
Magnetospheric field-line resonances: Ground-based observations

and modeling

R. Rankin, K. Kabin, J. Y. Lu, I. R. Mann, R. Marchand, and I. J. Rae
Department of Physics, University of Alberta, Edmonton, Alberta, Canada

V. T. Tikhonchuk
Institut de Physique Fondamentale, Universite Bordeaux 1, Gradignan, France

E. F. Donovan
Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada

Received 24 November 2004; revised 28 February 2005; accepted 13 April 2005; published 28 July 2005.

[1] We present theory and ground-based observations of field-line resonances (FLRs)
excited in Earth’s magnetosphere. Three FLR observations are reported, which correspond
to large-scale standing shear Alfvén wave (SAW) oscillations on nightside field lines
extending from premidnight to close to dawn. The eigenfrequencies for these events are
modeled using a nonorthogonal covariant-contravariant analysis of the ideal
magnetohydrodynamic (MHD) equations. This allows us to use a general field-line
topology, an example of which is computed using the Tsyganenko 1996 magnetic field
model. We show that field-line stretching, along with assumptions regarding the
distribution of density along field lines, is sufficient to explain the observed FLR
frequencies. Then, we consider dispersive effects operating at the level of the electron
inertial scale near the ionosphere or the ion-acoustic gyroradius in the vicinity of the
equatorial plane. Specifically, we estimate the spatial saturation widths and phase mixing
timescales based on a simple model of dispersive SAWs. By considering a new model for
ionospheric Pedersen conductivity modification by field-aligned currents in SAWs and
numerical (finite element model) solutions to the reduced MHD equations, we model
specific FLR observations in an approximate axisymmetric field topology. We discuss the
interplay of linear and nonlinear phase mixing, along with gradients in dispersion and
time-dependent losses due to Pedersen conductivity enhancements.

Citation: Rankin, R., K. Kabin, J. Y. Lu, I. R. Mann, R. Marchand, I. J. Rae, V. T. Tikhonchuk, and E. F. Donovan (2005),

Magnetospheric field-line resonances: Ground-based observations and modeling, J. Geophys. Res., 110, A10S09,

doi:10.1029/2004JA010919.

1. Introduction

[2] In Earth’s magnetosphere, shear Alfvén waves
(SAWs) have been studied extensively in part due to the
role they play in forming discrete temporally modulated
auroral arcs across a range of length and timescales.
Observations spanning more than 3 decades [Samson et
al., 1971; Chen and Hasegawa, 1974] have established a
strong correlation between resonant magnetohydrodynamic
(MHD) wave activity [Southwood, 1974; Kivelson and
Southwood, 1986] and auroral arcs [Hasegawa, 1976;
Goertz, 1984]. Auroral arcs typically appear as narrow
elongated bands of precipitation in the ionosphere during
auroral activity [Akasofu, 1974]. The associated MHD
perturbations can be routinely measured with magnetometer
arrays such as the CANOPUS (Canadian Auroral Network
for the OPEN Program Unified Study) array in northern

Canada [Rostoker et al., 1995]. Discrete arcs have optical
signatures in the ionosphere that are associated with
the acceleration of electrons parallel to the geomagnetic
field. The energy of the precipitating electrons ranges
typically from a few hundred eV to a number of keV. The
mechanisms responsible for this acceleration are still a
subject of some debate. Possibilities include quasi-static
potential structures related to mirroring magnetospheric
particle populations [Chui and Schultz, 1978; Knight,
1973] or small-scale SAWs with transverse (to the magnetic
field) scales on the order of the ion gyroradius or electron
inertial length [e.g., Hasegawa, 1976; Wei et al., 1994].
[3] There are many characteristic scales associated with

discrete arcs, ranging from 100 m or so to tens of kilo-
meters, and various attempts have been made to classify
them [Maggs and Davis, 1968; Borovsky, 1993; Knudsen et
al., 2001] in terms of their underlying physical properties.
In this article, we consider auroral arcs produced by narrow-
band field-line resonances (FLRs), with frequencies in the
range of a few mHz. The equatorial plasma density and the
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length of the resonant field line on which FLRs form largely
determine this frequency range. The associated transverse
length scales at the ionosphere range from a few kilometers
to several tens of kilometers, depending on ambient plasma
properties and gradients across geomagnetic field lines. It is
now well established [Thompson and Lysak, 1996; Kletzing
and Hu, 2001; Streltsov et al., 2002; Chaston et al., 2003]
that small-scale SAWs are a viable candidate for explaining
small-scale parallel electric fields measured by low-altitude
(up to 1 or 2 Earth radii) Earth-orbiting satellites, such as the
recent NASA Fast Auroral Snapshot (FAST) satellite mis-
sion [Carlson et al., 1998]. Large-amplitude SAWs with
significant field-aligned wave Poynting flux have also been
observed by the NASA Polar satellite [Keiling et al., 2001,
2002], and it is interesting to note that transverse scale
lengths in satellite observations project (along the magnetic
field) into the ionosphere to scales of kilometers, which
coincides with the scale length of discrete arcs observed
from the ground.
[4] Temporal modulations observed in auroral arcs from

meridian scanning photometer (MSP) arrays, as well as
the accompanying pulsations in the perturbed magnetic
field measured with magnetometers, relate to the time
dependence of fundamental resonant standing waves along
geomagnetic field lines. In the studies presented by Samson
et al. [1991, 1992, 2003], discrete arcs, modulated by SAWs
at frequencies in the range of a few mHz, were observed.
This range of frequencies is associated with standing
waves on closed magnetic field lines threading the high-
latitude magnetosphere and auroral oval. There are a variety
of possible energy sources for these standing SAWs,
ranging from MHD surface waves excited by Kelvin-
Helmholtz instabilities on boundary layers in the magneto-
sphere [Farrugia et al., 2000] to MHD waveguide modes
[Samson et al., 1992] or magnetospheric cavity modes [Liu
et al., 1994]. All of the associated energy sources involve
mode conversion of compressional wave energy onto field
lines where the compressional wave frequency matches the
local field-line eigenfrequency [Glassmeier, 1995].
[5] In this article, we shall model the excitation of FLRs

observed by ground-based instruments over northern Can-
ada. One of the goals is to explain the observed frequencies
of fundamental mode FLRs by taking account of realistic
magnetic field geometry [Cummings et al., 1969; Singer et
al., 1981; Rankin et al., 2000]. We will also estimate the
saturation width of some observed FLRs at the ionosphere
by accounting for the integrated effect of wave dispersion
on geomagnetic field lines and ionospheric feedback (con-
ductivity enhancements) at the ionosphere. These estimates
also allow us to calculate expected phase mixing times
[Mann et al., 1995] for FLRs to reach the limiting scale set
by gradients in the ambient plasma properties across geo-
magnetic field lines. Studies such as these are important for
interpreting observations of discrete arcs and in determining
the controlling factors that influence when and under what
circumstances discrete arcs can form. Measurements of
quasi-periodic temporal variations of auroral arcs also
provide a useful proxy for determining the state of the
magnetosphere at a given time along a given set of field
lines. This has applications in space weather in what is now
termed magnetoseismology [e.g., Waters et al., 1996].
Specifically, by using a realistic geomagnetic field model

(eventually global MHD numerical models constrained by
solar wind conditions) along with ground-based observa-
tions of ULF waves, it may eventually become possible to
monitor the global state of the magnetosphere. This will
improve forecasting models for space weather.
[6] Below, we analyze three events in which auroral arcs

were observed with ground-based MSP, all-sky cameras,
and magnetometers. From time series analysis of the obser-
vations, we obtain the frequency of the resonant SAW
eigenmode. This, in turn, is used to infer the equatorial
plasma density along magnetic field lines that connect to the
observed discrete arcs. In this analysis, the state of the
magnetic field is computed as a function of solar wind
parameters from the Tsyganenko 1996 statistical geomag-
netic field model [Tsyganenko and Stern, 1996]. This is then
used as input to a one-dimensional (1-D) linear model of
SAWs, in which the density near the equatorial plane is used
as a parameter that is fitted to the observed frequency. The
density thus obtained is used in a 2-D finite element model
of resonant SAWs to study the dispersive saturation prop-
erties of the waves [Lu et al., 2003; Rankin et al., 2004].
The outline of the article is as follows. Section 2 gives a
brief description of the three events that form the basis of the
modeling that is presented. In section 3, we describe a 1-D
(along the field line) model of resonant SAWs that can be
used to compute standing wave eigenmode frequencies in a
general geometry that need not be axisymmetric. This
model is used to infer the plasma density in the equatorial
plane that connects with the latitudes and longitudes where
arcs have been observed. Section 4 presents an analysis of
transverse widths and timescales associated with dispersive
SAWs in a geometry that is axisymmetric for simplicity, but
otherwise the same as that presented in section 3. Section 5
presents results from a nonlinear reduced MHD model of
dispersive SAWs. This includes an analysis of the effects of
finite ionospheric conductivity, and its modification by the
system of currents associated with standing SAWs. Finally,
section 6 contains a summary of our results and some
concluding remarks.

2. Observations

[7] In this study, we consider three observations of field-
line resonances that were made using magnetometer and
meridian scanning photometer (MSP) data from ground-
based instruments of the CANOPUS array [Rostoker et al.,
1995], and the All-Sky Imager (ASI) from the NORSTAR
optical imaging array operated by the University of Calgary.
The three events correspond to 31 January 1997, 0426 UT;
29 October 1998, 0830–0950 UT; and 9 December 2001,
0100 UT. As a set, the observations cover a substantial
portion of the nightside magnetosphere during which ULF
(ultra-low-frequency) FLRs were present. In each case,
small-scale arcs were seen in the all-sky camera data
images, which showed poleward propagating periodically
reforming east-west aligned arcs, whose phase propagation
is consistent with a FLR. Two of the events, January 1997
and December 2001, were associated with substantial wave
power at a frequency around 1.3–1.4 mHz. Both of these
observations have been discussed previously in the pub-
lished literature, the first in the work of Samson et al. [2003]
and Lotko et al. [1998] and the second in the work of
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Rankin et al. [2004]. The third event, 29 October 1998,
shows evidence of wave power at a significantly higher
frequency than the other two, 3.8–5.2 mHz, and it is this
observation that we focus our attention on in this section of
the paper.
[8] Figure 1 shows a sequence of images from the Gillam

ASI on 29 October 1998, along with a keogram that
indicates poleward propagating periodic wave forms
extracted from the ASI measurements from 0925 to
0950 UT. The dashed lines denote the times of the
images in the upper part of the figure. Figure 2 shows, in
descending order, Gillam MSP data interpolated via the
method outlined by Rae et al. [2004], and H-component
magnetograms from the Churchill line of the CANOPUS
magnetometer array. The magnetograms are in descending
latitude for 0800–1000 UT on 29 October 1998. The data
have been detrended using a running mean of 500 s and
band-pass filtered between 1 and 10 mHz. Both the MSP
and magnetometer data show two intervals of clear FLR
activity. The first interval between 0840 UT and 0930 UT
and between 54 to 56 degrees geographic latitude shows
evidence of a �3.7 mHz FLR which phase mixes and
significantly intensifies by around 0900 UT. It then fades
and is followed by another period of FLR activity at slightly
higher latitude, 56 degrees, and frequency �5.2 mHz at

around 0930 UT. The magnetometer data show evidence of
wave activity throughout most of the interval.
[9] Figure 3 shows a complex demodulation analysis

[e.g., Beamish et al., 1979] of the dominant spectral peak
of the FLR at 0855 UT. The data were first high-pass
filtered at 1000 s to remove any long-term trends.
Figure 3a shows the complex demodulation of the dominant
spectral peak at 3.7 mHz. The amplitude of the FLR peaks
at around 55 degrees geographic latitude at Gillam. The
analysis of this FLR reveals that the H-component ampli-
tude dominates over the D-component, suggesting that the
wave is dominantly a toroidal mode FLR. Figure 3b shows
the relative phase of the H-(grey) and D-(black) component
magnetograms from the Churchill line magnetometers.
From Figure 3b, we can see that the H-component displays
the classic FLR characteristic of a �180 degrees phase
change across the amplitude peak (and therefore the reso-
nant latitude). The D-component is phase-wrapped and less
clear, most probably due to the low amplitude of the signal.
Interestingly, complex demodulation analysis of the later
FLR from �0930 to 0945 UT reveals an equatorward
propagation of the magnetic signatures, in contrast to
poleward propagation of the optical signatures shown in
Figure 1. This FLR has a dominant spectral peak at around
�5.2 mHz. One possible explanation for the different

Figure 1. (top) A sequence of auroral images from the all-sky camera at Gillam, Manitoba, on
29 October 1998. The images show a periodically reforming arc that is characteristic of a field-line
resonance with a frequency around 5 mHz. The interpretation of this observation is discussed in the text.
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signature in the magnetometer and optical data is provided
by Allan [1995], who suggested this might be the result of
Biot-Savart integration of ionospheric Hall currents by the
magnetometers. In the analysis presented below, we shall
analyze this event, along with the other two observations
mentioned above.

3. One-Dimensional Eigenmode Analysis of
Field-Line Resonances

[10] In this section, we present a 1-D model of standing
shear Alfvén waves that incorporates the effects of
curvature and magnetic field torsion (twisting). We then
apply it to estimate the plasma density profile that would be
required along field lines where auroral arcs have been
observed. This allows us to determine eigenfrequencies of

field lines that match specific observations, as well as
providing ambient plasma gradients that control phase
mixing on geomagnetic field lines, along with the saturated
width of FLRs.

3.1. Shear Alfvén Waves in Model Geomagnetic Fields

[11] In order to compute the frequency and polarization of
standing shear Alfvén waves (SAWs) on a given magnetic
field line, it is necessary to know the topology of the field
line. It can be shown that an orthogonal field-aligned
coordinate system does not exist in general for field lines
exhibiting curvature and torsion. Thus, it is necessary to
introduce a nonorthogonal coordinate system that is sim-
ilar to that discussed by Cheng and Zaharia [2003] and

Figure 2. The figure shows meridian scanning photometer
and magnetometer data for the arc shown in Figure 1. (top)
Data from the Gillam MSP along with the filtered Churchill
line (H-component) magnetic field traces. There are two
intervals of FLR activity. The first interval is between
roughly 0840 UT and 0920 UT, while the second interval is
between 0930 UT and 0940 UT at slightly higher
geographic latitude.

Figure 3. The figure shows complex demodulation of the
H- and D-components of the magnetic field for the FLR
between 0840 and 0920 UT in Figure 2. The top and bottom
parts show the amplitude and phase of the �3.7 mHz peak,
respectively. They are plotted as a function of geographic
latitude at 0855 UT. The solid line is for the H-component.
The dashed line is for the D-component.

A10S09 RANKIN ET AL.: FIELD-LINE RESONANCE OBSERVATIONS AND MODELING

4 of 16

A10S09



Proehl et al. [2002]. A full description of the methodology
that is required to apply this approach to SAWs in a cold
plasma, can be found in the work of R. Rankin et al.
(Alfvénic field-line resonances in arbitrary magnetic field
topology, submitted to Advances in Space Research,
2005). To first order, it can be shown that thermal effects
do not significantly change the frequency of long-period
(hundreds of seconds) FLRs, and therefore a reasonable
approximation is to use the ideal cold MHD equations
to estimate frequencies, polarization electric fields, and
wave magnetic fields. Then, dispersive properties of the
waves can be accounted for as a perturbation on the ideal
MHD wave fields. We shall adopt this approach, and first
of all solve for the eigenmodes of standing SAWs
using geomagnetic field lines specified by the Tsyganenko
96 model, under prescribed solar wind conditions. Our
results are more general than those presented by Rankin et
al. [2000], since we account here for a field-line topology
that need not be axisymmetric. The linearized cold ideal
MHD wave equations upon which our analysis is based,
may be written as

m0r
@V

@t
¼ r� B0ð Þ � Bþ r� Bð Þ � B0

@B

@t
¼ �r� E

Here, B0 is the prescribed background field, B is the wave
magnetic field variation, V is the perturbation of the plasma

fluid velocity, and E = �V � B0. To proceed, we assume a
harmonic time dependence with B / exp(iw t) and E / i
exp(iw t), respectively. Using the appropriate curl and
gradient operators defined by D’haeseleer et al. [1991], the
covariant-contravariant form of the above equations may be
written as

1ffiffiffi
g

p
@B2

@u3
¼ 1

v2A
g11wE1 þ g12wE2

� �
1ffiffiffi
g

p
@B1

@u3
¼ � 1

v2A
g12wE1 þ g22wE2

� �
1ffiffiffi
g

p
@E1

@u3
¼ � g12wB1 þ g22wB2

� �
1ffiffiffi
g

p
@E2

@u3
¼ g11wB1 þ g12wB2;

ð1Þ

where g is the determinant of the metric tensor and vA
2 =

g33(B
3)2/(m0r) describes the variation of the Alfvén speed.

The magnetic field is defined by B0 = e3B
3, where e3 is

the tangent basis vector in the direction of the ambient
field. In this notation, the geomagnetic field is described by
jB0j =

ffiffiffiffiffiffi
g33

p
B3, where B3 is the contravariant component in

the nonorthogonal field-aligned system of coordinates (u1,
u2, u3). Note that in an axisymmetric topology, g12 = 0, and
the field components in equation (1) separate into
uncoupled toroidal and poloidal wave modes. In a more
general geometry, these modes are coupled, and the metric
tensor in equation (1) must be computed numerically. To
accomplish this, it is convenient to write the ambient

Figure 4. Geomagnetic field lines projected onto the GSM coordinate planes for 9 December 2001,
0100:00 UT. Solar wind conditions correspond to Dst = �16, By = �3 nT, Bz = +2 nT, n = 2.5 cm�3, and
Usw = 390 km/s. The solar wind dynamic pressure corresponds to P = 0.6 nPa and the dipole tilt is
�28.58 degrees.
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magnetic field in terms of Euler potentials defined by B0 =
ra � rb. By definition, a and b are constant along a given
field line. Therefore given a magnetic field model, field
lines can be traced from some arbitrary position in the
magnetosphere to the northern or southern ionosphere
where the Euler potentials can be evaluated. These values
are then used for the whole field line, including the original
field point in the magnetosphere. The system of equations
(1) is solved for each field line that has been traced, using a
standard shooting method in which the wave frequency w
and polarization at the ionosphere are determined. The
boundary conditions on the electric field at the ionosphere
may include finite ionospheric conductivity, but as this
changes the eigenfrequency by a small amount [Allan and
Knox, 1979], we present results for perfect conductivity, in
which case the electric field at the ionosphere vanishes.

3.2. Eigenfrequencies for Specific Observations

[12] Using the approach described in section 3.1, we
now compute field-line eigenfrequencies for some specific
observations. The first case considered corresponds to
9 December 2001 (day of year 343), 0100 UT. For this time,
Dst = �16, (a quiet day) and the solar wind conditions from
ACE correspond to By = �3 nT, Bz = +2 nT, n = 2.5 cm�3,
and Usw = 390 km/s. The solar wind dynamic pressure is
P = 0.6 nPa and the dipole tilt of Earth is �28.58 degrees.
Figure 4 shows three projections of the magnetic field line
above the observation point at Rankin Inlet. The geodetic

latitude and longitude correspond to 62.82�N and 267.32�E,
respectively. Even though the solar wind parameters corre-
spond to ‘‘quiet’’ magnetospheric conditions, this high-
latitude field line is not particularly dipolar. It has a length
of 40.7 RE, a maximum radial extension (measured from the
center of the Earth) that corresponds to 15.39 RE, and a
minimum magnetic field strength of 17 nT along the field
line. Figure 5 shows the toroidal mode eigenfrequency as a
function of radius (maximum field-line radial extension
from Earth) for this observation. In order to fit the measured
frequency of 1.4 mHz, an equatorial plasma density has
been specified, along with the variation of density along the
field line. We initially choose the density profiles specified
in Table 1 of Chaston et al. [2005], which are based on
satellite measurements of an L = 14 field line at 0900 MLT
(we shall see that the precise form of the density profile
along the field line is not particularly important in fitting
the frequency).
[13] To illustrate the effect of field-line topology on

standing SAW eigenmodes, we first of all solve for
the wave frequency and polarization in an axisymmetric
situation. In order to match the frequency of the 9 December
2001 observation, we used an equatorial density of
0.38 amu/cm3 that consists of a mixture of 0.36 amu/cm3

hydrogen (with field-aligned variation 1/r3) and 0.02 amu/
cm3 oxygen (with a field-aligned variation 1/r2). This is
indicated by the dash-dotted line in Figure 5, which shows
the computed frequency versus maximum radial extension

Figure 5. The toroidal mode eigenfrequency plotted as a function of the maximum radial extension
(measured from Earth’s center) for 9 December 2001. In order to fit the measured frequency of 1.4 mHz,
an equatorial plasma has been assumed, along with the variation of density along the field line. The dash-
dotted line at the ionosphere corresponds to the density profile used by Chaston et al. [2005]. The dashed
line is a simple 1/r variation based only on hydrogen. The solid line corresponds to a 1/r4 density
variation of H along the field line.
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of the field line. The oxygen contribution turns out to be
relatively unimportant in affecting the eigenfrequency and is
neglected in the remainder of this paper. For comparison,
the dashed line in Figure 5 corresponds to a 1/r variation of
the density of H+ along the field line, while the solid line
assumes 1/r4. Figure 5 demonstrates that the density varia-
tion along the field line does not have a strong effect on the
frequency of high-latitude FLRs for field lines poleward of
the observation. Upon using the nonaxisymmetric covariant
analysis (with the same density profile), we find that there
are two fundamental wave modes having roughly the same
polarization at the ionosphere (86� and 82�, respectively,
where 0� corresponds to east-west alignment and 90�
corresponds to north-south). The periods of these two
modes are 1000.22 s and 492.39 s, respectively. In spite
of the large difference in their periods, both polarizations
correspond to fundamental modes, since their electric fields
have nodes only at each ionosphere. In a dipole field, a
polarization of 90� at the ionosphere corresponds to a
poloidal mode SAW, and therefore it is tempting to identify
the larger-period wave as the poloidal-like mode. However,
this designation is approximate at best, as the polarization
of each mode computed from our analysis changes signif-
icantly along the field line. This is illustrated in Figure 6,
where the E and B fields of the computed eigenmodes have
been projected onto the corresponding toroidal and poloidal
directions. The solid lines correspond to the mode with a
period of 1000.22 s, while dashed lines correspond to the
mode with a period of 492 s. In the case of the mode with

the larger period, the observed frequency of 1.4 mHz is
fitted, using a factor of two smaller equatorial density than
in the axisymmetric case. We note that in the published
literature, the claim has been made that magnetospheric
FLR frequencies are anomalously low, requiring abnormally
high magnetospheric plasma densities. The model results
for this particular observation suggest otherwise, and in
particular, the required equatorial plasma densities are, if
anything, quite low.
[14] We turn now to a consideration of the event of

31 January 1997, 0426:00 UT. For this day, Dst = �15
and the solar wind conditions correspond to By = �3 nT,
Bz = �1 nT, n = 3.5 cm�3, and Usw = 600 km/s. The solar
wind dynamic pressure was P = 2.0 nPa. These data are
from IMP 8, which was in the solar wind on the flank of
the magnetosphere. The dipole tilt for this day was 27.86�.
Figure 7 shows the three GSM projections of the T96 field
line over Gillam, which is located at geodetic latitude and
longitude of 56.38� and 265.36�, respectively. The length
of the field line projected above the observation point is
24.6 RE. The maximum radial extension of the field line is
10.97 RE, and the minimum geomagnetic field strength
along the field line is 18.98 nT. In this case, an equatorial
plasma density of 5.43 cm�3 is necessary to explain the
observed frequency of 1.3 mHz. The dashed line in
Figure 8 corresponds to a 1/r variation of H along the
T96 field line, while the solid line assumes 1/r4. Again, the
dependence of the frequency on the density variation along
the field line is not particularly strong on field lines

Figure 6. The figure shows model results corresponding to the FLR observation reported on
9 December 2001. The electric and magnetic fields along the field line are sketched for two fundamental
wave modes having polarizations at the northern ionosphere of 86� and 82�, respectively. The periods of
the wave modes are 1000.22 s (solid lines) and 492.39 s (dashed lines), respectively. The wave fields
have been projected onto the toroidal (azimuthal) and poloidal directions. Solid lines correspond to the
mode with a period of 1000.22 s, while dashed lines correspond to the mode with a period.

A10S09 RANKIN ET AL.: FIELD-LINE RESONANCE OBSERVATIONS AND MODELING

7 of 16

A10S09



poleward of the observation point. The somewhat high
plasma sheet density that is required to fit this observation
is suggestive of terminology that has been used to describe
nightside FLRs, i.e., ‘‘anomalously low.’’ Within the
uncertainties of the approximate FLR and magnetic field
models that have been used, it is rather difficult to reach a
general conclusion. It may simply be that a better field-line
model is required in this particular case.
[15] The third and final FLR observation is that pertaining

to 29 October 1998 between roughly 0840 UT and 0940 UT.
The solar wind conditions correspond to Dst = �4, By =
�3 nT, Bz = +5 nT, n = 6 cm�3, and Usw = 600 km/s. The
solar wind dynamic pressure was P = 3.6 nPa. Figure 9
shows the field-line projections for this observation at the
location of Gillam. In this case, the measured frequency of
�5.2 mHz at 0940 UT is fitted using an equatorial plasma
density of 0.9 amu/cm3 at L = 10 (with 1/r variation along
the field line). Using this density profile, the frequency
supported by the field line directly above the observation
point is followed through the evolving magnetic topology
until 0840 UT, where it reaches �3.8 mHz. This is shown in
Figure 10, along with the variation in the FLR wave
dispersion parameter that will be discussed below. The
frequency variation predicted by the eigenmode analysis
presented in section 3.1 is very close to what is measured
and is perhaps suggestive of wave power being fed to field
lines at a range of frequencies, rather than a single (mono-
chromatic) frequency. Alternatively, the magnetospheric
waveguide or cavity mode that possibly feeds this FLR

may be changing frequency due to the effect of the solar
wind. In section 4, we discuss another possibility related to
the effect of gradients in wave dispersion perpendicular to
geomagnetic field lines.

4. Characteristic Space and Timescale Estimates

[16] The frequency characteristics of geomagnetic field
lines have been considered in section 3.2 for three ground-
based observations of FLRs. We now consider characteristic
space and timescales for wave dispersion, in order to provide
a more complete interpretation of the observations. Wave
dispersion becomes particularly important at perpendicular
length scales comparable to the electron inertial length (skin
depth) or the ion acoustic gyroradius. The former is impor-
tant in standing SAWs near the ionosphere, while the latter is
related to the plasma sheet temperature in the vicinity of the
equatorial plane. As a preamble, we will note that FLRs
involve oscillations of an entire field line, and just as the
frequency is a characteristic of the entire field line, so too is
wave dispersion. In the discussion and analysis that follows,
we summarize the results from a simple model of dispersive
FLRS and show how wave dispersion is related to the
saturation width and formation time of FLRs. Our analysis
is thus far limited to axisymmetric field topologies, and
therefore it provides only an approximation of the dispersion
that may be present in the observations discussed above.
[17] Following the analysis presented by Rankin et al.

[1999a] and restricting our analysis to linear waves with

Figure 7. Geomagnetic field-line projections for 31 January 1997, 0426:00 UT. For this day, Dst = �15
and the solar wind conditions correspond to By = �3 nT, Bz = �1 nT, n = 3.5 cm�3, and Usw = 600 km/s.
The solar wind dynamic pressure was P = 2.0 nPa. The dipole tilt for this day was 27.86 degrees.

A10S09 RANKIN ET AL.: FIELD-LINE RESONANCE OBSERVATIONS AND MODELING

8 of 16

A10S09



small azimuthal wave number in an axisymmetric magneto-
sphere, we first of all write the SAWazimuthal magnetic field
component as h2Bf = h2

eqB0
eqb(x, t)B1(l)exp i(mf � w0t),

where h2 =
ffiffiffiffiffiffi
g22

p
is the metric coefficient in coordinates

associated with the geomagnetic field, B0
eq is the ambient

magnetic field strength at the equator, B1(l) is the SAW
eigenfunction along the field line (defined using equation (1)
in the axisymmetric situation), and b(x, t) is the SAW
slowly varying amplitude. The latter grows with time in
response to an external driver which represents compres-
sional waves trapped inside the magnetospheric cavity.
The coordinate l is measured along geomagnetic field
lines with respect to the equator, and x is the earthward
directed perpendicular coordinate relative to a given
magnetic field line at the equator. Referring again to Rankin
et al. [1999a], it is possible to write the evolution equation
for b(x, t) as

@b

@t
� iw0

@

@x
d
@b

@x

� �
¼ i dW� Dwð Þbþ w0R

dW ¼ 1

2w0L2R2
e

Z
dlv2A

h1

h2

dr
r

@B1

@l

� � ð2Þ

Here, Dw(x) = wSAW � w0 is the ideal MHD eigenfrequency
detuning across magnetic shells, R(x,t) is the amplitude of
the model SAW driver, h1 =

ffiffiffiffiffiffi
g11

p
is the metric coefficient

associated with the direction perpendicular to magnetic flux
surfaces, and dW is a nonlinear frequency shift related to the
amplitude of density perturbations (dr/r) excited on
geomagnetic field lines by SAW ponderomotive forces.

We consider the nonlinear frequency shift as a free
parameter in order to illustrate how steepening of the
perpendicular density profile affects phase mixing to the
scale at which dispersive effects become important. In
equation (2), the field-line dispersion parameter d(x) is
defined by

d ¼ L2R2
e

Z
dl

3

4

r2s
w2
0

V 2
A

h3
@lB1ð Þ2

�
þ V 2

Te

w2
0h3

@lB1ð Þ@l B1l2
e

� �
� l2

e

h3
B2
1

�
ð3Þ

where rs is the ion acoustic gyroradius, le is the electron
skin depth (inertial scale), VTe is the electron thermal speed,
h3 =

ffiffiffiffiffiffi
g33

p
is the geomagnetic field-aligned metric

coefficient, and the integral is taken over the total length
of the magnetic field line. Equation (2) describes phase
mixing on the gradient in the Alfvén speed across
geomagnetic field lines. It is affected by the dispersion
parameter, d(x), that has three contributions corresponding
to finite ion acoustic gyroradius, electron temperature, and
electron inertia, respectively. The two thermal contributions
provide positive dispersion, while electron inertia gives a
contribution that is negative. This designation for d refers to
the sign of the group velocity, when computed from w(x) �
Dw(x) + w0(1 + k?

2 d), which is valid in the WKB
approximation. Although the ambient density and tempera-
ture can change by orders of magnitude along a field line,
low-frequency FLRs satisfy k?

2 d  1 throughout most of
the magnetosphere. Therefore dispersive effects in standing
SAWs can be regarded as a small perturbation on the ideal
MHD eigenmodes discussed earlier in the paper.

Figure 8. The toroidal mode eigenfrequency plotted as a function of maximum radial extension of the
field line for 31 January 1997. The solid line is a simple 1/r variation based only on hydrogen. The
dashed line corresponds to a 1/r4 density variation along the field line. The Tsyganenko 1996
geomagnetic field model is used.
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[18] Comparing respective dispersion and linear eigenfre-
quency detuning terms in equation (2) allows us to deter-
mine the characteristic time of formation of FLRs, along
with the associated transverse spatial scale that represents a
balance between inward (perpendicular) Poynting flux and
dispersive wave propagation out of the resonance at small
spatial scales. In this situation, we obtain

w0tdis ¼ 2 l2w=d
� �1=3

; ldis ¼ dlwð Þ1=3; bdis ¼ R l2w=d
� �1=3 ð4Þ

where quantities from left to right are the linear dispersive
saturation time, width, and amplitude, respectively, while lw
is the length scale of the gradient in the Alfvén speed. In the
situation where nonlinear frequency detuning (by wave
ponderomotive forces) or transverse gradients in wave
dispersion are important, there are two additional character-
istic timescales defined by

w0tNL ¼ lwffiffi
d

p =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dW
w0

� �s
; w0tc ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
bj j=lw

p
ð5Þ

Their associated spatial scales are comparable to the linear
dispersive saturation width in equation (4). Note that the
first (nonlinear) timescale defined by equation (5) involves
an intermixing of wave ponderomotive and dispersive
effects. The second timescale in equation (5) is related to
earthward defocusing of SAWs by the transverse gradient b
in the wave dispersion parameter. This is computed using
the dispersion parameter defined above, from the assump-

tion that it can be written as d = bx in the vicinity of the field
line where FLRs are excited. For 29 October 1998,
observation discussed above, Figure 10 shows that the
dispersion parameter varies strongly over the timescale for

Figure 9. Geomagnetic field-line projections for 29 October 1998, 0940 UT. The solar wind conditions
correspond to Dst = �4, By = �3 nT, Bz = +5 nT, n = 6 cm�3, and Usw = 600 km/s. The solar wind
dynamic pressure was P = 3.6 nPa.

Figure 10. The toroidal mode eigenfrequency plotted as a
function of time for 29 October 1998. The frequency
supported by the field line directly above the observation
point is plotted against time, for comparison against the
MSP data shown in Figure 2. The solid line in the frequency
plot corresponds to the toroidal mode. The black dashed line
shows the poloidal mode. The figure also shows the
variation of the dispersion parameter (in red) discussed in
the text.
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which FLR activity is observed. The associated spatial
gradient in dispersion, along with the computed transverse
gradient in the Alfven speed profile, corresponds to a
defocusing time of around 10 SAW periods (computed
using tc in equation (5)), which is quite comparable to the
linear phase mixing time. This perhaps suggests that the
variation in FLR frequency from around 3.8 mHz to
5.2 mHz in this observation is associated with a distributed
source that feeds wave power to the range of field lines on
which the FLR is observed.
[19] We now consider the linear phase mixing and SAW

ponderomotive force estimates provided by equations (4)–
(5) and discuss them in the context of the FLR observations
discussed in section 3.2. Figure 11 shows estimates based
on equation (4) of the linear dispersive saturation timescale
and the corresponding saturation width as a function of the
dispersion parameter. The three curves on each figure
correspond to different Alfvén speed gradients perpendicu-
lar to the geomagnetic field. As we shall see below, the
typical value of the dispersion parameter for the range of
field lines covered by the observations is around d � 10�3

Re
2, in which case the characteristic resonance width in the

equatorial plane, taking lw = 1.0 Re, is around 0.08 RE, while
the phase mixing time is roughly 4 Alfvén periods. For lw =
5.0 RE, the characteristic equatorial width is around 0.16 RE,
while the phase mixing time rises to around 9 Alfvén
periods. The latter estimates are in good agreement with
the range covered by the observations, which correspond to
lw = 4.4 Re for 9 December 2001 and 31 January 1997
events, while the 29 October 1998 event has lw = 3.7 RE. For

comparison, in Figure 12, we plot the nonlinear phase
mixing timescale as a function of the dispersion parameter,
for lw/Re = 0.2 (1.0) and nonlinear frequency shift dW/w0 =
0.1 (0.4). This translates into density fluctuations of order
10 (40) percent along geomagnetic field lines where FLRs
form. It can be seen that phase mixing through steepening of
the Alfvén speed profile also requires a few periods. In this
situation, as shown by Lu et al. [2003], there is expected to
be significant nonlinear structuring of FLR wave fields in
latitude owing to a strong interaction of dispersive waves
with density fluctuations that act to trap SAWs within them.
This effect should enhance parallel electric fields in FLRs
due to the increase in k? that arises from steepening of the
Alfvén gradient across field lines. This type of effect is
encouraging in terms of attempts to explain auroral particle
acceleration in FLRs, as observed in the meridian scanning
photometer data in Figure 1.
[20] Figure 13 shows the dispersion parameter as a

function of maximum radial field-line extent for the three
observations presented in section 3. In obtaining these
curves, we have assumed plasma sheet electron and ion
temperatures of 250 eV and 2 keV, respectively. The
density profiles along field lines are based on 1/r (top)
and 1/r4 (bottom) density variations, with equatorial plasma
densities chosen to match the SAW eigenfrequency for each
observation. The temperature variation along geomagnetic
field lines is based on the assumption of constant plasma
pressure. Linear space and timescale estimates discussed
above can be computed using these figures, provided
the equatorial intersection of each field line is known.
Although Figure 13 is specific to the solar wind conditions
selected for the present studies, it should be useful in
general for estimating characteristic widths and timescales
for auroral arc formation under ‘‘fairly typical’’ solar wind
conditions.

5. Solutions to the Reduced MHD Equations
With Dispersion and Ionospheric Damping

[21] Thus far, we have not considered the effects of
ionospheric damping on the evolution of dispersive scale
FLRs. If the ionospheric conductivity is large, FLRs will
narrow to dispersive scales and propagate away from where

Figure 11. Estimates based on equation (4) of (a) the FLR
linear dispersive saturation width and (b) the corresponding
saturation time as a function of the wave dispersion
parameter. The three curves on each figure correspond to
different Alfvén speed gradients perpendicular to the
geomagnetic field.

Figure 12. The nonlinear phase mixing timescale as a
function of the dispersion parameter, assuming Alfvén
speed gradients lw/Re = 1.0, 0.2 and a nonlinear frequency
shift corresponding to dW = 0.4w0, 0.1w0, respectively.
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they are excited. This can potentially result in multiple arcs,
each of which has a characteristic width k?

�1. Finite
ionospheric conductivity will damp FLRs and lead to their
localization on geomagnetic field lines where the shear
Alfvén wave frequency matches the compressional wave
driver frequency. On the other hand, if the ionospheric
conductivity is too low (below about 0.5 S), the amplitude
of the resulting wave fields may not be large enough to
allow the FLR to grow to significant amplitude. A
compromise is required; the ambient conductivity must be
such that it allows field-aligned currents in SAWs to grow to
a level where they can potentially modify the conductivity.
We shall demonstrate that this type of feedback effect can
result in large-amplitude, localized FLR wave fields that are
consistent with observations.
[22] Different mechanisms have been invoked to explain

how field-aligned currents in SAWs can lead to a modifi-
cation of the ionospheric Pedersen conductivity. One such
mechanism was investigated by Prakash et al. [2003], who
demonstrated that FLR dissipation can overcome wave
dispersion provided the dispersive saturation width is ini-
tially larger than the characteristic ionospheric dissipation
scale:

ldiss � glw=w0; g ¼ 1

m0
P

p N
B2
1 lð Þ h1

h2


 �
lmax

ð6Þ

Here, N is a normalization constant for the SAW
eigenfunction B1(l) along the field line, g is the SAW
damping rate,

P
p is the Pedersen conductance, and the

second expression on the right is evaluated at the iono-
sphere. When the Pedersen conductance is allowed to vary
in response to the modulation of electron precipitation by
SAWs, it leads to a modification of damping in equation (6).
Averaging over a wave cycle leads to the expression

�g ¼ g0

2
1þ 1

p

Zp
0

da

1þ s2p
@b

@x

����
���� sina

� �1=2

2
6664

3
7775 ð7Þ

Here, sp = Q
P

p(0)(KeB0
IonB1(lmax)/em0),

1/2, where Ke is
the energy of precipitating electrons, Q(Ke) is a function of
energy defined by, for example, Robinson et al. [1987], and
g0 is the initial SAW damping rate. An immediate problem
follows from equation (7). It is clear that irrespective of the
precipitation energy, ionospheric losses in FLRs can at most
be reduced by a factor of two. This means that in regions of
low ambient conductivity, precipitation is not very effective
at changing the ionospheric conductivity under FLRs. This
limitation in the reduction of damping is missing from 2-D
models of FLRs that rely on the modulation of electron
precipitation as a mechanism for changing the ionospheric

Figure 13. The wave dispersion parameter as a function of radius measured from the geographic
equator, for the three observations presented in section 2. Plasma sheet electron and ion temperatures of
250 eV and 2 keV have been assumed. The profiles are based on (top) 1/r and (bottom) 1/r4 density
variations along the geomagnetic field line, with equatorial plasma densities chosen to match the SAW
eigenfrequencies for each observation. The temperature variation along geomagnetic field lines is based
on the assumption of constant plasma pressure. Solid line corresponds to 31 January 1997; dashed line
corresponds to 29 October 1998; dash-dotted line corresponds to 9 December 2001.
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Pedersen conductivity. Such models do not account for
azimuthal phase velocities (and the associated 180�
latitudinal phase shift across FLRs), and it is this
characteristic which allows conductivities to be enhanced
only during the upward half-cycle of field-aligned currents
causing precipitation. We shall now demonstrate that
nonlinear electron heating of the ionosphere by the wave
fields of long-period SAWs can potentially be more effective
at modifying regions of initially low ambient conductivity.
[23] In the following, we use a simple model of the

ionosphere in which electron cooling takes place through
elastic collisions with neutrals. While other collision pro-
cesses potentially play an important role, we defer for future
study the rather complicated chemistry of the ionosphere in
order to demonstrate the basic idea behind our proposed
nonlinear heating mechanism. Nonlinear electron heating by
SAWs can be understood from the electron part of the
ionospheric Pedersen conductivity,

j?e ¼ speE? ¼ j?
ne
ni

Wi

We

; ð8Þ

where ne � 104 s�1 and ni � 102 s�1 represent typical
values for the electron and ion collision frequencies and We,i

are the respective gyrofrequencies. Taking typical values for
the conductivity, spe = 5 � 10�7 S/m, and electron Pedersen
current, j?e = 0.005j?, we obtain a heating power WTe =
0.005WTi � 10�9 W/m3 or roughly 0.2 eV/s. While this
heating rate for electrons is much less than for ions, the
losses for electrons due to collisions are also much less.
Therefore heating of electrons by long-period field-aligned
currents in SAWs turns out to be significant, leading to
ionization and significant changes in the ambient Pedersen
conductance. In the case of long-period SAWs (frequencies
on the order of a few mHz), the ionization in the E layer due
to electron heating can be represented by the steady state
system of equations

n2e � n2e0 ¼
nionizne

R
;

j2?
sp0

¼ n2e
n0e

ni Te � Tnð Þ
ð9Þ

where ne
0 =

ffiffiffiffiffiffiffiffi
S=R

p
is the unperturbed electron density, Te

and Tn are the ionospheric electron and neutral tempera-
tures, respectively, S represents an external source of
ionization, and R is the corresponding recombination rate.
The ionization rate based on the typical ionization potential
of molecular oxygen or nitrogen is estimated from nIoniz �
0.1ne exp(�I/2Te).
[24] Nonlinear electron heating has been incorporated

into a 2-D reduced MHD numerical model that describes
the excitation of dispersive shear Alfvén waves in an
axisymmetric field topology [Lu et al., 2003]. Although
we are not yet able to deal with the more complicated
topology associated with the observations described in
section 3, our model does take account of field-line stretch-
ing, and the variation of ambient parameters that is neces-
sary to describe saturation effects due to wave dispersion
and finite ionospheric conductivity. The reader is referred to
Lu et al. [2003], where the equations solved in the numer-
ical model are described. The ionospheric boundary is
placed at an altitude of 100 km, and the finite element

model TOPO [Marchand and Simard, 1997] is used to solve
the two-dimensional SAW MHD equations.
[25] Figure 14 shows the field-aligned current at the

ionosphere, using parameters that approximate the 9 De-
cember 2001 event. The length of the field line is 35 RE,
while the equatorial density is chosen so as to give a
frequency of 1.4 mHz that matches the observation seen
from the ground. The top two parts in Figure 14 show the
field-aligned and ionospheric current densities as a function
of the coordinate perpendicular to the field line. The
bottom part shows the Pedersen conductance at the time
of saturation, which is around 20 Alfvén periods. The
initial ambient Pedersen conductance is 1 S, and it can
be seen in the bottom part of Figure 13 that it saturates at
around 11.5 S due to electron heating by the system of
currents in SAWs. Figure 15 shows the azimuthal magnetic
field of the SAW, together with the associated parallel
current density and perpendicular electric field strength
along the field line at an intermediate position across the
resonance (roughly 0.06 RE). The half-width of the arc
(envelope) is roughly 125 km, which is quite comparable
to the scale found in the ASI data for this observation
[Rankin et al., 2004]. On decreasing the amplitude of the
driver for the SAW by fifty percent, we obtain smaller
parallel currents that saturate at around 3.5 mA/m2, with
wave magnetic field amplitudes around 60 nT and Peder-
sen conductance increases of a factor of three over the
ambient conductance. In both situations, wave dispersion
plays a significant role in determining the spatial scale of
the saturated FLR, but structuring of the FLR due to
dispersive effects is not very obvious. In the future, we
will consider nonlinear effects due to profile steepening by
SAW ponderomotive forces. As discussed earlier and
verified by Lu et al. [2003], this effect is necessary in
order to see electron inertial scale arcs within the envelope
of FLR wave fields.
[26] With respect to the other two events reported in this

paper, we obtain similar results to those shown in Figures 14
and 15. In order to fit each observation, it is necessary to
choose an initial ambient conductivity along with the
amplitude of the driver that excites SAWs in our model. It
is these two effects that determine the spatial scale of the
FLR at saturation. In the absence of finite conductivity, one
obtains a series of dispersive scale arcs that stand across a
sizeable fraction of the inner magnetosphere. Therefore we
conclude that the essential ingredients for observing local-
ized dispersive scale arcs are finite ionospheric conductivity
and electron heating, which gives rise to conductivity
increases within the system of field-aligned current forming
the arc. The scale sizes reported for the cases with finite
Pedersen conductivity are in agreement with the estimates
provided by equation (4). In particular, once heating ele-
vates the Pedersen conductivity to a few Siemens, the
ionospheric layer under the FLR becomes highly reflective.
The actual scale of the arc obtained from the model can be
easily made to fit the observations by varying the initial
ambient conductivity from 1 to 2.5 S.

6. Conclusions

[27] In this article, we have discussed three observations
that all show evidence of ULF wave activity in the Pc-5
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range of geomagnetic pulsations. In each case, discrete
mode field-line resonances (FLRs) are observed, with clear
signatures seen in all-sky camera data and in meridian
scanning photometer and magnetometer data. Two of the
FLR-related arcs are associated with near monochromatic
wave energy centered on 1.3–1.4 mHz. The first FLR

(9 December 2001) is seen near the flank of the magneto-
sphere at high latitude. The second FLR (31 January 1997)
has a very similar frequency and is observed roughly 2 hours
prior to midnight, at approximately 5 degrees lower latitude.
In both cases, the FLR is located on stretched geomagnetic
field lines, with the envelope of the arc covering a perpen-
dicular scale of 150 km or so in the 9 December 2001
observation and roughly 30 km or so in the 31 January 1997
observation. The high-latitude FLR is well represented by
eigenmode analysis that accounts for field-line stretching

Figure 14. From top to bottom is shown the field-aligned
current density, the perpendicular current density, and the
Pedersen conductance computed using a two-dimensional
reduced MHD dispersive FLR model, with nonlinear
electron heating included as an ionospheric boundary
condition. The initial Pedersen conductance is 1 S. Results
are shown at the ionsopheric end of the field line at a time
corresponding to 20 SAW periods. The field line has
ambient parameters appropriate to the 9 December 2001
observation discussed in the test.

Figure 15. From top to bottom is shown the SAW
azimuthal magnetic field, the field-aligned current, and the
perpendicular electric field as a function of distance along
the field line from one ionosphere to the other. The
parameters of the field line are the same as in Figure 13.
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and torsion or twisting of the geomagnetic field. In the
lower latitude arc (31 January 1997), a rather high plasma
sheet equatorial density is required to fit the eigenmode
frequency. Here, we add a note of caution that our results
are sensitive to field-line topology (which in both cases is
represented by the approximate Tsyganenko 1996 magnetic
field model), and it would be premature to conclude that
plasma sheet densities are typically this high. A third
example of FLRs (29 October 1998) that is intermediate
between the two observations just described shows
wave activity at frequencies between roughly 3.8 mHz
and 5.2 mHz. This observation does not require high plasma
sheet densities in order to fit the observed frequency. We
find that our eigenmode analysis is able to explain how the
frequency changes as a function of time in this example. In
particular, the frequency variation over 1 hour of ULF wave
activity is closely tracked by our model and analysis.
[28] Using the gradient in eigenfrequency computed from

the Tsyganenko 1996 model and the equatorial plasma
densities that are required to fit observed FLR frequencies,
we have estimated the resulting spatial scale of FLR arcs
that form. This relies on the calculation of the wave
dispersion that is supported by the entire length of geomag-
netic field lines. Using simple density profiles along the
field line (/1/r), and a reduced MHD envelope model of
FLRs, we find that our estimates are in agreement with
observed scales that range from a few tens of kilometers to
around 150 km. Our estimates of the associated linear phase
mixing times vary between 8 and 15 SAW periods, which is
quite reasonable in the context of the lifetime of arcs
observed in optical data for the events we have studied.
We further demonstrate that FLRs can nonlinearly heat
electrons, producing significant changes in Pedersen con-
ductance under the resonant field line on which SAWs
naturally form. By incorporating nonlinear electron heating
into the boundary condition used in a 2-D reduced MHD
dispersive MHD code we show that strong Pedersen con-
ductivity gradients act to strongly localize FLRs in latitude,
in agreement with a substantial number of observations.
[29] In future work, we hope to combine our reduced

MHD and nonlinear electron heating model of SAWs with
nonlinear effects that steepen the local Alfvén speed gradi-
ent. It has been shown that SAW ponderomotive forces can
produce highly structured FLRs that are strongly localized
in latitude. In this situation, dispersive waves with perpen-
dicular scale sizes comparable to the electron inertial or ion
gyroradius are expected to form. This is necessary to
explain electron acceleration through parallel electric fields
that are excited in association with highly localized field-
line resonances. Finally, our analysis has not considered the
parallel electric fields associated with dispersive SAWs. It
has been shown that this requires kinetic effects which are
outside the scope of MHD models. The reader is referred to
Rankin et al. [1999b], Tikhonchuk and Rankin [2002], Lysak
and Song [2003], and Wright et al. [2002] for a description
of particular models of kinetic effects involving dispersive
scale SAWs.
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