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Abstract

The AGM postulates for knowledge base revision are a set of rationality pos-
tulates that revision operations on knowledge systems should satisfy. Defining
an appropriate semantics for belief revision that satisfies all of the postulates
has been considered a challenging problem.

In this paper we present a novel application of circumscription to defining
a semantics of belief revision systems. First, a first-order knowledge base is
represented by a set of formulas in a first order epistemic belief language that
contains objective propositions as well as belief propositions. Secondly, we
define a revision semantics by applying a form of priority circumscription to
the belief representation of the knowledge base. We prove that the semantics
defined in this way satisfies the AGM postulates that are reformulated in our
belief language.

Key Words: - knowledge base revision
- AGM postulates

- nonmonotonic reasoning, circumscription

*This paper has been printed as a Technical Report TR, 92-17, Department of Computing Science,
Univerisity of Alberta.



1 Introduction

A knowledge base should be updated as our perception of the world described by
it changes. Revision is the most common type of updates: it adds newly acquired
knowledge to the system. If the new knowledge is consistent with current beliefs,
the revision is simple — just add it to the system. However, if the new knowledge is
inconsistent with current beliefs, the conflict must be resolved somehow, usually by
derogating some old beliefs. The question is how to choose a subset of the old beliefs
as victims, and decide on a set of criteria for doing so.

Alchourron, Gardenfors, and Makinson have proposed a set of postulates, called
the AGM postulates, which are based on well justified philosophical ground and pro-
vide a foundation for knowledge base revision [1]. Most previous proposals treat belief
revision as a change operation over a set of propositional sentences (see, for example,
[12, 7]), where both the representation and the semantics of knowledge systems are
defined by the same set of logic sentences. It has been noticed that this approach,
though provides a unified point of view on knowledge systems, lacks retrospective
power, the main reason for its not being able to satisty the AGM postulates.

Alchourron et al. proposed the partial meet revision semantics which satisfies
the AGM postulates. The idea is to take the intersection of all possible candidate
theories that reflect minimal changes and that can be resulted from conflict resolving.
This semantics is not considered very realistic since by taking the intersection of all
such theories, useful information may be lost and in many cases the resulting theory
is simply the empty one. A more realistic semantics has been suggested by Fagin,
Ullman, and Vardi [3] (henceforth the FUV semantics), which takes the disjunction
of all such candidate theories. As indicated in [7], the FUV semantics is syntax
dependent and therefore fails to satisfy the AGM postulates.

The revision problem over a theory in its syntactic form other than its closure
is discussed by Nebel [12], where it is called base revision. Nebel discovered that
base revision with epistemic relevance does not satisfy all of the AGM postulates and
identified the cases where they are satisfied.

Belief revision in its essence is a meta level concept and operation. Therefore, it is
natural to use some type of meta language to describe change operations. Recently,
semantics for belief revision have been formulated in terms of some type of modal
systems [2, 4]. In these approaches, reasoning about changes in ones beliefs reduces
to model checking of certain meta level sentences. Both approaches in [2, 4] have
been proved to satisfy all of the AGM postulates.

In this paper, we propose a new approach to the semantics of belief revision,
in which a knowledge base is represented by a set of formulas in a belief language
that contains objective as well as belief propositions, and the semantics is defined by
applying a form of circumscription to the representation of the knowledge base. We

2



show that all of the AGM postulates, if reformulated in our framework, are satisfied.

There are two basic premises on which our approach is based. First, like Nebel
[12], revision in our approach is carried out over theories in their syntactic form other
than their closure, i.e., deductively closed set. We argue that the notion of deductively
closed set does not provide an appropriate framework for knowledge base revision.

Secondly, we will consider knowledge bases with an arbitrary binary relation, aug-
mented by transitivity, over the set of all sentences in the underlying language. Such
a binary relation will be called a priority relation in this paper; this is due to the
common realization by the researchers in the field that knowledge revision must re-
spect the epistemic importance in a knowledge base. As shown in [5, 12, 3], the
AGM postulates can be satisfied by some revision semantics if the priority relation
representing the epistemic importance satisfies certain conditions. These conditions
actually express special cases of partial ordering. Thus the assumption of priority
relation makes our approach more general.

Although our approach also relies on the concept of meta level objects, which
we have called belief propositions, it is quite different from the work in [2, 4] in
that our formulation of revision semantics is not semantically based on or dependent
upon any modal logic. As a matter of fact, our approach can be formulated entirely
in a conventional first order language. This is because a belief proposition L£¢ in
our epistemic belief language is treated as a named object, not as applying some
modal operator £ to ¢, and thus can be viewed as, or simply replaced by, a distinct
objective proposition. Thus, the problem of belief revision in our approach reduces
to the better-known problem of reasoning with minimal models. An advantage of
this is that revision operations can be realized directly on top of a circumscription
algorithm (see, for example, [13]).!

That our approach does not depend on any modal logic, plus the fact that our
approach is based on circumscription of first order theories, permits us to define our
revision semantics for first order theories rather than propositional theories. This is
another significant difference with all the other revision semantics in the literature.

The paper is organized as follows. In the next section we will carefully define and
explain the belief language used in this paper; we will use an example to illustrate
this language as well as the main idea in our approach. Since the original definition
of priority circumscription is defined only for complete pre-ordering, in Section 3
we present an extension of priority circumscription that can perform minimization
according to a partial ordering. Section 4 introduces the AGM postulates. In Section 5
we introduce a new framework for knowledge base revision and reformulate the AGM
postulates to suit our new framework. Then in Section 6 we define a revision semantics
and show it satisfies the reformulated AGM postulates.

THowever, this is by no means to imply that circumscription is an easy problem.



2 The Belief Language

In this paper we assume a first order belief language L, which is a usual first order
language that contains a set of objective predicate symbols and a set of belief predicate
symbols. A usual first order formula is referred to as an objective formula. In the
language of autoepistemic logic [11], belief formulas are of the form L£¢ where ¢
is a formula and £ is a special symbol in the alphabet of the language. For the
purpose of this paper, we only need belief predicates. The name of an n-nary belief
predicate consists of two parts: a normal predicate symbol and a prefix £, such as
Lp(x1,...,2,), where Lp stands for a single predicate name. A belief predicate name,
such as Lp, can technically be replaced by a distinct (or reserved) predicate symbol,
and as such, whether the language contains the special symbol £ or not is technically
insignificant. The language can be equally defined as a purely first order language
with some distinct predicate symbols. For this reason, in the rest of paper we will
not use the usual belief symbol £ but Greek letters such as «, 3, and v to denote
belief predicates or belief propositions (i.e., 0-ary belief predicates). We will consider
in this paper first order theories that consist of sentences with universally quantified
variables. We often omit these quantifiers in sentences with the understanding that
all free variables therein are universally quantified.

To illustrate the main idea in our approach, let us consider the following example.

Example 2.1 Consider a knowledge base expressed by the following set of formulas
K = {bird, fly « bird}.

Should we later observe = fly, we need to revise our knowledge base K by the newly
acquired knowledge — fly. Simply adding = fly to K would result in an inconsistent
set K’

K' = {bird, fly « bird, - fly}.

To resolve inconsistency, one can remove a minimal amount of sentences so that the
remaining sentences are consistent. These type of subsets have been called mazimum
consistent subsets in the literature. For K’ above we obtain two maximum consistent
subsets that contain —fly:

Ay = {bird, ~fly}
Ao = {fly — bird, ~fly}.

By the FVU method, the revision semantics is then defined by taking the disjunction
of all such candidate theories.

In our approach, each sentence ¢ in a knowledge base is represented by a formula
¢ — a(xy,...,x,) where x; occurs in ¢ and « is a distinct belief predicate intuitively
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meaning ¢ is believed. As usual, all the variables in the formula are universally
quantified. Further, if no variables occur in ¢ then « is simply a belief proposition.
The revised system of the above is then represented by the following set of sentences:

Trr = {bird — a, (fly « bird) — 3, = fly — ~v}.

Note that although K’ is inconsistent its belief representation Tx: is consistent.

Then the semantics of the system can be defined by applying circumscription to
mazimize the belief propositions (i.e., minimize the negations of the belief proposi-
tions) with 4 having higher priority to be maximized, which yields

T Ay A (aV B)A(maV —j).

Note that this expression implies = fly and either bird or (fly < bird) but not both
at the same time. O

For the above example, the semantics defined in terms of maximizing beliefs is
essentially the same as that of taking the disjunction of all candidate theories [3], as
far as logical consequences of objective formulas are concerned. However, since the
extension of belief propositions can be maximized according to a given priority and
the circumscription does not eliminate any sentences from the belief representation
of a theory, our revision semantics possesses retrospective power and therefore, can
satisfy the AGM postulates.

3 Priority Circumscription Based on Partial Or-
dering

McCarthy introduced circumseription to express the idea that the extension of ab-
normal predicates should be minimized [9, 10]. Let A(P, Z) be a first order theory,
where P and 7 are disjoint sets of predicates in A, and M and N be two models of
A. Then we say N is (P, Z)-smaller than M if both models have the same extension
over all predicates other than P and Z, but the extension of the predicates from P in
N is a proper subset of that in M; and we say N is (P, Z)-minimal if no model of A is
(P, Z)-smaller than N. Then CIR(A; P; Z), the circumscription of A on P with vari-
able 7, denotes a second order formula whose models are all (P, Z)-minimal models
of A. Furthermore, priority circumscription CI1R(A; P* = --- = P™; Z), where P'’s
are partitions of P, is used to represent the idea that the extension of predicates from
P! should have higher priority to be minimized than that of P? and the extension of
predicates from P? have higher priority than that of P3, etc.



As we mentioned earlier, our approach is based on maximizing belief propositions.
The mechanism is called maximizing circumsecription. This notion can be precisely
defined.

Let A(P) be a theory in a belief language, where P is the set of belief predicates
whose extension is to be maximized. Then the mazimizing circumseription of A on

P, denoted as MCTR(A; P), is defined as
MCIR(A; P) = A(P) A =3P(A(P) A (P > P))

where P > P means the extension of predicates from P is a proper superset of that
from P. Maximizing circumscription can also be formalized in terms of circumscrip-
tion on the negations of those predicates. For convenience, we may use CIR(A;—P)
to denote MCTR(A; P), and MCIR(A; —P) to denote CIR(A; P). The priority ver-
sion of maximizing circumscription MCITR(A; Py > --- = P,; 7) is similarly defined.

Lifschitz has shown that priority circumscription can be represented by parallel
circumscription [8], that is, given a first order theory A and disjoint sets P, ..., P", 7
of predicate symbols,

CIR(A; P' = .= P Z) = N\ CIR(A; P P L P 7).

=1

The priority relation in the priority circumscription above is a linear, total relation
amongst all predicate blocks of P"’s. In real applications, however, many priority
relations are partial ordering, not total ordering, and priority circumscription cannot
directly be used to express such minimization based on partial ordering. An extension
of priority circumscription into partial ordering is given below.

Let P be a set of predicates, and = be a binary relation amongst P, augmented
by obvious transitive closure. The binary relation is used to represent the priority
relation amongst P, that is, @ = b implies that b has at least as high priority as
a to be minimized, and when a =< b and b A @ then b is considered having higher
priority than a to be minimized. A partition {P', ..., P"} of P is <-compatible if it
is defined by the equivalence relation that ¢ = b if and only if « < b and b < a, that
is, {a,b} C P, for some i, if and only if @ < b and b < a. Obviously, for any given
relation <, its <-compatible partition is unique. Furthermore, for each P, we define
LOW (P?") as the set of all predicates in P that have lower priority than anyone in P
to be minimized according to =; that is, LOW(P*) = {p | p < a for some a € P'}.
Now, we define

Definition 3.1 Let A(P, Z) be a theory, where P and 7 are disjoint sets of predicates
in A, < be a priority relation defined over P, and {P', ..., P"} be a =<-compatible



partition. Then the <-based priority circumscription is defined as
CIR(A(P,Z); P| =;Z) = \ CIR(A(P, Z); P (LOW(P") U Z)).
=1
MCIR(A(P,Z); P| =; 7) is defined similarly. O

Priority circumscription CTR(A; P! = ... = P™; Z) is just a special case of <-based
circumscription when = is a linear order on {P', ..., P"}.

4 The AGM Postulates

In the framework of AGM, revision is an operation over deductively closed sets in the
language of propositional logic [1].

Given a theory I', the deductively closed set of I' is defined as the closure {¢ | I' F
¢}

Let K be a deductively closed set, y and v be consistent sentences. The revision
of K by y, denoted as K+, represents a new knowledge system obtained from K by
adding new knowledge represented in p. Then the AGM postulates for revision are
as follows:

(P1) K4y is a deductively closed set;

(P2)  Ktulu

(P3) K AplkE= Kty

(P4) Kip = K Apif KA pis consistent;

(P5) K4y is consistent;

(P6) Kin=Kiviiu=w

(BT) (K Av b KA

(P8) K—T—(,u Av) E (K—T—,u) Avif (K—T—,u) A v is consistent.

The first postulate states that the revision of a deductively closed set must result
in a deductively closed set. The second states that the new knowledge must be
retained in the revision. P3 implies that the revision must be contained in the range
of the simple union of old and new knowledge. The fourth represents the idea that the
revision is done by simply adding p to K if K is consistent with p. P5 requires that
the revision be consistent. The sixth specifies the principle of irrelevance of syntax.
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The seventh, similar to P3, states that the revision of K by u A v must be subsumed
by K4p augmented by v. The last one, together with P7, states that if K4 is
consistent with v, then (K-+u) A v is equivalent to K+(u A v).

There is a significant drawback in using the notion of deductively closed sets in
the context of belief revision. Consider the following example, from [14], of revising
the database

K = {a,b}

with —a. Intuitively, the new knowledge —a should overwrite the old knowledge a,
and this results in the revised knowledge base as {—a,b}. However, the deductively
closed set of the database is

{a,b,aV b,aNbja— bb—a,..},
of which there are two maximum subsets that are consistent with —a, that is,
{b,aV bb—a,..} and {a « b,b— a,..}.

By adding —a into the two sets respectively, the first one is the deductively closed set
of {b,—a} and the second is that of {=b,—a}.

In order to accommodate —a in the above knowledge base, derogating a is nec-
essary. However, by adopting the framework of deductively closed set, we throw out
both a and b. The reason that undesirable results are produced is that when the
closure of a theory is calculated, anything that is a logical consequence is treated as
important as those in the original theory. Humans are not logically omniscient, and
so it is unrealistic to entail logic omniscience in any formal belief system [6].

Therefore, in this paper we use the notion of knowledge set instead of deductively
closed set. A knowledge set is a finite set of first order sentences which may or may
not be consistent, together with a priority relation (i.e., an arbitrary binary relation,
closed under transitivity) over all sentences of the underlying language.?

We now use an example to show that even in the framework of knowledge sets
we just described, the FUV method [3] and the like, which are based on taking the
disjunction of all maximum consistent theories, fail to satisfy the AGM postulates.

Example 4.1 Consider the following knowledge set:
K=A{a,a—bAc, b, ¢, c—d, d}.
Assume the following priority relation =<:

(b) 2 (a — bAc)
(¢) 2 (a—bAc)
(d) 2 (c—d)2(a—bAc)

ZNote that the question of what priority relations are useful, or even meaningful, is not the focus
of this paper (but see [5]).



and y = {—a} and v = {~d} are new sentences to be added.

Suppose we revise K by p. Since K U {—a} is inconsistent, we need to obtain
maximum consistent subsets of K U {=a}; i.e., the consistent subsets of K U {—a}
with a minimal amount of sentences removed and with less important sentence(s)
removed first. To illustrate, since {—a} is the most recent knowledge and should be
included in any maximum consistent subset. Now (a < b A ¢) has the next highest
priority to be retained. Then, retaining both b and ¢ would result in inconsistency,
and thus, because b and ¢ are not related by =<, either b or ¢ but not both can be
retained. This gives two ways of removing minimal amount of sentences. Should b be
retained, either d or (¢ « d) should be removed to maintain consistency. This results
in d being removed since (¢ < d) has the higher priority to be retained. We thus get
two maximum consistent subsets under the priority relation given above:

I'y={-a, a —bAc, b, ¢c—d}
I'y={-a, a —=bAc, ¢, c—d, d}
By the FUV method, we get the disjunction of the above two subsets, i.e.,
Kip={-a, a—bAec, ce—d, bVe, bVvd}.

Thus
(K4p)Av ={=a, =d, a+ bAec, cd, b}.

On the other hand, by a similar process, K revised by (A v) also has two maximum
consistent subsets:

Ay ={-a, =7d, a —bAe, b, c—d}
Ay ={-a, =d, a —bAc, ¢, c—d}.
Taking the disjunction, we get
K+(unAv)={=a, ~d, a < bAc, cd, bVc}.

Now we have K-4+(u A v) [ (K+u) A v, violating postulate P8. Therefore, the
FUV method and the like, which are based on taking disjunctive theory of maximum
consistent subsets, do not satisfy the AGM postulates. O

5 Representation and Semantics of Knowledge
Systems

In this section, we show a new framework to represent knowledge systems and define
their semantics. We then reformulate the AGM postulates to suit our new framework.
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Let K(P) be a knowledge set with priority relation <, where P is the set of all
objective predicates in language L. Then K can be represented as follows: For each
sentence t in K, a belief predicate 7;(x1, ..., ¥,) is introduced, where 7, is a distinct
new predicate symbol not in P, and xq,...,x, are universally quantified variables
occurring in £. Let B be the set of all such belief predicates. Then Tk (P, B), called
the belief theory of K(P), is defined as

Ti(P,B) ={t « m(x1,...,x,) | t € K and x; occurs in t,1 < < n},

with the priority relation = carried over to B, i.e., a; = «g iff t; and #; are in K
such that ¢y =< #3, and ¢; «+ «ay and ¢y < a3 are in Tx. For simplicity, we will
denote Tk (P, B) simply by {t <« 7, | t € K'}. Thus, 7, may represent, depending on
the context, a belief predicate symbol in B, or a belief predicate with variables in a
sentence.

Example 5.1 Consider
K ={a, b+~ a, -b}

with the priority relation
== {{a} 2{b—a} 2 {-b}}.

Then
T(P,B) ={a « a, be—aAp, =b—~},

where B = {a, 3,7} and == {a < 3 < ~}. Notethat b— a A= (b—a)«— 5. O
Example 5.2 Let

K = {bird(penguin), fly(x)«— bird(x), - fly(z) « x = penguin}
be a knowledge set with the following priority relation:

bird(penguin) = (= fly(x) < x = penguin)
(fly(x) « bird(x)) = (= fly(z) «— « = penguin)

Then Tk (P, B) contains

bird(penguin) «— «
(fly(z)  bird(z)) — B(x)
(=fly(x) « = = penguin) « ~(x)

where B = {a, 3(x),7(2)} and <= {a < 3(z), f(z) < 1(2)}. O
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Definition 5.1 Let K be a knowledge set with priority relation <, and Tk (P, B) be
the corresponding belief theory. Then the semantics of K, denoted as Fl.,, (K, =), or
Fyer (K) if < is understood, is defined by

MCIR(Tx(P,B); B| < P).

An objective formula ¢ is true in a knowledge system K if and only if Fi.,,(K)
logically implies ¢. a

Example 5.3 Consider, for example, the K and Tx(P, B) in Example 5.1. We then
have

Fom(K) = MCIR(T(P,B); B| 23 P) = Tx Ay A B,

which implies =b and (a < b). Note that to maintain consistency, either a or (a « b)
may be removed. However, according to the priority relation @ should be removed
since it has lower priority to survive.

For the K and Tk (P, B) in Example 5.2, we have

Fon(K) = MCIR(T(P,B); B| 2; P) =

Tr ANVay(x) AVa(x # penguin — (x)) A (a V B(penguin)) A (ma V = 3(penguin)).

The formula Yav(x) holds because the belief predicate v is maximized with the
highest priority. The belief predicates 3 and a are unrelated in the priority relation.
Conflict arises only when both (penguin) and « attempt to hold true. That is, the
maximal extension of () includes any ((t) where t is not penguin. This results in
Va(x # penguin — B(x)). When x is penguin, either 3(penguin) or «, but not both,
holds true. This is expressed by (a V B(penguin)) A (ma V =3(penguin)). O

We thus have established a framework for knowledge revision, a knowledge system
is represented by its belief theory, and the semantics of the system is determined
by its “belief semantics” of maximizing the belief predicates. Therefore, all query
evaluations toward the knowledge system should be directed to the beliet semantics.
However, there are two possible ways to view revision operations.

Suppose K is the given knowledge base with a priority relation <. Consider the
revision requests @1, ..., ¢, in that order. With each revision request, the priority
relation is enhenced so that the most current one always has the highest priority to
survive. For the above revision sequence, let us denote the corresponding priority
relations as <y, ..., =,,.

In the first view, Fi., 1s taken purely as an operator, repeatedly applying to a
knowledge set. In this view, a knowledge system’s revolution with the above revision
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requests, given K and =, can be described as the following sequence of the knowledge
systems:

Ko = Foen (K, %)

Ky = Fien (Ko U{¢1},%1)

Ky = Foep (K1 U {2}, =)

[(n — Fsem([(n—l U {¢n}7 jn)

Note that in this view, the knowledge system and its semantics are uniformly pre-
sented to the user of the system.

In the second view, Fi.,, is treated as a mapping from an underlying physical
system to a semantically meaningful knowledge system on which user’s queries are
evaluated against. More precisely, for each revision request ¢;, we simply add ¢; to
the previous knowledge set. The underlying system contains a set of sentences, which
may or may not be consistent; it is the mapping F.,, that interprets the system and
provides the semantics. This can be described as the sequence:

[(0 - Fsem([(v j)
[(1 — Fsem([( U {¢1}7 jl)
[(2 - Fsem([( U {¢17 ¢2}7 jQ)

[X’n == Fsem([( U {¢17' 7457%} —n)

The second view is not only simpler but more intuitive. More importantly, a revision
in this framework is simply an addition. We will adopt the second view in describing
our revision semantics in the rest of this paper.

We now reformulate the AGM postulates to suit our new framework. We
will denote the revision of K by u under the Fi.,, semantics as Fsem([(:l—,u), l.e

Fron( K1) = Fron (K U {u}).

Definition 5.2 Let K be a knowledge set, i and v be consistent sentences, and K4y
represent K revised by p. Then

A~

(4 is a knowledge set;

=
—_
N
~

) (£

) Em(QAuF-wMB+M

) (K4p) E Foem (K) Ay if K A pis consistent;
R5) Fioem (K4p2) is consistent;

) em([(‘T',U) = Foem (K —I—Z/) L=V

) (K+u) Av B Foen(K+(p A ))



(R8) Fsem(K—T-(,u Av)) = Fsem(([&’:l—u)—T—l/) if 4 A v is consistent. O

The modification to the AGM postulates is minimum, possibly except RS, in
that the postulates are revised only to suit our new framework, and the underlying
meanings are not affected. This can be seen from the fact that the revised postulates
are exactly the same as the original AGM postulates if both K and Fj.,,(K) are
defined as the same deductively closed set of sentences.

In the ideal situations, independence of revision orders is required. That is, K
revised with p first and then v should be the same as K revised with v first and then
[, 1.e.,

(F' ) v = (K+v)tu,
as long as p and v can peacefully live together. The eighth AGM postulate expresses
a weaker desire for such independence. Despite the fact that it is weaker than desired,

P8 is the main obstacle for many revision semantics to satisfy the AGM postulates
[7, 14]. On the other hand, the revised, i.e. R8, implies that

Fron (K1) 40) = Fron(K30)bp)

that is, a total independence of revision orders. From such a point view, R8 is stronger
than PS8.

However, there may be different interpretations of the AGM postulates. If P8 is
interpreted as

(P8) Fom(KHpuAV)) E Foem(K+p) Av if Foopn (K1) A v is consistent,

then R8 is weaker than P8 since P8 implies R8 but not vice versa. We doubt the
legitimacy of such an interpretation. Otherwise, it is not difficult to show that no
reasonable revision semantics satisfies the postulate, other than either throwing out
all old conflicting beliefs or imposing a linear ordering on all beliefs [3, 1].

6 Revision Semantics

In this section, we first define our revision semantics for knowledge sets, and then
show that our revision semantics does satisfy the reformulated AGM postulates.

Definition 6.1 Let K be a knowledge set with priority relation <, and g be a
new sentence. Then the new knowledge set by revising A with p is represented by
K+p = K U {u}, together with a revised priority relation <'=< U{p =t |t € K}.
Furthermore, the semantics of K revised by p is defined as Fiy.,, (K -+, j/). a
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The revision of a knowledge set, now, is as simple as an addition, as shown below.

Lemma 6.1 Let K be a knowledge set with priority relation <, Tx be the belief
theory for K, and u be a sentence. Then we have

Foom(K34p) = Foenn (KU {u}, 2)A = MCIR(Tx A p; B| %; P). O

Proof: Let T (P, B) and T, (P, B) = Tx (P, B)A(t + B,) be two belief theories
for K and K U {u} respectively, and ='==< U{p = t|t € K}. Then

Foom(K+p) = MCIR(Tk,; B <'; P) = MCIR(Tx A (1« B,); B| <; P).
.From [8], we have

CIR(A; Py =Py ... Py, 7)
= CIR(A;Py;Py,...,P, Z) NCIR(A; Pi; Py > ... = Py 7),

which implies that

!

MCIR(Tk N (p + B,)); B 25 P)
MCIR(Tg A (1 — By)i{Bu}; PU (B —{B,})
AMCIR(Tk A (pp — B,); Bl =; P)
Te ApNB,ANMCIR(TU{u «— B,}; B| =; P)
MCIR(Tk N p; Bl 25 P) A B,

Fon(K U {1}, <) A B

Therefore, we have Fip (K1) = Foop(K U {u}, 2) A p

(Note that we assume B, is also contained in B, though it does not appear in
Tr A ,U-) O

Note that, in Definition 6.1, the new priority relation < means the new sentence p
has the highest priority amongst all sentences in K in the revised knowledge system.
This treatment is not necessary at all, and the status of a new sentence can be
determined on per applications. We adopt such an approach for the sake of easy
comparison. The AGM postulates require that newly added sentences have higher
priority to be retained in the revised knowledge system.

The following theorem shows that our revision semantics satisfies the revised AGM
postulates.

Theorem 6.1 The revision semantics defined in Definition 5.2 satisfies the revised
AGM postulates.

First, we show the following utility lemma.
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Lemma 6.2 Assume A(P,Z) A As(P,7) is consistent, where A; and A, are first
order theories and P and 7 are disjoint sets of predicates in both A; and A;. Then

MCIR(AL(P,Z); P| =; Z) A Ay(P, Z)
= MCIR(AL(P,Z) A Ay(P, Z); P| <; Z)

Proof: Assume MCIR(Ay; P| =;7) A Ay is consistent, otherwise it is trivial. Let
m be a model of MCIR(Ay; P;Z) A Ay. Then m is a model of A3 A Ay, and a
(P, Z)-maximal model of Ay, i.e., m is not (P, Z)-smaller than any model of A;.
Furthermore, for any model n of A; A A, since n is also a model of Ay, m is not (P,
Z)-smaller than n, i.e., m is also a (P, Z)-maximal model of A; A Ay. Therefore, we
have

MCIR(Ay; PiZ) A Ay = MCIR(Ay A Ay; P 7)

which in turn shows this utility lemma. a

Now we show the theorem.

Proof of Theorem 6.1 :

Notations: Tf denotes the belief theory of K. Tk, denotes the belief theory of
K—T—,u, i.e., TKM =T U {,u — BM}

By denotes the set of belief predicates in Tk, i.e., Bk = {B, | (1 «— B,) € Tk}.

(R1) Trivial.
(R2) It follows from Lemma 6.1.

(R3) Assume Fi.,,(K) A g is consistent; otherwise it is trivial. Then, by Lem-
mas 6.1 and 6.2,

Foen(K)ANp= MCIR(Tk; Bl 25 P)Apu|E MCIR(Tk) A pi; B] <; P).
By Lemma 6.1, MCIR(Tx A u; B| =; P) is equivalent to Fsem([&’—T—,u).

(R4) If K Ay is consistent, then Fy.,(K) = Tx A By and Fyep (K4p) = Tk A Bx A
p A B,. The postulate obviously holds.

(R5) It is known that a consistent first order theory with only universally quantified
variables has at least one (P,Z)-minimal model. This result can be extended to
priority circumscription and maximizing circumscription. Clearly, Tx U {u «
B} is always consistent even if K U {u} is not.

(R6) It follows from the fact that Tk, = Tk, if p = v.
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(R7)

By Lemma 6.1, we have
Foem(K4p) = MCIR(Tx A p; B| <; P), and

Fom(K¥+(uAv)) = MCIR(Tk A (1 Av); B| =; P).

Assume MCIR(Tx A p; B| =; P) Av is consistent; otherwise it is trivial. Then,
by Lemma 6.2,

MCIR(Tx A Bl =5 PYAv = MCIR(Tx A (A v); B] =5 P).

Let <,==U{B, = Bt € K}. By Lemma 6.1,
Foom(K3-(u Av)) = MCTR(Tw A A v; B| <; P).
Since K-+pu is K U {u}, together with <, we have, by Lemma 6.1,
Foom(K3p)3v) = MCIR(Tx A (4 — Bo) Av): B <, P).

Since B, has the highest priority amongst all belief predicates in B with respect
to <,, and B, is consistent with Tx A (g — B,) A v, due to the fact that g A v
is consistent, we have

MCIR(Txk N(p— B)Av); Bl =2, P)ErAvAB,.
Therefore,
MCIR(Tk N (n — By)Av); Bl =2, P)
= MCIR(Tk ANpANvAB); Bl =, P)

.From [8], we have

MCIR(Tk NuANvABy); Bl 2, P)
= MCIR(Tkg ANuANvAB,;B;PU(B—-B,))
AMCIR(Tk ANpANv A B); Bl =5 P).

However,
MCIR(Txk NuAvANB;B;PU(B—=B,) =Tk ANuAvAB,.
It follows that o
Foon( (K0 0)

MCIR(Txk NuANvAB,); Bl =;P)
Foem(K+(u Av)). O
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Example 6.1 The following example, which we have used in Example 4.1 to show
that the FUV method fails to satisfy the AGM postulates. We now use this same
example to show how our approach satisfies the postulates.

K=A{a,a—bAc, b, ¢, c—d, d},
with the priority relation =<:
(b) 2 (a—bAc)
(¢) 2 (a—bAc)
(d) 2 (c—d)2(a—bAc)

Let u = {—a} and v = {=d} be the new sentences to be added.
Then K is represented by its belief theory

Ti(P,B)={a+— a1, a —bANcANazy b—as, ¢c— oy, c—dANas, d— ag}

where
P ={a,b,c,d}
B = {05170527053,05470557056705770587059}
== {042 = as, a; 2 aq, @ 2 a5, a5 3 046}-
Now let

TKM =Tx U {,U — 047}

Ty = Tk U{p — a7, v+ ag}

TK(W\V) =Tk U{(p A v) — as}

R==xW{a; R |[(1 <t <6)A(j =7,8,9)}U{ar % as}.

Then we have

Py (K 1) = MCIR(Ty, (P, B); B<': P)
Fsem(([(q’,u)‘T‘V) = MC]R(T]{M_I_D(P’B)’ B| j/, P)
Fsem(II—T—(Iu A l/)) = MC]R(TK(MAV)(Pv B), B| _l; P)

Fsem( [’:I’,U)‘T’V) = Fsem([(‘T’(,u A l/))
V+i)

Foem(K+p)4v) E {—a, =d, a +bAec, ced, bV c}
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7 Final Remarks

The main goal that this paper has achieved is to define a semantics of first order
belief revision systems that satisfies the (revised) AGM postulates. The semantics
we propose in this paper is based on a form of circumscription, which we have called
maximizing circumscription. The most important features of this semantics we believe
are that (1) a revision operation under this semantics is a simple addition of the new
knowledge to the underlying knowledge system, and (2) it deals with belief revision
of first order knowledge systems.

The first feature provides a direct implementation strategy for the semantics; its
realization is essentially to utililze a circumscription algorithm. The second feature
is unique in the literature of belief revision, since the problem of belief revision has
so far been dealt with only in the context of propositional language, while in reality
a knowledge base is likely to be first order rather than propositional.
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