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Abstract

Management of abnormal events in chemical processes requires detection and diag-

nosis of abnormal performance of individual elements of the system. Detection of ab-

normal performance is usually done by means of setting a control limit on measured

variables. Abnormality due to any reason in one element, may propagate through

feedback loops and interconnections through the process, downgrading the perfor-

mance of the whole operation. Receiving several alarms due to one abnormality is

quite common in industrial operations making it a challenging task to diagnose the

root cause of the problem within a limited time.

Causality graphs demonstrating how the measured variables relate to each other

help the operators and engineers to short list the main faulty faulty variables which

propagate the abnormality to the rest of the process. Causality graphs can be ob-

tained based on deep process knowledge, process schematics or historical data. Qual-

itative causality graphs based on process knowledge or schematics, even though the

most valuable ones, have some limitations and therefore, causality analysis based on

historical data has gained a lot of attention.

A part contribution of the thesis is to advance the causality analysis procedures

proposing methodologies to extract more reliable information about cause and effect

relations between recorded variables. This part of the study considers both causal-

ity analysis assuming linear relations between variables as well as nonlinear ones.

Considering linear methodologies, a more appropriate model structure and param-

eter estimation methodology than the existing ones is proposed based on Bayesian

framework. Estimating model parameters under Bayesian framework accompanied

with a carefully designed prior probability for the parameters can solve some of the

issues of traditional procedures. Also, a new procedure is proposed to decompose

the energy transfer between variables in a way to obtain a complete picture on the
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different paths along which variables can influence each other in addition to providing

an estimation of the energy transferred through each path independently. Regard-

ing causality analysis with the assumption of nonlinear relations between variables, a

more advanced methodology based on information transfer concepts such as mutual

information and transfer entropy is proposed in order to more reliably detect the true

relations between the variables.

The work toward diagnosis of abnormalities leads this study toward developing

more reliable algorithms to specifically detect and characterize oscillations in control

loops. A methodology is developed to detect and estimate oscillation frequencies

which could be otherwise hidden within noise and non-stationary trends in industrial

variables. Oscillations may occur in control loops due to aggressive controller tun-

ing, external disturbances or due to nonlinearity of the valve or the process itself.

In order to help the root cause diagnosis of propagated oscillations, a novel method

is developed to distinguish between these three types of oscillations. Oscillations

caused by each one of these three sources have specific characteristics distinguish-

able from other types of oscillations. Examining the oscillation characteristics in the

wavelet domain made it possible to develop a comprehensive methodology which is

capable of detection and independent diagnosis of different oscillatory components of

the variables. The proposed methodologies are verified through various simulations,

laboratory experiments and industrial case studies.
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Introduction
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1.1 Introduction

The operational efficiency of chemical processes highly depends on the performance of

their control systems. It is reported that the performance of almost 60% of industrial

controllers is not close to optimum [1] due to various reasons such as poor controller

tuning, hardware malfunctioning, external disturbances, tight limits on the manipu-

lated variables, nonlinearity etc. Estimated loss of 20 billion dollars in petrochemical

industries [2] due to abnormal events, has caused the interest of industries and aca-

demics to develop more reliable automatic abnormal event management strategies.

Abnormal event management includes detection of process performance abnormali-

ties, diagnosis of problems and decision on the required maintenance to return the

process back to normal operation [3].

The main step toward an automatic abnormal event management is development

of an automatic detection and diagnosis algorithm. Automatic detection of abnor-

mal control performance (fault) is viable through implementation of a performance

indicator as is proposed in literature [1, 4]. However, diagnosing the root cause of

a propagated fault in a multivariate process is yet a challenging issue. There are

two main challenges regarding diagnosis. First, most of the developed diagnostic al-

gorithms are specialized in finding the source of a specific type of abnormality. For

example, there are several methods specialized in the diagnosis of an oscillation caused

by a sticky valve [5, 6, 7, 8] which however cannot work if the oscillation is due to

controller tuning or else. It is mentioned in literature that relying on one type of

plant-wide diagnosis procedure assuming a specific type of fault is not only unreli-

able, but also risky [9]. The main reason is the similarity between the symptoms of

different abnormalities and the focus of most of the diagnostic algorithms in literature

is on finding the root cause of a specific kind of abnormality.

The second challenge toward diagnosis of abnormal performance in multivariate

systems is due to the interconnection between the many loops of the process [10]. A

fault can occur in one of the thousands of components in a typical chemical process

and easily affect many loops or even the product quality. The interconnections be-

tween the loops make it difficult to diagnose the source of abnormality among many

variables which have similar symptoms [11].

A common method for diagnosis of abnormal performance in multivariate pro-

cesses is to utilize process connectivity charts in the form of signed directed graphs

(SDG) [12], fault trees [13], Bayesian nets [14] or causal graphs. SDGs are derived

based on the process knowledge in terms of first principle modeling, expert knowledge

and also P&IDs in order to provide a causal map for the process variables [15]. Fault
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trees are also utilized in risk and reliability assessment and provide information on the

connection between low level abnormalities and top layer process hazards [16]. Both

SDG and fault tree are based on qualitative analysis or deep knowledge about the

underlying process. On the other hand, Bayesian nets or data based causal graphs

are based on analyzing the historical operational data. Both types of methodologies

have shortcomings and limitations. Verification of qualitative causality graphs with

process data analysis is considered as an improvement [17].

One shortcoming of SDGs and fault trees is that they are highly dependent on the

knowledge of the personnel, which may fail in the case of a new performance abnormal-

ity or operation state. Also, the mathematical equations underlying the process are

not always available and do not contain much information about causality. There-

fore, development of reliable methodologies to analyze the interaction between the

variables based on historical data is a promising alternative. [9] has noted interaction

analysis as the second step toward a comprehensive control performance assessment,

diagnosis and prioritization.

A reliable causality or interaction analysis procedure helps in narrowing down to

the top layer variables which are propagating the fault to the bottom layer variables

while many variables have similar symptoms. It can also be utilized to differentiate

the variation generated within a loop from variations entering the loop as external

disturbance. Therefore, it has the potential of diagnosing the source of variations felt

within a loop.

Causality analysis based on historical data has been studied in literature in many

different fields. Granger [18] was the first to bring the notion of causality to economics

proposing a method to distinguish between causality from simple correlation. Since

then, causality analysis is considered in various fields from biological studies to engi-

neering with the common purpose of learning how the variables of a complex system

truly influence each other and to detect the underlying mechanism of data generation

process. A literature review on causality analysis methodologies will be provided in

the corresponding chapter of this thesis. Causality analysis is yet an open issue for

further study and a part of the study considers advancing the existing procedures.

An issue regarding abnormal performance detection and diagnosis is when the

abnormality is of the oscillatory type. Most of the developed causality analysis pro-

cedures are appropriate for time series of random data and may not work when there

are dominant oscillations in variables. Oscillations require special treatment and

therefore, a significant part of this study considers the issue of detection, categoriza-

tion and diagnosis of oscillations.

Oscillations happen in control loops of industrial plants due to various reasons such
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as poor controller tuning, external oscillatory disturbances or control valve problems.

Oscillation is usually caused in one loop and propagates through various intercon-

nected loops. Regardless of the cause, oscillations disturb the normal plant operation

imposing a poor operation condition. Diagnosing the root cause of a propagated

oscillation in the operation requires detection of all process variables which are oscil-

lating with same or similar frequency. Detection of oscillations and estimation of their

frequencies even though seems to be a trivial task, however is a challenge in process

variables contaminated with non-stationary noise. The root cause of the oscillation

could be any one of the variables oscillating with similar frequency.

There are several methods proposed in literature for root cause diagnosis of os-

cillations. However, most of the methodologies can only work for a specific type of

oscillation such as the ones caused by valve stiction [5, 6, 7, 8]. Root cause diagnosis

of oscillations due to aggressive controller tuning or sinusoidal disturbances require

different methodologies compared to oscillations due to nonlinearity. Therefore, be-

fore trying to find which loop within the system has caused the oscillation, we need to

categorize the oscillation meaning to diagnose if the oscillation is caused by nonlinear

valve, controller tuning or an external disturbance. Controller tuning induced oscilla-

tions have different characteristics compared to oscillations due to valve nonlinearity

or external oscillations. Therefore, a part of this study presents methodologies to

categorize the oscillation into three different types. A proper root cause diagnosis

method can then be selected based on the identified category of the oscillation.

1.1.1 Thesis contributions

A complete abnormal control performance diagnostic framework includes three main

stages of detection, categorization and diagnosis. The contributions to each section

is briefly described in the following.

1. Detection of control performance abnormalities is generally done based on appli-

cation of a performance index to announce occurrence of abnormal event. There

are several methodologies proposed in literature for the detection purpose. This

thesis specifically considers detection of oscillatory faults. Even though oscilla-

tion detection is well studied in the literature, detection of multiple oscillations

in noisy, non-stationary variables is yet a challenging problem. A more reliable

methodology which is easily implementable in an industrial platform is pro-

posed to automatically detect oscillations and estimate the frequencies in the

presence of multiple oscillations and noise.

2. Categorizing the type of fault is the next step which is required in order to
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select the appropriate root cause diagnosis procedure. As was mentioned, many

root cause diagnosis algorithms only work for a specific type of abnormality.

Therefore, it is important to find out the type of the fault before root cause

diagnosis step. If the abnormality is of the oscillatory type, it could have three

different categories depending on which element of the loop has caused the

oscillation. Oscillations might be caused by controller tuning, valve problems

or external oscillatory disturbances. There are methods proposed in the thesis

to distinguish these three oscillation categories from each other. Non-oscillatory

types of abnormalities are not further divided into different categories in this

study.

3. Two chapters of the thesis propose more reliable methodologies for data-based

causality analysis specifically suited for engineering process variables. Causality

analysis methodologies are divided into linear and non-linear categories. One

chapter proposes a methodology to decompose the variations within a loop to

variations coming from different sources from different possible paths. The

advantage of the proposed method is that it provides a complete picture of the

different paths through which variables can influence each other along with an

estimation of the energy transferred through each path independently.

Also, a more reliable causality analysis method based on information transfer

concepts is proposed in the last chapter in this thesis. It is not always possible

to use linear methods for analysis and modeling. Information transfer methods

which are based on comparing probability distributions are promising when the

processes are nonlinear.

1.1.2 Thesis outline

The thesis is written in paper format according to the guidelines of Faculty of Grad-

uate Study and Research. Contributions of this research that have been or are to be

published in peer-reviewed journals include:

1. E. Naghoosi, B. Huang, Automatic detection and frequency estimation of oscil-

latory variables in the presence of multiple oscillations, Industrial & Engineering

Chemistry Research, 53.22 (2014): 9427-9438.

2. E. Naghoosi, B. Huang, Diagnosis of oscillations between controller tuning and

harmonic external disturbances, IEEE on Control Systems Technology, 23.4

(2015): 1283-1293.
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3. to be submitted as E. Naghoosi, B. Huang, Wavelet transform based method-

ology for detection and diagnosis of multiple oscillations in non-stationary vari-

ables.

4. E. Naghoosi, B. Huang, Interaction analysis of multivariate control systems un-

der Bayesian framework, accepted for publication in IEEE on Control Systems

Technology, (2016).

5. E. Naghoosi, B. Huang, E. Domlan, R. Kadali, Information transfer methods

in causality analysis of process variables with an industrial application, Journal

of Process Control, 23.9 (2013): 1296-1305.

The second chapter proposes an algorithm for automatic detection of oscillatory

variables and estimation of the oscillation periods. The algorithm is based on detect-

ing and clustering the peak values of the auto correlation function of the variables.

The advantage of the algorithm is in detecting the oscillatory variables in the pres-

ence of multiple oscillations with no frequency-selection filtering requirement as in

the literature. The algorithm is capable of providing an estimation of the individual

oscillation frequencies present in the data and also the decay rate of the original sig-

nal in the case of damped oscillations. Another advantage is that it requires no or

little human interference in the detection process and is easily implementable using

any programming platform with a low processing power usage. This fact makes the

algorithm more suitable for practical applications. The proposed method is verified

through a case study.

The third chapter studies the properties of the responses of linear systems to

stochastic disturbances and also the properties of the auto correlation functions of the

responses. It is shown that the oscillation generated by a loop due to controller tuning

has different ACF properties compared to a harmonic oscillation, which can be utilized

to distinguish these two types of oscillations. Two hypothesis tests are developed for

automatic diagnosis of oscillations in feedback loops. The result is valuable in the

sense that distinguishing oscillations caused by poor controller tuning from external

oscillatory disturbances helps in deciding the appropriate trouble shooting procedure.

The fourth chapter complements the previous two chapters by presenting a com-

prehensive oscillation detection and diagnosis procedure based on wavelet transform.

The methodology is capable of both detection and independent diagnosis of multiple

oscillations in variables. The independent diagnosis of multiple oscillations is viable

due to the inherent capability of wavelet transform in decomposing the variables to

its components of various frequencies. Two hypothesis tests are proposed in order to
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automatically diagnose if the source of the oscillation is controller tuning, valve non-

linearity or external oscillatory disturbance. The tests are mainly based on properties

of wavelet power spectrum and wavelet bicoherence. Wavelet power spectrum is uti-

lized to diagnose oscillations between controller tuning and sinusoidal disturbances.

Wavelet bicoherence, similar to the classical bicoherence, can detect and quantify

presence of nonlinearity in variables and therefore is an appropriate tool to diag-

nose if the source of the oscillation is nonlinearity in the process. Advantages of the

proposed method is illustrated through analysis of data sampled from an industrial

process.

The fifth chapter considers causality analysis based on linear methods and en-

hances it by performing the analysis under Bayesian framework. A novel method

is proposed in order to decompose the estimated transfer function between variables

into independent transfer functions, each corresponding to a specific path along which

the input can influence the output. The advantage of the proposed method is that

it can detect the different path along which variables can influence each other and it

provides an estimation of the strength of the different connections between the vari-

ables. It also provides a way to check the performance of the controller in disturbance

rejection. The analysis is performed by estimating Structural Vector Autoregressive

models under Bayesian framework. Bayesian approach provides certain advantages in

terms of dealing with high dimensional variables and over parameterization problem.

An appropriate design of the prior probability for the model parameters also better

ensures convergence to a physically interpretable model. A procedure to design the

prior distribution for the model parameters is presented in this chapter.

The sixth chapter studies mutual information and transfer entropy for detection

of cause and effect relationships between industrial process variables. Mutual infor-

mation quantifies the amount of dependency between process variables, while transfer

entropy detects the direction of information flow between the variables. The chapter

overviews the existing definition and limitations of these two quantities and proposes

an algorithm based on combining and extending these two quantities for more re-

liable identification of causal relationship between process variables. It was shown

that time lagged mutual information and differential mutual information can poten-

tially identify the variables with probable causality relationships. After identification

of the variables with important dependencies, transfer entropy is used to determine

the direction of information flow. Time lagged dependency curves help in tuning the

parameters of the transfer entropy in this stage. The proposed algorithm provides

information about the type of the relationships between process variables and an

estimation of the time delay between them.
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Chapter 2

Automatic detection and frequency
estimation of oscillatory variables
in the presence of multiple
oscillations
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2.1 Abstract

Various performance assessment indexes are proposed in literature to announce ab-

normal performance of single or multiple control loops within the process systems

[1, 4, 19, 20]. Oscillatory type of abnormalities require special treatment for reliable

detection and diagnosis. When abnormal control performance is detected by the mon-

itoring performance index, another methodology is required to detect oscillation and

estimate its frequency. Therefore, several methodologies are developed in literature

specifically for the purpose of detection and characterization of oscillatory faults.

Automatic detection of oscillatory variables in the presence of multiple oscillations

is still a challenging problem despite there are several methods for detection and es-

timation of single-frequency oscillation. A new method is proposed in this chapter

that utilizes the auto correlation function to detect the oscillatory variables and es-

timate the oscillation periods in the presence of multiple oscillations. The advantage

of the developed method is that it requires little human interference in the detection

process given the data is pre-processed appropriately. It is also capable of estima-

tion of the decay rate for decaying oscillations and is advantageous over the methods

that are based on analyzing the power spectrum for oscillation detection in case of

non-sinusoidal oscillations. The proposed method is verified through a case study.

2.2 Introduction

Oscillations happen in control loops of industrial plants due to various reasons such

as poor controller tuning, external oscillatory disturbances or control valve problems.

Oscillation is usually caused in one loop and propagates through the interconnected

loops. Regardless of the cause, oscillations disturb the normal plant operation im-

posing a poor operation condition. The nature of oscillation could also cause an

additional harm by damaging the plant hardware. Therefore, detection and diagnosis

of oscillation is of great interest in industry.

Finding the root cause of an oscillation requires detection of all the process vari-

ables that are oscillating with the same frequency. The root cause could be any one

of the oscillatory variables. Detection of oscillatory variables and estimation of the

oscillation period is the first step toward troubleshooting oscillatory faults. There are

several methods existing in the literature for detection of oscillation from the routine

operational data and some of them are mentioned here.

Jelali et al [21] provides a review on the methodologies for detection and diagno-

sis of oscillations in process variables. Hagglund [22] presented an on-line oscillation

9



detection method based on the idea that the integral of the absolute controller error

(IAE) between its successive zero crossings is higher for an oscillatory signal com-

pared to a random signal. The threshold for the IAE is determined using some prior

information about the control loop. An oscillation is detected if the IAE continuously

exceeds the threshold.

Thornhill et al. [23] proposed detecting the zero crossings of the ACF (Auto-

correlation function) of variables for oscillation detection and period estimation. In

the case of multiple oscillations in the variable, the oscillation in the ACF is no longer

regular and frequency filtering is required.

Jiang et al. [24] proposed utilizing the spectral envelope method for both oscilla-

tion detection and root cause diagnosis. The method is based on spectral analysis and

the likely root cause variables are identified as the ones having the most contribution

to the spectral envelope at the oscillation frequency.

Srinivasan et al. [25] presented a modified empirical mode decomposition (EMD)

process to isolate dominant oscillations in a time series. The basic idea of EMD

method is to decompose the data into IMFs (intrinsic mode function) and a non

oscillating residual. Li et al. [26] proposed isolating different frequency components

of the signal based on the discrete cosine transform of the data and detecting different

oscillations by applying zero crossing method to the isolated components. Xia et al.

[27] proposed application of independent component analysis to detect and diagnose

oscillations. Tangirala et al. [28] proposed the application of non-negative matrix

factorization to detect oscillations in process variables.

There are also papers focusing on detection of harmonics in colored noise. Allen

et al. [29] proposed hypothesis testing in order to detect sinusoidal components in

the data based on the Monte Carlo singular spectrum analysis methodology. Li et

al. [30] proposed a method to detect harmonics in colored noise by estimating the

mixed spectrum in two steps. At the first step, the sinusoidal part of the signals are

detected and estimated by utilizing Fourier transform and at the second step an AR

model is fitted to the residuals to estimate the colored noise.

The common disadvantage of most of the mentioned oscillation detection algo-

rithms is for the case of more than one oscillation in the signal. Oscillations with

different frequencies destroy the regular pattern of each other and therefore, detec-

tion of oscillatory variables with different oscillations is challenging. Thornhill et

al. [23] proposed applying filters to divide the data into separate oscillatory signals

covering different frequency ranges and estimating the oscillation frequency of each

segment individually. However, as is mentioned in [23] this approach requires de-

signing appropriate filters for each variable and may introduce artificial oscillation
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frequencies. Therefore, it cannot be fully automated and requires manual interfer-

ence. Another disadvantage of the existing oscillation detection methods is that they

do not provide any information on the probable oscillation source.

The methodology developed in this work is based on utilizing the ACF of the

variables to automatically identify the oscillatory variables in the presence of multiple

oscillations via clustering methods. ACF of a periodical signal is also periodic with

the same frequency as the original signal. The method applies clustering algorithms

to the ACF to detect the peaks of the ACF. The time difference between similar peak

values provides an estimation of the oscillation period. The advantage of this method

over zero crossing detection of the ACF is that it can also identify the oscillatory

signals with multiple oscillations without requiring additional data pre-processing

such as filtering. Also, the value of the detected peaks can be utilized to extract more

information regarding the variables such as decay rate in the case that the signal is a

damped sinusoidal signal. The algorithm is easy to implement and does not require

heavy computations which makes it suitable for industrial applications.

The remainder of the chapter is organized as follows. The first section is an

introduction to the advantages as well as challenges in utilizing the ACF for detection

of oscillatory variables and frequency estimation. Section 2.4 describes the proposed

method while a subsection presents the peak detection algorithm followed by the peak

clustering algorithm. The third section describes the method for estimation of the

decay rate of the signal. This chapter also includes a case study in fourth section.

The last section concludes the chapter.

2.3 Oscillation detection based on auto correlation

function

Auto correlation function is a measure of the linear dependence between observations

of a variable itself at different time lags. ACF is defined as:

ρτ =
1

σ2
E[(xt − μ)(xt+τ − μ)] (2.1)

where τ is the time lag, σ is the standard deviation of the variable and μ is its mean

value. For a discrete variable, ACF is estimated from the data as

ρ̂τ =
1

Nσ̂2

N−τ∑
t=1

(xt − μ)(xt+τ − μ) (2.2)

where N is the number of samples.
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ACF has two special characteristics which make it suitable for detection of oscil-

lation in the data. The first characteristic is that the ACF of an oscillatory variable

is also oscillatory with the same period. The second one is that the ACF acts like

a filter against noise. ACF of white noise equals to zero except at 0 time lag. The

ACF of a variable Xt as in Equation 2.3, which is a summation of several sinusoidal

signals with added white noise, can be obtained as shown in Equation 2.4.

Xt = Σk
i=1Aicos(ωit+ φi) + εt (2.3)

ρx(τ) =
1

σ2
x

Σk
i=10.5A

2
i cos(ωiτ) for τ > 0 (2.4)

At zero time lag, another term is added to the summation equal to the the noise

variance. Thus, ACF contains the same oscillation frequencies while it is free from

white noise. The filtering nature of the ACF makes it more suitable for oscillation

detection compared to the original time series.

Estimation of the oscillation period from the ACF can be done in two ways: First

approach is to detect the time lags where ACF is zero and estimate the period as

the time difference between two successive zero crossings multiplied by 2. Second

approach is to find the peak values of the ACF of the signal and estimate the period

as the time difference between the adjacent peak values.

The main disadvantage of the first approach [23] is its limitation to variables with

single oscillatory component. Figure 2.1 plots a variable which is the summation

of two sinusoidal signals along with its ACF. The signal is x2(t) = 2sin(0.2t) +

2.2sin(0.299t) + n(t) where n(t) is colored noise generated as n(t) = 1−0.2z−1

1−0.1z−1+0.8z−2νt

and the variance of νt is 0.2. The two sinusoidal signals have a period of 31.5 and

21 samples respectively. As can be seen in Figure 2.1, the zero crossings of the ACF

do not indicate presence of a regular oscillation in the variable. Thornhill et al. [23]

propose applying filters to divide the data into two separate oscillatory signals and

estimate the period of each one of them. This approach requires designing appropriate

filters for each variable and may introduce artificial oscillation frequency. Due to the

need to design filters, the method cannot be automated to detect the oscillatory

variables among many process variables in a typical industrial unit.

The other disadvantage of zero crossing detection method in general is the detec-

tion of spurious zero crossings due to the noise which requires a pre-processing of the

data for noise removal. These two problems are also common in the other oscillation

detection methods as investigated in [21].

The above discussion illustrates that more reliable methods are required that can

automatically detect oscillatory variables in the presence of multiple oscillations.
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Figure 2.1: Top: x2(t) in time. Bottom: ACF of x2(t)

2.4 The proposed method

The algorithm to be developed is intended to run off-line and with little human inter-

ference. Each variable is analyzed for oscillation detection and frequency estimation.

The variables with similar oscillation frequencies will be grouped together at the end

for further analysis to diagnose the root cause.

The input to the algorithm is the routine operation data. There are some minimum

requirements of the data for a reliable analysis. The experience shows that a reliable

oscillation period estimation from the ACF requires presence of at least 5 periods in

the ACF. The maximum time lag of the ACF also needs to be smaller than the length

of the data to ensure a reliable estimation of the ACF. The bias of ACF estimation,

as in Equation 2.2, increases with the time lag as E[ρ̂τ ] = (1− |τ |
N
)ρτ where ρτ is the

true ACF value and τ is the time lag. Therefore, the length of the data should be

several times of the maximum time lag of the ACF to be calculated to avoid a large

bias. If N is chosen to be 3 times of maximum τ , it implies existence of at least 15

oscillation periods in the data. However, smaller length of data can still be used for

analysis by considering that the estimation of the period may be less reliable.

The main difference of the proposed algorithm from the existing oscillation de-

tection methods is in detecting oscillatory variables in the presence of multiple os-

cillations. A variable which is a summation of two oscillatory signals with different

oscillation periods is still oscillatory with a period equal to the least multiple of both

the individual periods. The same applies to variables including several oscillatory

components.

The ACF of a signal with multiple oscillations has several peaks with different

values depending on the individual frequencies and their respective power. The peaks

corresponding to the main oscillation period (the period which is an integer multiple

of all the smaller periods) have the largest values compared to the other peaks in
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the ACF. As can be seen in Figure 2.1, although there are different local peaks in

the ACF, the highest peaks correspond to the main oscillation of the signal which

has 63 samples in the oscillation period. The average of the time differences between

the adjacent peaks of the highest values equals to 63 with a standard deviation of

0.8. Therefore, a method based on detection of the peaks and clustering them based

on their values is able to automatically detect the oscillatory variables even in the

presence of multiple oscillations.

The overall picture of the method is illustrated in Figure 2.2 on the ACF of x2(t).

The first step is to find the time lags corresponding to the peaks in the ACF which

are marked by circles in Figure 2.2. After that, the peaks with higher values which

correspond to the main oscillation should be clustered together while the smaller value

peaks form another cluster as shown by the peaks covered by each pair of horizontal

lines.
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Figure 2.2: Illustration of the general idea
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Figure 2.3: Illustration of the problem caused by noise

In reality data contains different kind of noises which makes it more difficult to

detect the peaks and cluster them afterwards. Figure 2.3 plots the ACF of the same

data as in Figure 2.2 while some colored noise is added to the signal. The colored

noise causes some spurious peaks in the ACF which do not represent an oscillation in

the data. The algorithm should be able to differ between the spurious peaks and the

ones due to the oscillation in the data. To be able to detect the peaks, the data is
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divided into different clusters as shown by ellipses in Figure 2.3 and then an algorithm

is developed to determine the true peaks based on the clustered data. The method

for detecting the peaks and finally estimating the oscillation frequency is presented

in the following sections.

2.5 Peak detection algorithm

The next step after selection of the data set and estimation of the ACFs is to detect

the oscillatory ACFs. A non-oscillatory ACF does not contain peaks with regular time

distance between them while the ACF of an oscillatory variable has several peaks on

top of a non-oscillatory trend. The approach for peak detection is to cluster the ACF

values near the time lags of the peaks.

Some characteristics of this clustering process make it difficult to use conventional

clustering algorithms. The aim of the algorithm is that each peak in the ACF be

classified into a cluster regardless of the peak value. This clustering is based on the

time lags and since there is no prior information about the existence of any peak in

the ACF, it is not possible to have an estimation of the number of clusters beforehand.

Therefore, an algorithm is required that can capture the shape of the ACF and cluster

it according to the time lags of the peaks. Following is the description of the proposed

algorithm.

The ACF is sorted in a descending order based on their values. The first cluster

is formed by the maximum ACF value along with its corresponding time lag. The

next value to be clustered is the second largest value and so on. The clustering rule is

based on the time difference between the value to be clustered and the values already

in the cluster. The reason for choosing this clustering criterion is the need to cluster

the data according to the time. If the time difference of an ACF value from the

values in the cluster is less than a threshold, then it cannot represent a new peak and

therefore is a member of the existing cluster. A value of ACF that does not fit into

any existing cluster forms a new cluster.

For an illustration on this algorithm, consider the ACF of an oscillatory variable

with 6 samples per period. Figure 2.4 plots 9 points of the ACF of the variable along

with the order that the points are considered for clustering. The first cluster is formed

containing the point that is marked by 1. After that, the point marked by 2 has the

largest value and since its time difference from point 1 is more than 2 samples (the

threshold), it forms a second cluster. 3 is the next point to be clustered which falls

into the same cluster as point 1 since its time difference from point is 1 which is less

than the threshold. All the samples are clustered in the same way in order of their
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value. Here, if the clustering threshold has been set to be larger than 5 samples (time

difference between points 1 and 2), all the points would have fallen into one cluster

and the two peaks could not be distinguishable.
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Figure 2.4: 9 points of ACF of a variable along with the order that they are condiered
for clustering

The threshold should be at least equal to 2 to account for the effect of noise. A

too large threshold may result in clustering two distinct peaks of the ACF into one

cluster. This emphasizes the need for a small enough sampling time to have at least

4 samples per period. A too small threshold in the case of many samples in one

oscillation period leads to detecting spurious peaks due to the effect of noise. The

effect of the clustering threshold in detection of peaks is illustrated in Figure 2.5 on

two adjacent peaks of Figure 2.3.
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Figure 2.5: Illustration of the effect of clustering threshold on detection of peaks

The circle in Figure 2.5 contains a few largest points which form the first cluster.

Point 4 is the next largest point to be clustered and if the clustering threshold is

smaller than 3, then point 4 forms another cluster by itself which is spurious. Also

if the threhosld is larger than the one shown by dashed arrow, then the two distinct
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peaks would fall into the same cluster and therefore the oscillation will remain unde-

tected. The method for determining the appropriate threshold will be described in

Section 2.6.

The whole ACF of a non-oscillatory data set gets clustered into only one cluster

by applying this procedure, since there are no peaks in the ACF to form different

clusters. The number of clusters for an oscillatory variable equals to the number

of distinct peaks in its ACF. After all the ACFs are clustered, the cluster centers

(represented by value and time) are determined as the mean of the two largest ACF

values in each cluster and the mean of their corresponding time lags respectively. The

average of the two largest values is considered for further filtering the effect of noise.

However, averaging over more values is not recommended since it causes problem if

there are few samples in an oscillation period. The cluster centers are now regarded

as the peaks of the ACF. Figure 2.6 shows how the ACF points in Figure 2.5 are

divided into two distinct clusters. The respective cluster centers are marked by stars

which are regarded as ACF peaks.

Figure 2.6: The two cluster centers corresponding to the ACF in Figure 2.5

The time differences between the adjacent peak values are approximately equal

to the oscillation period if only one oscillation is present in the data. The period is

estimated as the average of the time differences between the peaks and the standard

deviation can be used as a regularity indicator in the same way as presented in [23].

The regularity index is defined as r = μ/3σ. μ is the average of the time differences

between adjacent peaks and σ is the standard deviation of time differences.

When the data contains only one oscillation frequency, the estimated period has
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a high regularity index. In addition to a high regularity index, the identified peak

values should also be close to each other or have a small variation. Therefore, there

are two indicators for existence of multiple oscillations in the signal. The first one

is that the estimated period has a high standard deviation. This implies that the

time differences between adjacent peaks are not regular. The second one is that

the standard deviation of the peak values is high compared to their mean value. A

similarity index can be defined to check the similarity between the identified peak

values. The similarity index is defined as s = σ/μ. standard deviation larger than

1/5 of the mean value implies that it is very likely that there are multiple oscillations

in the ACF which are generating peaks with different values.

When the estimated period has high regularity but the peak values have a high

variation, it is concluded that the data is periodic. However, the estimated period

might not be the main oscillation period. Thus, additional analysis has to be done

for a more reliable estimation of the oscillation period.

2.6 Specifying the threshold for the peak detection

algorithm

The performance of the peak detection algorithm directly depends on its threshold. As

was mentioned, a large clustering threshold might miss detecting the actual peaks in

the ACF while a small threshold may detect false peaks in the ACF. Thus, specifying

the threshold is a trade off between missed and false peak detection. One way to

determine the threshold is based on some preliminary analysis on the data. Knowledge

of the probable oscillation period in the data, helps in determining an appropriate

threshold.

Power spectrum of the data provides some information on the possible oscillations

in the data. Existence of peaks in the power spectrum does not imply that there are

some oscillatory components in the data as there might exist peaks in the estimated

spectrum of a purely random noise. Direct use of the peaks in the spectrum for

oscillation detection has other disadvantages too. Even in the case that there is

one dominant oscillation in the data, the power is distributed to the neighbouring

frequencies in the power spectrum depending on the methods used for estimation

of the power spectrum. Therefore, it cannot be directly utilized to get a reliable

estimation of the oscillation period. The other disadvantage is that the spectrum

provides a general presentation of the data in the frequency domain which does not

imply if an oscillation persists in the data or fades away. If the oscillation is not

persistent, there is no need to detect it from the diagnosis point of view. However,

18



power spectrum can provide an estimation of the probable oscillation frequencies.

The peak in the spectrum corresponding to the highest frequency is used here to

determine the clustering threshold.

As was mentioned, oscillations in a variable are always present in its ACF free

from the white noise. Here the spectral density of the ACF is utilized instead of the

spectrum of the data itself to detect the probable oscillations as is shown in Equation

2.5.

I(ω) =
1

2πT
|ΣT−1

τ=0 ρ̂τe
−iωτ |2 (2.5)

where T is the length of the ACF. Oscillations with less power compared to noise are

more likely to show up as peaks in this estimation compared to the power spectrum

of the original signal.

A simple outlier detection method can be used to find the peaks in the spectrum.

The peak with the highest frequency determines the possible minimum oscillation

period that needs to be detected in the data. Although the peak might be due to

the noise, it could also be due to an oscillation in the data. Therefore, the clustering

threshold should be smaller than the period corresponding to the highest frequency

peak so that it differs between neighboring peaks of the highest frequency oscillation.

There is another important issue that needs to be considered in specifying the

clustering thresholds. ACF values as estimated by Equation 2.2 gradually decay with

increase of the time lag even if the signal is a pure sinusoidal signal. This decay

can be estimated using Equation 2.2 for a pure sinusoidal signal. Assume that the

time lag corresponding to a peak value p1 is τ1 and the time lag corresponding to the

neighboring peak p2 is τ2. The oscillation period is equal to τ2 − τ1 and

p1 =
1

Nσ̂2

N−τ1∑
t=1

(xt − μ)(xt+τ1 − μ) (2.6)

p2 =
1

Nσ̂2

N−τ2∑
t=1

(xt − μ)(xt+τ2 − μ) (2.7)

Since τ1 and τ2 are multiples of the oscillation period and the signal is a pure

sinusoidal wave, xt = xt+τ1 = xt+τ2 . Thus, p1 = 1
Nσ̂2

∑N−τ1
t=1 (xt − μ)2 and p2 =

1
Nσ̂2

∑N−τ2
t=1 (xt − μ)2 which implies p1 =

N−τ1
N

and p2 =
N−τ2
N

. The ratio between two

peaks in the ACF of a sinusoidal wave can be obtained as

p2 =
N − τ2
N − τ1

p1 (2.8)
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Therefore, the estimated ACF of a pure sinusoidal signal can be written as

ρ̂τ =
N − τ

N
cos(ωτ) (2.9)

If we consider white noise (εt) added to the oscillation (xt), then p1 will be written

as in Equation 2.10 which is not equal to N−τ1
N

(it is assumed that the mean of the

noise and signal is equal to 0). However, The ratio between p2 and p1 still equals to
N−τ2
N−τ1 since p2 can also be written as

1
N

∑N−τ2
t=1 x2

t
1
N

∑N
t=1 x

2
t+σ2

ε
.

p1 =
1
N

∑N−τ1
t=1 (xt + εt)(xt+τ1 + εt+τ1)
1
N

∑N
t=1(xt + εt)(xt + εt)

=
1
N

∑N−τ1
t=1 x2

t

1
N

∑N
t=1 x

2
t + σ2

ε

(2.10)

Thus, the ACF of a harmonic with added white noise can be written as

ρ̂τ =
N − τ

N − τr
prcos(ωτ) (2.11)

where pr is a peak in the ACF except for the peak at zero time lag with its corre-

sponding time lag τr.

The effect of this decay on determining the clustering threshold is the fact that

even two adjacent peaks corresponding to one oscillation frequency have different

values. According to the clustering rule, the higher ACF values will be clustered first.

Considering two adjacent peaks, there might be a few samples between the two peaks

that have a higher ACF value compared to the second peak value. Thus, the time

difference between the second peak and the already clustered peaks will be smaller

than the estimated oscillation period. An example of this is plotted in Figure 2.7.

Figure 2.7 plots the ACF of a sinusoidal signal with 36 samples per period in solid

line. A horizontal line is plotted at the same height of the last peak in the ACF. All

the ACF samples above the horizontal line are clustered before the last peak since

they have larger values. Therefore, the minimum time difference between the last

peak and already clustered points is less than one oscillation period.

To obtain an estimation of this time difference, consider an extreme example where

the length of the ACF (l) is exactly 2 times the oscillation period. This implies that

the oscillation frequency of the variable is 2π
l/2

. There are 3 peaks at time lags 0, l/2 and

l, respectively and assume that the length of the data N = 2l. This is the case of the

ACF plotted in Figure 2.7. This case represents the minimum oscillation frequency

that can be detected by this method. The value of the last peak (p3) can be obtained

as p3 = N−l
N−l/2P2 = 2

3
P2. Now, we need to find the time lag x between P2 and P3 so

that ρl/2+x = 2
3
P2. It is possible to ignore the decay in the ACF to find the value of x

and find the time lag x from P2sin(
2π
l/2

(l/2+x)) = 2
3
P2. It is similar to approximating
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the ACF with P2sin(
2π
l/2

) as plotted in dotted line in Figure 2.7. This approximation

is valid for the points close to P2 itself. The value of x is approximately obtained

as 0.06l. Therefore, ACF values up to the point 0.5l + 0.06l are clustered before P3.

Thus, the clustering threshold should be smaller than l − 0.56l = 0.44l. This limit is

0.06l smaller than 0.5l which is the oscillation period that can be estimated from the

spectrum of the signal.
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Figure 2.7: Illustration of the effect of the decay in estimated ACF

Considering that the length of the data should be larger than 2 times the length of

the ACF, the decay in the ACF will be smaller than the estimated value. Therefore,

it is safe to take the clustering threshold equal to 0.88pL where pL is the minimum

oscillation period in the data detected from the spectrum. However, considering the

uncertainty in the estimated oscillation period and the effect of noise, it is better to

take a smaller threshold. In this work, the clustering threshold is considered as 0.5pL

as long as it is greater than 2. The diagram in Figure 2.15 summarizes the algorithm

for detection of the peaks in the ACF.

2.7 Clustering the identified peaks

The next step of the algorithm is to cluster the identified peaks based on the similarity

of their values. When there are multiple oscillations in the signal, the peaks corre-

sponding to the main oscillation have the highest values. However, there are other

peak values which correspond to oscillations of different frequencies. By clustering

the peaks based on their values, it is possible to detect the similar peaks and estimate

their corresponding oscillation periods. Therefore, another clustering algorithm is

required when existence of multiple oscillations is confirmed by the peak detection

algorithm.

One of the challenges in this clustering is due to the decay in the ACF. The

natural decay in the estimated ACF makes it impossible to use existing clustering

methods which are based on minimizing the distance of the point from the cluster
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centers. In the ACF, each new peak that truly belongs to a cluster has a smaller value

compared to the peaks already in the cluster because of the larger time lag and decay

of ACF. The decay could be significant when the length of data is short. Therefore,

being within a threshold from the latest clustered point is used as the clustering rule

instead of closeness to the cluster center.

It is important that the new peak value to be clustered should be compared with

the clustered peaks in order of closeness in time. For an illustration of this point,

consider a data set as shown in the top panel of Figure 2.8. The bottom panel of

Figure 2.8 shows the ACF of x3(t) = 3sin(0.2t) + sin(0.1t) which is estimated from

a data set containing 1500 samples. The larger peak values correspond to the main

oscillation with a period of 63 samples. There is one smaller peak in between any

two larger peaks due to the sinusoidal signal with a period equal to half of the main

oscillation period (3sin(0.2t)). As can be seen in Figure 2.8, the ACF has a strongly

decaying behavior because of the very short length of the data used for calculation of

the ACF.
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Figure 2.8: Top: x3(t) in time. Bottom: ACF of x3(t)

Two peaks are marked in the ACF plot with a circle and a square. The circle

marks a peak value corresponding to the oscillation with higher frequency while the

square marks a peak value corresponding to the main oscillation frequency. The

clustering algorithm should be able to correctly differ between these two peaks so

that they will be assigned to two different clusters. However, as can be seen in Figure

2.8, the peak marked by the square has even a smaller value than the peak marked

by the circle due to the decay in the ACF.

Since both the smaller and larger peaks are decaying simultaneously, comparing

the new peak value with the clustered peaks at the nearest time can correctly cluster

the new peaks. Following is a description of the clustering algorithm: The peak values

22



are first sorted in order of their time lags. The first cluster is formed containing the

peak with the smallest time lag. The next peak value in time is compared to the

existing cluster. If the difference between this peak value and the value in the existing

clusters is less than a threshold, then the peak falls into the same cluster. Otherwise,

the peak forms another new cluster by itself. This procedure continues until all peaks

are clustered. This algorithm is illustrated in Figure 2.9 based on 4 peaks of the ACF

from Figure 2.1 where the peaks are marked by circles. Again a method for specifying

the threshold is required as discussed in the next section.
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Figure 2.9: Illustration of peak clustering algorithm

2.7.1 Specifying the threshold for the peak clustering algo-
rithm

Specifying the clustering threshold directly influences the result of the algorithm. A

too large threshold does not differ between the peaks that truly correspond to different

oscillation frequencies while a too small threshold can miss the peaks which should

be in one cluster.

A threshold value larger than the decay in the ACF can correctly cluster the peaks

corresponding to one oscillation into one cluster. Thus, the value of the clustering

threshold should be larger than the expected decay in the ACF values. The sec-

ond consideration on the threshold is that it should be smaller than the minimum

difference between the peak values that actually belong to different clusters.

Estimation of the decay for a single sinusoidal wave can help in determining a

threshold. Suppose that one cluster is formed containing the first peak p1 and now

clustering the second peak p2 is to be considered. If p2 corresponds to the same oscil-

lation as p1, then its value should be close to
n−τp2
n−τp1 p1 as was described in Subsection
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2.6. If p2 is not close to this value, then it does not belong to the same oscillation

represented by the first peak and it should form another cluster. Therefore, if the

difference between any two peaks is in the range of 0 to (1− n−τp2
n−τp1

)p1, the two peaks

should be in one cluster. However, the noise in the signal changes the expected value

of the second peak. To account for the effect of noise, the absolute value of the dif-

ference between the two peaks is compared to (1 − c
n−τp2
n−τp1 )p1 which implies that the

value of the second peak could be as small as c(
n−τp2
n−τp1 )p1 where c is positive constant

less that or equal to 1. The value of c depends on the signal to noise ratio and is

chosen as 0.7 in this work based on experience. Therefore, the clustering threshold is

adaptive and depends on the time difference between the two peaks and the value of

the first peak.

To cluster any new peak value, its difference from the clustered peak value that

is closest in time is calculated along with the suitable threshold. If the difference is

larger than the specified limit, the procedure is repeated considering the next closest

clustered peak in time. The peak value forms a new cluster if it does not fall into any

of the existing clusters.

It is possible that a cluster only contains one peak value in the case that the data

is too noisy. After all the peaks are clustered, the clusters that only contain one peak

should merge to the other clusters. Selection of the appropriate cluster cannot be

based on the peak value but based on the time lags. The individual peak cluster is

merged to the other clusters one by one. The oscillation period for each cluster is

recalculated along with the standard deviation before and after addition of the peak.

A peak remains in the cluster that has the most reduction in standard deviation after

addition of the peak.

The oscillation period is estimated for each cluster separately. Also the mean and

standard deviation of the peak values in the cluster is calculated. The cluster that

includes the highest peak values, is the one corresponding to the main oscillation

period. In the case that any one of the clusters indicates an oscillation with high

regularity value, the signal is identified as an oscillatory signal.

Table 2.1 shows the result of applying the second clustering algorithm to the data

in Figure 2.1. The first row in Table 2.1 is estimated from the identified peaks before

clustering them based on their values. The average of the time differences between

the identified peaks is 21.05 which is the smallest individual oscillation period in the

data. The average of the peak values is 0.34 with a standard deviation of 0.16 which

results in a similarity index equal to 0.47. This similarity index value implies existence

of peaks with different values which could be the result of multiple oscillations in the

signal.
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Table 2.1: Result of applying the algorithm to x2(t)

period STD of period Mean of peaks STD of peaks
21.05 2.74 0.34 0.16
63 0.77 0.56 0.02

31.58 14.5 0.23 0.06

The peak values are divided into two clusters after applying the second clustering

algorithm. One cluster contains the peaks with values close to 0.56 and standard

deviation of 0.02. The oscillation period estimated for this cluster is 63 samples

with a low standard deviation. This period is the main oscillation period of the

signal. The other cluster contains the peaks with values close to 0.23. The oscillation

period estimated for this cluster is 31.58 which is very close to the second individual

oscillation period in the signal.

2.8 Addressing possible problem

When the values of peaks corresponding to different oscillations are very close to each

other, the algorithm might not correctly cluster the peak values. One way to approach

this issue is to design band pass filters for the data to separate the different oscillations.

This approach has the problem of possibly introducing artificial oscillations in the data

as well as requiring manual interaction. The proposed approach to rectify this issue in

this work is to remove the fastest oscillation of the ACF by down-sampling the data.

In this approach, the regular oscillation with minimum period is treated as noise and

is removed by down-sampling the original data. The ACF is estimated again and

the same clustering algorithm is performed on the ACF of the down-sampled data.

This procedure is repeated until all the oscillations are removed and all the ACF

values of the last down-sampled data fall into one cluster. The easiest method for

down-sampling is utilizing the moving average filter which replaces each pL number

of samples (pL is the least oscillation period) by their mean value as yk = ΣpL−1
i=0 uk−i.

An important point to be considered when down-sampling the data is the change

in the Nyquist frequency. Nyquist frequency equals to half of the sampling frequency.

Down-sampling the data by a factor pL decreases the Nyquist frequency to 1
pL
× fN1

where fN1 is the Nyquist frequency of the original data. Reduction of the Nyquist

frequency causes aliasing problem. Aliasing occurs when the frequency of an oscil-

lation is greater than the Nyquist frequency. In that case, the oscillation frequency

causes a peak at the aliased frequency which can be obtained from Equation 2.12.
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fa = |nfs − f | (2.12)

where fa is the aliased frequency in H, fs is the sampling frequency in H, f is the

oscillation frequency and n = [ f
fs
]. Since f is not known, it is not possible to calculate

the aliased frequency.

By down-sampling the data, the oscillations, which were originally lower than the

new Nyquist frequency, may fall above it and cause the aliasing problem. That is

the reason that a low-pass filter with a cut-off frequency equal to the new Nyquist

frequency is always applied to the data before down-sampling to prevent the aliasing.

The problem with applying the low pass filter is that the oscillations present in

the data with a frequency above the new Nyquist frequency will be removed and

eventually remain undetected. To resolve this issue, it is possible to take the moving

average of the data with a rate equal to round(pL/2) (the nearest integer to pL/2).

With this filtering, the new Nyquist frequency is 1
pL
. Therefore, there is no need to

remove the oscillations with a period between pL and 2pL. The effect of the oscillation

with the period of pL in the down-sampled data is also removed by the threshold in

the peak detection algorithm. By this procedure, the oscillations with periods less

than or equal to pL are removed as the noise in the data and the oscillations with

periods between pL and 2pL are not lost.

To illustrate the effectiveness of this approach consider the example in Figure

2.10. The variable is x4(t) = 2sin(0.6283t) + 2sin(0.169t) + 2sin(1.047t) + n(t).

The oscillation periods of the individual sinusoidal signals are 10, 37 and 6 samples

respectively. The main oscillation period is 10× 37× 3 = 1110 samples. The ACF of

the original variable is shown in Figure 2.10 along with the ACFs of the down-sampled

data. As can be seen in Figure 2.10, the peaks of the ACF corresponding to different

oscillations have similar values. Also, the different oscillation periods are so close to

each other that it is impossible to separate them by applying band-pass filters.

Table 2.2 shows the result of applying the oscillation detection algorithm to x4(t).

The first row correspond to the first run of the algorithm on the original data. The

algorithm identifies the oscillation with 6 samples per period. In the second run, the

data is down-sampled by 3 samples and the algorithm is applied to the down-sampled

data. The result is in the second row of Table 2.2. The regular oscillation identified

in the second run has 10 sample per period which is another individual oscillation in

the variable. The third run of the algorithm after down-sampling the already down-

sampled data by 2 samples, results in identification of an oscillation period equal to

37.
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Figure 2.10: x4(t) in time and its ACF after downsampling

Table 2.2: Result of applying the algorithm to x4(t)

Run no. period STD of period Mean of peaks STD of peaks
1 6.08 1.14 0.19 0.18
2 10 1.41 0.35 0.29
3 37.02 2.26 0.78 0.09

2.9 Dampened oscillatory signals

In reality, the oscillations are not always a pure sinusoidal signal. Oscillatory variables

may have a dampening factor multiplied to them such as exp−0.005tsin(2πf). As was

mentioned before, another advantage of the proposed method is that the detected

peak values can be used to estimate the decay rate of the signal. Note that this

decay exists in the data itself and is different from the decay in the ACF due to the

estimation procedure.

The auto correlation of the dampened sinusoidal signal has the form of Equation

2.13 where xt represents the sinusoidal part of the signal and the decay rate is noted

by β. Since only the peaks are analyzed here, τ is a multiple of the oscillation period
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which implies xt+τ = xt. Therefore, ρτ can be written as in Equation 2.14 which

equals to βτ . Equation 2.14 shows that the rate of the decay of the peaks in the ACF

is the same as of the original signal.

ρτ =
E[βtxtβ

t+τxt+τ ]

E[(βtxt)2]
(2.13)

ρτ =
βτE[βtxtβ

txt]

E[(βtxt)2]
= βτ (2.14)

The problem of the decay due to estimation of the ACF should again be considered

here. The same approach as in Section 2.6 is followed here for estimation of the ratio

between two adjacent peak values p1 and p2. p1 can be estimated as in Equation 2.15.

p1 =
ΣN−τ1

t=1 βτ1+txt+τβ
txt

ΣN
t=1β

2tx2
t

=
βτ1ΣN−τ1

t=1 β2tx2
t

ΣN
t=1β

2tx2
t

=
N − τ1

N
βτ1 (2.15)

p2 is also estimated in the same way as p1 and equals to N−τ2
N

βτ2 . Thus, p2 can

be written as a function of p1 as in Equation 2.16.

p2 =
N − τ2
N − τ1

βτ2−τ1p1 (2.16)

Again if there is white noise added to the signal, the exact values of the peaks are

not as shown in Equation 2.15, but the ratio between them is as in Equation 2.16.

To correctly estimate the decay rate of the original signal from the ACF, we need

to first compensate the decay in ACF due to estimation. The compensation can be

performed by multiplying each peak to N−τ1
N−τp where τ1 is the time lag of the second

peak in ACF and τp is the time lag of the successive peaks in the ACF. Here the

second peak is taken as the reference for other peaks since its time lag is not too large

and therefor the effect of the decay due to its estimation is not considerable. After

that, the peak values and their corresponding time lags can be used to estimate the

parameter β by fitting the data into the model of Equation 2.17.

ρ̂τ = aβτ (2.17)

where β is always between 0 and 1. A smaller value of β, implies that the signal

fades away faster while a value equal to 1 means that the signal is pure oscillatory

with no dampening factor. The implication of β is in contrary to its value. To obtain

a definition for decay rate which has a smaller value when the decay in the original

data is smaller, it is possible to use a decay index as 1−βτ instead of β itself (τ is the

oscillation period). This decay index has also a meaning and can be obtained from

the difference between two adjacent peaks as shown in Equation 2.18.
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p2 = βτ2−τ1p1 −→ p1 − p2 = (1− βτ2−τ1) = 1− βτ (2.18)

Therefore, the difference between two adjacent peaks in the ACF (after compen-

sating the estimation decay) is 1− βτ .

The method is applied on a simulated example where the signal is

x5(t) = 5e−0.005tsin(2π/15) +w(t). w(t) is white noise with variance equal to 1. The

time series plot of the data along with its ACF is shown in Figure 2.11. The algorithm

detects an oscillation with 14.97 samples per period in the data with a standard

deviation equal to 1.4. The identified peaks are used for estimation of the decay rate

in the data. The decay rate is obtained as 0.278 before compensating the decay due

to the estimation. The decay rate of the original data is e−0.005 = 0.9950 which is

equivalent to a decay index value of 0.07. The obtained decay rate is much smaller

than the true value because of the greater decay that the estimated ACF has compared

to the original data. After compensation of the estimation decay in the ACF, the

decay rate is obtained as 0.9963 with 95% confidence interval as [0.9928, 0.995]. The

true value is indeed in the confidence interval of the estimation. The decay index is

also obtained as 0.059.
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Figure 2.11: Top: x5(t) in time, Bottom: ACF of x5(t)

2.10 Case study

The algorithm is also applied to an industrial data set. The data is originated from

Eastman Chemical Company and consists of 30 variables which are sampled every

20 seconds. Figure 2.12 is the time series plot of the variables and Figure 2.13 plots

the auto correlation functions and the spectrum of the individual variables. The
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spectrum of most of the variables shows a peak value around the frequency of 0.0188

which approximately equals to 330 samples. There are also very small peaks with

approximately 66 samples per period in the spectrum of tags 20, 17, 16, 15 and 1.

Tags 18, 16 and 15 also contain very small peaks close to frequency of 0.356 which is

almost 17.6 samples per period. Table 2.3 lists the result of applying the algorithm

to the data without any pre-processing or filtering.
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Figure 2.12: Time series plot of the case study variables

As Table 2.3 shows, the algorithm successfully identifies the variables containing

peaks in their spectrum and estimates the corresponding oscillation periods even for

the ones containing several oscillations. Oscillations in tags 2-4, 9-10, 14-15 and 21

are hidden by a dominant low frequency trend in the data which prevents detection

of oscillations. It is necessary to filter the data if it has a dominant trend in order to
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Figure 2.13: ACF and scaled spectrum of the case study vaiables

be able to detect oscillations.

The cut-off frequency for the filter can be determined from the length of the data.

Note that we are using the band-pass filter only to remove the non-stationary trend

in the data rather than to separate oscillations. While this filter may be designed

automatically, it does not distort the data and this point will be elaborated shortly.

The length of the data is about 8600 samples. As was mentioned, the length of

the ACF to be calculated should be at least 1/3 of the length of the data which is

almost 2800. This implies that only oscillations with a period up to 2800/5=570

can be reliably estimated from the ACF. The cut-off frequency should be above this

limit. In this work a filter is applied to the data to remove the oscillations with a

period above 1000 samples. Also the oscillations with periods less than 2 samples are

removed. The result of analyzing the filtered data is also listed in Table 2.3. As can

be seen in Table 2.3, the oscillations that were hidden by the trend in the data are

also detected after applying the filter.

An important point in selecting the filter is to avoid over filtering the data. For
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example, applying a narrow pass-band filter to the data and keeping oscillations in

range of 2 to 35 samples per period, causes detection of oscillations in this range in

almost all the variables. These oscillations do not contain any considerable power

in the original variables which is the reason that there is no peak corresponding to

these oscillations in the power spectrum even after removing the trend in the data.

The reason that these oscillations are detected after applying the narrow pass-band

filter is due to the magnification they receive by removing other frequencies from the

spectrum. Filtering may also inserts new oscillations in the data depending on the

cut-off frequency and the type of the filter. Therefore, applying filters to the data

other than one general filter for removing the trend in the data is not recommended.

Even if the filter does not generate artificial oscillations, it is not desired to identify

any oscillations in the data that do not actually have any power in the original data,

but they are detected simply due to the magnification they receive from the filter.
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Table 2.3: Result of analyzing the industrial data

Tag Large period Medium period Small period
no. org. Filt. org. Filt. org. Filt.
1 320± 42 324± 57 66.7± 16 66.7± 16 - -
2 - 622± 37 - - - -
3 - 335± 15 - - - -
4 - 301± 53 - - - -
5 314± 35 314± 35 - - - -
6 313.8± 26 304± 37 - - - -
7 334± 0 306± 33 - - - -
8 306± 42 306± 42 - - - -
9 - 279± 73 - - - -
10 - 418± 92 - - 17± 5 17.7± 5.6
11 309± 37 309± 37 - - - -
12 307± 58 358± 32 - - - -
13 358± 60 358± 60 - - - -
14 - 648± 101 - 63± 9.7 - -
15 - 354± 114 65± 7.6 65± 7.4 7.6± 2.5 17.6± 2.5
16 303± 40.8 303± 40.8 65± 9.8 65± 9.8 17.6± 2.6 17.6± 2.6
17 - 408± 136 65.9± 11.2 65.9± 11.2 32.5± 4.9 32.5± 4.9
18 357± 83 341± 38 - - 16.4± 4.8 16.6± 4.7
19 355.6± 55 355.6± 25 - - - -
20 351± 46 351± 46 67± 12.5 67± 12 - -
21 - 468.6± 59.6 - - - -
22 353± 18 353.8± 18.2 - - - -
23 337± 0.7 337± 0.7 - - - -
24 349± 35 348.6± 34.6 - - - -
25 339± 1.41 339± 1.41 - - - -
26 359± 32 358.8± 31.9 - - - -
27 332± 27 328± 23 - - - -
28 330± 37 330± 37 - - - -
29 357± 41 357± 37 - - - -
30 - - - 120± 38 - -

2.11 Non-sinusoidal signals

Nonlinear oscillations which are mainly produced by valve stiction do not have an

exact sinusoidal form. It is reported that the controller output in a feedback loop

suffering from valve stiction has a triangular shape while the process output has a

square wave type of oscillation [31]. Non-sinusoidal oscillations have several harmonics

in addition to the main oscillation. This fact may cause problem while applying
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methods based on the analysis of power spectrum for oscillation detection. However,

since ACF does not decompose the original signal, it will still be oscillatory with

the same period as the original signal. For an illustration, Figure 2.14 plots a signal

which is a summation of 4 different types of signals along with its components. As

can be seen in Figure 2.14, the power spectrum has several peaks corresponding

to the harmonics of triangular and square waves. Determining the main oscillation

frequencies present in the original signal from the power spectrum is difficult while

the developed algorithm correctly detects the oscillation periods of triangular and

square waves as 15 and 40 samples respectively.
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Figure 2.14: Components of a variable containing non-sinusoidal oscillations

2.12 Summary

The chapter proposed an automatic algorithm for detection of the oscillatory vari-

ables and estimation of the oscillation periods. The algorithm is based on detecting

and clustering the peak values of the auto correlation function of the variables. The

advantage of the algorithm is in detecting the oscillatory variables in the presence

of multiple oscillations with no frequency-selection filtering requirement in order to
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separate oscillations. The algorithm is capable of providing an estimation of the in-

dividual oscillation frequencies present in the data and also the decay rate of the

original signal in the case of damped oscillations. Another advantage of the algo-

rithm is that it is easily implementable using any programming platform with a low

processing power usage. This fact makes the algorithm more suitable for practical

applications
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Figure 2.15: Algorithm for oscillation detection
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Chapter 3

Differentiating between oscillations
due to controller tuning and
harmonic external disturbances
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3.1 Abstract

After oscillation detection, the next stage is to categorize the type of the oscillation. in

this chapter, oscillatory faults are divided into three different categories based on the

element of the loop which causes the oscillation: oscillations due to controller tuning,

valve problems and external oscillatory disturbances. Selection of the appropriate

root cause diagnosis and troubleshooting methodologies requires the knowledge of

which element in the loop has caused the oscillation. The motivation is that most of

the developed diagnostic algorithms are specialized in finding the source of a specific

type of abnormality. For example, there are several methods specifically targeting

root cause diagnosis of an oscillation caused by a sticky valve [6, 5, 31] which cannot

work if the oscillation is actually caused by a poorly tuned controller. This section

considers developing algorithms in order to identify the category of the oscillation

before trying to find the loop which is the root cause of the fault.

The properties of linear systems described by discrete-time stochastic dynamic

models and the conditions which yield an oscillatory response are studied here. Feed-

back loops which are oscillatory due to the controller tuning fall into this category

of systems. Therefore, analyzing linear systems with oscillatory responses, reveals

the properties of self-oscillatory feedback loops. It is shown that in the presence of

random disturbances, the oscillation due to the controller has a varying amplitude

and phase even though the oscillation frequency is constant. The auto correlation

function of this type of oscillatory signals has a decay ratio and does not have a de-

terministic amplitude of oscillation. These properties can be utilized to distinguish

between controller induced and externally introduced oscillations. Two hypothesis

tests are developed to facilitate a solution for the above stated oscillation diagnosis

problem.

3.2 Introduction

Oscillations in a feedback loop can be introduced by controller tuning, nonlinear-

ity such as valve induced problems or external harmonic disturbances. Oscillations

due to the valve problems have the distinct property of being nonlinear which make

them distinguishable from other types of oscillations [31]. Nonlinear oscillations have

several harmonics in addition to the main frequency oscillation which have phase

coupling. Methods like non-linearity ranking utilizing surrogate data [32] or bicoher-

ence [6] are suitable for detection and diagnosis of nonlinear oscillations which are

most often caused by a sticky valve. Jelali et al. [21] provides a literature review on
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developed methods for oscillation detection and diagnosis in control loops with an

emphasis on valve stiction detection.

The other two types of oscillations, external harmonics and oscillations due to

the controller tuning, are very similar to each other and there is a lack of methods

for distinguishing these two types of oscillations. Oscillations due to the controller

tuning happen when the controller is tuned in such a way that makes the closed loop

to have at least a pair of complex poles. The imaginary part of the complex pair

of poles causes oscillations in the closed-loop system. When a loop has consistent

linear oscillation, the question is if it is due to the controller tuning or a harmonic

disturbance.

The problem of distinguishing oscillations between controller tuning and harmonic

disturbances has also been studied in some other papers as explained below. Esti-

mating the ultimate frequency of the oscillation due to the controller by modelling

the loop is a possible diagnosis method. Karra et. al. [33] proposed a solution

based on a system identification approach in order to distinguish between external

oscillatory disturbances and oscillations due to controller tuning. It is also proposed

that a marginally stable controller has a poor performance at all frequencies based

on minimum variance benchmark which can be used as a criterion for distinguishing

oscillations [34]. Babji et. al. [35] proposed a method based on the assumption that

an oscillation due to the controller has a higher amplitude compared with an external

oscillatory disturbance. However, the assumptions used in these methods do not hold

in general and applying the previously proposed methodologies is not always viable.

It is worth mentioning that there are many papers that consider detection of

harmonics in colored noise [36, 29, 30], which bear some similarity with the subject

to be studied here. However, these methods try to compensate the effect of colored

noise in order to detect and estimate the frequency of harmonics in the data, which is

an oscillation detection problem. This chapter is to identify oscillatory colored noise

from harmonics.

The chapter studies the condition for a loop to be oscillatory due to the controller.

It is shown that a consistent oscillation in the time domain due to the controller does

not require the loop to have poles with pure imaginary values. Any complex pair of

poles will cause persistent oscillation in the loop even if the real part is not zero in

the presence of stochastic disturbances. Although the fact that systems with complex

conjugate poles driven by white noise oscillate at their natural frequency is very well

known in literature with the name of resonance [37], it has not been used in oscillation

root cause diagnosis of control systems.

The difficulty in distinguishing externally introduced harmonics and oscillations
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due to controller tuning is due to the fact that they are similar to each other in

the time domain. However, it will be shown that an oscillation due to controller

tuning has a different auto correlation function from a harmonic disturbance of the

same frequency. Two hypothesis tests are developed to distinguish these two types

of oscillations from each other. The method is also useful in detection of harmonics

in colored noise which is developed on the basis of our previous work on oscillation

detection [38].

The rest of the chapter is organized as follows. Section 3.3 studies the response

of a general ARMA process to the input in time domain. In particular, Section 3.3.2

studies the form of the ACF of the response of a general ARMA process. Section

3.4 studies the form of the ACF of harmonic disturbances. Section 3.5 discusses the

possible methods to distinguish oscillations due to the controller tuning from harmonic

disturbances. The case of pure imaginary poles in the system is investigated in Section

3.6. A case study is also included in Section 3.7. Conclusions are drawn in Section

5.10.

3.3 Response of a general ARMA process

This section reviews the known properties of responses of systems with complex conju-

gate poles to stochastic disturbances as the foundation for the diagnosis methodology

to be discussed later. Discrete time linear stochastic systems are usually expressed in

the form of ARMA models. An ARMA model consists of a moving average and an

autoregressive part. The forms of the responses of these two parts in time domain are

investigated separately and then combined to form the response of the whole process.

The form of the response of a pth order AR (autoregressive) model can be obtained

as a generalization of the response of a 2nd order AR model. Thus, first the response

of a general 2nd order AR model as defined in Equation 3.1, is investigated.

yt + a1yt−1 + a2yt−2 = εt (3.1)

Since the input to ARMA processes is white noise which does not have a closed

form expression, the difference equation is solved in between two time samples [39].

The response of the process in between two input samples is obtained by solving

Equation 3.1 assuming that εt is constant within the sampling interval. It is known

that the solution to a difference equation consists of two homogeneous and particular

solutions. The homogeneous solution of a difference equation only depends on the

system properties and its initial values while the particular solution is obtained by
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considering the form of the input to the process [39]. First, we consider the homoge-

neous solution and then the form of the particular solution is investigated.

The homogeneous solution to Equation 3.1 has three different forms based on the

values of the two roots of the equation (poles of the system) [40].

• The two roots are real and distinct. The solution to the equation is obtained

as:

yt = b1α
t
1 + b2α

t
2 (3.2)

where b1 and b2 are constants determined from the initial conditions and α1 and

α2 are the two roots.

• The two roots are real but equal, then,

yt = (b1 + b2t)α
t (3.3)

where α is the repeated root and b1 and b2 are determined from the initial

values.

• The two roots are complex conjugate which yeilds a response as in Equation

3.4.

yt = b∗αt + bα∗
t

(3.4)

where ∗ notes conjugate transpose. If the roots are expressed as reiθ where r =
√
a2

and cos(θ) = −a1/(2r) and sin(θ) =
|a21−4a2|0.5

2r
, then the response can be written as:

yt = rt(d1costθ + d2sin(tθ)) = g1r
tcos(tθ + g2) (3.5)

where d1, d2, g1 and g2 are determined from the initial values. Therefore, the response

is oscillatory but it has a decay ratio equal to
√
a2. When a2 = 1, the response is

a pure sinusoidal wave. It should be noted that this decay ratio is different from

damping factor of the second order transfer function formulation.

Considering a pth order process, for each pair of complex conjugate roots repeated

n times, the following term is included in the response [40].

rt[β1cos(tθ + φ1) + β2tcos(tθ + φ2) + ...+ βnt
n−1cos(tθ + φn)] (3.6)

The one-sample ahead particular solution of a general AR model in response

to a constant input is also a constant value. Therefore, the combination of the

homogeneous and particular solution is of the form of the homogeneous solution

added with a constant.
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The response of an ARMA process defined as in Equation 3.7 also has the same

form as the response of its AR part.

yt + a1yt−1 + ...+ apyt−p = εt + b1εt−1 + ...+ bqεt−q (3.7)

Moving average part of the process only changes the particular solution which is

still a constant value within sampling interval. The change in the constant value

added to the homogeneous solution changes the mean value and the coefficients of the

homogeneous solution by changing the initial values at each sample time. Therefore,

analysis of AR processes is sufficient in order to investigate the properties of oscillatory

linear processes since only the autoregressive part of the process can generate the

oscillation.

3.3.1 The response of ARMA process in reality

The input to a linear feedback loop described by ARMA models in reality, is not only

one constant value. The input is the noise entering the loop. By receiving a new noise

value, the difference equation is solved again to produce the corresponding response.

The form of the system response remains the same at all sample times depending

only on the system properties. The difference in the response is caused by different

initial and input values at each sampling instant.

In the case of a second order AR process with imaginary poles, gis in Equation 3.5

change at each sampling instant while θ and r are constant. This change in parameters

yields an oscillation with varying amplitude and phase but with constant frequency

and decay ratio. The response of such a system can be shown as in Equation 3.8

where the change in amplitude and phase is shown by βt and φt as functions of time:

yt = βtr
tcos(tθ + φt) + εt (3.8)

To summarize the above discussions, the responses to the stochastic disturbances

by ARMA processes with complex poles are always oscillatory with constant frequency

and varying amplitude. It is not required that the real parts of the poles to be zero

in order to obtain persistent oscillation in the response. If the input is constant,

the response converges to a constant value depending on the input value. However,

consecutive varying inputs to the process keep the response constantly oscillating if

the time difference between consecutive inputs is not long enough for the process to

settle down. In practice, there is always some kind of noise entering the loop at each

sampling instant (piece wise constant or even continuous change) which does not let

the process to settle on a constant value and therefore the response is constantly

oscillating.
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3.3.2 ACF of ARMA processes

For a pth order autoregressive model defined as in Equation 3.9, the ACF has the

form of the Equation 3.10 according to Yule-Walker theorem [40].

Yt =
1

1− a1z−1 − ...− apz−p
εt (3.9)

ρj = a1ρj−1 + a2ρj−2 + ...+ apρj−p (3.10)

where ρ denotes the ACF and j ≥ p. Equation 3.10 is the same difference equation

as that the process itself. When the poles of the system (αi is Equation 3.11) are

distinct, the solution of Equation 3.10 can be obtained as in Equation 3.11:

ρj = g1α
j
1 + g2α

j
2 + ...+ gpα

j
p (3.11)

where gis are determined from the initial values.

Considering a moving average process as defined in Equation 3.12, it can be shown

that the ACF has the form of Equation 3.13 [40].

Yt = εt + θ1εt−1 + ...+ θqεt−q (3.12)

ρj =
σ2
ε

σ2
Y

(θj + θj+1θ1 + θj+2θ2 + ...+ θqθq−j)forj = 0, 2, ..., q (3.13)

The ACF of a MA process is non-zero only for the time lags equal or less than the

order of the MA process. Thus, the ACF of an ARMA process is the same as the

ACF of its autoregressive part after the first few lags depending on the order of the

MA part. Therefore, it is sufficient to analyze the AR part of the process in order to

study the form of the ACF.

When there are complex roots in the AR part of the process, the ACF will be

oscillatory. To learn the behavior of the ACF in the case of complex roots, we can

consider a 2nd order AR process as in Equation 3.1. The ACF of a general AR2

process is of the form of Equation 3.11 and the two coefficients are determined from

ρ0 = 1 and ρ1 = −a1/(1 + a2). Thus, the ACF of an AR2 process can be written as

in Equation 3.14.

ρj =
(1− α2

2)α
j+1
1 − (1− α2

1)α
j+1
2

(α1 − α2)(1 + α1α2)
(3.14)

When the two roots are complex conjugate (happens if a2 > a21/4) the roots can be

written as α1 =
√
a2exp(iθ) and α2 =

√
a2exp(−iθ) where cos(θ) = −a1/2√a2. The

ACF has the form of Equation 3.15 by substituting the roots into Equation 3.14.

ρj =
a
j/2
2 (sin(j + 1)θ − a2sin(j − 1)θ)

(1 + a2)sinθ
(3.15)
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The ACF is oscillatory and it has a decay ratio of a
j/2
2 . For the process to be stable,

it is required that a2 is less than 1. If a2 is exactly equal to 1, then the ACF is

pure oscillatory and does not converge to zero. Note that the decay ratio of the

ACF and its frequency are exactly the same as that of the response of the system.

The decaying oscillation in the ACF of oscillations generated by linear systems is

the special property of these type of oscillations which will be utilized later for the

oscillation diagnosis purpose.

The theoretical form of the ACF of the response of a linear system to white noise

is similar to its response to non-zero initial values since they are both homogeneous

solutions of the system’s equation. However, the estimated ACF from the data does

not converge to zero even for small decay ratios. The tail of the estimated ACF will

always be oscillatory with small amplitudes depending on the decay ratio. For exam-

ple, middle panel of Figure 3.1 shows the estimated ACF of y1(t) =
1

1−0.3z−1+0.9z−2 εt

where εt has a variance of 1. As can be seen in Figure 3.1, the ACF has a decaying

behavior up to time lag of 100 and has smaller amplitude oscillations for larger time

lags while the response of the system to a non-zero initial value converges to zero

much faster.
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Figure 3.1: y1(t) in time, its ACF and response to non-zero initial values
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3.3.3 Continuous time systems

It should be mentioned that continuous systems also behave in the same way as

described for the discrete time systems. A pair of complex roots (a ± bj) in the

differential equation describing a linear system, adds the term g1te
atcos(bt + g2t) to

the system’s response to varying input values. For example, the response of a system

described by Y (s)
U(s)

= e−2s

25s2+6s+1
which is controlled by a PID controller of 1+ 0.1

s
+ 50

1+ 100
s

is plotted in Figure 3.2. The top panel of Figure 3.2 plots the step response of the

system and the middle panel plots the response of the system to white noise with

variance of 1. The bottom panel of Figure 3.2 plots the ACF of the response to the

white noise. It should be noted that the data are sampled at every second in order

to estimate the ACF and plot the results. The oscillation period of the ACF can be

estimated as 22.5 samples.
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Figure 3.2: Top panel: step response, Middle panel: response to white noise, Bottom
panel: ACF of the response to white noise of a contiuous time linear sytem controlled
with a PID controller

To compare the response of the simulated linear system to a sinusoidal disturbance

with the response of the system to white noise, Figure 3.3 plots its response to a
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sinusoidal signal and its ACF. It is observed that the response of the system to a

sinusoidal disturbance is a sinusoidal signal with constant amplitude and phase as is

expected. The ACF of the response also is different from the ACF of the response to

white noise.
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Figure 3.3: Top panel: response of the simulated continuous time system to oscillatory
disturbance, Bottom panel: ACF of the response

3.4 ACF of harmonics

A harmonic process means a pure sinusoidal signal with added white noise. The ACF

of a harmonic process as in Equation 3.16 can be obtained as shown in Equation 3.17.

Xt = Σk
i=1Aicos(ωit+ φi) + εt (3.16)

ρx(τ) =
1

σ2
x

Σk
i=10.5A

2
i cos(ωiτ) (3.17)

where σx is the standard deviation of Xt and τ is time lag. The ACF of a harmonic

process is oscillating with exactly the same frequency and a constant amplitude. This

fact implies that the ACF of a harmonic process is deterministic and can be exactly

determined by the knowledge of its frequency and amplitude. However, in practice,

the ACF calculated from data of finite length is also a function of the length of the

data and the time lags as discussed in [38].
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The ACF is estimated by Equation 3.18 from the data.

ρ̂τ =
1

Nσ2

N−τ∑
t=1

(xt − μ)(xt+τ − μ) (3.18)

where N is the number of samples, μ is the estimated mean of the data and σ is

the standard deviation. This estimation is known to have the minimum estimation

error compared to alternative methods [41]. It artificially introduces a decay in the

estimated ACF due to the finite number of data samples used for estimation, even

when the signal is pure sinusoidal. This decay is linear with respect to time.

Each peak value of the ACF of a pure sinusoidal signal has a value equal to N−τ
N

where τ is the corresponding time lag. The reason is that ρτ = 1
Nσ2

∑N−τ
t=1 (xt −

μ)(xt+τ − μ) = 1
Nσ2

∑N−τ
t=1 (xt − μ)2 = N−τ

N
. Therefore the ACF of a single sinusoidal

signal can be written as N−τ
N

cos(2πfτ) where f is the oscillation frequency.

When there is white noise added to the signal, the peak values in ACF are no

longer equal to N−τ
N

because of the effect of white noise at zero time lag. However,

the effect of noise is not present at the second peak and so on, which facilitates the

estimation of ACF. For example, the ACF of a signal cos(2πft)+εt (where εt is white

noise) can be written as shown in Equation 3.19 [38].

pr
N − τ

N − τr
cos(2πfτ) (3.19)

where pr is the value of a peak in the ACF (except for the peak at lag 0) and τr is

its corresponding time lag.

The above discussion illustrates that the ACF of a harmonic process plus white

noise has a deterministic behavior. That is why in this work the ACF of variables is

utilized for further analysis instead of the original data. While the original variables

have random behavior due to the effect of white noise, the shape of their ACF can

be easily determined with the knowledge of their respective frequency and one of the

peak values.

The peak values in the ACF can be obtained following our previous work in [38]

where estimation of the oscillation period was performed by detecting the peaks in

the ACF. Detection of the peaks was performed based on clustering the ACF around

the time lags of the peaks. The oscillation period can be estimated as the average of

the time difference between adjacent peaks in the ACF.

3.5 Diagnosis

This section discusses possible methods for distinguishing controller induced oscil-

lations from harmonics. As was mentioned in Section 3.3.1, one difference between

47



these two oscillation types is the varying amplitude and phase of controller induced

oscillations. This property can be visually verified in the time domain. However, the

difficulty here is the effect of noise on both types of oscillations. Harmonic processes

with added white noise also have a varying amplitude in the time domain due to the

effect of noise. Thus, the time series plot of a harmonic process with added noise

will be similar to the plot of an oscillation due to the controller tuning in terms of

the varying amplitude. That is why these two different types of oscillations are not

distinguishable in the time domain.

The other difference between these two types of oscillations is the difference in the

ACF as described in Sections 3.3.2 and 3.4. Figure 3.4 shows two oscillatory signals

of same frequency. y2(t) is the output of a loop consisting of a linear process model as
1

z2+0.6z+0.05
controlled with a PI controller as 1.48 + 1

z−1 in the presence of stochastic

disturbance. y3(t) is a single harmonic plus white noise as y3(t) = 0.5sin(2π/3.5)+εt.

As can be seen in Figure 3.4, in the time domain plot they are similar to each other.

However, the ACF of the sinusoidal signal is constantly oscillating for all the time

lags, while the ACF of the other signal fades away after the first few lags.
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Figure 3.4: y2(t) and y3(t) in time along with their ACFs
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This difference in the ACF makes it possible to diagnose the type of the oscillation

by examining the tail of the ACF. If the ACF after the first few lags is still oscillatory

with almost constant amplitude, then the oscillation is due to a harmonic process and

not the controller tuning.

One issue remains here for the controller induced oscillations when the decay ratio

is close to 1. As was mentioned, the ACF of the response of linear systems calculated

from data does not converge to zero even for large time lags but continues oscillating

with small amplitudes. The smaller the decay ratio, the smaller the amplitude will be.

The oscillation amplitude for large decay ratios will be larger. An example of this case

is plotted in Figure 3.5 where the decay ratio equals to 0.995 (y4(t) =
1

1−0.3z−1+0.99z−2 εt

). This is the disadvantage of examining the tail of the ACF to diagnose oscillations.
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Figure 3.5: ACF of y4(t)

There is another difference in the ACF between the harmonic processes and os-

cillations due to the controller tuning. The oscillation due to controller tuning has a

varying amplitude in the estimated ACF. This fact can be observed in Figures 3.5 and

3.1. Therefore, a method based on diagnosis of the oscillation with varying amplitude

in the ACF is capable of distinguishing these two types of oscillations.

An automatic and reliable method is required to check for variations in the am-

plitude. One possible method is based on direct examination of the peak values in

the ACF corresponding to the oscillation. If the peak values are constant, then it

can be concluded that the oscillation is due to a harmonic process. Otherwise, the

oscillation is caused by controller tuning.

3.5.1 Automatic method for diagnosis of oscillation

The previous section showed that the ACF of a harmonic signal is deterministic while

the ACF of a controller induced oscillation is stochastic. A method is required for

automatic distinction between these two oscillation types.

A hypothesis test needs to be developed in order to diagnose the type of the
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oscillation by examining the ACF. Development of a hypothesis test requires a test

statistic and the knowledge of the probability distribution of the test statistic under

the null hypothesis. The null hypothesis is that the oscillation is a harmonic process

and not due to controller tuning.

Here, instead of examining ACF values at all time lags, we only consider the peak

values. The test will be conducted by comparing the differences between peak values

in the ACF from their confidence interval. Assuming there are k peaks in the ACF,

there will be k∗(k−1)
2

distinct pairs of peaks in the ACF (it should be noted that the

peak at 0 time lag should not be considered in the analysis). Assuming a harmonic

process, the difference between any two peak values in the ACF of harmonics is

theoretically zero. However, there are random differences between estimated peak

values (disregarding the effect of the linear decay inserted due to the estimation for

now).

In order to test the differences between the peak values, we need to first detect

the peaks and second, compensate the difference between the peaks due to the decay

caused by the estimation method as was described in Section 3.4. To this end, the

value of the peak at the larger time lag (p2) is compared to the adjusted value (pa1)

of the peak at the smaller time lag (p1). p
a
1 is obtained as in Equation 3.20.

pa1 = p1
N − τp2
N − τp1

(3.20)

p2 − pa1 will no longer be affected by estimation induced decay.

We can now determine the confidence interval of the difference between two ACF

peaks. A confidence interval can be derived based on the variance of the estimated

ACF. It is known that the ACF of the response of a general linear process follows

normal distribution considering each time lag individually [42]. The variance of the

distribution depends on the true values of the ACF. However, it is known that the

ACF of white noise has expected value of 0 and variance equal to 1
N

where N is the

number of data samples [41].

Considering a harmonic process with added white noise (yt = xt + εt where xt is

the harmonic part), xt has a deterministic ACF while εt has ACF values distributed

as N (0, 1/N). ACF of yt which is a weighted summation of the two ACFs, is approx-

imately distributed as N (μ, 1/N) where μ is the ACF value of xt. The true variance

of ACF of yt is smaller than 1
N

because the ACF of εt is multiplied by σ2
ε

σ2
ε+σ2

x
in or-

der to obtain the ACF of yt. This makes the variance of ACF of yt to be equal to

1/N× ( σ2
ε

σ2
ε+σ2

x
)2 which is smaller than 1

N
. In the presence of small signal to noise ratio,

i.e. σ2
x << σ2

ε , we can assume ACF of yt is approximately distributed as N (μ, 1/N).
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If this assumption does not hold, methods for estimating the signal to noise ratio will

be provided in the next section.

The difference between two nominal peaks in the ACF, after adjusting the value of

the peak at smaller time lag (p2 − pa1), is the subtraction of two normally distributed

random variables (assuming the oscillation is a harmonic process). Thus the distri-

bution of the differences between peak values in the ACF of a harmonic process is as

in Equation 3.21.

p2 − pa1 ∼ N (0,
1

N
(

σ2
ε

σ2
ε + σ2

x

)2(1 + (
N − τp2
N − τp1

)2)) (3.21)

where p2 peak is selected far from the initial peak p1 so the two variables can be

assumed independent.

If an estimation of the factor σ2
ε

σ2
ε+σ2

x
is available as will be discussed shortly, the

true value of the confidence interval can be obtained. Otherwise, an approximate

confidence interval equal to 3
√
2√
N

can be used in order to check if the differences between

peak values in the ACF are significant. For example, Figure 3.6 plots the histogram

of the differences between the peak values in the ACF of xt = sin(2π
10
t) + εt where

variance of εt equals to 1. The confidence interval obtained based on Equation 3.21

equals to 0.063 and as can be seen in Figure 3.6 the difference between no two peaks

in the ACF exceeds the significance level. The approximate confidence interval (3
√
2√
N
)

equals to 0.094.
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Figure 3.6: Distribution of the differences between the peak values in the ACF of
xt = sin(2π

10
t) + εt

3.5.2 Effect of added colored noise

An investigation of the effect of colored noise on both types of oscillations is required.

ACF has the advantage of filtering white noise from the data. If the noise is white,
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there will be no effect since the noise does not appear in the ACF of any signal except

at 0 time lag. However, we need to consider the effect of added colored noise on the

ACF of both types of oscillations.

Colored noise is the output of processes such as an ARMA process with white

noise as its input and therefore has all the properties mentioned in Section 3.3. If

the added colored noise is also oscillatory (i.e. the noise process has complex roots),

we need to filter the signal in order to decompose it into its individual oscillatory

components. Readers are referred to [23] for more information on the filter design

and the method for dealing with the presence of multiple oscillations in the data.

Here, it is assumed that the noise is not oscillatory.

A signal with added colored noise can be written as in Equation 3.22 where xt

represents the oscillatory part of the signal (could be a harmonic or generated from an

ARMA process) and wt represents the added colored noise. Since xt is independent

from wt, the autocovariance function of yt (Ry(τ)) is the summation of the autoco-

variances of the two independent parts as shown in Equation 3.23. Therefore, the

ACF of yt is also a weighted summation of two independent functions.

yt = xt + wt (3.22)

Ry(τ) = Rx(τ) +Rw(τ) (3.23)

wt has a fading ACF which can be represented as ατ where α is the largest pole of

the noise transfer function. Therefore, its effect is present in the smaller time lags till

the value of ατ is negligible.

The fading ACF of colored noise disturbs the ACF of the oscillatory part of the

variable (xt). Therefore it is necessary to analyze the ACF after the transient behavior

in the first few lags is faded and the ACF becomes monotone. The monotonous

behavior in the case of a harmonic process means an almost constant oscillation

amplitude which implies peaks with similar values. On the other hand, monotonous

behavior in the case of oscillation due to controller tuning means that although the

oscillation has varying amplitude, it does not show a constantly decaying behavior.

The part of the ACF that satisfies this condition is called the tail of the ACF. The

proposed hypothesis test should be performed on the tail of the ACF so that the

result is not affected by the added colored noise in the data.

It should be noted that the non-stationary trend in the data can also disturb the

ACF and make oscillation detection or diagnosis difficult. It is required to remove

the non-stationary trends and abrupt changes from data by filtering [23] or other

methods for a reliable oscillation detection or diagnosis based on ACF.
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The developed diagnosis methodology also requires additional pre-processing of

the data if there are multiple oscillations present in order to correctly diagnose each os-

cillatory component. If there are multiple oscillations, one should apply the approach

such as [23] to separate the oscillations into individual ones first and then apply the

proposed method to each oscillation for the diagnosis. Alternatively, one can also

apply wavelet transform approach to separate oscillations. Proper wavelet transform

of the ACF can deal with the presence of multiple oscillations, non-stationary trends

in the data and noise [43].

3.5.3 Estimation of signal to noise ratio as additional test

By excluding the first few peaks in the ACF from the analysis in order to remove

the possible effect of added colored noise in the data, the null hypothesis may not

be rejected even when the oscillation is truly due to controller tuning. For example,

consider a process model of e−2s

25s2+6s+1
which is controlled by a PID of 1+ 0.1

s
+ 50

1+ 100
s

in

a loop. There is white noise with variance of 0.2 added to the output as measurement

noise. Figure 3.7 plots the output of the loop sampled every second and its ACF in

the middle panel. The bottom panel shows the histogram of the differences between

peak values in the ACF.
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Figure 3.7: Top: output of the simulated continuous time loop, Middle: ACF of the
output, Bottom: histogram of the difference between the peaks in the ACF
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As can be seen in Figure 3.7, since the ACF decays very fast, the peaks in the

ACF have very small values. The confidence interval for the differences between the

peak values in the ACF equals to 0.056 based on Equation 3.21 while the approximate

confidence interval is 0.094. By excluding the first few high value peaks in order to

avoid the possible effect of added colored noise in the data, the differences between the

remained peaks exceed the true confidence interval but are less than the approximate

one. Considering that an estimation of the true confidence interval may not be always

available and the approximate confidence interval might be used in practice, the null

hypothesis may not be rejected which implies that the oscillation is a harmonic and

not generated by a linear system. The reason for this problem is the fact that the

peaks have very small values at the tail of the ACF and therefore their differences

are also very small.

Correct diagnosis of the oscillation is possible by more analysis based on estimating

the signal to noise ratio (SNR) from the ACF and comparing it to the SNR estimated

from the power spectrum of the variable. Signal to noise ratio is defined as in Equation

3.24.

SNR =
σ2
signal

σ2
noise

(3.24)

σ2
signal is the variance of the oscillatory part of the variable (yt = xt + εt) which will

be noted as σ2
x. σ

2
noise will be noted as σ2

ε afterwards.

It is possible to estimate SNR based on the peak values in the ACF. The value

of a peak in the ACF of a sinusoidal signal with added white noise can be obtained

as in Equation 3.25 [38]:

ρτp =

N − τp
N

σ2
x

σ2
x + σ2

ε

(3.25)

where τp is the time lag of the peak and N is the sample size of the data. Thus, SNR

can be estimated from the peak values in the ACF as in Equation 3.26.

σ2
x

σ2
ε

=

N

N − τp
ρτp

1− N
N−τpρτp

(3.26)

For a more reliable estimation of SNR from the peak values in the ACF, an average

of the peak values in the ACF should be used instead of only one peak value. For

that purpose, the length of the ACF is divided by 3 and the peak values in the middle

portion of the ACF are used. Each peak value is multiplied by
N

N − τp
where τp is its

corresponding time lag. The average of the adjusted peak values (P ) is then used to

estimate SNR as
P

1− P
.
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Another way to estimate SNR is based on utilizing the power spectrum of the

variable (yt). Parsval’s theorem states the relation between energy of the signal in

the time domain and its power spectrum as in Equation 3.27.

ΣN−1
n=0 y

2
n =

1

N
ΣN−1

n=0 |Yk|2 (3.27)

where Yk is the discrete Fourier transform of the variable yn. Assuming that the data

is detrended, its standard deviation equals to 1
N2Σ

N−1
n=0 |Yk|2 which is the summation

of the power spectrum of the data divided by the sample size.

Estimating SNR from the power spectrum is possible through estimation of the os-

cillation frequency by an oscillation detection methodology. The oscillation detection

method proposed in [38] provides an estimation of the oscillation period (T ) along

with a standard deviation for the estimated period (σT ). Summation of the power

spectrum of the variable in the frequency range of [1/(T + 2σT ) : 1/(T − 2σT )] sub-

tracted by the mean of the power spectrum at other frequencies, gives an estimation

of the power of the oscillation in the data. Dividing this value by the summation of

power spectrum at other frequencies gives an estimation of the signal to noise ratio.

If the oscillation is generated by the controller tuning, the estimated SNR from

the ACF will be considerably less than the SNR estimated from the power spectrum.

The reason is that the oscillation amplitudes in the tail of the ACF of this type of

oscillatory signals are very small and theoretically should be 0. Therefore, the SNR

estimated from the peak values in the tail of the ACF of this type of oscillations

will be considerably less than the true SNR value. However, if the oscillation is a

harmonic process, the estimated SNR based on the ACF will be close to the SNR

estimated based on the power spectrum.

For example, the SNR estimated based on the ACF of the response of the simulated

control loop plotted in Figure 3.7 equals to 0.0576 which is considerably smaller than

the SNR estimated from the power spectrum of the variable which is 0.775. The SNR

estimated from the power spectrum of a sinusoidal signal with added colored noise

as sin(2π
24
t) +

1

z−2 − 0.9z−1 + 0.18
εt (varince of εt is 1), equals to 0.29 while the SNR

estimated from its ACF equals to 0.25. The true value of SNR for this variable is 0.2.

We can observe that the SNR of a sinusodal signal with added noise estimated from

ACF is close to its value estimated from power spectrum while it is not the same for

the oscillation due to a controller tuning.
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3.6 Pure imaginary poles

So far the assumption was that the poles of the transfer function of the loop are

complex but not pure imaginary. The reason for this assumption was that pure

imaginary poles rarely happen in practice and behave similar to unstable poles. This

subsection studies the ACF properties of the response of a system with pure imaginary

poles.

Pure imaginary poles cause a consistent oscillation in the step response and a

consistent oscillation with varying amplitude when responding to noise. An example

of this case is plotted in Figure 3.8 which shows the step response of a loop consisting

of a process model of 3e−2s

34s2+17s+2
controlled by a PID controller of 3.2734+ 0.2

s
+ 80

1+ 100
s

.
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Figure 3.8: Top panel: step response of the simulated loop, Middle panel: ACF of the
step response, Bottom panel: peaks of the ACF of the response and of the equivalnet
harmonic

The response to a noise free step input is persistently oscillating with constant

amplitude. The ACF of this response is expected to be the same as the ACF of

a pure sinusoidal signal which has the same frequency and sample size. This can
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be examined by generating a sinusoidal signal with the same frequency as the step

response case with the same sample size. Bottom panel of Figure 3.8 shows the peaks

of the ACF of the step response and the peaks of the ACF of the equivalent sinusoidal

signal. The peak values are the same for all the time lags as is expected.

Figure 3.9 plots the response of the same loop to the step input when white noise

with variance equal to 0.1 is added to the input. The peaks of the ACF of this

response along with the peaks of the ACF of a harmonic with the same frequency

and sample size are plotted in the bottom panel. As can be seen in Figure 3.9 the

decay in the ACF corresponding to the response of the control loop is larger compared

to the decay in the ACF of the equivalent harmonic. The reason for this could be

the fact that the amplitude of the oscillation changes with time in the time domain

due to the varying noise values. Even though the ACF is expected to behave as the

ACF of a harmonic process, the estimated ACF has a larger decay because of the less

predictable behavior of the oscillation when there is noise in the environment.
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Figure 3.9: Top panel: response to noise of the simulated loop, Middle panel: ACF of
the response, Bottom panel: peaks of the ACF of the response and of the equivalnet
harmonic

Considering the fact that there is always noise in the environment, the larger decay

rate in the ACF of the response of a marginally stable loop to noisy input compared to

the ACF of its equivalent harmonic process can be utilized as a criterion to distinguish

between these two types of oscillations. When the result of the introduced hypothesis
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tests agrees with the oscillation being caused by harmonics, the decay rate of the

ACF can be checked again to ensure that the oscillation is not due to pure imaginary

poles. This test can be performed by simulating a sinusoidal signal with the same

frequency as the system’s response and the same sample size with added white noise.

The variance of the noise should be equal to the variance of the actual noise in the

data which can be estimated as proposed in Section 3.5.3. The actual ACF can be

compared with the ACF of simulated signal.

One note regarding this issue is when a step test is done on the system to determine

the ultimate frequency of the loop in order to design controllers. In the noise free

environment, the step response is constantly oscillatory only if the poles are pure

imaginary. For example, the simulated loop in Section 3.3.3 with the mentioned PID

controller has a constant oscillation in its step response when the proportional gain

is increased to 3.178. However, when there is white noise with variance of 0.02 added

to the unit step input, the response of the loop has a persistent oscillation even for

smaller gain values. For example, the step response of the loop with added white

noise considering a proportional gain of 2.6 for the controller is plotted in Figure

3.10.
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Figure 3.10: Step response of the continuous control loop introduced in Section 3.3.3
under noisy environment when the gain of the controller is 2.6

The conclusion of this subsection is that increasing the gain of the controller until

the step response of the loop has persistent oscillation in an industrial environment

does not necessarily mean that the loop is already marginally unstable at that con-

dition. Depending on the noise in the environment, the loop can show persistent

oscillation in the response when the poles are far from being pure imaginary. There-

fore, it is important to check the ACF of the loop’s response when trying to find the

ultimate frequency and gain of the loop for the controller design purposes.
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3.7 Case study

A multiple tank system as shown in Figure 3.11 is used in order to verify the results

of this study. The equipment is composed of three tanks and the level of the middle

tank is controlled by a PID controller in a loop. After reaching to a steady state

operation, the gain of the controller is increased until the output is oscillatory. The

level of the tank under control (after detrending) and its ACF are plotted in Figure

3.12.

Figure 3.11: Schematic of the multi-tank system under study

As can be seen in Figure 3.12, the ACF shows the same characteristics as discussed

in the previous sections. Figure 3.13 plots the prediction residuals of the ACF using

Equation 3.19 and taking the value of 23rd peak in the ACF as the reference. As

can be seen in Figure 3.13, prediction residuals exceed the significance level (0.09) at

several time lags which results in a rejection of the null hypothesis.

To observe the difference of the response of this system to oscillatory external dis-

turbances, an external oscillation of 0.01sin(2π/160t) is inserted into the loop after

re-tuning the controller to return to a non-oscillatory steady state. The level mea-

surement and its ACF are plotted in Figure 3.14. The ACF of the level measurement

in this case shows a pure sinusoidal signal with a linear decay as expected.
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Figure 3.12: Level measurement of the tank under study and its ACF when the loop
is oscillatory due to the controller

Figure 3.15 plots the residuals of predicting ACF of the response to sinusoidal

disturbance based on the value of its third peak. In contrary to Figure 3.13, the

residuals are far less than the significance level (0.09) and the null hypothesis is not

rejected. Again this verifies our methods.

External harmonic disturbances in industrial processes could happen due to an

oscillation originated by a valve stiction which becomes more linear when propagates

through the plant. For example Figure 3.16 top panel shows the normalized output

of an oscillatory loop in an industrial process which will be called loop 1. Figure

3.16 bottom panel plots the ACF of the output of loop 1. The histogram of the

differences between the peak values of this ACF is plotted in Figure 3.17 which

has an approximate normal shape. The confidence limit estimated for the differences

between the peak values is 0.07. It is observed that there is no sample in the histogram

exceeding the confidence limit. Performing the second test based on estimation of

SNR results in the SNR value of 0.14 estimated from the ACF which is close to SNR

value of 0.16 estimated from the power spectrum of the signal. Based on these tests,

the oscillation in loop 1 is considered to be due to an external disturbance.

Another loop in the same process is also oscillatory with similar frequency as

plotted in Figure 3.18 which will be called loop 2. Since loop 2 has a nonlinear

oscillation, it can be concluded that the root cause of the oscillation is a sticky valve
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Figure 3.13: Prediction residuals of the ACF plotted in Figure 3.12 and its significance
level
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Figure 3.14: Level measurement of the tank under study and its ACF using a stable
controller in the loop with added oscillatory disturbance

in loop 2 and loop 1 is disturbed through loop 2.

3.8 Summary

This chapter studied the properties of the responses of linear systems to stochastic

disturbances and also the properties of the auto correlation functions of the responses.

It was shown that the oscillation generated by a loop due to controller tuning has

different ACF properties compared to a harmonic oscillation, which can be utilized

to distinguish these two types of oscillations. Two hypothesis tests were developed

for automatic diagnosis of oscillations in feedback loops. The result is valuable in the

sense that distinguishing between oscillations caused by poor controller tuning from

external harmonics helps in deciding the appropriate trouble shooting procedure.

The disadvantage of this method is in the case of existence of more than one oscil-
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Figure 3.15: Prediction residuals of the ACF plotted in Figure 3.14 along with the
significance level
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Figure 3.16: The normalized output of an oscillatory loop in an industrial process
and its ACF

lation in the signal. The varying amplitude of the oscillation caused by linear systems

due to controller tuning makes it difficult to reliably differentiate between the peaks

in the ACF corresponding to different oscillations. Therefore, this method can be

reliably utilized if there is only one oscillation present in the data. Another method-

ology based on wavelet transform which is capable of handling multiple oscillations

and non-stationary trends will be proposed in the next chapter.
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Figure 3.17: Prediction residuals of the ACF plotted in Figure 3.16
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Chapter 4

Wavelet transform based
methodology for detection and
diagnosis of multiple oscillations in
non-stationary variables
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4.1 Abstract

The assumption of data being stationary is the requirement of many statistical analy-

sis procedures. However, variables recorded in an industrial environment do not usu-

ally satisfy this assumption. Non-stationary trends, temporal behavior and abrupt

changes are very common in industrial data which make it difficult to detect and di-

agnose abnormalities. In order to deal with these issues, this chapter proposes using

wavelet transform as a powerful tool for analysis of non-stationary data, specifically

for the purpose of oscillation detection and diagnosis.

Detection of multiple oscillations in variables has been studied in literature while

diagnosis of individual oscillatory components is yet not resolved. This chapter pro-

poses a methodology based on wavelet transform which is capable of both detection

and diagnosis of multiple oscillations in variables. Wavelet transform provides a time

dependent, multi-resolution decomposition of signals which facilitates handling non-

stationary trends, analyzing intermittent oscillations and dealing with presence of

multiple oscillations.

Some hypothesis tests are proposed in order to diagnose if the source of oscillation

is poor controller tuning, valve nonlinearity or external oscillatory disturbance. The

tests are mainly based on applications of wavelet power spectrum and wavelet bicoher-

ence. Wavelet power spectrum is utilized to diagnose oscillations between controller

tuning and sinusoidal disturbances. Wavelet bicoherence, similar to the classical bi-

coherence, can detect and quantify presence of nonlinearity in variables and therefore

is an appropriate tool to diagnose if the source of the oscillation is nonlinearity in

the process. The proposed methodology is capable of individual diagnosis of differ-

ent oscillatory components of the variable. Advantages of the proposed method is

illustrated through analysis of data sampled from an industrial process.

4.2 Introduction

Wavelet transform facilitates individual diagnosis of multiple oscillations due to its

intrinsic nature in decomposing the variables. Wavelet transform is extensively ap-

plied in signal and image processing especially for the purpose of noise filtering and

data compression. It is also applied for fault detection and diagnosis in engineering

applications. Peng et al. [44] reviewed the application of wavelet in machine condition

monitoring. Yang et al. [45] proposed a fault detection algorithm based on the use

of wavelet transform for noise filtering and pre-processing of data followed by kernel

entropy component analysis. Alabi et al. [46] also integrated wavelet transform with
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generic dissimilarity measure to achieve a better performance monitoring tool. Zhu

et al. [47] presents a review on the literature regarding monitoring tool conditions

based on wavelet transform. Bakshi [48] integrated wavelet transform with PCA in

order to monitor the slow and fast features of the data individually along with better

noise removal. Lin et al. [49] proposed a wavelet denoising method in order to extract

the weak features in variables for the purpose of fault diagnosis.

Wavelet transform has also been utilized for the purpose of oscillation detection.

Matsu et al. [50] proposed visual inspection of wavelet transform of the variables as

a method to detect oscillations in noisy environment. Guo et al. [51] used wavelet

packet transform for detection of multiple non-stationary oscillations in process vari-

ables. Plett [52] proposed a hypothesis test based on using cross wavelet transform

and coherence in order to detect transient oscillations in variables. Diagnosis of mul-

tiple oscillations is less studied in literature. Karra et al. [33] proposed an algorithm

for detection as well as diagnosis of multiple oscillations in variables based on combi-

nation of several methods and system identification procedures. This work presents

a comprehensive algorithm which is capable of both detection and independent di-

agnosis of multiple oscillations in the presence of noise and nonstationary trends in

variables based on wavelet transform. The idea of using wavelet transform for diag-

nosis of oscillations between controller tuning and external disturbances was initially

introduced in [53] which is extended in this work.

Diagnosis of oscillations is performed based on the different properties of oscilla-

tions caused due to valve nonlinearity, controller tuning or sinusoidal disturbances.

There are several methods for diagnosis of oscillations due to valve stiction. Choud-

hury et al. [31] reviewed the methods in literature for valve stiction detection and

diagnosis. One of the methods which is only based on analyzing the operational data

is to examine bicoherence of the variable. Bicoherence is used in order to detect if

there is nonlinearity in the variable and therefore, it can diagnose the oscillations

due to valve nonlinearity. Diagnosis between oscillations due to controller tuning and

oscillations due to other sources is also studied in literature. Naghoosi et al. [54]

proposed a methodology to diagnose oscillation caused by controller tuning based

on examining the auto correlation function (ACF) of the variables. The method

proposed in [54] works with the assumption of a single oscillation frequency in the

variable. The current work uses similar concepts in the wavelet domain in order to

achieve a comprehensive methodology which not only is capable of detection of mul-

tiple oscillations in noisy and nonstationary data sets, but is also capable of diagnosis

of the individual oscillatory components.

The chapter is organized as follows. First, a preliminary introduction to wavelet
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transform is given. Wavelet power spectrum and its properties are reviewed in Section

4.4 followed by the methodology for diagnosis of oscillations between controller tuning

and external disturbances based on using wavelet power spectrum. Section 4.5 reviews

the concepts of coherence, bicoherence and wavelet bicoherence. The method to use

wavelet bicoherence for the purpose of detecting nonlinear oscillations is presented in

4.6. Section 4.7 presents a case study and Section 4.8 summarizes the chapter.

4.3 Introduction to Wavelet transform

Since wavelet transform is considered as an advancement over Fourier transform, the

properties of Fourier transform are briefly reviewed first. Fourier transform of a signal

x(t) with the following definition is a widely applied tool to analyze stationary signals

for different purposes.

f(ω) =

∫ ∞

−∞
x(t)e−jωtdt (4.1)

The underlying assumption of Fourier analysis is that the signal has constant spectral

properties over the whole time period. In definition of Fourier transform the inte-

gration (or the average in discrete Fourier transform) is taken over the whole sample

time. Therefore it provides an average representation of the signal independent of

time. For non-stationary signals, whose spectral properties change with time, the

information regarding the temporal behavior is lost in Fourier analysis.

An improvement over Fourier transform to make it more suitable for non-stationary

signals is called windowed or short-time Fourier transform (STFT). In STFT a win-

dow function concentrated on a desired point in time b is multiplied to the signal

and then the Fourier transform is taken as shown in Equation 4.2. The window is

designed such that it decays with time. Therefore, its multiplication to the signal

damps the contribution of the samples that are far away from the desired point in

time leading to a localized representation of the signal.

STFT (b, ω) =

∫ ∞

−∞
g(t− b)x(t)e−jωtdt (4.2)

The window function g(t) can be of different types such as exponential g(t) =

exp(− t2

2σ2 ). Selection of σ which is the width of the function changes the time and

frequency resolution. A small value for σ shortens the width of the window lead-

ing to good time resolution for the high frequency components. However, for the

low frequency components the length of the window might be too short leading to

poor frequency resolution for these components. On the other hand, a wide window

provides a good resolution for low frequency components but poor time resolution
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for high frequency components. Therefore, the trade-off between time and frequency

resolution is the problem of STFT.

Wavelet transform (WT) provides a solution for the problem of time-frequency

resolution. In WT, the width of the window which is called scale is allowed to change

based on the frequency currently being analyzed. Higher frequency components are

analyzed by windows with shorter width while wider windows are used to analyze low

frequency features of the signal. Windows with a variety of widths centered at one

sample time are used in WT in order to provide good frequency resolution over the

whole frequency range of interest. Scale in wavelet domain is a varying parameter to

be adjusted to the frequency of interest opposite to STFT where the window width is

constant. Wavelet transform was first introduced by [55] and then extensively devel-

oped and applied in different fields such as Mathematics, Engineering, Econometric

etc..

Continuous wavelet transform (CWT) of a signal x(t) at time b and scale a

(wx(b, a)) is defined as

wx(b, a) =

∫ +∞

−∞
x(t)Ψ∗a,b(t)dt (4.3)

The wavelet function Ψa,b is a scaled and translated version of mother wavelet function

Ψ as

Ψa,b =
1√
a
Ψ(

t− b

a
) (4.4)

Mother wavelet function Ψ is usually chosen as a decaying oscillatory function. Changes

in the scale a and time b provide three dimensional representation of the signal in

time-frequency domain. The values of wavelet coefficients are a function position in

the time domain, scale and the choice of mother wavelet function in addition to the

signal itself. The relation between scale and frequency is approximately given by

fa =
fc
aΔ

(4.5)

where fc is the central frequency of the wavelet function, Δ is the sampling period

and a is the scale.

As an example of mother wavelet function, Morlet wavelet function is plotted in

Figure 4.1. Morlet wavelet function is constructed as multiplication of a sinusoidal of

frequency f to a Gaussian weighting function as in the following equation.

Ψ(t) = π−1/4exp(iωct)exp(−t2/2) (4.6)

CWT coefficients are actually the inner product of the signal with shifted and

scaled versions of the mother wavelet function. The wavelet coefficients quantify the
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Figure 4.1: Morlet wavelet function with central frequency of 0.8125 Hz

similarity between the signal and the wavelet function in the same way that Fourier

transform measures the similarity between the signal and sinusoidal waves of different

frequencies. If the similarity is high, the absolute value of the coefficients will be high

which usually happens if the scale of the wavelet function is close to the period of the

signal’s oscillation. Lower scales measure the energy of the signal at higher frequencies

while larger scales measure the signal’s energy at lower frequencies.

Smaller scales compress the wavelet function and can provide a good time reso-

lution for the high frequency components. Larger scales stretch the wavelet function

more and therefore better capture the coarser features of the signal and represent

the energy of the signal at low frequencies. Therefore, changing the scale makes it

possible to study the evolution of fast changing features of the data in time as well

as its long term behavior.

The choice of the mother wavelet function can be done subjectively depending on

which feature of the data is of interest to be analyzed. The mother wavelet function

can be any function which satisfies the wavelet admissibility condition as:

CΨ =

∫ +∞

−∞

|Ψ̂(ω)|2
|ω| dω <∞ (4.7)

where

Ψ̂(ω) =

∫
Ψ(t)exp(−jωt)dt (4.8)

The standard mother wavelet functions are usually oscillatory functions which

decay with time. Therefore, wavelet transform at a time sample presents the contri-

bution of different frequencies to the signal similar to Fourier transform. However,

the decay in the wavelet function preserves the presentation to a short time interval.

If the purpose of wavelet transform is to study the oscillatory components of the

signals, it is better to choose smooth oscillatory wavelet functions. Since this work
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is mainly concerned with using wavelet transform for oscillation diagnosis, Morlet

mother function is selected.

Continuous wavelet transform (CWT) has difficulties in estimation due to the

continuous change over both time and frequency domains and thus it is usually esti-

mated at finite number of time samples and scales. Discretized CWT of a signal is

obtained as shown in Equation 4.9.

wx(b, a) =
N−1∑
n=0

xn(
Δ

a
)1/2Ψ∗[

(n− b)δt

a
] (4.9)

where a is the scaling factor and b is the translation factor. Changing a between 0

to N − 1 changes the width of the wavelet function and therefore provides different

frequency resolution. b varies between 1 to N (number of data samples), moving the

wavelet function in time horizon and providing a time dependent representation of

the signal.

If the scales and the time positions are chosen as a = 2j, b = k2j where k, j ∈ z,

the wavelet transform can be estimated in a faster way and is called Discrete Wavelet

Transform (DWT). In CWT the wavelet functions are not orthogonal and therefore

the transform contains redundant information. In DWT the wavelet functions are

required to be orthogonal providing a more compact transformation of the signal.

The disadvantage of DWT is that the number of scales and time points chosen for

the transformation are few for the purpose of this work. Therefore, CWT is preferred

in this work as well as the literature in similar subjects since it provides the flexibility

of choosing all the scales of interest and studying the inter-scale relations.

4.3.1 Interpreting the wavelet coefficients

This section provides some explanation on how the wavelet coefficients can be inter-

preted. Consider a variable constructed as x(t) = sin(2π
20
t)+u(t−250)sin(2π

35
t) where

u(t) is the unit step function. The variable is plotted in top panel of Figure 4.2 which

shows that it consists of a persistent oscillation with period of 20 with an additional

oscillation with period of 35 from sample 250 onward.

The wavelet coefficients at the scale of 16, which is the closest scale to oscilla-

tion period of 20, calculated using Morlet wavelet function, are plotted in the middle

panel. The coefficients show a persistent oscillation during the whole time interval

as is expected. Wavelet coefficients at scale of 28, approximately corresponding to

oscillation period of 35, are also plotted at the bottom panel. The coefficients are

very close to 0 approximately up to the time sample of 250 when the oscillation ac-

tually appears in the data. The wavelet coefficients correctly indicate the presence of
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Figure 4.2: Top: x(t). Middle: Wavelet coefficietns at a scale approximately core-
sponding to oscillation period of 20. Bottom: Wavelet coefficietns at a scale approx-
imately coresponding to oscillation period of 35

oscillation with period of 35 for the second half of the whole period. The fluctuations

at the beginning and the end of the time interval are due to a phenomenon explained

as cone of influence in the literature.

Usually the wavelet coefficients are estimated for a range of scales and the absolute

value of coefficients is color codded in a figure as shown in Figure 4.3 which shows the

wavelet transform of x(t) for scales from 1 to 50. The scales close to 16 and 28 where

the signal actually has its highest energy have brighter colors which indicate larger

wavelet coefficients. The map of wavelet coefficients shows which scales or frequencies

have the highest contribution to the signal and at which time samples.

Now consider the wavelet transform of a step function as plotted at the top panel

of Figure 4.4 which is shown at the bottom panel. Figure 4.4 shows large wavelet

coefficients at all the scales around the time of the step change as well as at the end

of the time interval. This phenomenon is called cone of influence (COI).

COI at each scale a and position b is the set of wavelet coefficients which are

influenced by the signal’s value at position b. COI depends on the width of the
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Figure 4.3: Wavelet coefficients of x(t) for scales from 1 to 50

wavelet function. For example if the support of a wavelet function at a specified scale

a is [−4, 4], samples within [b− 4, b+ 4] influence the value of the wavelet coefficient

estimated at position b. In other terms, signal’s value at position b influences wavelet

coefficients estimated at positions within [b − 4, b + 4]. Therefore, when a sudden

change happens in the signal similar to a step change, there will be nonzero wavelet

coefficients at all scale around the time of the step change. At larger scales, the

number of coefficients influenced by the step change increases since the width of the

wavelet function is larger. In general, the wavelet coefficients within the interval

[−Ca + b, Ca + b] are influenced by the signal’s value at position b where 2C is the

support of the mother wavelet function and a is the scale.

The cone shape of the wavelet coefficients around the step change is because of

the increase in the number of influenced coefficients with increasing the scale. This

phenomenon is also observed at the end of the time interval. The reason for this is

that the signal is padded with zeros when estimating the coefficients due to the finite

length of the signal. Therefore, there is a sharp change at the end of the time interval.

This sharp change would have appeared at the beginning of the time interval if the

value of the signal was not 0. Therefore, the coefficients estimated at the beginning

and end of the time interval are not reliable for the analysis due to the influence of the

added zeros. For the rest of the analysis, at each scale Ca first and final coefficients

are removed in order to avoid their influence on the analysis. For the standard Morlet

wavelet in MATLAB C equals to 4.

Even though the COI has the mentioned adverse effect, it is helpful in order to
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Figure 4.4: Top: x(t) = u(t− 250). Bottom: Wavelet coefficients of x(t)

detect sudden changes in the variables. Abrupt changes are common in industrial

variables due to setpoint changes, manual control, change in the feed etc.. An appli-

cation of wavelet transform is in detection of abrupt changes since wavelet coefficients

have large values around the time of abrupt changes [56].

Abrupt changes in variables are specifically detrimental to most oscillation detec-

tion algorithms since they distort the Fourier transform of the variables in all the

frequencies as well as the estimated ACF. However, abrupt changes may not be visi-

ble from the signal itself and therefore, it is another advantage of wavelet transform

that it makes it easier to detect the abrupt changes. Such changes should be removed

from data before analyzing it for fault detection purposes.

4.3.2 Data pre-processing

Data pre-processing is a mandatory step before fault detection based on statistical

analysis of the data. Industrial variables are usually contaminated with noise, non-
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stationary trends as well as abrupt changes. Even though using robust fault detection

algorithms may help in correct fault detection and diagnosis problem, removing the

non-stationary trends and noise from data is important. Wavelet transform is exten-

sively applied for signal or image noise filtering. Also, extracting the non-stationary

trend of the variables is another application of wavelet transform. This section pro-

vides a short review on the literature on these subjects.

Noise is usually considered as an additive component to the true signal as

x̂n = xn + εn (4.10)

where xn is the true signal and x̂n the noisy signal. Estimating xn with minimum error

from x̂n is the target of noise filtering algorithms. Application of wavelet transform

for signal or image noise filtering is extensively studied in the literature and yet is

a subject of interest in academia. It is mentioned that [57] noise filtering based on

wavelet transform has a better performance compared to common frequency domain

filtering methods.

Noise usually affects the estimated wavelet coefficients at all scales. One of the

most famous filtering procedures is hard/soft thresholding originally proposed by [58].

In hard thresholding the wavelet coefficients with absolute values less than a specified

threshold are pushed to zero as:

yf = { y |y| > T
0 |y| < T

(4.11)

In soft thresholding not only the small coefficients are shrunk to 0 but other coeffi-

cients are also decreased by the amount of the threshold as:

yf = { sgn(y)|y| − T |y| > T
0 |y| < T

(4.12)

where sgn is the sign function.

Hard thresholding tends to better keep the signal features while it may cause

abrupt changes. Soft thresholding on the other hand is better in removing noise

and making the signal smoother. There are many different algorithms proposed for

optimal selection of the threshold [59], the most famous one being T =
√

2σ2logN

proposed by [58] where N is the number of samples and σ2 is the noise variance.

[60] proposed a method based on Bayesian framework for optimal selection of the

threshold and [61] proposed an interscale orthonormal thresholding method which is

optimal in the sense of minimizing the MSE. [62] reviewed some of the noise filtering

methods based on the wavelet transform. Even though there are advanced methods

proposed in the literature for noise filtering, hard thresholding algorithm is applied
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in this work since it better preserves the features of the data and has a satisfactory

performance.

Extraction of the non-stationary trends in the variables is another application of

wavelet transform. Trend is usually defined as an additive non-stationary element to

the signal as:

xn = trn + rn (4.13)

where n is the time sample, tr denotes the trend and r is the residual. The residual

part of the signal is assumed to be stationary which could contain both deterministic

and stochastic elements. Trend is also interpreted as the smooth change in the mean

value of the signal [63].

Extracting the trend of variables helps in studying the long term behavior of the

variables as well as obtaining the stochastic stationary part of the signals for statistical

analysis. Different methodologies are proposed in the literature for trend extraction.

[63] has presented a review of some of the mostly applied trend extraction algorithms

including wavelet transform. [64] has presented a novel trend extraction algorithm

based on wavelet transform and compared its performance to linear and nonlinear

filtering approaches.

The basic trend extraction method based on wavelet transform can be summarized

in the following steps:

• Compute the wavelet transform of the signal for a proper range of scales

• Make the wavelet coefficients belonging to small and intermediate scales equal

to 0 to only keep the information of the large scales

• Calculate the inverse wavelet transform of the remaining wavelet coefficients.

Since in this work the purpose is to extract the stationary portion of the data for

further analysis by removing the trend, the wavelet coefficients of the large scales are

pushed to 0 instead of small scales. Decision on which scales should be forced to 0 can

be done based on the prior knowledge on the largest oscillation period to be detected

based on the analysis. The other way to choose the level is based on the length of the

data. Since oscillation diagnosis requires presence of minimum 5 oscillation periods

in the data, scales larger than 1/4 of the length of the data can be pushed to 0 to

obtain a stationary signal. Even though the application of more advanced methods

could be valuable, experience shows that simply making the wavelet coefficients for

very large scales equal to 0 works well as a de-trending procedure.

As an example to illustrate the importance of data pre-processing and the advan-

tage of using wavelet method, consider the output of a flow control loop in industry
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as plotted on the top panel of Figure 4.5. The trend of the variable estimated based

on wavelet transform is also plotted in red dotted line and the detrended variable

in the middle panel. As can be seen from the figure, the trend in the variable is

well removed but the sharp change close to time sample 3000 is still present. Sharp

changes similar to this usually cannot be removed by detrending and they disturb the

result of statistical analysis of the data. There are two simple ways to deal with these

sharp changes. One way is to use portions of the data which do not contain these

temporary changes. The other is to manually remove these changes from data and

then detrend the data. Removing a portion of the data and attaching the remnant

together can disturb the analysis but if the data length is not enough it is possible

to do so. The third panel of Figure 4.5 plots the detrended data after removing the

data from time sample 2650 to 2850.
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Figure 4.5: Time domain plot of variable loop1

Figure 4.6 plots the estimated ACF of the original variable on the top panel along
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with the ACF of its detrended and denoised version on the bottom panel. From the

figure we can see that even though the ACF of the original variable does not show

signs of the presence of an oscillation, an obvious oscillation is observed in the ACF

of the detrended version. Applying the oscillation detection algorithm proposed in

the second chapter results in estimating an oscillation with period of 146 samples in

the variable. The standard deviation of the estimated period is 23.

−1500 −1000 −500 0 500 1000 1500
−0.5

0

0.5

1
ACF of original Loop1

−1500 −1000 −500 0 500 1000 1500
−0.5

0

0.5

1

Time lags (Min.)

ACF of detrended and denoised Loop1

Figure 4.6: ACF of the Loop1 before and after pre-processing

The map of wavelet coefficients of Loop 1 estimated for scales from 1 to 200 is

plotted in Figure 4.7. The figure does not indicate which scale contains the highest

energy. However, it shows that the energy of the signal approximately from time

sample 3000 to 4000 is reduced at all scales.

The scales containing the highest energy are likely to correspond to the periods of

oscillations present in the variable. To find the scale containing the highest amount

of energy, Figure 4.8 plots the average absolute value of wavelet coefficients at each

scale individually. The average is taken over the time samples in order to obtain

a general presentation of the signal. It should be mentioned that since in larger

scales the signal is averaged over longer time periods, the wavelet coefficients tend to

have larger absolute values for very large scales. However, that does not necessarily

indicate that the signal is oscillating with a period corresponding to those scales.

Only if there is a local peak in the curve of signal’s energy versus scale, it is likely

that the signal contains an oscillation with a period corresponding to the scale of the

77



Absolute Values of Ca,b Coefficients for a =  1 2 3 4 5 ...

time (or space) b

sc
al

es
 a

1000 2000 3000 4000 5000 6000
  1
 11
 21
 31
 41
 51
 61
 71
 81
 91

101
111
121
131
141
151
161
171
181
191

Figure 4.7: Wavelet coefficients of Loop1

local peak. Therefore, only the local peaks are required to be analyzed for presence

of oscillations.

Figure 4.8 shows that scales from 120 to 140 (approximately corresponding to

oscillation periods from 147 to 172) are on a local peak. Figure 4.9 plots the wavelet

coefficients of scale 130. Figure 4.9 also shows the suppression of signal’s energy

from time sample 2600 to 4000 which requires more investigation in order to find the

reason. Since the data mainly consists of noise during this period and does not have

the characteristics of the rest of the data, it is better to remove it so that it does not

disturb the result of statistical analysis .

The ACF of Loop 1 after removing samples from 2600 to 4000 is plotted in Figure

4.10. As can be seen from the figure, the oscillation in the ACF is more apparent

since the influence of the time period when the oscillation does not exist in the data

is removed from the estimated ACF. The oscillation period estimated from this ACF

equals to 144 with a standard deviation of 13. The period is close to the one estimated

previously (149) but the standard deviation is much smaller.
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Figure 4.8: Average absolute wavelet coefficients of Loop1
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Figure 4.9: Wavelet coefficients of Loop1 at scale 130

4.4 Wavelet power spectrum and its application

for oscillation diagnosis

Wavelet power spectrum (wps) is utilized in this work for the purpose of oscillation

diagnosis. wps of a variable x(t) at time b and scale a is estimated as

wpsx(b, a) =| wx(b, a) |2 (4.14)

The confidence interval for wps of a normally distributed random variable is avail-

able in the literature. Zhang et al. [65] mathematically proved that the distribution

of the wavelet power spectrum of white noise based on Morlet wavelet function can

be obtained as

|wx(b, a)|2 ⇒ σ2

2
(1 + e−ω

2
c )X2

1 +
σ2

2
(1− e−ω

2
c )X2

2 (4.15)
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Figure 4.10: ACF of Loop1 after removing the time samples from 2600 to 4000

where X1 and X2 are independent standard Gaussian random variables and σ2 is

the noise variance. If the wavelet central frequency is sufficiently large (ωc ≥ 6) the

exponential terms will be 0 and the distribution simplifies to |wx(b, a)|2 ⇒ σ2

2
(X2

1 +

X2
2 ) or

|wx(b, a)|2 ⇒ σ2

2
χ2
2 (4.16)

where χ2
2 has Chi squared distribution with 2 degrees of freedom. It should be noted

that if the wavelet function is real with no imaginary part, the Chi squared distribu-

tion will have 1 degree of freedom.

Torrence et al. [43] heuristically proposed that the probability distribution of the

wavelet spectrum of the response of a general linear process to Gaussian innovations

is:

|wx(b, a)|2 ∼ 1

2
λkχ

2
2 (4.17)

where λk is the power spectrum of the data at frequency k corresponding to scale s. A

confidence interval for the true value of |Wx(b, a)|2 is derived based on the estimated

value and the distribution in Equation 4.17 as shown in Equation 4.18 [43].

2

χ2
2(p/2)

|wx(b, a)|2 ≤ |Wx(b, a)|2 ≤ 2

χ2
2(1− p/2)

|wx(b, a)|2 (4.18)

where p is the significance level and λk in Equation 4.17 is replaced by the true wavelet

spectrum value. Even though this confidence interval is utilized a lot in literature (the

corresponding paper was highly cited), it is questionable. Since the expected value of

wps of colored noise is not 0, the distribution cannot be central Chi squared. There is

no proof that the distribution is Chi squared in general, but even if assuming it is Chi

squared it has to be non-central Chi squared. However, Equation 4.18 can be used
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for Gaussian noise and its use in oscillation diagnosis is described in the following

section.

4.4.1 Diagnosis of oscillations between controller tuning and
external disturbance based on wavelet power spectrum

This section proposes a hypothesis test based on using wps for automatic diagnosis

between oscillations due to controller tuning and external disturbances. The diag-

nosis is done based on the different properties of the ACFs of oscillations caused

by controller tuning compared with sinusoidal disturbances as described in [54]. As

an example, Figure 4.11 plots y(t) = 1
1−0.33z−1+0.9z−2 εt + 2sin(2π/25t) along with its

ACF and wavelet transform of its ACF in the third panel. From the ACF in the

second panel, it can be seen that there is a high frequency oscillation present in the

variable in addition to the sinusoidal wave. The third panel shows that two scales

are coded with brighter colors which indicate presence of oscillations in the variable

with periods close to the two scales. The oscillation due to controller tuning has 3.5

samples per period which corresponds to approximately the same scale in the wavelet

domain. As can be seen in Figure 4.11, the wavelet coefficients at scales close to 3

and 4 have varying strength which is due to the varying amplitude of the oscillation

itself. However, the scales close to the period of 25 samples which correspond to the

harmonic in yt has the same pattern during the whole time period.

In this work, CWT of the ACF of the signal is analyzed instead of the CWT of

the original variable for the diagnosis of oscillations. As was discussed in [54], ACF

of a harmonic with added white noise (xt = Acos(ωt + φ) + εt) has a deterministic

behavior which can be determined by knowledge of its frequency and the value of

one of the peaks in the ACF (Pr) as ρτ = pr
N−τ
N−τr cos(ωτ) where N is the sample

size and τ is the time lag. The method to find the peaks of the ACF and estimate

oscillation frequency is presented in [38]. The CWT of this ACF is estimated as the

convolution of two deterministic signals (ACF and the wavelet function). Thus, the

CWT of the ACF of a harmonic has deterministic values while CWT of the variable

itself is random due to the noise effect.

For an illustration on this fact, the wavelet coefficients of the ACF of y(t) at two

scales of Figure 4.11 corresponding to the two different oscillations are plotted in

Figure 4.12. As can be seen at the bottom panel of Figure 4.12, the CWT coefficients

corresponding to the harmonic part of the signal have a constant frequency oscillation

with an amplitude which linearly decays with time as is expected from the ACF of a

harmonic itself. Also, the coefficients at the top panel corresponding to the oscillation
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Figure 4.11: y(t) = 1
1−0.33z−1+0.9z−2 εt + 2sin(2π/25t) in time along with its ACF and

contiuous wavelet transform of its ACF

due to the controller tuning show oscillation with varying amplitude as is expected

from the respective ACF. The capability of the wavelet transform in isolating different

oscillatory components of the signal makes it possible to individually diagnose these

two different oscillatory components of the variable.

A hypothesis test needs to be developed for distinction between these two oscilla-

tion types. The null hypothesis is that the oscillation is a harmonic process and not

due to controller tuning. The viability of the hypothesis test is due to availability

of the probability distribution of wps of Gaussian noise. As mentioned, the ACF of

a sinusoidal signal with added noise can be written as ρτ = pr
N−τ
N−τr cos(2πfτ). The

exact value of the CWT of this ACF is not of concern here. However, since the CWT

at the scale corresponding to f is just the convolution of the wavelet function with

this ACF, it can also be written as

pm
N − t

N − tm
cos(2πft) (4.19)

where pm is the peak value at time tm which is in the middle of the wavelet coefficient’s

time domain. The peak at the middle time is considered to avoid the uncertainty in
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Figure 4.12: Wavelet coefficients of two scales of the tansform of the ACF of y(t) =
1

1−0.33z−1+0.9z−2 εt + 2sin(2π/25t)

the estimated CWT coefficients both at the beginning and end due to the cone of

influence phenomena.

It is expected that by subtracting the expected CWT coefficients of the ACF of

a harmonic from the estimated values, no residuals will be left. The residuals are

obtained as

R = wρ(b, a)− pm
N − t

N − tm
cos(2πft) (4.20)

where E[R] = 0. R is a normally distributed variable with 0 mean value and the

sample variance (σ̂2) can be calculated. Therefore, the squared value of standardized

R will follow standard Chi squared distribution with 1 degree of freedom.

The hypothesis test can be established based on the variance of the residuals

R. The variance of i.i.d. random variables following χ2
d distribution is known to be

σ2 = 2d where d is the degrees of freedom. The sample variance (σ̂2) is known to

have a variance as:

V ar[σ̂2] =
1

N
(μ4 − N − 3

N − 1
σ4) (4.21)

where N is the sample size, μ4 the forth moment of the distribution and σ4 the

squared value of the true variance which is 22 in this case. The forth moment of Chi

square distribution is μ4 = 12d(d + 4) [66]. Therefore, V ar[σ̂2] = 1
N
(60 − 4 × N−3

N−1)

for a random variable distributes as χ2
1.
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If the oscillation is truly harmonic, then σ2 should be within the confidence interval

of σ̂2. However, if the oscillation is due to controller tuning, residuals R will be

significantly different from 0 due to the random oscillation amplitude. Thus, the

estimated variance σ̂2 will be larger than σ2. The null hypothesis is rejected when σ2

is below the lower confidence level of σ̂2.

Another hypothesis test as a visual examination can also be developed based on

verifying the ratio between the calculated wavelet power spectrum of the ACF and

the expected values. From Equation 4.17 we can derive

|w(n, s)|2
|W (n, s)|2 ∼

1

2
χ2
1 (4.22)

In Equation 4.22 w(n, s) is taken as the estimated value of wavelet coefficients while

W (n, s) is taken as the expected value by Equation 4.19 assuming that the oscillation

is harmonic.

This hypothesis test is equivalent to assuming a confidence interval for the ratio

between the calculated wavelet spectrum and the expected ones. The ratio corre-

sponding to truly harmonic signals should be equal to 1 with a minor error since

E[
|wρ(n, s)|2

|pm N−t
N−tm cos(2πft)|2 ] = 1 (4.23)

If the ratio is significantly different from 1, then it is inferred that the oscillation is

caused by the system due to controller tuning. The significance level of the distribu-

tion determines the confidence interval.

Figure 4.13 plots this ratio corresponding to the harmonic oscillation in the data

plotted in Figure 4.12 while Figure 4.14 plots the ratio corresponding to the oscillation

caused by controller tuning in Figure 4.12. Only the peak values are considered in

this analysis. As can be seen in Figures 4.13 and 4.14, the ratio corresponding to the

harmonic oscillation is close to 1 with small error range while the ratio corresponding

to the oscillation due to controller tuning is far from 1.

4.5 Wavelet coherency

Coherency is the generalization of power spectrum to two variables. The classical

coherency between two variables x and y at frequency f is defined as

COHx,y(f) =
Sx,y(f)

[Sx,x(f).Sy,y(f)]1/2
(4.24)

where Sx,y(f) is the cross-spectral density between the two variables x and y (i.e. the

Fourier transform of the cross-correlation function Rx,y(τ)).
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Figure 4.13: Ratio of the calculated wavelet power spectrum to the predicted ones at
the peaks corresponding to the harmonic oscillation
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Figure 4.14: Ratio of the calculated wavelet power spectrum to the predicted ones at
the peaks corresponding to the oscillation generated by the linear system

The absolute value of COHx,y(f) is interpreted as the correlation coefficient be-

tween the components of x and y at frequency f [67]. If |COHx,y(f)| is close to 1 for

all frequencies, then x can be approximated by a linear time-invariant transformation

of y and vice verse. The phase of the coherence is also informative and is called as

phase coherence.

Coherency in the wavelet domain, which is the time-frequency localized correlation

function between the two variables, is estimated as

WCOH(t, f) =
SWx,y(t, f)

[SWx,x(t, f).SWy,y(t, f)]1/2
(4.25)

where

SWx,y(t, f) =

∫ t+ δ
2

t− δ
2

wx(τ, f)w
∗
y(τ, f)dτ (4.26)

It can be proved that the value of wavelet coherency is between 0 and 1 based

on the Schwarz inequality. Wavelet coherence between x and y can be interpreted

as the correlation coefficient between the frequency components of x and y around

time t. It can be applied to monitor the variables for detection of a change in the

structure of the data generation process. The significance level of wavelet coherence
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can be estimated based on the distribution of coherence values estimated for two

independent signals.

4.5.1 Bicoherence

Bicoherence generalizes coherency to measure the interaction between two frequencies

in one variable or between two variables. The interaction between two frequencies

which is also called phase coupling is usually a sign of nonlinearity or existence of

some kind of structure in the variable.

Phase coupling occurs when oscillations with two frequencies, f1 and f2, are

present in the signal as well as the frequency f = f1 + f2, while the phases of these

frequency components also have the relation φf1 +φf2 = φf +const.. The value of the

bicoherence estimated for two frequencies is close to 1 if these conditions are satisfied

and is close to 0 otherwise.

To understand bicoherence, it should be mentioned that bicoherence is the nor-

malized version of bispectrum which is the frequency domain counterpart of the third

order cumulant C3. Third order cumulant of variable x(t) with 0 mean value is defined

as:

C3x(m,n) = E[x(t)x(t+m)x(t+ n)] (4.27)

A linear variable x(t) (linear in the sense that it can be expanded as x(t) = Σ∞s=−∞h(t−
s)ε(s) where ε(t) is i.i.d. innovations), is normally distributed if the distribution of

innovations ε(t) is normal. C3 of a linear time series can be non-zero only if the

innovations ε(t) are not normal distributed and have non-zero third-order cumulant.

When the innovations are normal distributed, x(t) may have non-zero C3 only if it

is a nonlinear function of the innovations. Therefore, non-zero third order cumulant

indicates that the variable does not have a symmetric distribution which could be

due to the non-linearity in signal generation process or the non-Gaussian distribution

of the innovations.

Bispectrum can be estimated as the Fourier transform of C3 or directly based on

the Fourier transform as:

bis(f1, f2) = E[X(f1)X(f2)X
∗(f1 + f2)] (4.28)

where X(f) is the discrete Fourier transform of time series x(t) and ∗ denotes com-

plex conjugate. Bispectrum can indicate if there is an interaction between the two

frequencies f1 and f2 in signal x(t).

The value of bispectrum depends on the signal’s energy and in order to achieve a
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normalized quantity for comparison, bicoherence is defined as

bic(f1, f2) =
E[X(f1)X(f2)X

∗(f1 + f2)]√
E[|X(f1)X(f2)|2]E[|X(f1 + f2)|2]

(4.29)

whereX(f) is the discrete Fourier transform of time series x(t) and ∗ denotes complex

conjugate. Bicoherence itself is a complex quantity while squared bicoherence has

a real value between 0 and 1. For more details on the methods for estimation of

bicoherence, readers can refer to [68, 69]. It should be noted that bispectrum (or

bicoherence) has 12 symmetric regions in the f1, f2 plane [70]. The principal domain

is defined as the region where f1 ≤ f2 and f1+f2 ≤ fs. The principal domain contains

all the information and the other regions are redundant.

As an example to examine the estimated bicoherence values for a linear signal,

consider x(t) =
z−2 + 0.3z−3

z2 − 0.8z + 0.25
εt where εt is standard normally distributed variable.

The bicoherency of x(t) is plotted in Figure 4.15 which shows that the estimated values

are not significantly different from 0. The method to determine a significance level

will be described shortly.
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Figure 4.15: Bicoherency of x(t) =
z−2 + 0.3z−3

z2 − 0.8z + 0.25
εt in frequency domain

The main application of bicoherence is to detect if the distribution of the variable is

non-Gaussain. It is proved in the literature that even though a linear time series with
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non-Gaussian innovations will have non-zero bicoherence, the value of bicoherence

will be constant and independent of bi-frequencies [70]. On the other hand, if there is

non-linearity in the structure of data generation process, bicoherence will have non-

zero and non-constant values. These facts have been used in literature to propose

methods for detection of non-normality and non-linearity [70, 71].

The hypothesis tests proposed in the literature mainly use the probability dis-

tribution of the estimated bicoherence values of white noise to produce a test for

Gaussianity and linearity. It is known that the real and imaginary parts of estimated

bicoherence values are normally distributed and asymptotically independent of each

other. Also the value of bicoherence at each bi-frequency is independent from the

neighbouring frequencies. Thus, the squared bicoherence has a χ2 distribution with

2 degrees of freedom.

4.5.2 Wavelet bicoherence

Wavelet bicoherence [72] is the generalization of the classical bicoherence. Similar

to other quantities based on wavelet transform, wavelet bicoherence is specifically

suitable for analysis of non-stationary signals containing temporary behaviors, pulses

and abrupt changes. [73] has applied wavelet bicoherence to detect phase coupling

and nonilinearites in the variables.

Wavelet bispectrum is defined as:

wbisx(a1, a2) = Σm
k=1wx(k, a1)wx(k, a2)w

∗
x(k, a) (4.30)

where 1
a
= 1

a1
+ 1

a2
and the summation is over m samples around the desired time

sample. Bispectrum can be estimated between two variables x and y as:

wbisx,y(a1, a2) = Σm
k=1wx(k, a1)wx(k, a2)w

∗
y(k, a) (4.31)

which measures the interaction between the two signals at scales a1 and a2.

The squared wavelet bicoherence between two scales a1 and a2 is defined as:

wbicx(a1, a2)
2 =

|wbis|2
Σm

k=1|wx(k, a1)wx(k, a2)|2Σm
k=1|wx(k, a)|2 (4.32)

wbicx(a1, a2)
2 has a value between 0 and 1. Squared bicoherence will be non-zero if

the variable does not follow normal distribution.

[73] also proposed total bicoherence as

(Wbicx)
2 =

1

2
ΣΣwbicx(a1, a2)

2 (4.33)
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where the summation is over all the scales a1 and a2. S is the number of all the

summands in the summation. This quantity is again between 0 and 1 and can be

used as an overall representation of the signal to detect presence of non-Gaussian

distribution. It is also possible to average the estimated bicoherence values over the

time domain in order to capture an average representation of the variable during the

whole time period. Wavelet bicoherence averaged through the time domain is called

total bicoherence here.

There are few papers in literature proposing methods to estimate the significance

level of squared wavelet bicoherence. All of the proposed methodologies are based on

comparing the estimated wavelet bicoherence with the one which could be estimated

from Gaussian noise due to numerical issues. Ge [74] has mathematically derived the

probability distribution function (PDF) of the wavelet bicoherence estimated from

white Gaussian noise as:

fwbic2(z) =

√
Ne(f1, f2, f)√
2πz(1− z)

e−(arctanh
2√z)/2[Ne(f1, f2, f)] (4.34)

where

Ne(f1, f2, f) =
m

fcfsmax[

√
f 2
1 + f 2

2

f1f2
,

2

f1 + f2
]
√
lnd

(4.35)

where d is the allowable correlation value between the estimated wavelet coefficients.

The significance at the level of α (Dα) can be obtained as:

Dα =

∫ ∞

Dα

fwbic2(z)dz = α (4.36)

Squared bicoherence significantly different from 0 is a sign of non-Gaussian distributed

variable. Again, non-constant value of squared bicoherence can be taken as a sign of

nonlinear structure in the variable.

For illustration purposes consider a simple signal consisting three oscillatory com-

ponents as x(t) = sin(2π × 0.04 + π
3
) + sin(2π × 0.025 + π

12
) + sin(2π × 0.065 − π

4
).

The components with frequencies 0.04 and 0.025Hz are coupled to each other since

an oscillatory component with frequency equal to the summation of the two frequen-

cies exist in the signal while the phases have a constant relation as well. Figure 4.16

plots the total wavelet bicoherence for signal x(t) where x and y axis are frequencies.

There is an obvious peak in the bicoherence plot as can be seen in Figure 4.17. The

bicoherence plot is easier to study by plotting it versus the scales instead of frequency.

Figure 4.18 plots the same bicoherence values but versus scales.
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Figure 4.16: Total bicoherence of x(t) in frequency domain

As can be seen in Figures 4.17 and 4.16 the total bicoherence has large values in

frequencies and scales where the coupling exist in the signal. Of course the bicoherence

has large values in the neighbouring frequencies and scales as well due to the power

leakage. Figure 4.18 also plots the bicoherence of the same signal estimated based on

Fourier transform.

Total bicoherence provides a general presentation of the signal which the bicoher-

ence based on Fourier analysis also does. To observe one of the advantages of wavelet

bicoherence over Fourier method, the signal has changed to y(t) = sin(2π × 0.04 +
π
3
)+ sin(2π× 0.025+ π

12
)+u(t− 1000)sin(2π× 0.065− π

4
) where u(t− 1000) is a step

function with initial value of 1 and final value of 0. The step function eliminates the

oscillation with the frequency of 0.065 from the signal from time sample 1000 onward.

The bicoherence between scales 32 and 20 of this signal is plotted in Figure 4.19.

From Figure 4.19 the change in the bicoherence at time sample equal to 1000 is

easily observable. Also the total bicoherence of the signal is plotted in Figure 4.20.

By comparing Figure 4.20 with Figure 4.17, we can see that the value of the total

bicoherence has decreased almost by 50%. This decrease is expected since for half
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Figure 4.17: Total bicoherence of x(t) versus scales

of the time the bicoherence has a value close to 0. The bicoherence of the signal

obtained by the Fourier method is also plotted in Figure 4.21.

By comparing Figures 4.21 to 4.18, it is observed that the value of the maxi-

mum bicoherence has decreased. Since Fourier method can only provide an average

representation of the signal, it cannot give any information on the changes of the

bicoherence with time. Therefore, wavelet method is a much more suitable tool to

learn about the changes in signal’s behaviour.

4.6 Diagnosis of oscillations due to nonlinearity

The purpose of using bicoherence is to detect if the oscillation is nonlinear which

indicates the source of the oscillation to be valve problem. After detection of the

oscillation period, it is required to verify if wbic2x(a1, a2) estimated for the scale cor-

responding to the oscillation has a larger value compared to wbic2x(a1, a2) estimated

for the rest of the scales.

A hypothesis test is required to detect nonlinear oscillations. The null hypothesis

is that the oscillation is not nonlinear and therefore, the bicoherence has a constant

value at all the scales. In this test, the maximum of wbic2x(a1, a2) when a1 equals to
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Figure 4.18: Total bicoherence of x(t) in frequency domain

the oscillation scale aosc and a2 changes over the feasible range of scales is taken as

wbic2max(aosc, a2) = maxa2(wbic
2
x(aosc, a2)) (4.37)

The average of the wbic2x(a1, a2) when neither a1 nor a2 is equal to aosc is also estimated

as

wbic2(a �= aosc) =
1

N
Σa1 �=aoscΣa2 �=aoscwbic

2
x(a1, a2) (4.38)

where N is the number of summands. If wbic2max(aosc, a2) is significantly different

from wbic2(a �= aosc) then, it is concluded that the oscillation is due to nonlinearity.

Since the probability distribution of wbic2x(a1, a2) values is unknown, the hypoth-

esis test is performed based on the Chebyshev’s inequality. Chebyshev’s inequality

states that for a random variable x with mean μ and standard deviation σ the fol-

lowing inequality holds.

Pr(|x− μ| ≥ kσ) ≤ 1

k2
(4.39)

In this case μ = wbic2(a �= aosc) and σ can be estimated as the standard deviation

of wbic2(a1 �= aosc, a2 �= aosc). k is a tuning parameter which defines the significance

level. If wbic2max(aosc, a2) is significantly larger than wbic2(a �= aosc), it implies the

oscillation has nonlinear structure.

In terms of oscillation diagnosis, if a feedback loop is oscillating and no nonlinearity

is detected in the oscillation, the cause could be due to a tightly tuned controller,
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Figure 4.19: Bicoherence of signal y(t) between scales 32 and 20 in time

external disturbance or due to sensor. The oscillations caused by valve problems such

as stiction or backlash are naturally nonlinear. Therefore, bicoherence can diagnose

if the fault is caused due to the nonlinear behavior of the valve or the process itself.

The flowchart in Figure 4.22 shows the steps required for oscillation diagnosis. It

should be noted that this work diagnoses the oscillation category for each variable

individually thanks to the use of wavelet transform. After analysis of all the variables

of the process, the ones carrying similar oscillations should be grouped together and

further analysis is required to find the loop which propagates the oscillation to other

ones.

It is also noteworthy that due to the low pass filtering nature of chemical processes,

nonlinear oscillations become more linear getting further away from the oscillation

source. The reason is that high frequency harmonics which shape the nonlinear struc-

ture of the oscillation get filtered out. This has been used as a method to diagnose

which loop has caused the oscillation when several loops carry the same kind of os-

cillation. Since bicoherence quantifies the nonlinearity, it can be said that the loop

with highest bicoherence value is propagating the oscillation to other loops. Diagnos-

ing the source of the oscillation among several loops with similar oscillation requires

application of other methodologies if the oscillation is due to controller tuning or due

to a sinusoidal disturbance. The appropriate methodologies are being considered in

the on-going work.
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Figure 4.20: Total bicoherence of signal y(t)

4.6.1 A note regarding the selection of the scales for which
the bicoherence should be estimated

A correct inference about nonlinearity in the process based on estimated bicoherence

values requires careful selection of the scales for which the bicoherence is estimated.

Specially estimation of bicoherence for scales larger than what is required may lead

to wrong inference about presence of nonlinearity. To illustrate this fact, consider

x(t) = 2sin(2π× 0.04+ π
3
) + 2sin(2π× 0.025+ π

12
) + 2sin(2π× 0.065− π

4
) + ε(t) and

its bicoherence plotted in Figure 4.23 with consideration of scales up to 80.

From Figure 4.23 it can be observed that the bicoherence value again increases

considerably for scales around 60 to 70. These scales approximately correspond to

periods between 75 to 85. Periods 75 to 85 are approximate multiples of the two

periods present in the signal. As a result, the wavelet coefficients at these scales

have larger values compared to neighboring scales leading to a larger bicoherence

value between periods 40 (frequency 0.025) and 75 (frequency 0.013). In this case

the sinusoidal wave with frequency 0.04 is causing the coupling between these two

frequencies.

These large values of bicoherence which can wrongly indicate presence of nonlin-

earity in the signals can always exist in frequencies which are multiples of the two
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Figure 4.21: Bicoherence of signal y(t) based on Fourier method

frequencies present in the signal. The same bicoherence is again plotted in Figure

4.24 when the sinusoidal wave with frequency of 0.065 is removed from the signal.

Even though there is no real phase coupling in signal x(t) = sin(2π × 0.04 + π
3
) +

sin(2π × 0.025 + π
12
), high value bicoherency is observed in periods from 75 to 85

similar to Figure 4.23.

To avoid wrong detection of phase coupling in a variable, it is important to avoid

estimating the bicoherence for periods which are approximately multiples of the oscil-

lation periods present in the signal. The map of wavelet coefficients as in Figure 4.25

can help learning up to which scale the bicoherency should be estimated. From Figure

4.25 it can be observed that the energy of the signal is mostly concentrated in scales

up to 41. If there is phase coupling in the signal it should be between these scales.

The bicoherency can be estimated for scales close to 41. If no high value bicoherency

is detected at these scales, it means the oscillations are linear. Therefore, it is better

to avoid estimating bicoherency for large scales which could be multiples of the main

oscillatory components.
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4.7 Case study

The introduced tools are used for diagnosis of a unit-wide oscillation through an oil

sands industrial data set. The analysis consists of detecting oscillatory variables,

estimating multiple oscillation frequencies and finally diagnosing the source of the

oscillation. The data set contains the controller outputs as well as the process values

(PV) of 24 loops. The detailed analysis of 5 of the loops carrying similar oscillations

is presented here. The variables are denoted as Loop 1 to Loop 4 and Loop 30. Figure

4.26 plots 4 PVs along with the average of absolute wavelet coefficients at scales from

1 to 300. The average is taken over the time domain in order to compare the strength

of different scales in general. Local peaks in these plots correspond to oscillations in

variables.

From the right column of Figure 4.26, we can observe that all the 4 variables

have similar pattern of wavelet coefficients. Similar pattern indicates that all the

4 loops are carrying similar oscillations and suffer from same problem. The source

of the oscillation could be one of these loops or other variables within the process

which have similar pattern. The first step in oscillation diagnosis is to categorize

the oscillation meaning to detect if the oscillation is due to controller tuning, valve

nonlinearity or external disturbance.

In order to categorize the oscillation, we first examine the ACF of the variables

which are plotted in Figure 4.27. The ACFs of the variables show presence of an

oscillation. Even though the amplitude of the oscillation is very small in the ACFs, it

does not decay to 0. The oscillation is steady with almost constant amplitude at all

the time lags which is not similar to the ACF of an oscillation induced by controller

tuning. Therefore, the oscillation could be due to an external disturbance to these

loops or could be due to nonlinearity in one of them. The next step is to examine the

presence of nonlinearity in these 4 loops. Figure 4.28 to 4.31 plot the bicoherence of

the 4 loops. Since scale 300 is too large for estimation of bicoherence, the variables

are down-sampled by a factor of 2. Again, similar pattern in the plot of averaged

bicoherence values of the 4 loops is observed. The average is with respect to time.

Figure 4.32 plots the controller output of Loop 30 and its wavelet coefficients.

Oscillation detection algorithm finds an oscillation with period of 300 with 0 standard

deviation from the ACF of the variable. The averages of absolute wavelet coefficients

are also plotted in Figure 4.34 to observe which scales contain the highest energy.

Since the oscillation with 300 samples per period is dominant in the variable, the

other oscillations which can be seen in Figure 4.34 are not detected from the ACF.

Running the oscillation detection algorithm [38] individually on wavelet coefficients
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of scales 126 and 63 results in the following estimations:

Period STD

150 2.8

75 1.4

All the bicoherence plots of the 5 variables show a peak at the scale around 120

which approximately corresponds to oscillation period of 300 samples. The bicoher-

ence estimated for the controller output of Loop 30, plotted in Figure 4.33, is much

larger compared to the other 4 loops. This shows that Loop 30 is closer to the source

of the oscillation while the other 4 loops receive the oscillation from the external

source (propagated by Loop 30). Also, similar bicoherence value for Loop 1 to Loop

4 indicates that they are influenced by Loop 30 in a similar way.

4.8 Summary

In this chapter, a comprehensive algorithm is proposed which is capable of both

detection and diagnosis of individual oscillatory components of variables in the pres-

ence of multiple oscillations and non-stationary signals. The independent diagnosis

of multiple oscillations is viable due to the inherent capability of wavelet transform in

decomposing the variables to its components of different frequencies. Two hypothesis

tests are proposed based on the properties of wavelet bicoherence and wavelet power

spectrum for the purpose of oscillation diagnosis.

97



Figure 4.22: Required steps for oscillaton diagnosis
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Figure 4.23: Bicoherence of signal x(t) for scales up to 80
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Figure 4.24: Bicoherence of signal x(t) = sin(2π × 0.04 + π
3
) + sin(2π × 0.025 + π

12
)

for scales up to 80
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Figure 4.26: 4 industrial variables along with the absolute wavelet coefficients
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Figure 4.27: ACFs of the 4 industrial variables
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Figure 4.28: Wavelet bicoherence of down-sampled Loop 1 by factor of 2
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Figure 4.29: Wavelet bicoherence of down-sampled Loop 2 by factor of 2
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Figure 4.30: Wavelet bicoherence of down-sampled Loop 3 by factor of 2
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Figure 4.31: Wavelet bicoherence of down-sampled Loop 4 by factor of 2
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Figure 4.32: Top: Controller output of Loop 30 in time. Bottom: Wavelet coefficients
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Figure 4.33: Wavelet bicoherence of down-sampled Loop 30 by factor of 2

105



0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

X: 250
Y: 234.5

X: 126
Y: 96.55

X: 63
Y: 40.61

Scales

A
ve

ra
ge

 o
f a

bs
ol

ut
e

w
av

el
et

 c
oe

ffi
ci

en
ts

Figure 4.34: Average of absolute wavelet coefficients of controller output of Loop 30
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Chapter 5

Interaction analysis of multivariate
control systems under Bayesian
framework
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5.1 Abstract

Detection and quantification of interactions between the loops of a multivariate sys-

tem is of interest for various purposes such as control system design, optimization,

fault diagnosis and performance assessment. This chapter proposes a new method for

interaction analysis based on decomposing the estimated transfer function between

variables in the form of impulse response coefficients. The method not only provides

an estimation of the direct (feedback and interaction free) transfer function between

the variables, but also provides a measure of strength of all the indirect paths connect-

ing variables together individually. The advantage of the method is that it provides

a complete picture of the different paths through which variables can influence each

other along with an estimation of the energy transferred through each path inde-

pendently. The analysis is performed by estimating Structural Vector Autoregressive

models under Bayesian framework. Bayesian approach provides certain advantages in

terms of dealing with high dimensional variables and over parameterization problem.

An appropriate design of the prior probability for the model parameters also better

ensures convergence to a physically interpretable model. A procedure to design the

prior distribution for the model parameters is presented here.

5.2 Introduction

Interaction analysis of multivariable control systems has been extensively studied

in the literature mostly for the purpose of input/output pairing as a preliminary

stage of control system design. The most well known method which is called relative

gain array (RGA) [75] and its more advanced forms have helped engineers in the

design of control system. Van de Wal et al. [76] provides a review on the developed

interaction analysis methods specifically for the purpose of input/output selection and

[77] provides a review on the Gramian interaction analysis methods. These methods

are mainly based on the available plant model and in some cases with the assumption

of existence of perfect controllers.

Interaction analysis has also been applied in fault diagnosis and hazard analysis

where the term causality analysis is mostly used instead. In fault diagnosis it is re-

quired to understand how a fault occurred in one loop can propagate through the

process and influence other variables. Process connectivity charts developed based

on P&IDs (piping and instrumentation diagrams) or knowledge of physical principles

governing the process aid the engineers in detecting the interactions within the pro-

cess [15]. However, causality analysis based on the physical principles or qualitative
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knowledge may not be always possible and it does not provide quantitative measures

to assess the strength of the interactions between variables. This fact has motivated

interaction or causality analysis based on historical data.

The focus of this work is on causality analysis based on routine operational data

targeting its application for performance assessment and fault diagnosis. Much work

has been done in the literature regarding causality analysis based on historical data

[78, 79]. Various data-based methods can be applied to detect causality such as

Granger causality, information theory based methods, Bayesian network etc.. Yang

et al. [80] provides a review on some of the well known methods of causality analysis

specifically applied in engineering. The main difference between data based causality

analysis methods and other methods such as RGA is that they analyze routine op-

eration data without any assumption regarding the controller or plant model. Also,

these methods are applicable to any kind of variables and are not limited to control

system design. Another important difference is the asymmetrical inference regarding

the causality between two variables.

Causality between two variables is defined by Granger [18] based on two condi-

tions. The cause variable happens before the effect and has some unique information

about it which can improve the prediction of the effect variable. Autoregressive mod-

eling framework is the most suitable modeling structure to detect causality based

on Granger’s definition. Considering two signals x1 and x2, two models are built to

predict x1(t) as shown in Equations 5.1 and 5.2. A test statistic is defined in order

to quantify the improvement in the prediction of x1(t) by considering the history of

x2(t), based on comparing the variances of modeling residuals [81].

x1(t+ 1) =
∞∑
j=0

a(j)x1(t− j) + ε1(t) (5.1)

x1(t+ 1) =
∞∑
j=0

α11(j)x1(t− j) +
∞∑
i=0

α12(i)x2(t− j) + ε1|2(t) (5.2)

A test statistic is defined as F2→1 = Ln var(ε1(t))
var(ε1|2(t))

based on variances of ε1|2(t) and

ε1(t) [81]. F2→1 always has a positive value and follows a chi-squared distribution

when there is no causality from x2 to x1. Reverse of the same analysis is required to

infer if x1(t) is causal to x2(t).

Limitation of this test of Granger causality is that it can analyze only 2 or 3

variables simultaneously. Blinowska et al. [82] has discussed that the application of

pair-wise Granger causality in multivariate processes produces spurious results and

therefore the application of directed transfer function [83] and directed coherency [84]
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is more appropriate. These quantities are based on estimating vector auto-regressive

(VAR) models for the variables as defined in Equation 5.3.

yt = yt−1A1 + ...+ yt−pAp + et (5.3)

where yt is a 1 ×m matrix of observations (m is the number of response variables),

Al is a m × m matrix of coefficients and et is 1 × m matrix of innovations with a

diagonal covariance matrix. Existence of direct causality between ith and jth variable

in vector yt can be verified by checking the elements of Al matrices. If at least for

one Al matrix (time lag equal to l) the element aij(l) is non-zero, there is a direct

causal relation from yj to yi [85]. Zero coefficients in a VAR model is only a sign

of non-existence of direct causality and does not tell if there is an indirect causality

relation or not. Indirect causality is defined to describe the situation where there is

no direct relation between two variables, but the variables are related through a third

or even more intermediate variables.

The problem with using VAR models for causality detection is the fact that causal-

ity inference depends on the prediction horizon when more than two variables are

considered in the analysis [86]. Thus vector moving average (VMA) representation

of the VAR model is more suitable to infer causality between two variables in the

presence of other variables. The VMA representation of the model in Equation 5.3

can be obtained by inverting the stable VAR model as:

yt = et + φ1et−1 + φ2et−2 + ... (5.4)

where φls are m×m dimensional matrices. Non-zero VMA coefficients between any

two variables are a sign of causality. It should be noted that the causality inferred

from VMA model represents both direct and indirect causality [85]. Prediction error

variance decomposition based on the estimated VMA model or impulse response

analysis can quantify the strength of the relations between variables.

As a directionality measure, Gigi et al. [87] proposed the decomposition of the

transfer function between variables into direct and indirect terms based on the esti-

mated VAR model. The work is based on frequency domain spectral factorization of

the cross spectral density matrix. The total transfer function between two variables

yi(t) and yj(t) is written as

hij(ω) = hD,ij(ω) + hI,ij(ω) for i �= j (5.5)

where the total transfer function (hij(ω)) and the direct transfer function (hD,ij(ω))

are estimated based on the identified VAR model and the indirect transfer function
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is estimated as the subtraction of the two. The direct transfer function is devoid of

the influence of any feedback loop in the system and estimates the transfer function

between the two variables when all the loops are open. The indirect transfer function

combines the transfer functions of all the indirect paths from which variable j can

reach variable i when all the loops are closed.

This work proposes a method to decompose the transfer function between variables

to individual transfer functions, each representing a specific path from which the two

variables can influence each other. The advantage of the proposed method is that

it also decomposes the indirect transfer function between variables to its individual

components instead of providing an estimation of the combination of all the indirect

transfer functions together. This is performed based on decomposing the transfer

functions in the form of impulse responses.

The decomposed impulse responses between variables can be utilized to estimate

the energy or variation transferred between variables through different paths. For

example if there are 3 different paths for variable i to influence variable j (one di-

rectly from i to j, one through variable l, and one through variable k) the proposed

methodology estimates the amount of variance that is transferred directly from i to

j along with the amount of variance that is transferred through variables l and k

independently. Therefore, it provides better insight for the engineers about the dif-

ferent paths through which one variable is being influenced by another one. From

the performance assessment perspective, it can measure how good the controller is in

rejecting the disturbance felt from outside the loop.

The impulse response coefficients are estimated under Bayesian framework which

provides the possibility to incorporate prior knowledge in model estimation. As will

be described later, proper design of the prior distribution of the model parameters can

deal with high dimensionality and over-parametrized models. A proper design of prior

probability can also better ensure convergence of the estimated model to the physically

interpretable model among several models with similar prediction performance.

The remainder of the chapter is organized as follows. Section 5.3 discusses the

appropriate model structure for causality analysis of engineering process variables.

Section 5.5 explains the model estimation procedure under Bayesian framework and

Section 5.6 presents the proposed method to design prior distribution. Section 5.7

reviews impulse response estimation method along with the method to estimate con-

fidence intervals and Section 5.8 presents the new method in impulse response decom-

position along with a simulated example. An experimental case study is presented in

Section 5.9. Conclusions are drawn in Section 5.10.
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5.2.1 Literature review on causality analysis methodologies
with the assumption of linearity

Following is a brief review of the methods for multivariate causality analysis assuming

linear relationships between variables. The most common approach to examine re-

lations between some recorded variables is correlation analysis. However, correlation

is different from causation since existence of correlation cannot indicate if there is

any causality relation between the variables. Covariance matrix between variables is

utilized in different ways to examine correlation and also causation.

The frequency domain counterpart of the covariance between two variables is

called cross spectrum and is usually used to verify the strength of correlation between

variables at different frequencies. Assume a multivariate time series matrix as X(t) =

[X1(t), X2(t), ..., Xk(t)]
T . The corresponding power spectral density matrix is defined

as

S(f) = X(f)X(f)∗ (5.6)

The off-diagonal elements are cross spectrum and the diagonal elements are called

auto spectrum. The ordinary coherence (K) between two variables can be obtained

from the spectral matrix which is a measure of the similarity between components of

the two variables at different frequencies.

K(XiXj, f) = Kij(f) =
Sij(f)√

Sii(f)Sjj(f)
(5.7)

Ordinary coherence has the problem to distinguish direct and indirect relations be-

tween the variables. Two variables could have a high coherence value due to an in-

termediate variable. Therefore, partial coherence function is utilized to estimate the

direct coherence between two variables while the effect of other variables is removed.

Cij(f) =
Mij(f)√

Mii(f)Mjj(f)
(5.8)

where Mij is the determinant of S when the ith row and jth column are removed. Cij

can also be expressed in terms of the inverse of the spectral matrix dij = [S−1]ij

Cij(f) = (−1)i+j dij(f)√
dii(f)djj(f)

(5.9)

These estimations of partial coherency between variables are based on non-parametric

methods which have limitations and uncertainties. Identifying parametric linear mod-

els for the data and eventually parametric spectrum has some advantages over non-

parametric estimation of power spectrum utilizing Fourier transform. The main dis-

advantage of a Fourier approach is in its estimation procedure, which assumes the

signal is periodic and also multiplies a window to the data which causes distortion.
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In parametric modeling, AR models are considered as follows:

X(t) =

p∑
j=1

A(j)X(t− j) + E(t) (5.10)

Let A(0) = I and A(j) = −A(j), the above equation can be written as follows:

E(t) =

p∑
j=0

A(j)X(t− j) (5.11)

By transforming the above equation to the frequency domain, we get

E(f) = A(f)X(f) (5.12)

X(f) = A−1(f)E(f) = H(f)E(f)

(5.13)

The spectral matrix can be written in terms of H(f) as follows:

S(f) = X(f)X∗(f) = H(f)E(f)E∗(f)H∗(f) = H(f)V H∗(f) (5.14)

where V is the input noise covariance matrix.

Directed transfer function (DTF) is defined based on the elements of H(f) as

γ2
ij(f) =

|Hij(f)|2∑k
m=1 |Him(f)|2

(5.15)

DTF represents the ratio of the total information passed from variable j to i from all

paths, to the total energy transferred to i from all the variables. The assumption is

about identity noise covariance matrix. |Hij(f)|2 contains both direct energy trans-

ferred from j to i, and also indirect energy through intermediate variables. Therefore,

it cannot be utilized to determine if there is any direct relationship between variables.

On the other hand, partial directed coherence (PDC) from variable j to i is defined

as:

πij(f) =
aij(f)√

a∗j(f)Σ−1aj(f)
(5.16)

PDC can detect direct relationship between variables and thus is capable of detecting

the structure of the data. However, it cannot quantify the strength of the relationships

between the variables.

Gigi et al. [78] proposed the division of the energy transferred between two vari-

ables as direct, indirect and interference energies. The work is based on frequency
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domain spectral factorization of the cross spectral density matrix, which contains in-

formation about directional interactions between any two pairs of a multivariate pro-

cess. The jointly stationary multivariate process is represented as X = [x1, x2, ..., xm].

The cross power spectral density of X (Φxx(f)) can be factored as

Φxx(f) = H(f)ΣeH
∗(f) (5.17)

where Σe is the covariance matrix of the white noise input to the process and H(f)

is the transfer function matrix in frequency domain.

The elements of the transfer function matrixH(f) represent a combination of both

direct and indirect connections between variables, and therefore cannot be utilized in

identifying the structural connections between the variables. Decomposition of H(f)

into direct and indirect terms is possible based on estimating a VAR model for the

process.

The total transfer function between two variables xi and xj can be written as

hij(f) = hD,ij(f) + hI,ij(f) for i �= j (5.18)

which is obtained as

hij(f) =
(adj(A))ij

det(A)
(5.19)

while the direct transfer function can be written as [78]

hD,ij(f) =
(−1)i+jaij(f)det(M ji(f))

det(A(f))
(5.20)

M ji(f) is the minor of matrix A(f) obtained by eliminating ith row and jth column of

A(f). The indirect transfer function can be obtained as the subtraction of the direct

transfer function from the total transfer function as

hI,ij(f) = hij(f)− hD,ij(f) (5.21)

The total energy transfer between the two variables can be written as in the

following equation derived from Equation 5.62.

|hij(f)|2 = (hD,ij(f) + hI,ij(f))(h
∗
D,ij(f) + h∗I,ij(f)) = |hD,ij(f)|2 + |hI,ij(f)|2+

2R(hD,ij(f)h
∗
I,ij(f)) = |hD,ij(f)|2 + |hI,ij(f)|2 + |hIF,ij(f)|2

whereR denotes the real part of the term and |hIF,ij(f)|2 = 2|hD,ij(f)||hI,ij(f))|cos(φD−
φI) is the interference term. The interference occurs due to the interaction between

the two direct and indirect energies. The following section discusses the appropriate

model structure for engineering process variables to be used for causality analysis

based on the reviewed methodologies.
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5.3 Model structure

The most common modeling structure for causality analysis using linear methods

is vector auto regressive where the response variables are modeled as a function of

the history of themselves along with the history of other predictor variables with an

unexplained residual as in Equation 5.3. Causality analysis based on VAR modeling

has certain problems as dependence on the prediction horizon. Thus, VMA models

are used in order to check if an impulse shock in one variable has any effect on other

variables. If there is a reaction in one variable to an impulse in a second variable,

then the second one is called causal to the first variable.

If the modeling residuals in an estimated VAR model have simultaneous correla-

tion with each other (noise covariance matrix Σe is not diagonal), VMA representation

of the VAR model will not be unique and cannot tell about how a shock in one vari-

able affects other variables. The assumption in analyzing impulse responses to infer

causality is that it is possible to insert an impulse in only one variable and verify

its effect on other variables. However, it requires the variables to have independent

innovation terms from each other. In the framework of control systems, instantaneous

relations exist due to the feedback loops.

Assuming that ut (controller output) and yt (process output) belong to a feedback

loop, ut is usually an instantaneous function of yt due to the proportional gain of the

controller. However, yt is typically not an instantaneous function of other variables in

the system. Therefore, the true model structure for the two variables can be written

as follows:

yt = ZAy + ey,t (5.22)

ut = ytkp + ZAu + eu,t

where Z matrix includes all the regressors with minimum 1 sample time lag including

lagged ut and yt. Ay and Au are the coefficient matrices. eu,t and ey,t are respectively

controller output noise and process output noise. kp is the proportional gain of the

controller with appropriate sign.

Modeling yt and ut simultaneously in a VAR structure based on historical data

(ignoring yt in the right hand side of Equation 5.22) will result in correlated modeling

residuals (êu,t = kpey,t + eu,t will be correlated with êy,t = ey,t ). Therefore, a VAR

model including both yt and ut will have non-diagonal noise covariance matrix. Cor-

relation between the estimated residuals prevents correct detection and quantification

of interactions between the variables. The impulse response estimated from this VAR

model is not meaningful since the disturbances are linear combinations of individual
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disturbances which are affecting yt and ut independently.

A common solution to the problem of instantaneous correlation between model-

ing residuals in the literature is to diagonalize the covariance matrix of the modeling

residuals through various transformations such as Choleski factorization. The prob-

lem with applying transformations to the data is the fact that there is no unique way

of transforming the data and the result of causality analysis on the transformed data

cannot be interpreted in the original domain.

The other approach to the problem of instantaneous correlation between variables

is application of structural vector autoregressive (SVAR) models. SVAR formulation

is similar to VAR with an additional A0 matrix multiplying to Equation 5.3 as is

shown in Equation 5.23.

ytA0 = yt−1A∗1 + ...+ yt−pA∗p + εt (5.23)

where A∗j = AjA0 (j = 1, ..., p) and εt = etA0 ∼ (0,Σε = A
′
0ΣeA0). Σe is the covarince

matrix of the reduced form of the model which, in general, is not diagonal due to the

simultaneous correlation between variables while, Σε can be diagonal with a proper

choice of A0 matrix. A0 matrix is required to be invertible. The diagonal elements

of the A0 matrix could be equal to 1 to allow for different noise variances in different

equations or could be scaling factors in order to normalize the residuals to have unity

variances.

The advantage of using SVAR framework is the possibility to diagonalize the

noise covariance matrix by proper design of the A0 matrix. However, A0 and Aj

matrices are not simultaneously identifiable from the data without the help of prior

knowledge. The reason for this identification problem is the fact that there are infinite

combinations of A0 and Aj matrices which result in exactly the same probability

distribution of the data. To see this fact, consider multiplying the model in Equation

5.23 by a positive definite matrixQ which results in ytA0Q = yt−1A∗1Q+...+yt−pA∗pQ+

εtQ. The reduced form of this model is

yt = yt−1A∗1Q(A0Q)−1 + ...+ yt−pA∗pQ(A0Q)−1 + εtQ(A0Q)−1 (5.24)

= yt−1A∗1A
−1
0 + ...+ yt−pA∗pA

−1
0 + εtA

−1
0

which is exactly the same as the reduced form of the model in Equation 5.23. There-

fore, the data does not provide any evidence regarding which one of these two models

is the true one.

In order to uniquely identify A0 matrix from data,
m(m− 1)

2
(m is number of re-

sponse variables) restrictions are required which should come from the prior knowledge
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or preliminary analysis of the data. Usually A0 is considered to be lower triangular

with
m(m− 1)

2
elements equal to 0. However, A0 matrix can have different patterns.

Since in chemical operations, the simultaneous relations are due to the feedback loops,

prior knowledge of the variables which are in a loop helps to design the A0 matrix. It

should be noted that A0 = I does not mean there is no feedback in the system, but

it means the feedbacks are lagged and are not instantaneous.

In a feedback loop, the controller output can be a simultaneous function of the

process output but not vice verse. For a multivariate system, outputs of the loops

cannot be influenced by other variables with 0 time lag and therefore, the elements in

the row of A0 matrix corresponding to outputs are 0 except for the diagonal element.

Controller output of each loop has a term proportional to the current value of the

process output due to the proportional gain of the controller. Thus, each row in

A0 matrix corresponding to a controller output has two non-zero elements. The

diagonal elements equal to 1 (or scaling factor) and there is an unknown coefficient

corresponding to the proportional feedback gain from the respective process output.

For example if there are k loops with controller output noted as ui and process output

as yi ordered as [y1(t)u1(t)y2(t)u2(t)...yk(t)uk(t)]
′
, the format of the A0 matrix will be

as follows:

A0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 . . . 0
γ11 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 γ22 1 . . . 0
...

...
...

...
...

...
0 0 0 · · · γkk 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.25)

where γii is the proportional gain of the ith loop with appropriate sign.

This design of the A0 matrix makes the system identifiable since there are suf-

ficient restrictions to uniquely estimate the model parameters and innovations. It

is also important to note that the estimated parameters and innovations are physi-

cally meaningful. The residuals in each equation are the measurement noise of the

corresponding response variable which is naturally independent from other noises.

It should be noted that considering controller outputs in feedback loops in addition

to the process outputs in the analysis, provides valuable information specially useful to

assess the performance of the controller. However, if the controller output is a perfect

function of the process output without any noise, it is better to only consider the

process output in the analysis. It should also be noted that persistent excitation in the

variables is assumed. Since it is not always known which variables have instantaneous

relation and which one is actually leading the other one, the following section proposes
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a method to detect instantaneous relations between variables.

5.4 Detection of instantaneous feedback between

variables

Prior knowledge of the feedback loops in the process is helpful in determining an

identifiable model structure with uncorrelated noises. However, this information is

not always available in addition to the fact that two variables may have correlated

noises simply because of the similar disturbances they receive from other variables.

Therefore, a method is required to detect the variables in feedback loops based on

the data in a preprocessing step.

This section proposes a method based on examining the covariance matrix of the

modeling residuals to detect presence of instantaneous feedback between variables as

well as learning which variable is actually a function of the other one. Assume the

true model representing a feedback loop is:

yt = Gp(z
−1)ut +Gey(z

−1)ey,t + ey,t

ut = kpyt +Gc(z
−1)yt +Geu(z

−1)eu,t + eu,t (5.26)

where all the transfer functions have at least one sample time delay (the part with 0

time lag is separated). Optimal one step ahead prediction of ut without considering

yt among the predictor variables, is obtained as

êu,t = ut − ût|t−1 = kpyt +Gc(z
−1)yt +Geu(z

−1)eu,t+

eu,t − L1(z
−1)yt − L2(z

−1)ut

= kp[Gp(z
−1)ut +Gey(z

−1)ey,t + ey,t]+

Gc(z
−1)yt +Geu(z

−1)eu,t + eu,t−
L1(z

−1)yt − L2(z
−1)ut (5.27)

By replacing ey,t and eu,t with the following equations

ey,t =
yt −Gp(z

−1)ut

1 +Gey(z−1)
(5.28)

eu,t =
ut − kpyt −Gc(z

−1)yt
1 +Geu(z−1)

(5.29)
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êu,t will be as:

êu,t =[kpGp(z
−1)− kpGp(z

−1)Gey(z
−1)

1 +Gey(z−1)
+

Gey(z
−1)

1 +Gey(z−1)
]ut

+ [
kpGey(z

−1)
1 +Gey(z−1)

+Gc(z
−1)−

(kp +Gc(z
−1))

Geu(z
−1)

1 +Geu(z−1)
− L1(z

−1)]yt

+ kpey,t + eu,t (5.30)

Considering that all the transfer functions have at least one sample time delay, the

minimum residual variance equals to k2
pvar(ey,t) + var(eu,t).

Assuming the algorithm converges to the process model when modeling yt, the

minimum one step ahead prediction will be equal to ey,t. Thus, the residuals of the

modeling of ut and yt will have non-zero correlation. Correlation between êu,t and

ey,t makes it impossible to interpret the result of impulse response analysis since the

disturbances are linear combinations of eu,t and ey,t. To remove this correlation, yt

should be added as a regressor to the model of ut. The minimum one step ahead

prediction residuals for ut, while considering yt as a predictor, will be obtained as

var(eu,t) which results in zero correlation between the modeling residuals. Based on

the knowledge of which two variables are in a loop, it is possible to design the A0

matrix in a proper way.

It should be considered that in some cases the knowledge of existence of instanta-

neous feedback between two variables may not be available beforehand. In such cases

it is required to first learn the existence of instantaneous feedback between variables

in order to be able to perform the analysis. So far it is proved that if it is known which

variable is the controller output ut, addition of the process output yt with no time

delay to the model of ut makes the modeling residuals to be uncorrelated. Assuming

there is no prior knowledge, we investigate the modeling residuals when ut with 0

time delay is added to the model of yt instead.

Asymptotically, the model of yt should converge to the process model with resid-

uals equal to ey,t even if ut is available when estimating the model as a predictor

variable. If the model converges to the true process model, availability of the current

value of ut will not change the estimated model and therefore, the modeling residual

will remain equal to ey,t while êu,t = kpey,t+eu,t. So, the correlation between modeling

residuals will not be removed in this case.

It is also possible that the identification algorithm based on small sample sizes

converges to the inverse of the controller model when estimating the model of yt.
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Considering Equation 5.26, yt can be written as:

yt =
1

kp +Gc(z−1)
ut − 1 +Geu(z

−1)
kp +Gc(z−1)

eu,t (5.31)

yt =
1

kp +Gc(z−1)
ut +Ge(z

−1)eu,t − 1

kp
eu,t (5.32)

where Ge(z
−1) = −1+Geu(z−1)

kp+Gc(z−1)
+ 1

kp
which has one sample time delay.

One step ahead prediction error in this case can be obtained as:

e(t) = yt − ŷt =
1

kp +Gc(z−1)
ut +Ge(z

−1)eu,t− (5.33)

1

kp
eu,t − L1(z

−1)yt −Kut − L2(z
−1)ut

L1(z
−1) and L2(z

−1) are assumed to have at least one sample time delay and the part

of L2(z
−1) with 0 time delay is separated out as K.

Substituting eu,t =
ut−kpyt−Gc(z−1)yt

1+Geu(z−1)
results in:

ε(t) =
1

kp +Gc(z−1)
ut −Kut − L2(z

−1)ut+

Ge(z
−1)

ut − kpyt −Gc(z
−1)yt

1 +Geu(z−1)
− 1

kp
eu,t − L1(z

−1)yt

= [
1

kp +Gc(z−1)
−K − L2(z

−1) +
Ge(z

−1)
1 +Geu(z−1)

]ut−

[
Ge(z

−1)(kp +Gc(z
−1))

1 +Geu(z−1)
+ L1(z

−1)]yt − 1

kp
eu,t

(5.34)

Since all the transfer functions have at least one sample time delay, the minimum error

variance equals to 1
k2p
var(eu,t) (if K converges to 1

kp
). If K does not converge to 1

kp
,

the residual will be a combination of eu,t and ey,t. Therefore, even if the identification

algorithm converges to the inverse of the controller model instead of the process model

(with the availability of ut as predictor) the modeling residual will still be correlated

with the modeling residual of ut (k
2
pvar(ey,t) + var(eu,t)).

This fact can be utilized to distinguish between the process output and the con-

troller output from data. Based on the discussion, it is possible to learn from data

if there is instantaneous feedback between two variables and which of the two is the

instantaneous function of the other one. Following is the summary of the procedure

for detection of instantaneous feedback:

• Build a VAR model including the historical data with minimum one sample

time delay.
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• Check for non-zero correlation between modeling residuals of individual vari-

ables (which can happen if the variables are in a loop)

• Add one of the variables in the loop (zt) as a regressor with 0 time delay to the

model of the second variable (wt). Estimate the model of wt again.

• Check the correlation between the residuals of the new model of wt and the

residuals of the model of zt.

• If the correlation is 0, then wt is the controller output and zt is the process

output. Otherwise, wt with 0 time delay should be added to the model of zt to

remove the correlation.

It should be mentioned that if the instantaneous correlation is due to a third variable,

the correlation between residuals will not be removed in any of the models described

above. The appendix presents the method to check the correlation between residuals

of a multivariate regression model estimated based on Bayesian method. The follow-

ing section explains the methodology to estimate the parameters of a SVAR model

under Bayesian framework.

5.5 Bayesian estimation of SVAR models

There are two main advantages in applying Bayesian framework for model estimation.

The first advantage is the possibility of incorporating prior information from various

sources in model estimation to ensure the estimated model approximates the true

underlying structure of the process. It is well known that several models can be

estimated based on the data with similar prediction performance. A proper prior

design, which will be discussed in Section 5.6, can better ensure convergence to a

physically interpretable model among many models which minimize the modeling

residuals.

The other advantage of applying Bayesian framework is that it can deal with the

problem of high dimensionality and overfitting in a natural way and again through

a proper design of the prior distribution. The main difficulty in application of VAR

models is the large number of parameters to be estimated from data even for a medium

size VAR model. For example, if there are 10 response variables included in the model

with the maximum time lag equal to 15 samples, there will be 150 parameters to

estimate from data. Considering that the amount of quality data is usually limited,

traditional OLS could result in unreliable estimation of model parameters.
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It is proved in literature that Bayesian VARs can deal with the problem of over-

parametrization in the presence of a large number of potential predictor variables with

collinearity [88]. This can be achieved through appropriate prior design to shrink the

parameters toward zero which is called Bayesian shrinkage in literature. Banbura et

al [89] showed that applying Bayesian shrinkage to large models is sufficient to pre-

vent over-parameterization if the tightness of the prior distribution is increased when

increasing the number of variables. [88] has compared the prediction performance

of several models estimated by conventional methods appropriate for large models

(many collinear predictors) and has concluded that the Bayesian shrinkage method

outperforms other methods. Giacomini and White [90] have shown that when the

predictor variables are strongly correlated, Bayesian shrinkage tends to keep those

predictors that explain the most variations in response variables.

Considering the fact that the variables in an engineering process are very likely to

have strong collinearity, a framework which can deal with the problem of collinearity

between variables as well as presence of a large number of variables is valuable. Section

5.6 discusses the appropriate method for design of the prior distribution in order to

avoid over-parameterized models and model formulation under Bayesian framework

is discussed in the following.

As discussed in the previous section, SVAR models with the form of Equation

5.23 are used for model estimation. The matrix form of the model including all the

observations can be written as in Equation 5.35.

Y A0 −XA+ = ε (5.35)

where Y is N ×m matrix of observations of m response variables for sample size N

and X is N×k matrix of regressors. A+ is k×m and A0 is m×m. Each column of A0

corresponds to one equation. ε is a N ×m matrix of residuals with rows distributed

as N(0,Σε) where Σε is diagonal. Matrix X includes the lagged response variables y

as well as a column of 1 to account for the mean value. Exogenous variables can also

be considered in X matrix. Rows of X are arranged as xt = [yt−1, ..., yt−p, 1] where

yt = [y1,t, ..., ym,t].

5.5.1 Estimation of SVAR model parameters in fully recur-
sive form

If it is possible to write the SVARmodel equations in a fully recursive form, where each

dependent variable can only be a simultaneous function of the previous dependent

variables, A0 will be triangular and Σε diagonal. The fully recursive form is as

122



following which includes the form of A0 matrix explained above as a special case.

y1 = Xβ1 + ε1

y2 = y1γ21 +Xβ2 + ε2
...

ym = y1γm1 + y2γm2 + ...+ ym−1γm,m−1 +Xβm + εm (5.36)

where yα is n× 1 vector of observations, X is n× k matrix of rank k of observations,

βα is a k × 1 vector and εα is n× 1 vector of disturbances while γα,l are scalars. The

elements of εα, α = 1, ..,m are normally distributed with zero mean and covariance

matrix E[εε
′
] = D(σ2

α)⊗ In where D(σ2
α) is a diagonal matrix with σ2

1, ..., σ
2
m on main

diagonal. Therefore, the disturbance terms could have different variances.

Since the equations are independent, the likelihood function can be written as:

l(δ, σ|Y, Y0) ∝
m∏

α=1

1

σn
α

exp[− 1

2σn
α

(yα − Zαδα)
′
(yα − Zαδα)] (5.37)

where Y0 denotes given initial conditions, σ
′
= [σ1, ..., σm], Zα = [y1, ..., yα−1

...X],

δ
′
α = [γ

′
α

...β
′
α] with γ

′
α = [γα1, ..., γα,α−1] and δ

′
= [δ

′
1, ..., δ

′
m].

The prior information is assumed to be non-informative as:

p(δ) ∝ constant

p(σ) ∝
m∏

α=1

1

σα

(5.38)

The joint posterior of pdf for δ, σ can be obtained as:

p(σ, δ|Y, Y0) =
m∏

α=1

1

σn+1
α

exp[− 1

2σ2
α

(yα − Zαδα)
′
(yα − Zαδα)] (5.39)

Since the equations are independent from each other, the posterior for each equation

can be written as

p(σα, δα|Y, Y0) ∝ 1

σn+1
α

exp[− 1

2σ2
α

(yα − Zαδα)
′
(yα − Zαδα)]

∝ 1

σn+1
α

exp[− 1

2σ2
α

(ε̂
′
αε̂α + (δα − δ̂α)

′Z
′
αZα(δα − δ̂α))] (5.40)

where ε̂α = yα − Zαδ̂α and δ̂α = (Z
′
αZα)

−1Z
′
αyα.
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Conditional posterior pdf for δα given σα is the multivariate normal form with the

mean δ̂α. The marginal pdf of σα is

p(σα|Y, Y0) ∝ 1

σn−qα+1
α

exp(− ε̂
′
αε̂α
2σ2

α

) (5.41)

where qα is the number of elements in δα which is in the inverted gamma form.

The marginal posterior pdf for δα can be obtained as:

p(δα|Y, Y0) ∝ [ε̂
′
αε̂α + (δα − δ̂α)

′
Z
′
αZα(δα − δ̂α)]

−n
2 (5.42)

which is the multivariate student t form.

If the prior distribution for δα is considered as multivariate normal such as

p(δα) ∝ exp[−1

2
(δα − δα)

′
R−1α (δα − δα)] (5.43)

while the prior for σα is p(σα) ∝ 1/σα, the conditional posterior of δα given σα can

be obtained as

p(δα|σα, Y, Y0) ∝ exp(− 1

2σ2
α

(δα − δ̂α)
′Z

′
αZα(δα − δ̂α)])×

exp[−1

2
(δα − δα)

′
R−1α (δα − δα)]

∝ exp[−1

2
(δα − μα)

′
ω−1α (δα − μα)]

(5.44)

where ωα = (R−1 + σ−2α (Z
′
αZα))

−1 and μα = ωα(δαR
−1 + δ̂ασ

−2
α (Z

′
αZα)).

Marginal distribution of δα is also obtained as:

p(δα|Y, Y0, P I) ∝[ε̂′αε̂α + (δα − δ̂α)
′
Z
′
αZα(δα − δ̂α)]

−n/2×
exp[−1

2
(δα − δα)

′
R−1α (δα − δα)]

(5.45)

which is normal-t distribution.

Generating random samples from this posterior distribution is not easy since it

does not have a standard form. In order to make the distribution to have a standard

form, the t distribution can be approximated by normal distribution as proposed by

[91]. By expanding the term with the form of t distribution and keeping the first
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normal term of approximation, the posterior probability becomes:

p(δα|Y ) ∝exp[−1

2
(δα − δ̂α)

′
ε̂′αε̂α

−1 ⊗ Z
′
αZα(δα − δ̂α)]×

exp[−1

2
(δα − δα)R

−1(δα − δα)] ∝

exp[−1

2
(δα − b)F (δα − b)]

(5.46)

where ε̂′αε̂α = 1
n
ε̂
′
αε̂α,

b = (R−1 + ε̂′αε̂α
−1 ⊗ Z

′
αZα)

−1(R−1δα + ε̂′αε̂α
−1 ⊗ Z

′
αZαδ̂α) (5.47)

and

F = R−1 + ε̂′αε̂α
−1 ⊗ Z

′
αZα (5.48)

5.5.2 Solving the equations simultaneously

The reduced form of the model is obtained by right-multiplying the equation with

A−10 as:

Y = XB + E (5.49)

where covariance of E ΣE = A
′−1
0 ΣεA

−1
0 and B = A+A

−1
0 . ΣE is not diagonal in

general since its elements are linear combinations of structural shocks ε.

The likelihood of observations matrix Y in Equation 5.49 can be written as in the

following equation:

p(Y |X,B,ΣE) ∝ (5.50)

|ΣE|−T exp[−1

2
tr((Y −XB)

′
Σ−1E (Y −XB)]

Considering least square estimate B̂ = (X
′
X)−1XTY and S = (Y −XB̂)

′
(Y −XB̂),

the likelihood takes the form:

p(Y |X,B,ΣE) ∝ |ΣE|−(T−k)exp[−1

2
tr(SΣ−1E )] (5.51)

|ΣE|−kexp[−1

2
tr((B − B̂)

′
)X

′
Σ−1E X(B − B̂))]

Likelihood function is quadratic with respect toB conditioned on a fixed ΣE. Marginal-

ized posterior of ΣE has the form of inverted Wishart distribution under uniform prior

distribution.

If the model in Equation 5.35 is exactly identified which means there are exactly
m(m− 1)

2
restrictions on A0 matrix, there is a unique map from ΣE to the elements
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of A0 and Σε. It is commonly assumed that A0 has a triangular form and A−10 Σ
1/2
ε

can be obtained by Choleski factorization of ΣE. Therefore, in order to sample from

the posterior distribution of A0, it is sufficient to map the samples from posterior

distribution of ΣE through a Choleski factorization. The posterior distribution of ΣE

and B will remain in the same distribution form as the likelihood if a uniform prior

is chosen for B and ΣE.

When the number of restrictions on A0 matrix is more than
m(m− 1)

2
, ΣE will

be restricted. Mapping the samples from the unrestricted distribution of ΣE to A0

is not accurate anymore [92]. Thus, the posterior should be written as a function of

A0 itself. Another advantage of writing the likelihood in terms of A0 matrix is the

possibility of designing prior distribution for its elements.

Following the work of [92], by vectorizing the matrices in Equation 5.51, the

likelihood can be written in a multivariate form instead of matrix variate which makes

it easier to work with. Defining Z = [Y,−X] and A = [A0, A+]
′
, the model in

Equation 5.35 can be written as ZA = ε.

The likelihood of the data can be written as in Equation 5.53.

L(Y |A) ∝ |A0|T exp[−1

2
trace(ZA)

′
(ZA)] (5.52)

The vectorized form of A is denoted by a which is obtained by stacking the columns

of the matrix A on top of one another. a0 and a+ are also obtained by vectorizing A0

and A+ matrices.

L(Y |A) ∝ |A0|T exp[−1

2
a
′
(I ⊗ Z

′
Z)a] (5.53)

The prior PDF on the parameters of a0 and a+ vectors is defined as following.

π(a) = π(a0)N (a+ − μ,H) (5.54)

π(a0) is the prior on the a0 vector and the prior on the a+ is a normal distribution

with mean μ and covariance H.

The posterior density of model parameters can be obtained by multiplying the

likelihood with the prior density as in Equation 5.55.

p(a) ∝ π(a0)|A0|T |H|− 1
2× (5.55)

exp[−1

2
(a
′
0(I ⊗ Y

′
Y )a0 − 2a

′
+(I ⊗X

′
Y )a0

+ a
′
+(I ⊗X

′
X)a+ + (a+ − μ

′
)H−1(a+ − μ)]

The posterior distribution of a+ given a fixed a0 is Gaussian as in Equation 5.56.

p(a+|a0) = N [a∗0; (I ⊗X
′
X) +H−1)−1] (5.56)
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where a∗0 = (I ⊗X
′
X) +H−1)−1((I ⊗X

′
Y )a0 +H−1μ).

Marginal distribution of a0 can be obtained as:

p(a0) ∝ π(a0)|A0|T |(I ⊗X
′
X)H + I|−1/2 (5.57)

exp[−0.5(a′0(I ⊗ Y
′
Y )a0 + μ

′
H−1μ

− a∗
′

0 (I ⊗X
′
X) +H−1)a∗0]

In order to sample from the posterior distribution of model parameters, we need

to first sample from the marginal posterior of a0 followed by sampling from the con-

ditional posterior of a+. Sampling from the posterior of a0 requires application of

special methods since the probability density does not have a standard form. [93]

has proposed a Gibbs sampler in order to sample from the posterior of over identified

SVAR model parameters with exact restrictions on elements of a0. The proposed

method is the most reliable for over identified models where there are more than
m(m−1)

2
exact restrictions on A0 matrix. However, here it is preferred not to impose

exact restrictions on the lower triangular elements of A0 matrix but to use prior dis-

tribution to shape the posterior distribution. There are methods such as importance

sampling and Metropolis-Hastings (MH) algorithms which can be used to sample

form the distribution in Equation 5.57 [94]. The Metropolis algorithm is used here

as explained in following.

Application of Metropolis algorithm requires a proposal distribution (q(a0)) pro-

portional to the true posterior distribution to sample from. Waggoner and Zha [95]

considered a multivariate t distribution with zero mean value and a scale equal to

the inverse of the Hessian of the log likelihood as q(a0). The new sample (an) is

considered as the summation of the previous sample with the random sample taken

from q(a0) (z) as a
n = a(n−1) + z.

A problem with using t distribution to approximate the likelihood is that the

posterior distribution will have a non-standard form if the prior distribution is not

uniform. Since a normal distribution is considered as the prior distribution in this

study, it is difficult to sample from the approximate posterior distribution which is

the multiplication of the approximate likelihood to a multivariate normal distribution.

Therefore, here the likelihood is approximated by a normal distribution to achieve a

posterior with a standard form.

Another problem is that since q(a0) is considered as the multiplication of the prior

to approximate likelihood, the posterior of some of the elements of a0 will have an

exact value of 1 or 0 due to the strict design of the prior distribution as will be

described later. Therefore, the summation of the random sample taken from q(a0)

with the previous sample makes the samples to approach infinity. To resolve this
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issue, the new sample equals to the random sample directly taken from q(a0) with

the difference that the mean of the distribution approximating the likelihood equals

to the previous sample instead of 0. This adjustment in addition to the fact that the

new sample is accepted if it is more probable compared to the previous sample, makes

it more likely to search the whole space covered by the likelihood and converging to

the most likely point while the samples do not approach infinity. The covariance

matrix of the distribution approximating the likelihood is equal to the inverse of the

Hessian of the log likelihood at its mode (Hessian is denoted by H and equals to

I⊗Y Y
′
+ I⊗Y

′
Y − 2(I⊗X

′
Y )

′
(I⊗X

′
X +H−1)−1(I⊗X

′
Y )). Thus, q(a0) is taken

as π(a0) ∗ N (a(n−1), inv(H)) and the following steps should be taken to sample from

the posterior of a0.

• Initialize arbitrary value a0. For n = 1, ..., N do the following:

• generate z from q(a0) and u from uniform distribution U(0, 1)

• compute

J(a(n−1), z) = min{ p(z)

p(a(n−1))
, 1} (5.58)

• if u ≤ J(a(n−1), z), set an = z; else, set an = a(n−1)

5.5.3 Imposing exact restrictions on the posterior distribu-
tion

Some of the coefficients in each equation might be known that are exactly equal

to zero a priori. For example, we may know that the process time delay is surely

more than 5 samples and therefore in the equation modeling the process output, the

coefficients of the lags within 5 samples should be exactly 0. Estimated values of

these coefficients will converge to 0 in large sample since the estimation methods are

asymptotically unbiased and consistent. However, estimated values based on small

sample sizes could be non-zero. Even though these coefficients are likely to be close

to zero even for small sample sizes, the correlation of the corresponding predictor

variables with other predictor variables could make the coefficients to have a non-

zero value. It is observed that even small valued non-zero coefficients cause a bias

in estimated impulse response. Restricting the coefficients which are surely expected

to be zero by prior knowledge, can help to achieve a better estimation of non-zero

coefficients and therefore a more reliable quantification of interactions.

Restricting the values of specific coefficients in each equation is possible by con-

ditioning the posterior distribution of equations. It should also be mentioned that
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since different coefficients are restricted in each equation, it is only possible to impose

restrictions individually for each equation which is again possible if the equations are

independent.

δα is partitioned as [δaδb]
′
where δa represents non-zero coefficients and δb includes

the coefficients which should be equal to 0. Zα is also partitioned accordingly into

[ZaZb]
′
. The posterior covariance matrix ωα will be partitioned as[

A C
CT B

]

where A is the covariance matrix of the predictor variables corresponding to non-

zero coefficients, B is the covariance matrix of zero coefficients and C is the cross

covariance matrix. Inverse of ωα matrix can be written as

ω−1α =

[
I 0

−B−1C I

] [
(A− CTB−1C)−1 0

0 B−1

]
×[

I −CTB−1

0 I

]
(5.59)

which results in

p(δa, δb) ∝ exp[−1

2

[
(δa − μa)− CTB−1(δb − μb)

(δb − μb)

]
×[

(A− CTB−1C)−1 0
0 B−1

]
×[

(δa − μa)− CTB−1(δb − μb)
(δb − μb)

]
]

which can be simplified as:

p(δa, δb) ∝ exp[
−1
2
((δa − μa)− CTB−1(δb − μb))

T× (5.60)

(A− CTB−1C)−1((δa − μa)− CTB−1(δb − μb))]×
exp[

−1
2
(δb − μb)

TB−1(δb − μb)]

(5.61)

δb equals to zero and μb is the estimated value of δb which is a weighted summation

of the MLE estimation and the prior δb (which is 0). It is observed that the mean of

δa is modified with the addition of CTB−1μb and its covariance is also modified due

to non-zero C matrix.
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5.6 Design of the prior distribution

Capability of incorporating the prior distribution in estimation of model parameters

is an inherent advantage of Bayesian analysis. It is mentioned in the literature that in

large systems with many variables and large time lags, the prior distribution on the

model parameters help the model identification. However, the prior probability should

be based on sound information to ensure convergence of the model parameters to the

true values. In modeling engineering process variables, knowledge of the probable

time delay between the variables and probable time constant of the system is helpful

in designing the prior if available. It is note worthy that if the prior knowledge used

in the model estimation is not accurate, it can lead to in-accurate estimation of model

parameters.

5.6.1 Prior on elements of A0

The A0 matrix introduced in Section 5.6 makes the system identifiable since there are

sufficient restrictions to uniquely estimate the model parameters. Imposing the A0

matrix or equivalently a0 vector to the model is possible through the prior distribution.

The elements of each column of A0 matrix which correspond to one equation are

considered to be independent of the elements in other columns. Therefore, the prior

distribution on the elements of A0 has a multivariate normal form as:

p(A0) =
m∏
1

N (Γm, Fm) (5.62)

where Γm and Fm are the prior mean and covariance matrix for the elements of each

column. The mth element of Γm equals to 1 and it may have one more non-zero

element if the equation corresponds to the controller output of the mth loop. The

covariance matrix Fm should be designed in such a way that ensures the posterior

distribution for Γm will have the mth element equal to 1 and other elements equal

to 0 except for (m − 1)th element in equations corresponding to controller outputs.

Choosing a variance very close to 0 for all the elements except for the (m − 1)th

element in equations modeling the controller outputs guarantees that the posterior

mean of the elements of A0 matrix will also be close to the desired values.

The posterior mean of the (m − 1)th element in the equations modeling the con-

troller outputs should be equal to the proportional gain of the corresponding con-

troller. Therefore, the mean of this element can be chosen based on the priory knowl-

edge on the likely value of controller proportional gain with a large variance to cover

the range of uncertain values if the prior is uncertain.
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Prior on A0 matrix can be easily transformed into a prior on a0 vector by stacking

vectors of Γm on top of each other to form the vector of mean values. The covariance

matrix can also be constructed as diag(F1, ..., Fm).

5.6.2 Prior on elements of a+

By examining the posterior distribution of a+, it is observed that a block diagonal

design of the covariance matrix of prior distribution, can make it possible to transform

the joint normal distribution to multiplication of m independent normal distribution,

each corresponding to the coefficients of one equation. The term (I ⊗ X
′
X) + H−1

can be written as a block diagonal matrix if H is block diagonal as is I⊗X
′
X. Block

diagonal design of H matrix means prior independence of the equations. Different

covariance matrices can be designed for different equations in the model denoted as

R. and the H matrix can be constructed as diag(R1, ..., Rm). By this design the

term (I⊗X
′
X)+H−1 can be written as diag(X

′
X+R−11 , ..., X

′
X+R−1m ). Therefore,

sampling from the posterior distribution of a+ can be transformed into sampling from

m normal distributions, each belonging to an equation in the system.

The form of prior distribution for each equation’s coefficients is considered as

N (μm, Rm). Regardless of the coefficients for which there is a prior knowledge of their

values, the common practice in econometric literature to design prior distribution for

Bayesian VARs is to follow Litterman’s prior. Litterman’s method is based on the

assumption that the variables are usually in the form of a random walk. Litterman

assigns a high prior probability on the lags of the response variable itself and a smaller

probability for the lags of the predictor variables in each equation. In order to do

that, the elements of μm are set equal to 0 except for the element corresponding to

one sample lagged of the response variable itself in each equation.

The covariance matrix Rm controls the tightness of the belief in the prior mean.

Rm is usually chosen to be diagonal (assuming independence between the coefficients)

with non-zero elements designed as:

λ0λ1

σjlλ3
(5.63)

where l is the time lag of the respective regressor. λ0, λ1 and λ3 are the hyper

parameters. λ0 controls the general tightness of beliefs on μm, λ1 controls the tightness

of belief around the random walk assumption and λ3 controls the shrinking rate of

the variance. σj is the scale factor accounting for the different measurement scales

for the variables and different residual variances. σj can be selected based on the

knowledge of the measurement units of the variables or a preliminary analysis on the

131



data.

λ1 can be chosen equal to 1 for the history of the response variable itself and

less than 1 for the predictor variables in each equation. This reduces the probability

of the coefficients corresponding to the predictor variables to be different from zero

which is desirable based on the random walk assumption. λ3 is also between 0 and

1 and its role is to push the coefficients at larger lags to 0. It is desirable to avoid

over-fitting problem and having unnecessary non-zero coefficients. The role of λ3 is

similar to the forgetting factor where it is desired to give less weight to the historical

data based on their time lag. A value equal to 0.95 is chosen in this work for λ3.

Since variables in an engineering process do not necessarily follow a random walk

behaviour, the prior distribution is defined differently. In each equation, some of the

coefficients might be known that should be equal to 0 based on the nature of the

response variable or the likely time delays. The elements in μm corresponding to

these coefficients can be chosen as 0 with a variance close to 0 to make the posterior

mean of the coefficients approach 0 as well.

Hyper parameter λ1 which gives more weight to the history of the response variable

itself rather than other regressors has a different role here since process variables do

not necessarily have a random walk behavior. By selecting λ1 = 1 for all the elements

in equations corresponding to process outputs, equal importance is given to all the

regressors that are desirable.

In equations modeling the controller outputs, λ1 is selected very close to 0 for

the history of the response variable itself and also the history of other variables

except for the corresponding process outputs. The reason is that the true model for

each controller output is only a function of the corresponding process variable. By

manipulating λ1, it is possible to achieve an estimation of the true model parameters.

The role of λ3 is kept the same since it is desirable to assign less importance to

regressors with larger time lags. However, it should be noted that if there is a time

delay (D) from one regressor to the corresponding response variable, l−D+1 should

be used instead of l in Equation 5.63 so that the variance has its highest value at the

time lag corresponding to the time delay.

5.7 Impulse response estimation

A stationary stable SVAR(p) process as defined in Equation 5.23 has a corresponding

VMA representation according to Wold’s theorem as follows.

yt = Θ0εt +Θ1εt−1 +Θ2εt−2 + ... (5.64)
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where Θj = φjA
−1
0 and φjs are m×m dimensional matrices recursively obtained by

the following equation.

φs =
s∑

j=1

φs−jAj (5.65)

where φ0 = A0.

Proper design of the A0 matrix as described in Section 5.3 guarantees that εt has

a diagonal covariance matrix. Therefore, VMA representation of the SVAR model

can be uniquely identified.

In order to determine a confidence interval for the estimated impulse responses,

the posterior distribution of impulse responses coefficients are needed. The relation

between Θj and the estimated coefficients of SVAR is nonlinear and the analytical

relation between their posterior distributions cannot be derived for j > p + 1 where

p is the order of the AR part of the model. [96] presented the analytical form of

the impulse response distribution based on the posterior of Bayesian SVAR model

up to time horizon p + 1. Since there is one to one relation between the first p + 1

impulse response coefficients and the p+ 1 coefficient matrices in the VAR model, it

is possible to analytically derive the probability distribution of the impulse response

coefficients up to horizon p+1. However, quantification of the energy transfer between

the variables requires estimation of the impulse response coefficients till the values

approach to 0 and not only the first p+ 1 coefficients. Therefore, we have to rely on

drawing samples from p(Θj|a+, a0) based on the Monte Carlo method.

In order to draw samples from the posterior distribution of the impulse responses,

samples from the posterior distribution of the SVAR model parameters should be

transformed into the impulse response form. The method to obtain a confidence

interval for the estimated impulse responses is described in the following section.

5.7.1 Confidence interval for the impulse responses

Inference on the impulse response requires determining confidence intervals for the

estimated impulse response coefficients. [97] has proposed to estimate the posterior

probability density of the impulse responses at each time horizon individually and

to obtain the standard deviation and skewness measure for each impulse response

coefficient independently. The method that is used in this work is based on that of [98]

where the dependency between the impulse response coefficients in the time horizon

is also taken care of. Lutkepoh et al. [99] presents a comparison between different

methods for estimation of confidence intervals for impulse response coefficients based

on classical methods.
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Since the impulse response is estimated based on the SVAR model, sampling

of the impulse response distribution requires sampling from the distributions of the

parameters of the SVAR model. For each draw from the posterior distribution of the

SVAR model as in Section 5.5, the impulse response is estimated for a suitably large

time horizon.

One way to derive the confidence interval for the impulse response coefficients is

to find the confidence interval for each Θij(t) (impulse response from variable j to i

after time t) independently. However, as is discussed in [98], impulse responses Θijs

are not independent of each other over the time horizon. Therefore, this dependence

should be considered in determining the confidence intervals. In order to do that, [98]

proposed to consider Θij(t)|Ht=0 as a H dimensional vector with covariance matrix Ω.

Ω can be estimated from the Monte Carlo samples.

The eigenvector decomposition of the covariance matrix Ω is utilized as follows.

WΛW
′
= Ω (5.66)

where Λ is diagonal and W
′
W = I. Columns of W are the eigenvectors of Ω. The

vectors of Θij can be represented as:

Θij = Θ̂ij +
H∑
k=1

γkW.k (5.67)

where Θ̂ij is the estimated mean of Θij and W.k is the kth column of W . γk causes

the ucertainty in the impulse responses and its variance equals to the kth eigenvalue

of Ω.

A confidence interval can be estimated as Θ̂ij±
√
λkW.k for the impulse responses.

However, this confidence interval is symmetric while the posterior distribution of the

impulse responses might be asymmetric. To take care of this asymmetry, a second pass

through the simulated samples is made in order to find the interval for γks. γk can be

obtained as (Θij − Θ̂ij)
′
W.k for each draw of Θij. The two functions Θ̂ij + γk,0.16W.k

and Θ̂ij + γk,0.84W.k provide the confidence interval for Θij along the direction of

W.k which could be asymmetric. It is possible to estimate the confidence interval

considering all the eigenvectors as Θ̂ij +
∑H

k=1 γk,0.16W.k and Θ̂ij +
∑H

k=1 γk,0.84W.k

Availability of a confidence interval for the impulse response coefficients is important

in order to find the time lag in which the impulse response converges to 0.

5.8 Impulse response decomposition

The impulse response obtained in the previous section represents the total transfer

function between the variables in the sense that each Θij is a summation of the impulse
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responses of all the different paths from which an impulse at εj can reach variable

i. The 2-norm of the impulse response is the total energy or variation transferred to

variable j in response to an impulse in variable i.

If the total impulse response from variable j to i is non-zero, there is either a

direct or indirect causality from variable j to i. However, the total impulse response

does not tell about the different paths from which variable j can reach variable i.

Gigi et al [87] proposed a way to decompose the total transfer function between

variables to direct and indirect relations in the frequency domain. The direct trans-

fer function is defined as the transfer function from innovations in the input directly

transferring to the output without going through any loop or any intermediate vari-

able. For example, Figure 5.1 depicts the variables belonging to two loops interacting

with each other. The transfer functions representing each path are denoted by G.,.

Figure 5.1: Simulated process

The direct transfer function from εu1 to y2 is Gu1,y2. εu1 can also reach y2 from

two other paths: one is after going through y1 and returning to u1 (with a transfer

function as Gu1,y1 × Gy1,u1 × Gu1,y2), the second path is through u3 which again can

be decomposed into 2 transfer functions based on inclusion of y1 (Gu1,u3 ×Gy2,u3 and

Gu1,y1 ×Gy1,u1 ×Gu1,u3 ×Gy2,u3). These paths are indirect since εu1 reaches y2 after

passing through other variables. The total transfer function from εu1 or u1 to y2 is a

combination of all these transfer functions. The method proposed by [87] separates

the direct transfer function (Gu1,y2) from the total transfer function but does not

separate the remainder of the transfer functions from each other. The method to

be proposed below is capable of decomposing the total transfer function into all its

individual components.

Decomposition of the total impulse responses can be done by manipulating the

estimated SVAR model before transforming it to the VMA model. The VMA repre-
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sentation of a properly manipulated SVAR model can represent any desired impulse

response.

To determine the direct transfer function between two variables namely u1 and

y2 in Figure 5.1, we need to only keep the path from which u1 reaches y2 without

going through any other variable. Considering the coefficient matrix of an estimated

SVAR model, we can remove all the indirect paths from which u1 can reach y2 by

making the coefficients relating y2 to other variables except for the history of y2 and

u1 to zero. Also, regarding the equation of u1 we need to make all the coefficients

corresponding to other variables equal to 0 to ensure that u1 is not influenced by

any variable in the system. For example, if variables [y1(t), u1(t), y2(t), u2(t), u3(t)]
′

are only a function of [y1(t− 1), u1(t− 1), y2(t− 1), u2(t− 1), u3(t− 1)] through the

coefficient matrix shown in the left hand side of Equation 5.68, the coefficient matrix

should be manipulated as shown in the right hand side of Equation 5.68 in order to

estimate the direct impulse response from u1 to y2.⎡
⎢⎢⎢⎢⎣

0 1 0 1 0
0.2 0.33 0 0 0
0 1 0.4 1 0.3
0 0 0.6 0 0
0 0.5 0 0 0

⎤
⎥⎥⎥⎥⎦→

⎡
⎢⎢⎢⎢⎣

0 1 0 1 0
0 0.33 0 0 0
0 1 0.4 0 0
0 0 0.6 0 0
0 0.5 0 0 0

⎤
⎥⎥⎥⎥⎦ (5.68)

Note that if the model is of pth order instead of 1st, the same elements should be forced

to zero in all the coefficient matrices in the model. The impulse response from u1 to

y2 estimated from the re-arranged model is the direct impulse response. Graphically,

the re-arranged model can be represented as in Figure 5.2 where the above mentioned

connections are removed by making their corresponding transfer functions equal to 0.

Impulse response coefficients will be estimated based on the re-arranged SVAR model

where the effect of feedback loops and other variables are removed from the relation

between u1 and y2.

The transfer function from u1 to y2 through u3 can also be estimated in a similar

way. In this case, since y2 should only be a function of u3, all the coefficients in the

equation of y2 should be zero other than the coefficients corresponding to lagged y2

and u3. u3 should also be only a function of u1 by making all the coefficients equal

to 0 except for coefficients corresponding to the history of u3 and u1. Again u1 itself

should not be a function of any other variable in estimation of this transfer function.

The graphical representation of the re-arranged model appropriate for estimation of

this desired transfer function is shown in Figure 5.3.

By forcing appropriate coefficients in the estimated SVAR model to be 0, any

specific transfer function can be individually estimated in the form of impulse re-
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Figure 5.2: Removing the indirect connections from u1 to y2

Figure 5.3: The connection between u1 and y1 through u3

sponse. For example, if it is desired to estimate the transfer function from ut to yt

going through zt and wt, we need to make each one of the variables only a function of

their own lags and the lags of their respective input variable. The impulse response

estimated from the properly manipulated SVAR is the desired transfer function.

The procedure presented in the chapter is utilized in order to decompose the

variations transferred between the 5 variables in the simulated model shown in Figure

5.4. Only the details of decomposing the impulse response transferred from u2 to y1

is presented here in details. The total transfer function from u2 to y1 in terms of

impulse response is plotted in Figure 5.5 along with the estimated 90% confidence

intervals. It can be observed that the uncertainty in the estimated impulse response

generally increases with time horizon. The impulse response converges to 0 for time

horizon larger than 15 samples. The total energy transferred from an impulse in u2

to y1 can be estimated as 5.65.

In order to estimate the interaction-free energy transferred from u2 to y1, the
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Figure 5.4: Simulated process

direct impulse response is estimated by making all the coefficients in the equation of

y1 equal to 0 except for coefficients corresponding to lagged y1 and u2. u2 is also a

function of itself. Figure 5.6 plots the direct impulse response from u2 to y1 along

with the confidence intervals. The estimated direct energy transfer is 1.3 which is

devoid of the effect of the two feedback loops and variable y3.

To check the effect of closing the feedback loop of y1 on the impulse response

transferred from u2 to y1, we can leave y1 to be a function of both its own history

and the history of u1 in addition to u2. In the equation of u1 also the coefficients

corresponding to the history of u2, y1 and u1 should remain unchanged while the

coefficients corresponding to any other variable should be forced to 0. u2 itself should

not be a function of any other variable to ensure that there is no influence of its

own loop in the impulse response to be estimated. The impulse response estimated

from this re-arranged model from u2 to y1 is plotted in Figure 5.7 which is different

from the direct impulse response due to the effect of the first feedback loop. The

comparison between these two impulse responses can indicate the performance of the

controller in rejecting the disturbance caused by u2. It can be seen that closing the
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Figure 5.5: Total impulse response from u2 to y1 along with 90% confidence interval

loop has reduced the energy transferred to y1 due to an impulse in u2 to 1.12.

It is also possible to check the influence of closing the second loop in the transferred

impulse response. Figure 5.8 shows the impulse response transferred from u2 to y1

while both the loops are closed. Comparing Figure 5.7 with 5.8 shows that closing the

second loop increases the energy transferred to y1 to 1.56. This energy only excludes

the energy transferred through variable y3 from estimation.

The variation in y1 due to an impulse in u2 which is independently transferred

through y3 can also be estimated. The impulse response of y1 to u2 through y3 is

plotted in Figure 5.9 and the transferred energy equals to 1.26.

The possibility to estimate how much energy is transferred from each path as

well is verifying the performance of the controller, is valuable when trying to reduce

the variation in y1 due to a change in u2. It should be noted that as explained in

[100], summation of the estimated impulse responses is not equal to the total impulse

response. The reason is that the impulse responses interfere with each other and may

compensate the influence of each other.

5.9 Case study

A multiple tank system as shown in Figure 5.10 is considered for interaction analysis.

The equipment is composed of three tanks and the levels of the top two tanks are

controlled with PI controllers in feedback loops. The level trajectories of the three

tanks are plotted in Figure 5.11 with small perturbations around the steady state
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Figure 5.6: Direct impulse response from u2 to y1 along with 90% confidence intervals
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Figure 5.7: Impulse response from u2 to y1 along with 90% confidence intervals while
only the first loop is closed

operation.

Figure 5.12 plots the estimated impulse responses from the top and bottom tanks

to the middle one respectively. As is expected, the impulse response coefficients from

the top tank to the middle one are significantly different from 0. On the other hand,

impulse response coefficients from the bottom tank to the middle tank demonstrate

that there is no influence from the bottom tank on the middle one.

Figure 5.13 plots the total impulse responses from the top and middle tanks to

the bottom tank. There are some impulse response coefficients significantly different

from 0, indicating the influence of the middle tank on the bottom one. The third

panel of the figure also plots the direct influence of the top tank on the bottom one.

By comparing the total and direct impulse responses of the top tank to the bottom
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Figure 5.8: Impulse response from u2 to y1 while both the loops are closed

one, it can be inferred that that top tank can reach the bottom tank only through

the middle tank. Thus, the above data-based analysis does match the physical setup.

This illustrates the capability of the proposed method in capturing asymmetrical

causality relations between variables as well as decomposing impulse responses in

order to infer the actual relation between process variables from data.

5.10 Summary

A novel method is proposed in this chapter in order to decompose the estimated trans-

fer function between variables to independent transfer functions, each corresponding

to a specific path along which the input can influence the output. The advantage of

the proposed method is that it can detect the different path along which variables can

influence each other and it provides an estimation of the strength of the different con-

nections between the variables. It also provides a way to check the performance of the

controller in disturbance rejection. Estimation of the transfer functions is performed

under Bayesian framework. A method to properly design the prior distribution for the

parameters to avoid over-fitting as well as the method to sample from the posterior

distribution of parameters is presented in this chapter. In addition, a methodology to

detect instantaneous relations between the variables only from the data is proposed

in the last section of the chapter.
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Figure 5.9: Impulse response from u2 to y1 through y3

Figure 5.10: Schematic of the multi-tank system under study
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Figure 5.11: Level measurement of the three tanks under study
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Figure 5.12: Impulse responses to the middle tank
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Chapter 6

Information transfer methods in
causality analysis of process
variables
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6.1 Abstract

This chapter studies mutual information and transfer entropy for detection of cause

and effect relationships between industrial process variables. Mutual information

quantifies the amount of dependency between process variables, while transfer en-

tropy detects the direction of information flow between the variables. The chapter

overviews the existing definition and limitations of these two quantities and proposes

an algorithm by combining and extending these two quantities for more reliable iden-

tification of causal relationship between process measurements. Detection of causal

relationships between plant variables is useful for diagnosis of the root cause of a

distributed fault in the process. It also helps predicting the effect variables. The

proposed method is illustrated through an industrial case study.

6.2 Introduction

Causality analysis has been of great interest in various fields of science, engineering

and economics. For a common understanding about the cause and effect relationship,

the Wiener-Granger definition for causality is quoted here. ”For two simultaneously

measured signals, if we can predict the first signal better by using the past information

from the second one than by using the information without it, then we call the second

signal causal to the first one”. There are also two conditions: the cause should occur

before the effect and the cause should contain some information about the effect that

cannot be found in any other variable (including the effect variable itself).

The motivation of causality analysis is to identify the variables that are affecting

the values or variations of another variable of interest. It provides the basis to make

a good prediction for the desired variable or to control it by controlling its cause

variables. From the control engineering perspective, the desired variable might be

the quality of the product, an important variable considering safety issues or any

other variable that should be maintained in a specific operation range.

The other motivation for causality analysis is to develop a causal map for a plant

by analysing the relationships between all the variables of the plant. A causal map

is helpful in root cause diagnosis of plant wide disturbances. In the cases in which a

number of plant variables are out of the operation range or carry the same type of

fault, a causal map can be used to detect the propagation path of the fault through

the process.

Building causal maps for fault diagnosis has been studied in the literature from

different perspectives. Some use process knowledge such as process flow sheet and
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control configuration to develop a digraph for the process [101, 102]. Bauer et al.

[103] has applied the transfer entropy method for developing a causal map based on

the data.

Some other methods for root cause diagnosis of plant wide disturbances are based

on principal component analysis in the frequency domain [104] and spectral envelope

method to detect the oscillatory variables and identify the most likely root cause

[24]. Stockmanna et al.[105] used the K nearest neighbor imputation method to

estimate the time delay between the variables and eventually identify the source of

the disturbance.

This work proposes a probabilistic method using the concept of information trans-

fer between process variables to detect the cause and effect relationships. Transfer

entropy provides an asymmetric measure of the information flow between two vari-

ables. It quantifies the improvement in the prediction of a variable by considering

the history of a second variable in addition to the history of itself. Transfer entropy,

if implemented appropriately, is a reliable method for detection of cause and effect

relationships between the variables.

The problem with implementing transfer entropy for industrial data is that its

reliable implementation is computationally impossible due to the reasons that will

be discussed in Section 3. It is shown that using mutual information along with

differential mutual information as proposed in this work, provides information about

the type of the relationship between process variables. This information can be used

to tune the parameters of the transfer entropy for a more reliable result with reduced

processing time.

The chapter is organized as follows. Section 6.3 provides the definition and his-

tory of mutual information and transfer entropy. Section 6.4 discusses the method

for implementing transfer entropy and its associated problems in application. This

section also includes application of mutual information and its differential version for

causality analysis. Subsection 6.4.5 investigates parametrising the transfer entropy

for a more reliable result. Section 4 presents an industrial case study and Section 5

concludes the chapter.

6.3 Mutual information and transfer entropy

Transfer entropy was proposed by [106] as a special version of Kullback entropy.

Kullback entropy [107] is defined as:

KI =
∑
i

p(i) log
p(i)

q(i)
(6.1)
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where p(i) is the true underlying probability distribution function (PDF) of random

variable I and q(i) is assumed probability distribution function of the variable. The

summation is over all possible states of variable I.

Kullback entropy measures the added uncertainty due to the difference between

the assumed PDF and the real PDF of the variable I. More illustration on the

Kullback entropy needs the Shannon entropy that is defined by the following formula:

HI =
∑
i

p(i) log
1

p(i)
(6.2)

Shannon entropy was proposed by [108] and quantifies the uncertainty of variable I

based on its probability distribution p(i). Shannon entropy was originally introduced

as the average number of bits that is needed to encode the value of variable I with a

known probability. If the variable is a deterministic value and there is no randomness

in the process, p(i) equals to one and there is no need for encoding. As a result

Shannon entropy will be zero. By increasing the number of possible values of the

variable I, the entropy of the variable increases.

Kullback entropy (KI) is the difference between Shannon entropies of two prob-

ability distributions p(i) and q(i). If the real probability distribution of variable I

is known as p(i), KI measures how much uncertainty is added by assuming another

probability distribution q(i) instead of p(i). Kullback entropy has a non negative

value and is zero in the case that q(i) = p(i).

A special kind of Kullback entropy, which is called mutual information, measures

the amount of dependency between two random variables I and J and is defined as

in Equation 6.3 [109].

MIJ =
∑
i,j

p(i, j) log
p(i, j)

p(i)p(j)
(6.3)

Here, the assumption of independency of variables I and J is compared with their joint

probability distribution. If I and J are independent variables, then p(i, j) = p(i)p(j)

and the mutual information will be zero. In the case that variable J is completely

determined by variable I, then, the mutual information equals to the uncertainty of

variable I. The reason is that p(i, j) = p(j|i)p(i) = p(i). So, Equation 6.3 simplifies

to
∑

i,j p(i) log
1

p(j)
=

∑
i p(i) log

1
p(i)

which is the Shannon entropy of variable I.

Mutual information is a symmetric quantity and its value does not change by

reordering the I and J in Equation 6.3. It provides a measure of dependency between

the two variables. However, it does not provide any information about the direction

of information flow between the variables.

It is possible to gain a sense of directionality from the mutual information by

incorporating a time lag in one of the variables. The so called time lagged mutual
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information has the following definition:

MIJ(h) =
∑
i,j

p(it, jt−h) log
p(it, jt−h)
p(it)p(jt−h)

(6.4)

where h is the time lag.

By trying different values for h, we can find the time lag for which there is the

maximum dependency between variable I and lagged variable J . In this time lag,

variable J has the most influence on the future value of variable I (when h > 0). This

time lag can be assumed as the time delay from variable J to I.

The main advantage of time lagged mutual information is that it is not symmetric

between variables J and I. By time lagging variable I instead of J , one can find the

time lag at which variable I has its most influence on the future value of variable J .

Figure 6.1 shows the mutual information (called dependency hereafter) between

a variable and its past. In Figure 6.1, there is a strong peak at time lag zero, which

means that the variable is mostly dependent to itself when there is no time lag, which

is expected.
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Figure 6.1: Time lagged mutual information between a variable by itself

Figure 6.2 shows the dependency between input and output of an industrial process

that will be further elaborated in Section 4. Positive time lags represent the case that

the input is lagged while negative time lags correspond to the case that the output

is lagged.

As can be seen in Figure 6.2, there is a high amount of dependency between time

lagged input and current value of the output variable. This means that input variable

can be used in prediction of the output. However, the output signal cannot help in

prediction of the input, which is as expected (the input is the product of the previous

plant).
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Figure 6.2: Time lagged dependency between input and output of an industrial pro-
cess

Another point that can be inferred from Figure 6.2 is that the input is the most

dependent on the output at a time lag of about 30 minutes. The time lag corre-

sponding to the highest dependency may be taken as the time delay between the two

variables if there is no feedback relation between the two.

Problem of using time lagged mutual information for detecting the direction of

information flow between the variables is that it does not take into account the influ-

ence of the history of a variable itself on its own future value. Consider the case that

two variables are linearly correlated to each other and the first variable is just a mul-

tiple of the second one. For example, Figure 6.3 shows trajectories of two variables.

The second variable is just 0.5 multiplied by the first variable. Time lagged mutual

information curve between the second variable and the history of the first variable is

depicted in Figure 6.4.
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Figure 6.3: Example of two variables that are linearly corelated to each other
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Figure 6.4: Time lagged dependency between the second variable with the history of
the first variable in Figure 6.3

Figure 6.4 tells us that there is a high amount of information flow from the first

variable to the second one. So, it can mistakenly be inferred that the first variable is

the cause to the second variable. The point is that even though there is information

flow from the first variable to the second one, but this information is contained in the

history of both variables. Figure 6.5 shows the dependency of the second variable on

its own history. By comparing Figures 6.4 and 6.5 , it can be seen that the dependency

curve between the second variable and the history of the first variable is the same as

its dependency with the history of itself. This implies that the history of the first

variable does not contain any additional information compared to the history of the

second variable. This contradicts with the condition of causality that was mentioned

in the introduction.

A high dependency value does not imply causality by itself. It is necessary to

make sure that the cause variable has unique information about the effect variable

that is not contained in any other variable including the history of the effect variable

itself.
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Figure 6.5: Time lagged dependency between the second variable with its own history

Previous discussion illustrates the motivation for development of transfer entropy.
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Transfer entropy takes the history of a variable itself into account when performing

causality detection.

Transfer entropy is defined as a special type of Kullback entropy that takes care of

the dynamics of information flow between two variables and is defined by the following

equation [106]:

TJ→I =
∑

p(it, i
k
t−1, j

l
t−1) log

p(it|ikt−1, jlt−1)
p(it|ikt−1)

(6.5)

where k and l are the length of the considered history of variables I and J , ikt−1 =

(it−1, · · · , it−k) and jlt−1 = (jt−1, · · · , jt−l)
Parameter l at least equals to 1. The parameter k is the order to model variable

I as a Markov process. In mathematical form the kth-order Markov process implies:

P (it+1|it, · · · , it−k+1, it−k) = P (it+1|it, · · · , it−k+1).

This means that the state of variable I at time t − k or before does not have any

influence on its future state value given it, · · · , it−k+1.

For computation purposes, transition probabilities in Equation 6.5 can be replaced

by joint probabilities. This results in the following equation for transfer entropy:

TJ→I =
∑

p(it, i
k
t−1, j

l
t−1) log

p(it, i
k
t−1, j

l
t−1)p(i

k
t−1)

p(it, ikt−1)p(i
k
t−1, j

l
t−1)

(6.6)

Transfer entropy measures the effect of the second variable J on the future state of

variable I. If the l past values of J have no effect on the future values of the variable

I, given k past values of I, then p(it|ikt−1, jlt−1) = p(it|ikt−1) and transfer entropy will be

zero. In the case that variable J influences variable I, transfer entropy has a positive

value.

Transfer entropy has two characteristics. The first one is that it is asymmetric

between I and J . Changing the ordering of I and J will change the direction of the

influence.

The second characteristic is that transfer entropy omits the common information

contained in both I and J due to correlation between the two variables. If the

dependency between I and J is due to correlation, the information in the history

of variable J is also contained in the history of variable I. Inclusion of the history

of variable I in the calculation of transfer entropy prevents mistaking the common

information contained in the history of both I and J as information transferred from

J to I.
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6.4 Practical issues and solutions

6.4.1 Computation method

Application of transfer entropy for analysis of real industrial data has many challenges.

The first one is that the data values have a fine resolution and it is necessary to bin the

data to have finite number of possibilities for estimation of the probability densities.

As is mentioned in [110], using Kernel estimators is a better way in comparison

with histograms to estimate the probabilities for a reliable estimation of transfer

entropy. Following is a description of the method used in this work. The first step

in density estimation is binning the data. Wand [111] made some suggestions on

the selection of the number of bins for the data and the method of binning. As is

discussed in [111] linear binning of the data generates less error compared to simple

binning.

For illustration of linear binning, consider a sample of a univariate random variable

X. The value of x is between the values of two bins a and b such that a < x < b. In

simple binning, all the weight of x goes to the bin nearest to it. In linear binning both

of the bins a and b get a weight according to their distance from x. The weight added

to bin a is b−x
b−a and the weight added to bin b equals to x−a

b−a . For two dimensional

data, all the four bins surrounding a sample of data get a proportional weight and

the same is for higher dimensional data.

After the data is binned, the Kernel method can be used to estimate the prob-

ability density. The Kernel estimator for a random variable X with observations

(x1, · · · , xn) is defined by Equation 6.7.

f̂σ(X) =
1

n

n∑
i=1

K(
x− xi

σ
) (6.7)

where n is the number of data samples, σ is the kernel width and K is the Kernel

function. Selection of Kernel width is widely discussed in the literature [112].

The Kernel function taken in this work is the Gaussian function with the following

definition:

K[x− xi] =
1

σ
√
2π

exp(
−(x− xi)

2

2σ2
) (6.8)

where σ is the Kernel width. For higher dimensional data, the Kernel function is a

multiplication of the individual Kernels. For example, for two dimensional data x, y,

Kernel function is as:

K[(x− xi), (y − yj)] =
1

2σ2π
exp(−(x− xi)

2 + (y − yj)
2

2σ2
) (6.9)
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The Kernel width can be constant for all dimensions of the data or can be variable.

In this work, the data is normalized to have the same standard deviation for all the

variables. Therefore, the Kernel width is constant.

A good estimation of probability density needs a large amount of data to be

considered in estimation. Larger amount of data generates less finite sample error in

probability density estimation. The other important point is that the data should

contain sufficient information in it. In other words it should represent all possible

values for the variables.

6.4.2 Confidence limit

As was discussed above, using finite sample data for estimation of probabilities gener-

ates random error in calculations. Dependency and transfer entropy values calculated

by this method even for two completely random and independent variables will not

be zero due to the finite samples used for calculation. Therefore, we need a method

to assess the uncertainty of the dependency or transfer entropy estimation.

For this reason Marschinski et al. [113] proposed the concept of effective transfer

entropy as the difference between the usual transfer entropy calculated from the data

and the transfer entropy calculated after randomly shuffling the data. By shuffling

the data, the dependency relationships are supposedly destroyed and the transfer

entropy calculated after the data shuffling is due to the numerical error. Palus et al.

[114] proposed the usage of surrogate time series to establish a critical test value in

order to examine the reliability of measured information transfer.

In general, determination of uncertainty for the calculated transfer entropy is

difficult due to complexity of transfer entropy calculation itself. That is the reason

to use Monte Carlo method to assess the uncertainty of the estimations. In this work

generation of random data with the same sample size as the original data is considered

instead of surrogate or randomly shuffled data. The advantage of using complete

randomly generated data is the certainty of non-existence of any relationship between

two random variables. Since the random data pairs are generated independently, any

dependency and transfer entropy values calculated from them are due to the error in

calculation such as finite samples.

The method that is used here is to generate a number of random variables with the

same sample size as the original data and perform the same analysis that is done for

the original time series for each pair of the random data. The result of the analysis will

be some random numbers that can be attributed to computation errors. A hypothesis

test can be developed using the mean value (μrandom) and standard deviation (σrandom)
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of the obtained results. The null hypothesis is that there is no dependency between

the real time series and the calculated value is due to the estimation error. If the

dependency value is higher than μrandom + 3σrandom, then the dependency between

the time series is confirmed.

6.4.3 Computational load

The most restriction in computation of transfer entropy is the need to estimate k+l+1

dimensional probability density as shown in Equation 6.6. Estimation of a joint PDF

with k+ l+1 dimension needs N × (2σ+1)k+l+1 summations where N is the number

of data samples and σ is the Kernel width. Estimation of all the PDFs in Equation

6.6 requires N(2σ+1)k× [(2σ+1)l+1+(2σ+1)l+2σ+2] summations and calculation

of transfer entropy needs nk+l+1 summation at the end (n is the number of bins in

each dimension).

As was mentioned in Section 2, parameter k is the order of the Markov model for

the process I, and l at least equals to 1. Considering that many chemical processes

involve chemical reactions and heat exchanges, the dominant settling time for the

process can be quite long. So, parameter k will have a large value on average (assum-

ing a small enough sampling time). It makes it impractical to calculate the transfer

entropy as defined in Equation 6.6, since it needs estimation of a high dimensional

probability density.

The second restriction in implementing transfer entropy method is the effect of

finite sample data in estimation of probability densities. As mentioned in Section 3.1,

use of larger set of data reduces the error in estimation of probability densities. Also,

data should be representative of different possible values of the variables of interest.

Therefore, a large amount of data needs to be processed in estimation of transfer

entropy. This is another factor that significantly increases the computation.

With the two problems mentioned above, a full implementation of the transfer

entropy is not practically feasible. Alternative approach must be found, and we need

to reduce the dimension of the probability density while tuning the parameters in a

way to get a reliable result. The next section illustrates the algorithm to use transfer

entropy in an efficient manner.

6.4.4 Application of dependency and differential dependency
curves

As discussed in Section 2, time lagged mutual information also contains directionality

in it. The main difference between time lagged mutual information and transfer
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entropy is that transfer entropy takes into account the influence of history of the

effect variable itself on its transition to a new state. This prevents mistaking the

information that is in the history of both variables as the information flow from the

second variable.

This characteristic is most important in the case that a third variable influences

both I and J simultaneously without difference in time delays. The effect of the

third variable exists in the history of both I and J . In this case, each variable has

the dependence on the history of the other one, even if there is no information flow

between the two.

If the dependency between the two variables is only due to the simultaneous effect

of other variables, then the dependency curve usually has an approximately flat and

symmetrical shape. This is the case when two variables are linearly correlated to

each other due to other variables. For example, Figure 6.6 depicts the time lagged

dependency between variables plotted in Figure 6.3. Positive time lags represent

the case that the first variable is lagged, while negative time lags are the case that

the second variable is lagged. As is seen in Figure 6.6, the two variables have the

same values of dependency on the history of the other variable. This is because both

variables carry the same information in their history. Therefore, mutual information

for negative and positive lags will have similar values.
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Figure 6.6: Time lagged dependency between first and second variables in Figure 6.3

Flat or symmetrical dependency curve implies dependency due to a third variable

or no dependency at all (if the dependency values are less than the confidence limit). A

flat dependency curve can also mean that the variables are strongly correlated to each

other but there is no information flow between them. Therefore flat or symmetrical
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dependency curve is a sign of no causal relationship even if there exists a strong

correlation.

Studying the shape of the time lagged dependency between two variables, helps

in detection of the probable type of the relationship between two variables and their

respective time delays. In addition to the dependency between the original variables,

dependency between their differenced version also provides useful information. Differ-

enced time series are generated by calculating the differences between adjacent values

of each time series (Δx = xi+1 − xi).

Time lagged dependency between differenced time series, which will be called

differential dependency hereafter, measures the amount of dependency between the

rates of variations of two process variables. By considering the differential dependency,

we may also determine if variations of a process variable is transferred to other process

variables and causes variations in them. Time lagged differential mutual information

between two variables X and Y is estimated by the following equation:

DMXY (h) =
∑

Δx,Δy

p(Δxt,Δyt−h) log
p(Δxt,Δyt−h)
p(Δxt)p(Δyt−h)

(6.10)

As an example for illustration of the role of differential dependency, consider a

simple relationship between two variables yt =
∑t−5

k=0 xk. Figure 6.7 plots the input

(x) and output (y) data.

Figure 6.8 depicts the time lagged dependency and differential dependency be-

tween the input and output. As can be seen, the dependency curve does not provide

any information about how these two variables are related. The differential depen-

dency curve shows a peak at time lag of 5 and 6, which means that the change in the

output is dependent on the change in the input at 5 samples earlier. This is confirmed

by knowing that Δyt = yt − yt−1 = xt−5 = Δxt−5 +Δxt−6 + · · · .
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Figure 6.7: Input and output data of the summation model
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Figure 6.8: Dependency and differential dependency between data in Figure 6.7

When there is an integrator in the process, differential dependency is more useful

than original dependency. It is because the actual values of the effect variable (the

integration unit output) do not follow the actual values of the input variable. The

input variable is mainly causing the fluctuations in the effect variable. Cases like this

may appear while analyzing real industrial data in situation when there is some kind

of integration unit in the process, like filling out a tank. For processes involving more

than one integration unit, higher order of differencing might be necessary to identify

causality.

Differencing removes the trend in the data and makes it more stationary. As a

result, the differential dependency usually only has a peak value corresponding to

the time delay between the two variables and is otherwise less than the confidence

limit. Therefore, differential dependency could be a better alternative method for

estimation of the time delay between variables.

Use of both dependency and differential dependency curves between two variables

usually provides sufficient information to detect probable causality between the vari-

ables. To perform causality analysis on a set of variables, the first step is to plot

the time lagged dependency and differential dependency curves between each pair of

the variables. Cases that have non-flat dependency curves or non zero differential

dependency value, should be considered for additional analysis. Transfer entropy is

used afterwards to examine the certainty of the analysis.

6.4.5 Parametrising the transfer entropy

As mentioned in Section 3.3, full implementation of the transfer entropy as in Equa-

tion 6.5 is not practical due to huge processing time. Only limited number of terms

of the history of variables I and J can be used in the estimation of transfer entropy
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instead of ikt−1 and jlt−1. On the other hand, the result of the estimation is very sen-

sitive to the choice of the time lags of variables I and J that are used in the transfer

entropy estimation. Therefore, we need a method to find the important terms of the

history of variables I and J to use for a reliable estimation of the transfer entropy.

One way to overcome this problem is to estimate the transfer entropy considering

different parameters and analyse all the results to determine which set of parameters

are generating a reliable result [103]. The problem with this method is that it takes a

huge processing time to find out a reliable set of parameters for each set of data and

the result will still be based on trial and error.

The method that is proposed in this work is based on utilizing the time lagged de-

pendency and differential dependency curves. With these curves, we can find out the

most important time lags in the history of variables I and J , and use this information

to parametrise the transfer entropy. Estimation of the dependency curves requires

N(2σ+1)(2σ+3) summations for estimation of probability densities in addition to n2

summations for calculation of the dependency value. The computation load is much

less compared to the case of estimation of the transfer entropy, which was mentioned

in Section 6.4.3. The curves provide reliable information about the probable type of

the relationship between the variables and the most important time lags.

In the transfer entropy equation (Equation 6.5),

jlt−1 = (jt−1, · · · , jt−l) can be replaced by jt−D1 ; D1 is the lag corresponding to the

maximum dependency between lagged variable J and I. This time lag corresponds

to the time it takes until the variations of J is transferred to I. To better illustrate

the importance of time lag selection, consider the relation between input and output

of the case-study process that was shown in Figure 6.2. It takes about 30 minutes

until the effect of the input is seen in the output. So, using input with, for example, 5

minutes time lag in the the transfer entropy equation, yields the conclusion that the

input does not have a significant effect on the future value of the output. This justifies

the need for some priori information about the relationship between the variables for

a more accurate transfer entropy estimation.

ikt−1 = (it−1, · · · , it−k) also needs to be replaced with a few terms of the history

of variable I. Selection of the time lag for variable I is more critical than variable

J . The rationale behind inclusion of the history of variable I in the transfer entropy

is to ensure that the information in jt−D1 cannot be found in the history of I itself.

So, one restriction is the need to include a term of the history of I with a time lag

greater than or equal to D1. There are two possible outcomes of the transfer entropy

estimation considering jt−D1 and a term of I with larger time delay. One is that

the information of jt−D1 is already contained in it−D1−h for some non negative value
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of h. So, transfer entropy estimation by considering jt−D1 and it−D1−h will be zero.

The other possibility is that the information of jt−D1 cannot be found in any term

of variable I with time lag greater than or equal to D1. This means that jt−D1 has

some unique information about the future value of I in addition to the history of I

itself. In this case, even if the information of jt−D1 can be found in a term of I with

less time delay than D1, J will still be identified as the cause of the variable I. The

reason is that the information is present in J earlier than in I.

Another reason for not including terms of variable I with time delays less than

D1 in estimation of transfer entropy is the usual slow variations of the variables. The

variables of chemical processes usually have low-frequency variations. For example,

the value of a variable at time t is close to its value at time t− 1. Therefore, with the

knowledge of the value of the variable at time t− 1, it is very likely to make a good

prediction for its value at time t without additional information. This is the effect of

near neighbourhoods. By including near neighbours of it in Equation 6.5, it is very

likely that the knowledge of the history of J is not adding any improvement to the

prediction of it. This prevents identification of the actual sources of the variations of

variable I.

The last reason for not including terms of I with less time delay than D1 is that

D1 is most probably the time delay from variable J to I. It is not possible that

(it−1, · · · , it−D1+1) contain the information of jt−D1 . Therefore, inclusion of these

terms in the calculation of transfer entropy only increases the processing time without

adding more accuracy to the result.

A reasonable choice for a term of the history of I to be included in the transfer

entropy calculation is the term that has the most influence on jt−D1 . The time lag

corresponding to the highest influence of the history of I on J can be found using

the dependency and differential dependency curves between different time lags of

variable I and variable J . If the time delay from variable I to J is D2, then the most

reliable term of the history of I to be included in the estimation of transfer entropy

is it−D1−D2 . It is reasonable to include other terms of I with time delays more than

t−D1 −D2 for a more reliable result.

This method reduces the computation load while the reliability is increased by

considering the most effective terms in the history of variables J and I in computation.

As a result, the dimension of probability density is reduced significantly while the

reliability of estimation is preserved.

To summarize, Equation 6.11 is the general formula for estimating the independent

effect of a variable J on a variable I.

160



IEJ→I =
∑

p(it|jt−DJI
, it−(DIJ+DJI))

× log
p(it|jt−DJI

, it−(DIJ+DJI))

p(it|it−(DIJ+DJI))
(6.11)

where DIJ is the time delay from variable I to variable J and DJI is the time delay

from variable J to variable I.

The meaning of independent effect is that even though we know that variable J

affects variable I after DJI sample times, this effect might be due to the previous

effect from variable I to J but not J itself. In other words, all of the information

transferred from J to I might be found in the history of I itself. Equation 6.11

quantifies the amount of information that variable J transfers to variable I excluding

the information that is transferred from I at t−DIJ−DJI to J . Following is the path

diagram illustrating the relationship between I and J . it−DIJ−DJI
→ jt−DJI

→ it

As was mentioned in Section 6.3, transfer entropy is an asymmetric quantity. By

reversing the ordering of I and J , we can measure the amount of the independent

effect of variable I on J . The equation for the independent effect of I on J is derived

in the similar way as IEJ→I and is defined as:

IEI→J =
∑

p(jt|it−DIJ
, jt−(DIJ+DJI))

× log
p(jt|it−DIJ

, jt−(DIJ+DJI))

p(jt|jt−(DIJ+DJI))
(6.12)

Again, in this case variable I has the most influence on jt at time t − DIJ and

it−DIJ
gets the most influence from jt−(DIJ+DJI), as is shown in the following path

diagram:

jt−(DIJ+DJI) → it−DIJ
→ jt. Equation 6.12 measures the amount of information added

by considering it−DIJ
in addition to the history of J itself.

There is no need to include other terms of variable J with time lags less than

DIJ + DJI in Equation 6.12. As was mentioned before, including other terms of

variable J with time lags more than DIJ +DJI helps to get a more reliable result.

The variable with more independent effect can be determined by comparing Equa-

tions 6.12 and 6.11. The cause variable is the one with larger independent effect. This

method is applicable in analysis of the relationship between any two variables.

6.4.6 Case of two variables with common parent

In some cases, variables I and J have an identified common source variable Z as

shown in Figure 6.9. Variable Z firstly affects variable I and after some time delay
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it affects variable J . As an example, variable Z is the flow to a continuously stirred

and heated tank, variable I is the bottom pressure of the tank and variable J is the

temperature of the bottom fluid in the tank. Figure 6.10 depicts the schematic of the

tank. The feed flow instantly affects the bottom pressure while it takes some time

until it influences the temperature of the bottom fluid in the tank.

Figure 6.9: An example of two variables with a common source

Figure 6.10: A contiuously stirred tank

Using transfer entropy for variables I and J detects variable I as the cause to the

variable J . The reason is that the variations of variable Z is transferred to variable

I, several minutes earlier than to variable J . So, the history of variable I is helpful

in prediction of variable J , but variable J cannot improve the prediction of a future

value of I. At the end, a causality graph as in Figure 6.11 is obtained by using

transfer entropy between pairs of variables Z, I and J .

The problem with the causality graph in Figure 6.11 is that corresponding to

the definition of causality, variable I might be the source of the variable J only if

it contains additional information about variable J that cannot be found in variable

Z. In this case estimation of a transfer entropy including all 3 variables Z, I and J

is required for correct causality detection. At least one term of the common source

(variable Z) should be included in the transfer entropy equation as in Equation 6.13.
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Figure 6.11: Causality graph for the example in Figure 6.9

IEI→J =
∑

p(jt, jt−DJI−DIJ
, it−DIJ

, zt−DZI−DIJ
)

× log
p(jt|jt−DJI−DIJ

, it−DIJ
, zt−DZI−DIJ

)

p(jt|jt−DJI−DIJ
, zt−DZI−DIJ

)
(6.13)

Equation 6.13 verifies if it−DIJ
has some information about jt in addition to

zt−DZI−DIJ
. Here, again the selection of the time lags is crucial for generating a

reliable result. The time lag DZI is the time delay between variable Z and I. DIJ is

the time delay from variable I to J and DJI is the time delay from variable J to I.

The reason for considering it−DIJ
and jt−DJI−DIJ

has been described in Section 6.4.5.

By considering zt−DZI−DIJ
in the equation, we verify if the information in it−DIJ

is

already contained in Z. For that reason, the term of the history of Z with the highest

influence on it−DIJ
should be used which is zt−DZI−DIJ

.

For the example in Figure 6.9, there is no way that variable J can affect variable

I (the bottom temperature cannot affect the pressure). Therefore, it is possible to

remove jt−DJI−DIJ
from the equation without loosing accuracy. The equation to

estimate the independent effect of I on J is:

IEI→J =
∑

p(jt, it−6, zt−7) log
p(jt|it−6, zt−7)
p(jt|zt−7) (6.14)

Equation 6.14 quantifies the highest amount of information transferred from I to

J excluding the effect of Z. If the independent effect of I on J is zero, then I cannot

be a cause variable to J . In that case the causality graph is like Figure 6.9. If the

independent effect is positive, then variable I has some unique information about J

which is not found in Z. The causality graph in this case is as depicted in Figure

6.11. An example of this case is presented in the industrial application section.

An important point to be considered in such cases is that it is not right to remove

the connections between variables in Figure 6.11 based on their strength or to simply

remove the short cut from Z to J for a simplified graph (which is usually done in the

literature). By removing the short cut, the causality graph simplifies to Z → I → J .

This causality graph implies that the variations of the input flow cause the variations
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in bottom pressure and then the bottom pressure changes the bottom temperature,

which is physically impossible. In cases that two variables have common parent

variables, we need to use Equation 6.13 to verify if there is any information transfer

between the effect variables. Removing the short cuts with no further analysis is very

likely to generate meaningless result. This can be generalized to the cases of more

than one parent variable by simply including at least one term of all the common

parent variables in Equation 6.13.

Inclusion of intermediate variables in estimation of transfer entropy between two

variables has also been considered very recently by an independent study [115], where

the authors include the history of the intermediate variables in the transfer entropy

estimation to detect direct and indirect causality relations. However, their method of

selection of the time lags of the variables to include in the transfer entropy estimation

is still based on a rule of thumb with trial and error.

6.5 Industrial application

In the following, various possible types of relationships between variables are discussed

through examples of an industrial case study. Figure 6.12 shows the schematic of the

industrial process. It is an oil sands separation vessel used for bitumen extraction.

The input to the process contains bitumen, water and minerals. There are also two

water streams to the vessel for the purpose of helping the separation and controlling

the process. The three outputs are froth, middlings and tailings.

Figure 6.12: Separation vessel schematic

Froth, which is on the top layer, is supposed to only contain bitumen and water.

The middling layer contains both bitumen and minerals and is recycled back to the

process to separate the remaining bitumen from it. Tailings mostly contain minerals.
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The process has about 20 measurements with one minute sampling time and their

causal relationships is studied here.

Since the settling time of the process is about one hour, the mutual information

is calculated from zero time lags to 60 minutes. By exchanging the order of the

variables, the time lagged dependency in both directions is measured. Positive time

lags correspond to the case that the first variable is lagged and negative time lags

represent the case that the second variable is lagged. 15,000 samples of each variable

were used for this analysis and the 5 sigma confidence limit is obtained as 0.035 by

generating 1200 pairs of random variables with the same length.

First example is the case of apparent one directional dependency between two

variables. This kind of dependency is observed between feed flow to the plant and

its density. Figure 6.13 shows the time lagged dependencies between original time

series and their differenced version. There is an obvious peak at time lag +3 in both

the dependency curves. It implies that density of the feed can be best predicted by

feed flow at 3 minutes earlier. This dependency is introduced by the feedback in the

upstream plant which provides the feed to the plant under study, where density is

being controlled by flow rates.
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Figure 6.13: Dependency between feed flow and feed density

The second example is the dependency between feed density and underflow density

as is depicted in Figure 6.14. Mutual information for negative lags has lower value

compared to the positive lags. This means that the underflow density is dependent
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on the feed density as expected, but the current value of feed density is not depen-

dent on the history of underflow density. This type of dependency curve, confirms

one directional information flow from the first variable (feed density) to the second

variable (underflow density).

Figure 6.14: Dependency between feed density and underflow density

Differential dependency curve does not show any dependency between the fast

variations of these two variables. The reason is that this process is a controlled process

with more than half an hour settling time. As a result, the high-frequency variations of

the input have been damped out before reaching to the underflow density. Therefore,

although values of underflow density are dependent on feed density values, high-

frequency variations of the feed density are not directly transferred to the underflow

density. We cannot predict the high-frequency variations of the underflow density

from the high-frequency variations in the feed density, but we can use the current

feed density to predict the underflow density.

A conclusion of the above discussion is that when the value of a variable is highly

dependent on another variable, but there is no dependency in their differenced ver-

sion, then the implication is that the variables are either physically far from each
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other or there is a low pass filtering effect between them. The high-frequency vari-

ations of the source variable is dumped out in the process before reaching to the

subsequent variable. The other possibility is that the measurements are noisy and

their differenced version mainly contains noise with no information in it.

Another common type of relationship is the correlation between two variables due

to the effect of other variables. An example of this relationship is between middlings

density and underflow density. Figure 6.15 shows the dependency between these two

variables for -60 to +60 time lags.

Figure 6.15: Time lagged dependency between underflow density and middlings den-
sity

Figure 6.15 shows that there is a high dependency between these two variables

at both negative and positive lags. Although there is a decrease in the dependency

towards positive lags, it is not substantial and the curve is almost flat and symmetric.

This implies that there is no causal relationship between these two variables.

Another example is the dependency between the feed density and underflow pres-

sure. Figure 6.16 shows the dependency between the original time series as well as the

differenced versions. The peak at time lag -3 in both curves implies that underflow
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pressure influences feed density after 3 minutes. In Figure 6.13 it is seen that the feed

flow affects feed density after 3 minutes. Figure 6.17 shows the dependency between

feed flow and underflow pressure. Figure 6.17 implies that variations of feed flow is

instantly transferred to the underflow pressure. Therefore, underflow pressure is af-

fected by feed flow with zero time delay while feed density is affected after 3 minutes.

This is the case of two variables with common parent that was described in Section

6.4.6.
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Figure 6.16: Time lagged dependency between feed density and underflow pressure

By using the transfer entropy as in Equation 6.13 it can be verified if any in-

formation is transferred from underflow pressure to the feed density when the ef-

fect of feed flow is excluded. Independent effect of underflow pressure on feed den-

sity considering the current value of feed density and values of feed flow and un-

derflow pressure at 3 minutes earlier is obtained as 0. In the mathematical form:

P (F.D.n|F.F.n−3, U.Press.n−3) = P (F.D.n|F.F.n−3) where F.D. is feed density, F.F.

is feed flow and U.Press. is underflow pressure. This means that there is actually no

information transferred from underflow pressure to the feed density.

Previous discussion shows that when two variables have a common source, it is

necessary to consider the effect of the source variable on both of the effect variables

to correctly identify the type of the relationship between the two effect variables. In

these cases transfer entropy can identify the type of the relationship and dependency

curves should be used to determine which terms of the history of the variables should
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Figure 6.17: Time lagged dependency between feed flow and underflow pressure

be included in the transfer entropy equation for a reliable result.

The other point is that since feed density is highly dependent on the feed flow, we

can consider them as one variable. The relationships between feed density with other

process variables is similar to the relationships of feed flow with other variables. The

difference is simply due to the time delay between feed density and feed flow.

The next example investigates the effect of feedback in the process. As an example,

Figure 6.18 shows the dependency between the cone flush flow with underflow density.
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Figure 6.18: Time lagged dependency between cone flush flow and underflow density

Cone flush flow is used to prevent sanding in the vessel and gets a feedback signal

from the underflow density. The dependency curve shows a high dependency in

negative lags compared to the positive lags, which implies that underflow density is

causing cone flush flow. This conclusion is counter intuitive as we know that the

operators use cone flush flow to manually control the underflow density.
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By estimating the independent effect of the cone flush flow on the underflow

density and vice versa it is concluded that the cone flush flow causes the underflow

density.

Figure 6.19 shows the result of analysing the important variables of the separation

vessel (D. is abbreviation of density). Feed flow and feed density are placed in a box

because of the strong dependency between feed density and feed flow. Underflow

pressure, Cyclopak pressure and GSW DP tags are highly dependent on each other

with zero time delay. Figure 6.20 shows the dependency curves between these three

variables. This dependency is not just due to the effect of feed flow which is a parent

for all these three tags. Using the transfer entropy shows that there is information

flow among these three variables regardless the effect of feed flow. So, they can also be

considered as one variable when examining their relationship with the other process

variables. These three variables are used to control the separation cell level.

Underflow density and Cyclopak densities are highly correlated with zero time

delay and are affected by the feed density, underflow pressure and cone flush flow. All

of process variables have correlation with each other and the graph shows the ones

that have strong relationships.

Figure 6.19: Causality relationships in the separation process
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Figure 6.20: Dependency between three tags

6.5.1 Summary of the algorithm for causality analysis

The first step in causality analysis is to obtain the time lagged dependency curves

between the original time series and their differenced versions. Variables that might

have causality relationships can be identified by checking the dependency curves.

Those variables that have small dependency values are omitted from the analysis.

Also variables with flat dependency curves without any significant differential depen-

dency value are excluded from the rest of the analysis. There is no cause and effect

relationship between these variables even if there is a high correlation between them.

Variables that have differential dependency values higher than the confidence limit

should be checked with transfer entropy. Also, the variables that have a non sym-

metric dependency curve (regardless their differential dependency curve) should be

considered for further analysis.

After selection of the variables with probable causality relationship, transfer en-

tropy is used to determine if there is a one directional information flow. Time lagged

dependency and differential dependency curves can be used to find the most probable

time delay between the measurements. The time lag corresponding to the highest

dependency value is taken as the time delay and is used in tuning the parameters of

the transfer entropy.

There are two important points to consider at this stage. The first one is the exis-

tence of common parent variables. In the transfer entropy parametrization, we need

to include at least one term of the common parent variable to ensure the information

of the parent variable is not mistaken by the information flow between the variables.

The other point is that the variables that have a strong dependency with an
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obvious time delay usually have the same type of relationships with other process

variables. It can cause some no meaningful results in causality analysis from the

physical point of view. However, this case could also be resolved by using a well

tuned transfer entropy.

6.6 Summary

Transfer entropy is a promising method for detection of causal relationships between

variables if implemented according to Equation 6.5. The problem in implementation

is in the computation load of estimating high dimensional probability density as well

as a subsequent computation of the transfer entropy.

It was shown that time lagged mutual information and differential mutual infor-

mation can potentially identify the variables with probable causality relationships.

After identification of the variables with important dependencies, transfer entropy is

used to determine the direction of information flow. Time lagged dependency curves

help in tuning the parameters of the transfer entropy in this stage. Proposed al-

gorithm provides information about the type of the relationships between process

variables and an estimation of the time delay between them.
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Chapter 7

Concluding remarks
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7.1 Concluding remarks

The direction of this research was toward development of an automatic abnormal

event management tool which requires detection, categorization of the fault and fi-

nally root cause diagnosis. The contribution of the thesis covers the three stages

in general, proposing more advanced methodologies to handle specific issues at each

stage. Following is a brief summary of the work presented in each chapter.

Chapter 2 considered the problem of detection and characterization of oscillations

in process variables based on routine operational data. Detection of oscillation even

though seems to be a trivial task, is a challenge when trying to detect and estimate

the frequencies of oscillations in variables which could be hidden within noise and

non-stationary trends. Also, many existing procedures require human interference

or involve application of complex mathematical tools which is hardly possible in

industrial environment. Therefore, first chapter proposed a more reliable methodology

to automatically detect and estimate oscillation frequencies in the presence of noise

and multiple oscillations. Since the proposed methodology hardly requires human

interference it is more appropriate in practice.

The third chapter considered the problem of diagnosis between oscillations due

to controller tuning and external oscillatory disturbances. Since oscillations require

different troubleshooting procedures based on the element of the loop that has caused

the oscillation, it is important to diagnose if the oscillation is due to controller tuning,

valve nonlinearity or is a sinusoidal disturbance. The chapter studied the unique

characteristics of controller tuning induced oscillations and proposed methodologies

to distinguish this type of oscillations from the rest.

The fourth chapter proposes a comprehensive methodology based on wavelet trans-

form for detection and diagnosis of oscillations which is capable of handling non-

stationary trends in variables, noise and presence of multiple oscillations. The chapter

benefits from the methodologies developed in the previous two chapters while extend-

ing them. The proposed methodology is capable of independent diagnosis of different

oscillatory components present in variables. It can also distinguish if the oscillation

is due to nonlinearity in the process from the other types of the oscillations.

The fifth chapter considers the issue of causality or interaction analysis based on

historical data. The chapter first proposes an appropriate model structure for causal-

ity analysis using linear methods. Since, instantaneous correlation between variables,

which happens in industrial systems due to feedback loops, causes a challenge in

causality analysis, a methodology is proposed to detect instantaneous relations be-

tween variables from data as a preliminary step of the analysis. The chapter proposes
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estimating the model parameters based on Bayesian framework which has several

advantages compared to traditional methods. Proper design of prior probability dis-

tribution of model parameters helps convergence to a physically interpretable model.

Also, it makes it possible to deal with the issue of over-parametrization as well as

handling large number of variables. The chapter presents a way to design the prior

probability and proposes a method to meaningfully decompose the impulse responses

estimated from the model at the end.

In some cases, using linear modeling methodologies is not appropriate for causality

analysis due to nonlinear nature of data generation process. In such cases, examining

conditional probability distributions and using information transfer concepts such as

mutual information and transfer entropy is an alternative. The sixth chapter proposes

using transfer entropy in a more reliable way to identify causality relations between

variables. Lagged mutual information as well as differential mutual information help

in parameterizing the transfer entropy in a way that can correctly identify relations

between variables.

7.2 Future work

The work presented in this thesis can be continued in several directions. The first

three chapters proposed methodologies for detection and categorization of oscillations

in variables. The contributions help in selecting a proper root cause diagnosis algo-

rithm to find the loop which is propagating the oscillations to the rest of the process.

For root cause diagnosis, causality analysis methods can be utilized. However, due

to the nature of oscillation, not all of the causality analysis procedures can be ap-

plied. Therefore, the work can be continued in the direction of extending the current

causality analysis procedures to be capable of handling oscillations in variables. A

promising approach for this purpose is to do causality analysis in the wavelet domain

which can potentially have several advantageous.

Regarding the fifth chapter on causality analysis under Bayesian framework, more

work is required specially in order to generalize the model structure. Although most

of the literature on causality analysis based on linear methods consider a form of

vector autoregressive model for the analysis, it is advantageous to generalize the

model specifically to be able to handle colored noise in the data. One underlying

assumption in using VAR structure is that the noise does not have dynamics and is

white which may not be always the case.

Another issue regarding causality analysis methods in general is the usual as-

sumption that all the relevant variables are measured and available. When there are
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hidden variables influencing some of the variables under study, the inference about

the relations between the measured variables could be falsified. For example, it is

known that a correlation between two independent variables can be observed if there

is a third variable influencing both of them. The proposed methods in the thesis

and most of the literature can work reliably when the third variable is also measured

and available. However, when the third variable is hidden, spurious results regarding

the relation between the two observed variables can be inferred. Using methodolo-

gies such as expectation maximization (EM) for model estimation can potentially

facilitate dealing with the challenge of hidden variables.

Regarding the last chapter on nonlinear causality analysis method, still much

work needs to be done. One issue is to detect the presence of instantaneous feedback

between the variables and how to deal with it based on information transfer concepts.

The other one is the fact that these methods can determine the type of the relation

between variables but it is not possible to compare the strength of the relations based

on the proposed procedure. This has the potential to be a valuable contribution. Also,

since nonparametric methods are used to estimate the probability distributions, more

work regarding developing faster as well as more accurate methods for estimating the

probability densities is valuable.
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.1 Appendix

.1.1 Examining correlation between residuals of a multivari-
ate regression model estimated based on Bayesian frame-
work

The method to detect instantaneous relations between variables is based on fitting a

multivariate regression model to the variables and examining the covariance matrix

of residuals. A multivariate regression model is of the following form:

Y = XB + U (1)

where Y = [y1, y2, ..., ym] is an n×m matrix of observations on m variables, X is n×k

matrix of independent variables with rank k, B = [β1, β2, ..., βm] is k ×m matrix of

regression parameters and U = [u1, ..., um] is n×m matrix of disturbances. The rows

of U matrix are independently distributed with positive definite m × m covariance

matrix. The pdf of Y can be written in the following form.

p(Y |X,B,Σ) ∝ |Σ|−n/2exp[−1

2
tr(Y −XB)

′
(Y −XB)Σ−1] (2)

Considering that

(Y −XB)
′
(Y −XB) =(Y −XB̂)

′
(Y −XB̂) + (B − B̂)

′
X
′
X(B − B̂) = (3)

S + (B − B̂)
′
X
′
X(B − B̂)

where B̂ = (X
′
X)−1X

′
Y and S = (Y −XB̂)

′
(Y −XB̂). The likelihood function can

be written as:

l(B,Σ|Y,X) ∝ |Σ|−n/2exp(−1

2
trSΣ−1 − 1

2
tr(B − B̂)

′
X
′
X(B − B̂)Σ−1) (4)

The prior distribution is considered to be non-informative as

p(B,Σ) = p(B)p(Σ) ∝ |Σ|−(m+1)/2 (5)

The joint posterior of the parameters can be obtained as:

p(B,Σ|Y,X) ∝ |Σ|−1/2(n+m+1)exp(−1

2
tr(S + (B − B̂)

′
X
′
X(B − B̂))Σ−1) (6)
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which can be written as p(B,Σ|Y,X) = p(B|Σ, Y,X)p(Σ|Y,X).

p(B|Σ, Y,X) ∝ |Σ|−k/2exp(−1

2
tr((B − B̂)

′
X
′
X(B − B̂)Σ−1)) (7)

The conditional posterior of B given Σ is multivariate normal with mean β̂ and

covariance matrix Σ⊗ (X
′
X)−1 = (Σ−1 ⊗X

′
X)−1 (|Σ−1 ⊗X

′
X|1/2 ∝ |Σ|−k/2).

The conditional posterior for one specific equation, for example, β1 can also be

obtained as

p(β1|Σ, Y,X) ∝ 1

σ
k/2
11

exp(− 1

2σ11

(β1 − β̂1)
′
X
′
X(β1 − β̂1))) (8)

where β
′
= [β

′
1, β

′
2, ..., β

′
m] and has covariance matrix equal to (X

′
X)−1σ11.

p(Σ|Y,X) ∝ |Σ|−ν/2exp(−1

2
trΣ−1S) (9)

where ν = n − k + m + 1. The form of the pdf is called inverted Wishart. It is

also shown that partitioning the Σ matrix to two parts Σ11 and Σ22 where Σ11 is the

p× p upper left-hand principal minor matrix of Σ with p < m, leads to the following

posterior distribution.

p(Σ11|Y,X) ∝ |Σ11|−(ν−2(m−p))/2exp(−1

2
trΣ−111 S11) (10)

where S11 is the upper left-hand principal minor of S.

If p = 2 the posterior for ρ12 =
σ12

(σ11σ22)1/2
can be obtained as

p(ρ12|Y,X) ∝ (1− ρ212)
(n
′−3)/2

(1− ρ12r12)n
′−1/2Sn′ (ρ12r12) (11)

where n
′
= n− k − (m− 2), r12 = s12/(s11s22)

1/2 and

Sn′ (ρ12r12) = 1 +
∞∑
l=1

1

l!

12.32...(2l − 1)2

(n′ + 1
2
)...(n′ + l − 1

2
)
(
1 + ρ12r12

8
)l (12)

This posterior can be used in order to check if there is correlation between the resid-

uals. If 0 is not within the posterior of ρ12 it implies there is instantaneous relations

between the two respective variables.
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