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Abstract

Flow visualizations and axial velocity measurements
were conducted to study the laminar flow in curved ducts
with and/or without offset bend. Secondary flow patterns
were made visible by the smoke injection method, and
photographs were taken to study the secondary flow patterns
at the exit of each bend. Axial velocity profiles were
measured by a hot-film anemometer along vertical and
horizontal axes at the exit of each bend.

The experiments were carried out for both circular and
square bends. The curvature ratio a/Re of circular bends
with 2" inside diameter was 0.2, and a/Rc=0.2, 0.4 for
square bends with 2"x2" cross-section. For the experiments
of flow visualization, Dean number K is varied from 25 to
350 for circular and square bends with a/Rc=0.2, and from
100 o 450 for square bends with a/Rc=0.4. The ranges of the
first bend angle ¢ and the second bend angle ¢ are 45, 90,
135, 180, 225°, while the offset angle 6 is set at 90, 180°.
For the experiments of axial velocity measurement, Dean
number is 300 and 350 for circular bends, and is 350 for
square bends. The offset angle is 180°.

Attention is given to the effects of Dean number K,
curvature ratio a/R. and second(offset) bends on the
secondary flow patterns and on the axial velocity profiles.
The developing secondary flow patterns in curved duct:s "ith
offset bends at different Dean number K are presented. The

Dean's instability phenomena are observed. The developing
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axial velocity profiles in s-bend are provided, and the
typical velocity profiles are discussed.

The developing buoyancy force induced secondary flow
patterns in the simultaneous hydrodynamic and thermal
entrance region of horizontal rectangular channels heated
isothermally from below and/or cooled isothermally £rom
above were also investigated. Photographs of the secondary
flow patterns with cross-sectional view are presented. The
difference in flow phenomena between heating from below and
cooling from above is discussed. Experiments were conducted
for the following conditions: aspect ratio a/b=2 and 7, mean
velocity of main stream Up=0.1, 0.2, 0.3, 0.4m/sec., Grashof
number Gr=1.5x10% ~ 5.0x109 for channel with a/b=2, and

Gr=3.6x105% ~ 1.2x106 for channel with a/b=7.
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1. Introduction
1.1 Background Information

1.1.1 Laminar Flow in Curved Pipes

Laminar flow in curved pipes has been one of the most
widely studied topics in fluid mechanics in recent years.
Owing to the ©presence of secondary flow caused by
centrifugal forces, the heat and momentum transfer between
the fluid and its surroundings are expected to Ee enhanced.
This is very important for various engineering applications,
such as piping systems, intakes 1in aircraft, nuclear
reactors, compact heat exchangers, etc. In recent years,
vlood flow in the human arterial system has been of
particular interest.

In a curved duct, centrifugal forces are induced by the
moving fluid in the duct. As the flow enters a curved duct,
a centrifugal force of order pU2/RC, where U 1is the local
fluid velocity and R is the radius of curvature of curved
pipes, acts outward from the center of curvature on the
fluid particles. Because of the no-slip condition at the
wall, the axial velocity in the core region is much larger
than that near the wall. To maintain the momentum balance
between the centrifugal force and the pressure gradient,
slower-moving fluid particles must move along paths whose
radii of curvature are smaller than those of faster-moving

fluid particles. This results in the onset of secondary flow



such that the fluid near the outer wall moves toward the
inner wall along upper and lower walls while the fluid in
the core region flows toward the outer wall. The motion of
the secondary flow is then superimposed on the main axial
flow and generates a helical path in the fluid motion.

Since the gqualitative observation of secondary motion
by Thompson [11(1876) in his explanation of the winding
course of rivers, and by Eustice [2,3](1910, 1911) who
demonstrated the existence of a secondary motion in a coiled
pipe from dye-injection experiments, numerous studies on
laminar flow in curved pipes have been made theoretically
and experimentally.

Dean [4,5] made the pioneering studies and obtained the
first analytical solution for the axial velocity and stream
function of the secondary flow in low Dean number flow
regime. He showed that the flow in curved pipes depends
primarily on a single new non-dimensional parameter called

Dean number,
K=Re (a/R¢) /2 (1.1)

where Re=Up(2a)/v is the Reynolds number, a=inside radius of
circular pipes, and Rg=radius of curvature of a pipe. The
physical meaning of the Dean number is the ratio of square
root of product of the inertial and centrifugal forces to
the viscous forces.

Improved theoretical solutions were obtained by Barua

[6]1, McConalogue and Srivastava [7], and Greenspan [8]. For



developing flow 1in a curved duct, Patankar, Pratap &
Spalding [9], and Soh & Berger [10] reported numerical
calculations of flow in a circular curved pipe.

Humphrey, Taylor and Whitelaw [11] also reported flow
calculations for a square curved duct. Soh and Berger showed
the appearance of an additional weak vortex pair near the
inner wall of a curved circular pipe in a developing region.
Dennis & Ng [12] and Nandakumar & Masliyah [13] reported
non-unique solutions in their calculations of fully
developed flow through a curved circular pipe. They showed
that the solutions bifurcate into two branches if the Dean
number exceeds some critical value. Either a one vortex pair
pattern or a two pairs pattern will appear in the secondary
flow at a certain Dean number, depending on which branch is
followed. They also pointed out that the two-vortex-pair
solution is relatively easier to obtain for a curved pipe of
semicircular cross-section with flat outer wall than for a
full circular curved pipe. Later, Hille, Vehrenkamp and
Schulz-DuBois [14] found experimentally an additional weak
vortex pair near the outer wall in the developing region of
a 180° turning square bend. The flow visualization
experiments by Cheng & Yuen [15] showed the two-vortex-pair
secondary flow pattern at the exit plane of a 180° circular
curved pipe, by insertirg a needle at the outer wall at a
90° bend angle in order to provoke the observed flow
pattern., Austin and Seader [16] measured the development of

the axial-velocity profiles at various angular planes by



means of a hot-film anemometry system. Agrawal, Talbot and
Gong [17] carried out an experimental investigation on the
development of steady, laminar, incompressible flow in the
entry region of a curved pipe with uniform motion entry
flow.

A detailed review on curved pipe flows was conducted by
Berger, Talbot & Yao [18] and by Ito [19].

Although the literature on theoretical and experimental
studies on flow in curved pipes is extensive, little work
has been done on flow in curved ducts with offset bends. It
is noted that the literature on flow visualization studies
and axial-velocity profile measurement is rather limited for
such configuration. It is believed that the results of these
studies will provide further physical understanding of the
secondary flow structures and complement some of the

theoretical studies.

1.1.2 Flow in Horizontal Rectangular Channels Heated from

Below and/or Cooled from Above

Laminar flow heat transfer in rectangular channels 1s
encountered in a wide variety of engineering applications,
such as flat plate solar collectors and concentrators,
compact heat exchangers, and the cooling of electronic
components and circuitry. Because of its importance in
various engineering applications, the problem of mixed
convection flows in rectangular channels vuvnder different

thermal boundary conditions has been studied both



theoretically and experimentally by many investigators in
the past.

In the case of flow in a horizontal parallel-plate
channel heated from below, as fluid passes through this
channel, the density of the fluid near the bottom plate
becomes smaller than that of the fluid at the top plate.
This top-heavy situation is potentially unstable due to the
bouyancy forces. If the temperature difference between the
two horizontal plates is increased over a critical value, in
other words, if the destabilization caused by buoyancy is
large enough to overcome the stabilizing effects of viscous
and thermal diffusicn, convective instability occurs and
longitudinal vortices are formed in the passage, resulting
in the 1increase of convective heat transfer. 1If the
temperature difference is increased further, the vortex
rolls split and the size of each roll decreases. Eventually,
the regularity of the fluid motion disappears and turbulent
convection occurs.

The buoyancy effects in laminar forced convective flow
over a heated horizontal semi-infinite i{lat were first
studied by Mori [20] and by Sparrow et al. [21]
independently. They considered perturbations of the
two-dimensional boundary layer equations and predicted that
buoyancy forces would increase heat transfer by inducing a
pressure gradient. These early studies motivated further
investigations. The occurrence of longitudinal vortices in

natural convection boundary-layer flows along inclined



isothermal surfaces was confirmed by Sparrow ard Hosar r2nd.
Mori and Uchida [23] applied linear stability «r.iysis o
determine the onset of an infinitesimally small sturi.nee
for fully developed laminar £low between two paralle:
plates. The convective instability problem concerning th#
onset of longitudinal vortices due to buoyancy forces tor
fully developed laminar forced ccnvection between twe
horizontal parallel plates was studied thecretically by
Nakayama et al. [24] and experimentally by Akiyama et al.
[25]. Hwang and Cheng [26] theoretically determined the
conditions for the onset of convective instability in a
hydrodynamically fully developed but thermally developing
region.

To confirm the predictions of Hwang and Cheng, some
experimental studies were reported in [27, 28, 29, 30]. More
recently, Cheng and Kim [31] published their results of flow
visualization studies on vortex instability of natural
convection flow over horizontal and slightly inclined
plates. Maughan and Incropera [32] performed experiments on
mixed convection heat transfer in the thermal entry region
of a parallel-plate channel heated uniformly from below.

Wu and Cheng [33] determined numerically the onset of
instability for fully developed Hartmann laminar flow in the
thermal entrance region of Thorizontal parallel-plate
channels. Ou et al. [34] obtained a numerical solution for
laminar flow in a rectangular duct with uniform wall

temperature for larger Prandtl number fluids. Chou and Lin



[36] reported their recent numerical study on convective
instability in the thermal entrance region of horizontal
rectangular channels.

While the past investigations have contributed much to
the understanding of thermal instability for flow in
rectangular channels, the experimental studies on the
problem with boundary conditions of cooling from above and
heating from below simultaneously are rather limited. The
differences in phenomena between cooling from above and
heating from below have not been reported yet. All of these

are the motivations of the present studies.

1.1.3 Scope of the Study

Visualization studies on laminar flow in bends of
curvature ratio a/Rc=0.2 and 0.4 with and without offset
bends are presented in Chapter 2. Many photographs are
provided to reveal the effects of Dean number K,
second(offset) bend angle ¢ and curvature ratio a/Rc on
secondary flow patterns. Attention was also given to the
influence of bend geometry.

Experiments were conducted for three cases. First,
circular cross-sectionl bends with curvature ratio a/R¢=0.2,
Dean number K=25~350, offset angle 6=90° and 180°. Second,
square cross-sectional bends with a/Rc=0.2, K=25~350, #=90°
and 180°. Third, square cross-sectional bends with a/R¢=0.4,

K=100~450, 6=90° and 180°.



In Chapter 3, results of axial velocity profile
measurements are presented. Axial velocity profiles were
measured at the exit of each bend by a hot-film anemometer
with a single hot-film sensor along vertical and horizontal
axes for circular s-bends with a/Rc=0.2, K=200, 350, and for
square bend with a/Re=0.2, 0.4, K=350.

Attention was focused on the development of velocity
profiles in s-bends and on effects of Dean number K,
curvature ratio a/R. and secondary flow on the axial
velocity profiles.

Chapter 4 deals with the buoyancy force induced
secondary flow patterns for developing laminar flow in
horizontal rectangular channels with aspect ratio a/b=2 and
7. The height of the channel is 28.6 mm. Flow visualization
studies were conducted for three cases, (1) heating from
below with Tg=T5ir=23°C, Tp=51°C, (2) cooling from above
with T.=-6, -16°C, Tp=Taijr=23°C, and (3) simultaneous
heating from below and cooling from above with Te=-6, -16°C,
Th=51°C. The mean velocity Up of the main flow in the
channels was varied from 0.1 to 0.4 m/sec. for each case.

Photographs of cross-sectional view of the secondary
flows are presented. The effects of aspect ratio,
temperature difference and velocity of main flow were
studied. The difference between heating and cooling was also

discussed.
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2. Flow Visualization Studies of Developing Secondary Flow

in Curved Ducts with and without Offset Bends

2.1 Introduction

Curved ducts have many applications in industry,
because they can improve the efficiency of heat and mass
transfer due to the secondary flow motion caused by
centrifugal forces. Curved ducts are widely used in fluid
flow, heat transfer, mass transfer and chemical reaction
applications, such as compact heat exchangers, nuclear
reactors, heat engines and intakes in aircrafts, for
examples. Laminar or turbulent flow in curved ducts is one
of the fundamental problems in fluid mechanics and has been
studied extensively since Dean published his classical work
in 1927 and 1928 on the fully developed laminar flow in
curved pipes [1,2,3].

According to Dean's work, it is known that the
dynamical similarity for laminar flow in a curved pipe
depends primarily on the Dean number K=Re(a/Rc)1/2, where
Re=Up(2a)/» is the Reynolds number, a/Rg=curvature ratio.
The Dean number can also be considered as a measure of the
importance of inertial and centrifugal forces relative to
viscous forces, and since secondary flows result from the
interaction of centrifugal and viscous forces, the Dean
number provides an estimate of their intensity.

It is understood that laminar flow through a curved

pipe is accompanied by the development of secondary flows in

13
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the form of a pair of counter-rotating vortices. In a curved
duct, the centrifugal force acting on the flowing fluid
elements does not balance with the pressure gradient across
the cross section. Under the action of centrifugal forces,
the faster-moving fluid in the core region moves toward the
outer wall. Flow near this wall is slowed down by viscous
forces, and then moves inward along the upper and the lower
walls driven by the pressure gradient. From the inner wall
the fluid repeats its cyclic motion. Therefore, a secondary
flow is set up in the cross section of the curved duct.

In recent years, much attention was focused on the
laminar flow in the entrance region of a curved pipe. Many
studies have been <carried out Dboth numerically and
experimentally. Patankar et al. [4] obtained the development
of axial velocity profiles by numerical solutions of
parabolic Navier-Stokes equations using the
finite-difference method. This problem has also been studied
numerically by Yao and Berger [5}, Liu [6,7), and Yeung [8].
Liu solved the full elliptic Navier-Stokes equations for
developing flow in a 90° elbow with K=179. Yao and Berg, and
Yeung solved the entry-flow problem for larger Dean numbers.
Further numerical studies can be found in [9, 10, 11]. For
experimental studies, Austin and Seader [12] measured the
development of axial velocity profiles at various angular
planes by a hot-wire anemometer system. Experiments of
secondary flow visualization were carried out by Cheng et

al. [13,14]. Agrawal et al. [15], Bovendeerd [16] and
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Sugiyama et al. [17] measured the axial and radial
velocities in curved pipes by means of a Laser Doppler
velocimeter system. The literature on the flows in curved
pipes is well surveyed by Berger et ai. [18], Masliyah et
al. [19] and Ito [20].

L.iterature review shows that studies on developing flow
in bends with larger curvature ratio a/R., and especially
with offset bends, are rather limited.

The purpose of the present flow visualization studies
is to provide further physical understanding of laminar flow
in bends with larger curvature ratio, and with and without
of fset bends. Attention was given to the effects of Dean
number, offset bends and the curvature ratio. Visualizations
were made for circular bends with 2" 1inside diameter,
a/Re=0.2, and for square bends with 2"x2" cross-section,
a/Re=0.2, 0.4. The visualization results are also believeu
to be useful for future comparison with numerical solutions

for this kind of problem.

2.2 Experimental Apparatus and Procedure

2.2.1 General Description of Test Setup

The experimental apparatus for flow visualization is
shown schematically in Fig. 2.1. The fluid medium used was
the building compressed air. The flow was first filtered by
a Fulflo air filter (model BS5A3/4D) to remove undesirable

dust and moisture. A pressure regulator and an zir tank were
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used to reduce the pressure fluctuations of the compressed
air. As a result, the variation of flow rate was less than
0.2%. The air flow rate was adjusted by a needle valve and
was measured by a Merian laminar flow meter (model 50MW
20-1). Details of the flow rate measurement will be given in
the next section.

The main air flow, after passing the filter, the
pressure regulator, and the flow meter, was split into two
separate circuits. One of them went into the smoke
generating device to keep the Chinese incense burning. Then
the two circuits joined together and entered the settling
chamber.

The settling chamber was composed of a steel drum with
ten layers of screen to steady the incoming flow. The
bell-shaped outlet region with a large contraction ratio
(1:0.12) at the exit created a quite uniform flow. A 6.8 m
long straight entrance pipe was installed between the
settling chamber and the test section to ensure that the
flow at the inlet of the test section was fully developed.
This straight entrance pipe and the test bends were made
from acrylic tubes with inside diameter of 2 inch.
Photographs were taken at the exit of each test section.
Fig. 2.2 shows a schematic diagram of the test section. For
<ircular bends, the 1inside diameter 1is 2a=2" and the
curvature ratio is a/Rc=0.2. For square bend, the
cross-section is 2"x2" and the <curvature ratios are

a/Rg=0.2, 0.4. Fig. 2.3 shows the co-ordinate system at the
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exit of the test section. Symbols A, B, C, D denote the tube
walls in counter-clockwise direction with A and C indicating
outer walls and inner walls. Hence, C-A always reprents the

direction of centrifugal forces.

2.2.2 Air Flow Rate Measurement

The air flow rate was measured by a Merian laminar flow
meter (Model 50MW 20-1) with a Validyne differential
pressure transducer. The laminar flow meter consists of many
longitudinal triangular passages small enough to ensure the
flow through these passages 1s laminar so that the
correlation between the pressure drop and the flow rate is
linear. This correlation was calibrated by the manufacturer
of the flow meter, and the overall calibration error was
less then 1.0%. A straight tube approximately 20 diameters
long was connected to both ends of the flow meter to meet
the requirements for measurement.

The pressure transducer with its Validyne carrier
demodulator (model CD 15) was calibrated against a U-tube
manometer and the calibration error was less than 1.0%. The
output of the Validyne carrier demodulator at one inch water
pressure difference was one volt, and the outputs were
acquired by a data acquisition/control unit (model HP 3497A)

and converted to flow rates by a HP-85 micro-computer,
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2.2.3 Visualization Method and Photographic Observation

The flow visualization was made possible by injecting
smoke. The main air supply was split into two lines. One
line went into the smoke generator to provide oxygen for the
burning of Chinese incenses and carried the smoke into the
settling chamber. The air split ratio is about 1:1 and 4 to
8 sticks of Chinese incense were used. These could be varied
to obtain good contrast for flow patterns, depending on the
air flow rate and the experience of researcher. The smoke
particles were very fine and dispersed into streamlines. So
the effect of the smoke on the flow was negligible.

At the exit of each test section, a thin light sheet
was provided by a 300 W slide projector, paralleling the
exit plane of the test sections. The light sheet was created
by making a slit on a slide with round shape. The round
slide can be rotated to make sure that the light sheet is
parallel to the plane of test section exits. Then pictures
were taken in the direction facing the exit with dark
surroundings while only the smoke-filled test section exit
plate was highlighted by the projector. Therefor, the
obtained flow patterns are the cross-sectional views of the
helical motion in bends. These flow patterns are caused by
secondary flows and can be used to understand the phenomena
of secondary flows. A Nikon FM2 single lens reflex camera
with 55mm micro lens and Kodak Tri-X black and white film
(ASA 400) were used. The aperture was set at £3.5 while the

shutter speed ranged from 1/2 to 1 sec..
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2.3 Experimental Parameters
Tables 2.1 and 2.2 show the ranges of the experimental

parameters for the secondary flow visualization experiments.

Table 2.1 Ranges cof Experimental Parameters

for Circular Bends

Curvature ratio, a/Rg¢ 0.2

Reynolds number, Re 783

Dean number, K 25 ~ 350

First bend angle, ¢ 45°, 90°, 135°, 180°, 225°

Second bend angle, ¢ 45°, 90°, 135°, 180°, 225°
Offset angle, 6 9p0°, 180°

Table 2.2 Ranges of Experimental Parameters

for Square Bends

Curvature ratio, a/R¢ 0.2, 0.4

Reynolds number, Re 57 ~ 783(a/R¢=0.2)
157 ~ 712(a/Rg=0.4)

Dean number, K 25 ~ 350 (a/Rg=0.2)
100 ~ 450(a/Rc=0.4)

First bend angle, ¥ 45°, 90°, 135°, 180°,
225°(a/R=0.2)

Second bend angle, ¢ 45°, 90°, 135°, 180°,
225° (a/Re=0.2)
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2.4 Results and Discussion

2.4.1 Results for the Circular Cross—sectional Bend

The flow patterns at the end of the straight entrance
pipe are shown in Fig. 2.4. At lower flow rate, smoke
appears at the lower part of the cross-section due to its
larger density. These patterns show that the effect of
buoyancy force is not obvious, especially for larger flow
rate.

Figs. 2.5 to 2.9 show the effect of Dean number on the
secondary flow patterns at the exit of each first bend.
Figs. 2.10 to 2.17 show the development of secondary flow
patterns in the first bend at each Dean number. One can see
that the flow patterns are in good contrast. The region
without smoke appears dark while the region filled with
smote looks white. It is noted that the dark region
originates from the upper portion or the portion along the
upper edge at the inlet position because of the helical
motion caused by secondary flows. Therefor, the mass trasfer
within the £luid is enhanced.

At the exit of each first bend, the secondary flow
becomes more intense with the increase of Dean number.
Similarly, at a fixed Dean number, the secondary flow
develops in the first bend and becomes more intense at
downstream locations. These kinds of secondary £flow have
been studied quite extensively for bends with smaller

curvature ratio. It is noted that, for flows in the bend
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with curvature ratio a/Rc=0.2, the secondary flow patterns
are not much different as compared with the works of other
researchers [11, 15]. However, for bends with larger
curvature ratio, the pair of secondary flow vortices moves
farther away from the outer wall region as the Dean number
increases.

The effect of Dean number on the secondary flow
patterns at the exit of each offset bend with offset angle
#=90° is 1illustrated 1in Figs. 2.18 to 2.22, and the
development of secondary flow patterns in the offset bend is
shown in Figs. 2.23 to 2.30, The direction of the
centrifugal force caused by the second bend is from C to A,
and the direction of the one caused by the first bend 1is
from D to B. At small Dean Number, it seems that the
secondary flow patterns in the offset bend are caused by the
of fset bend. That is, the effect of the offset bend is
dominant when Dean number is small. However, at high Dean
number, the first bend has strong effect on the secondary
flow patterns in the offset bend. Because, at higher Dean
number, the secondary flow in the first bend becomes more
intense. In other words, the momentum of the secondary flow
in the first bend becomes larger and allows the flow
patterns of the first bend to continue and last longer
through the second bend. In Fig., 2.20, it is seen that a
two-vortex secondary flow pattern appears due to the effect
of the second bend at K=26. Then this pattern is distorted

gradually as the Dean number increases. At K=303, another



22

pair of large vortices is formed horizontally. One can see
clearly that the fluid flows generally from point D toward
point B along the line D-B, and then moves back toward point
D along the wall BAD and wall BCD. Obviously, this motion is
a residual of that caused by the first bend.

From Figs. 2.23 to 2.30, it is noted that the effect of
the offset bend becomes larger while the influence of the
first bend becomes smaller as the position of the
cross-section is moved downstream in the second bend. The
symbol A on the first photograph in the Figs., 2.23 tn 2.30
indicates the outer wall of the first bend.

When the offset angle is 6=180°, the first bend and the
second bend are in the same horizontal plane. The test
section becomes an s-bend, and the inner wall of the first
bend becomes the outer wall of the second bend. Figs. 2.31
to 2.35 show the effects of Dean number K on the secondary
flow patterns at the exit of the second bend with different
bend angles. Symbol A indicates the outer wall of the second
bend. Thus the centrifugal force caused by the second bend
is in the direction C to A, and the one caused by the first
bend is in the opposite direction, A to C.

It is noted that the secondary tlow is mainly
controlled by the first bend if the second bend angle is
less than 45°, because the second bend is uot long enough
for the secondary flow caused by the second bend to show up.
From Fig. 2.34, one can see that, for longer second bends,

the second bend controls the secondary flow pattern at
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smaller Dean number. The effect of the first bend becomes
larger and an additional pair of vortices appears as the
Dean number incrveases. The additional pair of vortices is
called Dean's instability vortices. At the exit of the 180°
second bend, the Dean's 1instability vortices appear at
K=151, It 1is seen that Dean's instability vortices are
distorted and become asymmetric as the Dean number 'ncreases
gradually. When it's fecrmed, this pair of vortices is almost
horizontal but it becomes vertical at downstream locations.
At Dean number K=349, the secondary flow pattern induced by
the second bend becomes asymmetric too, and the whole flow
pattern becomes very complex.

Figs. 2.36 to 2.43 show the development of the
secondary flow patterns in the second bend at each Dean
number K. The symbol A on the first photograph indicates the
outer wall of the first bend. Similarly, it is also noted
that, at smali Dean number, K<100, the second bend controls
the whole flow pattern at downstream location and the Dean
instability vortices do not exist. At smaller second bend
angle ¢, the secondary flow is mainly controlled by the
first bend. As the position moves downstream in the second
bend, the effect of the first bend becomes smaller and the

effect of the second bend dominates.
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2.4.2 Results for the Square Cross-sectional Bend with
a/Rc=0.2

Photographs in Fig. 2.44 were taken at the end of the
straight entrance pipe. The buoyancy force effect is very
small and is observed only at smaller Dean number. Figs.
2.45 to 2.49 show the effect of Dean number on the flow
patterns at the exit of the first bend with different bend
angle. The development of secondary flow patterns in the
first bend is shown in Figs. 2.50 to 2.57. Many studies on
this kind of flow have been reported for the case of smaller
curvature ratio a/Rc. The present visualization for the flow
in the first bend shows similar results. Dean instability
vortices are observed at the exit of the 225° bend when the
Dean number 1is K=151. But at larger Dean number, the
symmetry of the flow pattern is destroyed, and tlow patterns
become complex.

For the case of offset angle 6=90°, Figs. 2.58 to 2.62
show the effect of Dean number K on the secondary flow
pattern at the exit of each second bend, and Figs. 2.63 to
2.70 show the development of secondary flow pattern in the
second bend at each Dean number K. The phenomena are similar
to the results for circular cross—-sectional bends. At
smaller Dean numbers, the secondary flow patterins are mainly
affected by the second bend. While at larger Dean numbers,
the effect of the first bend dominates. At the same Dean
number, the consequence of the first bend effect seems

different for each second bend, as shown in Fig. 2.69. At
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¢=45°, the pair of vortices caused by the first bend appears
in the upper region. At ¢=90°, a big clockwise vortex is
formed in the center region., At ¢=135°, the pair of vortices
caused by the first bend appears diagonally from right
bottom corner to the left top corner. These vortices appear
horizontally from D to B for the positions at ¢=180° and
225°,

Figs. 2.71 to 2.75 show the effect of Dean number on
secondary flow patterns in each second bend with offset
angle ¢=180°. Figs. 2.76 to 2.83 show the development of
secondary flow patterns in the second bend of the s-bend at
each Dean number K. As shown in Fig. 2.73, the Dean’s
instability vortices appear in the center region of the
outer wall of the second bend. Then they become larger and
asymmetric as the Dean number increases. At K=302, another
two vortices are formed in the top and bottom corners near
the outer wall. The vortices induced by the second bend are
pressed hack to the outer top and bottom corners.

1= e noted that Dean's instability phenciena are
observed & position ¢=180° when K=100. As mentioned before,
the Dean's instability phenomena appear at K=151 at the exit
of the 180° circular bend. Therefor, the Dean's instability
vortices appear more readily for the case of square
cross-sectional s-bend. [n Fig. 2.80, one can see that the
Dean's instability vortices are pressed severely by the
centrifugal force induced by the second bend as the flow

moves downstream,
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2.4.3 Results for the Sguare Cross-sectional Bend with
a/Re=0.4

In order to understand the effect of the curvature
ratio a/R. on the secondary flow pattern, visualization was
also made for square cross-sectional bends with curvature
ratio a/Rc=0.4. Figs. 2.84 to 2.88 show the Dean number
effect on secondary flow patterns at the exit of each first
bend. Figs. 2.89 to 2.96 show the development of secondary
flow patterns in the first bend at each Dean number K.

It is noted that the secondary flow pattern at the exit
of a 45° bend is weaker at the same Dean number K than that
of the case a/Rc=0.2, because the bend with a/Rc=0.4 is
shorter. The Dean's instability vortices are not observed
throughout the experiment. However, a pair of vortices seems
to appear in the center of the inner wall, as shown in Fig.
2.87.

Figs. 2.97 to 2.101 and Figs. 2.110 to 2.114 show the
effect of Dean number K on secondary flow patterns at the
exit of each second bend for offset angle 6=90° and 180°,
respectively. Figs. 2.102 to 2.109 and Figs. 2.115 tc 2.122
show the development of secondary flow pattern in the second
bend at each Dean number K for offset angle 6=90° and 180°,
respectively.

It seems that the effect of Dean number K on the
secondary flow pattern and the tendency of the secondary
flow development in the second bend with curvature ratio

a/R.=0.4 are similar to the results for the case with
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curvature ratio a/Rc=0.2. Only small differences are
observed.

In the s-bend, as shown in Figs. 2.74 and 2.113, it is
noted that the Dean's instability vortices appear at higher
Dean number, and a pair of vortices seems to appear near the
center of inner wall of the second bend for the case of

larger curvature ratio.

2.4.4 Concluding Remarks

Visualization results are presented for three cases.
First, a circular cross-sectional bend with curvature ratio
a/Rc=0.2, Dean number K=25~350, and offset angle 6=90°,
180°. Second, a square cross-sectional bend with a/Rc=0.2,
K=25~350, and 6=90°, 180°. Third, a square cross-sectional
bend with a/R.=0.4, K=100~450, and 6=90°, 180°. Photographs
were taken for each case by a smoke injection method.
Attention was given to the effects of Dean number K, second
bend angle ¢, curvature ratio a/Rc, and the influence of
bend geometry on secondary flow patterns.

It is noted that the secondary flow patterns at the
exit of the offset bend are mainly affected by the second
bend at smaller Dean number K<100, and are greatly affected
by the first bend at higher Dean number. On the other hang,
the secondary flow patterns in the second bend are mainly
controlled by the first bend if the second bend ancie is

less than 45°.
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in the s-bend, Dean's 1instability phenomena are
observed, and these phenomena appear at lower Dean number K
in the square cross-sectional bend. In addition to the
Dcan's instaBility vortices, another two vortices begin to
appear in the left top and left bottom corners near the
inner wall at K=300 for 135° and 180° second bend.

For the square bend with a/R¢=0.4, it is found that
Dean's instability vortices appear in s-bend at higher Dean
number. It is also noted that a pair of small vortices seems
to appear near the center of the.inner wall of the second
bend. However, the effect of Dean number K on secondary flow
patterns and the tendency of the secondary flow development
in the square bend with a/R.=0.4 are not very different from
the case of square bends with a/Rc=0.2.

The present visualization study of flow in bends with
and without offset bends is a complement to the existing
studies on flows in curved pipes, and provides a further
insight on flow physics of secondary flow. It is believed
that the present photographic results will be useful to

confirm the results of numerical studies in the future.
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3. Measurements of Developing Axial Velocity Profiles for

Laminar Flow in the Entrance Region of S-bends

3.1 Introduction

The secondary flow caused by centrifugal forces 1in
curved channels has been studied by many investigators
because of its importance in engineering applications and
fluid mechanics. After the publication of Dean's pioneer
work in 1927, 1928 [1,2] on fully developed laminar flow in
curved pipes, many theoretical and experimental
investigations have been carried out in this area.

Dean showed that the flow in curved pipes can be
characterized by a simple dimensionless parameter, Dean
number, K=Re(a/Rc)1/2. It is also known that a secondary
flow pattern in the form of a pair of symmetri: vortices 1is
the consequence of the centrifugal forces acting on the
f1uid in the direction of the radius of curvature. Generally
speaking, the centrifugal forces induced by the curved flow
passage tend to push the fluid in the core region toward the
outer wall ol the bend. The fluid near the outer wall moves
back to the inner wall along the upper and lower wall
surface since it is driven by the pressure gradient oriented
to the inner wall at the region near the upper and lower
walls. Such flow motion superimposed on the main axial flow
results in a double helix type secondary flow motion which
appears as @ pair of symmetric counter-rotating vortices in

cross—-sectional view.

1563
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In consequence, the axial velocity profile will no
longer be parabolic. The maximum velocity point moves toward
the outer wall. Two local maximum velocity points appear
near the upper wall and the lower wall on the vertical
plane.

However, the centrifugal force 1increases and then
decreases after reaching a maximum value along the
horizontal axis in the direction toward the outer wall.
Therefore, the region near the outer wall is potentially
unstable and Dean's instability phenomenon [3] may occur.
This centrifugal instability phenomenon in the form of an
additional pair of vortices appearing near the center of the
outs~ w3ll has been observed by flow visualization at Dean
| uioers sw.out K=110 ia square curved channels [4]. Similar
results are also obtained by numerical calculation [5,6].
Hence, in fact, the secondary flow patterns and the axial
velocity profiles are very complex. Further studies are
still recessary for a comprehensive understanding of the
instability phenomena.

Patankar, Pratap and Spalding {7] obtained the
developing axial velocity profiles bv solving parabolic
Navier-Stokes eguations. Humphrey, et al. [8] reported
numerical calculation of flow in the entrance region of a
square curved duct. Soh and Berger [9] showed the appearance
of an additional weak vortex pair near the inner wall of a
circular curved pipe in a developing region. Further

numerical studies can be found in [10,11,12]. Austin and
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Seader [13] published their experimental results for
velocity profiles in the entrance region of curved circular
pipes. The curved ~ipes they used were of four different
curvature ratios, namely a/Re=0.034, 0.069, 0.111, 0.144,
and the range of Dean number was from 198 to 948.
Bovendeerd, et al. [14] reported their experimental results
of axial and secondary velocity measurements by
Laser-Doppler anemometer for the entry flow 1in a 90°
circular cross-section bend with a curvature ratio a/Rc=1/6.
In their study, Dean number was K=286, corresponding to
Reynolds number about Re=700. Some other experimental
investigations are presented in [15,1€,17].

Literature review shows that few studies have been
reported on the measurements of developing velocity profiles
for curved pipes of curvature rat.o larger then a/Re=0.1,
especially for curved ducts with offset bends, which are
often used in piping systems.

In order to further understand the pheromena of flow in
curved ducts and in s-bends, the purpose of this chapter is
to investiyate the developing axial velocity profiles on
vertical and horizontal planes in the entrance region of
curved ducts with curvature ratio a/Rec=0.2 and 0.4.
Attention was also given to the effects of curvature ratio
and the effects of Dean number K on the velocity profiles,
Velocity profiles were measured by a hot-film anemometer at
the exit of curved pipes along horizontal axis and vertical

axes.
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The velocity measurement results and the compariscn of
these results with the photographs of secondary flow
patterns in Chapter 2 are helpful for understanding the flow
in curved pipes, especially in s-bends. These results are

also believed to be useful for future numerical studies.

3.2 Experimental Apparatus and Procedure

3.2.1 General Description of Test Setup

The schematic diagram of test setup is shown in Fig.
3.1. Some of the experimental apparatuses are identical to
what was used in the =+« ::riments of Chapter Two, and a
detailed description . these apparatuses is given in
section 2.2.1 of Chapter Two. For the velocity measurements,
smoke is not needed. So air flow was not split into two
circuits. A constant temperature hot-film anemometer
(Thermo-System Inc., CTA model 1050) with a single hot-film
sensor (TSI, model 1210) was used to measure the axial
velocity profiles. A traversing mechanism with 0.1 mm
resolution was used to position a hot-film support. The
possible error of the hot-film sensor's position was less
then 0.1 mm.

The schematic diagram of the test section is shown 1in
Fig. 3.2. The secondary bend was connected to a 180° first
bend. The offset angle was 180° so the first bend and the

secondary bend were on the same horizontal plane.



157

Fig. 3.3 shows the exit of test section and the
coordinate system. The origin is at the center of the pipe.
The y-axis is vertical directed toward the upper wall, and
the x-axis is horizontal directed toward the outer wall.

The experiments were made for the following four cases:

Case (1} circular bend, a/Rc=0.2, K=350
Case (2) circular bend, a/Rg=0.2, K=200
Case (3) square bend, a/Rc=0.2, K=350

Case (4) square bend, a/Rc=0.4. K=350

3.2.2 Calibration of the Hot-film Sensor

The single hot-film sensor (TSI, model 1210) for the
constant temperature hot-film anemometer was calibrated
against the Merian laminar flow meter. Fig. 3.4 shows the
schematic diagram of the hot-film sensor. It is well known
that for fully developed laminar flow, the maximum axial
velocities for a circular pipe and sguare duct are Uo=2Up
and Uog=1.94U,, respectively. The value, 1.94, was calculated
from the equations ( 5.110 ) and ( 5.111 ) in [18].

The hot-film sensor was set at the center of the exit
of the straight entrance pipe, because the local velocity at
the center is also the maximum velocity. Tha mean velocity
in the pipe was changed from 0.05 m/sec. to 0.5 m/sec. and,
at the same time, the mean velocities and the output
voltages of the anemometer were reccrded.

The output voltages of the anemometer depend on the

cleanliness of the hot-film surface and the air flow
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temperture. But the ratios of the output voltages E to a
reference output voltage E, remain constant. At a proper
mean velocity corresponding to K=350, the hot-sensor was
located at the center of the straight pipes, the outputs of
the anemometer were taken as the E, for Cases (1), (3), (4),
respectively. While for Case (2}, E, was the output at a
proper mean velocity corresponding to K=200. In this way,
four sets of non-dimensional output voltages E/E, were
obtained. Then, the calibration curve could be obtained with
non-dimensional output voltage E/E, versus local velocity U.
The calibration curves are shown in from Figs. 3.5 to 3.8,

and the calibration equations are listed in Table 3.1.

Table 3.1 Calibration Results

Case (1):

0.012<E/E(<0.04 U=0.375x(E/E.)0-327

0.04<E/E;<0.15 U=0.445x(E/E,)0.384

0.15<E/E;<2.00 U=0.524x(E/E,)0.472
Case (2):

0.01LE/Ep<0.15 U=0.238x(E/E.)0-315

0.15<E/E;<0.80 U=0.284x (E/E;)C-407

0.80<E/E <4.00 U=0.289x(E/E.)0.477
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Case (3):

0.013<E/E;<0.035 U=0.304x(E/E,)0-296
0.035<E/E;<0.10 U=0.393x(E/E,)0.374
0.10<E/E<0.40 U=0.462x(E/E;)0-445
0.40<E/E<1.70 U=0.477x(E/E;)0-472
Case (4):
0.015<E/E;<0.09 U=0.263x(E/E;)0-320
0.09<E/E;<0.40 U=0.318x(E/E;)0-399
0.40<E/E;<3.50 U=0.339x(E/E,)0.471

The largest error of ctnese equations is less than

2%.

3.2.3 Velocity Measurement

The hot-film anemometer was giver 50 minutes warmup
time before measurement started. The flow rate was set at
the value corresponding to the desired Dean number. The
hot-film sensc: was located at the center of the exit of the
straight entrance pipe in ordei to record the anemometer
output voltages before and after the measurements for each
configuration. The difference between these two voltages
obtained before and after experiments for each cor.figuration
was less then 1.0%, and the mean value was used as the
reference output voltage.

For each test configuration, axial velocity profiles
were measured at the exit along the x-axis (horizontal axis)

and y-axis (vertical axis), with an interval of 1 mm. The
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hot-film sensor was set on the plane of bend exit and
perpendicular to the axis long which velocity profiles were
measured. In order to reduce the effect of the motion of
adjacent room air, a short extension paper cover (about 6 cm
long) was attached to thes exit of each test se.tic us shown
in Fig. 3.9. A schematic diagram of hot-film anemometer

measurement system is shown in Fig. 3.10,

3.3 Experimental Parameters

The ranges of the experimental parameters are given 1n

Tables 3.2 and 3.3.

Table 3.2 Ranges of Experimental Parameters

for Circular Bends

Curvature ratic, a/Ro 0.2

Reynolds number, Re 447, 783
Dean number, K 200, 350
First bend angle, V¥ 45°, 90°, 135°, 180°

Second bend angle, ¢ 45°, 90°, 135°, 180°
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Table 3.3 Ranges of Experimental Parameters

for Square Bends

Curvature ratio, a/R¢ 0.2, 0.4

Reynolds number, Re 783, 553
Dean number, K 350
First bend angle, V¥ 45°, 90°, 135°, 180°

Second bend angle, ¢ gp°®, 180°

3.4 Results and Discussion

3.4.1 Results for Circular Bends

The experimental results of the axial velocity profiles
at the exit of a circular bend with different bend angles
are shown in Figs. 3.11 to 3.28. Figs. 3.11 and 3.22 show
the velocity profiles at the end of the straight entrance
pipe with Re=783 and 447, respectively. As the flow is fully
developed laminar flow, typical parabolic velocity profiles
are cbtained. Figs. 3.12 to 3.19, and Figs. 3.23 to 3.26 are
the velocity profiles along vertical and horizontal axes.
The velocity profiles along vertical and horizontal axes are
plotted in one figure to give a better idea about the shapes
of velocity profiles at the exit of each test section.

Figs. 3.20 and 3.21 show the development of axial

velocity profiles along the horizontal and vertical axes for
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the circular s-bend at K=350. The upper half is the velocity
development in the first 180° bend, and the lower half is 1in
the second 180° bend. The profiles at ¢=180° and at ¢=0° are
actually at the same position.

It is seen that, in Fig. 3.20, the initially parabolic
profiles are already changed by ¥=45° and the maximum of
axial velocity shifts toward the outer wall. But the shape
of the curve adjacent to the maximum velocity point 1is
rounder than that of the profiles further downstream and the
maximum point is somewhat farther away from the outer wall
than that of the downstream profiles. That means the
intensity of secondary flow is under development. At ¢=90°,
a severely depressed shape is observed in the core region
and a second peak occurs. Because the profile is changing
gradually, it is believed that a plateau-shaped profile in
the core region should exist between ¢=45° and ¥=90°.
Further downstream, the depressed shape is decaying, and the
plateau-shaped profile is observed at ¥=135°. After these
changes, the profile seems to approach the typical skewed
profile of fully developed toroidal flow.

After the flow enters the second bend, the outer wall
of the first bend becomes the inner wall of the second bend.
Therefore, the maximum velocity point near the inner wall of
the second bend ¢=0° will shift toward the outer wall in the
second bend. At ¢=45°, it is seen that the velocity near the
outer wall is becoming larger while the maximum velocity is

shifting toward the outer wall., Also, a local maximum and a
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local minimum are formed. Further downstream, the original
maximum becomes smaller, and the maximum peak is decaying.
At ¢=90°, only a small peak is left and this peak disappears
by ¢=135°. In the mean time, the velocities in the outer
wall region are becoming larger, but the front portion of
the profiles are relatively flat compared with the profiles
in the first bend. Also, they remain relatively flat to
$=180° and the maximum U/U, is lower than that in the first
bend.

In Fig. 3.21, it 1is seen that the entrance axial
velocity profile along the vertical axis is essentially
parabolic. At ¥=45°, because the maximum velocity shifts
toward the outer wall, the secondary flow brings the fluid
particles with larger axial momentum back to the inner wall
along the upper and lower walls. In conseqguence, two peaks
appear near the upper wall and the lower wall, forming an
M-shape profile. In the center region of the profile at
¥=90°, another two local maximum points are observed. This
kind of profile, called the four-wave shape, has not been
reported by investigators in the past. This phenomenon is
also due to secondary flow. The secondary flow brings the
fluid particies with relatively larger axial momentum back
to the inner wall along the upper and lower walls, and then
pushes them toward the outer wall again through the center
region. At ¥=135°, the profile becomes almost flat, and at
y=180°, the M-shaped profile is observed again. This will be

explained clearly when the secondary flow patterns obtained
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by flow visualization are compared in the Section 3.4.3.

In the second bend, the velocity profiles become
asymmetric., A distorted M-shape is obtained at ¢=45°. At
¢=90°, a similar four-wave-shape profile i5 also observed.
Further downstream, the velocity profiles become almost flat
again.

Fig. 3.27 compares developing axial velocity profiles
along the horizontal axis in a circular s-bend for K=200 and
K=350., At ¢=90°, for K=350, the profile is still changing
while the protile for K=200 is approaching a fully developed
one. In addition, the maximum velocity point for K=350 is
nearer the outer wall than that for K=200. For larger Dean
number flow, the centrifugal force effect is larger. So the
centrifugal force can pushes the fluid particles with larger
axial momentum to the region closer to the outer wall, and a
longer distance is required for the secondary flow to become
fully developed. In the second bend, it is noted that the
velocity near the outer wall of the second bend becomes
larger more rapidly for the case K=350 than the case K=200,
because the centrifugal force is larger for the case K=350
than that of the case K=200. Therefor, the fluid particles
with large axial momentum shift to the outer wall of the
second bend faster for the case K:359 than the case K=200.

A comparison of developing axial velocity profiles
along the vertical axis for K=200 and K=350 is shown in Fig.
3.28. The four-wave-shape profile is not observed for the

case K=200 at ¢=90° and ¢=90°. However, the profile 1is



165

deeply depressed at ¥=90° for the case K=200 and appear in
an M-shape. At ¢=180°, the profile for K=200 is flatter than
that for K=350 and the depressed portion appears at r/ax0.3

instead of the center.

3.4.2 Results for Square Bends

The measurement results of axial velocity profile for
square bends are shown in Figs. 3.29 to 3.44. The velocity
profiles at the end of the straight entrance pipe are shown
in Figs. 3.29 and 3.38 for #e=783 and Re=553. The
theoretical profile is calculated a=sczording to the equation
in [18]. The axial velocity profiles along the vertical axis
and the horizontal axis at each anguler position for
a/R¢=0.2 and a/R.=0.4 are shown in Figs. 3.30 to 3.35 and in
Figs. 3.39 to 3.42, respectively.

Figs. 3.36 and 3.37 show the developing axial velocity
profiles along the horizontal and vertical axes in a 180°
bend with a/Rc=0.2. The velocity profiles along horizontal
axis are similar to the profiles in circular bends. However,
the severely depressed shape is not observed at ¢=90°. The
profiles along the vertical axis are quite different from
the profiles in circular bends. Instead of an M-shape, the
preofile is almost flat at ¢=45°, A dramatic change is
observed at ¥=90°, The center portion of this profile is
deeply depressed, and the depressed part is also relatively
flat. Then, the velocity profile becomes flat again. Only

two small peaks are observed near the upper wall and lower
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wall for the profile at ¢=135", and a weak wave appears in
the center region of the profile at ¢=180°.

The effects of curvature ratio on velocity profiles are
shown in Figs 3.43 and 3.44. The developiny velocity
profiles in an s-bend for Case (3) and Case (4) are compared
with each other. Fig. 3.43 shows the profiles measured along
the horizontal axis, and Fig. 3.44 shows the profiles along
the vertical axis. In the first bend, for a/Rc=0.4 at ¥=90°,
the velocities in the center region are very low, U/Uo=0.25,
and become very high at ¢=90° in the second bend. At $=180°
in the second bend, the velocity in the outer wall region
develops faster for the case with larger curvature ratio. In
addition, for the case with larger curvature ratio, it 1is
noted that velocity is less stable than that of the case
with smaller curvature ratio. This is because the flow
separation near the inner wall is more severe for the case

with larger curvature ratio.

3.4.3 Effects of the Secondary Flow

The axial velocity profiles of flow in curved pipes are
maily affected by the secondary flow. Fig. 3.45 shows some
of these effects. In Fig. 3.45, it is seen that, at ¢=45°,
the secondary flow is not very strong. It seems that the
fluid particles coming from the outer wall are kept moving
in the region near the upper wall and the lower wall. Thus,
along the vertical axis, the high velocity appears in the

upper wall and lower wall regions forming the so-called
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M-shape profile.

At ¢=90°, it is seen that the secondary flow vortex
carries the fluid particles with high axial momentum forward
and backward through the vertical axis, resulting in the
four-wave-shape profile. But the vortex does reach the
center region. Therefore, the axie. velocity at the center
is still low, and a profile severely depressed at the center
along the vertical axis is observed.

At ¢Y=135°, the fluid particles with larger axial
momentum are circling around in the region near the vertical
axis. So the profile along the vertical axis is relatively
flat. Further downstream, the secondary flow vortex pair
moves toward the upper wall and the lcwer wall and it seems
that the vortices do not reach the center part of the
horizontal axis. Thus, the M-shape profile is observed again
along the vertical axis. In the second bend, the symmetry of
the flow pattern is destroyed so the velocity profiles along

vertical axis become asymmetric.

3.5 Concluding Remarks

Developing axial velocity profiles were measured by
hot-film anemometer with a single hot-film sensor along
vertical and horizontal axes at different bend angles for
circular s-bends with a/R.=0.2, K=200, 350, and for square
s-bends with a/Rc=0.2, 0.4, K=350, both at the exit of each
bend with different bend angles. Developing velocity

profiles are presented for each case. The eifects of



168

secondary flow on the axial velocity profiles are discussed.
Attention is also given to the effects of Dean number and
the effects of curvature ratio on the axial velocity
profiles.

It is noted that there exist some typical shapes for
the developing axial velocity profiles of flow in curved
pipes. In the present study, for flow in the first bend,
there are three kinds of profiles which are measured along
the vertical and the horizontal axes. For velocity profiles
measured along the vertical axis, an M-shape profile, a
flat-front-shape profile and a four-wave shape profile are
observed. For velocity ©profiles measured along the
horizontal axis, three typical shapes are also found. The
first is the shape where velocity increases gradually from
the inner wall to a maximum point near the outer wall. The
second is the one depressed in the center region and the
third has a flat plateau at the center.

In the second bend, velocity profiles become nmcre
complex. Along the vertical axis, three skewed typical
shapes of the first bend can be observed. However, the
maximum velocity may appear in the center region and
profiles are not symmetric.

1t seems that effects of Dean number (K=200, 350) and
curvature ratio (a/Rc=0.2, 0.4) on the basic developing
velocity profiles are small. For larger Dean rumber flow,
the maximum velocity point along the horizontal axis is

closer to the outer wall. For the flow in bends with larger
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curvature ratio, velocity may become unstable because of the
flow separation at the inner wall.

The present study of axial velocity prcfiles measured
by a hct~film anemometer with a single hot-film sensor along
vertical and horizontal axes provides physical insights into
the flow in s-bends. It is believed that the present
velocity profiles will be useful for comparison with those

from numerical solutions in the future.
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4. Visualization Experiments on Buoyancy Force Induced
Secondary Flow in the Entrance Region of Horizontal
Rectangular Channels Heated Isothermally from Below and/or

Cooled Isothermally from Above

4.1 Introduction

Mixed convective heat transfer in rectangular channels
has a variety of engineering applications, such as flat
plate solar <collectors, compact heat exchangers and
electronic component cooling. The characteristics of the
mixed convective heat transfer are significantly affect 3§ b
buoyancy-induced secondary flow.

When fluid passes through a rectangular channel with
the bottom plate heated, the fluid near the heated plate
becomes less dense, creating a small reduction in pressure
which &accelerates the flow and enhances heat transfer.
However, this effect is usually very small compared with the
effect of Dbuoyancy-induced secondary flow caused by
convective instability. As the temperature of the bottom
plate becomes higher than that of the top plate, a top-heavy
situation is formed in the fluid. This situation is not
stable and the buoyancy forces can initiate a secondary flow
inside the heated boundary layer. The onset of thermal
instability arises in the form of longitudinal vortices and
a substantial increase 'n the heat transfer coefficient
above the forced convection 1limit results. Subsequent

variation of the heat transfer coefficient with the

217
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longitudinal coordinate may lead to a final value which is
typical of turbulent free convection.

As the longitudinal vortex rolls caused by the thermal
instability may enhance heat transfer by reducing thermal
entrance length and by inducing early transition to
turbulence, the effect of buoyancy forces »n laminar forced
convective flows has been studied by many investigators.

Mori [1] and Sparrow et al. [2] independently studied
buoyancy effects in laminar forced convective flow along a
heated horizontal semi-infinite flat plate in the early
60's. Sparrow and Husar [3] clearly showed the occurrence of
longitudinal vortices in natural convection boundary-layer
flows along isothermal surfaces by a flow wvisualization
technique to reveal the flow patterns. Mori and Uchide [4]
studied the onset of an infinitesimally small disturbance
for fully developed laminar flow between parallel plates by
applying linear stability theory. The secondary flow was
observed to ke in the form of longitudinal vortex rolls, and
they also found that, for Rayleigh number 1less than
approximately 18,000, the roll pitch was twice the plate
spacing. Nakayama et al. [5] theoretically investigated the
convective instability concerning the onset of longitudinal
vrotices due to the buoyancy forces for fully developed
laminar forced convection between two horizontal plates.
This problem was also studied experimentally by Akiyama et

al. [6].
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Hwang and Cheng [7] theoretically determined the
critical Rayleigh number for the onse:t of convective
instability. However, later experimental studies (8, 9, 10]
found that the critical Rayleigh number is larger than the
theoretical value given by Hwang and Cheng. Recent
experiments on mixed convecticn air flow in horizontal and
inclined channels were performed by Maughan and Incropera
[11]. They used the departure of spanwise-average
longitudinal Nusselt number from the forced convection
results to determine the onset and they found that their
experimental instability data are in gcod agreement with the
results of previous experiments.

Recent studies include the investigations by Incropera
and Schutt [12], Cheng and Kim [13], Incropera, Knox and
Maughan [14]), Maughan and Incropera [15], Chou and Hwang
[16]1, and by Chou and Lin [17]. Incorpera and Schutt [12]
solved a laminar, three-dimensional, steady~state model to
study the laminar mixed convection in the entrance region of
horizental rectangular ducts with heated top and bottom
surfaces and insulated sidewalls. Cheng and Kim [13] studied
the vortex instability of natural convection flow on
sligh. - inclined isothermally heated flat piates by flow
visua.ization using the smoke injection method, and
presented the instability data for critical Grashof number
and wavelength for the onset of longitudinal vortices.
Incropera et al. [14] experimentally studied the

mixed-convection flow and heat transfer in the entry region
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of a horizontal rectangular duct with wuniform bottom
heating. Maughan and Incropera [15] performed experiments to
investigate onset and development of the buoyancy driven
secondary flow in a horizontal parallel plate channel with
uniform bottom heating. Chou and Hwang [16] reported their
results of numerical solutions by a vorticity-velocity
method for combined free and forced laminar convection in
the thermal entrance region of a horizontal rectangular
channel without assumptions of large Prandtl number and
small Grashof number. Chou and Lin [17] reported their
systemetic theoretical studies on convective instability in
the thermal entrance region of horizontal rectangular
channels by means of the vorticity-velocity method. They
obtained the variation of the local Nusselt number with
dimensionless axial position as a function of Rayleigh
number. More literature can be found in [18-21].

Although the problems of the convective instability of
forced flow in retangular channels have been studied by many
investigators, most studies were concerned about the case of
heating from below. The purpose of this chapter is to study
the developing secondary flow patterns in the simultaneous
hydrodynamic and thermal entrance region of horizontal
channels with isothermally heated 1lower wall and/or
isothermally cooled upner wall by the smoke injection
method. Photographs for developing secondary flow patterns
are presented to study the convective instability and

chaotic phenomena due to the buoyancy effects caused by
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heating from below and/or cooling from above. The effects of
Grashof number and Reynolds number on the instability

phenomena are alsoc discussed.

4.2 Experimental Apparatus and Procedure

4.2.1 General Description of Test Setup

Fig. 4.1 shows the schematic diagram of the experiment
setup. Except for the settling chamber, the test section and
the heating and cooling systems, all other experimental
apparatuses are the same as the ones used in the experiments
of Chapter Two.

The settling chamber is a steel rectangular box with
several screen layers inside, and has a contraction with
streamlined outlet portion with large contraction
ratio(1:0.13 for a/b=2, 1:0.16 for a/b=7) so that the
settling chamber can steady the incoming flow and provide a
quite uniform flow at the exit of the chamber.

The bottom plate of the test section was heated by hot
water coming from a large hot water tank. The water was
heated by an electric heater, and water temperature was kept
at a fixed value by a temperature controller. The top plate
was cooled by two kryostats (model HAAKE F3-K) using engine
antifreeze coolant. A camera was located at the exit of the

test section to take photographs.
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4.2.2 The Test Section and Temperature Measurement

Fig. 4.2 shows the schematic diagram of the test
section which is a rectangular channel with inside height
b=28.6 mm. The side walls were made of acrylic resin plates,
and the thickness of the side walls was 12 mm. The top plate
was an aluminium flat plate with cooling channel. 1Its
temperature was controlled by the circulating antifreeze
liguid cooled by the two kryostat units. The top surface was
covered by insulation. The bottom was a copper flat plate.
Both of the top and bottom plates were 233 mm wide and 1523
mm long. The isothermal condition of the bottom copper plate
was maintained by <circulating the water at high speed
through the water channel attached below the bottom surface
of the test plate. The water was heated by an electric
heater inside the water tank, and the heater was controlled
by a temperature controller. There was a stirrer inside the
water tank to mix the heated water evenly.

The temperatures of the bottom and top plates were
measured by four 0.3 mm diameter copper-constantan
thermocouples attached on each plate. These thermocouples
were embedded in a 1 mm deep depression and covered with
aluminium epoxy along the plates. The four thermocouple
readings for each plate agreed well within the calibration
error after the steady-state was reached.

The temperature of the mired airsmoke flow was also
measured by a 0.3 mm diameter copper-constantan thermocouple

at the inlet of the settling chamber. The inlet and outlet
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temperatures of the circulating water to the test section
were monitored by two 0.8 mm iron-constantan sheathed
thermocouples. The difference of these two thermocouple
readings was less than 0.2°C due to the high speed of the
circulating water. All these thermocouple readings were
measured by a data acquisition system composed of a Hewlett
Packard 85 micro-computer and a Hewlett Packard data
acquisition/control unit (model HP 3497A), and converted to

temperature by the computer.

4.2.3 B2Air Flow Rate Measurement, Flow Visualization and
Photographic Techniques

The methods of flow rate measurement, flow

visualization and photograph were similar to the methods

used in the experiments of Chapter Two. Sections 2.2.2 and

2.2.3 give a detailed description of these methods. However,

the lens of the camara used here was a 90 mm zoom lens.

4.2.4 Experimental Parameters
The experimental parameters and their ranges for this
investigation on thermal instability problems are shown in

Table 4.1,
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Table 4.1 Ranges of Experimental Parameters

Aspect ratio, a/b 2, 7

Height of the channel, b 28.6 mm

Mean velocity, Up 0.1, 0.2, 0.3, 0.4
m/sec.
Temp. of top plate, T¢ 23°c, -6°Cl(a/b=2), -17°C

Temp. of bottom plate, Th 23°Cc, 51°C

Inlet air temperature, Tgijr 23, 24°C

Reynolds number, Re 2.1x102~1,05x103(a/b=2),
2.8x102~1.32x103(a/b=7)

Grashof number, Gr 1.5x1059~5,0x105(a/b=2),
3.6x105~1.2x106(a/b=7)

Prandtl number, Pr 0.71(air)

The Grashof number is defined based on temperature
difference AT=TL-T. and hydraulic diameter De=2ab/(a+b).
Physical properties of air were determined based on the
mean temperature of the top and bottom plates.

The experiments for rectangular channel with a/b=2

were conducted for four cases:

Case (1) Th-Tcx29°C Tc=Tair=23°C
Case (2) Th-Tc=30°C ThH=Tair~23°C
case (3) Th-Te~41°C Tph=Tg; ~23°C
Case (4) Th-Tc~68°C TH=51°C, T5ir~24°C

The experiments for rectangular channel with a/b=7

were made for three cases:
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Case (1) Th-Tc=30°C, Te=Ta;r>23°C
Case (2) Th-Te>30°C, TyH=T4ir>24°C
Case (3) Th-Tcx68°C, TH=52°C, Tair>24°C

For each case the mean air velocity was set at .1,
6.2, 0.3, 0.4 m/sec.. Photographs were taken at
positions between 1=10 cm to 120 cm measured from the
inlet of the channel with a step of 10 cm. On the
presented photographs, the position was indicated by the

inverse Graetz number z=(1/De)/(RePr).

4.3 Results and Discussion

4.3.1 Results for Aspect Ratio a/b=2

Case (1), AT=29°C, Tc=Ta;r=23°C

Figs. 4.3 to 4.6 show the cross-sectional views of
developing secondary flow patterns for Case (1). In this
case, the air flow was heated isothermally from below. It is
noted that the air moves up along the side walls and comes
down at the center. At small values of inverse Graetz number
z, the secondary flow cannot reach the bottom plate when
fluid comes down due to the heated layer near the bottom
plate. At intermediate values of 2z, a pair of inverted
mushroom-form vortices appears showing the dominating
viscous effect. Further downstream, the secondary flow
becomes more intense and the flow pattern becomes more
complex. It seems that, at locations further downstream, the

secondary flow pattern 1is no longer a single pair of
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vortices. The pair of vortices splits into two pairs. This
phenomenon can be seen clearly at z=1.04x10"! in Fig. 4.4,
and at z=5.27x10"2 in Fig. 4.5.

It is also noted that, at higher main air flow
velocity, the inverted mushroom-shape secondary flow pattern
appears later, and the flow pattern is more stable due to
the larger effect of Reynolds number relative to that of
Grashof number.

Case (2), AT=30°C, Thp=Tajr=23°C

Figs. 4.7 to 4,10 show the secondary flow patterns for
Case (2). The temperature difference is almost the same as
that of Case (1), but the air flow is cooled isothermally
from above. It is noted that the secondary flow direction is
opposite to that of Case (1), that is, fluid moves up at the
center and comes down along the side walls. This difference
is caused by the temperature of side walls. When the steady
thermal state is reached, the vertical temperature
distribution of the side walls is believed to be linear.
Thus the sidewall temperature is higher than that of the
main stream flow for Case (1), and is lower for Case (2).
That means the side walls heat the flow for Cess (1), and
cool it for Case (2).

It is noted that, at smaller values of z, the secondarw
flow is quite regular. The two-pair-vortex pattern ageai:
appears at 2z=5.86x10"2 in Fig. 4.8, but the rotation
direction is opposite to that of Case (1). For both Cases

(1) and (2), a secondary flow pattern with more than two
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pairs of vortic¢:: seems to be possible at downstream
positions (see Figs. 4.5 and 4.8). It is also observed that
the flow patterns for Case (2) are less stable than those of
Case (1).

Case (3), AT=41°C, TL=Tazir=23°C

Figs. 4.11 to 4.14 show the results of Case (3), which
is also a cooling case but he temperature difference is
about 10°C larger tuan that of Case (2). The larger density
gradient causes the secondary flow to occur earlier, and the
flow patterns are more unstable and more complex at
downstream positions as compared with the secondary flow in
Case (2). Only six photographs were taken when Up=0.1
m/sec., because the flow became turbulent, and flow patterns
were not clear at further downstream positions due to smoke
diffusion.

At 2z=3.5x10"3 and 1.05x10"2 in Fig. 4.14, a pair of
vortices is formed at the center of the top plate in the
form of an inverted mushroom-shape. It seems that the fluid
cooled by the top plate comes down, but then is pushed back
by the fluid which is moving up.

Case (4), AT=68°C, TL=51°C, Tgir=24°C

The results of Case (4) are shown in Figs. 4.15 to
4.19. In this case, the fluid is heated from below and
cooled from above simultaneously with large temperature
difference AT=68°C. Hence the buoyancy force effect is
significant. The secondary flow patterns are very unstable,

especially for the case with smaller main flow velocity. It
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is more difficult to obtain a clear secondary flow pattern
due .0 smoke diffusion. At pesition z=2.07x10"2 in Fig. 4.17
the £luw pa.tern with .20 pairs of vortices is also
observed. At posicint 2=2.32x1072 in Fig. 4.18, a large
inverted mushroom-shape vortex - .pears, but the flow pattern
is not symmetric. In fact, mest of these buoyancy force
induced secondary flow patterns are not symmetric and become
chaotic to some degree for the case with large temperature

difference.

4.3.2 Results for Rectangular Channel with a/b=7

Case (1), AT=30°C, Tc=Tyijr=23°C

Figs. 4.19 to 4.22 show the results of Case (1). Fluid
is heated from below, and the effect of side walls 1is
heating. Before the formation of the secondary flow, most of
the smoke appears near the bottom plate due to its larger
density. The vortices appearing earlier near the side walls
are caused by the effect of side walls. It is noted that the
vortex rolls appear later for the channel with a/b=7,
because the side walls are farther away from the center
region, and the side walls have little effect on the flow at
the center,

It is noted from Fig. 4.19 that, after the onset of
thermal instability, some small mushroom-shape vortices
appear. At position z=5.14x10"2, three pairs of vortices are
formed in addition to the vortices at the side walls.

Further downstream at z=8.22x10"2, the number of vortex pair
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is reduced to two. After that the flow patterns become very
unstable and unclear. At larger main flow velocity, the
onset of thermal instability appears later, and the
secondary flow becomes less unstable and develops more
slowly.

Case (2), AT=30°C, Th=Tair=24°C

Figs. 4.23 to 4.26 show the Case (2), in which the
fluid is cooled at the top plate, and the effect of side
walls is cooling. The temperature difference is almost the
same as that of Case (1), but it is noted that the buoyancy
force induced secondary flow is more unstable, and the onset
of thermal instability appears earlier for the cooling case.
At position 2z=3.42x10"2 in Fig. 4.23, three pairs of
vortices are observed. However, most of the flow patterns
are complex and the number of vortex pair is not clear.

Case (3), AT=69°C, Tp=52°C, T4;r=24°C

The results of Case (3) are shown in Figs. 4.27 to
4.30. In this case, the fluid is heated from below ar
cooled from above. The temperature difference betweer the
top and the bottom plates is about 70°C. It is fourd that
the onset point of thermal instability does not change much
as compared with that of Case (2), but the secorizary flow
develops faster after the onset point, and becomes turbulent
more gquickly especially for the flow with small mein flow

velocity.
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4,.3.3 Concluding Remarks

The buoyancy force induced secondary flow patterns of
flow in rectangular channels with aspect ratio a/b=2 and 7
were studied by a flow visualization technique of smoke
injection. The fluid in the channels was heated isothermally
from below and/or cooled isothermally from above with mean
velocity of the main flow veried from 0.1 to 0.4 m/sec..

1t was found that, at the same temperature difference,
the cocling case flow is more unstable. For the case of
aspect ratio a/b=2, the direction of secondary flow for the
heating case is opposite to that for cooling because the
side wall effect is different. For channels with small
aspect ratio, the effect of side walls is very significant,
and the secondary flow appears earlier. So that heat
transfer in channels with smaller aspect ratio should be
more efficient.

In the case of aspect ratio a/b=7 with simultaneous
heating and cooling, the onset ©position of thermal
instability is not much different from that for the case of
cooling. However, the secondary flow develops much faster
after the onset point than the heating and cooling cases.
For larger mean velocity flow, the onset of thermal
instability appears later, and longitudinal vortex rolls
become stable. In other words, the main flow has a
stabilizing effect.

The present visualization study clearly reveals the

buoyancy force induced complex secondary flows in heated
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and/»r cooled rectangular channels with different aspect
ratios. It is also believed that the present photographs of
the longitudinal vortex rolls provide considerable physical
insight into mixed convection flow in rectangular channels.
Many new secondary flow patterns were revealed in this study

and the results should be useful for future investigations.
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Fig. 4.23 Cross-sectional views of developing secondary
flow patterns for the case Up=0.1 m/sec.,
Th~Te=30.2°C, Th=Ts3r=24.0°C, Re=2.29» 102,
Gr=5.81x10%, Pr=0.71 ang a/b=7
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5. Conclusions

5.1 Secondary Flow in Curved Ducts with and without Offset

Bends

In order to obtain some further physical understanding
of flow in larger curvature ratio ducts with and without
offset bends, visualization experiments were conducted for
circular bends with curvature ratio a/Rg=0.2 and for square
bends with a/Re=0.2 and 0.4. The Dean number varied from
K=25 to 350 for both the circular bends and the square bends
with a/Rc=0.2, and from K=100 to 450 for the sgquare bends
with a/Rq=0.4. The offset bends had two offset positions,
oifset angle 6=90° and 180°. The flow at the inlet of the
test section was fully developed laminar flow. Photographs
of the secondary flow patterns at the exit of each bend were
presented.

Wwhen Dean number K<100, the effect of the second bend
dominates the flow patterns. However, at high Dean number,
the flow from the first bend has a strong effect on the flow
patterns. Also, if the second bend angle is less than 45°,
the flow patterns are mainly controlled by the first bend.

Dean's instability phenomena were observed 1in the
s-bends. It was also found that Dean's instability phenomena
occur more easily in the square cross-sectional bends. It
was also found that another two vortices appear in the inner
top and bottom corners in addition to the Dean's instability

vortices.
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It seems that the effects of Dean number K on secondary
flow patterns and the development tendency of the secondary
flow in square bends with a/Rc=0.4 are not much different
from those for square bends with a/Rc=0.z. However, compared
with the square bends with a/R¢=0.2, it was found that the
Dean's instability vortices appear in the at higher Dean
number for the square s-bends with a/Rg=0.4. It was also
noted that a pair of small vortices appeared near the center

of the inner wall for the case of a/Rc=0.4.

5.2 Developing Axial Velocity Profiles for Laminar Flow in

the Entrance Region of S-bend

Axial velocity was measured by means of a hot-film
anemometer with a single hot-film sensor for circular
s-bends with a/Rc=0.2 and for square s-bends with a/Re=0.2
and 0.4 to further understand the phenomena of flow in large
curvature ratio ducts, especially in s-bends. The Dean
numbers were K=200 and 350 for the circular s-bends, and
K=350 for the square s-bends. Axial velocity profiles along
vertical and horizontal axes, and the development of axial
velocity in the s-bends were oresented.

present studies revealed three kinds of velocity
profiles in the first bends. 1f the velocity was measured
along the vertical axis, the M-shape profile,
flat-front-shape profile and four-wave-shape profile were
observed. If the velocity was measured along the horizontal

axis, three typical profile shapes were produced: the shape
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with the maximum velocity point located close to the outer
wall, the shape with a depressed center region, and the
shape with a flat plateau at the center.

1t was noted that the velocity profiles become more
complex in the second bend. Along the vertical axis, three
skewed typical shapes of the first bends were observed, but
the maximum velocity could appear in the center region and
the profiles were not symmetric.

It was found that the Dean number K with the range K=25
to 350 and the curvature ratio, a/Rg=0.2 and 0.4, have
little effect on the basic developing velocity profiles.
However, for larger Dean number flow, the maximum velocity
point along the horizontal axis is closer to the outer wall.
For the flow in larger curvature ratio bends, the velocity
may become unstable because of the flow separation at the

inner wall.

5.3 Buoyancy Force Induced Secondary Flow in the Entrance
Region of Horizontal Rectangular Channels Heated
Isothermally from Below and/or Cooled Isothermally from
Above

The developing buoyancy force induced secondary flow
patterns in the simultaneous hydrodynamic and thermal
entrance region of horizontal rectangular channels with an
isothermally .:eated lower wall and/or an isothermally - ~oled
upper wall were studied by flow visualization methods. The

mean velocities of main air flow were Up=0.1, 0.2, 0.3, 0.4
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m/sec..

1t was noted that the flow for the cooled case was more
unstable than that for the heating case at the same Grashof
number. The direction of secondary flows for the cooled case
was generally opposite to that for the heating case due to
the different wall effects. The wall effect was very
considerable, and the longitudinal vortex rolls appeared
earlier for channels with small aspect ratio. Thus, the
entrance length for small aspect ratio channels is shorter,
and the heat transfer coefficient is conseguently to be
higher.

It was noted that, for the case of heating and cooling
simultaneously , the onset position of thermal instability
is not much different from that of the cooling case.
However, the secondary flow develops much faster after the
thermal instability onset point. For larger main flow
velocity, the onset of thermal instability appears later,

and the longitudinal vortex rolls become less unstable.



