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ABSTRACT

The optimization of systems with several cost functionals,
(both single and multi-control cases) have been treated in this thesis.
While the discussion has been mostly restricted to deterministic systems,
some results for systems with sudden changes in parameters are included.

It is shown that the optimization of a system with respect to
an objective function (which is expressed as a function of several
given cost functionals) is embedded in the linear combination problem
(i.e.) an optimization problem in which the performance criterion is a
ilinear combination of the given cost functionals. According to the
technique proposed in this thesis, the optimal controls are first deter-
mined for the linear combination problem as a function of the weighting
factors. A search technique is then used to determine the optimum
values of the weighting factors for the given objective function. One
of the advantages of this technique is that the solution of the linear
combination problem can be used for different objective functions
formed out of the same set of cost functionals. .Examples are included

to show the application of thic technique.
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CHAPTER (1)

INTRODUCTION

1.1 Background

For the past two or three decades much attention has been
devoted to the problem of optimizing the behavior of systems. This
has resulted in a variety of mathematical formulations and computa-
tional techniques. Some examples of such problems are maximizing
the range of a rocket, minimizing the fuel consumed to achieve some
required terminal state, maximizing the profit of a business, and min-
imizing the error in the estimation of the position of a certain object.
Searching for a control which satisfies all the requirements and at
the same time minimizes (or maximizes) a performance criterion con-
stitutes the fundamental problem of optimization theory. The salient
feature of this approach is that the performance criterion described
by a single functional and a single control function is used. However,
there are many real-world situations which cannot be meaningfully
described by the above approach. A description involving a single
cost functional with several controls or several cost functionals with
a single control or several cost functionals with several controls
may be necessary to describe the situation. Ho[7]* has classified
some of these situations.

In recent years several investigators have attempted to
tackle problems of this type. For an optimization problem with a single

control and several costs some of the references are[6’1l’12’15’16].

* Numbers in [ ] refer to references listed at the end of the Chapter.
Note that references appear at the end of each Chapter.



2
Optimization problems of the differential game type (zero-sum games)
in which a single cost functional and two control functions ap-

[1,2,8,9,13]

pear are discussed in among others. However, not much

work appears to have been done on the optimization of systems
governed by several controls and several cost functionals (n-players-—
games or non-zero sum games), especially from an engineering point of
view. The references which the author has come across in this
[3,4,5,10,14].

subject are

1.2 Scope of the Thesis

In this ﬁhesis it is proposed to discuss the following types

of problems.

a) Optimization of a deterministic system with a single
control function and several cost functionals (see
figure (1.1)). This problem is discussed in Chapter (2).

b) Optimization of a deterministic system with two control
functions (zero-sum differential game) and several cost
functionals is discussed in Chapter (3), (sée figure (1.2)).

c) In Chapter (4), the optimization of a linear system subject
to a linear quadratic performance criterion is discussed.
Two antagonistic control functions will be used. It will
be assumed that the parameters as well as the weighting
matrices in the performance index are subject to sudden
changes in values. This problem will be tackled as stochastic
version of a special case of the problem discussed in
Chapter (3).

d) The optimization of a deterministic system with several



Given

System Model: X = £(X,0)

Cost Scales: Jl”"’JN

y

Search for U*elU such that

$(Tpseensdy) 'U*E,,z (T e eesdy)
vuel

Uel

U is the set of admissible controls

Objective

Figure (1.1) Optimization of a System with a Single
Control Function with Respect to an
Objective Function (minimization problem)



Given

System Model: X = £(X,U,YV)

Cost Scales: Jl,...,JN

V

Search for U*cl and V*ecV, such that

¢(Jl""’JN) id)(Jl""’JN) i¢(Jl"..’JN)

(U, v*) (U*, V%) (u*,v)
VUel and VeV
U & V are sets of admissible controls

Objective

Figure (1.2) Optimization of a System with Two Control
Functions, with Respect to an Objective
Function (Min-Max Problem)
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control functions and several cost functionals (non-
cooperative games) is discussed in Chapter (5), (see

figure (1.3)).

The format of each chapter is essentially the same and

consists of the following:

a) Summary of previous work and scope of the rest of the
chapter,
b) Mathematical formulation. Here necessary conditions
for optimality are obtained using Pontryagin's
Maximum Principle,
¢) Discussion of computational techniques used,
d) Application of the technique fo a few examples, and,
e) Discussion of results.
Only the titles and the broad outline of the problems
considered in this thesis are mentioned here. A more detailed
description of each of the problems and its relationship to

previous work in the area will be found at the beginning of each

chapter.



Given

System Model: X = f(X,Ul,...,Up)

Cost Scales: Jl,...,JNk,

k=1,000,p

Y
Search for U¥el , such that
k 'k
¢, (Jyseeesdy ) <y (Jyseeesdy )
kY1 Nk k*“1 Nk
3 % % %
(Uiy'sui{3-sup) (“Uk"l’Uk’Uk'*'l“)
VUkEUk
k=1l,00.5p
Objective

Figure (1.3) Optimization of a System with p-Control
Functions and p-Objective Functions.
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CHAPTER (2)

OPTIMIZATION OF A DETERMINISTIC SYSTEM WITH A

SINGLE CONTROL FUNCTION AND SEVERAL COST FUNCTIONALS

2.1 Background

One of the fundamental requirements for any optimization
technique to be effective, is that the optimality criterion must
some how reflect in an analytic form and in proper proportions all
of the factors which are apparently important to a given system.
Several approaches have been suggested for the problem of optimiza-
tion of a dynamical system with a single control function and
several cost functionals. Some of them are summarized below.

Nelson[7] has proposed the following technique (see figure
2.1). Suppose we have several cost scales Jl,...,JN. Let us desig-
nate the most important cost by JN' Then the problem is to search
for the control function U#*(t) which minimizes JN subject to the
constraints (Jk j_Bk, k =1,...N, Bk's are constants) at final time,
The key to this approach lies in the choice of JN and the constants
Bk's, which may not always be an easy task. However, on the whole,
this technique is considered a useful approach.

Waltz[11] has proposed what he calls ""Hierarchical Optimiza-
tion Criteria" and his technique can be explained as follows, (see
figure 2.2). The given costs are ranked in order of importance as

Jl’ JZ""’JN' We first optimize with respect to the primary cost Jl

and get the optimum value of this cost say Vl' The second step is to

replace V1 by V1 + AV1 where'AV1 > 0, and optimize the system with



Given

System Model: X = f(X,0)

Cost Scales: Jl""’JN

v

Search for U*elU, such that
3, (U%) < 3,0

VUel

Objective

Figure (2.1) Nelson's Technique
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Given

Objective

Given

Objective

System Model: X = f(X,U)

Search for U*el, such that

v, = 3,(0%) <3 ()

Wel

System Model k = £(X,0)

3,(U) < v+ v

1 1

| S R

N-1(U) < Vg T AV

Search for U%cl, such that

= *
vy = 3 (%) < 3 ()

yuel

Figure (2.2) Waltz's Technique

11
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respect to the second cost J2’ at the same time ensuring that

Jl(U) 5_V1 + AVl, and get the optimum value of the second cost say V2.
The third step is to change V2 by an increment AVZ, and optimize with
respect to the third cost with the restriction that Jl(U) 5-V1 + AVl

and JZ(U) j_Vz + AV2 and so on. This technique is essentially a
constructive approach to choose the Bk's in the previous technique

but the disadvantage of the present method is the increments AVl,...,AV ’
must be chosen by the designer and this is a matter of engineering
judgement, moreover we have N sequential optimization problems.

A novel approach is due to Zadeh[12] in which he has intro-
duced the term "Vector-Valued Cost". Chang has used Zadeh's idea
and obtained a generalized version of Pontryagin's Maximum Principle[B].
See figure (2.3). In this approach Chang ends up with a problem in-
volving the minimization of a linear combination of the given costs
with all the weighting factors being positive. Unlike the previous
methods, all the cost scalés are considered simultaneously instead
of one at a time. This is an improvement. However, to the best
knowledge of this author, Chang has not described any technique to
determine the weighting factors ck's. These factors must be known in
order to implement the optimal control strategy in any practical
application.

The work reported in the remaining portion of this chapter
although closely related to Chang's work goes further. The optimal
control is determined for a performance criterion which in turn is
expressed as a function of several cost scales. This criterion will

be referred to as the "Objective Function". The basis for choosing
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the objective function is discussed later on. The author believes

that this is a more useful approach compared to the previous

techniques.

In practice it may be necessary to determine the optimal
control for a given system with respect to several objective func-
tions, based on the same set of cost scales. It will be shown that
there is no need to solve the optimal control problem for each

objective function separately from the beginning.

Given the various cost scales Jk's the optimal control for

the system is first determined with respect to an objective function

=

/ SRSU where the ck's are treated as parameters, (the so called

k=1
linear combination problem). The ck's may be positive or negative.
The optimal control is expressed as a function of the ck's. The
specific values of the ck's are then determined by a search technique
for each objective function. This will be explained further later on.
Once the linear combination problem has been solved, the
results can be used for any objective function expressed as a function

of the given cost scales.

2.2 Mathematical Formulation of the Optimization Problem

Description -of the Problem

Let the dynamics of the system to be controlled be repres-
ented by a set of n first order ordinary differential equationms,
X(t) = £IX(t), U(B)],
(2.1)
x(to) =X

where (i = dX(t)/dt). £ is an n-dimensional vector valued function
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continuous in X and U, and continuously differentiable with respect
to X. X is an n—-dimensional vector representing the state of the
system, U is the control vector of the system, U has a dimension.r.
The control vector 1s required at each instant of time to satisfy

certain boundedness constraints of the form,

5 J= 1,u,r (2.2)

where a,'s are positive constants.

ej(ul,...,ur) <a

The control function U(t) is called an admissible control if
i) it is piecewise continuous on the control intervai [to,T],

where t0 is the initial time and T is the final time, and
ii) it satisfies (2.2), Vte[to,T].
The set of admissible controls is denoted by U. Moreover it 1s assumed
that the state variables are required, to satisfy the following

y(X) =0

at t = T, PE) is a real non-negative scalar function of its arguments.

It is further assumed that the N cost functionals are expressible in

the form,
T
3 = 9, [X(T)] +f L IX(1),U(r) ]dr < B,
t
° (2.4)
k=1,...,N

where gk's and Zk's are all real non—negative continuous scalar
functions of their argument, the 7 's are all continuously different-
iable with respect to X, and the gk's are of class C2. The Bk's are
positive constants.

(61

Following the formulation of Knapp and Forst ~°, the cost

functionals in (2.4) can be put in the following form,
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. g, [X(8)] N
z, (t) = 1, [X(£),U(t)] + [ sy - EIX(D),U(t) ],
z (t) =g, [X(t )] (2.5)
k=1,...,N

where prime denotes "transpose'". It is clear that ’
Jk(T) = zk(T), k=1,...,N (2.6)

The zk(t)'s are positive non-decreasing functions of time representing
the 'state of the cost scales" in the system. The reason for intro-
ducing this transformation will be clear as the discussion proceeds.
Let us define the following function
o = ¢(zl,...,zN)
¢ is of class c2. We shall refer to ¢ as the "Objective Function".
In practice we associate a penalty function Py with each cost scale 2y -
This p.f. is expressed as a function of the deviation of the actual
value of the cost scale and some specified desired or nominal value.
In other words
P = pk(zk - zkd)’ k=1,...,N
where all the pk's are of class C2. These pk's may have the dimen-
sion of dollars or some other criterion such as desirability[él. The
objective function ¢ is obtained by adding all pk's

N
oY n,

k=1

Moreover, let us define the following target set B as

B = {(X,2), XeX, ¥(X) = 0, 2, (1) < B, k=1,...,N} (2.7)
The Control Problem can now be concisely stated as follows,

Find an admissible control function U*(t)el, such that

X(T; Xo’ U%(t))eB
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and

o[T; X, U*(t)] < ¢[T; X ure)l,

YU(t)el
It is worth noting that, a time-dependent system can be easily trans-
formed to a time-independent system, by introducing an extra state
variable as,

§n+1(t) =1 xn+l(to) = to
Therefore it is sufficient to consider the time-independent systems.
The reason for introducing the transformation (2.5) is that we can
cast the problem in a form for which the necessary conditions can be
obtained very easily using the formulation of Rozonoer[g’lol.

Necessary Conditions for Optimality

We shall hereafter write X, U, Z instead of X(t), U(t), Z(t)
respectively to simplify the notation. The control problem can be

described by the following system of n+N+1 "augmented state" equations,

X = fx,m, n-equations

. agk(x) 1

z, = Zk(X,U) + [_-?EE"] £(X,0) = gk(x,U), N-equation |
k=1,...,N ,

b= o ) +... + 2 o (x,m), l-equation ¢ (2.8)

le 1 BzN N
and
X(to) =X

z,(t)) = g [X(t )], k=1,...,N

0(tg) = 8Lz;(t ) ,en e,y (t )] /

assuming the final time, T, is fixed. Written in this form, this
problem becomes a special case of Rozonoer's problem in which the

objective function is a linear combination of the augmented states.



18
In the present case the objective function is one of the states,
namely ¢.

We shall follow Rozonoer's procedure to obtain the necessary
conditions for optimality using Pontryagin's Maximum Principle. We
shall consider the free right end point problem first. Let us define
the Hamiltonian as,

- T
H=7P' £(X,0) + Pl gl(X,U) + ... + PN gN(X,U)

+ B (KD + ... gDl @)

24
n+N+1 azl

where P is an n-dimensional vector. We get,

. aH Y
P__BX :

. oH i

Ptk T 7 Bz, k =1,...,N, and L (2.10)
. __QE_O

Poivtl = T 99 T

Since we are dealing with free right end point, then
P(T) = 0,
pn+k(T) =0, k=1,...,N and (2.11)

Poa1 (D = 1

N

From ﬁn+N+1 =0, we get Pn+N+l(t) = -1.

The expression for the Hamiltonian becomes,

= p! -9
H=P'£(X,U) + (pn+1 azl) gl(X,U)+.....

0
+ (b - ﬁ;) g, (X,U) (2.12)

Now let us get a close lock at the quantitieé (pn+k - %%—),
k

k =1,...,N. That these quantities are constants, can be easily
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seen from the equation of the adjoint variables én+k’ k=1,...,N.

2 2

’ oH 0 )

b o= 80 U 4.+ g (X,U) (2.13)

n+k 8zk leazk 1 azNazk N

k=1,...,N
Let

_ 9 _ =

Pk 3Zk Cpes k=1,...,N (2.14)
where the ck's are constants (assuming ¢ #0, k =1,...,N).
Since

Py (D = 0, K =1,0..,N (2.15)
therefore

T
¢y = = £=T (2.16)

Before we proceed with the rest of the main derivation, we

will digress briefly to comment on the ck's. The tangent hyperplane
N

to the surface ¢ = constant is E: ckzk, at t=T,
k=1
The expression for the Hamiltonian becomes,
N \
H=P' £X,0) - Z ¢, & (,1)
k=1 v (2.17)

N N
89, X) |
= P' £(X,0) - Z:% Pﬁrﬂ.ﬂ&m+ Z:%%@J)
k=1 k=1 J
If we define N

] (2.18)

P' = P! - Ck[
k=1
the expression for H becomes,

H[X(t;cl,...,cN), P(t;cl,...,cN)& U(t;cl,...,cN)]

= P £(X,U) - Z ¢, Ly (K1) (2.19)
=1
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It is clear from (2.18) and (2.10) that,

3
3X

. 3g,, (X)
B(T) = y  —5x ] -

The preceding results can be summarized in the form of a theorem.

P=-
(2.20)

Theorem (1) A mnecessary condition for optimality of U*(t)el in
system (2.8) is thqt the Hamiltonian defined in (2.19) attains an
absolute maximum for every 1, t, 21 2 T. This optimal control
will be a funetion of the ck's, defined by (2.16).
For the following system

X(t) = A(t)X(t) + [u(t)] (2.21)
where A(t) is nxn matrix and Q is a vector-valued function of
dimensionality n, the following holds
Theorem (2) A necessary and sufficient condition for optimality of
UX(t)el in system (2.21) is that the corresponding Hamiltonian attains
an absolute maximum for every T, t, <1<
Turning now to the problem of constrained end point; assume that the
final state X(T) satisfies the condition

YX(T)] =
Then the boundary conditions in (2.20), have to be modified to

N

v ag, (X)
P = - k7 _ o~ 3P(X)
PD ==, oql—x e = ¢ o5 - (2.22)

where o is a positive constant.
It T is not fixed this will require that,

H[X(t;cl,...,cN), P(t;cl,...,cN), U(t;cl,...,cN)] =0 (2.23)
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at t=T. Moreover if some of the state variables are fixed at t=T
the corresponding adjoint variables are not specified at t=T, this
may be applicable to the cost scales zk's too.

2.3 A Search Technique for Determining the Optimum Control

We have already pointed out, for the case where there are
no constraints on the cost scales, that as a consequence of the

condition for optimality,

ek = %ZL 0 (2.16)
k 't=T

We find that for a given objective function ¢, its optimal value at

t=T occurs at the same point in the Z-space as the optimum value of

N

E:: ck*zk at t=T. Since it is easier to handle the optimization

k=1

problem in which the objective function is a linear combination of

the cost scales, the optimal control for the problem under discussion

can be determined in the following manner.

Step (1)

Step (2)

Consider the optimization problem with the same system equa-
tions and same boundary conditions as for the given problem
N
.
but with objective function ° ¢ %> Where the ck's are

parameters. The details invﬁiied in determining the optimal
control U* as function of the ck's are best explained by means
of a numerical example. Therefore further discussion of this
step will be postponed to a later section. At this stage,

for the purpose of explaining step (2), we will assume that

U* has been determined as a function of the ck's.

This step is concerned with the search of the optimum values

of the ck's which minimize the given ¢. If there are direct
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relationships between the various cost scales then this search
can be carried out in the Z-space. Otherwise the search will
have to be carried out in the C~space. There may arise situa-
tions where a modification of these techniques will have to be
used. These points will be clarified further by the numerical
examples which may be found in a later section. At this stage
it will be possible only to déscribe the basic concepts in-
volved. A flow chart describing this procedure is shown in
figure (2.4). In what follows we are going to consider the
case where ck's are all positive. The extension to cases where
we have +ve and -ve ck's is straightforward. Let us denote
the set of points in the Z-space corresponding to all possible
variations in cj/cl, j=2,...,N, at t=T by .

' Z-Space Search

In this search direct relations must exist between the
various cost scales in terms of the ratios cj/cl, j= 2,;..,N, other~
wise we use the C-space search. For the Z-space search, let us pick
one of the cost scales as a dependent variables, say Zqs and the re-
maining N-1 scales as independent variable. The expression of the

gradient of ¢ is expressed as,

8¢/822 (a¢/azl)(az1/az2) + (3¢/822)
[grad ¢] = ) = ) ’ ) (2.24)
3¢/8z (9¢/32,) (32, /32) + (3¢/32)
At any point Zem, the tangent hyperplane to 1 is described by
N
Z_; ¢ %, = constant (2.25)

=1
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N
For the objective function Z ¢ Z
k=1

ine U* = U* B
determine U U (cl,...,cN)

Search in the Z-Space or C-Space for

the ratios cj/cl, j=2,...,N which minimize ¢

Determine the optimal control

U%(t) and carry out sensitivity analysis

of ¢ with respect to cj/cl's

Figure (2.4) Proposed Optimization Technique
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Differentiating (2.25) successively with respect to zj's, J = 25404,N,
we get

azl/azj = -cj/cl, i=2,...,N ' (2.26)
Substituting (2.26) into (2.24),

(3¢/02,) <-c2/c'1) + (a¢/az2ﬂ

[grad ¢] = (2.27)

al
[y

(30/32,) (=egfe,) + (awazN)J
All the components of the gradient vector are known at any point in T.
It must be noted that if the objective function ¢ attains its minimum
at Z*em, then the components of the gradient vector are zeros.
Therefore, setting equation (2.27) = 0, we get

(8¢/8zj)/(8¢!3z1) = cj*/cl* j=2,...,N (2.28)
It is clear that these are the same as the conditions given in (2.16).
The problem now reduces to the determination of the minimum of a
function assuming that its value and its gradient at each point of
the search region are known. In this regard many techniques grouped
under the broad category of steepest descent methods are available. -
The methods used in the examples of this chapter are the "Bi-Section
Search" for one dimensional search and the "Accelerating-Step Search"
[8], for the 2~dimensional search.

C-Space Search

If there are no direct relationships between cost scales in
terms of cj/cl, J=2,...,N, the previous method cannot be used. Then
we use C-space search. In this search the components of the gradient

of ¢ are given by,
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[grad ¢] =

(8¢/le)(821/8(c2/c1)) + ... + (8¢/3zN)(3zH/3(c2/cl))

(a¢/az1)(az1/a(cN/cl)) + . + (a¢/azN)(azN/3(cN/cl))
(2.29)

All the components of the gradient vector are known if cj/cl,
j=2,...,N, are specified. This is the case for each point Z in 7.
The gradient technique can be used to determine optimum values of
(cj/cl)*, j=2,...,N, which minimize the given ¢.

If the number of the cost scales becomes very large, the
gradient technique becomes unwieldy. We can use what is known as the
"Random Search" technique[zl. The use of the techniques involving
Z-space search and C-space search will be illustrated by the examples
that follow.

2.4 Examples

The purpose of this section is to illustrate the application
of the theory and computational technique presented earlier in this
chapter. Three examples will be discussed. The first example will
deal with a system with two cost scales. The second will consider the
same system with three cost scales. In these two examples the use of
the Z-space search technique will be demonstrated. The concluding
example is intended to illustrate the use of the C-space search technique.
The single-axis satellite attitude control problem is one of
the most popular examples used to illustrate optimal control techniques.
Since it is a good illustration for multi-cost control problems, it

will be discussed in all examples in this chapter. The equation of
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motion of the satellite about its centre of gravity, under the in-

fluence of gas-jet controllers with limited thrust, is given by

= L(t), |L(t)] <M . (2.30)

where 6(t) is the attitude error angle, I is the moment of inertia,
and L(t) is the control torque limited by the maximum magnitude M.
Defining the normalized variables,

x,(£) = 3 0(1),

x,(t) = 514- 6(t), and > (2.31)

u(t)

the equations of motion and control constraints are written in the form,

N\

L(t)/M ' J

x, (£) = x,(t), X (E) = x5
éz(t) = u(t), o (E) = %y 5 (2.32)
lu(t)l <1 and te[to,T] )

where T is the final time.
Example (1)

Consider a system with dynamics given by equation (2.32) and

the following two cost functionals,

T

Jl = f dt , and ]
to

J2 = ‘/. Iu(T)IdT
t /
o

where Jl is the time elapsed and J2 is the fuel consumed. The object-
ive is to reduce the attitude and its derivative to zero while minimiz-

ing
ACITRP) P (2.34)
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where ¢ is some specified objective function.

Following the discussion in section 2.2, the augmented state equations

are,
%, () = x,(8), X (t) =% )
x,(t) = u(t), x. (t) = x
K 20 20 | (2.35)
zl(t) =1, zl(to) =0
z,(t) = [u()], z,(t ) = 0 )
and
lu(e)| < 1 telt ,T]
0

T is free, and xl(T) = xz(T) =0
Since the given system is time invariant, we can set t0 = (.
In this example two objective functions will be used,

(1) ¢(zl,zz) = zlrz2 where r > 1 (2.36)

(ii) ¢(zl,zz) azlz+z2 where a > 0 (2.37)
Step (1) Solution to the Linear Combination Problem

This step is common to both the objective functions. Con-

sider the objective function ¢,z + ¢y2y+ The Hamiltonian is given by

H = p1X2 + p2u_cl"'czlul (2.38)
And

aH . ) . .
Pp == 357 =0, py(T) undefined since xl(T) is fixed (2.39)
1
o, = - O , . s
P, = %, =P p2(T) undefined since XZ(T) is fixed (2.40)

We shall first begin by assuming that X900 = 0, because it leads to a
symmetric control law. Moreover the Hamiltonian is identically zero
with respect to time, since we are dealing with a time invariant system.
It is obvious that T = zl(T). Let us designate zz(T) by F. Then after

some manipulations we arrive at the expression
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uk(t) = DEZ[(l+cl/c2) (2t/T-1)1, vtelo, T] (2.41)

where DEZ means "Dead Zone Function" Figure (2.5)[1]. We also get

2(1+c,/c,)
- 2 1 -
X100 Xy = 0 (2.42)

Ts —S —
Vl+2(c2/cl)

Fo=m—=te \/x x.. =0 (2.43)
\/ . 10 20
14+2{c,/c,) .
2'71
It is worthnoting that if (cz/cl) = 0, we get
T=F= 2¢x10 R %90 = 0 , (2.44)

which is the case of minimum time, If ¢, 0, we get

, Xy = 0 (2.45)

The equations of the switching curves in the XX, space are given by
\

x; = (0.542(c,/c))) x,lx,]
and > (2.46)

%) = 0.5 %, [x,] ’
These switching curves are shown in figure (2.6). These switching
curves are obviously valid for initial states (xlo, xzo) with %50 # 0.
The expressions for the time elapsed to reach the state
- +
(0,0) from any initial state (xlo,xzo)eG and (xlo,xzo)eG and the

corresponding fuel consumed as functions of c2/cl and the initial state

are given by

T =+ Xy + 2(l+c2/cl)"\/Q2x10+x§0)/(2+4(c2/c1))

> (2.47)

F=sxy +2 “\/(leo-i*xgo) /(2+4(cyle)))

/

where the +ve sign is for all the initial state (xlo,xzo)eG_, and the

~ve sign is for all the initial states (xlo,xzo)eG+, figure (2.6). As



A (l+cl/c2) ((2t/T)-1)

+1

-(1+c1/c2)

Figure (2.5) Optimal Control for Example (1) - (Chapter (2))
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. G~
v=0 ye-]
(x190%g0 )
0 ;’l |
G* ' v=+1
u:-l-] % U=-]

V20 [ 5=(0.5+2¢,/c,)x,lx,|

v=0
SWITCHING
CURVES

x,=0.5x2|x2|

Figure (2.6) Switching Curves for Example (1) (Chapter (2))
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typical initial conditions, let %10 = Xpo = 1, and X0 = 1, x20 = 0.
For these cases equation (2.47) becomes
\
T =1+ 2(1+c2/c1)\/ 3/ @#he,/c;) Y
Y (%, =1, x,,=1)
F =1+ 2 \/3/(2#c,/c) 107 720
/
r——— 3 ‘ >(2.48)
T = 2(l+c2/c1)'M‘ZI(2+4c2/c1)
> (%, =1, x,,=0)
F = 22/2/(2%4c,/c)) 10 7 720
21 J )

The relation between F and T, as c2/c1 varies, for the given
initial conditions is given in figure (2.7). These relations are
identical with the ones obtained by Nelson[7] for the given initial

conditions using another method. The realization of the control law
given in (2.41) is shown in figure (2.8).

Step (2)

We shall now proceed to determine the optimum value of

c2/cl, which will minimize the objective function

¢ = zlr22 , wherer >1 (2.49)
The two cost scales zl(T) and zz(T) are directly related because,

from equation (2.47), we get,

T=F+ (cz/cl)“Ef(2x10+x§0)/(0.5+c2/c1)

or y (2.50)

r
=2, * (cz/cl)”\f(2x10+x§0)/(0.5+c2/c1)

Zy

Py

We can use the Z-space search technique described in section (2.3).
Zy is taken as dependent variable and zy as the independent variable.
The "Bisection Search" technique will be used to solve this one

dimensional search problem.
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Figure (2.7) Relationship between zl(T) and zz(T) in Example (1)
(Chapter (2)) '
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From this point, the search technique will be carried out

10 = x20 = 1 and several values of r. The initial values for

and z, are taken to correspond to c2/c1 = 0, From equation (2.48),

for x
%1
setting c2/cl = 0, we get,

2y = 2y = 1+ /6 when c2/cl =0 (2.51)

By assuming a reasonable range of values of zy5 the minimum of
¢(zl,zz) is located. Table (2.1) shows the optimum values of c2/c1
for different values or r. The sensitivity of ¢ with respect to
variations in (c2/cl) for different values of r is shown in figure
(2.9). The variation of (cz/cl)* with respect to r is shown in
figure (2.10).

Before proceeding to consider the second objective function,
it is interesting to compare the results obtained for the first
(5]

objective function with the results of Kalinin who also used the

same objective function. It can be seen from table (2.2), that our
results are identical to those of Kalinin's method for initial states
on the xl-axis. However, for initial states not on the x1~axis, our
values of ¢ are smailer than those obtained by using Kalinin's method
(see table (2.3)). It would therefore appear that the generalization
made by Kalinin to include initial states not on the xl—axis is not
valid.

Minimization of the Second Objective Function

We shall now consider the objective function ¢ = az12+z2. As

pointed out earlier, it is not necessary to repeat step (1). Even in

step (2), only some algebraic computations are needed. The results



16 l r=1.3
he 151 =125
ul
r=1.2
13
r=1.15
121
r= 1.1
nk
r=1.05
10 |-
Y | |
OL ! 1 ! 1 Ly
0 12 3 4 5

(cz/c])

Figure (2.9) Variation of ¢=ziz2 with respect to (cz/cl)
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,A $=2725,r>1
X10°10
20 Xzo“]o
1.5 F
*
G 10}
~
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2
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0 | ] | I—
1 2 3 4

Figure (2.10) Variation of (cz/cl)* with respect to r for ¢=z§z2
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r zl* 22* o* (cz/cl)*
¢ 1.05 4.24795283 2.11506802 9.65857396 1.91278448
1.10 4£.18412274 2.14975856 10.37897687 1.76938381
1.15 4.12776554 2.18279323 |11.14512319 1.64438910
1.20 4.07775166 2.21427231 11.96013157 1.53464699
1.25 ] 4.03315727 2.24429086 |12.82730992 1.43765936
1.30 | 3.99322088 2.27293857 13.75016884 1.35142603
1.35 3.95731046 2.30029955 14.73243591 1.27433014
1.40 3.92489797 2.32645243 115,77807069 1.20505304
1.45 3.89553943 2.35147059 16.89128064 1.14251013
Table (2.1)
o 1.2 1.25 1.3 1.4 1.45
¢* Kalinin's Method 2.8217 3.0027 3.1838 3.5513 3.7394
#* Proposed Technique 2.8217 3.0027 | 3.1838| 3.5513| 3.7394
x)5-1-0
x20=0.0
Table (2.2)
T 1.2 1.25 1.3 1.4 1.45
¢* Kalinin's Method 13.2456 13.8621 14.5935 | 16,4258 | 17.4487
¢* Proposed Technique 11.9601 12.8273 | 13.7502 | 15.7781 | 16.8913 |

%10 1-0

x20=1.0

Table (2.3)
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for this objective function are shown in Table (2.4), and the sen-

sitivity analysis is shown in figure (2.11). The variation of (cz/cl)*,

with respect to a is shown in figure (2.12).

a zl* 2% o* (cyle)*
0.1 3.95290274 2.30377127 3.86631528 1.26489325
0.2 3.67855294 2.59474214 5.30109249 0.67961507
0.3 3.58312168 2.76304997 6.61467826 0.46514376
0.4 3.53750881 2.87497508 7.88056250 0.35335602
0.5 3.51196190 2.95522806 0.12216624 0.28474113

Table (2.4)

Example (2)

Consider a system with dynamics given by equation (2.32)

and the following three cost functionals,

T
N
1 f dt

T

2 j |u(t) |dt, and
0
T

3 f u2 (1)dt

0
where Jl is the time elapsed, J2 is the fuel consumed, and J3 is the

3N
I}

? (2.52)

[
It

energy dissipated. The objective is to reduce the attitude and its
derivative to zero while minimizing
$01035073) et

where ¢ is some specified objective function.
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¢=az

X0 =1.0

1tz,,0 >0

X2o=].o
18 |
a=0.5

a=0.1

I I L ] .
OO ] 2 3 4 5

c2/c]

Figure (2.11) Variation of ¢=azi+z2 with respect to (CZ/cl)
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Figure (2.12) Variation of (cz/cl)* with respect to ‘a’ for ¢=az_.2L+z2
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In this example two objective functions will be considered,

2 2 2
zy +z2 +z3 ,» and

(i) ¢(zl’zzlz3)

_ 2
(i1) ¢(zl,zz,z3) = 10(21-2) +z2+z3

where
él(t) =1 | 2,(0) = 0
2,(t) = |u(t)] 2,(0) = 0 (2.53)
Zy(t) = u>(t) 25(0) = 0

Step (1) Solution to the Linear Combination Problem

This step is common to both objective functions. Consider

the objective function ¢ = 2y + ¢,2, + C3Zqs for this objective

function the Hamiltonian takes the form

. 2
H= Pi%, + pyu - ¢y - c2|u| - Cau (2.54)
where

. oH
P, =—5—=0 p, (T) undefined since x,(T) is fixed

1 3xl 1 1

(2.55)

ﬁ - - -p,(t) p,(T) undefined since x.(T) is fixed

2 sz 1 2 2

From equation (2.55), we get

w
1 - 1 (2.56)
pz(t) = -wlt + Wy

p1(t)

where wy and w, are unknown constants. The expression for # in (2.54)

becomes
H=%ﬁ+(wﬁ+wﬁml—@ﬂﬁ)u—(%kﬁ£ (2.57)
=0, Vvte[0,T]
where
wy = wl/cl, and
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The control u*(t) which maximizes H is given by
* = - o

u*(t) = SAD[ wlt + Wy 3 nl,nz] (2.58)
where

n = cz/cl, and
ny = 2(c3/c1) + (c2/c1)
SAD means "Saturation-Dead-Zone" function, see figure (2.13). TFor
a derivation of (2.58) see the Appendix at the end of this chapter,
We are going to consider first the case where X109 > 0 and Xo0 = 0.

Moreover from equation (2.57) the Hamiltonian is identically zero

Vte[0,T]. Then from Ht=0 = 0, we get

wy = -(1 + c2/c1 + c3/c1) (2.59)
providing that u(0) is -1. Similarly for Ht=T = 0, we have
w = =(2/T)1 + cz/cl + c3/c1) (2.60)

providing that u(T) = +1. The expression of the control law given
by equation (2.58) becomes, after substituting equations (2.59) and
(2.60),
uk(t) = SAD{I(1 + c,/c; + cqfe))(2t/T - 1)];. nyany} (2.61)
(2.61)
From equation (2.61) we can derive expressions for TysTys and Ty, See
figure (2.13),
at t = Tp»
—wy Ty - (L4 c2/c1 + c3/cl) = -(c2/cl + 2c3/c1)
We get
Tl/T = 0.5(1 - c3/c1)/(l + cz/cl + c3/cl) (2.62)

And at t = T + T,
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Figure (2.13) Optimal Control for Example (2) (Chapter (2))
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-wl(rl + 12) - (1+ c2/c1 + c3/c1) = -c2/cl
then,

t, /T = (c3/cl)/(1 + cz/c1 + c3/cl) (2.63)

2
Similarly at t = Tl + T2 + T3,

-w1(11+12+'5) -1+ c2/cl + c3/cl) = cz/cl,
then

t.,/T = (c2/c1)/(1 + c2/c1 + c3/c1) (2.64)

3
Figure (2.14) shows a typical trajectory passing by (xlO,O) reaching
the origin. By solving along such trajectory we obtain the following

relation between the final time and X100

1+c2/cl'+c3/cl

T = - 2Yx
- 1 2
\/;(l+c2/cl+c3/c1)-§(c3/cl) -1

£

(2.65)

By substituting equation (2.65) into equations (2.62), (2.63), and

(2.64) .we get

0.5(1-c,/c,)
T, = 3 1 2Vx (2.66)

1 1 9 10
.\/2(1+c2/c1+c3/c1)-§{c3/c1) -1

|

cq/eq
T, = . : 2/215' (2.67)
_\/é(l+c2/cl+c3/cl)—%(c3/cl)2—1
c, /e
Ty = 2 1 2/ g (2.68)
\/2 (1+c2/c1+c3/c1—%(c3/c1) 2,

It is necessary that 0 < c3/c1 < 1, so that T, 1is always +ve.

Using equations (2.66), (2.67), and (2.68) we can obtain expressions

for zl(T) =T, zz(T) = F, and z3(T) = E,
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A
(xlo,O)
y > X
(0,0) 1
u=+1
(x15%,) (xl,xz)
u is linear =0 u is linear
} e
(xl;xz) (xl’xz)

Figure (2.14) A Typical Trajectory for Example (2) (Chapter (2))
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1+c./c,+ec. /¢
2,(T) = 2 131 2/, (2.69)
-\/2(l+02/cl+c3/cl)-%(c3/cl)2-1
1
z,(T) = - - z%;a; (2.70)
B 2(1+c2/c1+c3/c1)-§(c3/c1) -1
1-(c,/c.)/3
3/¢1
24(T) = 2/218' (2.71)

2(1+c2/c1+c3/c1)—%{c3/cl)2-1

Rewriting expressions Ty Ty and T4 given in (2.66), (2.67) and

(2.68) as

The equations

»
fl

»
[l

»
]

and

*

see figure (2,

The

(190 Xpg)eC

@/t - 0.5)x, |x

anlO
EVxlo (2.72)
%10

for the switching curves are given by,

)

[ - 352 - B3 - B /G + B/ R1R |, (2.73)

[ -a%2 - B3 - B - B7/2 - /G + B0 IR, %,

= 0.5x, x|

14) .

general expressions of T, F, and E, for initial states
+

and (xlo, xzo)eG , are given by,

l4c b +c.,/c —_—
fireslen j 5
+
%20 + — '\/4x10+2x20

\/z<1+c2/cl+c3/cl>-§<c3/cl> -1

ixzo + 1 3 /4x10+2x§0 (2.74)

-\/2(l+c2/c1+c3/cl)-%(c3/cl)2-1
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v-linear

G

v-linear v=-1

SWITCHING
CURVES

Figure (2.15) Switching Curves for Example (2) (Chapter (2))
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1 - (c,/c,)/3
3’71 2
E = *x + 4x10+2x20

20 1 2
2(1+c2/c1+c3/c1)-§(c3/cl) -1

where +ve sign is taken for (xlo,xzo)sG- and -ve sign is taken for
+

(xlo,xzo)eG » see figure (2.15),

Rewriting equation (2.73) as,

) = %y [y

A

x = B, |7

l
-l Al _2 (2.75)
x1 = sz |x2|, and r
X = O.Sx2 |x2l J

The realization of the control given in (2.61) is shown in figure

(2.16). This is valid only for the initial states (xlO;gZO)EG_ and
+

(xlo,xzo)eG .
As a typical initial condition, let x10=1, and x20=0. For

this initial state, equation (2.74) becomes,

2(1+c2/cl+c3/cl) \

_\/é(L+c2/cl+c3/c1)-%(c3/cl)2-1

F= 2 r(2.76)
—\/é(l+c2/cl+c3/cl)—%(c3/cl)2-1

2(1-(c3/c1)/3)

E =
-\/2(1+c2/c1+c3/c1)—%{c3/cl)2-1 J

For the given initial state (1,0), the relation between zl(T), zz(T),
and z3(T) as c2/cl, and c3/cl vary, is shown in figure (2.17).

It is interesting to note if c2/c1 = c3/cl = 0 we get the



(1.225,0.816,2.449)
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Figure (2.17) Relationship Between zl(T), zz(T), and z3(T) in
Example (2) (Chapter (2))
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minimum-time problem and if c2/c1 = 0, we have the case of linear
combination of time and energy, and if c3/cl = 0, we have the case
linear combination of time and fuel which is the caée congsidered in
example (1) of this section.

Step (2)
We shall now proceed to determine the optimum values.of

cz/cl and c3/c1, vhich will minimize
' 2, 2 2
b (21:29523) = 2, 4z, "4z, (2.77)
The three costs Zys 2y and z4 are directly related because from

equation (2.74) we get,

c3/c1 = 3[1 - kz3-x20)/(zz—x20)], and (2.78)
c2/cl = 3(23-x20)/(zz—x20) + (zl—xzo)/(zz-xzo)—4 (2.79)

We can use the Z-space search technique described in section (2.3).
2y is taken as dependent variable and z, and z, are taken to be
.independent variables. For specific values of the coordinates zy

and zy we can get the corresponding c2/cl and c3/cl by using equation
(2.78) and (2.76b). The “"Accelerating Step Search" technique will

be carried out for x10=1, x20=0. The search consists of two stages.
In the lst stage, we define increments Az2 and AzB and evaluate the
value of ¢ at (przz, quzB), P = 1,...,Mp, q=1,...,M , where MpAz2

q

and Mqu3 are bounds on z, and zq respectively. We locate the minimum
of ¢ with respect to these discrete values using figure (2.17). Start-
ing from this point the "Accelerating Step" search technique is used

to reach the minimum of ¢ within reasonable accuracy. The results

obtained for this specific ¢ are
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zl*(T) = 2.31601516
zz*(T) = 1.18737496
23*(T) = 1.01407607
¢*(T) = 7.80213579

(cz/cl)* = 0.51268013
(cg/ey)* = 0.43785380
0.00000000
[grad ¢] =
0.00000001

The sensitivity of ¢ with respect to variation in (c2/cl)
and (c3/c1) is shown in figure (2.18).
Let us consider the following objective function

0 = 10(2)-2.0)% + 2, + 2, (2.80)
As mentioned in the previous example, there is no need to formulate
a new problem. Just evaluate ¢ at the previous discrete values and
locate the minimum. This consists merely of algebraic computation.,
Then using the "Accelerating Step" search technique using the gradient

of the new ¢ to get the optimum values of c2/cl and c3/cl. The

results of this specific ¢ are:

z,% = 2.16897420
z,% = 1.36258676
2% = 1.22818886
o% = 2.87629843
(epfe;)* = 0.29590315
* =

(c,/c;)* = 0.29590316

0.00000002
[grad ¢] = '

0.00000001
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Figure (2.18) Variation of ¢=zi+z§+z§

with Respect to zz(T) and z3(T)
t=T
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The sensitivity of ¢ with respect to variations in (c2/cl) and (c3/c1)
is shown in figure (2.19).

Example (3)

The purposes of this example is to illustrate the application
of the search technique in the C-Space (the space of weighting factors).
The same dynamics and cost scales as given in example (2) will be used.
Although the cost scales in example (2) are related (in terms of c2/c1
and c3/c1) equations (2.78), and (2.79), these relationships will not
be needed when the C-Space technique is employed.

The computations carried out in step (1) of example (2) are
applicable to this example also. Step (2) is of couise different since
the search for the minimum value of ¢ will now be carried out in the
C-Space. |

Following the discussion in section (2.3), for the objective
function

¢ (21,22,23) = z12+z22+z32 " | (2.81)
we get, using equation (2.29),

[grad ¢] =

221(321/8(c2/cl))+222(822/3(cz/cl))+223(323/3(cz/cl)) 2.52)

221(821/8(c3/cl))+222(322/3(c3/cl))+2z3(323/3(c3/c1))
Assuming X0 = 1.0, Xy = 0. From (2.76) and figure (2.17), the
components of the gradient vector are known. Note that the relation-
ships between the cost scales were not used. Using the "Accelerating
Step-Search', the results obtained are,

zl* = 2,31601518
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Figure (2.19) Variation of ¢—1O(zl 2) +zz+z3,t=T with respect
to z,(T) and z4(T)
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z,% = 1.18737492
z4* = 1.01407608
¢* = 7.80213578
(c2/cl)* = 0.51268031
(c3/cl)* = 0.43785372
0.00000023
[grad ¢] =
0.00000002

which agree within six decimal places, with the results obtained
previously.
For,
2
and using the same initial conditions, the expression,

[grad ¢] =
20(21-2)(321/3(c2/cl)) + azz/a(czlcl) + 8z3/3(c2/c1)
(2.84)
20(21-2)(321/3(c3/c1)) + 322/3(c3/c1) + 323/8(c3/c1)

yields the results

2.% = 2.16897416
z,* = 1.36258702
z4* = 1.22818877
o* = 2.87629843
(cz/cl)* = 0.29590211
(c3/c1)* = 0.29590386
-0.00000121
[grad ¢] =
-0.00000014

which agree within five decimal places,with the results obtained before.
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APPENDIX A-1

Derivation of the SAD Function

Given:
£(£).U(E) - a). [U()] - a,.0%(c) (AL.1)
where U(t) is a piecewise continuous function on the interval
[0,7], |u(t)| < 1, and £(t) is defined on the interval [0,T].
a, and a, are +tve constants,

Required:
Find U(t) which maximizes expression (Al.1).

Derivation: -

Let us assume U(t) is +ve, then expression (Al.1) becomes,
£(e) U(E) - a).U(E) - a).0%(e) (A1.2)
Differentiating (Al.2) with respect to U(t), we get

£f(t) - a - 2a2U(t) (Al.3)
We set (Al.3) equal to zero and solve for U*(t)

U*(t)

(f(t)-al)/2a2 . (Al1.4)
But 0 < U*(t) < 1. Therefore,

if £(t) < a, U*(t) is zero | (Al1.5)
and if £(t) > al+2a2, U*(t) is +1

Similarly for U(t) < 0, we get

for £(t) > -a, U*(t) is zero

and for f(t) < —(al+2a2), U%(t) is -1 (Al.6)

Define the following quantities

= a

"

n, 1 + 232 (Al.7)

Then U*(t) which maximizes’ (Al.1) is given by

U%(t) = SAD [£(t); n (A1.8)

1’“2]
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1 O
f(t)-nl
- <f(t)<
= ny<£( )<n,
SAD [£(t); ny,n,] = 0 -n,<E(e)sn; > (AL.9)
£(t)+n, ©
-n <f(t f—n
] 2 1
-1 £(t)<-n,

This is shown in figure (Al.l).
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Figure (A-1.1) Saturation and Dead-Zone (SAD) Function
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CHAPTER (3)

OPTIMIZATION OF A DETERMINISTIC SYSTEM WITH TWO

CONTROL FUNCTIONS AND SEVERAL COST FUNCTIONALS

3.1 Introduction

In this chapter, the objective is to determine optimal controls
for a deterministic system with two independent controls, with respect
to a performance criterion which in turn can be expressed as a function
of several cost scales. The controls will be assumed to be antagonistic
in the sense that if one control minimizes the performance criterion
the other control would try to maximize it.

Several examples where such a problem would arise can be
given. For instance, in the field of economics, the problem of maximiz-
ing the productivity of an economy can be formulated along the above
lines. The action taken to maximize productivity is treated as one
control whereas another factor which adversely affects productivity is
taken to be an antagonistic control. In the area of guided missiles,
the Pursuit-Evasion problem is another example.

To the best knowledge of the author the previous work in this
area appears to be mostly confined to cases where only a single cost
functional of the min-max type is used as the performance criterion.
This problem has often been formulated as a Zero-Sum Two-Person Differ-
ential Game[1’2’3’4’5].

A limitation of the available techniques should be mentioned.
If it is required to determine the optimal controls of a system for
several objective functions of the min-max type, then the optimal

control problem must be solved separately for each objective function.
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In some cases, the determination of optimal controls by the available
techniques is very difficult [example (2)[2]]. In other cases, the
available techniques do not work at all. This point will be illustr-
ated later in the examples.

However, the above difficulties can be overcome by following
the procedure described in the previous chapter. It will be shown
that there is no need to solve the optimal control problem for each
objective function separately. As described in the previous chapter,
the two step procedure is used except now, we have to search for a
saddle point instead of a min or max since we have a min-max type object-

ive function.

3.2 Mathematical Formulation of the Optimization Problem

Dynamics of the System

The dynamics of the process to be controlled are represented
by a set of n-first order ordinary differential equations,

X = £(X,U,V) (3.1)
where (i = dX(t)/dt). X is an n-dimensional vector representing the
state of the system. U and V are the control vectors of the system
and are of dimension Ly and Iy respectively. f is an n-dimensional
vector valued function, defined over a suitable bounded, connected,
open set D of (X,U,V) space, and is assumed to be of class C2 on its
domain of definition. The following information about the system is
available to both the controls,

i) the initial value Xo of the

state
ii) the dynamics of the system,

iii) the system state, X(t), at time t
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The control variables are constrained as follows,

U(t) ¢ K.CE
“u Ty ],(3.2)
V(t) ¢ va: Er
v

where KU’ KV are convex and compact, E represents Euclidean space.
These control variables U(t) and V(t) are chosen according to a set

of rules as follows,

ﬁ(X) ]'(3.3)

u(t)

V(x)

V(t)
where ﬁ(x) and G(X)'are members of classes of functions denoted by
U and V respectively, which are piecewise C2 and the control variables
satisfy (3.2) Vte[to,T], where t, is the initial time, and T is the
final ‘time of the process. The significance of equation (3.3) is that
we are interested in obtaining closed loop optimal controls.

A terminal manifold S, which is an n~dimensional, connected
manifold of class C2 in X-space is assumed to be given. The process
is to be terminated whenever XeS. Points on S will be denoted by XT.

Cost Scales and Objective Function

Let us define the following cost scales,
T

R0V = g, () +f L, (X,U,V)dt (3.4

t
o]

k=1,...,N
where the functionals gk's are assumed to be of class C2 and defined
on S and Zk's are of class C2 and defined on D. Let us define the
"Objective Funetion" as ¢(Jl,...,JN), where ¢ is of class 02 and
defined on §. U is trying to maximize ¢ while V is trying to minimize

it.
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A pair of controls (ﬁ,&)eUxV 1s defined to be a "Consistent
Pair", if corresponding to these controls equation (3.1) has a continuous
solution defined over some interval [to,T], satisfying the initial
condition at to’ and XTSS. We will consider only those sub-classes UIF:U
and V1C:V such that for every ﬁsUl and GeVl the pair (ﬁ,&) is consistent,

Statement of the Optimal Control Problem

The optimal control problem can now be stated as follows:

Find a Consistent pair (U*,V%) such that

X(T;Xo,fl*,\}*)es (3.5)
and
X UPY < o(X, 0%, V%) < o(X,0%,V), (3.6)

VX,UEUZ and VEVj
(U*,V*) is defined to be an Optimal Pair of control variables.
X*(t) resulting from (U*,V*) is called Optimal Trajectory.

Necessary Cbnditionsfor Optimality

Following the discussion of section (2.2) we get,

. ng '
zk(t) = (gi—ﬁ f+ Zk
Zk(to) = gk(xo) 2(3.7)
k=1,...,N
)

Let us adjoin these variables to the state variables to

obtain

Ple

f X(to)7 xo
= 2G.! ’ = (3.8)
Gy) f+L z(t) G(x)

Ne

where Z,G and L are N-dimensional vectors. The objective function

$(Z) can be rewritten as
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T
) ag’
¢=f [—-‘L[(ax f+zl]+...+%2;[(§)f+zN]Jd
t
(o]

+ 09, (X )5 esgy (X )1 (3.9)

The second term in the right hand side has no effect on the optimiza-
tion problem since it is a fixed quantity.

We have now cast the problem under discussion into a format
for which the procedure used by Chattopadhyay[zl can be used. The

Hamiltonian is given by

3

=3%l'[(ax) E+ 1+ "'+—3;[(ax
89, %9y, |

n1,.1[(3}{) f+Z]+-..+pn+N[(ax) £+17,1  (3.10)

)! f+Z]+P'

here P is an n-dimensional vector

and
P = -HX P(T) =0 \
Pntk = 'sz | Py = 0
k=1,...,N (3.1
X = HP X(to) = Xo, )
and
HU = HV = 0, between cormers.

Here we allow for the fact that the trajectory X*(t) may have corners.
We assume that X*(t) is of class C2 between corners.

From equation (3.11) it is clear that the quantities (p otk + —9—

k
k=1,...,N are constants i.e.
P * 3| 5| = #0
o klt=r  °%k|e=1 k (3.12)

k=1,...,N
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These constants may be positive or negative. Then the expression of

H becomes,
N
ag 1 —N‘\
H= [P+ Z k(ax) f+ ZJcka (3.13)
k=1 k=1
Let us define
~ — agk
E=P + ( (3.14)
et
k=1
Since P(T) = 0, we have
~ N, agk
PO = ) el (3.15)
k*oX _
k=1 t=T

From equation (3.14) and (3.11) we have

P=-H (3.16)

Where the expression for H becomes
-~ ! .
= pt!
H=Pf+ ZLJ ckzk (3.17)

Thus we see once again that the problem under discussion with object-
ive function ¢ (z) is embedded in the problem with objective function
N

z: 2k where the ck's are parameters to be determined., Summarizing

k=1
the previous necessary conditions we get

é(t) = -H_, P(T) = ( ) ]
, Z G|, |
5 (3.18)
X(t) = Hi)’ x(to) =
where N
H(X,B,0,0) = P'f + L el
k=1

and
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Hﬁ = H& = 0, between corners (3.19)

Equation (3.19) covers the four possibilities min min #, min max 4,
u Vv U A

max min #, and max max H. In the present discussion we will be

u v u v .
interested in max min 4. If there are magnitude constraints on U and

u v
V then the necessary conditions given by equation (3.18) and (3.19)

become, see [5]

\

N
. N 9
: . - k
B e ~1J% ~ - e
PO = ~Cy + G+ 4w, B Z e )lt=T
k=1 5 (3.20)
X = H’b ’ X(to) = Xo, )
where N
BEED =B+ ) ol
-1
and
H(X,P,U,V#) < H(X,P,U%, V) < H(X,P,U*,V) (3.21)

VX, UeUl and VeVi
3.3 Example
Let us consider a system with dynamics given by,

X=ax+bu+byv (3.22)
u v
where

x(to) =X, and a, bu’ bv > 0. The final time T is fixed. There are
no constraints on the control variables u and v. It is required to
find the optimal comtrols u*(x) and v*(x) such that

T % T

Min Max Xz + {f vzd'r - f
vk x| T

t t

o

The conventional method cannot be applied, since the objective function

6]
uzdt] (3.23)

is not in the form of a single integral. Let us reformulate the problem

as follows. Given the system,



ﬁ =ax+bu+bv
u v

and the cost scales

_ 2
J1 = 0.5 Xp
T
2
J2 = O.SJ[. u dr, and
t
o
T
_ 2
J3 = O.SJ[ vdr
t
(s

Determine the optimal controls u*, v* such that

Min Max (2Jl + \/2 J2 -‘\/2 J3 )

V& u#

Ste 1

Following the discussion in section (3.2), we get

x = ax + buu + bvv x(to)
;l = x(ax + buu + bvv) zl(to)
;2 = 0.5 u2 zz(to)
2 = 0.5 v z4(t) =

The objective function is 124 + 2z, + c323
The Hamiltonian is given by

H(x,p,u,v) & p(t)(ax + b,u + b_v)
2

2
+ 0.5c2u + 0.5c3v

From equation (3.18) we get,

p(t) = -ap(t) P(T) = cpx(T)

From equation (3.19) setting

H =H =0 we get
u v

ut = -=(1/c,) b p(t)

~(1/e,) b_p(t)

vk

o
_ 2
=x /2
=0
0 )
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f(3.24)

(3.25)

r(3.26)

(3.27)

(3.28)

(3.29)
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where ¢y > 0, ¢, <0, Cq >0
c, is -ve to insure the maximization of H with respect to u, Cq is +ve
to insure the # is minimum with respect to v, It is a well known
technique to assume
p(t) = K(t)x{t) (3.30)

Therefore equation (3.29) becomes

ux = =(1/e,) b K()x(t)
. (3.31)
vk = -(1/c3) va(t)x(t)
where the scalar K(t) is the solution of the Riccati equation
. _ 2 2. 2
K(t) = =2aK(t) + [(1/c,)b “ + (1/c.)b ] K7 (t) (3.32)
2°"u 3 v
with the boundary condition
K(T) = ¢y (3.33)
Then cl T
{1/[R(t) (A R(t) - 2a)]} dK(t) = J[ dr (3.34)
K(t) t
" where A = (1/ )b2+(1/ )b, 2
where A = )b, cg)b,
The solution of equation (3.34) becomes
K(t) = 2ac L (3.35)
1 B + (2a-B) Exp[2a(t-T)] :
where
B = (c,/c,)b 2 + (c./c.)b. >
1'72"u 173"y
or
K(t) = ¢ R (3.36)
11+ (R-1) Exp[2a(t-T)] ’
where

R = 2a/B

Then equation (3.31) becomes,



71

A R
wk = by (e)/e)) TT D BpzateoD] X

, (3.37)
. R
= bole) /o)) TERD melzate ] X J

By substituting this equation into (3.22) and solving for x(t), we get

1 + (R-1) Exp[2a(t-T)] |

x(t) = % [Exp[-a(t—?o)] 1+ (R-1) Exp[2a(to-T)] J (3.38)

and

2 1 2
2@ = 055" [Expl-a(1-t))] g7y (1-B/za)Exp[2a(co-T>1]

2

_ 1 1-Exp[2a(to-T)] !

%M = 0.5b(e; /o))’ [(B/Za)+(l-B/Za)EXP[23(t =t 2
) - 1 2 1-Exp[2a(t,-T)]

23(D) = 0.5b7(c; /o) "] L(B/Za)+(l-B/Za)EXP[23(t -T)]] 2a )
(3.39)

The realization of the control variables is shown in figure (3.1). The
relation between Zys 295 and 24 at t=T for different values of (¢ /cl)
and (c3/cl) is shown in figure (3.2). There are some bounds on (cz/cl)
and (c3/cl). These can be obtained by setting u(t) = constant for any

value of t, we obtain a relation between (c3/c1) and (c2/cl).

2 2a
(cy/ey) = [E+ (b /b)Y (e./c,) - (3.40)
¥ vV 21 b 2 Exp{2a(T-t ) - 1]
v o
where 0 < £ < o
For i =0 we get line (1)

For £ = o we get line (2),

see figure (3.3). Similarly from the expression of v(t), we get

(cy/c.) = [(b /b )2 = E](c./c) + 22 (3.41)
21 viou 31 b “Exp[2a(T-t ) - 1]
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23(T)

Figure (3.2) Relationship between zl(T), z2(T), and z3(T) in the
Example Chapter (3) '
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(ca/cy)

Figure (3.3) Bounds on (cz/cl) and (c3/c1)
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~

where 0 < § < =

For é 0 we get line (1).

o we get line (3).

For &

Step (2)

Having solved the linear combination problem and determined
J* and G* as functions of the ratios c2/c1 and c3/c1 we now proceed
to search for the optimum values of these ratios which correspond to
the objective function given by (3.23). This search can be performed
in the Z-Space or C-Space depending on whether the cost scales and the
ratios cj/cl, j=2,...,N bear any direct relationship to one another

or not. In the example under consideration, we shall use z; as the

dependent variable, z, and zq as the independent variables. Since

2
z b “(ec,/c,)
z—2= v 21 (3.42)
7

we can carry out the search in the Z-space. In the previous chapter

2
3 b, (c3/c

we considered problems of pure minimization or maximization of the
objective function. In this chapter, however, we are considering min-
max type problems. Consequently we have to look for a saddle point of
the objective function rather than its minimum or maximum. Consequently
the search technique described in Chapter (2) will be modified to take
this into account.

Applying equation (2.27) to (3.23) we get

(3¢ |
b2, 2/(cy/e,) - 1//52;,

[grad ¢] = - (3.43)

“2/(eley) + 1/V7z;

— -—

i
1
| I
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All the components of the gradient vector are known at every point

in m, figure (3.2). The procedure for locating the saddle point

consists of the following,

1. We specify increments Az2 and A23 and compute ¢ at the set of
points Azzxp, Az3xq, pP= 1,...,Mp, q= l,...,Mq where MpAz2 and
Mqu3 are bounds on zy and zq respectively. We locate the saddle
point of ¢ with respect to these discrete values.

2. Starting from this approximate saddle point, we use a modified
form of the "Accelerating Step Method" to get as close as possible
to the exact saddle point. The criterion used to determine winning
points.is the norm of the gradient should be minimum. For the
starting point A the winning points are B, C and D. If the start-
ing point is A', the winning points are B', C' and D'. The tech-
nique is explained in figure (3.4).

The results obtained for the given objective function,
¢ =22, + /EZ; —_/iE; | (3.44)
with a = 0.5,

bu = 0.05, bV = 0.051,

and T = 2.0 are

(cllcz)* = 0.0

(c1/c3)* = 3.08376312
0.00000000 |

[grad ¢]= | f

[fO;OOOOOOOOJ
and the value of the objective function = 16.58586876. All the
numerical results reported in this chapter are up to 8 significant

figures.
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ZQ(T)

Figure (3.4) Modified Accelerating Step Search.
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Now let us consider the same system with objective functions

given by

Zg

22 + 0.5
z3 + 2.0
2, + 4.0

b=z F

¢2 = zl +

> (3.45)

/

There is no need to formulate the new problem from the

beginning.

ization) are common to all objective functions.

Step (1) and part of step (2) (up to the stage of discret-

The approximate value

of the saddle point for each of the two new objective functions is

determined with respect to the discrete values mentioned earlier.

gradients are,

p— po

[ 2] 1/(c,/c.) = 2./ (2 40.5)2
822 1'72 372
[grad ¢,]= -
a¢
] -égi | [eetep + vegos |
- 8, - -
3;5 rl/(cl/cz) - (23+2)/(zz+4)2
[grad ¢,]= =
3¢
Szi' -l/(cl/cs) + l/(z2+4)

The search is then carried out using these gradient vectors.

results obtained are for

z

- -3
1%t TFo0s
2
(e /e )% = 7,35984308
(/e )* = 7.57405060
~0.00000001
[grad ¢1]=

+0.00000003

The

5(3.46)

The



Value of the objective function = 9.20535621 and for

23 + 2
¢2 ] + z, + 4

(cl/cz)* = 6.79863103

(cl/c3)* = 9.56304898

0.00000000

[grad ¢,] =
0.00000000

Value of the objective function = 8.94178680.
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CHAPTER (4)

OPTIMIZATION OF A TWO-CONTROL MULTI-COST

LINEAR SYSTEM WITH JUMP PARAMETERS

4,1 Introduction

In this chapter, the objective is to determine optimal con-
trols for a linear system with two independent controls and several
cost functionals and subject to sudden changes in its parameters. The
controls will be assumed to be antagonistic in the sense that if one
control minimizes the objective function the other control would try
to maximize it. The objective function is taken to be the Conditional
expectation of a linear combination of se#eral cost functionals with
weighting factors unity, positive or negative.

Such problems would arise in situations where there is a
possibility of failure of some components of a system or sudden shifts
in environment. This problem can be considered to be a stochastic
version of a special case of the problem discussed in the previous
chapter. |

The related work for a single control can be found in [4].

4.2 Mathematical Formulation of the Optimization Problem

Dynamics of the System

The system to be controlled is described by the linear vector

differential equation

X(t) = A(t) X(t) + By(t) UCE) + B (£) V(t)
_ (4.1)
x(to) = xo
where (i(t) = dX(t)/dt).X(t) is an n-dimensional vector representing

the state of the system. U(t) is an rU—dimensional vector and V(t)



82

is an rv-dimensional vector are control variables., It is assumed that
the number of possible parameter values is finite, say s. We shall
represent this variation in parameters by a state Markov jump process.
We will assume that each element of the random matrix [A(t), BU(t),
Bv(t)] is a separable Markov process and that there exists an s x s

matrix Q such that the conditional probability,

P {TACEH) By () By (t+) 1=[A,,B, B 1 [ACE) By (1) By (£) 1=[A, By, LB, 1)

. (E)A + o(d) i#
q?I-J ° j 1(4.2) .

1+ qii(t)A + o(4) i=3,i,j=1,...,s

We denote

~

Pr{[A(o)’BU(O)’BV(O)]=[A1’BU1’BVi]}=P 3 i= 1,00048 (4.3)

i

Where ﬁ is an s—-dimensional vector.

For obtaining the optimal controls, the quantity of the data
fed back to the controllers must be specified. It will be assumed
that the feedback signal will contain both time and the instantaneous - -
state, i.e. (t, X(t)). Furthermore, since the parameters of the plant
vary in a random manner, an attempt might be made to monitor these
variations. Suppose that there are m sensors on the plant with out-
puts given by u(t). p(t) is an m-dimensional random process. This
latter process need not be Markovian nor need it be continuous, but
it will be assumed to be bounded. It will also be required that p(t)
is independent of the control variables. Therefore the following in-
formation about the process is available to both controllers,

i) the initial value Xo of the state

vector

ii) the state X(t) of the system at time t,
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iii) the dynamics of the system

iv) the vector u(t)
It will be assumed that at any timet, the controllers select U(t)
and V(t) based on their observation of the vector (t, X(t), u(t)).
In other words
RIORTON
V(E,X(E) 1 ()

The hat above U and V will be used to emphasize the difference between

]

u(t) 1
(4.4)

v(t)

the function and its value. In other words ﬁ and & represent the
controllers and they are therefore non random, while U(t) and V(t) are
the output of the controllers and are thus random processes. The
controls ﬁ and 6 are bounded and continuous every where, for t St< T.
The class of admissible control‘pair is defined as those U: U(t) =
ﬁ(t,x(t),u(t))and Ve V(t) = %(t,x(t),u(t)). These classes of admiss-
ible controlipairs are selected to ensure that the system differentiél'
equation will be meaningful and integrable when ﬁ and 6 are inserted
in equation (4.1).

Cost Scales

Let us define the following quantities,
t

zy =—[- Zk{T,X(T,tO,XO,U,V),U(T,X(T;to,XO,U,V),u(r))

t
o}

,V(T,X(T;to,XO,U,V),u(T))}dT (4.5)
where Zk(t,X,U,V),k = 1,...,N, are non-negative and continuously
differentiable with respect to X,U and V.

Objective Function

Let us define the objective function
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$0,T36,,% (e )) = BO) e (V5 X e ) ot X (e )} (6.6)
k=1
where C = +1l or ~1, k = 1,...,N, depending on the problem underhand.

T is the final time and is fixed. E{ } is the expected value of the
quantity between braces. U is trying to maximize ¢ and V is trying to
minimize ¢.

Statement of the Control Problem

The optimal control problem can now be stated as follows,
Find the optimal pair (U*,V*) such that
¢(U,V*;t0,X0,u(to)) < ¢(U*,V*;to,Xb,u(t0))
< ¢ (Uk,v ;to’Xb’"(to)) 4.7)
VY Uel and VeV
The trajectory X*(t;to,XO,U*,V*) resulting from (ﬁ*,V*) is called
"Optimal Trajectory".

Necessary Conditions for Optimality

Fix (to,Xo)e[o,T] X En' Define a vector valued random
variable P(to,Xo) as the solution to the following ordinary differ-

ential equation,

1 A A
T P(E,X(15t ,X ,U%,V¥))

A(T) + BU(T)U;(T,X(T;to,xo’U*’V*) su(t))
= = " - .P(T,‘X(T;to,xo,U*,V*))
+ BV(T)VX(T,X(T;to,Xo,U*,V*),u(r))

kU X(T X(tst . U’ V*),u(r))

L
B Z ‘k (4.8)

k= kV X(T X(t5t X s U V*),U(T))

ey

P(T:X) =0,vVX,

t <1t <T
0— —
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If we define the Hamiltonian to be of the form
A(E)X + BU(t) U(t,X,u(t))

B(t,X,U,V) = P(t,X). X
+ B8 V(EX,u ()

N
+ Z cka(t,X,U(t,X,u(t)),,V(t,X,g(t))) v (4.9)
k=1

then equation (4.8) can bz put in the same form as equation (3.20).
It must be emphasized that in the stochastic problem under discussion,
the initial value of the Hamiltonian must be specified.

At )X+ By(£ JUCE ,X ,u(E))

H(t sX sU,V) = PT(£ X ). )
+ By (t )Vt ,X ,u(t))
N
) ey (g Koy Ul X u e D), V(e X u (D)) (4.10)
k=1
where an and QEV.

Based on the results obtained in chapter (3) for the deterministic
case and the results obtained by Sworder [4] for a similar problem

with a single control, we make the following statement as a necessary
condition for optimality.
"We can find optimal controls U*eU and V*eV such that
E{H(t,X, U, V%) | t,X,u(t)} < E{B(t,X, 0% ,V*%) |t,X,u(t)}

< BLA(£,X,06,V) [£,X,u(8)}  (4.11)
Van and GEV."
This means that ﬁ* maximizes, and %* minimizes, the conditional expect-
ation of the Hamiltonian. The above statement can be formalized as a

theorem. But this will not be attempted here. We proceed to discuss

the applicationms.
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4.3 Application

To illustrate the application of the necessary conditions

obtained in the previous section. Let us assume the system in (4.1)

has three cost scales.

t
Z = % j (X' (T)R X(1))d1 )
t
(s}
t
_1 ' |
= f (W' (R, V() 412
(s}
t
Z3 = -;‘- f (V' (T)Rv V(T))dT
t, ’
t <t <T
o ST X2

where
R is an n x n positive semidefinite matrix with constant elements,
RU is an Iy ¥ Iy positive definite symmetric matrix with constant
elements,
RV is an Iy X Ty positive definite symmetric matrix with constant
elements. |
Let the objective function be

¢(zl,22,23) = E{(zl+z3-22)t=T to,Xo,u(to)} - (4.13)
From here on, we follow Sworder's work for a single control[4] closely
and obtain similar results for the case.of two controls. The same
assumptions made in [4] are made here also. However for sake of being
self contained the assumptions will be restated here at the appropriate
places.

As a consequence of equation (4.11), see [1], we have
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B 'B5(0) P(6,0)]6,%,u(0)}

UX(E, X, 1(E))
(4.14)

Fh(e,X,0(8)) = ~E(RGBY(E) B(£,X) |€,X,u(6)}

It is necessary to find an explicit relation for P(t,X) in terms of

the vector (t,X,u(t)). It must be noted that the information available
to the controllers is sufficient to determine the instantaneous values
of A(t), BU(t), and BV(t). Since the sample functions.of the elements
of.A(t), BU(t), and Bv(t) are not continuous, they are independent of

the control law. Therefore, the equations for the optimal controls

become,

G(eX,0(0) = B31 BL(E) BP(E,0)]6,%,0(0))

(4.15)

VA(E,X, 6(E)) = By" BL(E) E(R(E,X) |, Xu())

From equation (4.8) we get,

£ P(1,X(x3t,X,0%,7%))

[A)
= - | # By(US(r,X(T36,X,0,7%) ,u(0)) | . (e, X(T58,X,0%,74))

+ BV(T)V;E(T ,X(T;t,X,U*,V*) sH ()

—

+ RU(OUE (1, X (r56,%, 0%, V6)u (1))

- RVV(T)\;;(T,X(T;t,X,IAJ*,\A’*)u(T))
- RX : (4.16)

where
P(T) =0, t<T<T
To determine the unique solution tc (4.16), it is a standard procedure

to assume that

P(t,X) = K(t) X, 0<t<T (4.17)
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where K(t) is a random process independent of X when conditioned on
(t,X,u(t)) and differentiable everywhere,

Substituting equation (4.17) into equation (4.15) we get,

3
L(4.18)
_R;IIB"’(t)E{K(t) |£,u(t) }xX. J

UA(E,X, u(t)) = By TBI()ER(E) |£,u(8) )X,

V(E, X, u(t))

Similarly substituting equation (4.17) into equation (4.16), we get‘
—[A'(t)+E{K'(t)|t,u(t)}BU(t)RalB'(t)-E{K'(t)lt,u(t)}BV(t)Rngv(t)]K(t)x
+B) (£)E(K(E) | £, (£) BRRTTB () ECR() [ £, (8) )
~By (£)E{R(t) | £, (&) IR 1BY () ER () [£,u(£) }-RX

= R()X + R(DAOX+ K(6)B (DRTB (1) E{K(E) |£,u(t) )X
| - K(t)BV(t)R\_,lB",(t) E{R(t) | t,u(t)}X (4.15)

Since K(t) is conditionally independent of X, and is symmetric with the

given boundary conditioms,

K(t) = -A' (£)K(t)-K(t)A(t)

+ K(t) [B (DR, B (£)-B (ORT'BL(6)] ELK(E) | £,u(0))
+ E(R(E) | £, (£) (B, ()R] BL (£)-B ()RS B! (6] ()
= E(K(£) | £,u(e) (B, (£ R, By ()-B ()RS 'BL (£ JECRCE) [ £, (1))

where

RK(T) =0
Since the augmented matrix [A(t),BU(t),BV(t)] must be in one of a finite
numbgr of different states. The event that [A(t),BU(t),Bv(t)]=[Ai,BUi,BVi]

will be denoted by (t,u(t))e[i]. Define
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E{R(t) | (t,u(t))e[4]} = §j<t)

If at time t, (t,u(t))e[j]l, then

E(R(E) | (t,u(e))e[§]) = -Agﬁj<t> - ij(t)Aj

. 1 1
+ Ky (£) [Byy Ry By, <By Ry By IK, (6)
-R. . (4.21)

From (4.19) it follows that K(t) is bounded on [0,T] and conseqﬁently

BR(®) | e,n ()41 = 110 E{Kjt+A)l(t)u(tZ)e[jI}-E{K(t)l(t,u(t))s[j]}
(4.22)

The matrices A(t),BU(t),BV(t) are Markovian. Therefore

E{K(t+a) | (t,u(t))e[i]}

8
= Z lzi(t+A)Pr{(t+A,u(t+A))e[i]|(t,u(t))e[j]} (4.23)
i=1

By using equation (4.2) we get
s

Q;JKi(t+A)qji(t)+O(A) (4.24)

I

E{R(t+8) | (t,u())elj]} = £j<t+A>+A

=]
From (4.21) and (4.24),
Kj (t) = —A&Kj(t) - Kj (t:)Aj
o "l 1] "l 1] >
+ Kj(t)[BVjRV BVj-BUjRU BUj]Kj(t)
.
i=1
- R (4.25)
where
IEJ(T) =0, j=1, sS



90

The optimal controls are,

-~

U*

R[,anjf(j ()%

-R;ln",jf( 5 (X

. (4.26)

~

v

| SSRGS ¢

Equations (4.25) and (4.26) are valid

if (t,u(t))el]]
The solution of the stochastic problem is given by (4.25) and

(4.26). The gain matrices ii(t), i=1,...45, may be obtained by direct
integration of equation (4.25). The realization of the optimal controls
is shown in figure (4.1). These results are applied to a specific
numerical example in the next section.

We will conclude this section by making two observationms.
1) As a special case if A(t)=0,Vte&°;ﬂ, then we get results for a
class of Pursuit-Evasion problem considered by Ho, gg_gl.[zl.
2) If the matrices R, RU’ and RV are also subjected to sudden changes
without violating their other properties mentioned before, the tech-
nique presented in this section is applicable to include such situa-
tions, provided that the vector u(t) carries complete information
about the instantaneous values of A’BU’BV’R’RU’ and RV'

4.4 A Numerical Example

Consider a system described by the following first order

ordinary differential equation,

]

x = a(t) x + bu(t)u + bv(t)v

1(4.27)

x(to) =X, !

J

The function a(t) is a Markov jump process with two possible states,

0 and 5, the state 0 is an absorbing state. If a(t) = 5 there is a
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nonzero probability that a(t+t) = 0, and 1>0. Therefore the Q matrix

for a(t) is

Q= q>0 (4.28)
q -q
and the initial probability distribution for a(t) is given by,

——

P
1-p
" Let the cost scales be given by,

o]

r \
z) = %-J‘ xz(r)dr
t
0
1 2
z, = E'J[ u“(1)dt > (4.30)
t
12
zy =5 J v (1)dt )
t
0

and b (t) = 1 and b_(t) = Y2,  Vte[0,%)

For this specific set of data the controller gains are solutions of,

. _ . 2

K (£) = +2-DK (8)°-1,

) = 10m D (? - o - (4.31)
Kz(t) = - 0K2(t) + (2- )K2(t) - qu(t) + qKZ(t) -1

For any finite value of T, the solution of (4.31) gives the best feed-
back gains. However, we can make use of the stationary solutions of

(4.31) because T+w. Thus we get,
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wk(t,x,u(t)) = lim 1 ij(c)x
e if (t,u(0))el4] (4.32)
vk (t,x,u(t)) = lim /Exj (t)x
Tow
If a(t) = 0
we obtain lim Kl(t) = +1 (4.33)
T
and
u*(t,x,u(t)) = x
if a(t) =0 (4.34)
vE(t,x,u(t)) = /2 x

and this is the solution of the deterministic problem with a(t) = 0

If a(t) =5

In this case the situation is different. For a(t) = 5 we

have
- 2 ‘
1lim Kz(t) =5—-g~+ V(S--(zl) +1+¢q (4.35)
T
if ¢q =0,
1lim Kz(t’) =5+ /26 ,
T

(5 + Y26)x (4.36)
-/315 + /Eg}x

u*(t,x,u(t))

]

vE(t,x,u(t))
and this also is the solution of the deterministic problem with a(t) = 5,
If q = 10, we get,

Lin K, (t) = /IT

T

wk (t,x,u(t)) = /11 x f(4.37)

vE(t,x,u(t)) = _’/ﬁ X

If a(t) = 5, it is clear that for every real number p
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® X(T;to,x ,u*,V*)z + V*(T;X(T;to,x ,u*,V*),U(T)2

) o
Pr dr>p

2
t, - u*(T;X(T;to,xo,u*,V*),u(T)

>0 (4.38)
In spite of this

lim x(t;to,xo,u*,v*) =0 ‘ (4.39)

T>o
for all initial conditions. This anomaly is due to the fact that
controllability, lim x = 0, of the system when a(t) = 5 requires'é
lot of control "e£;:rt". Consequently if one expects the transition
in a(t) to occur soon, only the "degree" of uncontrollability is
maintained within bounds. For this specific example, this anomaly
appears only for cases wheré a(t) > 1.

It was possible to obtain an analytic solution for the
problem considered in section (4.3) because we considered a relatively
simple objective function. It must be remembered, however, that for
a more complex objective function, the search technique described in

the previous chapter will have to be used. For instance suppose that

the objective is of the form given by,
¢ = E{¢ (21’22’23)t=T to’xO’U(to)} (4.40)

where 215 295 and z4 are as defined by ‘equation (4.12).
As pointed out in the previous chapter we first solve the

so-called linear combination problem (objective function =
E{(clz1 + Cqzq = CZZZ)t=T to,Xo,u(to)} treating the weighting factors

€12Cys and cq as parameters. The negative sign is used to ensure

that we have a min-max type of problem.
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The expression of the Hamiltonian is given by,

ACEX + By(t) fl(t,X,u(t))_’

H=P'(t,X). a ,
+ Bv(t) V(t’XQU(t))_]
+-l c, X'RX + l-c 6' 6 -4 c ﬁ' ﬁ (4.41)
2 1 2 SV RV - 5 e U'Ry .

The matrix Ricatti equations given in equation (4.20), now take

the form
Kj(t) = -AjKj(t) - Kj(t)A.j
- 1 -1, 1 -1, .2
RO BosRy By = o By By I%; (8
i3 32
S
D RGN
i=1
- cle | ‘(4.42)
where

ij(T) =0, j=1,0u,s

where cjl’ cj2’ and cj3 are positive constants.

The optimal controls are

.1 g -
U* = E——- RU BUjKj(t)x
42
> (4.43)
vt = - L pTIB g o(x
Cj3 RV Vij

if (t,u(t))el])

Let us denote the set of constants (cjl’ch’CjB) by Cj' First we
determine the numerical values of Cj’ j=1,...,s, with respect to

the given objective function by treating the problem as a deterministic
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problem and using the search technique described in the previous
chapter. By substituting these numerical values in (4.42) and (4.43)
then equation (4.42) and equation (4.43) give the solution of the
stochastic problem. The gain matrices ﬁj(t), j=1,...,8, may be

obtained by direct integration of equation (4.42).
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CHAPTER (5)

OPTIMIZATION OF A DETERMINISTIC SYSTEM WITH SEVERAL

CONTROL FUNCTIONS AND SEVERAL COST FUNCTIONALS

5.1 Introduction

The problem considered in this chapter is concerned with
the determination of optimal controls for a deterministic system with
several independent controls and several cost scales (say p controls
and N cost scales). Each control has several components. In other
words each control is a vector. Each cost scale is a function of all
controls. The controls will be assumed to be noncooperative in the
sense that each control will seek to minimize or maximize its own
objective function, each of which in turn is expressed as a function
of the cost scales. In this chapter we will assume that each control
is maximizing its objective function. Previous work relevant to the
discussion here can be found in [2].

Examples where such problems would arise can be found in the
field of Economics and Biology. There are éome economic situations

which can be viewed as non-cooperative-many-player processes [1,2].

5.2 Mathematical Formulation of the Optimization Problem

Dynamics of the System

Let the dynamics of the system to be controlled be represented
by the following ordinary vector differential equation,

X(e) = £(X(6),01(8)50.0,0 (6)), 5.0

X(to) = xo
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where (i(t) = dX(t)/dt).Xis an n-dimensional vector representing the
state of the system. f is an n-dimensional vector valued function
continuous in all its arguments and continuously differentiable with
respect to X.Ui, i=1,...,p, are the control variables., Ui has a

i

time to satisfy certain boundedness constraints of the form,

dimension r,. The control vectors are required at each instant of

ej(Ui) j_aj s j= l,...,ri, 5.2)
i=1,...,p
The control Ui(t) is called an admissible control if,
i) it is piecewise continuous on the control interval
[to,T], where T is the final time, and
ii) it satisfies (5.2), Vte[to,T].
The set of admissible controls is denoted by Ui’ i=1,...,p.
Cost Scales
Let us define the following quantities,
2, = §,X k=1,...,N | (5.3)
which can be rewritten as,
z, = S E(X(t), U (6,005 (), -

k=1,...,N

t
where Zys k=1,...,N are the cost scales for the system, Sks are
vectors with positive constant elements.

Objective Function

Let us define the objective functions as,
¢; = ¢i(zl,...,zN), i=1,...,p (5.5)

where ¢i's are of class Cz.
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The control problem can now be stated as follows, find

the admissible control functions UzEUi, such that

. * % R * *
¢i(T,xo,U1,.on,Up) z‘¢i(T’XO’...’Ui‘-1’ Ui’ Ui+l,-cu)
(5-6)

VUisUi, i=1,...,p
As indicated earlier, if all the controls, except one, maintain their
optimal strategies, then the one deviating from the optimum, may only
lower the value of its objective function.
Necessary Conditions for Optimality

[2]

Karvovskiy and Kuznetsov obtained necessary conditions

for the system given in equation (5.1) for cost scales which can be
considered as a special ca;e of equation (5.3). If we let

zZ, = X k=1,...,n (5.7)
our objective functions will be the same as those treated in [2]. If
we augment the cost scales equations given by (5.4) to the system
equation (5.1) we can use the necessary conditions in [2] for the more

general case considered here.

From equations (5.1) and (5.4) we have,

e

f X( to) x0 (5.8)

S'f _ z(to) S'X

DNe

)
Where the augmented equation (5.8) is of dimension ntN. By applying

the necessary conditions given in [2] we get,

* *
Hi(Ul”"’Up) = Max Hi (5.9)
UieUi

VtE[tO,T] 1= 1:'-'.ap,

where
— !
Hi = 1_312 f (5.10)
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and
P, (t) = - Eﬁi (5.11)
Z T X ‘
N
36 .
P.(T) = —* &5 ( - (5.12)
£;; azk k 4T

Equation (5.12) can be rewritten as,
N

P,(1) = Z ¢S (5.13)
i=1

where c.p are treated as parameters. Therefore it is clear that the
problem with objective functions given by (5.5) is embedded in the
linear combination problem. Equation (5.9) through (5.11) and equation
(5.13) constitute the necessary conditions for the limear combination
problem.

As we have done in the previous chapters, the solution of the
problem with objective functions given by (5.5) comsists of two steps.
The first step is to solve the problem with a limear combination of the
cost scales as an objective function, treating the weighting factors
as parameters, and the second step is to use the search technique des-
cribed in Chapter (1) to determine the optimum values of Ci’ i=1,...,p.

5.3 Application

Example (1)

Let us consider a system described by the following equations,

N

xl = axl + ullx1

»
N
|

= bx2 + ulle + Upo¥y r (5.14)

}_{l(to) = X300%,(t)) = %y J

where a and b are positive constants. The control vectors Ul = (ull, ulz)
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and U2 = (u22) are constrained as follows,
u11+u1211 “1110 and ulzio
(5.15)
0 2 Uy <1
Cost Scales
Let us consider a three cost-scale problem. Let
z, = X + 2x2
zy = 2x1 + X, 5 (5.16)
24 = X, J
Let,
¢, = ¢,(2,,2,), and
1 17172 > (5.17)
by = 23 J
Ul is maximizing ¢1 and U2 is maximizing ¢2.
We will first solve the linear combination problgm, by letting
$ =¢,42, +¢.,2,, and
Al 1171 1272 (5.18)
¢2 = c21z3, c21 can be taken = 1
For U2
H, = le(axl + ullxl) + P22(bx2 +ou %) FuyX, (5.19)
and
BHZ
Pp1 = " 3w, - ~(@FUy)Py) T UypPygs Py (D = 0
1 (5.20)
BHZ
Ppa = " ax, - ~(PHup)Py Py =1
2

As a consequence of equation (5.9), assuming X, is positive, we get
* =
U22(t) 1 (5.21)

For Ul

Hy = pyqgax; + up %) + ppy(bxy + up %) + upnx,) (5.22)
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and
3H \
oo _1_ - =
Pin Tk, T (atuy )Py — U1oPyys Py (T) = ¢py + 2¢),
5H \ (5.23)
. _--_l_- -
P12 " " ox, T (btu,y,)pyy P1p(T) = 2¢4y + ¢y, J

As a consequence of equation (5.9), assuming Xy is positive, we get

N

=0 and u,, =1 Iif P11 < Pyy

Y11 12

u;;p =1 and Uy, = 0 if P71 > Ppo > (5.24)

Upq Seee and Ugy =eee if Py1 = Py singular case

J

The results.obtained for this example are summarized in table (5.1)

Having solved the linear combination problem we can determine
the optimum values of 2T and 19 for any specified objective function
¢l by using the search technique described in Chapter (1). Since this
has been demonstrated in earlier chapters it will not be carried out
here again.

The preceeding simple example has illustrated to some extent
the usefulness of the method developed in this chapter. It must be
mentioned that more complex problems can be treated by this method.
For instance a multilevel control problem is posed in example (2) and
some preliminary results which have been obtained so far are reported.

Example (2) A Multi Level Control Problem

A multi level control system is considered in this example.
See figure (5.1). The system has K levels, and level 2(2 = 1,...,K)
‘has q, sectors. The lower levels sectors receive controls from the
higher levels but not vice versa. However, there is interaction in

both directions between sectors at the same level. Examples of such
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(1,1 (1,2)§ """ et < (1,q1)

- e = . - - -
LRl T iy A,

A

O g B (Ko

Figure (5.1) A Multi-Level System
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systems may be found in the field of Economics. Karvovsky and
Kuznetsov[2] consider a single level system with several interacting
sectors. Consequently, it will be possible to use their notation
and terminology in the present discussion. '

Let the dynamics of the system considered be expressed as

follows,

X(e,m) = Z AVe1, (1,m) X,

2,8 (am 2,9

qgg

* Z AVe,s) (2,m) 22,9
q, %

* Z B,y (a,m) X, T ZlB(K,s)(z,m)X(K,s)
=1 s=

* D(lam)

Xam @ = Xo,my

2 =1,...,K, m = 1,...,q2 (5.25)
Some explanation of the significance of the symbols used seems to be

in order here.

X t dx t
(z,m)( ) (l,m)( )/dt, where
X is the state vector of sector (g,m), and of
(l,m)
dimension n
(2,m).
AU(l,s)(z,m)X(l,s) is a column matrix which represents the contribu-

tion of the sector (1,s) to the rate of change of



A01,8) (2 ,m)

“(1,s)Y(z,m>;

u X
(l,S) Y(z’m); (1’S)Y

B1,8)(2,m)

Dig,m)

107

the state of sector (2,m).

is a rectangular matrix with a typical element
21,80y (2,m7 HL,8), (1my T A(1,8). (2,m)z

is a coefficient.

is a component of the required strategy of sector
1,s).

is a fraction of the state x(l,s) contributed to
the rate of change of state x(l,m)y’ Y = l""’n(l,s)
and y = Lyewesmip o

a rectangular matrix with constant elements, is the
coupling matrix between state of sector (l,s) and

rate of change of the state of sector (%,m)

is a column matrix which reprecents the free terms.

Figure (5.2) shows schematic representation for special case K = 2,

q = 1, and q, = 2.

It must be noted that the arrow at the input

represents the effect of the BX terms.

It is assumed that the strategies of the sectors are constrained

as follows,

K % Yk, p)
Z Z Z Y(e,m)=(k,p) < 1 (5.26)
level sector state variable
where
2 =1,...,K
m = 1,...,qz
Y = 1,..-,n(2,m)

the set of allowable strategies for sector (&,m) is U(l m
b
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As we have done several times before, we are going to con-
sider first the problem with linear combination of the cost scales
treating the weighting factors as parameters. Then by using the
search technique described in Chapter (1) we can search for the optimum
values of the weighting factors.

For the problem under discussion if we let the cost scales
be the state variables of the sectors, the goals of the sectors

(objective functions) shall be expressed as follows:

dp
e,m) = Z Co,my (2,5 *2,9)
Jg=1 | !
i i
¥ ! I
| 1
* Z Claam) &, 9) Xx,4)
g1
2=1,...,K, m = 1,...,q2 (5.27)

Let us denote the part of the Hamiltonian H(z m).which depends
’
on the strategy of sector (2,m) by H(z,m)(z,m)’ whlch is the only part

subjected to maximization. Using equation (5.10) we get,

9
om G = ). Wi 0,) Yo Tem @,
Al i |
4 | ! |
| f !
¥ Z @io,m x5 Xm Pe,m 2,9
J:
p=1,..K, m=1,...,q (5.28)

After some modifications the expression H(2 m) (%,m) takes the form,
H 2
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H - RN , )
(2,m) (£,m) ~ F(2m)y " 1wy (Kup) L (2,m)
i i
i i
B Cam i s Fam  (5.29)

P
!
!
[

|
* *m

where y- 's (Y = 1,...,B) are scalar functions. Here B denotes n .
7 (2,m)

We shall use this simpler notation from here on.

From the constraints given in equation (5.26) we get,

Hax A e,m) (2ym) =
U(z,m)(k,p>p€”<z,m)
Max x(ﬁ,m)1 wl
% ,m) ., p) Y(e,m)
] l 3 p ’ )
i i I
i i !
i i i
4 Max x(z’m)ﬁ wB

u(z,m)B(k,p)pw(z,m) (5.30)

Let us assume that, the conditions,

ﬁhmllo”“.”.,ﬁ%msio

are satisfied in the interval [0,T]. This is a realistic assumption
from a practical point of view. For instance if the system in equation
(5.25) represents sectors of some economy, then the production of a

sector will no doubt be positive. Consequently, for u*(l,m);(k,p)p to

be the optimal value of u(R,m);(k,p)p the corresponding function ¢;

must attain their maximum,
- &% =
W e m s tp) - )

Hax 5O 0ms ), T

u el
(z,m)y(k,P)p (Q,m)

Y=1,...,8 (5.31)
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On thé basis of the linearity of dX(z m)/dt with respect to
?

X, the functions dP /dt do not depend on X. The boundary condi-

(2,m)
tions for P(R,m) are,
1,)(!L.m) (2,d) ~ ?(Z,m)(z,j) { = 1,..00q,
i : i
| : ! r(s.sz)
i i i ]
P(lgm) (K,j) = C(Z,m) (K,j) Jd = 1,...,qK J

By integrating the system of differential equations of the adjoint
system with the boundary conditions given in (5.32), the optimal
strategies for each sector are determined from equation (5.31),
2=1,...,Kkand m = 1,...,q2. The optimal strategies are used to
determine x*(z,m) (2=1,,..,Kand m = l,...,qz) by the forward in-
tegration of equation (5.25). The search technique used in Chapter
(1) may be used to determine the optimum values of the C's in equati&n
(5.27) corresponding to the maximization of any objective functions
¢'s. The problem considered in this chapter will be the subject for

future research.
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CHAPTER (6)

CONCLUSIONS

6.1 Summary

In this thesis, we have been concerned with the optimization
of systems with several cost functionals. Both single control and
multi-control cases have been treated. While the discussion has been
mostly restricted to deterministic systems, some results for systems
with sudden changes in parameters are included.

The main contribution of this thesis can be summarized as
follows:

It has been shown that the optimization of a system with
respect to an objective function (which is expressed as a function of
several given cost functionals) is embedded in the linear combination
problem (i.e.) an optimization problem in which the performance
criterion is a linear combination of the given cost functionals,
According to the technique proposed in'this thesis, the optimal con-
trols for the linear combination problem are determined as a function
of the weighting factors, and the optimum values of these weighting
factors are obtained by a search technique for the given objective
function.

There are two main advantages of this technique,

1. The solution of the linear combination problem can be used
for any number of different objective functions (which are functions of
the same given cost functionals). This technique can handle even case

where the given objective function attains its extremum on the boundary

of .
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2. While previously reported techniques are mostly confined
to cases where the single cost functiqnal is expressed as a single
integral, the technique proposed in the thesis is not restricted to
such cases (see example in Chapter (3)).

Another contribution of this thesis is the development of
the modified accelerating step.search‘techﬁique used to solve the
example in Chapter (3). Although it is not carried out in this thesis,
this technique can be used to solve numerical examples in Chapter (4)
also where the system is subjected to jump variation in its parameters.

Perhaps a few words about the computational time required
may be in order here. It is true that the computational time required
to determine the entire manifold m is high. However, it must be
remembered that this will be necessary only when the optimization has
to be carried out with respect to many objective functions. In such
a case, the time required to determine m is compensated by the fact
that the linear combination problem need be solved only once..

In the case where the optimization has to be carried out with
respect to one objective function only, it is not necessary to deter-
mine the entire manifold m. Thus the computational time will be reduced.

6.2 Suggestions for Future Work

The preceding discussion is not intended to suggest that all
unsolved problems have been treated in this thesis. The following

are some of the unsolved questions which come to the author's mind.

There must be several others.

1. 1In Chapter (2), it is assumed that the form of the inte-
grands, assuming gk's are = 0, Zk's do not change during the course

of the operation of the system. In other words,
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-7 (D) -
Zk = Zk te[to,T]
k = l,.'l,N
However, situations may arise where this assumption may not be valid.

In other words,'

Zk = Zk(l) ts[to,tl)
and '

Z, = Zk(z) te(tl,T]

k=1,...,N

where to <t <T, and 1s fixed.

1
The solﬁtion of such problems needs to be investigated.

2. In the usal formulation of the Pursuit-Evasion problem
it is assumed thaf tﬁe dynaﬁics of the evader is independent of the
dynamics of the pursuer. However, it may be useful to consider
situations where the pursuer has some effect on the dynamics of the
evader and vice versa. Such a problem can be handled by using the
technique proposed in Chapter (3). A stochastic version of the pre=-
ceding problem is also worth considering.

3. The work reported in Chapter (5) of this thesis relating
to multi-control optimization problems should be pursued further by
applying the technique to specific practical examples.

4, For the multi level system treated in Chabter (5), it
may be interesting to explore the feasibility of using Dynamic
Programming to solve the optimization problem. The fact that the
system not only has multi levels (which may be thought of as stages

for purposes of Dynamic Programming) but also many sectors at each level

might pose difficulties.
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5. The question of using the Functional Analysis approach
to the problems treated in this thesis also offers a rich area for

future research.
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APPENDIX
Computer Programs (IBM 360/67 System)
FORTRAN IV G LEVEL 1, MOD 4 MAIN DATE = 70241 21/50/42
C THIS PROGRAM TS CONSIDERED AS A TYPICAL EXAMPLE FOR ONE DIMENSIONAL
c SFARCH.THF SYSTEM CONSIDERED IS REPRESENTED RY,
c X10=x2
. c X20=y
C WITH INITTAU STATE(1,1) AND FREE FINAL TIME.XL(T)=X2(T)=0,
‘
¢ COST SCALES ARE,
¢ AT=TIME ELAPSED TO REACH (C,0),T
r NF=FUFL CONSUMED TN REACH {0,0),F
c
3 UFO=0RJECTIVE FUNCTION, (GT*#R)*0F,R GREATER THAN ONE.
c
[ A=R
c A=r2/C1
c DEL1=INCREMENT OF (B)
c NEL2= INCOFMENT OF (A) - —
3 KK=ND OF RISECTION STEPS=25
c KA=ND NF DISCRETE VALUES OF 8,LESS THAN 100
c KR=N NF NISCPETE VALUES OF A,LESS THAN 100
¢ THE MAIN PROGRAM MIST BE ASSOCIATED WITH A SUBROUTINE *PARY,
¢ SURRDUTINF 'PAR' COMPUTES 'OT'ANDYOF'GIVEN C2/Cl.
C MATN PROGRAM AND SURROUTINE ARE DOUBLE PRFCISION9
ocel PFAL*8 B,FoT,CoB UF UFM,0DX, B1,R2,B3,0F 140F20F3,0T1,072,073,UF01,
XUFN2,UFN3,AA,BR
0022 NIMENSIOM F{1631,T(10G),C(100),UF{100)
ceo3 REAN(S, 100INELLJDEL2 oAy B KA, KB
0c0s 100 FORMAT (4F16,8,213)
0005 N0 1 J=1,KA
000s CALL PaR(8,F(J),T(J1)
0007 cli=p
0008 1 8=ReNELL
oen9 no 5 T=1,KA
ocin PO 2 J=1,KA
ocll UE(J)=(T(J)**A)*E())
0n12 2 WFITE(6,81C(I) o F(J)oT(IN UF(IN
co13 8 FNPMAT(5X,6F14,8)
_0f16 YFM=UF (] )
or1s a3 g=1,51
cnls TFQUF(J)-UFM14,3,3
_nr17 & UFM=IF())
0r18 16=J
cela T CONT NP
cr20 R2=(1C-1)%nEL]
0r21 0N 29 KK=1,25
an22 AL=R2=NEL1/(2 .00 **KK)
_0n23 BA=A24NELL/(2.0GN**KK)
(24 CALL PAP(R1,0F1,0T1)
625 CALL PAP(R2,0F2,0T2)
(026 CALL PAR(RI,NF32,0T3)
ne21 UFNOL=(NT]*xA}»NF]
or2a UFD2=(NT2%8A ) $0F2
0n29 UF('2=(NT3s%A)2NF3
0c3n AA=DAPS{UFN2-UFN])
0031 PA=NARS (UFNI=UFN2)

"or32

IF((AA+BR)=5,0%(10.0%%(-16)))35,35, 36
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T, mone T T AN

CDATE = 70261
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T 21750742

, 0033 36 TF(UFPL=1Fi12)30,31,32
‘ c034 30 IF(UFO2-UF03)33,33,35
. 0035 31 IF(UFN2-UF03) 34,35,35
0036 32 TF(UEN2-UFN3) 36534442
70037 33 B2=R1
6038 6h TO 30
' 0029 364 R2=n2
i 0040 G0 TO 39
© 004} 42 B2=Rn3
i 0042 39 CONTINUE_
i 0043 35 CALL PAR(BZ,0F2,0T2)
| 0044 UFO2=(NTPx%A) NER
' onas 11=21,00000009000000742
' 0046 Bl=B1%(NT24%A)
c067 RA=AR(NTPa5( A=1.0) V¥0F 2
CHAMGE (UFD) /CHANGE(OT ) ==R1+B3
0048 WRITE(6,10)KKyB1,R3
0049 10 FORMAT(//45%,14,2F14,8)
| o0so WRITF (hy8)R2,0F2,0T2,UF02,A
! o051 WRITT (Ay11)
€052 11 FORMAT(LIMI)
6053 5 A=penCL2 o
0054 END
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FORTRAN IV G LEVEL 1, MOD 4 PAR

0001

SURROUTINE PAR(8,0F,0T}

DATE = 70241

21750742

0002 REAL*8 ByOF,0T,D,C

0003 D=0.5+2,0%R

0004 C=DSQRT(3.0/(10+2.0%D)) i
0005 OF=1.0+2,04C

0006 0T=1.0+(1.5+D)*C |
0007 RETURN :
0008 END :
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FORTRAN 1V G LEVEL 1y MOD 4 MAIN DATE = 70241 21/49/55

THIS PROGRAM IS CONSIDERED AS A TYPICAL EXAMPLE FOR TWO DIMENSIONAL
SEARCH.THE SEARCH TECHNIQUE USED IS THE ACCELERATING STEP TECHNIQUE

THE SYSTEM CONSIDERED S REPRESNTED BY,

X10=x2
x20=y
WITH INITIAL STATE(1,0)AND FREE TERMINAL TIME.X1(T)=X2(T)=0.

COST SCALFS ARE,
0T..=TIME_ELAPSED TO REACH (0,0)

OF..=FUEL CONSUMED TO REACH (0,0)
OE. +=ENERGY DISSTPATED TO REACH (0,0)

ORJECTIVE FUNCTION=10.%(0T..=2.)**240F,,+0E,,
=COST OR XCOST

051=C2/C1
082=C3/C1
DNX=INCREMENT IN OF.. DIRECTION
DDY=INCREMENT IN OE.. DIRECTION
XOI=INITIAL STATE - - -

THE PROGRAM IS CONTROLLED YO THREE ITERATIONS,(CAN BE CHANGED).
THF STEP SIZE IN EACH ITERATION 1S= 10.*#{-{IST(K)))}yK=142,3,

THE PROGRAM IS ASSOCIATED WITH A SUBROUTINE *PAR',SUBROUTINE *PAR?
COMPUTES 051,4058250T..9+AND XCOST ASSUMING DF,. AND OE.. ARE GIVEN.
X0I=14y1F X0 IS CHANGED, °*PAR' MUST BE CHANGED ACCORDINGLT.

0001 REAL*8 0S1,NS2,X01,0F,0E,OT,GRAD],GRAD2,COST » XGRAD1, XGRAD2, XCAST,D
XDXy DYy NX,4DY 4 OFN, OEN,OTN,Y,A,B, OFC,0EC+0F1,0F2,0F3,0E1,062,0E3,0T1
XvOT?fUT3vOSl11051210513'05219052200523.XC0571oXCOSTZ,XCOST3

. 0002 DIMENSION OF(3),0€E(3),0T(3),GRAD1(3},GRAD2(3),COST(3),1S(3),1ST(3)

0003 READ(5,50010S1,052+X014OF (1), 0E{1),0T(1),GRADL(1),GRAD2(1),COST(1)
XeISTUL),IST(2),IST(3)

0004 500 FORMAT(9F12.8,313)

0005 XGRAN1=-GRAN1(1)

0006 XGR AD2=-GRAD2(1)

ooco7 XCOST=COST(1)

0008 - WRITE(6,101)

0009 101 FORMAT{10X,*GRAD1*y9Xy 'GRAD2' 10X * FUEL? 49Xy "ENERGY"y 9X, ' TIME?,9X,
X*LENGTH? y6X, *~EPS2/EPSL* 44X, *~EPS3/EPS]t,/)

0010 N0 15 JJ=1,3

C
[ FQUAL STFP SEARCH
c

0011 WRITE(6,300)JJ

0012 300 FORMAT(5X.'JTERATION STEP NUMBER (*,[1,°)¢)

0013 JC=0

0014 WRITE(648)GRAD2(1)yGRAD2(1)40F(1)40E(L1),0OT{1),XCNST,051,052

0015 8 FORMAT(5X,8F14.8)

o016 K=1

0017 3 IF(XGRAD1)10,11,12

_0018 10 DDX=-10,0%*(-(1ST(JS}))

0019 DDY=NDX*({ XGRAD2/XGRAD1 )

0020 GO T0 13

0021 11 IF(XGRAD2)14,18,416
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0022 14 DDX=0,000000000
| 0023 DDY=~10.,0%%(=(IST(JJ}))

' 0024 G0 TO 13

002s 16_DDX=0, 000000000000

| 0026 ODY=10,0%x(«([ST(JJ)))
i 0027 60 10 13
; 0028 12 DDX=10,0m%(={1ST(JJ))} |

0029 DDY=DOX* ( XGRAD2/XGRAD1 ) i

0030 13 00 1 1=21,1000
;0031 DX=DhX® | ;
[ 0032 DY=DNY% [ i
i 0033 OFN=0OF(K)+NX .

0034 OEN=NE(K)+DY ,

0035 Y=XCOST ;
1 0036 CALL PAR(DFNyOENy 0S1,0$2,0TN,XCOST)

0037 0$1=-0S1 - ,
, 0038 052=-052 |
. 0039 . IF{XCOST-Y) 1,252 ¢
i 0040 _ 1 CONTINUE ‘
l c !
i c BISECTION SEARCH
‘ c

0041 2 OFC=DFN=DDX :

0042 OEC20EN-NDY ;
' 0043 0N 39 KK=1,12 B N
| 0044 OF220FC ;
| 0045 OF1=0F2=DDX/{2.00000000000 *%KK } |
i_ 0046 OF3=0F2+NDX/{2,00000000000000%**KK ) :
[ 0047 0E2=0EC
| 0048 QEL=NE2~NNY/ {2.000000000000000%*KK )

'0049 0E3=0F2+DNY/ (2, 0000000000000000%#KK}

0050 CALL PAR(OF1,0£1,0811,0521,0T1,XCOST1)
| 0081 CALL PAR(OF2,0E2,0512,0822,07T2,XCOST2)
- 0052 CALL PAR(OF3,063,0513,0523,073,XCOST3)

0053 A=DABS(XCNST 2=XCASTY)

. 0054 A=DABS(XCOSTI=XCOST2)
1 0055 TE((A+R)=5,0%(10,0%%(-16)))35,35,36

0056 36 1F{XCOST1=XCOST2)30431,32
. 0057 30 IF(XCOST2-XC0OST3133,40040 ;
0058 31 IF(XCOST2=-XCOST3)34,40,40 i

0059 32 TF(XCOST2=XCOST3) 34934442 :
| 0060 33 OFCa0F1 ,

0061 OEC=0F1 i

0062 G0 TN 39 ,

0063 34 (FGC=0F2

0064 NEC=0E2 ;

0065 GO T0 39 !
L 0066 42 OFC=0F3 i
0047 0EC=0E3 ‘

0068 60 TN 19 !
L 0069 40 WRITE(6441) f

0070 4] FORMAT(2X,!SOMETHING WRONG IN THE BISECTION SEARCH!)

1 0071 60 TO 35 |
L0072 39 CONTINUE ‘
'0073 35 OFN20FC .j
|

|
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0074 OEN=0EC
0075 CALL PAR(OFN,0EN,0S1,052,0TN,XCOST)
0076 051=-NS1
0077 0§2=-082
0078 IF(JC-1)22,23,23
0079 22 IS(K)=1
0080 IF{K-2)4,5,5
. 0081 4 DF(2)=0FN
, 0082 OE(2)=0EN
! 0083 0T(2)=0TN
0084 GRAN1(?2)=20.0000000000#%(0TN-2.00000000000)*0S1+1.00000600000000
0085 GRAD2(2) =20, CO0C0000000%{0TN=-2,0000000000)%0$2+1,0000000000000
0086 XGRAD1=~GRANL(2)
0087 XGRAD2=~GRAD2(2)
0088 WRITE(648)GRADL1(2),GRAD2{2),0F(2),0E(2),0T(2),XCOST,051,052
0089 K=2
0090 G0 TO 3
0091 + 5 WRITE{6,102)0FN, OEN, OTN, XCOST,051,0S2
0092 102 FORMAT(33X,6F14.8) o
0093 XGRAD1=0FN-0OF (1)
0094 XGRAD2=NEN-NE (L)
| ooes XCOST=COST(1)
| 0096 Jec=1
0097 K=JC
0098 .60 70 3
0099 23 GRAD1({1)=20.000000000*(0TN-2.000000000) *0$1+1.0000000000000000
| 0100 GRAD2{1)=20,00000000000%*(0TN-2.00000000000)*0S52+1. 000000000000
L olo}l Is(3)=1
i 0102 WRITE(648)GRADL{1)4GRAD2{1) ,OFN,OEN,OTN, XCOST,0S1,0S2
‘0103 WRITE(6,104)1S5(1),15(2),15(3)
| 0104 104 FORMAT(5X, 155Xy 1595X,15)
i 0105 A=NABS(GRAD1(1) }+DABS{GRAD2(1))
| 0106 IF(A-0.0000000000005) 17,1724
' 0107 24 OF(1)=UFN
0108 OE(1)=0FN
. 0109 OT(1)=0TN
{0110 . COST{1}=XCOST i
0111 XGRADL=~GRAD (1)
0112 XGRAN2==GRANZ2{1}
0113 15 WRITE(6,100)
0114 100 FORMAT(///)
0115 60 TO 17
0116 18 A==-XGRAD1
0117 B=-XGRAD2
0118 WRITE(649)A,B y0F Ny OENyOTN 4 XCOST yOS1,0524K 4 JC
[ 0119 9 FORMAT{5X,8F14,8,212)
0120 GO TO 200
| 0121 17 A=-XGRAD]
{0122 B==XGRAD2
' 0123 WRITE(64400)A,8
0124 400 FORMAT(1H1,2F20.14)
L0125 200 A=A
. 0126 FND
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. 0001 SUBRDUTINE PAR(OFN, OF N, 0S1,40S2,0TNyXCOST)
. 0002 RFAL*S OFN,IEN,OTN,0S1,052,%XCOST
' 0003 052=2.7%(1,0-CFN/QFN)
10004 £S1=2.0/COFI*OEN)+052%052/6,0-082-0.500_ . _ .. .. . . _
0005 FIN=(1.040S514082 ) *0FN '
I 00CA XCOST=12.,30000600000C*{ OTN-2, 00000006 ) *{ CTN=-2,00500000) +OFN+0EN
- 0007 RETURN
0cos FND

123
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THIS PROGRAM IS CONSIDERED AS A TYPICAL EXAMPLE FOR A SADDLE-POINT
SEARCH.THE TECHMIQUE USED IS A MODIFICATION OF THE ACCELERATING
STEP SEARCH TECHNIQUE,REFER TO THESIS. r
THE SYSTEM CONSI

Xt mA%X+BRUeC Y i

THE COST SCALES COSIDERED ARE,
EX1=0.5%(FINAL STATE)**2
EX2=0.5%{ENERGY DISSIPATED BY CONTROL U)
EX3=0,5%({ENERGY DISSIPATED BY CONTRCL V)

OBJECTIVE=MIN MAX(EX1+(EX3)/(EX240,5)) ,V MIN AND U MAX
=MIN MAX(OF), (SUBROUT INE*PAR®)

EPS1=C2/Cl
EPS2=C3/Cl
KK=+10R~1 +1 FOR STEPS IN GRADIENT DIRECTION
=1 FOR STEPS OPPOSITE TO GRADIENT DIRECTION
GRAD1=D{OF ) /D(EX2) -

GRAD2=D{0OF }/D(EX3) '
OF 1= (GRADI*GRAD 1 +GRAD2#GRAD2) , { SUBROUT INE *PAR® )
THE_PROGRAM IS CONTROLLED TO THREE ITERATIONS(CAN BE CHANGEL).

C QFL ASSUMING EX2 AND EX3 ARE GIVEN.SUBROUTINE *BISEC® IS A

THE STEP SIZE IN EACH ITERATION=(10.%**(-1C{K))},K=1,2,3

THE MAIN PROGRAM IS ASSOCIATED WITH THREE SUBROUTINES,*STEP?,'PARY |
sAND*BISEC* . SUBROUTINE*STEP® IS TO DETERMINE THE STEPS IN THE EX2 '
AND EX3 DIRECTIONS.SUBROUTINE *PAR® IS TO DEVERMINE EPS1,EPS2,0F, |

ﬁhﬁﬂhﬂﬁﬂ'ﬂﬁﬂhﬁﬂﬁﬁﬁﬂﬁﬁﬂﬂﬂﬁnﬁﬁ

0021

DO 15 IK=1,3
R s

C BISECTION SEARCH.

0001 REAL#8 XS14XS29XS34EPS14EPS20FX1X2,X3,GRADL ,GRAD2,0X2,0X3,D2,03
e L XeXINyX2NyX3Ns¥Y4OFT,YY,0FF

0002 REAL#8 A4ByCoToXOsXSsCSeBS»QLy Q2904905069 Q7:08,09,01050F1, AL, A2

0003 REAL*8 DEXPyDABS,DSQRT

Q004 DINENSION X1(3),X2(3),X3{3),1C(3),ICC(3)
© 0005 REAC{5¢4500)A+B¢CyX0y T,EPSL,EPS2,IC(1),IC(2),IC(3)

0006 500 FORMAT(7F14.8,313)

‘ 0007 XS=X0%*X0

i 0008 CS=C*C

| 0009 8S=B*B

€10 QLl=DEXP(~-A*T) ;

0011 Q2=DEXP(=2.%A*T)

0012 C4=1.00000 |
| 0013 Q5=EPS2%(S~EPS1#BS ‘
| 0014 Q6=05+Q4 :
i 0015 Q7=Q6+(1.00000-Q6)*Q2 i
| £8=1,000000/Q7

0017 Q9=Q8*(¢8 i
| oo1ls Ql0=XS5*Q9*C4*(1.00000000-Q2) i

0019 XS$2=0.5000000%BS*EPS1*EPS1*Q10 ’

0020 XS3=0.5000000%CS*EPS24EPS2#Q10

PS2:XS1,0F,0F1) J

0023
0024

0025 . .

X2(1)=XS2
X3(1)=XS3
X1(1)=Xs1
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0026 Al=X3(1} 1
0027 A2=X2(1)+0.50000000000000 .

0028 GRAD1=1,C000000000/EPS1~AL/ (A2%A2)

0029 GRAD2=~1,00000000000/EPS$2+1.0000CA0000000/A2

0030 WRITE(648)GRADLyGRAD2,X1{1),X2(1),X3{1),0F EPS1,EPS2 l

0031 8 FORMAT(5X,8F14.8)

0032 KK=1 |
. 0033 CALL STEP{GRAD1,GRAD2,KK,IC(IK),DX2,DX3)

. 0034 OFT=DF]

0035 YY=0FT
0036 XS2=XS2+DX2
' 0037 X$3=X$3+DX3
' 0038 CALL PAR (XS24XS34EPS1,EPS24XS1,0FF,0FT}
| o039 IF(OFT-YY)11,12,12

0040 12 KK=-1

0041 pX2=~DX2
| 0042 DX3==DX3 i
| 0043 11 DO 1 I=1,1000 ;
| 0044 C2=Dx2*1 i

0045 £3=DX3#1

0046 X2N=X2(1)+D2 .

0047 X3N=X3(1)+N3
' 0048 Y=0F1

0049 CALL PAR [X2NyX3NyEPS1yEPS24X1N,OF ,0F1) .
, 0050 IF(OF1-Y)1,2,2 o i iy
! 0051 1 CONTINUE ;
i 0052 2 CALL BISEC (X2NyX3N,DX2,DX3)

0053 100 [CC(li=] '
0054 X2(2)=X2N ‘
0055 X3{2)=x3N ;

‘0056 CALL PAR (X2(2)4X3(2),EPS1,EPS2,X1{2),0F,0F1) i
0057 A1=X3{2)

0058 A2=X2(2)+0.5000000000000

0059 GRAD1=1.C0C000000/EPS1-AL/ (A2%A2)

0060 GRAD2=-1.0000000000/EPS2+1,0000C0000/A2 _
0061 WRITE(6,8)GRADLyGRAD2,XL(2)4X2(2)4X3(2),0F yEPS1,EPS2 :
. 0062 KK=1 o

0063 CALL STEP (GRADL »GRAD2,KK, IC (1K) ,DX2,0X3) |
0064 OF T=0F 1 !

0065 YY=0FT |

0066 Al=X3(2) +DX3 i
. 0067 A2=X2(2)+DX2 !
. 0068 CALL PAR (A2,AL1,EPSL,EPS2¢XLNyOFF,0FT)} :

0069 IF(OFT-YY)110,120,120 ]

0070 120 KK=-1

0071 DX2=-DX2 ‘

0072 DX3=-DX3

0c73 110 00 3 1=1,1C00
. 0074 D2=0Xx2*1 ‘
| 0075 D3=DX3*! |

0076 X2N=X2(2)+02 |
L 0077 X3N=X3{2)+D3 !

0078 Y=0F1 i

0c79 CALL PAR (X2N,X3NyEPSL1,EPS2,X1N,OF,0F1)

gcao

1F‘0F1"V’3'5'5
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| ocsl 3 CCNTINUE
| 0082 S CALL BISEC {X2NyX3NyCX2,0X3)
' 0083 200 ICCl2)=I i
0084 X2(3)=X2N
0085 X3(3)=Xx3N
i 0086 CALL PAR ({X2(3),X3(3),EPS1,EPS2,X1{3),0F,0F 1) i
0087 GRADL=X2(3)-X2(1) |
{ o088 GRAD2=X3(3)-X3(1) R _
0089 WRITE(6,9)X1(3),X2{3),X3(3),0F,EPS1,EPS2 !
0090 9 FORMAT(33X,6Fl4.8)
, 0091 KK=1
. 0092 CALL STEP(CGRADI,GRAD24KKy IC(IK),DX2,NX3)
0093 CALL PAR{X2(1)yX3(1) 4EPS14EPS24XL(1},0F,0F1)
0094 00 4 1=1,1000 |
0095 D2=DX2#+1
0096 03=Dx3*1 |
0097 X2N=X2(1)+02
0098 X3N=X3(1)+03 f
0099 Y=CF1 i
0100 CALL PAR (X2NyX3N,EPS1,EPS2,X1N,OF ,0F1)
olol IF(OF1=Y 14,646 ‘
0102 4 CONTINUE
0103 6 CALL BISEC (X2N,X3N, DX2,DX3) ;
0104 1CC(3)=1
. 0105 CALL PAR [X2N,X3N,EPS1,EPS2,XLN,OF,0F1)
© 01C6 Al=X3N
' 017 A2=X2N+0.500000000000
0108 GRAD1=1.0G00000004000/EPS1-AL/ (A2%A2)
" 01C9 GRAC2=-1.C0CJ00000000/EP52+1,0000C000000/A2
0110 WRITE(648)GRADLsGRADZ s X1Ng X2No X3N4OF EPS1, EPS2 ,
S olll WRITE{6,7)1CCIL),ICCL2),1CCI3)
0112 7 FORMAT(2X,3110)
0113 XS2=xX2N
0lle 15 _XS3=X3N ;
0115 ENG :
|




127

22708709

FORTRAN IV ¢ LEVEL 1, NOD 4 STEP DATE = 70241
0001 SUBROUTINE STEP (A,B4KKyI,DA,08) .
0002 REAL*8 AyB,DA,0BsC,D,E f
0003 REAL*8 DEXF,DABS,DSQRT ,
0004 IF(A)10511,510 4
( 0005 11 IF(CABS[A)-0.000€C00000000005)20,20,21 .
0006 21 IF{B}10,18,10 i
; 0007 10 C=DSQRT{1.+{B/A)*(B/A)) i
0008 E=0SQRT(1.+(A/B)*{A/B)} i
0009 D=10.0%%{-1) :
0010 DA=KK*D*(A/DABS{A)}/C
T 001t DB=KK*D#(8/DABS(B))/E ;
0012 G0 10 19
| 0013 20 DA=0.000€00000000000
| 0014 CB=KK*D
| Q015 GO TO 19
0016 18 WRITE(6,8)
0017 8 FORMAT(2X,'THE GRADIENT IS VANISHED') '
, ools 19 RETURN :
| 0019 ENE
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|

| ooct SUBROUTINE PAR(EX2,EX3,EPSL,EPS2,EX1,0F,0F1)
0002 REAL*8 A84CsTyX0sXS+TS1B5+Q1102¢03,049EPS1,EPS2,05+Q6,Q75Q8,09,EX

i X14QL0yEX24EX34OF yR14R2yR3 4 R4 RS yGRADL, GRAD2,0F 1, AL 5 A2

L 0003 REAL*8 DEXP,DABS,DSQRY

| 0004 A=0.5000C000
0005 B=0.0500€ 0000000000 i
0006 €=0.0510€€000000000

, 0007 1=2.00000000 i

| 0008 X0=1.500600000

[_0009 XS=X0*XQ i

| 0010 €S=C*C |
0011 BS=B*8

‘ 0012 Q1=DEXP(~A*T) i

; 0013 Q2=DEXP{-2.00%A*T) !

| 0014 Q4=1.00000/(2.000000%A)

. 0015 R1=(B/C)*DSQRT(EXI/EX2)

0016 R2=BS*XS$#0.500000000%(1,0000000-Q2)

' o017 R3=(R1*CS-BS)*{1.0067000C00000-02)

: 0018 R4=DSQRT (EX2/R2) |
0019 R5=1.0000000/R4 :
0020 EPS1=Q2*(1.00€00000/ (R5-R3))

0021 EPS2=EPS1#R1
0022 Q5=EPS2%CS-EPS1*BS

¢ 0023 Q6=Q5%Q4

. 0024 C7=Q6+(1.00000-Q6) *Q2 ;
0025 08=1.,000000/Q7 i
0026 Q9=Q8%Q8

0027 EX1=0,50000%XS*Q2%Q9

;. 0028 Al=EX3

" 0029 A2=EX2+0.5000C000000000
0030 GRAD1=1.C0000000000/EPS1-A1/ (A2%A2) i

' 0031 GRAD2=~1.C€000000000/EPS2+1,00000000000/A2
0032 OF1=GRAD1#GRAD1 +GRAD2#GRAD2 i
0033 OF=EX1+A1/A2
0034 RETURN
0035 END :
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oocl SUBRCUTINE BISEC (AyB,5A,DB)
0002 REAL*S A,B,DA,DByDXy DY XC,YC,X1,X2,X3,Y1,Y2,Y3,0511,0821,0522,0513

Xo0823,21,22,23,V1,V2,V3,0512,v01,v02,Vv0N3

. 0003 _ _REAL*3 DEXP,DABS,DSQRT_ _ _ _
00C4 CX=DA
0005 cy=cs
0006 XC=A
0oc7 YC=8
0008 CC 39 K=1,40
_0009 x2=xC__ . e L
0010 X1=Xx2<DX7{2 .000000000%*K)
0011 X3=X2+4DX/(2.CC0000C0000%*#K )
0612 Y2=vC
0013 Y1=Y2-DY/(2.00307MR00%%)
0014 ¥3=Y2+DY/(2.000000000%%K )
.Q0L5 .. CALL PAR (X1,Y1,0§11,0521,21,v01,V1) i ,
0016 CALL PAR (X2,Y2,0512,0522422,V032,V2)
0017 CALL PAR (X3,Y3,0513,0523,23,V03,V3)
0018 A=CABS(V2-V1)
0019 E=DABS(V3-V2)
0020 IF{{A+B)~5,0%{10.0%%(-16)))40,40,36
Q02L = 36 _IF(V1-v2)30,31,32 _  _ e e
0022 30 IF(V2-V3)133,33,40
0023 31 IF(V2-V3)34,40,42
0024 32 IF(V2-V3)34,34,42
co2s 33 Xc=x1 -
0026 YC=vY1
0027 . G0 1O 39 __ o o )
0028 34 XC=X2
0029 YC=Y2
0030 GO TO 39
0031 42 XC=X3
0032 Yc=Y3
0033 39 _CONTINUE e _ B e
0034 40 A=XC
0035 R=YC
0036 WIITEL6,8)K
0037 8 FORMAT{2X,110)
0c3s RETURN

L0039 END_. — . -
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00c1 SUBRCUTINE BISEC (A,8,CA,0B)
0002 REAL*3 A,ByDA,DByDXs DY, XC,YC,X1,X2,X3,Y1,¥2,Y3,0511,0521,0522,0513

Xy0523,214224234V1,4¥2,V3,0512,V01,V02,V02

.Qe0o3_ __REAL*3 DEXF,DABS,DSQRT_ _ e
00C4 DX=DA
0005 LY=c8
0006 xC=A
0007 YC=8
0008 LT 39 K=1,40
0009 xgsXC_ o
0010 X1=X2-0X712.000000000#*K)
0011 X3=X2+4DX/(2.CC0000C0000%*K )
0012 Y2=vC
0013 YL=Y2-DY/(2.0000"n00%8 )
0014 Y3=Y24DY/(2.000000000%*K )
.Q015 .. —._._CALL PAR (X1,Y1,0511,0521,21,V01,V1) N .
0016 CALL PAR (X2,Y2,0512,0522,22,V0)2,V2)
0017 CALL PAR (X3,Y3,0513,0523,23,v03,V3)
0018 A=CABS{V2-V1)
0019 E=DABS{V3-v2)
0020 IF({A+B)~5.0%(10.0%*(~16)))40,40,36
Q021 36 IF(V1=Vv2)30,31,32 = _ ol R
0022 30 IF(V2-V3)33,33,40
003 31 IF(V2-V3)34,40,42
0024 32 IF(V2-V3)34,34,42
6023 33 XC=xX1 °
0026 YC=v1
.0022 . ... GN TO 39 __ . . - l
0028 34 XC=X2
0029 YC=Y2
0030 GO TO 39
0031 42 xc=x3
0032 YC=v3
0033 39 CONTINUE e i o
0034 40 A=XC
0035 R=YC
0036 WIETE(6,8)K
0037 8 FORMAT(2X,110)
0c38 RETURN

Q039 END__ e e - - . -




