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Abstract _ r

The earlier development of non—mertial quantum field theory is traced back to the
by—product of formulating a quantum field d\xcory in curved space tin?éﬁ‘hc well know?

Fulling-Davies-Unruh' cff'ect revealed that aw th/crmal character which obevs th{‘ Bose
Eins;om statistics is inhcrcr;t in the quantum t":c.ld as viewed from a uniformly accelerated
frame of reference. Then by formulating the theory in a largc\class of coordinate systems or
| accelerated frames, the observed spcc&um \;/;s foun(; to exhibit a complicated £orm 1n
general. Morcoirc;, the limited applicability of the usual concepts in Minkowskian quantum
field theory is recognised when applied in non-trivial spage-time. Also discussed is the
closely related topic of quantum dctcctlon process in non-inertial frames by constructing a

simple modcl particle detector (thc Dc Witt monopole detector) in probing the pdrlld&/

content’;or 'vacuum noise' algng its motion in flat space-time.The phenomenon of the
’ 4

‘apparent inversion of statistics' for a uniformly acceleraggp
{ S L 3
arbitrary dimensions 1s discussed as well as some cxp@ﬁn

g

tector in flat space-times of
cts about the detection of
the 'Fulling-Davies-Unruh' effect. N

’ \ |
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Conventions and abbreviations

Our notation for quantum field theory mainly follows that of iijorkcn & Drell

- .

(1965). The metric signature is ( +,—,-,— ) in usage. Throughout the thesis, natural units

are used 1.e.,, i = ¢ = G = 1 unless otherwise stated.Bold characters indicate vector

quahtites ingthe thcéis. -
The fc wigg spcciel symbols and abbreviations are used throughout : .
* » complex conjﬁgatc_
+ or h.c. Hcr‘mitian conjugate
v " covariant derivative
9/dx¥ or 9, partial derivative
h Re(Im) real (imaginary) part

Tr . tracc i
In ¥ natural logarithm
kg Boltzmann constant

, [AB] AB - BA
[AB], AB+BA
~ d;'der of magnitude estimate ¢
= . asymptoﬁcally approximate to !
=’ defined to be equal to

-

-~



, - " Chapter 1 Introduction
1 'c/ discovery of the Hawking effect : the quantum thcrmél radiance from a black
hole mZxc of the most spectacular results of the construction of quantum field thc{)ry in
curved spacc-timc (Hawking 1975). It ‘providcs a theoretical foundation for further
development of the the’.rmod)"namics of a black hole originally conceived

+

phenomcnologicall; ’by Bekenstein (1973).

The fact that a thermal effect arfscs ﬂ a situationt which seems to have no rclﬁtion to
ordinary statistical thermodynamics is a surprising one, and has thereforcb attracted a great
deal o‘f thcéretical attenton conceming its foundadons. In particular, it has been suggested
that a similér effect could occur even in flat space-time (Davies 1975). Indeed, it wa’s
subsgquenﬂy shown that "a uniformly accelerated 'particle detector’ will perceive a thenﬁal
bath of particles” (Unruh 1976). This cffcct,'whiéh occurs in flat space-time, hinges on one
‘of the fundarpcmalﬁ concepts in physics : the principle of equivalence, becomes important as
a bypr;)dhct of the efforts to quantize gravity (Unruh 19860). . s '
_ These developments revealed that the essential feature of the HaMdng effec;t was
embedded in a §i11}p1€£ situation involving t!lc uniform acceleration in flat spacé-timc. It was
also realized (that a rclcvantv mathematical framework for the létter had already been
developed in the work which was concerned with various possible deﬁ}iitiops of vacuums
an‘sociated paﬁiclés‘in the quantum field theory (Fulling :1973'). Actually, this
investigation was also motivated by the scgu'ch_for a qu'apmm thco:'y of .gravity. The
structure of this mathematical framework is similar to that underly'ing'thc Hawking effect
apart frorn the complications due to the curvature ;)f the spaéc:time wup a black-hole. The .
significance of this framework bccamc appreciated aftcr the d.tscovcry of the Hawking
effect, and so for the analogous cffect in flat space-time, 1t°was called the 'Fullmg-Dawcs-
Unruh' effect.

It is an interesting historical fact that some people were developing a general

N 4
3



axtomatd theory ot quantum ticlds which found 1ts natural apphication to wedge shaped
manttolds (Brsognano and Wichmann 1975, 1976). Its relevance to the above mentoned
cltects was recognmised much later and turther developed nto a general ‘thermalization
theorem” which contained the mathgmauncal structure devised by Fulling as a special case of
atree field (Sewell 1982 Kay 1985).

This thermalizattion.theorem states that the pure state which s the vacuum state tor
an nerual observer 1s a canontcal ensemble from the point of view of a unitormly
accelerated observer. The temperature charactentzing the ensemble 1s proportional o the
magnitude of the accelerationot the observer If the acceleranon s replaced by the surtace
gravity of a black hole. 1t 1s precisely equal to the Hawking temperature ot the black hole

The discovery of the Fulling-Davies-Unruh effect prompted a flood of researches
on this subye and on quantum fiel i theory 1n curved space utme 1in general. The word
Tulling Davies-Unruh’ effect 1s used with various meanings in the literature and the
discoverers are assigned different credirs for this effect. Here, we have adopted the term
which includes two distinct physical aspects: firstly, the thermalization theorem holds and
secondly, from an operauonal viewpornt, a uniformly accelerated detector observes the
Planckian spectrum. It should be pointed out that these two features are not equivalent to
one another.

‘ The aim of the present thesis is to review the investigations done by peopic and
present thetr results in a coherent way with the main theme centering about the formulation
of quantum field theory in non-inertial frames in flat space-time. The starting point 1s the
phenomenga of the 'Fulling-Davics—Unru_h' effect for it provides a suitable candidate for
the canonical quantization of a matter field in a uniformly accelerated frame: the Rindler
framc. Then, the scope of the formulation will be widcncq and extended, 1n order to
as;\ir'i'lilatc the changes in conditons of the problem. Thcs<.: change in conditions include the

motion of a non-uniformly accelerated observer; the coordinate systems are no longer the

o



Rindler frame but indeed a vanety of systems represent all possible kinds of motons A
[

briet account of quantum field theory in analytic accelerated trames is given because ot s
relevant relation to our inlcrc.st. In thg course of the pr(;scnmunn, the results ot the
investigations are highlighted and their physical interpretations are emphasized. Therr
unusual features are pointed out with regard to those in ordinary quantum field theory
FFurthermore, we focus our attention on one of the conceptwal aspects of the subject.
namely the quantum measurement process associated with the moton of the observer. Two
m;un))mblcms are addrcsscd', concerning the method and the interpretation of the result of
the measurement process. An account of the working mechantsm of a model paruicle
detector and what 1t measures when coupled to a matter field 1s given. The phenomenon ot
‘apparent staustics inversion’ comes out unexpectedly from the couphig of a model parucle
detector to a matter field in arbitrary dimension. This opens a new vista tor the detection
process. The problem of verifying the effect is also a point of interest but sull in the
primitive stage of doing actual experiments.

This review follows a pedagogical approach to the subject, presenting the
conceptual development pertinent to the formulation of the theory. looking at it from
various angles, so as to give a coherent picture about development of the theory. The

materials s organized in an orderly manner with emphasis on the general framework of
conceptual inicstigadon, instead of concentrating on the details of the denivations or
techniques employed by people. It is hqped that thils\will make the main theme explicit. At
least some of the technical aids to carry out\Calculations are presented but we do not dwell
on tedious calculations and arguments. Excellent reviews have been published (De-Wit
1979; Sciama, Candelas and Deutsch 1981; Birrell and Davies 1982; Wald 1984; Takagi
1986) and the reader cdn refer to them fOf a more detail .treatmcnt of individual subjects.

The plan of this review is as follows.

In chapter 2, an historical background of the work of those 'pioneers’ is given so



that reader canhave a basic idea ot the carly stages of dcvclnpmcnt‘ut' ticld theory in curved
space time and 1its subsequent sumplications and redevelopments i tlat space ume The
term Fullimg Davies Unruh’ eftect with s assoctated lcmpcr:nuxsv s antroduced

Chapter 3 deals with somie of the heunstic t’c;nurc».x in the tield theory in Minkowska
~pace e and moparticular, the problems ot adapting those features (o a ECOCTIC space e
without otherwise modifyving and recofisidering the usual field theoretic construction and
detimnon

Ihen we proceed to chapter 4 which forms the basic background ot the subject and
soas treated rather extensively The Rindler coordinates are mtroduced followed by the
cyposition ot the quantzaton ot the ticld Here | the approach ot quantizing the ficld oves

the whole Minkowskr space ume 1s adopted as opposed o the tanuliar Balhing quanusatien
~.

- N
ot other methods. The global propenties of quantum field theory are spelied out by usany

PCT svimmury on the wavefunctions in the limdlcr manitolds. The Bogoliubov cotficients
relating the creauon anmihtlaton operators that defing the two vacuum states are calculaied

Finally, the thermalizaton theorem s stated as a relaton between the two vacuum states

\
'

0y > and 10, > for both the scalar and Dirac fields. This result 1s wenerahized to

interacting tields tn association with the KMS (Kubo-Martin-Schwinger) condition as was

tirst done by Sewell (1982).
L -

Having the relevant concepts thus introduced. chapter 5 embarks upon the canonical
Juanuzation of a matter field in other coordinate systems in flat space -time. The case ot a
rotating observer 1s discussed in detail due to us interesung physél implica‘nons_ It 15 done
in the general situation by considenng a time-dependent angular velocity in the formulaton
so that the results from both uniform and Wn-uniform circular motion can be compared.
On the other hand, the main results from the quantization of the field in other stationary
coordinate sys}ﬁns are prcsemed. that yield a surpnsing conclusién: only two kinds of

vacuum states exist in the formulation of the theory in flat space-time and those vacuum

states are distinguished froM one another by the existence of an event horizon.



- ~
Chapter 6 1s devoted solely to the formulation of quantum field theory in analyuc
accelerated frames. This approach was firstconsidered by Sanchez in flat space-time but is
\ generalized w0 qurved gp_acctimc later. H()/chcr, w will concentrate on the idéas hrought
into the forvnlauon in flat space-ime. The ments of this approach are not only that all the
“
quantum, classmal and thermal aspects of the thcory can be exphutly expressed 1n tgggs ot - ’
the nature of the analytic mappings; but alsg the'theory of the detectuion process N
incorporated ir;to it since all the measured physical magnitutes are to be interpreted in tc'rm.\
of the measurements carried out by a comoving measuring device. ' ‘ S
Ip chapter 7, the ideas of quantum detection pr‘occss are introduced. This 1s duﬂt-. by
first considering the conceptually simplest model of a detector couplcd :.7) the matter field, -
called the 'De-Witt monopole detector’. The response of thls dctcuor is given by the

N

product of a factor depending on the structure of the detector and another factor depending
»

only on the intrinsic nature of the.field. The Iftter factor is expressed in terms of the
‘Wightman two-point * functon and is interpreted as the vacuusn noise of the power
spectrum by some authors. Then, a calculation is carried out to obtain the power spectrum

. . [ 4
as seen by the detector in both inertial and uniformly accelerated moton when coupled to a
Xscalar field. The related topic of the méasurcmcnt of the vacuum fluctuation of the ‘zero-
point field' in accelerated frames by a detector is also discussed. A comparison is made

between the results from canonical Euantizau’on of a scalar field and those measured by a
De-Witt monopole detector so that the usage of a model particle detector may be ju‘sn'ﬁcd. ‘
The intcrcs'ting phenomenon of the 'apparent statistics inversiof’ governing the power
spectrum of the 'Rindler noise' is discussed and the expression of it is comparcd-té that * .
from a ordinary thermal noise for both scalar and Dirac cases. The massive marter ficld
complicates the cxi)rcssions of the vacuum noise but informatiqn can still be obtained.

Finally, the problems that plague tige theory of quantim detection processes are again

brought into discussion with an eye for further clarification.

- y
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/ In chapter 8, the experimental fatts and plausibility of actually performing an

experiment to test thc)'Fulling—DavicsAUnruh' effect are conveyed to the reader. It is hoped
that what we discussed in the ércccding chapters ¢an be further understood by considening

. . . 7 - . . -
an expennmenl verificaton with an expectation for further improvements and refinement of

the existipg model. .
~Lastly, chapter 9 summarizes the main ideas deweloped 1n the review and two
: . LI
appgndices are gtven ta provide information about the Bogoliubov transformation and the

KMS condition, : ' o



Chapter 2 Historical Backgrbund

The goal of quanuzing the gravitational ﬁ@ and herrce ynifying quantum theory

with the general theory of relativity remains unattainable since the early constructions of

various formalisms. In the past decades, a semi-classical approach has been used in which
: Y |
a matter field that sati#fies the linear field equations ('Qlincar matter field’) 1s quantized on a
!

given tixed and unquantized curved background. This so called 'background field' method
was Startcd'by De-Witt as-a possible approach to a complete theory of quantfation of

gravity (De-Win 1967a,b{According to this method, the new metric is then given by

gpv=gpv+gu\’ (2.1

4

- where gC : the classical metric of some background space-time
Hv .

g :aquantum field propagating in the background spaéc«tirhc

v
L) H N ~ .
¢ \

. However, some of the aspects of such a‘thcor‘y have not been explicitly solved such
as the rcgulari;,ation and renormalization difﬁcultic?s of the quantum stress tensor <T,y>.
Different techniques are needed for getting around those’plagu'cﬂm exist in the theory. On
the other hand, the remarkable discovery ny Hawking in 1975 b_rpugh; new exciternent in
the formulation (;f quantum field chory in a curved spac?-ﬁme. The so called 'black-hole
evaporation' or 'Hawking effect' states that if a linear matter field is quantized m the

presence of a black-hole, then the black-hole produces quanta of this field and radiates them

exactly as if it were a black body at a tempcraturc inversely proportional\t6 the mass of the

black-hole.
v | 1
. hc c :
k,T= =
A B" " 2n (8GM) 8GM o (2.2)
In natural units :fi=c =G = 1, we have e | ' )

T

.’ | .



where kg : Boltzmann constant
T : Terniperature ( K )
' M : Mass of the black hote , ‘

This result is obtained for a four-dimensional simplified model in which a spheri

symmcmﬁgﬂof matter collapses inwards under the gravitational' force. This

temperatuke can also be expressed in geometric units in the form of:

K '
kg T 2nc $ (2.4)

where K 1s the surface gravity of the black-hole. An inert server in the vicinity of the
C\Tt horizons of the black-hole would then detect a thermal flux of outgoing particles. We
may then‘also describe the black-hole as a thermal mixed state.

The Hawking effect connects the physics of black-holes with other branches of
physics such as thermodynamics elc., and also has various implications for quantum
gravity itself. Moreover, it has potcnﬁally interesting implications for quantum theory itsslf,
namely the ;ssociation of the radiation with an event hoﬁzqn. For some isotropic

. cosmological models such as the de-Sitter space, an inertial observer finds himself bounded
by an event horizon a(nld detects thermal radiation (Parker 1976). Since these horizons cquld
be different for different observers, an idea of observer dependence is introduced intq the
quantum theory. Actually, we already have this physical implication for flat space-time.
This was first discussed by Fulling (1973) in his thesis about the non-uniqueness o.f'
canonical quantization of a scalar field in Riemannan space-time. He showed that the
'vacuum' qr 'no particle’ state in the rest frame coordinate adapted to a ‘unif'ormly
aceclerauf,d observer is ot unitarily. equivalent to the ordinary Minkowski-space vacﬁum.

’

Working in the Heisenberg picture, the Bogoliubov transformation coefficients between ¢he



/ :

\

¢‘dcelerated and Minkowski frame 'vacuum states' were calculated by Fulling and by Davies
(1975) jn a different context by using an accelerating moving mirror. They found that the
Minkowski 'vacuum' would appear as an infinite sum of multi-particle states with a thermal

v .
distribution in the accelerated frame. The associated local temperature is given by
kBT = (2.5)

or k T——— in natyral units (2.6)
2x

where ‘a’ is the magnitude of the proper acceleration of the accelerated frame. Similarly, we
can use a thermal density matrix to descnibe the Minkowski vécuum restrictdd to the space
of interest under the Fulling quantization’

The next major step was taken by Unruh (1976), who first studied the operational
significance of this result. He considered a 'Gedanken' experimcm of how a simple
quantum mechancial particle detector such as a model atom with vaﬂo}s energy levels put
,insidc a box, when coupled to a massless scalar field would behave if it were moved along
a‘ uniformly accelerated world-line through the Minkowski vacuum. The calculated result
showed that the dctcctor became excited with a thermal spectrum as if it were immersed in a
hcat’ bath wnh a temperature given by eqn. (2.6). In other words, the response of the
detector was the same as that of the detector at res in a thcnnal&bath of radiation at the
temperaturc given above! In this case, 'a’ is the magnitude of the acceleration of the
detector. |

It should be pointed out that we were addressing two different physical processes
while the two temperatures obtained goincidcd but with totally‘diffcrent intcrprciations. We
then have the ’Fulling-Davies—Unruh' effect for which a uniformly accelerated observer or

¢

Minkowski spacc ‘time wnh the 'FMAng-Dawcs-Unmh' tempegature given by eqn. (2.6}

.detector detects a thermal spectrum of rad1rnon when coupled to a linear matter field' in

o

In summary, the scenario has been changed from curved space-time manifold to

L
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stauc flat space-time but we still obtained similar results. The 'Hawking effect’ can then be

interpreted as acceleration radiation in a simple physical senseé. Actually, the theory of the

N

‘Hawking effect’ has a close mathematical relation to that of the Fulling-Davies-Unruh”

effect since under a conformal transformatiofi, the space-time manifolds are identical to one.

another. More than this, the 'Fulling-Davies-Unruh' effect paved the way for investigating

the physical phenomenon that arose from a uniformly accelerated observer or particle

detector and subsequently to non-uniformly accelerated motions when coupled to a 'lincar

matter free field'. v
AN

~=.



Chapter 3 Heuristic quantum field theory features

Before embarking on a discussion of the methods and results of field quantization
in accelerated frames, we make some heuristic remarks conceming the quantum tield
theoretic features of the problem. Isham (1977) stated that a linear quantum f;cld 1s
determined by the following features: .

1). Linear field equations for opcmto)'ivalucd distributions.

2). Canonical equal-time or covanant commutator relatons. \

3). Boundary conditions for fields.

4). The mathematical dcﬁnitjo? of states and observables.

5). The association of physical states and observables with their mathematical

correlates.

It should be emphasizc;d that the above ’t}ve features are intimately connected and
cannot truly be separated. Some of the problems inherent in those features manifested
themselves in non-inertial frames or a generic curved space-time will be discussed briefly.

On a Minkowski spacc!timc or even a curved space-time, there is ng problem in
rigorously constructing quantum ‘ﬁcids that satisfy the first two conditions (With an
appropriate gcncralizatidn of 'equal time’). The space-time manifold is required to be
globally hyperbolic, thus ensuring the existence of a global Cauchy hypersurface on which
the classical Cauchy prbblcm is well posed. Thus, there c;fst unique advanced and retarded
Green's fupction®for the evolution of iﬁitial data in the hypersurface. Then the quantum
field automatically satisfies the required covariant field equations and éommu'iation
rélations. However, the main problem is that there exist an infinite number of
representations of either the canonical or covariant commutation relations, and we need to
have the 'physically relevant’ one. Moreover, the suitably smeared field 6pcrato'rs are -
assumed to exist on a fixed Hilbert space and obey the covariant equations. But some
people maintain the use of different Hilbert spaces at eacI} times, each with its own'

L

¢

11
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representation of the canonical commutation relations. The mouvation is that for the particle
creation and annihilation operators at each time, the Hamiltonian can be written in &w

symbolic form:

H() = an(t) a(t)a (1) BENERY

This is the so called 'Hamiltonian diagonalization’ method. -

The effects of boun‘dary conditons for fields are prevalent in Minkowski space-
time. The Cdsxmlr effect is the result of the difference in vacuum energy bcgtwccn afield ina
box and fields in flat space. The moving mirror effect stems _frbm having the moving
boundaries coupled to a matter field in a background space-time. In general, théboundury
conditions retlect the glot;al topological structure of the space-time that have already been
incorporated in the first and second features.

The construction of mathematical states and obsetvables has a problem that requires
‘ -

to be tackled, namely the association of a specific quantum operator with a classical
observable which is a non-linear function of the field (e.g. the sgss tensor Tuv') that 15
formally divergent in the quantum theory. . .
The last feature really causes many ambiguities when we ha$€ a non-inertial
obséxjvcr dr a generic curved space-timc. In Minkowski space-time we usually use a Fock
representation with its associated particle labels for states and-observables. However, these
definitions involve global concepts such as positive frequen;ty classical solutions (for
particle states), or the Poincare group of inertial observers, which are not generally
applicable in a generic curved space-time. Without the Poincare invariance of the vacuum
~
and the required positivity (i.6., positive norm) of the associated Hamiltonian, we do not
have the exact technical tools that provide the unique canventional free quantum field
o : " :

theory. Quantdxh fields may be readily constructed using various Fock spaces, but there is

no reason to say that field quanta in these spaces are actual 'physiczil particles' and there is

1

?
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no general scheme of choosing the physicaly correct representation. Indeed. in the case of
background space-times, the notion of frequency which is in-timatcl'y connected with the
idea of a particle is only applicable for wavclcngt}ls less than the local radius of curvature.
Thus, it 1s unclear what precisely is meant by a 'vacuum'’ or a ‘'particle state’ It is this
loosely defined notion that affects the physical interpretation of the results in field

\

quantization and especially in the measurement process.
2 \

There are other quantum field theoretic problems that need to be-faced up to in
~addition to those mentioned above. The general tovariance an\d group invariance of the
quantum theory are found to be violgted by the divergent field quantities (such as T,,,) and
the non-preservaton of the conformal invariance at the quantum level. The bhcﬁomcnon of
infrared divergences of a massless theory could radically change in non-Minkowskian
top?)logies. The final problem of incorporating genuine quantufrf gravity -effects into the
theory will be certainly important at dimensions of the Planck length (Lp ~ 1033 cm)) , the
Planck time (t, ~ 10 sec.) , the Planck mass (M, ~ 10°gm. ~ 102 eV.), and the Planck

temperature (T o~ 10%2 K).



Ci\apter 4 Qulantum field théory in Rindler frame
The implicit utilization of non-inertial frames in Minkowski space-time has been
briefly discussed in Chapter 2 .Basically, we employed two kinds of tcchniqucs-: one 1s the
use of conventional "in / out " quantum field theory in Fock space. Th;: maiq tool is the
Bogoliubov transformation and the other is the construction of model particle detectors for
investigating the ‘particle content’ of the theory in some physically mouvated way. In the
following sections, we arc‘going to review the phénomcnon of a unifof¥nly accelerated,

observer in a matter field with emphasis on the methods and the physical interpretation of

the obtained result.

.1 Rindl i { unif .

Let "a’ be the proper ace¢leration of an observer (i.e., the acceleration of an

observer relative to his instanteous rest frame ) in Minkowski space-time that satisfies the

following :
a, a“=—a2 » ‘ 4.
with the metric given as %Q,
it
1 0
h“v — . '.
0 -1

. ' \rre’n ’
for two-dimensional space-time.The observer is said to be uniformly accelerated w a’
!

1s a,constant.
2

The metric line element in the two-dimensional Minkowski space-time is given by
L o N

2 with = 0 - 42

ds’= di’— dx 1

With the following coordinate transformation . .

14

«



t=a ! e sinh(an ) ) (4.3)
x =a! e*® cosh( om ) , (4.4 .
with a= constant > 0 and —e= <N, § < oo . )
—— - Then eqn. (4.2) becomes i
‘ ds’= ¢296 (dn? - dE?) - (4.5)

The coordinates (11, £} cover only a quadrant of the Minkowski space-tithe, namely
the wedge | x | > t as shown in Fig.4.1 . Lines of constant 1 are srraiéht while lines of
constant & are hyperbolae.

From eqns.(4.3) and (4.4) we get :

2a €

2 2,
X-t = “¢ = constant

= (a’! %t )2 = constant (4.6)

The world-lines of the uniformly accelerated observers are then represented by the
hyperbolae for a particular value §. The proper acceleration 'a’ can be identified as the

following relation:
o € % = B~ =3’ = proper accelegation 4.7

All the hyperbolae are asymptotic to thenull rays t - x = 0, t + x = 0 which means that the
\‘ﬁ accelerated observers approached the speed of light as 1— # ee. The observers' proper

time 7 is related to § and 1 by

t=et ‘ (4.8)
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L"nr cach unitormly acceleriated observer, we have constructed a non-inertal coordinate
~ )

\\;\I(‘n] in the Minkowskr space ume. This system (1, i) 1s known as the Rindler
coordimate system’ wath the portion x > 1 t 1 of the Minkowskl space ume known as the
Rindler space” or ‘Rindler wedge’ An observer at rest in Rindler space 15 equivalent to a
nmtormly accelerated observer in Minkowskl space-time, and expertences an nertial toree
that by virtue o the equivalence principle.cannot be disunguished from a static gravitational
treld

‘ A second Rindler wedge x « Tl can be obtained by the tume retlectuon, tollowed by
the space reflection. The left (x <ltl)and nght - ( x > 1t!) hand wedges are labelled as
[ and R respectivelve The null rays t - x = Qand t + x = 0 ast as event horizons. Then the
two Rindler wedges [ and R are two causally disconnected segments in the Minkowshi
space time. The remaining regions are labclicd as 'Future (F)" and ‘Past (P) as shown in

the Figure. Events in both P and F can be connected by null rays to both [ and R.

F t A u=tx=0

§ = constant

M = constant

R

N
7
X

v=t+x=0

p

Fig 4.1. Rindler coordinatization of Minkowski space The four

e regions R. L. F and P must be covered by separate

coordinate patches. Rindler coordinates are non-
R analytic across the event horizons.

The four regions can be represented as :



R:[((,x):x>|tl}. P
L={x): x<tit!l} 4 1
F={ax)t>Ixl} H1h
a
P={x):t<ixi} 41

The eventhonizons u = 0 c.d v = 0 are the future and past event horizons respectively It
means that events in FF cannot be witnessed in R and stmilarly tor events in R they cannot

be witnessed 1n K'Ihe equations for u and v are given by:

—
u={(x):t=x} BERS

) v={(Lx): 1= x} 3 b

The geometnce properties of Rindler space are preserved when extended to tour

dimensional Minkowski space-time. The coordinate transformanon egns. become

t=a ! e sinh(am ) . (415
x=a‘.'c°‘§cosh( an ) ' (3 16)
y=y. z=2z ) (417

The metric line elemeng \g sull defined as : .
ds’= czaé( dn? - d&?) + dy2 +dz’ (4.18)

where —oo <'T]; £ <oo.

World-l}ncs of constant § are still the world-lines of observers with a constant uniform
proper acceleration a = « e"®5. Spatial hypersurfaces n = constant are Cauchy
hypersurfaces for the evolution of initial data in Rindler space. This hypersurface can be
extended through the origin into the left Rindler wcdgé to form 3 Cauchy hypersurface for

all of Minkowski space-time. N

The metric given by eqn. (4.18) is static. Invariance under Rindler time (1)

translations corresponds to Lorentz invariance for boosts in the x- direction. Therefore, the
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velocity of the accelerated observer 1s being used as the reldvant measure of ume
Corresponding to this invanance there exist a ime-like Killing vector field d/on which is
tangent to the hyperbolic world-lines. The norm of this Killing vector ts 1 along the
\ A
hyperbola £ =), where Killing time and the observer's proper time agree ( see eqn. 4% In
the nght Rindler wedge this Killing field is future directed while in the left wedge it 1s past
directed. In additon, d/dy and d/dz are space-like Killing vectors with assocrated conserved
quantities Py and P, . In two-dimensions, the space-like vector®is a conformal Killing

\
vector but for space dimenston n > 2, this conformal invanance is lost (Stephens 19860

Having discussed some of the geometncal properties of Rindler space, we are now
ready to discuss the properties of quantum field therein. In the past decades, the problem ot 4
field quantuization has been studied extensively for non-interacting field theories, starung

with the mgssless scalar field (Fulling 1973; Davies 19795), Dirac fields (Candelas and

Deutsch 1978; lyer and Ku.nar 1980; Soffel et.al., 1982) and subsequently other
complicated fields. Different methods have also been used by peoplcmore detailed
discussion of the methods and results, the reader can refer to the reviews mentioned in the
introduction. o ) -
Although different viewpoints are emphasised in the discussion of field
quantization, a similar conclusion is reached : the Rindler representation is incqui;ralem to,
that of the Minkowskian. Specifically, the vacuum state of the Minkowski representation is
a muxed state of finite téinpcraturc of the Rindler representation. However, some authors
criticize the usual 'Rindler quantizaton’ of the matter field. The matter field is quantized in
the Rindler wedge first and subsequently connected to the Minkowski space-time through a
: '

process of continuation such as the Bogoliubov transformation. They stress that this

c .
method does not consider the global propertes of quantum field theory and a more fruitful
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way 1s to do field quanuzaton in the whole of Minkowski space-time (Rumpt }‘)83;

* .
Hughes 1985). The main purpose of Rindler coordinates 1s to keep wrack of the segment of

er‘kowski space-ime which is space-like to the uniformly pccelerated observer. Then

when the field is quantized in Minkowski space-ume. it is auhxnatically quantized on the

Rindler spzicc too (Hughes 1985).
, ?

Rumpf quantized a massive scalar field over the complete two-dymensional

Minkowski space-time by the method of mass-analyuc quanuzation. We will tollow the

. treatment of the quntzation of a massless scalar field ¢ in four-dimensional Minkow ki

space-time by Bernard (1984/1985) in which the global properues of the PCT symmetry 1s
Pl
spelled out (Hughes 1985). - ¢

Jhe Rindler coordinate system is the crmi-Walkc'r rest frame coordinates of an
observer which is moving co-linearly through fjat space with a constant proper acceleration
of mggnitude ‘a’ This 'rest frame’ c'oordinz;tc system consists of coordirates carmied by an
orthonormal tetrad (e“);, such that the following conditions are obeyed : ‘

(a). The timelike tetrad vector ( &' ), is the four-velocity of the observer u*.

(B). The tetrad 1s Fermi-Walker .tmnspomu:d (Misner et.al., 1973) alo&g the world-

line of the observer. Given a world-line X*(t), pagametrized by the proper time 1, yields the

equations :

(
l}(i‘.l))

<
(4.20)

mn S o : ' .
(e )o(eu)v;.ncv—dlag(l, 1,-1,-1) (4.22)

Now, the Fermi-Walker transport equation can be written as :

.
»

L4 [ 4 .

[4

<



v
) u
I(e
- dee ) + () 8% (1) =0 (423
dt o
i
AN
where 8915 the generator of this transport. - (’w,r‘
4 ) /
[t is also a generator of the Lorentz tansformation and can be wntten as:
A J
9 = Leab | (4.24)
. 2 ag ¢ _ .
“with . N
: . )
e2B + ePa =0 (4.295)

-
where L are the generators of the Lorentz ransformations.
et us introduce the acceleraton a and the rotation €2 as the ‘electnic” and ‘magneud’

part of the antisymmetric tensor

1 9 5 '

—~eBe a2 Q" 4.26)
v 2 af e

1 . _

—(€®e =a.Q (427

4 a

B
We are looking for accelerating trajectories for'which (e*f)» €qp > 0 50 that the operator 9

* 15 a ‘good’ generator of temporal evolution:

(8,8 Pu]=0 (4.28)

for any time-like vector &M ( P are the translation generator ). S

The non-iﬁenial coordinates ( T, Zk )are cOnnected to the inerual ones x# = ( x0 | x1I,
\ .
x*, %) (with x¥ = t) by the following:
, . k.‘.‘
X = Ai‘ (vVZ , k=123 (4.29)

* with



d ’ .
— AF () = B (1) A") 5 -~ (4.30)
d,t \Y [¢] - »V

-
The metnic line element can then be written as :

2_ k 2 1 1 } . k
/s 4%“2 dr)? + 8, (dZ'+6} Z'dv) (4Z+8) 2" do) (4.31)

Then the Hamiltonian

e L°oB (4.32)

—ia | (433

The observer's Hamiltonian is represented by either (4.32) or (4.33). For simplicity, we

choose 8 and t independent of one another as it is generally valid for an infinitesumal
. ' N
amount of time dt. For a and Q parallel to each other, the Hamiltonian becomes

H=aR), +Q{), (4.34)

where (K)l’: boost generator in the direction 1.

(j )1 : angﬁ{ar momenturmn operator in the direction 1.

Then the non-inertial coordinates become the rotating Rindler coordinates

" t =2 sinh (at) - (4.35)
‘ (4.36)

x'=2Z' cosh(at)

0=0+Q1 (4.37)

- . p=p ~ (4.38)

in cylind.rical coo&ﬁu(rc,g}hc accelerated coordinates ( t, Z1, 8, p') covers the Rindler
space of the Minkowski space-time. : ' 3

]



The quantum particle states each with a definite energy for the accelerated observer

§ are chosen to be efgenstates or eigenfunctions of he Hamiltonian H

H o Oo(t,x)=£¢£00(x,x) ' (4.39)

E,
’

~ : . . .
where ¢, ((1,X) va‘nishcs on L or R. [t also satisfies the transformation law.
J

0, (A (D) = e"i"q>€ oo ) (4.40)

~

The wave functon is represented by the plane-wave decomposition.

1{k x-a1)
(D_O 0(l,x)=J'd3kcx—F Oo(k) (4.4
S Qm Qw)
with \\
2 2 .
= +k (4.4

where j 15 the angular momentum;
Using eqn. (4.40)), we \gcl a differential eqn. for F ¢ o(k):

dJ : .
aw, —+ Q—|F (k) =-1eF - (k) (4.43)
k 1 £,0,0 £,0,0
dk aek

where 0, 1s the azimuthal angle of k. The solutions to the above eqns. are

_n(£+:'Q) .
1 ¢
+k i(j8,) A
. . \ ‘ (4.44)
\/j2+ qzd’ ' ’
RVIENER ‘
= \/(k ) +q +] , (4.45)

We can use ¢,  /(t,x) and q)'&q‘j(t,x) as a basis for constructing the Fock-space of the

quantum field :



Vo= DL (0 aead + 6 (a'eai) (440
ooty £.99 :
£.4q.j 3

. . N e . . + . .
(i diserete notation). The creation and annthilation operators a (¢.q.3) and a(e.q.)) detine

IS

the vacuum state 0y > ¢

ae,q.1) ! > =() 4.4
. \ ¥
1Oy > .is the Minkowskl vacuum as we can notice that the wave-function O, g l(x) have
N - o

positive energy. We know that the two Rindler wedges L. and R are causally disconnected,
4

so L. 1s outside the field of communciation of the uniformly accelerated observer inside R.

We want to diagonalize the Hamiltonian separately inside the reglons L. and R. By the PCT

svinmetry of quantum field theory, we can link the wavefunction inside R to that inside L.

From egns. (4.41) and (4.44), we get:

{£+j$2] .
- - |
(4.48)

¢ (-tx)=e¢e ¢ (1, x) for x >0
4 £.9.) . €.9,j
- \
Since - \ a
. . ‘ \
¢ (tx)=¢ (1,x) - (4.49)
£.q. -£,9.-]
we have . f
*
s [e+jQ] V
o @x=e b " do  @ax) forx' >0 (4.50)
' -£.,4.j £,9-j
and a similar relation fdr x! <0. o
Therefore, the states
9 «
-
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X
2
] @R (e+)E)r | HeH
QR.(e.q.))(x) =|? Mm{ a , x 2a ¢£.qJ(X) A—cx 2a q)»f,q. J(X)
(450
vanish in thcpregion L. and are eigenfunctions of H .
Similarty, we define
X) =0 X Y452
(pL.(E,q.J)( ) QR.(E.Q.J)( '
which is the PCT symmetric image of ¢ (x). The ¢ (x) vanish in the region R
: R{equ) Leq.p

and are eigenfunctons of H, too. The normalized wave functions (I)R(x) and q>L(x) and their

complex conjugates form a basis which defines the Rindler mode. The quantum field ¢

)

reads :
O(x) = 0 (x)*+ ¢ (x)  with (4.53)
Op(x) = z { bg(€..) ¢ (*)+ by(e.q.) q’s.q.,(")} . (454
£.q.)

As (DL(x) is related to ;DR(X) by

o (x)=6"1¢, 0 , ©(4.55)

where © is the antiunitary PCT operator. The creation-annihilation operators bg(g,q,j) and
b, (€.q,)) =0~ 'bg(€,q,j)© define the Rindler vac.:pqm :10g >;
\
bl Og >=1b, | 0R>=0\1\ - (4.56)

We see that the field operator (pR(x) mixes up positive and negative frequencies and hence
the Rindler vacuum®is not equivalent to the Minkowskian one. The different creation-

annihilation operators are related by the Bogoliubov transformation

C—



1
2, )

o | (e+)€2) (e+j )m . (e 4
bgtt,q,ﬁz 2smh[ " e ex o a(e.q,)) ex — a (€4,

-~

(4.57)
and similarly for by (¢,q.j). Thus, the Minkowskil vacuum | 0y > contains Rindler modes

with its density given by :
: _ ) .
n=c< Oy | bR(€,4.)) b;(e',q',j') 10,, > ‘ (4.5%)

NP -1
=[cxp[2n—(i:&]-l] 5{5 ) (4.5

0.
aq’ Ty
which appears as a Planckian spectrum with the accelerauon playing the role of the

emperature

a
T =
° 2nkg

(4.60)

and the rotation velccity appearing as a chemical potential.
The unitary transformation that links the Rindler modes to the Minkowskt ones can

be written as :

|0M>D=UIOR> ' (4.61)
where
- ‘\‘ B
- ‘ (e+j Q) S . )
u=2" exp Z exp [_(—i—)—] b;(e,q,J) b, (e,q,)) —h.c. (4.62)
~ £,q.) ) )
(h.c. means Hermitian conjugate). T ..

The pure Minkowski vacuum state contains pairs of Rindler modes. Each pair contains one
'particle’ created in the region R and another created outside the horizons u and v. If we
) s X
i ”~

consider an obseryable Ag in the Rindler space R, we can introduce the density matrix by

/
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i

B =(Tr) 10, > <0, (.-uﬁ)

1.c., by taking the race over the states built from y, (x). Then, the expectanon value of the
observable Ag , in the Minkowski vacuum is given by :

<Oy FAL 10, >=Tr( Ap) (4.64)

The density matrix @ describes a thermal mixed state and 1s given by :

=7 c_m (Erfda n; €,Q,]><n; €,q,} ! (4.69)
, a,) q.j

[

where

Inie.q,j > = @) * [ be(e.qg) 10 > (1.66)

-

are the n-Rindler mode states. The representation of the density matrix as a vector in some
larger Hilbert space is precisely the way in which quantum statistical mechanics has been
tormulated by Takahashi and Umezawa (1975). This con}roc\tion with thermo-field
dynamics was first pointed out by Israel (1976) and fl'lrthcr elucidated by examining the
thermodynamical properties in two-dimensional space-time taking into account of :;lt
interactions in perturbation theory (Horibe et.al., 1985).

o .

~ The investigation of the quantization of both massless and massive Dirac fields has

been done in two-dimensional Minkowski space-time (Soffel et.al., 1980; Hughes 1985).

Y
They found the density of the observed particles (antiparticles) : v
”~
n = <0,, | be(€,q,j) be(€.q.j) | 0y > (4.67)
-1 .
2ne
=[exp—+1] & & .7 (4.68)
a : & Q@ D .

(using the same notation as before). Thus, the observer measures a thermal flux of Dirac

particles (antiparticles) with a Fermi-Dirac distribution at the temperature : .



a
T =
o 27tkB

J(4.6M)

The fermionic mass does not enter in[o\(thc’abovc- resylt as the temperature i?csscmiully
determined at the event horizons where the mass plays no role. Mareover, the energy gap
- between particle and antiparticle modes breaks down}yn the event horizon independent of
m. Consequently, the spectrum of the ‘energy’ of the acceleridted observer does not exhibit
an ‘energy’ gap because the (gbscrver cxperic;lccs a gravitational potential in his mnm).
* This 1s also valid for a massive scalar field in quantization (Soffci et.al., 1980; Hughes
1985).

The accelerated observer detects either a Bose-Einstein spectrum or a Fermii Dirac
spectrum depending upor; whether the quantized field is bosc')nic or fermionic at the same
local temperature which is the Fulling-Davies-Unruh temperature. We get diffé?égi Kinds of
dis.m'bulion for the scalar and Dirac fields because of the nature of the scalar products. 'I‘l‘\c

-~ scalar product for the scalar field is not positive definite while the Dirac scalar product has a
positive definite nature. !
The nature of the radiation will be discussed in connection with the detection
process in later chapters. The thermal nature will also be examined therein. The iadi;uion
that is detected by the observer-at rest with respect to the Rindler frame is itself accclcr:ued»

»

(Unruh and Wald 19%)4). In other words, an isolatdd observer sees aroul}ad himse:lf not an

Lot . . I
*homogeneous thermal bath with the temperature given above but instead a thermal bath at

equilibrium in a constant gravitational field with the metric coefﬁciént 200 given from:
ds® = ¢**° (an? —d&?) . (4.70)
1.e., the value of ggy can be obtaincd‘ls 8o = €296, The temperature of the radiaion as

seen by the accelerated observer has the spagial dependence required by the Tolman rdation ~

. given by:
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1
7
T =(g,) 1 (171

“3

(See Tolman 1934;L.andau and Lifshitz 195.8) [t relates the temperature at different points
of a system at thermal equilibrium with the gravitational potential at I)(SC points. Usiﬁ;c

-

eyns. (4.7) and (4.71), we obtain

(4.72)

4

‘The general principle underlying the occurence of the 'Fulling-Davies-Unruh' effect
has recerved muchagtention in the past decades. In considering the global properties of the
field theory, the P; symmetry seems to be a\Poss.i‘bIe candidate in explaining the.known
cffect (Hughes 1985). Actually, the role of the PCT symmetry of quantum field theory has ‘
been highlighted in the axiomatic approach used by Sewell( 1982). He. examined the
thermodynamical properties of field theory in curved space-time from a rigoroﬁus JXAOTT
field theoretic viewpoint. He found that in arbitrary dimensions independﬁ:
not the particles are interactiné, using the PCT invariance of the theory and the theoremn on
the Kubo Mamn -Schwinger ( KMS ) conditiom proved by Btsogonano and Wichmann
(1975 1976), the equtvalence of the accelerated system with thermodynamics can be
shown. In particular, the Rindler vacuum | Og > is neither translationally invariant nor PCT
invariant and so the uniformly accelerated observer finds the Minkowski vacuum agpearing
as if it were in the ( KMS ) state described by a '¢anonical ensemble of states'.

The quanuzatlon»of a matter field in Rindler space dlscloses new problems in the
formulation &f a complete quantum theory applicable in a generic space tune The theory of

measurements seems to play an important part of the formulation as we discuss later
' *
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(Unruh 1986b; Sanchez 1985). The basic definitions of some physical quanttes such as
the 'vacuum' or ‘particle states’ are under review (Davies 1984) while various new
formulations of quantum field theogy are devised for hapdling the conceptual pittalls

embedded in the onginal formalism (Rumpf 1982; Freese etal., 1985; Lee 1986).
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Chapter S Quantized matter field in other coordinate svstems of flat space-
time

In the preceding chapter, we reviewed the quantizaton ot a matter ticld i the
Rindler trame by denving the Fulling-Davies Unruh eftect in the case where PO
svinmietry holds. However, tield quantzaton has been extended to other coordinate

svaters as on Hac space tmne as we discuss in the tollowing sections,

3

Ihe quantizanen of a matter ficld i rotating coordinates has recerved much attennon
because ot ats phvsical implicaton in measuring the Fulling Davies Unruh tempenatuie
cypernmentally (Bell eval | 1983 19K87) d\ well as because 1t provides a clue to the orrgign of
the ‘particles” indicated by the spectrum ot radiaton. Those inquinies which are closely

related to the response of a particle detector in circular mouon along with 1ts consequences

s

.
will be discussed in later chapters, g
/ L

~ - \ ) - : &L
Lctus consider the quanuzation of a massive scalar field 1 rotaung coordinates

©

tirst. This has been done by several authors (Letaw and Ptautsch 1950; Denardo and
Percacer 1978y using canonical quantrzatuon,
Following the treatment by Denardo and Percaccr in the quantizauon of a massive

scalar tield. we start from cvlindnical coordinates (t,z.r.8) and perform the transtormation

L4

{
(sz«J'SZ(t') dv (51

which allows a more general case ot a ume dependent angular vechily_ In the rotaung
-

trame. the metnic reads

ds'e g dx®dxY = (1-Q00 1) dt - d— dr'- 1 de? ~200) r'de dt (
R MY

)
[ -]

The rotaung coordinates cover all space but the metric 1s meaningful only for r < Q-1 | the

”,

} - 30
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<aurface ro= 2 Vs an itimte red shift surtace and unbike the situation of a unitonmnly
accelerated observer, there s no event horizon here, We have the tollowng Killing vectons
(1 coordmates © oz @)

(1) N¥= (1.0.0.0

1 -
N" 18 the usual tme ranslatnon Killing vector ot Minkowski space ume, W.glumlly

umelike (N N, = 1) and orthogonal 1o the hypersurtaces t = constant
(). RM = (0.,0.0. €) .
R" 18 the generator of rotations around the 2 axis and s evervwhere spacehke ( RY R,
Q)
() T = (1.0.0. Q)

S -
I” 15 the ume translanon Killing vector in the rotating trame apd 15 umelike only fors < €2

=1 Q7).

(since 'l“\'l‘“

The Klemn Gordon equation tor a scalar field ¢ with mass s given by

7o 9% 1 0 1 2 o ) ) Io .
(f) ( ci (:___f_.(r ﬁ) — Q7 79 Q(t)ﬁ 232(()(_(? + o -0 (S %
T S Jdr Or - ()QPZ JQ ARSI}

/1
where (1) 1s the denvative of €2 with respect to t.
Inooducing the mal solution

»
t

O(t,z,r. @) < exp| +1 J dt' E(t) | exp {imeg + 1kz] R(r) (5.4

~we obtain the following radial equauon:

2
1R B0+ mQm)P- K- w2+ imQm - 2 Y R =0 (5.5
rdr dr rz

!

Since R must depend on r only, we impose that

[ E(t) £ mQ(1) ]2 - kz—u2+ imQ(t) = L 5
e q = constant (3.0)



n \

\}lvmg tor B(1) . we obtan the tollowing dispersion relation:
B -y o 2 me() (>
\ .
where ar et ¢ K74 g° com=0t 120

~

and o < Kk« teo () < ¢ < e have contunugus spectra. Note that when €218 a constant, t
@ ¢ M2 s also a constant, 1t L2118 zero (nonrotating frame ), b= w and there s anintine
degeneracy i om.

A complete set ot normal modes 1s

|

t
I
Y (tz.r.¢) - cxp 1‘[1{(1') dtf =—exp ks ¢ ime | ) (o (SN
kog.m 27( Tl

lw
For £2 — constant, we have the mode tunction (I)k_q'm(l‘z,.r.@) and (Dk,q.m(t‘[“r‘(’)”w mode
. I . s .
tuncuons tor §2 =0). Then ¢ represents a parucle mode and ¢ an anupartcle (negative
cnergy) mode

In the gemeral case, the tield can be expanded as AN

. \

oo ‘ - hnd .
W) = Z Jdk qu q[ A (kg.m) D, . (LX) +ht ] : (5.9)
0

m= -oe

oo

Foreqn. (5.1). we have the following relation :

- A l | |
Okvq_m(t.z,r,(p) = = exp| ~i(w-ms)t] —2-T—t-cxp| imQ + ikz | J}ml(qr)

- -

>~ 1 N , A
= exp{ Et]—exp| 1m0 +1kz }J (4r)

2E ~n e

P =0, (210 . : (5.10)
The energy momentum tensor of the scalar field is:
] *
Tuv= ap\yav\y ~ gva (5.11)
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The total energy as seen by the,nonrotating observer is:

H Jdﬁ“ T NY :Jd() dzdre T, : (S 1)
Hv

1 , . '
Jd() dedrr— (%W (J \u) +(J )+ —2-(()U\u)~ eyt } (5.1 %
< r

Using cqns}i") and (5.10), we have

J qu qw (a*(k,q,m) atk,q.m) + hc) (S 1
= 0

oo

‘H:

I\)}

m

On the other hand, the energy measured by the rotating observer 1s:

. IS S ® . c -
r\hjd\_ [ Jd(pdldrr(lm Qar ) P | (5 15)
» \ l R h ?
= J‘ dpdzrdrr 3 { (00\41)2 +(d, w)? % (0 \|/) (-r‘-z— -2-) (dq’\y)2 + Uy } (S 160
AN .
=5 Z Jdk j dq q(w -~-mf€2) (a (k.q,m) a(tk,q.m) + h.c.) (517
T m=e - 0 . - -
s . S
Equations (5.14) and (5.17) show that the energy of tht mode (k,q,m) is ® and @-m&2 tor
. T~ ’
the rotating one. The physical imcrpr&tion is thaf the modes for wnich m and € .have the -
, ¢ s _ '

same sign ( corresponding to particles co-rotatiag with respcct to the obscrvcrs ) are seen

red-shifted, whllc those for which m and €2 have opposite 31gn (counter-rotating pdmdcs)
are. seen blue-shifted by the rotating observer. ik

The energy sp'cctrum‘of the rotating observer ex_tc‘nds frdm ~eo 10 +oo with infinite

‘ mulaplicity. For su}ﬁciéntly large values of mQ2 , the energy levels of the particle stalis can

be gushed arbitrarily downwards and hence thev are unbounded from below. We seem to

\ have an unstable vacuum but because of the conservation of ar'xg|ular momentum, the

particle interpretation continues to hold.

For the general case when Q is time dependent, the relation between nonrotating

E \ \
Ny



: and rotaning mode functions 1s:
® o akgm) o o+ Plogam o

¢q.m

ov coeflictents are
-,

where the Bogoli

[ {

W+ W —im€2(t) _ .. _ '
atk.q,m) = —a exp| 1wt —1] dt' 3f w -l (
20 L ° .
- l .
W - ,/ W’ —im€(t . [ _
o Btkgum) = im0 exp| 1wl 1J dt' o @2 —imQ(1) (5.»
2w - ° 4

The normalizauon condiuon 1s

ms€2(t)

\ l(x(k,q,m), lﬁ(k.q,m)l =| Re

5

w~

{ .
exp| 2 Imj dt ,/ w?® —imQ(1) ® S2h

Note (Mat when €2 is always c;)nsfanl, then a(k,q,m) =‘?;nd B(k,q.m) = O, which 1s the
trivial case. Moreover,3 vanishes also in the stationary regions in which Q = (). The
physical interpretation of the above results 1s that if we choose the state of the sysleril to pe
a Minkowski vacuum defined by the anmh'rlﬁ/lion operators: a | Oy > = 0, there are no real
particles present at‘any time; an observer in the rotating fmme agrees with the inertal one
wherigver he is rotating uniformly, but he will see pairs o, particles with spectrum
IB(k.q,m) 12 whenever € increases or decreases. In other words, the nﬁmber operator as

- 4 . . . - \-
defined by the uniformly rotating observer is: :

) =2 I 2 aqdqdk (5.22)
Va k.q.w<0

which is the same as the inertial observer's number operator, so

N10, >=0 | (5.23)
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and there are no pamiélcsvdctcctcd by the uniformly rotating observer just as if he were in
the Minkowski vacuum. Furthermore, the creation (annihilation) operators in the uniformly
rotating frame can be identified with creation (annthilation) operators 1n the Minkowski
frame with the same appearance and hence the vacuum cxp@nion value of the stress
tensor <T,,,> 1s identically the same, namely zero in each frame.

The analogy of a Lgniformly rotating observer to a unifermly accelerated gbserver
seems to hold as each of them experiences a constant acceleration in the Minkowski
vacium and with the same vacuum expectation value of the stress tensor. Howévcr, this
analogy breaks down when we consider the particle interpretation, since the uniformly
rotating observer detects no particles at all while the uniformly accelerated observer detects
a thermal spectrum of particles. This fact can be connected to the global structure of the
mgxid used: in the case of the uniformly accelerated observer, there is a boostlike Killing
Vt;C[OI, wl3ich is timelike in some regions, spacelike in others and null on an horizon. In the
case of a uniformly rotating observer, the Killing véctor T" has all these properties but the

, xS
surfacg: r = Q-1 is not an event horizon. Fﬁnhcrmorc, from eqn. (5.10), we see that waves
which have positive frequency with respect to N* also have bosixivc frequcﬁcy with respect
to T as ‘long as Qisa constant, and hence the vacuums coincide. For dQ/dt # 0, there is a
d.istinct vacgum'associated with the vector T" | annihilated by the operators a(k,q,fn)
- appearing in eqn.(5.9). This new vacuum state consists of pairs of Minkowski particles
with opposite angular momentum along the axis of rotation.

The dquantization of a massive scalar field by a uniformly rotating %bscrver has also
been cxaminec} by Letaw and Pfautsch in the context ef using the two parameters: curvature
and torsion of a non-null curve in a flat three-dimensional spa{ce. Their conclusion agrees
with that of Denardo and Percacci but they point out that scverallcriteria have not been
;satisfied in their (Letaw and Pfa:nsch) procedures, namely: they do not give an exact

definition of positive and negative frequency modes relative to the Killing vector EH ; nor

\

\
" L
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nor do they employ a strictly canonical procedure and regard a and a* af strictly annihilation
and creation operators respectively (i.e. sausty the commutation relation | a, a* | =1).

Following the work of Letaw and Pfautsch, Iyer (1982) examined the result of
quantization of a Dirac field, both massless and massive i\n rotating coordinates. He found
that the natural procedure of defining particles via the Killing. vector of the rotating observer
yields a canonical quantization scheme. This ;chcmc is inequivalent to the usual Minkowski
quantization and furthermore, the rotatipg observer detects, in the Minkowski vacuum, a
nonthermal spectrum of particles and antiparticles. ’

. .

The quantization of a Dirac field 1s done in the following manner: the Dirac equation

in general coordinates may be written as

YVy+ipy=0 (5.24)
where y* are the 4 by 4 flat space-time Dirac matrices satisfying ,
[¥. Y], =™ and : L (5.25)
Vy=¢"@ -T)y (5.26)
a a Ho ]

Here e M are the chosen tetrad fields and I“utbc spinoy affine connections given by
) . .

a bviu

1 .
F=-—7Yee : (5.27)
H 4 )

Using cylindrical Minkowski coordinates, the Dirac equation in rotayng coordinates 1§

" given by:

{ Y0 - an) + 7! 8r+-21-r- ]‘+ -i- y2a¢+ Yo +i u}\u =j0 (5.28)
v 4 |

In the case of a massless Dirac field (e.g. neutrino), the normal modes are written

ds: -
L J

)

' T
W', mk; x) = exp[—i(m—mq)—kz)][QJm_m, i(m—k)JmHn, QJm_m, i((o—k)JmH/z] (5.29)
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where Q = +(@? k), © = w-mQ, i1 D1 Q0

These solutions are the Minkowski modes transformed to the rotating coordinates since the
Dirac field is a scalar under coordinate transformation. The normal modes given by eqn.

(5.29) are orthogonal and yield

(W (w.mk), W(w.mk)) = 81 ok | 8w w) Sk k) S
hY

(5.30h)

mm’
<
Thus, ~

y(w,mk; x) =] 2r( 2lw-kl )1/214 W'(d),m,k; X)

are a convenient set of orthonormal modes for the massless Dirac tield in rotating

v 2

coordinates. In terms of these normal modes, an arbitrary Dirac field may be expanded as

oo +Hoof
W= z jdm J. dk [a(w,m.k)y(w,m k) + b (w,m.k) y(—w, —mk; x)} (5.3

T=®>0 ol

Note that the rotating observer defines positive frequency via his Killing vector d/dt so that
modes with @ >0 are his particles. On the other hand, the inertial observer considers the

> () modes as the Minkowski particles. Eqn. (5.31) may be inverted to yield

N
a(w,mk) = ( y(w,mk; x), ¥), g >0 (5.32)
T bomk) = (W—w-mk; x), ¥ ), @>0 ‘ (5.33)
It follows that
[ a(@,m.k), a" (', m',k’) l= S(w-w') d(k-k') Smm. ‘ (5.34)
Y [ bomk), b (whm' k) | = 8a-w) 8kk) 5 ‘ (5.35)

h i
All other anticommutators vanish. The ;otadng“obsewer defines his vacuum by

‘ a(@mk) 10, >3 b(@,mk) 0 >

\

=0, >0 (5.36)

w
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[t means that the natural vacuum | Oy > has no particles, Le., @ > () states and all modes
with @ < () (holes) are filled. For the inerual observer, the Dirac field 1s expanded m the

following way:

- rw
W= z jdwjdk ( Q(w,m,k) y(w.mk; x) + b (w,mk) y( w, mk; x) | (5.37)
M= w

with a(w.m.k) and B(w,m,k) saustying the canonical anticommutation relations as betore.

His vacuum ts defined by

aAw.mk) | 0y > = Xw.mk) | 0y, >

=) ’ (5.3¥%)

so that all w > O states are empty and all 'holes’ w < O are filled. It can be shown that

a(w,mk) = aw,mk) ,w>0 | (5.39)
a(w,mk) = b (-w, mk), w<0 | (5.4
Stmlarty,
b(w,mk) = Xo,mk) >0 P ) (5.41)
. t b(w,m,k) =a (—w,-mk) ,w<0 (5.42)

The number of rotating’ particles in the Minkowski vacuum is now given by:

N =<OMIN;1 (@,mk) 10, >

=< OM la (w,mk) a(w,m,k) | ()M > (5.43)
=0 ,w>0
(5.44)
=1 ,w<0 )
%

S~

_/
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Sumilartly, it follows that

N =< ()M f N;l (w,mk) ! ()M >

E<OM|b (u).m,k)b(m,m,k)l()M> (5.45)
=0 ,w>0
(5.46)
=1 ,w<0
The above results can be illustrated by the following tigure: §
a1 i m IIl G=0
.IV.oIo. Ooco oo
1 2 0 Il
e® o'Qeo co lo o
IV " Qe O o oo
n 0 UD 0
/ 0 IIIU U U 11 )
“®®lee Oo0000

Fig. 5.1 The figure shows the vacuum states of the inertial and
- rotating observers. The open ovals(rectangles) indicate
that the Minkowski(rotatiig) vacuum has no ‘particles’
The dark ovals(rectangles) indicate the filled negative-
energy states as defined by the Minkowski(rotating)
ohserver.

[y

From the figure, we see that ir; the (w ,m) plane for the state | OM >, all the states to
the right of the @ = 0 lines are empty while all holes to the left are filled. However, to the
rotating observer all states below the @ =0 line are empty while those above are filled.
Thus, if the rotating observer sees a Minkowski vacuum, then he finds stz-ncs in sector 111
filled (particles) and‘ those in sector I empty (antiparticles). The Minkowski vacuum
consequently contains‘for the rotating observer a nonthermal spectrum of paniclcqs and
antiparticles when @ is positive but @ is negative. However, the rotating observer does not
see any charges in the Minkowski vacuum.

For a massive Dirac field, the normal modes may be written as *

/
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wlm.mk: x) = (<t lw pl”z) l exp[ 1@t -me kz) | X
. 1
. . . ) .k N
[(()Hk”nrlﬂ(qr)’ ((‘)+lk)Jmol/Z(qr)‘ 1((W)Jm l/l((lr)’ w Pl)Jm- l/l(ql.):l
(5.47)

: ) ! 2 )
with = +(w~ - -k )l[ =(w k)
(84

The massiveDirac tield can be expressed as:

[}

.. ﬂwt“?{ :
— Y R :\
W Z J ¥ d%’dk {a(w, mk) y(w,mk; x) + b (w,mk) y(- w, m,k:@«)] (A18)
in |u)('

"o ¢ w3t

R

The constructions are the same as before and similar conclusions can be obtained tor the

NMIASSIVE CASE.

Letaw and Pfuutsch extended their work from rotating coordinates to other classes
of stationary coordinate® systems in Minkowski space-time (Letaw and Pfautsch
1981:1982). They concluded that there were only two stationary vacuums in flat space-time
: the Minkowski vacuum 0y, > and the Rindler vacuum 1 Og > . The Minkowski vacuum is
found in those coordinate systems without event horizons while the Rindler gacuum is
found in those with identical event horizons. The vacu;m state 1s not in general the lowest
energy state but is stable because of the presence of additional symmetries with no
;1mbigui;y of a particle interpretation. The stationary coordinate systems are those in which
the particle states are defined to be "time-independent'. There are six classes of systems "
corresponding to the six different types of timelike Killing vector fields in flat space-time,
which have been classified on the basis of the six types of stationary world-lines in

Minkowski space (Letaw and Pfautsch f982). The stationary coordinate systems

correspond to the Minkowski vacuum are classified as class A, C, and D while the Rindler

-
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vacuum is found in class B, E and F systems. Canonical quantization of a massive scalar
tield is done in those coordinate systems.For diagmm?nic representations of the coordinate
systems, the reader can refer to Letaw and Pfautsch (1982).

(1). Class A Cdordinatcs

The Killing vector field is:

— EM (x) = (1,0,0,0) (549
a). Coordinate system: Rectangular Minkowski coordinates .
0 1 2 3 *

2 2 2 2 ,
¢ d d d
— 5 2+p2 =0 (550
at” dx" dy~ oz '
Positive-norm modes in these coordinaies wre N -
1 -1t iK.x
R N ¢ (5.52)
2n) Cw)

where o? = [kI* + “2 and w >0

The modes are also of 'positive frequency' and so the vacuum state in this
system 1s the lowest energy state. The field operators is expanded 1n terms of these -

modes as
Y= f O’k [a(k) o(k) + 2" (k) §(K)] ._ . (5.53)

and the Minkowski vacuum is defined by

N

, ak)10,>=0 - ' (5.54)
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b). Coordinate system: cylindrical Minkowski coordinates

-,

' 2 . 2 2.1 -1
X =1, X =r, x7:9, x3=z w1[hr=(x+y)/2,9=lun (y/x)

. 2 2
Metric: dszz dlz— drl rzdez-f dz (5.55)

The Klein Gordon equation is

o 10 0 19 Ol 50
—_— e e [ — — o —— = 2.0
PR Jr Jdr 2 092 822\\ _ :
{ R
Positive nm‘é‘l modes in these coordinates, chosen to be well behaved at r=0, are
® = | ~lwt 1me lkllj ‘ (557
== ¢ ¢ ¢ L) % (5.57)

2n) Qw)'”? .

¢ .
where @?=:(k,)? + q2 + 2, w > 0 and the modes are also of positive frequency.

\

The field operator is then:

\
A

R

v = z Jqdq dk |a(q.mk ) d(q.mk ) + 3 (qmk ) D (qmk )| (5.58)

Relating the modes ¢ gpd @ by a Bogoliubov transformation, we have 7
N \

1 [;kx— iky]m \a(q—Efn(i)‘” )

a(q.mk ; k) = 5(k,- k) (5.59)

(2K)ll2 q

B(q.m,k;; k)=0 \ . (5.60)

Thus, the vacuum states in rectangular and cylindrical Minkowski coordingtes are
the same.

(ii). Class-C-coordinates

Thgjlling vector field:

éi‘(x)=(l+1cx, Kt—-1y, %,0) ,T>K (5.61)
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Coordinate system : rotating coordinates

X =t X =T, x2=6, szz where 8 =8 (X

Metric: ds’= dt* - dr> -r* d(8)" + Qdt |* - dz° (5.62)

The Kiein Gordon equation is

2 2

d 2 ;
c—t+ U q\,:() (5.63)

i 8(6)2 azz

Soolp 12,2 L9
‘ t ae r or T

where €2 is a constant.

Positive norm modes in those coordinates, chosen to be well behaved at r=0, arc

- 1 . s ik, 7 "
o= e clmec J = (qn) : . (5.64)
m

Q[ 2o +mQ) "

with ( © +m Q )2= kf+ q2+ pz and @ + m Q>0

These modes are not generally of positive frequency and the vacuum will thus
not to be the lowest energy state (see the preceding section). The field operator is

expressed as:

V= Z _[qdq dk, [a (dm)k,) &(q,mk,) + 5+(q,5,kl) ¢>‘(qﬁ,kl)l - (5165)

Y

The Bogoliubov transformation between the rotating modes ¢ and the cylindﬁcul

‘ modes @ is :
b= 3(q—q') ‘
a(q mk; qmk) = - sm; Sk ~ k) ‘ (5.66)
B(q'm.k,; gmk ) =0 o (5.67)

-

Thus, the vacuum defined in rotating coordinates is just the Minkowski vacuum.

ES
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() Class Dscoordimates
The Kilhig vector tield

OO (LERXORT Ry RX D (N ON)

Coordinate system null parabolic coordmates

0 l N \ |
X — KN+ (KX L SR
O .
v | 5 ]
X — Kl ¢+ X —A
A hl
N 1
X —K U+ (KX —I ¢tV
O 2 -
A
\ 7

Metries ds = 2axedey s 2dvidt )™ dey” (S 04
/
The Klemn Gordon equation 1y
J’ Jd° J J° N o
2 — 2xx - — U O =0 (S 70
Jf ())’ dx (Iv)’ az°

Positive norm modes i these coordinates, chosen to be well behaved as X0 seo, are

‘6 10t iy k7

5o T ) e Y e Y e Al ) S

0= (4m)

N
~.1

- 2an 1 2 _ ‘

tor 1 > 0. Hereao = (2K 77, A= « Z(I\I— lw+u ) and Aris an Ary functuon.

We see that the positive norm modes need not be positive-frequency modes and the
positive-norm modes are charactenzed solely by 1. The field operator 1s expanded in
terms of the modes as:

7 ='[dl dk, dA ['J(l.k(.)\) S(I.k,.l) +4d (l.kl,)\) é . kl.l)] (572

\
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I'he Bogoliubov transtformanon between the maodes ¢ and the modes ¢ vields

12
1 ) k R NN .
R ALK - o A expl i (R A S R 3 (@ ko) (73
RS NG

13(1.}\/.)\. k) =0 (> b

Thus, the vacuum s agam the Minkowskr vacuun.
av). Class B coordinates

The Killing vector tield is:
SHx)y = (Lanx, KL O, 0) (N 7N
Coordimnate svstem: psceudocyhindneal coordinates

N

0 1 2 ! X2 1
X =T ox =8, x'=y, x =z whereZ=(x" (Hand T =tanh (Ux)
Metric: ds™= &2 dt? dg? dy” dz” (S 700

The Klein Gordon equation 1s:

s SR S
0 ldy,d J lo=0 (5.77)

—_————— . — .,_’4.“

5 5
Elo &% 9L 5t )t

The positive norm modes in these coordinates 1s . !

. 1/2 .
(sinh(nE)) LEt ky 1k .
e K.E(Qi) ' (S78)
ra L
2n

where.Q%= (ky)? + (k,)? + u? and E > 0. K¢ is a Macdonald function, a Besscl

function of pure imaginary order and argument. As § = (x4— 12)!2 is defined only

for x > | t |, these functions are only defined in the right Rindler wedge. Similarly,

we have mode functons defined in the left Rindler wedge
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172

O -~ ¢ ¢ ¢ K QD (5 79)

[ty notable that both o and ¢ are posiuve trequency mode tunctions The ticld
‘ /

: \
operator 1s expanded in terms ot the modes ¢y and ¢ as

W J«Hi dkvdkl[hR(li,l\v_kl)(bk(l{,kv,k[)*h (E k l\ (D I3 k l\)

+ hl (li.k:‘,k[) (I)l ([{‘kv,kl) + bl (F..kv_k[) (I)l’(li.l\v,k/)l {5 8

The modes ¢ and @ are related to the rectangular Minkowskr modes by the

- ¢
Bogoliubov coctficients:
172
nFE ik . e N
(l-,k\‘k/.k) -[an(l < )] [ (w k‘)/()] b(kv kv)b(kl k/) (nN1)
172
. 2nk .
(tl(l',k\.l\/.k>7(lR(l1_l\v.l\l.k):[37((1)(1 e )] (0 l\ /Q] kv)b(l\/ N
(YN
L nk L s
DR(I:.ky.k,. ky= ¢ (xk(l:,ky,k[; k) (583
®
L 4
s nE S
ﬁl,‘h'kyk,- k)= < uL(i:,ky,kl. k) . (5.8h
The Rindler vacuum is defined by: ‘
(Ek k)l() > =10 65.85)

R(L)

s

which 1s not equivalent to the Minkowski vacuum. | Oy > is related to | Og > by

¢

1 -nE ¢+ * '
10y, > =—exp J_dE giky dk e bR(E,ky,kL) bL-(E,ky,kl) HO, > (5.86)
Thus,the Minkowski vacuum consists of a mixture of multiparticle states composed

of particle pairs, one each in the right and left Rindler wedges, distributed in a

hermal fashion.
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(v). Class E-coordinates
The Killing vector field:

E=(le kxo Kkt Ty, X, (), xo>T * (5.87)

Coordinate system: pscudorotating coordinates

(¥} 1 2 - 3 -
x =T x =& x'=y. x =z wherev=y Qr

Metnc: ds'= 2 et dE2  (dy + Qdv?  d7 (5 8¥)

The Klewn Gordon equatton s

-2 2

I 0 ~9J 2 19 )y
Loplp Lled o0 i o (389

2ot ";’ é ()é ()é ();,2 dz” *

S

where Q is a€onstant. Positive norm modes in these coordinates amee——~
N

? .
: Y 12 _ -
- |sinh (-[*-+ kvﬁ)n] LEr tkyy tk,s .
Op= A‘ - e ¢ e K - -—- Q) (5 90)
2 W Evk_€2)
2n Ty

2 =2 2 2 = = . .
where Q = (kv) +k,+p and E+ kyﬁ > (}defined on the nght Rindler wedge.
We can define ¢, on the left Rindler wedge in a similar way.
Note that these mode functions are not in general of positive frequency. The ficld

operator can then be expanded as:

v = J-dE dk, dk, [bR(E,ky,k‘E,Ey,kl) +BRER K 0 EX K

o Ek k) +b (Ek k) (EK k) (5.91)

The Bogoliubov coefficients between the set of modes ‘DR(L) and QR(L) are given by :
4

 SRUEK K Bk k) =3[ E - (E+|$y§) P8k~ k) Bk~ k,) o692
TN , o .
BR(L)(E’ky’kL; E’ky’kz) =0 _ (5.93)

..
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Thus, the vacuum state in pseudorotating coordinates is the Rindler vacuum.
(v1). Class-F coordinates
The nmelike Kithing vector field:
EM = (1+ Kx, XU Ty, X vz,vy) (594
Coordinate system: rotating pseudocylindrical coordinates
0 . } ~
x =T, x=& x=r, x =6 where® =06 - Qrt
Metne: ds =82 de?  dE? dr” (dO + Q do) (595
The Klem Gotdon equdtion is:
I 0 ~ 9 219 o o0 1o of -
——-(—;—- .Q(— 2 "LA—%-r;— —)—(——+u O =0 (5 90)
gt g0 ggg dE T dr dr L
&
where € 15 a constant.
LN
Posinve norm modes in these coordinates are given by:
h |
sinh (E+ D g0 e
¢ = e e™Y ) _@nK Q) (5.97)
27‘(3 m (E+ mQY)

where sz q2+ pz and E + mQ > 0 on the right Rindler wedge.

N\ r)

We can define ¢ eathe left Rindler wedge in a similar way. They are not gencrally

of positive frequency.

The field operator is expanded in the followigng:

v = Z qdq dE [ b R(I:f,q,rﬁ) ) R(E,q,rﬁ) + b ;(ﬁ,q,rﬁ) (i ;{(E,q,fﬁ) '
\ +b E.qm)§ (E.qm) +b (€ qmm)§;(Eqmb] (5.98)
2

The Bogo}iubov coefficients between the two set of modes ¢ R(L) and (DR(L) are :
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SE (E+n) 8 8y q)

mm

Ry (E.q",m; Eqm) = 3 (5.99)
— Y 4
BR“ )(E,q',xﬁ; .q,m) {) (5.100)
\ —

Thus, the vacuum state is again the Rindler vacuum.

‘The signiticance of Letaw and Pfautsch's work is that it encompasses all possible
coordinate systems in Minkowski space-time in the quantization of a scalar tield.
Furthenmore, the role of the event horizon in defining a vacuum state is spelled out. The
cvent horizon reduces the vacuum states in all of the chosen classes of stationary coordinate
system in tlat space-time to only two possibilities, namely, the Minkowski vacuum and the
Rindler vacuum. The interpretation of a particle state remains valid singe the vacuum is

B

stable because of the presence of a conserved quantity associated with the dct‘inili(}f(;ﬂ‘
¢ ¥

positive-norm mode functions. The positive-norm modes ensure the existence of a stable

vacuum. However, the benefits of usihg the positive-norm modes may not appedr in a

genen¢ space-ume. Actually, the distinction between the positive frequency and positive-

norm modes vanishes when there is not an initial value hypersurface on which the encrgy-
. .
defining Killing vector is cvérywhere timelike.

In the context of quantum field theory, we considered only two inequivalent Fock
representations for f;eld quantization in all the coordinate systems of Minkowski space-
time, one based on the Minkowski vacuum | Oy > and the other on the Rindler vacuum

I Og >. However, it was shown that despite the fact that two stationary observers agree
on the notion of 'particles’, they may still disagree about the spectrum of vacuum
fluctuations as described by the Wighunan function along the observer's trajectory (Letaw

”

and Pfautsch 1981; Takagi 1984).
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2.3 Other tvpes of motion

A general type of motion is examined by Gerlach in considering the Fournier
;m:bxlysis of the spectrum of the Minkowski normal modes (Gerlach 1983a). This motion
consists of cither (a). uniform drift.or (b). uniform rotating motion, in addition to the
untformn linear acceleration in a specific direction. An interesting aspect of his investigation
15 that he concludes that the blackbody radiation (thermal ambience) surrounding a linearly
and umfo;mly accelerated observer 1s tolaﬂy‘i‘: tropic although the observer has a preferred

™
directuion (namely, his acceleration). A totally isotropic radiation means the following
condinons ur'c satisfied:

(1). 1tS pOWET Spectrum 1s 150tropic;

(). its fluctuation spectrum 1s isotropic and gives the power spettrum a thermal
signature;

(111). its stress energy tensor is isotropic, and

(iv). classical radiation reaction forces are absent from a point detector carned along
by the observer.

H({)>wcver,‘ the anisotropy of the thermal radiation has been suggeStcd by people in
their work of;‘dctection process (Israel 1983;.Hinton et al., 1983). When the observer,
undergoes the above mentioned types of motion, this isotropy is broken. This breaking of
tﬁe spatial 1sotropy manifests itself as a non-zero chemical potential of the thermal radiation

[
surrounding the observers. This chemical potential is proportional to the drift velocity or
the angular velocity of the respective accelerated observers.

For an observer having a uniform drift velocity 'v' (say in the y direction), the

radiation spectrum is given by:

(exp(h(@tkv)AT]-1}"
- where 'v' is the drift velocity in the y-direction. When the observer is orbiting uniformly in

addition to his linearly uniformly accelerated motion, the radiation spectrum has the form
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of: -

{exp N (@tmQ)AT] 1} .

where €2 1s the angular velocity and m is the azimuthal wave number (see section 4. 3).

The chemical potential m cither cases 1s given t;y : (i—) t kv for uniform drift
motion and (11) 1m€2 for uniform orgg motion behaving in such a way that the intensity
of wave modes propagating against (i) the drift or (i1) the rotation, exceeds that of wave

ticld modes praopagating & the same sense. Thus, the thermal background tends to slow

down the dnft or angular velocity of an observer until his surrounding is totally isotropic.



Chapter 6 Quantum Field theory in analytic accelerated frame
w
In the ;)rcccding chapters, we reviewed the formulation of quantum theorv in
¢

various non-inertial coordinate systems which predicted the appearance ot the
characterntsuies of thermal effects even m flat space-time. However, two facts were
addressed by Sanchez (1981), namely the lack of a general description of quantum tields in
accelerated c;(x)rdinalcs mvolving non-uniform accelerations (or non-Planckian spectra) and
xcc;)ndly, no explicit relation between the thermal aspects and the structure of space -tume
has been obtained. It was accepted that the temperature in this context 1s due to the presence
of event horizons. h

A new approach was used 1n the tormulaton ot the lh'co‘ry mittally 1 two
dumensional flat space-uime (Sanchez 1981b). By the method of analytic mappings.
quantum field theory has been defined in a wide class of accelerated space-tumes preserving
the light cone structure of flat Minkowsk1 space-time. The coordinates in which quantum
field theory can be consistently formulated are defined by h()lom.()rphic (or anu-
holomorphic) mappings in Euclidean space (imaginary time). Each analytic function defines
an accelerated frame and a quantum produeu'on rate associated with 1t. Classical, quantum
and thermal aspects of the theory are explicitly expressed in terms of the mappings. In
purt?cular, the accelerated frames, their associated particle production rates and temperature
can be classified in terms’f the nature of the singular and critical poims‘ of the mappings.

Furthermore, the physical magnitutes predicted by the theory such as the vacuum spectra

. . . 4
could be interpreted in terms of the measurements carried out by accelerated detectors.

6.1 Contextual background

The ‘principle of covariance’, highlighting the independence of coordinates, is the
underlying principle in the theory of gravitation. Sanchez emphasized that this principle is

also prevalent in all descriptions of physical laws. Thus, the seeming difference in results

52



\

from the treatment of a quantum field in a variety of coordinate systems in tlat space time is
not due to the choice of the coordinate systems that were used, but is a consequence of the
fact that physically ditferent quantum states are correctly described by the quantum theory
as being physically distinct. In other words, the ‘canonical states for different coordinate
systems are physically different for each ume-like vector ﬁcld“ The correct approach is to
consider the formulation of quantum field theory 1n accelerated frames instead of relative o
an (accelerated) observer following a particular world-line. Then the boundary conditions
of the quanturu theory can be described physically in terms of the asymptotic behaviour of
those accelerated frames. This automatically sp;ciﬁcs the quantum state to be examined.
Moreover, the physical consequences of the quantum theory for the chosen state can be
examined by the appropnate coqrdinates. These consequences are completely independent
of the codrdinatc§ used to evaluate them. The'principle of covariance’ secms to be

mamifested in the above approach. -

: '
We consider the two-dimensional space-time case because of its simplicity. In-such
a space-time, a formal analytic continuation of the time variable t (t = i1t ) is made, making
it imaginary and then we look for real analyuc functons

u=f(u) (6.1)

as establishing a conformal mapping between the points u = x+it of the Euclidean plane
and the points u' = x'+1T of a transformed one. Points where f(u’) = 0 are critical points
and the transformation is not conformal there.

In the primed coordinates, the metric takes the form

ds’= | f(u) P(dx? + dt?) (6.2)
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The real critcal points of the conformal transformaton determine event horizons in
Minkowskr space tine. In Minkowski space-time, the mapping

xtt = f(x't ) (6.3)

represents a transformanon from an inertual frame (x.1) to an accelerated one (x'.1'). It
detines x"and t as even and odd function of t. Constant values of x" define the world-lines
of the accelerated observers in the (x,0) plane. The velocity of these observers 1s given by

- ¢ x'+t) - £( x'-1)
L v =

== I (6.4
O x'+U) + £7( x"-t)
The proper acceleration is given by
I . o
a=————3d | In A(x',t') ] (6.5)
BN YR
[ AC x".1)]

where A(x', 1) = f(x'+t") f(x'-t)

This involves a very large class of accelerated motons. In particular, the Rindler

frame corresponds to the analytic mapping
, u'/a .
flu)=Pe (6.0)
and descnibes uniform acceleration. The bilinear ransformations

() =24 s py<0) (6.7)
Yu'+

where «,f3,7,0 are real parameters also describe uniform accel‘era[ion. However, the two
mappings are not the same and additional assumptions must be imposed on- the .wa\;c
functions to guarantee the self-adjointness of propagation equations, completenéss and
orthogonality of their solutions.

[t 1s necessary to carry out a field quantization procedure in those accelerated frames

, -
. defined by analytic functions to ensure a one-to-one mapping from an interval [u_, u,] €

7/
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Re u mto the whole rea] u' axis. That is, we require monotonic tunctions f(u') such that

f(too) = u

) \ (6.8)

where one of the u, or both u, and u_ can be infinite. For finite u, . conditons (6.8) imply
that

[f@), , =0 (6.9)

e, critical points of t lie at the ends of the real u’ axis.
4
An accelerated frame defined from eqns. (6.1) and (6.8) covers a bounded region

\,

a rhombus )

u <|xi[l<u* (6.10)

of Minkowski space-time; x £ t = u_and x % t = u, represent two event hon‘zons.v These are
the boundaries of the spacg-time QQmain over which the (x',t') coordinate 1s defined. In’
particular, for u_=0and u, = +oo, the accelerated frame covers the right-hand wedge of
Minkowski space-time. When uy = +oo, thére are no event horizons, the accelerated frame
covers the whole Minkowski space-time.

In terms of the inverse functions ~

N

u' = F(u) (()1 l)
coné}tion (6.8) reads
Y e , F(u,) = #oo (6.12)
1.e., F(u) has real singularities at u = u, . , , ) s

In accelerated frames defined by eqns. (6.1) and (6.8), self-adjointness of the
propagation equations and orthogonality and completeness of their solutions arg
guaranteed.

" Physically, condition (6.8) mean that event horizons move at the speed of light

(light rays take an infinite time t' to reach them). For t'—teo, world-lines of accelerated
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observers tend asymptotcally to the event horizons x £t = u and x 2 t = u, where therr

velocity reaches the values ke

A free massless scalar field may be quantized in the accelerated frames described in
the preceding sections. a complete set of solutions of the conformally invanant wave
functiop (gumpde =0 i1s gven by -

1 . Ay’
o (u)=———c¢c ,
-, 1 1AV
O (v) = ——c
2(mh)12 (6.14)

whereu = x" -, v = x" + ', and A > (). Because of eqn.(6.12), they are orthogonal with

the scalar product
(<Dl,¢>2)=ij[@;[‘/Eg“vavd?,l—lJVQIB“V\/QIQ,]GX“ ‘ (6.15)

A Bogoliubov transformation

Cx: J'dk ['Ax(k) a, + Bx(k) a ] (6.16)
0
with coefficients
B =0, 00 . AK=©,0) RV

relates the annihilation opereators C, of the modes ¢, (positive-frequency modes with

respect to the time t') to the annihilation and creation operators a, , (a,)* of the modes

(pl;(positive—freqﬁency modes with respect to the time t). We have
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¢ (u,) _ 1 c\ku' \
. =
2 1kl ) | (0.1%)
—1kv’

) = e

2 k) N (6.19)

The condition Cy 1 ' >=0 tor all A does not define the vacuum state of the theory: this 1s
defined by

a 10>=0 Vk (6.2

The production function is defined to be

oo

* —- + —_ hd j
N(AA) = <01C C 10> _jdk B (k) B, (k) 0.21)
. _

‘For A=A, it gives the number N(A) of quanta of frequency A in the inertial vacuumn state on
the total volume. The number N (A) of A quanta per unit volume is obtained by introducing

wave packets; i.e.,

—

Nv(k)zlimjjdk' dA" g (A.A) g;(x',x') NAAY) 6.2
o0 L :

.

A

where g (A1) is such that
J- dh|g A =1 | _ (6.23)
] .
From eqns.(6.13,6.14) and (6.21) and by using
y= J dA (C,0.+ C07 ). - (6.24)
0

the vacuum energy H and momentum densities are given by:
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]
Hov oy S HOC vy ey (62N

] .
Poo A HOG Oy Hedve ) (6200

Re N A A, WA A
where Hoe.O) —j J dAAA AR T e NGV ST R A RS
S
[h] 9]
with R(A A < 01C C 10 - f4~\ (kY B (k) (62N
A A A A -
4]
\
\
Hand P sanety
d Hix .t + d Pk 0 (O 29
! X -— S - e

NCAA ) and R(A LAY desenbe antertercaces between the created modes with ditterent
freguencies AAT These mterterences cancel over the whole volume as can be seen from

the relation

bom

I = J Hix) dx™ = J)\N('A) dA (6 30

Too 0

1 ~ ey -
tor the total energy B The total momentum of created modes over the whole space 1s zero,

Ciiven N(A LA, we reconstruct the mapping, ie.

: » dA 2
Huh =t Sexpy dm RCJ— expl 1Au] AR NG ]X 0}
N .
0 ‘ (630

where feu ) 1s anantegraton constant (scale factor of the wranstormaton).

From eqn.(6.31), we get the relation
\

LY
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oS

i . A’ N
«—(—.[lnt(u')] A‘UIRCJ’(U\C | (K)\')l NAAY TURA)
du A0

0

From the above results, we have the following theorem: cach one ot the tollowinyg
statements unplies the other two.

(1). The production funcuon has the form

NAA) = M) S (A-A) (O 33)

/-

(in). The Bogoliubov transtormation can be CY‘)[CSSCd AS 4 IWO e one, 1 ¢,
. 172 = —= .
o= loN(?\)J ¢ IN(K)I'?( (O30
A v AL+) M AL

/

/
(). The analvtic mapping 1s .

-~

1
2nT

F(u) = In PBu (6 35)

where T = [ A Nv(l) ILO (6 36)

and § is an integration constant.
In proving the theorem, we used the relation
° 12
F+N_(A) h
A (k) =| ——— B)\(k) (6.37)
* N,
> - .

which 18 the necessary and sufficient condition for the Bogoliubov transformation 1o be

simplified. This conditon allows a basis to be defined by:

r
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N - ALK A
(At)Jdk i (6 %)
[l¢Nv()\)l
B .
¢ «Jd Ro—A a, (O 3

such that

(C ¢ :JA'm A (k) dk
A A

A(#) A(+)

1]

SN OO S (A (610
cC i’ — * . .
| ( Y ( ‘) ] —‘J‘ B)\(k) B)\_(k)dk

4]

= N M (a0 (641
I .T J=(C T =0 (6.12)

A O [ MY A

A corollary of the theorem ts the following - If N(A.A") saustles the staterment (1),

then NU(A) is given by

N (A) = o |
(e -1 (643
but the converse 1s not true.
The paremater T as defined by eqn.(6.43) plays the role of a temperature. For any
of the statements (i), (ii). and (iii), the left hand side of eqn.(6.32) evaluated at u' =0 1s
cqual to a constant of value 2xnT. The theorem charactenize a situation of global thermal

equilibmum over the whole accelerated space. This situation implies the presence of event

gl
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horizons. For example. the Rindler trame has cither one event horizon or two event
© W ~
horizons at the same temperature. The important point is that the presence of event horizons

is a necessary (but not a sufticient) conditon for global thermal cquilibrium. The

temperature assocated with cach boundary u' = tee s defined by

- 1 d
T =—o——1Inf(u) lu_: ~ (O

Thus, cach asymptotc region u' = oo ( +o0 ), has a temperature assoctated with i I u' -
teo (oo ) s a critical point of f(u), T, ( T ) 1s the temperature of that horizon
Otherwise, T, ( T ) 1s the temperature at infinity.

All the above resplts enable us 10 study the quantum spectra themselves i terims ot

. . .

the analyuc properties of the mappmg‘s. There are basically three ditferent types of vacuum
spectra; each of the following spectra N, (A) characterizes a class of accelerated frames
having the same asymptotic properties and temperature. N, (A) retlects the asymptotic

properties of the acceleration but not their detatled behaviour.

1
1) NA) == +
v 2 NT

e 1 e —1
[t corresponds to accelerated frames with logarithmic singulanues for both asvmptouc
regions.

(i) N (A)=0

In this case, N(A) is finite and non-zero and it is nc%n—thermal and both singulanties are of

the power or eéssential type.

(i) N,(A) = oo -

<

[t corresponds to log-log singularities.
Each of the above classes involves nonuniform acceleration and one, two Or no

event horizons.
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The physical interpretation of the vacuum spectra has to be done in terms of the

mcasurments of accelerated detectors and this brings the detection process naturally into the

theory
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v Chapter 7 Particle detectors and quantum detection process

We have reviewed the results of field quanuzaton in a variety of coordinate svatems
and were led to the ‘thermalization’ theorem (Takagi 1986), i.e., the pure state which is the
vacuum as seen by an inertial observer is a canonical ensemble from the view point ot a
uniformly accelerated observer. The temperature charactenzing the ensemble is proportional
to the magnitude of the acceleration of the observer. Although this result 15 ()bvu;u_\‘
mathematically, its physical significance is not obvious immediately. One of the questions
that follows naturally concerns the actual detection of such particles predicted by the theory,
In other words, can an observer make measurement of his motion and if so, then how are
the measurements to be interpreted. We stated in Chapter @ that a uniformly accelerated
detector such as the Unruh box records a Plancktan spectrum when coupled to a massless
scalar field. However, in Chapter 2 we pointed out that the concept of a ‘particle’ 15 1ll-
defined and ambiguous in a generic space-time. We will not delve into the problem ot
finding a real definition of a 'particle’ but rather we state that the concept ot a particle
remains purely mathematical until a method of observaton is specified (Birrell and Davies
1982, section 3.3; Takagi 1986; Unruh 1986b). Therefore, we consider.a concrete, albeit
‘highly idealized model of a particle detector and in particular we discuss how the detector
responds when it is uniformly accelerated. The response of the detector then provides us
with an observable which in principle is a physical effect that reflects a certain aspect of the
thermalization theorem:. Howcver,'whcthcr the "partcle detector’ can’be reasonably said to

'
detect a particle as it is purported to or not is an important matter to be examined (Grove
and Ontewill 1983; Davies 1984; Grove 1986a).

Let us stress that our consideration of an accelerated detector (uniform or non-
uniform) is a 'Gedanken' experiment, although some closely related physical phenomena

might be observed experimentally as will be discussed in Ch. 8. Our next step will be to

focus on certain aspects of the detection process that emerged. Firstly, we have the concept

\“I
{
‘\\ *
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ot ‘quantum noise” which 1s to be regarded as the fundamental physical quantity actuallv
observed by the particle detector (Sciama et al., 1981; Takagt 1986). Secondly, when the
‘effecuve particle content’ 1s considered, then the discussion ranges over various
possibilities depending on the type of the detector (Unruh 1976; Grove and Ottewill 1983;
Hinton 1983,1984). The problems concerning the mechanism of the excitations ot a
detector have also been invesugated extensively (Unruh and Wald 1984, Boyer 1984;
Padmanabhan 1985; Grove 1986b; Frolov and Ginzbutg 1986) as well as the seeming
antsotropy n the detection of acceleration radiation (Israel and Nester 1983: Hinton et al.,

1983 Grove 1985).

detecuon process and ats inherent difficulties will be addressed.

7.1 The De-Witt particle detector

The 1dea of a particle detector originated with Unruh, who carried out an
approximate analysis using the so called 'Unruh box' coupled to a massive scalar tield in
four-dimensional space-time, takihg into account the line width of the detector qualitativgly
(Unruh 1974). De-Witt simplied the detection process further by considering a point-like
object endowed with an internal structure characterized by energy levels and coupled
linearly to a free complex scalar field via a 'monopole moment' (De-Witt 1979). This object
15 called the 'De—Witt pQint-like detector of monopole type' or the'De-Witt detector’.
Specifically, let H be the Hamiltonian describing the internal structure of the detector with a
discrete spectrum { E, } and corresponding eigenstates { 1E; > } ,

HDIEi>=EiIEi> ' (7.1

—
[

Let the detector be endowed with a ‘monopole momenx' M such that
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~J
(]

M(T) = exp (iHDt) M) exp ( iHDI) {

in the Hetsenberg picture, where tis the proper time of the detector. Itis assumed that the
’
detector 1s linearly coupled to the*$calar field ¢ via this monopole as described by the

interaction Lagrangian.
l‘m( = l M(t) @(T) + M*(t) (Dy(t) } e sit) (7 ‘)

where
D (1) = 0(x(1)) (7.4

and x(1) denotes the world line of the detector. In writing down eqn.(7 3), we assumed
*hat the detector interacts with the field at a point and so the detector is an idealized point
without size. The adiabatic switching factor has been introduced in order to suppress
spurious transient effects; the interaction is kept switched on for the duration of proper ume
~ 1/s, where s will be taken less than the spacing of detector's energy levels. .

Let the entire system, consisting of the detector and the field, be treated in the
‘interaotion picture’. Suppose that at ume T = —T_, the detector was in one of its energy
ciéé;lstates, I E, >, and the field was in the Minkowski vacuum, | Oy >, 1e., the entire
system was in the state | E; Oy >. The probability amplitude for the entire system to be

found in a state | E; y > at time T = 1, is given by

+1

0
i<E2,\y|J dte

-1
0

|

{ M(1) ®(1) + M (1) D°(1) } | E.0,> . (7.5)

where it has been assumed that the matrix elements of M is small enough for the first order

perturbation to be appropn‘ate.. Using eqn. (7.2), this can be written as
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+1
4]

x(l,z El)! st}
1\[{,IM(())I}{1>J‘ dte <y D)0,

T
]

+ 1T
Q
vk, Ep v sk

t1 < I{IIM(())II§1>J' dte <\y|(D(f)|()M> (7 6)

T
0

The transition rate, namely the probability per unit proper tume. tor the detector to
make transition from one energy eigenstate to another i1s obtained by taking the square
modulus of the expression (7.6), summing 1t over all the final states |y > of the tield and
tinally dividing the result by ét(). Moreover, we consider the situation when the detector-
tield 19 switched on and off infinitely slowly. This may be achieved by letting 1, tend to
infinity fifst, and then letung s appearing in the exponent of the adiabatic factor tend to zero

at the end of the calculanon. Denoting the transition rate by R( E, /E; ), we obtain

R(EJE) = (1<E,IMO)IE, >+ 1<E,IM (O E, > 1"} F(E, E) (7.7
where
+Io *‘0
1
Fiw)=lm lim — | dt j dt exp{ —1w(t - T) - sl - sit'l } g( t,T") (7.8)
s -0 IO 300 2T 1
4] ~—t() 0
and
g(r.T) = <0, 1 (1) O*(1) 10, > (7.9)

In deriving eqn. (7.7), we used the relations

<Oy 10%(x) ¢(x) 10y, > = < 0, 1 (x) (D*(x'? 10y, > (7.10)
<0, 10(x) (x) 10, > =0 . (7.11)

The expression (7.7), which is the consequence of the standard Fermi's golden



rule, shows that the transition rate of the De-Witt detector 1s proportional to the ‘response
tuncuonl* (w), which depends only on the field but not on the structure ot the
dc[ccmr.'ic\r‘cmaining factor in eqn. (7.7) represents the ‘selecuvity’ of the detector to the
radiation bath and clearly depends on the internal structure of the detector iselt,

When E, >E, | then the detector has detected a quantum ot energy Fo b and we
mterpret this event as the absorption of a particle by the detector It Foo By owe may
nterpret that the detector has emitted a parucle ot energy I£, 12,

An important thing we need to reconsider concerns the 'size” of the detector
r{(lll.l“y, we getan infinite value for the vachum fluctuation ot the tield at a pownt trom cqn
(7 10) when the two points x.zmd x' coincide. We may remedy this by usimg the it
prescription’ for the tunction in - eqn. (7.10), t.e., the function is detined i the lower halt
of the complex x plane and its boundary value 1s taken at the real axis. However, this
seems to be unjustifiable on physical grounds as we are concerned w\th an ‘obscrvable’
quantity. Thus, the point-like dctcuor 15 simply a much 1dcalm.d case and any actual
detector must be of finite size (Unruh 1976; Grove and Ottewtll 1983). A simcaring factor
tfor a distribution will be naturally provided if the effect of finite size 1s taken into account
(De-Witt 1979). In other words, we consider a particle detector of infinitestimal si1ze, but
not a point one. The result can be put formally in the form of eqn. (7.7), but the
infinitestimal size of the detector presents itself as the infinitestimal negative imaginary part

- added to the Minkowski tigne coordinate g
8(1,T) = G (x(1), x(1)) ¢ (7.12)
where »

G(x,x) = <0, ld(x) 0*x) 10, > (7.13)
M )10y

Im x =-¢

, and all the coordinates except

€ 1s an infinitestimal positive quantity 8t dimension of lengy
. . |

for xO are real. Since € is taken to be infinitestimal, the tim® coordinate x* is independent of

< "
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the choree of the Lorentz frame. The quantty G s called the posiuve trequency Wightiman

tundtion

The De Wit particle detector is of the omnidirectional and monopole tvpe, which is
the sunplest kind 1na vanety of differently designed detectors and/or with ditterent

detector tield couplings (e g hinear; quadratic; dertvative) (Hinton ¢t al . 1983 A

classiticauon scheme for particle detector types has been put forward by Hinton (1984

N

-~

The use of parucle detectors associated with quantum dclcclim?%n )esses will be discussed
L 4
Later, while the De Witt detector will be used as the prototype for examining its response in

ditterent coordinate systems and 1in n-dimensions in general (Letaw and Prautsch TS

Fakagr 1986) when coupled to a matter tield.

2.2 Yacuum noise
The considerations of a model of a ‘particle detector in the preceding secuon led us

to tocus our attentton on the two-point function

gT.1) =< ()M L D(t) D (1) I()M > (7 1-hH

This 1s a correlation function of the field at two times T and T along a world-line x(1). More
general correlauon funcuons can be written as

<Oy 1 (c) q>+(rl) D(1) DT ... () d*(r )0, > (7.19)

which can be expressed as a sum of products of the two-point correlation tunctions.

~Moreover, any correlation function involving an odd number of points vanishes identically.

¢ ’

In particular

<0MI<D(1)|OM>=0‘ (7.16)

When we consider the corre¢lation function from another perspective, namely in the theory

of stochastic pgocesses, where a Brownian particle is coupled linearly to a random force,

.
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then the detector corresponds to the Brownian particle and the field 1o the random torce. In
replacing the field @ by a random force and the vacuum average by a stochastic ensemble
everywhere in egns. (7.14-7.16), all the above mentioned praperties become the properties
of the so called Gaussian random force; the two-point correlation functon is the noise
generated by the random force. Thus, the quantty defined in (7.14) 15 a kind of noise, "the
quantum noise in the Minkowski vacuum along the world line x(1)", whose stochastic
properties are determined by the nature of the Minkowski vacuum and the world line. This
viewpolnt is much emphasized by Sciama and his co-workers (Sctama et al., 1982). For
free fields, the quantum noise is Guussiaﬁ as remarked above. If the world lines belong toa
class of stationary world lines (Letaw and Pfautsch 1981) as discussed in section 5.2, of
which among others the world lines of uniform acceleration 1n either lincar or circular
motions are members, the noise is also stationary, 1.e., the right hand side of egn. (7.1
depends on the difference ©-T(AT). We shall concentrate our discussion on stationary noise

and so we write
g(t-1) = g(1,1)

The quamum‘&isc 1s both ‘Gaussiz‘m and stationary but need not be a ‘'white’ one and
indeed the response function defined by eqn. (7.8) can be simplified to

4on
/

g(7) (7.17)

F(w) = lim | dte " "

§-0 ©

* .

If g (1) vanishes as Itl tends tq infinity, the »adiaba’tic factor can be ignored. Eqn. (7.18) then
says that the response function is just the power spcc@m of the noise according to the
Wiener-Khinchin theorem. The response f;Ction deperids on w in general and hence the
notse ismot white. The 'particle dcée‘ctor’ acts as a 'noise detector' or a 'fluctuometer’
(Candelas and Sciama 1977) for the probing of the colour of the noise. The detector can be

said to detect particles as the spectrum of vacuum fluctuation and it need not be interpreted
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as meaning that the detected ‘panicles’ are real’.

Let us illustrate the above mentioned materials by the following example. The
responses of tw(; Ndc(cclors, one of which moves incr:tially while the other is uniformly
accelerated will be compared as both coupled to a massless scalar field. The autocorrelation
funcuon (posiuve-frequency Wightman function) as given by eqn. (7.14) for the zero-poiint
fluctuations of a real scalar field @(x) relative to the usual Poincare invariant vacuum state

( Minkowsk1 vacuum ) 1s found to be

. 1
G (x,x) =

) b
ax’ [(t ¢ i) + (x-x)7] (7.1%)

where x = (t,x,y,2) and x=(x,y,z).
If the detector moves inerually, then the calculation can be done in the rest frame of

the detector with the power spectrum of the fluctuaton (response function) written as

AN

~ too .
1 i .
F(w) =_?J‘ gp Py
4 7. (t-1€)
\
-0 g 719
o (—) (7.19)

where 0 denotes the step function.

Since F (w) contains only negative frequencies, it implies that if‘the detector is
prepared in the jround state, then it will never be found in the excited state. On the other
hand, when it is prepared in an excited state then it may decay to a iowc;r state as induced

by the tluctuation of‘ihc field.

The autocorrelation function for a uniformly accelerated detector is-given by

G =<OMI<D(1:)<D(O)|OM>

2
—-d

P 1672 sinh’(t /2 —ig) | - (7.20)

P~
-
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a .

where a 1s the constant proper acceleration of the detector and P(1) denotes P(x) evaluated

at the point x(t) = (1.8,y,2)

The power spectrum of the fluctuaticrs along the accelerated world line 1s theretore

400

‘ 1
Flw) = - ——J dt 7 ‘
an’ 7 4sinh(t/2 - ig) (72

a exp (1wt /a)

In order to evaluate the above integral, we first consider the result of integrating the

AN
function N
U
. a exp( iwt/a)
f(t) = — 5
16m%  sinh"(t/2) (7.2
around the contour C as shown in Fig. 7.1. .
&
Imrt
2x1 )
x1 ¥
-3 |
N 1 N
Ret

Fig.7.1 The contour of integration appropriate to the
evaluation of F(w) |

The integral over the lower part of the contour yields F(w) while that over the upper part

yields —exp(2nwva)F(w). The sum of these contributions is related to the residue of f(t) at t

= (. Thus, we find

' ] ®
- Fw) == ‘
2n [exp(2rw/a) -1 ] | ‘ (7.23)

. .

Hence, the uniformly accelerated detector will be excited to a temperature T= a/2nky , the

a

well known 'Fulling-Davies-Unruh' temperature. Moreover, the,uniformly accelerated

4 -

. ¥
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detector readty as gt were an beeat bath at temperature 1 Phis tollows bocause the
4 .

3 . detector v moviyg throuph a Gaussian mdom process aad theretore sees a Graussan

Candom process. This process s completely deternened by the second order conrelanon

tuncton whioh o iac ot a thermal distmbution attemperature 'V In thes case | the quantum
- -

Guaussan tluctuations are pmrm'ncd to thermal Gaussian Fluctuations, and a trulv thermal
state s detected

The concept ot the QUABTUIT NOTSC Was examuned further by Takagiin comparnny the
response ot a patucle detector umt'nrgy accelerated in Minkowshr vacuum®the Rindler
detecton o that of the same detector at restn a thermal path cthe thermat detecton
arhirany dimensional space tme (Lakagt T980)

) N\

.

7.3 Vacuum uctuation of 'zero-pyint field' in accelerated frames
PR

As remarked 1n the preceding section, S_cmmu and his corworkcr.\ACon;xdcrvd the
thermal effects of acceleraton to have thewr ongin i the zero- point ?flucmxmmllx,ut the
quantum ficld, w‘uhqut implving that particles are created. Sinular physical arguments have
been pomnted out by Bover i the context ot a classical random field. He conadered that the
‘vacuum' state s actually formed by a universal random classical éAlcctmm;xgmﬁxc treld

I'his random field should exist even at absolute zero temperature; hence it 1s termed the

sero-pomnt field. This zero-point field 1s considered to be a physically real field interacung

with the matter in the pniverse. Moreover, this zero-point tield has a Lorentz-invarniant

energy spectrum, and theretore cannot be detected 1n an tnertal frame: howeven, this field
manifests itself in the formn of a thermal radiatiorz in a uniformly accc{emtéd frame. Thus,
the-spectrum observed by a uniformly accelerated detector is a distortion of the zero-point
field and is not due to the ‘creation o\f p;anicles'(Boyer 1980). It is Frural to deduce that the

Ay ) .
'zero-point’ field will also be distorted by the existence of a gravitational field and manifest

" itself in some peculiar way. This investigation was carried out in the framework of

N &

4

i
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quantum field theory (Hacovan et al | 1985 Hacvan [986) n curved space ame We will
review the results ot the energy spectra ot zero pomnt ticlds observed by an accelerated
detector in tlat space ume

For a masskess scalar tield, lflc standard density current 1s given by

n = 1+0 d) - NP~ (7 2h

(84

Morcover, 1t &% v a Killing vector tor the background space ume, & gencrates o

transtormaton which leaves the acuon imnvanant The conserved Nocther current assocnated

N

with that invaiance is

b= o<old EPoor] 1dEPaoorto - (725
5 B 34 B

The orbits of the umcelike Kilhing vector can be identtied wath the world hine xt 0 (1) of

an observer whose tour velocity s

dx”
: s .
) e Ea (7 201

dt

Then, tor the detector we can detine the particle number density (n) and energy density (e)

RN
Vi ] :
n=u’n
(938
do do
= A<QT— -0 > (7.27)
dt drt
&—:-U(IJ-
(V3
2 2
d d do do
:i(gu&,)“2<—¢——9———¢i+2—¢——> (7.28)
20 e de  drt? dt dt

The Wightman functjons Dt(x#, x™ ) are to be evaluated at two points: x%zx“ (T+(1/2)0)

and x# = xH ( 1—(1/2)0 ), along a given world line: .
. 4 .
oy o e v - .
".j‘:' . 27 ) .- "
.":;.‘"f § e y L I
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—

[)’(t*{‘ﬁ,t ‘)Lo) «(D(t?{‘ﬁ)(j)(t*T(S)- (7.2

and by dgtining the Founer ranstonms ot the Wightman tuncuons

4o

D" JORY) :Jdo <D (T + Lo, T - ‘l“o )

(7.30)
2 2
we have tor the particle number density

L d

nm.T) = LJ’dm W | I_)’(m,r) D (w.1) ] (7 3D
It
0

v
and siulaly for the energy density

3

o

cw. 1) = (E* § yies Jd(uﬁil I_)‘((n‘t) +D (w.1) ]
H n

(
0

Now. m 1s the frequency measured by a detector with' proper ume t and tour

velocity u*  Fromegn. (7. 31), we can define the particle density f( w.T ) as

R — =flw.1) = —IT [ D' (w.,71) -D (w,7) ] (7.33%)
dw (2n)-w

and cqn. (7.32) implies that the energy density per mode is
de 1/7_@. Nt D 3
—=@E* &)= [D(w1) +D (01 ] (7 34)
dw H n

Fror an inertial observer, the Wightman functions for the Minkowski space are
+ ¥ . \2 2 -1
D (x,x')=——2—[(t-t'¥1s) —-Ix-x"1"] (7.35)
4an

Thus, for this particular observer,

N ¢



and

//\15

' 1 1 1 2 ,

Ditt+-0.t 50)-= - (0 4 1E) (7 3N
- - an”

flwt) =2r) * [ =Q@2rh) | (7 37)
( 3 (U‘

de = L dw | = —— dw] - (7 3%
2n” 2ne

We see that there 1s one particle 1in each cell of phase space, which has no sigmticant

physical meamng while eqn. (7.37) 1s the well-known expression for the zero pomnt

~

and

CHnergy.

For a umformly accelerated detector, the Wightman funcuons are given by

b
e

1 1 21
DI(T+3-O‘I—7G)= ’cosh l?a(cw 1£) | (7 39)
- - ten” -
f(w,1) = 2r)* (7.40)
. 3 1 .
de = (g5 2L L — |do (7.41)
7%

2 2noy
n e al~1.

,»3 P

~ .

Again, there is one particle in eaéh phase-space cell! but now the energy of the zero-point

has an addiaonal Planckian term. This implies that an accelerated detector does not count

new!y created particle; what it actually detects is the zero-point field, which by effect of the

acceleration, manifests itself as a Planck spectrum.

N

TR

For massive rgatter fields, the expressions f(ithe 'particle density’ becomes more

compli'catc_d while the energy density still retains the familiar form of distribution. In

particular, when we have a massive scalar field, the Wightman functions aré given by
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L J
m’ ' m 2 m_ >
t Ry , - R .
D (w) = T ¢ 'K (—) 17 TK (=) (7 42)
42”[~ ln(fya a aya
I'hus, the ‘paruicle density' 1s given by
2
dn m , m_ 2 ; m_ 2
— - t(l.1) sinh (221 | i\l (—) | K (—) |
: a a g .
dm 2;17( d Hava g w/a g (7_ 1 ;)
and the energy density can be wntten in the tollowing torm:
- ] ] ;
de = 2w —+ dn (7 JAl)\
8] (Jnw)/a )
RS 1
LY

the 7zeto pomt energy

R
Here a Bose Emstemn distnbunon function appears superunposed on

spectrum but the ‘particle density” takes a complicated form.

For a massive Dirac field (e.g. electrons), the energy density can be wnitten in the

torm
- [4
;, 5
(1) _
de =] @+ : dn (745
(2Tw)/a
¢ + 1
wlere L .
L J
R \/ '@\ 7
m w m_ m 2 -
~ . —_— ' —_— _ —_—
cosh ( - ) K(3/2“/"’(a) | IK(I/zﬂ/a)(a)! dw (7.46)

Ty . s

i dn =
2am

The particle density 1s complicated.in its form, but the energy spectrum exhibits a thermal

4

term. According to eqn. (7.47), an accelerated observer detects a non-zero density of

‘virtual' particles with energies below mc?, even though only the states with hw < ~mc*

4
~ i ' are occupied in an inertial frame. This may lie in the fact that the acceleration lifted some
§

cleatrons above their original energy levels, producing an overall excess of positive energy.
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' 17
At the same tme, the depletion of electrons below the energy level mce? is observed as an
increase in the ‘positrons’ energy. Thus, eqn.(7.45) can be interpreted in the sense that the
term - w corresponds to the vycuum energy, and the Fegmi-Dirac distribution comes trom
the addponal energy detected in the accelerated frame, the factor of 2 being due to the fact
™~ . .

that both electrons and positrons contribute to the excess energy.

It should be emphasized that both the positive and negative frequency Wightman

¢ .

tunctions are used in the formalisms instead of only the positive One .we used 1n the

. - . . . - . . - B .
preceding section. As Hacyan pointed out, this omission is justifiable when the negatve
frequency contributions to the energy can be eliminated which is equivalent to arbitrarfly
cutting off the zero-point energy.

The distortion of the zero-point tield has also been considered in a circular- motion

frame when the accelerated detector is coupled to a massless scalar tield (Kim et al., 1987).

The Wightman functions are found to be:

1 1 1 1
Di(r+ -,-){; T —2-0) = - (7.47)

- ax’ (Yo F ey’ 4p? sinz(ym‘)(S/Z)

where p is the radius of the circle, w, 1s the angular frequency, v = pw_ and y = 1/(1-

v, Thusgthe Fourier transforms are >
_t 1o 2iWs
‘ \ Dwn=-——2ds . Cx‘z’( ’2 9)2 (7.48)
. \ an” 27 7, (s¥1g) - v sin (s)
where s =yw 0/2 , W =w/yw, ¥

It can be shown that

D) -D (@) === (7.49)
. 2
which means that the particle density is one for each E;hasc-space cell.

The integrand of D (w)can be expressed as a power series in v :

L} A\
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— ] W 2Ws vosinT ()
D (w) - _— is e . 70,
A in Z-Y ’ o0 (Sfir)..1|9A (/..
Y
which can be mtegrated term by lcm"l‘hc result 1s
n+ ‘
(1) k n k W) n+l )
. D(w) oo —_O(n kW) (7.51)
~7W n=0 2n k= () kI'(2n k)!

where 0y the usual step function.

[he energy densitg detected by the detector in circular mouon 1s given by

L D 2n 5
de :8{:_ _’)_+ "’ Zv* t‘n(w) dw /5D
| T 2yw oo
'he energy spectrum of the distorted zero-point field 1s not a thermal ont and cag have
dependencg on the speed of the detector in addition to its acceleration. ”

By cdparing ditferent kinds of motion, the energy densiues were found 10 depend
on the details of ‘motion. The zero-point field seems to be distorted by the motion of the
detector and viclds the familiar thermal spectrum with the exception of that in circular
motion. “This signifies that the similarity between a thermal spectrum and the zero-point
spectrum may be only coincidental” (Kim et al., 1987).

-

7 . . rai i
* : . .

= In Chapter 5, different classes of coordinate systems were introduced and via

canonical quantization of a free scalar field, the vacuum states were found limited to two

possibilities: the Minkowski vacuum and the Rindler vacuum. Then in section 7.1, we

studied the response function of a De-Witt particle detector coupled to a scalardield in tlat

space-time. In this section, the results obtained from the ‘detector’ method are compared to

those fro\m canonical quantization in order to check the validity of the statement that'the



‘model detector” detects particles as detined by the standard canonical quanuzanon In
particular. the nature of the spectra corresponding tosthe various trijectories will b
examned with a discussion of the physical imphications of*the result ot comparison
° ~
The cases tor an inertial observer and detector as well as thewr umtormly accelerated
motons have been discussed in previous sections. The results are tound to be the same i
cach class of coordinate systems.

: . \ .
For other coordinate systems such as Class-C and Class D the invesuzanon i as

tollows:
Class - C coordinate system: rotating coordinates N
EH = (¢, ay. ax, 0) ' (7 5%
This corresponds to the trajectory: 3
) 7
) XH(1) = (CF, Reosart, Rsinat, 0) @ R =3¢ 1 (7.5:4)

The Wightman function is given by

1 1

<t
G =

21’ cH-ie)? - 4R sin’(w2) (v-je) (755

The above integral cannot be evaluated in terms of sunple tunctions but 1t
'y .
obvious that the particle detector-sees a non-Planckian spectrum of radiation.

Moreover, the Bogoliubc;v coefficients are found to be:

- - ™ =2 21n .
) - k, ~ik 8[q—(kx+ky) ]5(k 0
a( qmk ; k)= -k, (7 5¢
(2n)1/2 q q ( Y)
B(qmk,;k)=0 - : (7.57)
L}

The barred quantities indicate that Minkowski modes are used in the

expressions. Thus, the two vacuum states defined by the two procedures are
[

” f

V.o

L



mcompatible withone another.
Lastly, when we consider the Class-D coordinate system, we get that the
trajectoy o' the moton is:

b

At o0) (7.5%)

1 1 2
X‘(T):(U—u o, ‘L;xtz, 1
6 2 6

" The Wightman function is written as

ot 1 1
2n° (T ie)? + (a’/12)(t-ig)* ‘ (7.59)
and the power spectrum is then defined by
ey EURYEEE]
sryla . (7.60)

which does not have the form of a Planck spectrum. The Bogoliubov
coefficients are then given by:
172 = 5 . !
. = 2 2 .
exp | i—at Q + ky +pq) S(QI k) Z)(ky w +Qv~)

2ukZ
y

' 1
Kok . piQ)== |2
R ’p\Q) 2 | nak

N

(7.61)

Bk, k.p:Q)=0 _ (7.62)

Again, the detector is not detecting the p-articles corresponding to the standard
canonical quantiziation. N .
The concluiions that may be drawn are these: in general, there is no correspondence
.' between the pﬁnicles detected by the 'model particle’ detector and the particles as defined
through a canonical quamizatign procedure. Moreover, the existence of a Planck spectrum
for the unifrmly accelerated frames is 'r'nérely.a coincidence as stated in the preceding
section. Various typgs qf detector motions léad to different kinds,of specttra. In particular,

no najural definition of temperaturds exists for these trajectories (Padmanabhan 1982;

a,

-
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Letaw and Pfautsch 1981).

However, it was pointed out by Myhrvold that the above conclusions were
incorrect and he asserted that the canonical quantization and detector methods were
guaranteed to give consistent results 1f they were each apphied properly (Myhrvold 198.4).
The discrepancy between theganonical quantization and the detector mctho;is was due to an

- \
incorrect choice of rest frame coordinates. The argument can be stated as the tollowing:

The Wightman function as defined in eqn.(7.14) is a two-point tunction in the
particular state 1 Oy > and is a completely coordinate independent object. This invanance ot
the two-point fdnction for a given state under coordinate basis transtormations 1s a general
aspect of the formuli/sm of quantum field theory which obtains even in non-static cases.
Hence, when the two-point functio’s.l is evaluated in 1 0" > in Minkowski coordinates while a
Bogoliubov transformation is pcrfoﬁncd on 0> to any other basis, the same result should
be obtained regardless of the cootdinate system that the vacuum is in. Morcover, the ‘rest

frame’ of the accelerated observer should have the metic written as:

ds’={ 1+ z'ad(ed)i 1 dcts (dzh’+ 2+ (d2))’ (7.63)

withi = l,2,3andzf’=t ,
- The metric (7.63) is the Fermi-Walker rest frame for-any timc—likcworld-linc in flat space-
ume. It is equivaleﬁt to the Minkowski metric for observers with ab =0, otherwise it is a

-static metric if and only if the world-line has constant co-linear acceleration. The metrnc

used by people in their calculations are incorrect for the accelerated observers.

In section 7.2, we defined the vacuum noise (i.e., the sise in the Minkowski
vacuum due to a complete scalar field seen along a world-line with uniform acceleration 'a")

. /.
through-the power\ge\ctrum of the field which ¥ given by:

A

[ 8

o’

Fs

v
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Fw) = Jc <0, 1 D(T) Dx(O) 10, > dt (7.64)
- v
For a De Wit particle detector moving along a Rindler trajectory with acceleration

- . . . - . - » . .
a’ through the - Minkowski vacuum of a massless scalar tield in four-dimensional space

tune, 1t was found that
4 p T - (7.65)

where'l = a4/ 2n, which 1s 1 good intuitive agreement with the thermal descniption ot that
by

state. Indeed eqn (7.65) can be rewritten as:

R , l
F(w) :1(—-)L (W) —l— +0(-) | 1+ — ] .
‘ n cu)/f_ | clml/'l" 1 . (7.60)

This can be interpreted as: The first term determines the rate of absorption by the detector of
- .

Rindler particles which obey the Boss»Einstcin distribution at the temperature T, and the

seeond term detepmipes the rates of sppntanegus and induced emission of Rindler particles.

In previous sections, we noticed that the absence of the Planck spectrum detected

' ' &

- by the detector in some coordinate systems. It is then natural to generalize the result given
. , : . )

by (7.65) to space-times of arbitrary dimensions and for massive fields as well. This

investigation was done by Takagi for both scalar and Dirac fields in n-dimensional space-
time (Takagy 1985; 1986). .

* -
For a massless scalar field, the power spectrum in n—dim&ional space-time 1s

'

found to be
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. . D (w) //'
Fw)==———d (w) ) (7.07)
n w/ n \j
e W e 1 ( l)n i
Y
. -
’ \
where ,
£ ¢
o) . )
A2 n (I--n)/2 h2
DM((D) _2 1, PUE: (7.0%) ]
" ) ' |
2

is the usual Minkowski density of states per unit volume and the factor d,(v) 15 a

-
e polynomial in v'2 given by the recursion refation
/ n42 9 ‘ |
dv)={1I+ (== v hd ,(v) > Tnzd (7 69)
d2(v) :_d3(v) =1 N (7.7
[?rom eyns. (7.67-7.70), we see that while tn even space-time dimensions, the dcnmmﬁ;m;{‘
in I (w) has the form associated with the Planck spectrum for bosons, but in odd space-
ume dimensions it las the form associated with the Planck spectrum for fermuions.
The above strange result was explained by Oogurt using the Huygens' principle
(Oogurt 1986) and rederived t;y Unruh in taking into consideration the détails of the
Rindler mode function (Unruh 1986b)’
- It is instructive to compare the 'Rindler noise’ with the thermal noise. The thermal
o
noise is defined by
. 23 + . ]
& . gB (T-1) = < O(1) D*(1) >B - ) (771
R n .
where *
) ) D(1) = o( x(1) ) (7.72)

with the world-line x(T) taken to be at rest with respect to the heat bath at temperature T.

i.e., .

o o .



x”(t) =T, xl(t) =constant, l<i<n | (7.73)

where [ xH) are the Minkowski coordinates of the rest frame of the heat bath. The bracket

»

B denotes the thermal average he
<. > =Tdp, . ] ' (7.74)
| 8 [ s 5
- . '
with the canonical density matnix
exp( -HM/F) '
(7.75)

pp ~Tr exp( —-HM/F)

where Hyy 1s the Minkowski Hamiltonian.

\'I his thermal noise is observable in principle by putting the De-Witt detector in the

~

thermal bath inerually. The power spectrum is found to be:

— ™
T Dn (W) | o
Fo(w)=—" Hw) ——— +0(-w) [ 1 + ————
Bn ol Ty o) T - (7.76)
_ e -1
D (@)
T[ n
- (7.77)
@7 :
- M L a .
where D_(w) is the usual density of staf¥s,
. 2-n _(1-n)f2 T
M 2 2. (n-3)/2 .
D () =——’L—n_l ol (@ ~m) " 8(jw| -m ) (7:78)

~Comparison of egns. (7.67) and (7.76) for the massless case shows that the Rindler noise
is identical with the Lﬁermal nois¢ if and only if the dimcnsio'n of space-time is 2 or 4. In
cvcn-dimensior’laI spacetimes with dimension larger than four, the Rindler noise has the
extra factor dp(w). In odd-dimensional space-times, the Rindler noise is characterized by _

the Fermi-Dirac distribution, in contrast to the thermal noise which obeys the Bose-Einstein
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distribution 1n any dimensions.
For a massive scalar tield, the power spectrum of the Rindler noise 1s a complicated
% tuncuon. In particular, the asymptotic form of the power spectrum in terms of large nmi s

i w  found to be . )

»

. 4 Ml (n/2-2 Aav2 + aym) [T : : -
F (w — (—
0= o (4n) ¢ . (7_796

The power spectrum of the Rindler noise of a massless Dirac tield in n dimensions

15 tdentical to that of a massless scalar field in n+1 dimensions up to drendrmalization

tactor Q | “ | . .g
e = E ) R Y (7.80)
with .
—- n M
. ['(—)
a = 27(1/2___L' S N .
e el (P.81)
[(—) 3
2 ‘\
, N

dimension of spacetime is even and by a Bose-Einstein distributiqg if the dimension fs'odd.
. X

When considering the thermg) noise in a Dirac field, the power spectrum is found to

D
FB,I/Z,n(m) a“a“h( )'F G (7.82)

where @ is given by (7.81). Thué, the Rindlgr and rthc\th‘crmal noisc_:‘are idé'm'icul n two

dimensions but differ for higher dimensions as well as giving the statistics-inversion in odd «

dimensions.

The work of Takagl pomtcd out the p'nomcnon of 'statistics-igvers on in the’

power spectrum detected by the De-Witt particle detector in n- dxmcnsxons The rolcs of the *

Rindier and the thermal detector have also been distinguis‘hed fromy one-another althou gh

.
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thev exhibit the same spectmuim ip some particular dimensions.

» a g SOQ U

\\\'ch theory of quantum detection seems to play an important role in the tormulation
[
\‘v o . . - . .
of quantum field theory by non-inertal observers. This 1s in contrast to the usual
formulation and interpretation of quantum mechanics by an inertial observer. The

cigenvalues of the operator and the mean values computed in the theory are postulited to be

the detectable quantuiies. The observer and his measurement devsges afe external classical

1 4
»

objects nét described by the quantum theory. But, as Sanchez has emphasized the state ot
motion of the observer appears included in the formulation ot quantum tield (;cpry by
;.u‘cclcmtcd observers, so in such a theoty a description of the observer's detector and of the
measurements he carmies out should be provided (Szinchez 1985). Then, in order to
represent the quantum measurement by an observable, without describing the detection
process, we need to answer the following questuons (Haag et al., 1984): '
a). Which glement of the observable algebra represents an ideal detection progess”
b). Can we find a wansformation law which indicates how this observable 1
modified when the same detector 1s forced to move alon é some other world-lines?
There is no 'quantum covanance principle’ to answer these questons. Thus,
models of detection processes have been devised. As mentioned at the beginning of this
-
chapter, an idealized particle detector winch is the De-Witt monopole detector 1s constructed
to study the results of its motion along some particular trajectories. Then, by studying the
response function or power spectrum of the detectors, these models of detectors purport to
N .
analyse the 'effective particle content’ or 'vacuum noise' of the quantum state seen along its
trajectory. However, it is found that the ‘effective particle content’ is detector-model
dependent. Moreover, the incompzﬁibility of the results between the canonical formulation

-~
and the models of quantum detection processes by non-inertial observers casts doubts on



87

the plausibility of an ideal model detector (see section 7.4). It 1s more correct to say the
. : e J

Pulling Davies Unnuh effect compnses two physical phenomena: the Planck spectrum that
v obtamed by a Bogoliubov transformaton 1s not localized but defined over the whole
Rindler space. while a uniformly accelerated detector observing this spectrum along s

\d - . ’ . . . . -
tragectory 1s a local effect. This special comncidence has its origin in the high degree ot
svimmetry ot the Rindler frame. However, in general there is no coordinate system which 1s
locally the Fermu Walker system that 1s associated with a given flow of trajectories. Hence,

the exastence of a coordinate system ‘naturally’ adopred to the flow of trajectories is

A J
unhkely

-

Some of the problems that were encountered when constructing maodels of detection

processes sich as the consideration of the finite size of the detector; the physical
X _ \
o IHerpretaon of the observed .spectrum ete., remain to be answered. The working

mechamsm of the detectors also raised different ideas (Unruh and Wald 1984; Grove 1986:

lmdm;m@han 1982) and for some particular direction-perferred detectors, the detection ot

antsotropie radiauon has been discovered (Israel and Nester 1983, Hinton et al, 1983) but

e .

seems to be answered by Grove (1985).
]
. [n conclusion, the link between models of detection processes and quantum field

theory 1n accelerated frames has not been established. Concerning thé detection process, at
present it seems better to formulate a theory of model detectors, for measuring a variety of

ficld-related physical quantities such as ¢7, T, or other vector densies rather than

concentrating on the usual concepts (e.g. particle) (Davies 1984).
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Chapter 8 Experimental facts about the Fulling-Davies-Unruh effect

L 8

After discussing extensively the phenomenon associated with a non-.;{xcnial frame in
a matter field, one may wonder about the appearence of the Fulling-Davies-Unruh effect in
actual experimental Sctjps. Indeed, several authors speculate® that this effect may have
occured and been obscrvcé through measurements in high energy physics experiments
(Barshay and Trodst 1978 Hosoya 1979). In particular, H séya stated that the moving
(accelerated) mirror effects were quite obvious i.n the hadronfc reactions especially in the ¢
¢ reactions. Accdrding to the theory, gluons arcAthcrmally produced at the walls of the bayg
which are pushed by energetic but permanently-€enfined quarks. The walls of the bag arce

A ' A, .
idealized as perfectly reflecting mirrors to the quarks and the glugps. The standard lincar

potential between quarks implies a constant acceleration of the walls. Then we may

A ‘ _ v :
consider the appearence of the Fulling-Davies-Unruh terlfpcmture due to the acceleration:

/

a
k. T=— (X. 1
B 2n

Although the temperature corresponding to the acceleration in ‘everyday life’ is extremely

low ( 10729 K for 9.8 m / sec? ), hadronic reactions give considerably higher temperatures

which have the standard values of

- kg T ~ 130 MeV

Y

Under some stll to be clarified conditions, the measured transverse momentum distribution

in the low energy region is of the form

- | -m ' /,
et ) P
. pL exp ( 130 MeV ) L :

This seems to explain the mysterious thermodynamical features of hadronic reactions (e.g.
the transyerse momentum distribution ) in the confined quark Picture coming from the

meving mirror effects. This theory may be extended to other hadronic reactions, e.g., pp

— 71X but a good model is needed to calculate the distribution function more deﬁnitc'ly.

V
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L3

On the other hand, we may consider the actual measurement of the Fulling-Davies-
Unruh temperdture in an experiment. Indeed, it has been 'suggczsted to use an electron in an -
LN . o e -
acctlerator ning as a thermometer or detector instead of a linearly accelerated one for which
an actual experiment is not feasible ( 1 K corresponds to a= 2.4x 1029 m / sec?) (Bell and

Letnnas 1983). The electron will then be affected in its motion via the linear coupling of its

magnetic moment to the magnetic field. The spin of the cléctrpn will be flipped by the
vacuum fluctuation of the magnetic field. Thus, we have the phenmnénbn of )({cpcjlaﬁz_zition
. of ¢lectrons in a magnetic field. It is expected tfmt the rate of spin-flip of the circulating
electron is proportional to the po»\;er spectrum of a 'noise’ ar.1d >that the population of the
spin-up anct;pin—down levels will approach thermal .cquilibrium«appropriatc to the Fulling—q
Davies-Unruh tcmperlmurc corresponding to the magnitude of thc‘ accel’eration. However,
this 1s plausibl? only in.la'rge stqrage}rings where™ rotating coordinate s;stcm 1s uscci in the\
calculation. Moreovcr, the depolarization of tﬁe electrofl is found to'be complicated by
spin-orbit coupling ahd [{16 fluctuations in the path, rather than, the spin polarization of the
electrons v_vhich are more directly ;ciatcd to the po;ver sp‘cc__g\um (Béll and Leinnas 1987)..

.

The power spectrum of a detector in a rotating frame has been discussed in previous
: r .
chapters and revealed a difference from that of a Rindler frame. Using the notion. of

" ‘circular n'oisc'} ngrhély,‘thc noise seeg by a detectpr.in -a circular motion at a constant
speé"d, we car;.say that circular'nc;ise d;if,fers from the R’-.ir'1d1|er noise in its form and
4 :nunieric,ally (Letaw and Pfautsch. 19%0). On thc other har{d, a notion of t_ht; ‘effective
" temperature’ qf the circular noisg has. been, introduced an'a it iﬁgued that the effective
temperature differs from the valug calculated from the Fui_ling—D_avigs-Unruh temperature
‘by the factor of (3)-12x at most (Bcil and feinngs 1983), This notion o_f cffectfvc
temperature is objected to by Takagi because of its-'cimbiguity @d he tries to relate the two

kinds of noises in a precise fashion (T 'akagiA1986)7 He finds that the circular noise is related

to the ‘drifted Rindler noise’, i.e., the noise seen by a detector which is uniformly

y

-

PO
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accclcmtc[d and at the san‘timc moves at a constant speed in .lhc direction ;;crpcndicular to
the acceleration, in a high speed c‘ucul\ar motion.This drifted motion has also. been
considered with a different motivation (Letaw 1981; (']crlhch 1983a). The question of
whether or not the Fullmé-Davies—U'nmh radiation can be observed experimentally is still
open .‘The nurnerical calculatidns are based on simple‘dimensionzil afg‘uments and order of
magnitude estimates using the Dai'ics‘ and Unruh results which m;1y not be reliable in the

. ) . .- {
actual design of practical experiments.



.Chapter 9 Conclusions

The formulation of quantum field theory in non-trivial (curved or flat) spade-time
has given new funda_mw features with respect to the usual understanding of quantum
field theory in trivial (Minkowski-flat) space-ume. Firstly, the fundamental concepts such
as the vacuum or particle states lose their validity and are the source of much confusion. It
1s possible for a given field theory to have different well-defined vacuum states (non-
uniqueness of vacuum) leading to different well-defifed Fock spaces. Secondly, the
presence of 'intrinsic’ statistical features (temperature, entropy) arising from the non-trivial

. S

structures (geometry, topology) e space-time and not from a superimposed statistical

dcscriptiop c;f the quamurr':mattef ’clcﬂ. In particular, these features are seen 'to be

manifested in the formulation of the theory in non-inertial frames and in the stationary

coordinate systems in flat space-time. The relevant examples are quantum field theory on

the Rindler frame, which yields the well-known Fulling-Davies-Unruh effect and in the

rotating frame. Actually, the mathematical structure of non-igertial quantum field theory is

identical to that underlying the Hawking effect for a black-hole and even for cosmological.
(de-Sitter) space-time. _ ' : .

A related problem to the formulation of the thc.ory is the quantum detection proéess.
Keeping in mind the ambiguity of the usual definitions in the canonical quantizatiop of the
field in a variety of céordinate systcms'it is instructive to relate the redults to some
operational devices such as a model particle detector. However, the response of the detector Q
cannot be.used as a criterton for the existence of a 'particle’ due to different physical -
interpretations and the arbitrary usage of different models of partiélc detectors coupled to a

»
,

matter field. ( o ’ .

,

<

One of the interesting aspects of the Fulling-Davies-Unruh effect is the association
of a temperature to the radiation and because of this, the verification of the temperature in

actual experiments has been-the subject of invcétigation."l'his‘again links the theory to
. - v . .

91
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experimental observation and in this interplay experimental data act as a referce to the
validity of theoretical prediction. However, a definite conclusion in not forseeable in the
near future. |

The non-inertial quantum field theory is a first step in describing results from
quantum field theary in curved space-time such as the Hawking effect in amganalogous
way. One can extend the formulation of the theory to a ;;eneric space-time by includ{ng
other non-trivial structures of space-time. In this process, one has to reconsider the
applicability of the usual congepss.as defined in the trivial cdase. Moreover, one may have to
settle fo‘r some field-related quantities (e.g.,the vacuum stress tensor) or othg:r tcéhniqucQ in

producing a complete theory which in turn act as a guide to the elusive theory of quantum

Ay

L0
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A_sgglar%cld ¢ may be expdnded in the complétc set of modes as:

| 0=3[2u(x)+a ux)] (ALD
. l -
Y
. We then have the comrnutation relations !
[ a, a ]=9d. ete., & - (ALY
39 1 ] . 1] Q‘

’

Consider a second complete set of modes ij(x). The field ¢ may be expanded in this set

\ N »

also as:

1

» ¢(x)=2{5j Ej(x)+5;ﬁ;(x)1 . (A1.3)

¢

This decomposition of ¢ defines a new vacuum state | 0 > :

éjl.'(')>=0 . Vi “ (AL

-

and a new Fock space.
<

~

As both sets are complete, the new modes 'ﬁj can be expanded in terms of the old:

- : . AN . )

“jzzi(“ji“ﬁﬁ,-i"i) . (A1.5)
> . iy
Conversely ’

ui=§(aﬁuj——ﬁjiuj ) | - (A1.6)

These relations ar¢ known as Bogoliubov transformations.The matrices o B are called
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‘Bogoliubov coe’fﬁciemssand they can be evaluatedbas:
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aij=<ui" _uj> s Bii=‘<ui . uj >, : (A1.7) '
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where dX 0 as an approprate Cauchy surtace. Fquating the expansion ¢AD Dy and (A D

and making ase ot (AT S (AT 6) and the orthonormally ot the modes, one obtams
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[he Bogohubov cocthicients possess the following properties
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[ tollows immediately from (A 1.9) that the two Fock spaces based on the two

are ditterent so long as [5” £ 0. In tact the expectanion value ol

Chorces ot modes u and ui

the operator N o=a,tac tor the number of u mode particles in the ste 70 -0y
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which s tosay the vacuum ot the u modes contains 313 = particles in the u mode.
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