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Abstract 15 

Back-slopping of fermentation cultures in food fermentations can ensure stability of fermentation 16 

microbiota at the species or even at the strain level over extended periods of time. In contrast to the 17 

fermentation organisms in spontaneous food fermentations, which are derived from plant-associated 18 

or environmental micro-organisms, dominant micro-organisms in back-slopped fermentations are 19 

often recruited from lactic acid bacteria that are associated with insect or vertebrate hosts. Lifestyle-20 

associated metabolic traits that relate to the ecological fitness of lactic acid bacteria in the host 21 

environment include biofilm formation through production of exopolysaccharides, urease-, 22 

glutaminase- and glutamate decarboxylase mediated acid resistance, and polysaccharide hydrolysis 23 

through extracellular glycosyl hydrolases. This review will discuss the ecological fitness of these 24 

organisms in food fermentations, and relate their specific metabolic properties to the safety, quality, 25 

and nutritional properties of food.  26 

Keywords: Lactobacillus, food fermentations, acid resistance, exopolysaccharides, reuterin, 27 

Lactobacillus delbrueckii, Lactobacillus reuteri, Lactobacillus salivarius.  28 
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1. Introduction  30 

A substantial proportion of the human diet consists of fermented foods, where the metabolic activity 31 

of fermentation micro-organisms determines and maintains the safety and quality of the products. 32 

Historically, non-alcoholic food fermentations aimed to improve the digestibility, nutritional value and 33 

/ or the storage life of products [1]; their unique sensory properties maintained their popularity even 34 

when alternative processing methods become available. Fermented foods are not only a source of 35 

nutrients but also a major source of dietary micro-organisms if the fermentation organisms are not 36 

killed by a cooking or pasteurization step after the fermentation [2].  37 

The microbiota of traditional food fermentations is controlled by the selection of raw materials, the 38 

product formula and the fermentation processes, and by back-slopping or the use of starter cultures. 39 

Back-slopping, the practice of inoculating a fermentation with a previous batch, profoundly alters the 40 

composition of fermentation microbiota when compared to spontaneous fermentations. In spontaneous 41 

fermentations, fermentation micro-organisms are selected from those organisms that are associated 42 

with the raw material or the processing environment [1,3,4]. In contrast, micro-organisms in back-43 

slopped fermentations are challenged by microbiota of the raw materials in every new batch. Every 44 

time the raw material or the processing environment introduces a new strain that is more competitive 45 

than resident strains, the latter will be out-competed after a few fermentation cycles; a process that 46 

results eventually in stabilization of fermentation microbiota after a sufficient number of fermentation 47 

cycles [5]. Once stabilization of fermentation microbiota is achieved, back-slopping maintains 48 

undefined, mixed cultures over decades or centuries with remarkable stability at the species or even 49 

strain level [5,6]. 50 
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2. Back-slopping of food fermentations recruits host-adapted fermentation organisms.  51 

The origin of fermentation micro-organisms in back-slopped food fermentations and hence the source 52 

of “contamination” or inoculation with desirable fermentation organisms is in many cases enigmatic. 53 

For example, the microbial community of surface-ripened cheeses, which includes Staphylococcus, 54 

Brevibacterium, and Corynebacterium species, is independent of the geographic location but 55 

resembles human skin microbiota [1,7,8]; experimental evidence for a human origin of cheese rind 56 

microbiota, however, is lacking. As outlined below, increasing knowledge on the phylogeny and 57 

ecology of food fermenting lactic acid bacteria, particularly lactobacilli, supports the hypothesis that 58 

animal or human host-adapted lactic acid bacteria frequently dominate the microbiota of back-slopped 59 

food fermentations. Lactobacillus species have free-living, nomadic, insect-adapted or vertebrate host-60 

adapted lifestyles [9]. Host-adapted lactobacilli have specialized to ecological niches that are 61 

associated with insect or vertebrate hosts. Some Lactobacillus species have specialized to very narrow 62 

ecological niches, e.g. Lactobacillus iners, which occurs only in the human vagina [9], or species in 63 

the Lactobacillus kunkeei group which occur only in the intestinal tract of social bees [10]. 64 

Lactobacillus reuteri and Lactobacillus ruminis are examples of species that inhabit the intestinal tract 65 

of diverse vertebrate hosts; strains of these species diversified into intra-species phylogenetic lineages 66 

that adapted to specific hosts [11,12]. Other lactobacilli, for example Lactobacillus salivarius and 67 

Lactobacillus gasseri, appear not to be adapted to specific hosts but occur in multiple host species and 68 

in several body sites [13]. The specialization of host-adapted lactobacilli resulted in a higher ecological 69 

fitness in their respective hosts at the expense of ecological fitness in other habitats [14]. When 70 

conditions in the food fermentations match their niche conditions, host-adapted lactic acid bacteria 71 



5 
 

outcompete less specialized competitors and dominate in the microbial community of those products. 72 

Experimental evidence for the animal origin of food fermenting lactobacilli was provided for 73 

sourdough isolates of L. reuteri, which retain all metabolic characteristics of rodent-lineage strains 74 

including the ability to colonise mice [15]. An overview on host-adapted lactobacilli in food 75 

fermentations is shown in Table 1. This communication aims to explore whether host-adapted 76 

lactobacilli share “lifestyle-associated” metabolic traits and whether these metabolic traits are relevant 77 

for the safety and quality of fermented foods.  78 

2. Species of host-adapted lactobacilli prevalent in fermented foods 79 

Fermentation control by back-slopping is commonly used in dairy fermentations including cheese 80 

cultures, yoghurt, kefir and other fermented milk beverages, and in many cereal fermentations 81 

including sourdough fermentations, several African fermentations for production of porridges or 82 

beverages, and mash fermentations for production of vinegar or liquor in East Asia [1,16]. Owing to 83 

their importance in fermentation control, seed cultures that are used in back-slopped fermentations 84 

often have a designation that differentiates them from the corresponding fermented food products, e.g. 85 

kefir grain, mother of vinegar, and “chef” or “levain” for seed sourdoughs. Host-adapted lactobacilli 86 

associated with cereal fermentation include organisms from the vertebrate host adapted L. reuteri and 87 

Lactobacillus delbrueckii groups, and insect associated species of the Lactobacillus fructivorans group. 88 

In dairy fermentations, species of the L. delbrueckii and L. salivarius groups are frequently present 89 

(Table 1). The metabolic focus of L. delbrueckii on lactose was explained by adaptation to dairy 90 

environments though reduction of genome size and silencing of silencing of carbohydrate active 91 

enzymes other than β-galactosidase [17], however, the presence of L. delbrueckii in the intestine of 92 
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suckling piglets demonstrates adaptation to the intestine of suckling mammals rather than dairy 93 

fermentations [18,19]. Host adapted lactic acid bacteria also include the oral streptococci S. mutans, a 94 

human adapted pathogen [20,21], and S. salivarius, a commensal inhabitant of the oral cavity [22] 95 

(Table 1). Streptococcus thermophilus was identified as core member of human intestinal microbiota 96 

[23]; this organism is closely related to oral streptococci but lost virulence-related genes [24]. 97 

3. Metabolic properties in host-adapted lactobacilli associated with fermented food. 98 

Host-adapted lactobacilli harbour lifestyle-associated metabolic traits, including acid resistance, 99 

biofilm formation, extracellular hydrolysis of polysaccharides, bacteriocin producing and tetracycline 100 

resistance. An overview on metabolic properties of host-adapted lactobacilli that relate to their 101 

adaptation to the host is provided in Figure 1.  102 

Acid resistance system is essential for competitiveness of vertebrate-host adapted organisms as 103 

colonization of a new host by oral or intestinal lactobacilli depends on survival during gastric transit 104 

[9,25]. Urease is the most powerful bacterial mechanism against stomach acidity and is present in 105 

species of the L. salivarius, L. reuteri and L. delbrueckii groups [25,26]. Urease is also expressed in 106 

oral S. thermophilus and S. salivarius [27,28]; urease activity in S. thermophilus and S. salivarius is 107 

differentially regulated in response to the pH and the carbohydrate supply [28,29]. Glutaminase, which 108 

consumes intracellular protons by deamidation of glutamine, is almost exclusively present in host-109 

adapted lactobacilli of the L. reuteri and L. delbrueckii groups [30]. Arginine deiminase (ADI) also 110 

contributes to acid resistance in lactobacilli and is expressed by host-adapted, nomadic, and free-living 111 
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lactobacilli [31]. The genes of the ADI pathway were overexpressed in lactobacilli colonizing stomach 112 

of mice [32] but did not enhance ecological fitness [25].  113 

Extracellular polysaccharides (EPS) production in lactobacilli is mediated by extracellular 114 

fructansucrases or dextransucrases that use sucrose as substrate, or by intracellular 115 

glycosyltransferases. Capsular EPS formation by pyogenic streptococci is a virulence factor to evade 116 

the host immune system. Expression of capsular EPS promoted invasive disease caused by 117 

Streptococcus pneumoniae, a colonizer and pathogen of the nasopharynx [33,34]. In S. pneumoniae, 118 

capsular EPS expression is regulated by Rgg/small hydrophobic peptide quorum-sensing system and 119 

has been inversely associated with biofilm formation, whereas other EPS seem to promote biofilm 120 

formation [34,35]. The inhibition of biofilm formation by the capsule is attributed to the capsule effect, 121 

which blocks the exposure of S. pneumoniae surface adhesins that promote attachment to epithelial 122 

cells [36]. Regulation of surface polysaccharide expression by quorum-sensing system may enable S. 123 

pneumoniae to adjust interactions with the host and other bacteria in response to environmental 124 

conditions [34]. Capsular EPS of commensal bacteria also contribute to their fitness in the host but 125 

benefit health. Capsular EPS produced by Bifidobacterium breve aids in long-term in vivo persistence 126 

[37]. S thermophilus also produce capsular hetero-EPS (HePS) primarily consisting of glucose, 127 

galactose and rhamnose with glucuronic acid, similar to the capsule of S. pneumoniae [38]. Genes 128 

found in the eps cluster of S. thermophilus are related to those involved in capsule synthesis in S. 129 

pneumoniae [39] and were reported to increase acid and bile tolerance [40].  130 

Homopolysaccharides (HoPS) produced from sucrose contribute to biofilm formation and thus support 131 

colonization of host epithelia by lactic acid bacteria [41–43]. Fructansucrases or glucansucrases of S. 132 
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mutans produce glucan or fructan, respectively, which form the biofilm matrix that is necessary to 133 

colonize the surface of teeth [43,44]. In lactobacilli, glucansucrase and fructansucrase activity is 134 

frequently found in the host-adapted L. delbrueckii and L. reuteri groups, and in the Lactobacillus mali 135 

group which predominantly has a free living lifestyle [31]. In direct analogy to S. mutans, HoPS 136 

produced by L. reuteri are required for biofilm formation and cell aggregation, and are essential for 137 

colonization of the mouse gastrointestinal tract [42,45]. Glucansucrases and fructansucrases also 138 

mediate metabolism of sucrose; in Lactobacillus sanfranciscensis, levansucrase is the only enzyme 139 

with activity on sucrose [46].  140 

Only few lactobacilli express extracellular enzymes catalyzing the hydrolysis of polysaccharides [47]. 141 

Starch, pullulan, and fructans provide carbon source from polysaccharides or biofilms when other 142 

fermentable carbohydrate sources are limited. Extracellular amylopullulanase (AmyX) is present only 143 

in few Lactobacillus species; most of these are classified in the Lactobacillus amylophilus, L. 144 

delbrueckii and L. salivarius groups [47]. As resistant starch is a major carbohydrate source in the 145 

human and swine intestine, AmyX may contribute to the ecological fitness of lactobacilli in intestinal 146 

tract [47,48]. The extracellular fructosidase FruA mediates fructan degradation in S. mutans [49]; in 147 

lactobacilli, it is found only in few strains of Lactobacillus crispatus and Lactobacillus amylovorus 148 

from sourdough and the swine intestine [18,50].  149 

Sucrose phosphorylase (ScrP) phosphorolyses sucrose into fructose and glucose-1-phosphate. 150 

Lactobacilli harboring sucrose phosphorylase belong to the vertebrate host-adapted L. delbrueckii, L. 151 

reuteri and L. salivarius group, and the free living Lactobacillus buchneri group. Sucrose metabolism 152 

is repressed by glucose in homofermentative lactobacilli; in heterofermentative lactobacilli of the L. 153 



9 
 

reuteri group, sucrose metabolism is preferred over glucose metabolism [51]. Phosphorolysis in 154 

combination with fructose reduction to mannitol increases the energy yield of the phosphoketolase 155 

pathway more than twofold [52] and increases the growth rate in cereal substrates [31,53]. Since 156 

sucrose is present only in the upper intestine, ScrP increases ecological fitness only of those lactic acid 157 

bacteria that inhabit the oral cavity, the crop, or (fore)-stomach epithelia.  158 

Tetracycline resistance of lactobacilli is mediated by the ribosomal protection proteins Tet(M), Tet(S), 159 

Tet(Q), and Tet(W), and the efflux pumps [Tet(L) and Tet(P)]. Tet(W) is almost exclusively present in 160 

intestinal lactobacilli and was likely acquired by horizontal gene transfer [54]. Tet(M) is the most 161 

widespread in lactobacilli; this gene is present in the L. delbrueckii and Lactobacillus amylophilus 162 

groups, and in Lactobacillus equigenerosi, a species in the L. reuteri group [55]. The gene tet(M) is 163 

also the most widespread antibiotic resistance gene in food-associated lactobacilli, including L. 164 

delbrueckii supsb. bulgaricus, L. salivarius, and L. reuteri [56]. Tet(M) was shown to have ribosome-165 

dependent GTPase activity. The energy from GTP hydrolysis by Tet(M) releases the tetracycline from 166 

the ribosome, thereby reduced the binding of tetracycline to the ribosomes. The distribution of tet(M) 167 

gene is generally associated with conjugative chromosomal transposons, which transfer mobile 168 

plasmids to other species and even unlinked genomic DNA [57]. Tet(M) was also found in 169 

bifidobacteria, a commensal genus in the gastrointestinal tracts of humans and animals, and transferred 170 

between different Bifidobacterium species [58,59]. Therefore, acquisition of tet(M) by intestinal 171 

lactobacilli likely occurred by lateral gene transfer from bifidobacteria or other intestinal organisms.  172 

Bacteriocin production by lactobacilli is strain specific and not limited to host-adapted species. 173 

Bacteriocin production is often assumed to be a desirable trait of probiotic bacteria but experimental 174 
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evidence that bacteriocins of intestinal or probiotic lactobacilli modulate intestinal microbiota remains 175 

elusive [60,61]. Analysis of the prevalence of bacteriocin-encoding genes in the metagenome of 176 

different human body sites, however, revealed that bacteriocin production is particularly frequent in 177 

oral and vaginal microbiota, which implies an ecological role of bacteriocin production by lactobacilli 178 

in these body sites [62]. Correspondingly, oral streptococci are prolific producers of bacteriocins [63] 179 

and also frequently harbor non-ribosomal peptide synthases with putative function in synthesis of 180 

antimicrobial compounds [64]. Also, multiple vaginal isolates produce bacteriocins with antimicrobial 181 

activity against vaginal pathogens [65,66].  182 

Reuterin is a broad-spectrum antimicrobial compound, which is produced as intermediate of glycerol 183 

metabolism by strains of L. reuteri [67]. Glycerol metabolism in L. reuteri is encoded by the gene 184 

cluster pdu-cbi-hem-cob that contains the pdu genes encoding cobalamin-dependent glycerol/diol 185 

dehydratase PduCDE which utilizes glycerol or 1,2-propanediol [68]. The gene cluster is also present 186 

in intestinal microbes such as Salmonella and Eubacterium hallii. In the human colon, intestinal 187 

microbiota produce 1,2 propanediol from fucose or rhamnose; 1,2-propanediol metabolism generates 188 

propionate and propanol [69]. Glycerol is available in cereals and other plant foods; glycerol 189 

metabolism by L. reuteri enhances its competitiveness in cereal substrates [70]. In L. reuteri, glycerol 190 

/ propanediol metabolism is frequent only in strains of the human adapted lineage II, which colonizes 191 

the intestine of herbivores and humans, and in the poultry- adapted linage VI, which colonizes the crop 192 

of birds but also persists in humans [68]. The differential regulation of reuterin production in L. reuteri 193 

strains of different lineages [68] may reflect the availability of glycerol and 1,2 propanediol in the 194 

upper and lower intestine, respectively.  195 
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Species of the L. fructivorans group, likely including L. sanfranciscensis, are associated with insect 196 

hosts and have distinctive metabolic properties when compared to vertebrate-host adapted lactobacilli. 197 

They utilize only few carbohydrates and depend on the availability of fructose as electron acceptor 198 

[71]. Their small genome size and restricted metabolic potential indicates specialization to very narrow 199 

ecological niches.  200 

4. The contribution of metabolic traits in host-adapted lactobacilli to food quality. 201 

The metabolic traits of host-adapted lactobacilli that contribute to the flavour, structure, and quality of 202 

fermented food are shown in Table 2. Glutamine and glutamate metabolism enhance bread quality by 203 

generating glutamate and γ-aminobutyric acid (GABA), respectively. The glutaminase mediated 204 

glutamate accumulation exceeds the taste threshold in bread and ripened cheese and thus contributes 205 

to the umami taste [72,73]. Dietary GABA has relaxing properties [74,75]. In baked goods, arginine 206 

conversion by sourdough lactic acid bacteria provides ornithine as precursor to the character impact 207 

aroma compound of wheat bread crust, 2-acetyl-1-pyrroline [53]. During malolactic fermentation of 208 

wine, arginine deamidation by lactic acid bacteria may accumulate citrulline as an intermediate, which 209 

is a precursor for the formation of the carcinogen ethyl carbamate [76].  210 

In the initial stages of yoghurt fermentations, urease catalyzes hydrolysis of urea into ammonia and 211 

CO2. During co-culture of S. thermophilus and L. delbrueckii subsp. bulgaricus, urease is essential for 212 

effective protocooperation and yogurt acidification of two species by providing ammonia nitrogen to 213 

support growth and acidification of S. thermophilus, and CO2 for the CO2-responsive L. delbrueckii 214 

subsp. bulgaricus [77].  215 
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EPS formation in cereal fermentations improves bread volume and texture and reduces bread staling; 216 

EPS also contributes to the texture of other fermented cereal foods or beverages [78,79]. Production 217 

of HePS in dairy fermentations affects the texture and rheology of the products [80]. The interaction 218 

of EPS and milk proteins influences protein gel formation and water binding capacity. Free EPS 219 

typically lead to ropiness, while capsular EPS increases viscosity without causing ropiness. In set milk 220 

products, EPS is located at the pore/protein network interface or located in the aqueous environment 221 

of the pores. Stirring redistributes EPS in the protein network; ropy EPS attached to protein maintains 222 

high viscosity and the firmness of the protein network after stirring while EPS in pores maintains only 223 

the high viscosity [81]. The presence of capsular EPS lead to a higher firmness, viscosity, thickness 224 

and creaminess [81]. The interplay of capsular and free EPS seems also relevant to product texture, 225 

influencing protein aggregation, pore size and structure recovery of network [82]. Kefiran is a water-226 

soluble HePS, composed by glucose and galactose, exclusively produced by Lactobacillus 227 

kefiranofaciens during kefir fermentation and contributes to formation of the kefir grain and the gel 228 

formation and viscosity of the finished product [81].  229 

EPS formation by probiotic strains also contributes to human health. HoPS isolated from L. reuteri 230 

inhibited adhesion of enteroxigenic Escherichia coli to the swine intestinal mucosa [83]. HePS 231 

produced by probiotic strains, lactic acid bacteria and bifidobacteria, may modulate the immune 232 

system of the host. Capsular EPS produced by B. breve reduces the levels of colonization by intestinal 233 

pathogens [37]. EPS-deficient variants of B. breve strains elicited a strong immune response that was 234 

absent in the wild type strains producing capsular EPS, indicating that capsular EPS mediates immune 235 
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evasion, especially avoiding B-cell responses [37]. HePS produced by S. thermophilus stimulated 236 

human gastric epithelial cell regeneration and immunological innate defense mechanisms [84].  237 

The ability of degrading polysaccharides is rare in Lactobacillus species. Expression of extracellular 238 

fructanases by L. crispatus or L. amylovorans eliminated fructans from cereal during sourdough 239 

fermentation. A reduced fructans content of bread improved the tolerance of patients with irritable 240 

bowel syndrome (IBS) to rye bread with a high dietary fiber content [50,85].  241 

Bacteriocins of lactobacilli find food applications to inhibit or to eliminate pathogens, particularly in 242 

ready-to-eat meat or fish products; none of the strains that find commercial application, however, are 243 

of intestinal origin [86]. Reuterin is a highly reactive compound, the reactivity limits its application in 244 

food. It was demonstrated, however, that reuterin producing L. reuteri in combination with addition of 245 

glycerol are an effective approach to prevent late blowing defect of cheese [87,88].  246 

Food fermentations with probiotic fermentation organisms is increasingly recognized as a tool to 247 

deliver beneficial microbes to the human or animal intestinal tract [89,90]. Host-adapted lactobacilli 248 

show improved survival after gastro-intestinal transit in swine and in humans [91,92], which may relate 249 

to their increased acid resistance, and enhance probiotic activity of host-adapted lactobacilli that are 250 

present in food fermentations. For example, several African non-alcoholic cereal beverages including 251 

mawe, and mahewu contain viable fermentation organisms and were proposed as route of delivery for 252 

probiotic bacteria [93]. Koumiss contains high cell counts of probiotic Lactobacillus helveticus, which 253 

contributes to anti-inflammatory attributes [94]. L. kefiranofaciens in kefir decreased inflammation in 254 

a mouse model of obesity [95]. Traditional kefir has also been proved reducing weight gain, improving 255 
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plasma and liver lipid profiles in a mouse model of obesity [96]. Fermented foods containing large 256 

numbers of live probiotic bacteria are also considered giving similar health benefits as intake of 257 

probiotic lactobacilli of the same species [90]. However, the tetracycline resistance of host-adapted 258 

lactic acid bacteria may limit their use as a starter or probiotic cultures [54,55,97]. 259 

In conclusion, fermentation micro-organisms in back-slopped food fermentations are often recruited 260 

from lactic acid bacteria that have evolved to form stable associations with insects or vertebrate hosts. 261 

The ecological fitness of host-adapted lactobacilli in host and food environments is dependent on 262 

lifestyle-associated metabolic traits. Some of these traits, including exopolysaccharide formation and 263 

bacteriocin production, are also present in free-living or nomadic lactic acid bacteria while other 264 

metabolic properties, for example, glutaminase- and urase mediated acid resistance, the extracellular 265 

fructanase FruA, and antibiotic synthesis by non-ribosomal peptide synthases are virtually exclusive 266 

to host-adapted lactobacilli. An improved understanding of the ecological origin of food fermenting 267 

lactic acid bacteria will facilitate the selection of starter cultures for food production and may support 268 

the simultaneous use of lactic acid bacteria as food-fermenting and probiotic cultures.  269 
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Table 1. Host-adapted lactobacilli in food fermentation 610 
 Products Substrate Host-adapted lactic acid bacteria Stage of production Reference 

Cereal 

fermentations 

Ting Sorghum L. reuteri Back-slopping [93,98] 

Kisra Sorghum L. reuteri, L. amylovorus Back-slopping [99] 

Mawe Maize L. reuteri, L. salivarius Back-slopping [100,101] 

type I 

sourdough 
Wheat or rye L. sanfranciscensis, L. pontis, L. panis Back-slopping [102,103] 

type II 

sourdough 
Wheat or rye 

L. pontis, L. amylovorus, L. reuteri, L. panis, L. 

frumenti, L. crispatus, L. acidophilus 
Back-slopping [102,103] 

vinegar Barley, wheat, rice 

or sorghum 

Lactobacillus acetotolerans Back-slopped mash fermentation [104,105] 

Baijiu L. acetotolerans, L. panis Back-slopped mash fermentation [106,107] 

Chicha Cassava 

Lactobacillus acidophilus, Lactobacillus delbrueckii, 

L. reuteri, Streptococcus salivarius, Streptococcus 

mutans 

Spontaneous, inoculation with 

human saliva 
[108,109] 

Dairy 

fermentations 

Yoghurt milk 
L. delbrueckii subsp. bulgaricus,  

Streptococcus thermophilus 

Back-slopping or starter cultures 

matching traditional back-slopped 

fermentations 

[1,16] 

Koumiss Mare’s milk 

L. helveticus, L. delbrueckii subsp. bulgaricus,  

L. salivarius, L. acidophilus, L. kefiranofaciens, 

Streptococcus thermophilus 

[100,110] 

kefir Milk and kefir grain 
L. kefiranofaciens, L. delbrueckii subsp. bulgaricus, S. 

thermophilus, L. helveticus 
[95] 

cheese milk 
L. delbrueckii subsp. bulgaricus, L. helveticus, S. 

thermophilus 
[1,16] 

611 
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Figure 1. Representative characteristics of host-adapted lactobacilli associated with food fermentation (partially created with biorender.com)  612 

 613 

 614 

     615 
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Table 2. Impact of metabolisms in host-adapted lactobacilli on food quality and human health 616 

 617 

Metabolic activity / metabolite Food products Impact on food quality References 

Glutamine deamidation / Glutamate accumulation Bread, cheese Umami taste, salt reduction [72,73] 

Glutamate decarboxylation / GABA accumulation Bread, cheese, kimchi Anti-hypertensive properties [74,75] 

Urea metabolism / Acidification yoghurt 
Symbiosis of L. delbrueckii and S. thermophilus 

results in stable fermentation culture 
[77] 

Arginine deamidation to ornithine / formation of 2-acetyl-

2-pyrroline, the crust odor compound, from ornithine 

during baking 

Bread Flavor [53] 

Formation of homopolysaccharides and 

heteropolysaccharides 
Bread; yoghurt 

Improved texture and volume of bread; 

Improved texture and rheology of yoghurt; 

Prevent adhesion of pathogens; 

Stimulation of immunological defense mechanisms 

[79,81–84] 

Degradation of fructans or raffinose (FODMAPs); 

sugar reduction in wheat products 

Bread, other cereal 

products 

Increase the tolerance to rye bread of IBS patients; 

Increase of sweet taste 
[50,85] 

Production of bacteriocins or reuterin Cheese 
antimicrobial activity as bio-preservatives / “clean 

label” products 
[1,87,88] 

Delivery of dietary microbes  Probiotic Probiotic activity [93–96] 
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