<

(<

(does ?opponent (drop cl)))
(wi n ?pl ayer ?opponent)
(does ?pl ayer (drop c5))
(does ?opponent (drop c2)))
(wi n ?pl ayer ?opponent)
(does ?pl ayer (drop c5))
(does ?opponent (drop c3)))
(wi n ?player ?opponent)
(does ?pl ayer (drop c5))
(does ?opponent (drop c4)))

(wi n ?pl ayer ?opponent)
(does ?pl ayer (drop c4))
(does ?opponent (drop cl)))
(wi n ?pl ayer ?opponent)
(does ?pl ayer (drop c4))
(does ?opponent (drop c2)))
(wi n ?player ?opponent)
(does ?pl ayer (drop c4))
(does ?opponent (drop c3)))

(wi n ?pl ayer ?opponent)
(does ?player (drop c3))
(does ?opponent (drop cl)))
(wi n ?pl ayer ?opponent)
(does ?pl ayer (drop c3))
(does ?opponent (drop c2)))

(wi n ?pl ayer ?opponent)
(does ?pl ayer (drop c2))
(does ?opponent (drop cl)))
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Appendix D

Simultaneous Breakthrough GDL

(role white)

(rol e bl ack)

(init (cellholds 1 1 white))
(init (cellholds 2 1 white))
(init (cellholds 3 1 white))
(init (cellholds 1 5 black))
(init (cellholds 2 5 bl ack))
(init (cellholds 3 5 black))

(init (dom nant white))

(<= (legal white (nobve ?x ?yl ?x ?y2))
(true (cellholds ?x ?yl white))
(plusplus ?yl ?y2)

(cellenpty ?x ?y2))

(<= (legal white (nove ?x1 ?yl ?x2 ?y2))

(true (cellholds ?x1 ?yl white))

(cell ?x2 ?y2)

(plusplus ?yl ?y2)

(plusplus ?x1 ?x2)

(not (true (cellholds ?x2 ?y2 white))))

(<= (legal white (nove ?x1 ?yl ?x2 ?y2))
(true (cellholds ?x1 ?yl white))

(cell ?x2 ?y2)

(plusplus ?yl ?y2)

(plusplus ?x2 ?x1)

(not (true (cellholds ?x2 ?y2 white))))

(<= (legal black (nove ?x ?yl ?x ?y2))
(true (cellholds ?x ?yl bl ack))
(plusplus ?y2 ?yl)

(cellenpty ?x ?y2))

(<= (legal black (nove ?x1 ?yl ?x2 ?y2))
(true (cellholds ?x1 ?yl bl ack))
(cell ?x2 ?y2)

(plusplus ?y2 ?yl)
(plusplus ?x1 ?x2)
(not (true (cellholds ?x2 ?y2 black))))

(<= (legal black (nove ?x1 ?yl ?x2 ?y2))
(true (cellholds ?x1 ?yl bl ack))
(cell ?x2 ?y2)

(plusplus ?y2 ?yl)
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(plusplus ?x2 ?x1)

(not (true (cellholds ?x2 ?y2 black))))

(next (domi nant white))
(true (dom nant bl ack))

(does white (rmove ?x1 ?yl ?x2 ?y2))
(does bl ack (move ?x3 ?y3 ?x2 ?y2)))

(next (dom nant bl ack))
(true (domi nant white))

(does white (nmove ?x1 ?yl ?x2 ?y2))
(does bl ack (rmove ?x3 ?y3 ?x2 ?y2)))

(next (domi nant white))
(true (dom nant white))

(does white (rmove ?x1 ?yl ?x2 ?y2))
(does bl ack (rmove ?x4 ?y4 ?x3 ?y3))

(distinctcell ?x2 ?y2 ?x3 ?y3))
(next (dom nant bl ack))
(true (dom nant bl ack))

(does white (nmove ?x1 ?yl ?x2 ?y2))
(does bl ack (rmove ?x4 ?y4 ?x3 ?y3))

(distinctcell ?x2 ?y2 ?x3 ?y3))

(next (cellholds ?x2 ?y2 ?pl ayer))
(rol e ?player)

(does ?player (nove ?x1 ?yl ?x2 ?y2))

(rol e ?opponent)

(does ?opponent (move ?x3 ?y3 ?x4 ?y4))

(distinct ?player ?opponent)

(distinctcell ?x2 ?y2 ?x4 ?y4))
(next (cellholds ?x2 ?y2 ?pl ayer))
(rol e ?player)

(does ?player (nove ?x1 ?yl ?x2 ?y2))

(rol e ?opponent)

(does ?opponent (move ?x3 ?y3 ?x2 ?y2))

(distinct ?player ?opponent)
(domi nant ?pl ayer))

(next (cellholds ?x5 ?y5 ?state))
(true (cellholds ?x5 ?y5 ?state))

(does white (nmove ?x1 ?yl ?x2 ?y2))
(does bl ack (rmove ?x4 ?y4 ?x3 ?y3))

(distinctcell ?x1 ?yl ?x5 ?y5)
(distinctcell ?x2 ?y2 ?x5 ?y5)
(distinctcell ?x3 ?y3 ?x5 ?y5)
(distinctcell ?x4 ?y4 ?x5 ?y5))

term nal
whi t ewi n)

term nal

bl ackwi n)

term nal

(rol e ?player)
(nocel | ?pl ayer))

(goal white 100)
whitew n

(not bl ackwi n))
(goal white 100)
(nocel | bl ack)
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(true (cellholds ?x ?y white)))
white 50)
whitew n
bl ackwi n)
white 0)
(not whitewn))
white 0)

(goal

(<= (goal

(<= (goal

(nocel |

(<= (goal

(<= (goal

(nocel

white))

bl ack 100)
bl ackwi n
(not whitewn))
bl ack 100)

whi t e)

(true (cellholds ?x ?y black)))
bl ack 50)
whi t ewi n
bl ackwi n)
bl ack 0)
(not bl ackwi n))
bl ack 0)

(<= (goal

(<= (goal

(goal

(nocel |

(<= (cel

bl ack))

?2x ?y)

(x ?x)
(y ?y))

(<=
(cel

(not
(<=

(cel

(cell

(<=

(cell
(cel

(<=

(nocel

(cellenpty ?x ?y)

?2x ?y)
(not (true (cellholds

(true

(distinctcel

(cel Il hol ds
?2x1 ?yl

?2x1 ?yl)
?x2 ?y2)
(distinct ?x1 ?x2))

(distinctcel

?x1 ?yl

?2x1 ?yl)
?x2 ?y2)
(distinct ?yl ?y2))

?pl ayer)

(rol e ?player)

(not
(not
(not
(not
(not
(not
(not
(not
(not
(not
(not
(not
(not
(not
(not

(true
(true
(true
(true
(true
(true
(true
(true
(true
(true
(true
(true
(true
(true
(true

(<= whitewin
(x ?x)
(true (cellholds ?x 5

(cel Il hol ds
(cel Il hol ds
(cel Il hol ds
(cel Il hol ds
(cel l hol ds
(cel Il hol ds
(cel Il hol ds
(cel Il hol ds
(cel l hol ds
(cel Il hol ds
(cel l hol ds
(cel Il hol ds
(cel Il hol ds
(cel Il hol ds
(cel Il hol ds

?x ?y white)))
?x ?y black))))
?x2 ?y2)

?2x2

WNPFPWNPFPWNRPWNREPWNPRP
QO A DDOWWNNNEPRPRE

?y2)

?pl ayer)))
?pl ayer)))
?pl ayer)))
?pl ayer)))
?pl ayer)))
?pl ayer)))
?pl ayer)))
?pl ayer)))
?pl ayer)))
?pl ayer)))
?pl ayer)))
?pl ayer)))
?pl ayer)))
?pl ayer)))
?pl ayer)))

)

white)))
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(<= bl ackwi n

(x ?x)

(true (cellholds ?x 1 black)))

(pluspl us
(pluspl us
(pl uspl us
(pluspl us
(x 1)
(x 2)
(x 3)
(y 1)
(y 2)
(y 3)
(y 4)
(y 5)

1 2)
2 3)
3 4)
4 5)
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