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Abstract

Uncertainty in resource estimation affects long-term development, planning, and in-

vestment decisions. Therefore, there is a need to make the best decisions considering

all available data and different modeling approaches. This thesis develops a concep-

tual framework for resource modeling with uncertainty. A conceptual framework is

presented for establishing resource uncertainty with numerical models. The frame-

work is based on carefully assembled modeling practices to capture and represent

uncertainty. An overview, concepts, and implementation aspects are presented in

order to understand the nature of modeling with uncertainty, as well as provide jus-

tification for the developed modeling approaches. The integration of concepts into

a modeling workflow improves the quantification of uncertainty in different input

parameters and transfers the results to final resource uncertainty and sensitivity

analysis. In order to demonstrate the developed concepts and workflow, two case

studies are performed. The results show that workflow is effective, practical, and

robust for resource modeling with uncertainty.
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Chapter 1

Introduction

1.1 Background

Geostatistics was developed in many fields including mining and petroleum. Pioneer-

ing researchers include Youden (1951) and Matheron (1962). As a scientific field,

Geostatisitics was developed and established by Journel (1978, 1986), Isaaks (1989),

and Cressie (1993). Modern geostatistics largely overlaps with spatio-temporal

statistics and can be defined as a branch of statistics that specializes in the anal-

ysis and interpretation of spatially and temporally referenced data (Journel 1986).

Understanding uncertainty is a great challenge. Numerical geological models are

constructed at different scales for different purposes. Uncertainty is inevitable due

to our lack of understanding in the geologic processes and incomplete data. Geolog-

ical spatial distributions are complex due to inherent uncertainty caused by natural

variability and sparse sampling. This uncertainty may have an impact on the min-

ing project. A large number of uncertainty models have been proposed for different

purposes with the goal of identifying sources of uncertainties. It is important to

have a resource model with a reasonable understanding of uncertainty. Determining

which method/model is appropriate can be based on prior experience, preference,

and company policy. Alternative options available for resource modeling with uncer-

tainty must be analyzed and evaluated in terms of ease of use, computational cost,

and the reliability of the resulting model.
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1.2 The Problem

There is uncertainty at every stage of a mining operation. In particular, the resource

model is an important component of the mining system. It forms the basis of mine

planning activities and helps in decision making. Modeling uncertainty is application

tailored (Caers 2011). If the application changes then the modeling workflow to

model the uncertainty will be different, hence the final model of uncertainty will be

different. It is difficult and challenging to construct a resource model that includes

all aspects of uncertainty. Although not the focus of this thesis, managing a model

of uncertainty remains an issue. This problem includes transferring the uncertainty

through mine planning and decision making. The uncertainty must be built in from

the beginning of the modeling process; it cannot be added on once the model is

constructed. It is important to understand the uncertainty, and if required, select

suitable data acquisition that can reduce the uncertainty to an acceptable level.

Therefore, there is a need for a theoretical and practical framework for the systematic

treatment of uncertainty in resource modeling. This thesis aims to address this

problem.

1.3 Significance of the Research

A resource model is an important component of a mining project. A carefully con-

structed model provides valuable decision support information, giving a practitioner

a range of possibilities to evaluate different decisions and actions. Uncertainty is-

sues are incompletely addressed in modern software and work practices despite the

importance of the uncertainty in resource modeling. Producing an accurate and

unbiased resource model of uncertainty that is properly conditioned to the input

parameters with different complex geological settings is not an easy task. For this

reason, a theoretical framework that is robust and practical with respect to uncer-

tainty in each input parameter is important. This thesis addresses uncertainties in

the data, boundaries, and input modeling parameters, and realizations of important

variables including grades. The thesis study assembles, captures, and transfers the

2



uncertainty in input parameters in different geological settings. A theoretical and

practical workflow is developed by analyzing the existing modeling approaches and

selecting best practices for a treatment of the uncertainty.

1.4 Literature Review

1.4.1 Review of Resource and Geological Modeling on Reserves

Computerized resource models were introduced in the late 1970s. Numerous ap-

proaches have been applied and used to measure uncertainty in resource models over

the years. Reeve & Glacken (1998) describes the history of resource estimation for

large mineral deposits. Arvidson (1998) put together data over 100 years to gen-

erate a resource estimation study on a gold deposit. Another research (Murphy et

al., 1998) provides an overview of the resource estimation process in gold deposits.

Lutherborrow (1999) describes the history of resource estimation and recent devel-

opments. There is another overview of various methodologies and techniques for

resource estimation by Carras (1998). The importance of the geology in ore reserve

estimation has been studied and summarized by King et al., (1982) and Grace (1986).

Geostatistics provides tools for spatial modeling of geology (Journel & Huijbregts

1978). Philip & Watson (1986) discuss components of geostatistical estimation.

Surprisingly little has been published on resource modeling with uncertainty;

mainly some questions of detail have been discussed. On the other hand, much

has been done and published in health, medicine, biology, and ecology (Bárdossy &

Fodor 2001). Some authors address geological uncertainty primarily in coal resource

estimation including Li et al., (2008) and Knights et al., (2008).

For many decades the mining industry regarded resources/reserves estimation

and classifications as straightforward requiring basic mathematical and geological

knowledge (De Souza Eduardo et al., 2005). According to these authors, many of the

methods were based on geometrical procedures and spatial data distribution. As a

result, uncertainty was ignored. Bárdossy & Fodor (2001) present an overview of the

main types of uncertainties in geology. They outlined the best uncertainty oriented
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approaches along with traditional methods of uncertainty. Mann (1993) presented

a short review of the uncertainty problem in geology. The author suggests that all

scientists are aware of uncertainty and specify the uncertainty in each measured or

derived values; however, this is not a case in geology. Therefore, there is a need to

identify and characterize the uncertainty in each input parameter used in resource

estimation.

1.4.2 Review of Resource Modeling with Uncertainty

Geostatistics was developed and established as a scientific field by Journel (1978,

1986), Isaaks (1989), and Cressie (1993) after its first introduction by Youden (1951)

and Matheron (1962). Hengl et al., (2009) analyzed bibliometric indices of the scien-

tific field of geostatistics using statistical and spatial data analysis. They also gave

an introduction to the history of the geostatistics. Uncertainty can be defined and

characterized in many different ways. Mann (1993) describes uncertainty as a sim-

ple concept ostensibly understood to mean that which is indeterminate, not certain,

containing doubt, indefinite, problematical, not reliable or dubious. Other research

describes uncertainty as the term associated with a limitation of our knowledge, or

some kind of error, or inexactness (Funtowicz & Ravetz 1990). Some uncertainty

cannot be avoided because of inherent uncertainty related to natural processes or

complexities caused by nonlinear relationships (Katz 2002).

Refsgaard et al., (2006) studied the role of uncertainty at different stages in

the modeling process. They briefly review fourteen different (partly complemen-

tary) methods commonly used in uncertainty assessment and characterization. They

demonstrated the applicability of the methods by mapping according to purpose of

application, stages of modeling processes and types of uncertainties addressed. Their

conclusion was that uncertainty assessment is not something that can be added and

it needs to be taken into account at the early stages and considered throughout the

modeling process. In addition, they discuss other aspects of uncertainty, particu-

larly in policy and public participation processes that may be helpful in managing

uncertainty and decision-making.
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An overview of the methods to evaluate uncertainty of deterministic models in

decision support was conducted by Uusitalo et al., (2015). They review various

methods that have been or could be applied to evaluate the uncertainty related

to deterministic models outputs. They also indicate that the best way of evalu-

ating the uncertainty depends on the definitions of source models and the amount

of quality information available to the modeller. They conclude that decision sup-

port models can be very valuable when it comes to managing complex problems

and efficiently summarize various and distinct consequences related to alternative

management measures.

Uncertainty arises due to our limited sampling of the true distribution. Geo-

statistics uses all available site specific and analogue knowledge to construct models

of uncertainty, taking care to ensure that these models reasonably represent our state

of incomplete knowledge (Wilde & Deutsch 2010). The authors defined a number of

formats to express acceptable uncertainty in data by categorizing them as relative,

absolute, and misclassification. According to the authors, expressing the uncer-

tainty usually requires a specification of a volume, a ± measure of uncertainty, and

the probability to be within the ± measure. They recommend using relative format

for expressing the uncertainty in most cases, unless there is a significant threshold

where misclassification is important.

Bear et al., (2010) did research on modeling under uncertainty. They say that

deterministic approaches are good assuming that a full knowledge and understanding

of all the processes and models are understood. These processes and models are used

to predict future responses to measure availability of information on all parameters

in the model. However, this situation is not common in practice because there is

significant uncertainty in the input parameters.

One of the important contributions of spatial statistics or geostatistics is that it

provides a measure of uncertainty in the regionalized variable (Isaaks & Srivastava

1989). Uncertainty in modeling comes from different sources, which may be classified

into different categories (Wu & Li 2006 and Funtowicz & Ravetz 1990). These sources

of uncertainty may come from the boundaries, data, and input parameters, and so
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on. Some types of uncertainties are difficult to handle due to inherent uncertainty as

a result of natural processes. At some point, treatment of these uncertainties may be

impossible. However, the main goal of dealing with uncertainties in different input

parameters is to quantify and select the best approaches to treat the uncertainty.

In addition to the geostatistical methods that have been successfully applied

to assess and measure resource uncertainty, Kogan (1989) studied the accuracy of

estimates and its prospects and properties by assigning confidence intervals. Bailey

et al., (2012) present an overview of approaches to the analysis and modeling of

multivariate geostatistical modeling. They gave an overview of existing approaches

for the multivariate geostatistical data analysis, where multivariate data was indexed

spatially and was continuous across space. Their approach was divided into classes

such as factor models and spatial random field models.

Many areas of application involve testing physical parameters in a laboratory.

They have the advantage of repeated testing and can reduce uncertainty by increas-

ing the number of test subjects. This is not the case with geostatistical models

that are derived numerically where data collection is expensive. Some thoughts on

uncertainty quantification is collected by Deutsch et al., (2002). Their preliminary

research report formed a conceptual basis for different research/application studies.

According to the authors, geostatistics is used for heterogeneity characterization;

however, assessment of the uncertainty requires more implementation details and

assumptions.

Another research conducted by Babak et al.,(2006) discusses a new method for

assessing uncertainty in input parameters that accounts for the histogram and var-

iogram. Their stochastic method was based on multivariate Gaussian distribution.

They compared the spatial bootstrap method with a new proposed CFD approach.

The authors proposed a practical technique for uncertainty quantification in the his-

togram. Their approach allowed to assess the uncertainty by sampling original data

that accounts for spatial correlation. They also define a number of limitations of

using the spatial bootstrap where it does not account for the area of interest and

only considers the histogram. They also studied the variogram uncertainty using real
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data. They conclude that the proposed method is convergent, design independent,

and invariant under parameterization.

Many methodologies are available to practitioners for quantifying mean uncer-

tainty, which may cause confusion in selecting an appropriate technique. Although

there is an abundance of literature for these methods, comparatively few resources

are dedicated to the use of mean uncertainty within a geostatistical modeling work-

flow (Barnett et al., 2014). The authors present a practical guide to use of un-

certainty in mean in geostatistical modeling. They provide two workflow steps to

estimate the uncertainty. According to the authors, many parameters are important

within geostatistical modeling, however, uncertainty of the global mean is one of the

most critical. They claim that over the last decade numerous methods for quantify-

ing mean uncertainty have been proposed; however, their practical implementation

within geostatistical modeling is not usually specified.

A realistic evaluation of uncertainty is important during the planning of mining

operations. A better evaluation of uncertainty could avoid problems during the pro-

duction and help in mine planning (Villalba & Deutsch 2009). They reviewed the

current techniques to evaluate uncertainty. This included the conventional bootstrap

(CB), spatial bootstrap (SB), and conditional finite domain (CFD). The bootstrap

is a popular application of Monte Carlo simulation technique that was developed

by Efron (1983). The bootstrap is useful for complex statistics. This include pro-

portions, average above cutoff, and the correlation between variables. The spatial

bootstrap (Journel & Bitanov 2004 and Feyen & Caers 2006) for a single variable is

an extension of the bootstrap (Efron & Tibshinari 1986) resampling technique that

accounts for spatial correlation. According to the authors, all of them are based on

an assumption that the distribution of the data is representative for entire domain.

The samples are drawn randomly from the cumulative distribution function (CDF)

of original data, taking into account the spatial correlation, conditioning to data,

and the domain.

There is uncertainty in the boundaries between different geological domains. In-

terpolating a distance function has been shown to be a useful method for estimating
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the boundary location (Munroe & Deutsch (2008, a,b). One method for quantifying

the uncertainty includes calibrating an additive parameter C, using available data

in a way similar to the jackknife (Wilde & Deutsch 2011). Uncertain boundaries

are problematic in many geo-engineering applications (Hosseini & Deutsch 2007).

Geostatistical techniques have been developed to solve spatial modeling problems;

however, they become inefficient when it comes to quantifying the uncertainty in

the areal limits. The authors used the distance function (DF) because of simplicity,

as well as a powerful methodology to characterize the space of uncertainty for areal

limits. Their methodology was tested by using a large number of synthetic limits,

and their conclusion was that the results were robust and the methodology can eas-

ily be incorporated in Monte Carlo Simulation to simulate any continuous attribute

with uncertain areal limits.

Incorporation of the distribution uncertainty in input parameters is important;

however, there is no established procedure for incorporating multivariate parame-

ter uncertainty. Khan & Deutsch (2015) propose a multivariate spatial bootstrap

resampling (MVSB) to sample the required global statistics. They incorporate mul-

tivariate parameter uncertainty in geostatistical resource modeling. The proposed

workflow accounts for the prior uncertainty given the data locations and leads to

the posterior uncertainty in the global distributions of all modeled properties. They

concluded that the results are tractable and practically provide realistic assessments

of the uncertainty. This accounts for large-scale parameter uncertainty, which is

important in resource model.

The uncertainty quantification is valuable for many management decisions. How-

ever, resource uncertainty is underestimated or overestimated when the calculated

parameter uncertainty is inaccurate (Rezvandehy et al., 2015). They developed a

technique that improves the uncertainty in the univariate distribution for regional-

ized variables by using the spatial bootstrap and transferring through simulation.

They compare their results to real uncertainty assessed through the scanning of a

large image.
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1.5 Research Contribution

Although the importance of uncertainty in resource model is well recognized, few

studies provide a conceptual resource model with uncertainty. Uncertainty can have

an impact on every aspect of modeling (Reckhow 1994; Klepper 1997; and Katz

2002). It is important to understand uncertainties coming from different input pa-

rameters during resource modeling and provide suitable best practices that can be

used to minimize the uncertainty. A theoretical framework with best practices is de-

veloped. Case studies are presented to demonstrate the applicability of the concept.

Outcomes will provide useful information to understand realistic uncertainty in input

parameters. The main contribution of this thesis is to analyze existing techniques

and select the best practices to assemble, capture, and transfer the uncertainty in

input parameters in different geological settings.

1.6 Research Outline

This thesis is a study on resource modeling with data and parameter uncertainty

with the goal of providing the best practices to measure the resource uncertainty.

Each chapter targets one specific aspect of the study.

In Chapter 2, a conceptual geostatistical simulation workflow of resource model-

ing with uncertainty is presented. In this chapter, the basic concepts are introduced

and discussed including conceptual geology, boundary, data, and model and model

parameters and realizations, followed by implementation aspects. Additionally, some

notations and details are reviewd. Unit operations are introduced and reviewed along

with required geostatistical concepts and methodology to evaluate the uncertainty.

Chapter 3 shows Case Study 1 for a specific data set. This chapter provides

an overview of the geology and available data. This will be followed by details of

geostatistical modeling, result, and analysis.

In Chapter 4, Case Study 2 using another data set is presented. The outline of

this case study is similar to Case Study 1.

In closing, Chapter 5 discusses conclusions, future work, and recommendations.
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Chapter 2

A Conceptual Geostatistical

Simulation Workflow for Resource

Modeling with Uncertainty

At large scales, selection and implementation of the best and most applicable prac-

tices to meet the data and model requirements should be a top priority. A number

of concepts can be applied to address this problem in a model. The goal of this

chapter is to introduce and develop a conceptual workflow of resource modeling with

uncertainty. A theoretical workflow with unit operations is developed. A conceptual

basis will be first introduced for each unit operation followed by implementation

aspects where realizations are simulated and full models of variables assembled. The

plan for developing and implementing theoretical concepts for each input parame-

ter/unit operation will follow the illustrative sketch shown in Figures 2.1 and 2.2.

In the first figure, general hierarchical modeling workflow with unit operations is

presented, whereas second figure illustrates a schematic illustration of assembling a

resource model form all variables from simulated realizations.

The chapter starts with an introduction and purpose, Section 2.1 and Section 2.2.

Conceptual geology is covered in Section 2.3, while unit operations including bound-

ary uncertainty in Section 2.4, data uncertainty in Section 2.5, parameter uncertainty
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and realizations in Section 2.6, post processing in Section 2.7, and recommendations

in Section 2.8. With the purpose of full demonstration of the developd workflow,

implementation aspects are presented at the end of each unit operation section. In

addition, the implementation aspects will be directly linked to case studies as the

workflow is fully implemented in case studies with different data. The scope of

discussion is limited to those areas that are applicable to this thesis study.

2.1 Introduction

Uncertainty arises due to inadequate information, which can be of three sorts: in-

exactness, unreliability and ignorance (Funtowicz & Ravetz 1990). New information

will decrease or increase uncertainty because the data may reveal the presence of

previously unknown features. Any parameter in a resource model, or a geologic

parameter can be a source of uncertainty. This source of uncertainty makes a mod-

eling process difficult and challenging. A number of studies (Regal & Hook 1991

and Draper 1995) are presented on the impact of ignoring a model of uncertainty.

Uncertainty should be captured and narrowed in a model.

Unit operations are selected based on best practices that are properly conditioned

to the input parameters. The main purpose of the thesis study is to develop and

select best practices/unit operations that will aid to reduce uncertainty and help in

decision making. The developed workflow is robust and practical where uncertainty

is assembled, quantified, and transferred, giving practitioners a range of alternative

options to consider different uncertainty scenarios and evaluate them with confidence.

2.2 The Purpose

It is of primary importance to understand the phenomenon that we are modeling

(Pyrcz & Deutsch 2014). A resource model is an important part of the mining

system. Any uncertainty associated with the resource model may have an impact on

a mining project as different types of uncertainty offer different challenges. Therefore,

where possible, suitable data acquisition that reduce the uncertainty to an acceptable
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level. The goals and purpose must be clearly established, and the workflow must be

designed to meet these goals under the modeling constraints (Koltermann 1996). The

purpose of the study is to develop, understand, and assemble a modeling workflow

to fully integrate all available input parameters using best practices and expert

knowledge. With the establishment of the workflow we can apply the modeling

algorithms/methods to assess resource uncertainty.

2.3 Conceptual Geology

The conceptual geology provides the fundamental prerequisites required for resource

modeling. These prerequisites allow to integrate all available information into a

model with the goal of the best representation of uncertainty. Thus, there is a need

to apply geological concepts in resource modeling. They serve as a base for resource

modeling and the specific required characteristics of the modeling.

2.3.1 Hierarchical Modeling

The purpose of hierarchical modeling is to develop and establish a general modeling

workflow. Hierarchical modeling is divided into five main unit operations. Con-

siderations include a data inventory, formulating the conceptual basis, and making

decisions on best workflows for a complete modeling process. The introduced hierar-

chical modeling is applicable for a variety of resource modeling approaches; however,

different steps during a modeling process may also be considered depending on the

goals of a project and different geological and parameter settings. Consider Fig-

ure 2.1 showing the general hierarchical modeling workflow adapted from Deutsch

(2015).

Figure 2.1: General hierarchical modeling workflow, including formulation of a model setup,
boundary, data, and parameter (distributions) uncertainty and realizations along with post
processing in the uncertainty space adapted from Deutsch (2015)
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The unit operations are developed and assembled based on latest thinking by

considering best and applicable practices. In case of reservoir modeling, additional

modeling steps may be required. This includes, but is not limited to, modeling of

top surface structure and thickness, and/or facies modeling, and so on. These steps

are still developed within the five unit operations framework.

In general, the first step starts off with setting up a model including formula-

tion of the modeling workflow where exploratory data analysis (EDA) is performed.

There is no strict set of requirements for performing EDA so it depends on a practi-

tioner’s preferences. The model set up also includes defining and setting up applica-

ble software algorithms and input parameters used at each step of a workflow. The

next step after model set up and performing the EDA, include boundary, data, and

parameter uncertainty that will be performed within two steps including prior and

posterior uncertainties, as well as post processing. The illustrated workflow with five

steps in Figure 2.1 is to demonstrate general modeling concepts with uncertainty,

whereas Figure 2.2 shows the modeling workflow with multiple realizations. The

models are constructed hierarchically with correct dependencies between all input

variables/parameters.

Figure 2.2: Illustration of the all realizations all time adapted from Deutsch (2015).

Understanding the large scale boundaries is a first step in the modeling work-

flow. Boundary uncertainty involves interpolating and mapping the uncertainty in
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bounding surfaces (Hosseini & Deutsch 2007; Machuca-Mory, Munroe, & Deutsch

2009; and Wilde & Deutsch 2011). Data uncertainty is calculated based on analyz-

ing the existing data and selecting the relative uncertainty format (Wilde & Deutsch

2010), such as understanding the data collection and processing. Parameter uncer-

tainty includes simulation of all realizations from the modeling parameters. Post

processing to evaluate the generated realizations comes at the end with sensitivity

analysis in order to understand the importance and relationships between response

and predictor variables by fitting a response surface.

Unit operations are an important part in establishing and developing a concep-

tual workflow that reasonably accounts for the uncertainty in input parameters and

achieves the stated modeling goals. At some steps of the modeling workflow, differ-

ent methodologies to assess the uncertainty could be used. There are, for example,

many different facies modeling techniques includign indicator simulation, truncated

(plori)Gaussian and multiple point statistics based techniques. Each unit operation

targets one specific aspect of uncertainty including boundary surfaces, or data, or pa-

rameter uncertainty and realizations. The developed theoretical framework provides

a realistic assessment of uncertainty and integrates all available input parameters

into a resource model.

2.3.2 One-at-a-Time Approach

Depending on the complexity of a model, different methods varying from simple

to relatively complex can be adapted. The MCS process can be summarized as:

(1) problem formulation; (2) simulation of all variables; (3) post processing/transfer

function; and (4) ssembling of all simulated response variables. A Monte-Carlo Simu-

lation (MCS) is applied as a convenient modeling methodology where configurations

of model inputs are drawn randomly from their distribution. And then resulting set

of models outputs can be seen as a random sample of the distribution of the output

of interest.

There is significant body of literature on modeling methodology addressing the

workflow (Saltelli et al., 2000 and Kennedy & O’Hagan 2001). In this study, a MCS
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workflow is adapted where values are drawn in a random manner from the distribu-

tions of each uncertain input parameter. Various approaches ranging from simple

one-factor-at-a-time methods to comprehensive approaches are available based on

MCS methods (Saltelli et al., 2005 and Cariboni et al., 2007). One-at-a-time ap-

proach is applied to understand the impact of each input parameters. This method-

ology allows the impact of each input parameter to be isolated and understood.

2.3.3 Overall Model Setup Approach

As more information or data for modeling becomes available to practitioners, there

is a need to deal with them to constrain models of uncertainty. It is clear that

some of tools for modeling uncertainty through traditional models are too rigid to

handle all these complexities (Caers 2011). The reliability of a final model results

and a relative contribution or importance of each uncertainty model is important.

A schematic illustration of assembling a resource model from all variables from sim-

ulated realizations is adapted from Deutsch (2015) and shown in Figure 2.2. The

overall model setup approach that will be used for the modeling workflow follows as:

1. Identifying and setting up all required parameters for modeling, where data is

analyzed and a hierarchical workflow specified for how the realizations of all

variables will be performed and assembled.

2. Prior parameter uncertainty defining base case parameters and uncertainty in

each of those parameters. The input parameters include, but are not limited

to thickness, grade values, and facies proportions, as well as variograms, and

other input parameters depending on the data and modeling goals.

3. Data uncertainty of all input variables is then assessed. In this case, data impu-

tation or sampling data error may be required in order quantify the uncertainty

in the data (Barnett 2015).

4. Posterior uncertainty is understood after realizations of all variables are as-

sembled. This includes all the steps identified in the model set up and unit
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operations for every data and parameter realization. These are constructed

hierarchically and checked to the greatest extent possible with correct depen-

dencies between all input variables.

5. Post processing/process in transfer function includes calculation of resources/reserves

with all realizations to understand uncertainty and in order to perform a sen-

sitivity analysis.

The sensitivity comes at the end and is based on calculated scalar posterior

parameters. A response surface can be created for each response variable using

posterior uncertainty parameters with the purpose of analyzing and better under-

standing the importance/impact of each input parameter. The plan for the rest of

this chapter is to introduce each unit operation [boundary, data, distributions, etc.]

and demonstrate their implementations. This will help us to better understand and

fully integrate the developed resource modeling workflow with uncertainty.

2.4 Boundary Modeling Uncertainty

Boundary modeling focuses on interpolating and mapping the uncertainty in bound-

aries. There are a variety of modeling approaches available to build boundary sur-

faces. In this thesis, the focus will be given to the distance function (DF) method

to interpolate and map boundary uncertainty. Hosseini & Deutsch (2007) used the

distance function to characterize the space of uncertainty in areal limits using a large

number of synthetic limits. Their aim was uncertain areal limits. Munroe & Deutsch

(2008, a, b) proposed another method to assess the uncertainty by calibration of two

paramaters, C and β where C controls the width of the uncertainty and β controls

the bias. These parameters are optimized to give appropriate uncertainty; however,

optimizing these parameters requires multiple reference models and two objective

functions. A simpler method for calibrating the distance function is proposed by

Wilde & Deutsch (2011). Uncertainty quantification includes calibrating an additive

parameter C, using the available data in a way to similar to the jackknife. This is

less expensive compared to other methods.
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2.4.1 Distance Function (DF)

The distance function (DF) used for boundary modeling is based on the Euclidean

distance between a sample and the nearest sample with a different indicator type.

This coding starts with a binary categorical indicator of the form (Deutsch & Journel

1998):

i(uα) =


1, if domain present at uα

0, otherwise

Where uα is the sample location. The distance function is defined as positive

outside the domain and negative within the domain of interest. The distance is

calculated as follows in presence of anisotropy.

distance =

√(
dx

ax

)2

+

(
dy

ay

)2

+

(
dz

az

)2

Where d is the separation between the two points in each of the x, y, and z

directions, and a is the geometric anisotropy defined for each of the x, y, and z

directions. Illustration of the distance is measured to the nearest data location with

positive or negative values depending on the location of the data inside or outside

the domain is shown in Figure 2.3.

For each sample located at uα, the nearest sample location (u′
α) is determined

such thatMin
{
uα − (u′

α)
}
, i(u′

α) 6= i(u′
α). The distance between the two locations

is the distance function value at location uα. If uα is within the domain, the distance

is set to negative; otherwise the distance is positively signed:

DF (uα) = +distance(uα − u′
α), if i(uα) = 0

DF (uα) = −distance(uα − u′
α), if i(uα) = 1

Figure 2.4 illustrates the concept of the DF (Munroe & Deutsch 2010) where each

illustration consists of two drillholes separated of ten units. The sample interval is
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Figure 2.3: Illustration of drillholes locations inside and outside of the domain calculated
from the DF values from the Red data using 46 drillholes coded inside of the domain. The
units of the calculated DF values are in meters.

uniform at one unit. The white samples imply the presence of non-vein and are given

a vein indicator code of 0, while grey areas signify vein and are given a vein indicator

of 1.0. The numbers located on the each side of sample indicates the distance to the

closest sample with vein indicators and are aided by the use of arrows.

2.4.2 Parameter Calibration

Interpolation of the distance function is useful for modeling boundaries with un-

certainty; however, it requires an expensive calibration method to ensure that the

uncertainty is unbiased and fair. A method to calibrate the distance function is pro-

posed by Wilde & Deutsch (2011). This method uses the data to calibrate a single

additive factor C, which modifies the DF values at the sample locations:

D̂F (uα) = DF (uα) + C, if i(uα) = 0

D̂F (uα) = DF (uα)− C, if i(uα) = 1
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Figure 2.4: Distance function: sign dependent shortest distance between points with vein
and non-vein indicators (Munroe & Deutsch 2010).

This modification is illustrated in Figure 2.5. The additive factor C increases

positive and decreases negative distance function values. Once the C parameter

is applied to the data, the modified distance function is interpolated. Calculated

distance function values are modified at the sample locations. Modified DF estimates

between (-C) and (+C) are within the range of boundary uncertainty.

Figure 2.5: Conversion of distance function to modified distance function by the C param-
eter. The units of the C parameters are in meters.
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2.4.3 Boundary Limits and Uncertainty

There is a need to define and know the limits of the uncertainty bandwidth. Deter-

mination of the limits by applying thresholds to the gridded model is an important

step during the calibration process. With the defined limits, a distribution of areas

can be determined. Consider Figure 2.6 that shows 1D schematic of distance func-

tion thresholds applied at boundary locations. As the distance function varies from

positive (+C) to negative (-C) distance function values the boundaries erode to a

smaller volume inside (Wilde & Deutsch 2011).

Figure 2.6: 1D schematic of distance function thresholds applied to arrive at different
boundary locations (Wilde & Deutsch 2011).

A threshold of zero yields the base case; choosing a threshold near (+C) yields

boundaries that are large everywhere (dilated boundary); and threshold near (–C)

yields to be small everywhere (eroded boundary). Different boundaries can be ex-

tracted by applying a threshold between (-C) and (+C). The choice of a value for

C parameter depends on the level of accuracy required versus the amount of time

desired (Munroe & Deutsch 2008a). These values for C parameter can be subdivided

into three categories: (1) empirical selection, (2) partial calibration, and (3) full cali-

bration. Empirical selection is applied based on predetermined values and/or expert

knowledge. In partial calibration the interpolated models are compared to a single

solid model representation of an orebody. A value for the uncertainty constant C is
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chosen based on the interpretation of representative sections and expert judgment.

Lastly, full calibration uses multiple reference models for a complete, unbiased, and

fair estimate of uncertainty. However, this calibration method requires considerable

CPU time and increases with the size and number of reference models used as full

calibration requires multiple iterations using different C values. In this study, the

choice of the C uncertainty parameter bandwidth is based on expert judgment.

2.4.4 Implementation of the Boundary Modeling with Uncertainty

The calculation of the DF values could be done with a custom written program

or the GSLIB-like program DFcalc demonstrated by Wilde & Deutsch (2011). An

illustration of the calculated distance function values and location of drillholes in-

side/outside of the domain is shown in Figure 2.7 (a). A number of control points

are then assigned at locations outside domain after calculation of the distance func-

tion values. Control points are chosen and assigned based on the drillholes that are

coded (+DF) outside domain. The purpose of the control points is to constrain the

ore and waste boundaries shown in Figure 2.7 (b). The full demonstration and more

discussion on the uncertainty in boundary surfaces with defined/calculated distri-

bution areas and corresponding probability distributions between the C=-30m and

C=+30m thresholds will be presented in Case Study 1.
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(a) (b)

Figure 2.7: Illustration of the drillholes located inside (-DF) and outisde (+DF) domain
(a) and control points (b). Black=drillholes, White=control points. The units of the DF
values are in meters.

2.5 Data Uncertainty

Error is an inevitable uncertainty that attends all measurements. An error does not

carry the usual connotations of the terms of mistake or blunder (Taylor, 1997). Each

sample has some sort of degree of uncertainty. Sample collections, preparation, and

overall data handling are all sources of uncertainty (Rossi & Deutsch 2014). Data

are often associated with uncertainty. It is useful to know how various measures

of uncertainties respond to changes in data. A measurement inaccuracy or other

errors arises due to limited sampling of the true distribution. A number of factors

have an impact on the data uncertainty including the sampling protocol and intrinsic

heterogeneity of the rock being measured.
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2.5.1 Formats for Expressing the Data Uncertainty

Different formats are available to express uncertainty in data. Selection of these for-

mats depend on prior experience, preference, and transparency. Available formats

include a measure of the ± uncertainty, a probability to be within the ± measure

of the uncertainty, and an absolute measure of the ± measure of the uncertainty.

The relative uncertainty is expressed as a fraction or percentage to relative to the

expected value. This gives an indication of how good a measurement is in a dimen-

sionless format. A misclassification uncertainty could also be considered to present

the uncertainty. This is a common procedure when there are two clear misclassifica-

tion errors. This includes the probability of Type I errors (false positive) represented

by α and the probability Type II errors (false negatives) represented by β. Figure

2.8 shows the illustration of normal probability distribution in units of standard

deviation.

Figure 2.8: Illustration of normal probability distribution in units of standard deviations.

The figure above illustrates the well known result that there is a 68.27% chance

that measurement falls within one standard deviation of the mean, and 95.45%

chance that falls within two standard deviation of the mean, and three standard

deviation within 99.73% of chance, respectively. The data value is considered as

the mean and the true value is considered to fall within a probability distribution

centered on this mean.
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2.5.2 Implementation of Data Uncertainty

There is uncertainty in data that comes from the sampling protocol and data han-

dling. It should be minimized, but may still be significant. In this study, the data

are considered have a relative uncertainty. A relative format is recommended in most

cases (Wilde & Deutsch 2010). A relative error can be expressed as:

δerror =
X

100
× z

Where z is the true value related to the data and the X is a relative error value in

percentage. The choice and selection of the acceptable relative error value is usually

specified and selected by a practitioner. In this thesis study, a ± 10% relative error is

selected to express the uncertainty in the data. This would have to be evaluated on

a case-by-case basis. A small illustration of the data uncertainty using the relative

error format will be demonstrated in Case Study 1.

2.6 Parameter Uncertainty

A variety of geostatistical techniques/methodologies to assess input parameters with

different geological complexities exist. In order to obtain a better model of un-

certainty, best practices and realistic parameter uncertainty should be considered.

The process of transferring the prior parameter uncertainty to posterior paranmeter

uncertainty model is achieved through geostatistical modeling with a number of

modeling parameters. The random function (RF) concept is covered in many text-

books (Journel & Huijbregts 1978; Isaaks & Srivastava 1989; Goovaerts 1997; Gron-

dona & Cressie 1991; and Chilès & Delfiner 2012). Some sources on different types

of variogram-type measures of spatial variability include (Cressie & Hawkins 1980;

Deutsch & Journel 1998 and Srivastava & Parker 1989). The spatial bootstrap (Jour-

nel & Bitanov 2004; and Feyen & Caers 2006) for a single variable is an extension

of the bootstrap (Efron & Tibshinari 1986) resampling technique that accounts for
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spatial correlation follows as:

1. Fit a normal score variogram model

2. Define the representative distribution F (z)

3. Simulate a realization of the data at the data locations

4. Calculate the statistic of interest from the resampled data, the experimental

mean msz and variance from the realized vector z

5. Return to step 2 and repeat many times, say, L = 1000)

6. Assemble the distribution of uncertainty in the calculated statistic

2.6.1 Multivariate Spatial Bootstrap (MVSB)

In this thesis study, a multivariate workflow is applied for the parameter uncertainty.

This new multivariate spatial bootstrap resampling (MVSB) method developed by

Khan & Deutsch (2015) accounts for measuring the uncertainty in distributions in

the context of a multivariate workflow. The general approach of the multivariate

resampling workflow is:

• Sample correlation matrix R with elements ρij , i = 1...k; j = 1...k

• Corresponding variogram models γzk(h) = Czk(0) − Czk(h) where (h) is the

lag vector

• Cumulative distributions functions Fzk(zk) and their summary means µzk and

variances δ2zk

The applied multivariate workflow accounts for the prior parameter uncertainty

coming from the multivariate spatial bootstrap resampling that is transferred to pos-

terior distributions by conditioning data and clipping by domain boundaries. The

applied approach provides realistic assessment of the uncertainty in parameters. The

two programs spatial bootstrap_mv and parunce may be used to implement the pa-

rameter uncertainty, see Khan & Deutsch (2015) and Rezvandehy et al., (2015). The
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first program accounts for prior and second program uses for posterior uncertainty,

respectively.

2.6.2 Principal Component Analysis (PCA)

Uncertainty in the correlation matrix is important because correlation coefficients

quantify the relationships between variables. If the data deemed to be non-Gaussian

then additional steps should be taken to understand the relationships (Deutsch &

Deutsch 2011). Simulation methods for individual variables are frequently efficient

(Lopes, Rosas, Fernandes, & Vanzela 2011); however, in many applications reproduc-

tion of the spatial dependence and joint simulation for multiple variables is critical.

A variety of joint simulation methods for multivariable deposits can be applied. Over

the years, practical and efficient co-simulation methods have been proposed and im-

proved by many authors. The joint simulation based on the decorrelation of variables

using principal component analysis (PCA) was introduced back in the 1980s. PCA

is used abundantly in all forms of analysis because of its simplicity and utility in

extracting relevant information from complex sets of data. Many variables can be

reduced to a lower dimension.

2.6.3 Sphere-R Transformation

Barnett & Deutsch (2015) summarize the sphering and rotating of the factors from

principal component analysis (PCA-R) that makes the results easier to understand

compared to other co-simulation techniques including classical PCA. The PCA-R

is used for effective geostatistical modeling. The theory behind the PCA-R is that

matricesA are represented in terms of eigenvalues λ and eigenvectors υ. Then taking

matrix A and rewriting in terms of sum of eigenvectors and eigenvalues, we have the

following:

An×n =

n∑
i

λi

[
Ui×VT

i

VT
i ×Ui

]
= Pi (2.1)
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Where Pi is the eigenvector projection matrix, and the Ui and Vi are eigenvectors.

Then rewriting the Equation 3.1, the eigenvector projection matrix will have the

following form:

Pi =
[Ui ×VT

i ]

(VT
i ×Ui)

(2.2)

By combining the Equation 3.1 and Equation 3.2 results the sphere principal

component analysis (PCA-R), such as:

An×n =
n∑
i

λiPi

The multivariate data are passed through the PCA-R with an assumption that

we know spatial and statistical relationships between the data, then decorrelated

variables back onto the basis of the original variables. This is achieved by multi-

plying the transpose of the eigenvectors Ui and Vi to rotate the sphere variables

back to the original basis where (1) variables are uncorrelated and variances are

standardized; (2) the loading properties is not appropriate for a dimension reduction

scheme is not considered; and (3) spatial continuity of original variables are likely

preserved (Barnett & Deutsch 2015). Due to the the additional steps illustrated

earlier, the mixing of loadings is minimized between the variables. By doing this,

original variables will be resulted with higher probabilities for their spatial structure

reproduced by modeling. For multivariate analysis of data including decorrelation

of the variables being modeled, any of the co-simulaiton techniques [PCAs, MAF,

LMC, etc] could also be considered for multivariate analysis of data.

The Decorrelate and LoadingPlot programs are can be implemented for multi-

variate analysis of data and demonstrate the sphere-R transformation (Barnett &

Deutsch 2015). The authors also explain the program, which implements both con-

ventional and sphere-R PCAs. Sources on a variety of co-simulation techniques

include (Smith (2002); Barnett & Deutsch 2015; and Shlens 2005, 2014). The use of
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the PCA-R technique will be demonstrated in case studies.

2.6.4 Implementation of the Parameter Uncertainty

Incorporation of parameter uncertainty in resource modeling is important. There

are many existing approaches to quantify parameter uncertainty. This study uses

the prior uncertainty and posterior uncertainty approach documented in (Khan &

Deutsch 2015 and Rezvandehy et al., 2015). The prior parameter uncertainty is

estimated from multivariate spatial resampling (MVSB) technique. The posterior

uncertainty results from transferring and updating with the conditioning data and

domain limits, see Rezvandehy et al., (2015). These techniques are used together to

quantify the uncertainty in a multivariate context for large scale models.

A multivariate workflow defines prior parameter uncertainty; and then posterior

distributions result from transferring the prior uncertainty updated by conditioning

data. The parameter uncertainty framework starts off by checking the bivariate rela-

tionships and correlation matrix of the K variables (Deutsch & Deutsch 2011). The

probability density function of each variable with a bivariate standard normal distri-

bution is parameterized by correlation coefficient and presented for visual inspection.

These contours are important in visualizing, inspecting, and detecting outliers of the

individual scatterplots as it shows if the variables are bivariate Gaussian or not.

Figure 2.9 shows illustration of bivariate plots and correlation coefficients between

the five variables of the Red data. From the correlation plot, it can be seen that

the variables are correlated. The highest correlation is between the copper (Cu) and

gold (Au) grades. With few data points only extreme departures from bivariate nor-

mality can be detected with reasonable assurance (Johnson & Wichern 2002). The

check becomes less powerful when there is a limited number of data being checked

for Gaussianity. In this workflow, there is no need to reject any of the bivariate

distribution as nonGaussian.

In practice, we require the prior distributions of the global statistics in the original

units of the variables (Khan & Deutsch 2015). The prior distributions are first

defined for the normal scores of each variable. The prior distributions of the global
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Figure 2.9: Bivariare relationships and correlation matrix between the five variables of the
Red data.

statistics of the mean and variance for each variable in original units are obtained.

This is shown in Figure 2.10. These results in original units are used to transfer the

prior uncertainty and update to the posterior uncertainty. The full context of this

data will be explained in the next chapter.
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Figure 2.10: Prior distributions of the mean in original space of each variable from multi-
variate resampling technique from the Red data.

Each set of the prior distributions from the multivariate spatial resampling is

correlated through a realization of the multivariate correlation matrix (Figure 2.9).

That is, each set of prior distributions from the resampling honors the realizations

of the correlation matrix. The distributions of the simulated correlated coefficients

between the variables are shown in Figure 2.11. Some important considerations in

the parameter uncertainty include (1) uncertainty in each input parameter is trans-

ferred through the prior sampling distributions of the mean, (2) the prior parameter
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uncertainty is an important aspect because it uses to narrow the uncertainty in a

model through data conditioning and clipping to an area of interest, and (3) the mul-

tivariate workflow is straightforward in terms of executing without any specialized

algorithms other than a multivariate spatial bootstrap resampling.

 

Figure 2.11: Realizations of sample correlation coefficients between variables obtained
through multivariate spatial resampling of the Red data.

Figure 2.12 shows posterior distributions of the mean in the original space after

clipping to the area of interest.

A simple way of quantifying the uncertainty in experimental variograms is demon-

strated. Variogram uncertainty has been studied in a number of different contexts.

For example, Webster & Oliver (1992) measured the uncertainty from different sam-

plings and then determined whether these sampling were suitable for estimation or

not. Other authors Bogaert & Russo (1999) proposed a technique on minimizing
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Figure 2.12: Posterior mean for each variable after clipping to the area of interest from the
Red data.

the values of a theoretical expression of variogram uncertainty by positioning points

and using sample schemes.

This study used the analytical method for assessing the uncertainty in the var-

iogram proposed by Ortiz & Deutsch (2002). This method is based on estimating

the uncertainty in the semivariogram directly from the data. The experimental var-

iograms could be very noisy or redundant because of limited data, so choice of the

final model will not be precise. In this case, it is possible to address this issue and
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construct possible distributions of the variogram model ranges. The illustration of

the uncertainty in experimental semivariogram using a fitted model with possible

two scenarios for the variogram range is shown in Figure 2.13.

Figure 2.13: Illustration of the uncertainty in experimental semivariogram using the ana-
lytical method with possible scenarios for the variogram range.

To sample the uncertainty in the variogram range, random numbers r ∼ U(0, 1)

are drawn and then considered in the following equation:

ai = ai,min + r × (ai,max − ai,min) (2.3)

Where ai,min-is the minimum base case variogram range distribution,i-is the

number of variables (i = 1...n), r- is the random number r ∼ U(0, 1), and ai,max -

is the maximum base case variogram range distribution for a given variable. Figure

2.14 shows an illustrative example of different possible scenarios for the experimental

variograms ranges derived from the analytical method where experimental semivar-

iogram is shown in red dots with three possible semivariogram models.

By random sampling for each variable and using the equation above, new sets of

variogram model ranges are defined.

The proposed method for the variogram uncertainty relies upon various statistical

assumptions. Readers are referred to sources on the variogram uncertainty (Deutsch

& Journel 1998; Ortiz & Deutsch 2002; and Koushavand & Deutsch 2008).
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Figure 2.14: Uncertainty in the variogram. The experimental semivariogram (red dots)
and three possible semivarigoram models.

2.7 Post Processing

Post processing involves evaluating realizations and computing response variables of

interest. This includes uncertainty calculation and sensitivity analysis in order to

understand the impact of each input parameter and help in further decision making.

2.7.1 Presenting and Understanding Uncertainty

Uncertainty can be communicated in a variety of ways. It is also necessary to define

measures of uncertainty. The measures described herein have been found to be useful

in a geostatistical context and include standard deviation, coefficient of variation,

difference between specific percentiles, precision, and probability of misclassification.

Some conventional ways of displaying and visualizing the uncertainty include sum-

mary statistics like the mean, or median, or standard deviation. Different probability

p-intervals can also be applied to present the uncertainty. The probability that the

unknown is valued within an interval (a,b) is calculated as the difference between

the CDF values for thresholds band (Duggan & Dimitrakopoulos 2005):

Prob
{
Z(u) ∈ (a, b)

}
= [F (u; b)− F (u; a)]

Other ways of presenting and understanding uncertainty may include in the form

of a graphical presentation of obtained results such as grade-tonnage curves and
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histograms. Grade tonnage curves are used for understanding the effect that different

cutoff grades have on the number of tonnes in the deposit. If the deposit contains

more than one metal of economic value, then calculation of the grade tonnage should

be based on a metal equivalent relationship by comparing with different metal ratios.

2.7.2 Sensitivity Analysis

The goal of sensitivity analysis is to characterize how model outputs respond to

changes in input with an emphasis on finding the input parameters to which outputs

are the most sensitive (Saltelli et al., 2000 and Kennedy & O’Hagan 2001). A sensi-

tivity analysis aims to assess the importance of different input parameters. Although

uncertainty in each factor can be directly assessed, it is useful to quantify the impor-

tance and impact of each predictor variable in the response (Pinto & Deutsch 2014).

The response variable is a resource or reserve measure and the predictor variables

are factor that have some influence on the uncertainty. Linear or quadratic regres-

sion could be applied. The selection of the analysis methods depends on experiences,

preferences, and the goals of the sensitivity analysis. In most cases, the results will be

presented in a form of a tornado chart with the importance of the input parameters

shown by the horizontal width. A non-parametric way of analyzing the sensitivity

between the response and predictor variables includes alternating conditional expec-

tation (ACE). Readers are referred to Zagayevskiy & Deutsch (2011) and Barnett &

Deutsch (2013 a,b) for more information and discussion on these techniques.

2.7.3 Implementation of Post Processing

Post processing involves evaluating every realization for all calculations of interest.

The correct approach to perform post processing is to use all realizations all the

time and then distributions of the response variables of interest can be assembled

by summarizing their outcomes. Resource uncertainty is calculated for all response

variables in order to understand the uncertainty. The uncertainty in each response

variable is calculated by considering all realizations. The expected response variables

are obtained as an average of the responses.
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The number of response variables depends on the data and the goals of resource

modeling. However, as a common practice, some major response variables include

the amount of ore, grade value, and quantity of metal. Equivalent grades are calcu-

lated based on the recovery and/or price for each variable and the minor metal(s)

is/are converted and added to the grade of the major metal(s). Post processing is

implemented with two different case studies in the following chapters where different

data is used and a sensitivity analysis is performed. Some main graphical plots for

summarizing the results from the sensitivity analysis include the tornado chart and

others (Welch et al., (1992) and Deutsch et al., 2002).

2.8 Recommendations

In order to meet the goals under the modeling constraints, a clearly established

conceptual theoretical workflow is recommended. Important uncertainties coming

from different input parameters can be transferred through modeling by performing

multiple scenarios for model of uncertainty. With the establishment of the conceptual

basis the modeling algorithms can be applied to assess the uncertainty within the

framework. In this case, all the best modeling options/practices must be evaluated

in terms of ease of use, computational expense, and reliability of the final models.

2.8.1 A Common Format

There are many different models and realizations in a multivariate context. It is

important to have a common format to ensure that the modeling processes are con-

venient and practical. Therefore, formats should be in a standardized form. In this

thesis study, the open source GSLIB format is used throughout the modeling process

as the standardized common format. When it is necessary this format is extended to

other formats to read and write out the results, and demonstrate the implemented

methods and outputs. These include, but is not limited to FORTRAN, Python,

and MATLAB. These modules are helpful in implementing the modeling workflows

and give some flexibility to a practitioner for transferring functions, methods, and
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analyzing the results regardless of the selected method.

2.8.2 Complicating Factors

Dealing with the uncertainty in the model is an important factor. We can only assess

the uncertainty in a model that we can imagine. Geological continuity is another

complicating factor. It is difficult to sample, if the data are limited due to uneven

continuity in the modeling area. Other complicating factors includes uncertainty

in the data where this uncertainty must be considered in the model. In order to

avoid some complexities at any stage of a modeling process, therefore, it is critical

that uncertainty is considered explicitly early in the definition phase of a resource

modeling.

2.9 Conclusions

Well-established theoretical concepts for resource modeling with uncertainty are im-

portant. This serves as a base framework to provide a practitioner with established

workflows, methods, and uncertainty models to treat the uncertainty systematically

throughout the modeling process. Selection of the workflows, however, should be

based on each specific case. Complex geological processes and settings, prior expe-

riences, and preferences are key factors in selecting suitable models of uncertainty.

The selected models should give a flexibility in terms of ease of use, robustness, and

practical computational expense. In order to account for different types of uncertain-

ties coming from input parameters, more than one resource model may be considered

throughout the modeling process with the goal of providing a range of possibilities

to evaluate different scenarios for uncertainty with confidence and provide valuable

decision support information.

In addition, unit operations to assess the uncertainty in input parameters vary.

All available models should be based on prior experience, preference, and company

policy. In this thesis study, developed theoretical workflow is used and implemented

unit operations based on best practices by analyzing the existing techniques that are

37



properly conditioned to input parameters. Ideally, implemented methods/models

should provide reasonable outputs of uncertainty assessment, and fully characterize

the uncertainty in the modeling. This include adequate and reliable methods and

contribution of each output of an uncertainty model.

A small change in any stage of a modeling process may have an impact on a

final model of uncertainty. Uncertainty modeling at large scales can be problematic.

Uncertainty in boundary surfaces is interpolated and mapped by applying efficient

boundary modeling methods described above coming from by Munroe & Deutsch

(2008, a,b) and Wilde & Deutsch (2011). Uncertainty in input parameters is quan-

tified and captured (Khan & Deutsch (2015) and Rezvandehy et al., (2015)).
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Chapter 3

Case Study: Red Data Set

This chapter shows a case study based on the Red Data set that was made available

to the Mine Design project class at the University of Alberta. The objective of this

case study is to assess and quantify the uncertainty in a resource model using the

developed modeling practices. Section 3.1 provides information on the available data

and an overview of the mineral deposit. Section 3.2 presents the exploratory data

analysis (EDA) of the data; Section 3.3 demonstrates the geostatistical models used

in assessing and quantifying the uncertainty; Section 3.4 includes post processing

and resources uncertainty calculation; and finally, Section 3.5 provides conclusions.

3.1 Overview of the Geology and Available Data

The mineral deposit is a tabular, well-defined and steeply dipping zone of mineral-

ization that strikes North-South. The main economic metal is gold, but there is also

some silver, copper, and zinc. There are 67 drillhole intersections where the thickness

of the deposit and the four grades have been measured. The case study considers

all five variables over the plane of vein areas shown in Figure 3.1. The Northing

coordinate shown on the horizontal axis is along strike. The Elevation coordinate

shown on the vertical axis is down dip.

Figure 3.1 shows the location of the five variables colored between their minimum

and maximum values. Table 3.1 shows an initial summary of the data.
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(a) Thickness (b) Au (c) Ag

(d) Cu (e) Zn

Figure 3.1: Locations maps of the five variables used in resource modeling.

There is no need to ignore a sample containing zero values because at same

drillhole location other grade values might also be sampled with non-zero values,

especially in deposits with steeply dipping zoning mineralization that may contain

more than one economic metals. Therefore, all samples at all locations are used

in this study. However, if given data contain non-zero null values then, there is a

need to perform a data imputation because samples are taken at specific locations

would have some other value. Including to analysis of data, some sort of criteria for

below detection may also be useful and/or carefully reviewing the unprocessed data,

if available.
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Parameter Units Count Minimum Maximum
Thickness m 67 0.67 19.3

Au g/t 67 0 6.14
Ag g/t 67 0 51.8
Cu % 67 0 12.6
Zn % 67 0 5.48

Table 3.1: Summary of the data set used for the resource estimation.

3.2 Exploratory Data Analysis

The exploratory data analysis (EDA) is an important aspect of geostatistical model-

ing. There are no strict requirements for performing EDA. Histograms for the given

data are plotted on Figure 3.2 for all variables.

As data are rarely collected randomly and are spatially clustered in areas that are

of greatest interest, there is a need to adjust the histograms and summary statistics

to be representative of the entire volume of interest. Cell declustering is used for this

purpose. Readers are referred Deutsch (2002) for more information on cell declus-

tering. A cell declustering with cell size of 80 m is applied, since it approximately

corresponds to an underlying regular grid of drilling. Table 3.2 illustrates summary

comparison table between simple and declustered summary statistics.

Parameter Units Original mean Declustered Mean Difference (%)
Thickness m 6.65 5.34 -19.7

Au g/t 2.87 2.39 -16.7
Ag g/t 8.61 7.44 -13.6
Cu % 3.64 3.20 -12.1
Zn % 0.78 0.60 -19.2

Table 3.2: Summary comparison table between simple and declustered histograms

The data were normal score transformed in preparation for the Gaussian simula-

tion techniques. The bivariate relationships between the normal score transformed

variables are examined by plotting correlation coefficients and the bivariate relation-

ships between all pairs of variables, see Figure 3.3. The strongest correlation can

be seen between silver (Ag) and copper (Cu), as well as silver (Ag) and zinc (Zn)

grade values. The cross-plots appear reasonably Gaussian; there are too few data to
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Figure 3.2: Histograms of the five variables used in resource modeling for the Red data.

reliably compute quantitative measures of Gaussianity.

As a result of limited data, there is uncertainty in the variograms that should be

taken into account in resource estimation. The goal is to describe and represent the

experimental variogram results as accurately as possible. Omnidirectional experi-

mental variograms are calculated in original units and normal score (Gaussian) data

and fitted with spherical type variogram models. Nugget effect of 20% is considered

for copper (Cu) and zinc (Zn), and a nugget effect of 12% for silver—(Ag) grade,

and no nugget effect for thickness and gold (Au). The illustrations of the original
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Figure 3.3: Bivariare relationships and correlation matrix between the five variables.

unit variograms for the five variables are shown in Figure 3.4. The normal score

variograms are illustrated in Figure 3.5.
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Figure 3.4: Illustration of original unit variograms for the five variables. The distance units
are in meters and the variable units are in units of variance for the variable type.

44



γ
(h)

Distance, (m)

Thickness

0 50 100 150 200 250 300
0.0

0.4

0.8

1.2

γ
(h)

Distance, (m)

Au

0 50 100 150 200 250 300
0.0

0.4

0.8

1.2

γ
(h)

Distance, (m)

Ag

0 50 100 150 200 250 300
0.0

0.4

0.8

1.2

γ
(h)

Distance, (m)

Cu

0 50 100 150 200 250 300
0.0

0.4

0.8

1.2

γ
(h)

Disatnce, (m)

Zn

0 50 100 150 200 250 300
0.0

0.4

0.8

1.2

Figure 3.5: Illustration of normal score variograms for the five variables. The distance
units are in meters and the variables units are standardized in normal score transform.

3.3 Geostatisitical Modeling

Geostatistical modeling is performed in the following order: (1) a distance func-

tion (DF) method is used for boundary modeling, Subsection 3.3.1; (2) distribution

uncertainty is modeled with the multivariate spatial bootstrap (MVSB) technique,

Subsection 3.3.2; (3) data uncertainty is demonstrated in Subsection 3.3.3; (4) and

finally, consideration to be a processing and resources uncertainty calculation are

documented in Subsection 3.3.4.
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3.3.1 Boundary Modeling

Boundary modeling starts with distance function values calculation. The GSLIB-like

program DFcalc calculates the distance function. The calculated distance function

values depend on whether drillholes are located inside (-DF) or outside (+DF) the

domain. The procedure of calculating and interpreting the distance function values

is provided in Chapter 2. In general, boundary uncertainty modeling follows: (1)

a distance function (DF) calculation and assigning control points, (2) mapping the

distance function values, and (3) calibrating and applying the thresholds to the band

of uncertainty.

An illustration of the DF calculation is demonstrated in Chapter 2. There are

samples coded inside (red) and outside (blue) the domain. The distance to the near-

est outside sample is calculated for each sample located inside/outside the domain.

47 of the 67 drillholes are considered to be inside the modeling domain. Figure 2.7

(a) shows the 46 drillholes that are considered inside. The samples that are coded

outside considered as control points to define the boundary. Samples that are coded

outside the domain are assigned a positive and samples that are coded inside the

domain are assigned a negative distance function. The illustrative figure of the con-

trol points shows drillholes with black dots indicating an orebody and and blue area

with white dots showing a waste see Figure 2.7 (b). There is a need for another

exploratory data analysis (EDA) with the data considered to be inside the orebody.

The procedure demonstrated in Section 3.2 is followed. Table 3.3 shows summary

for 46 data considered to be inside the orebody.

Parameter Unit Count Minimum Maximum
Thickness m 46 0.4 18.9

Au g/t 46 0 4.5
Ag g/t 46 0 30.4
Cu % 46 0.02 9.1
Zn % 46 0 5.5

Table 3.3: Summary of the 46 data used in the study.
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Table 3.4 summarizes the original and declustered means of all variables. In the

following steps of the workflow, the 46 drillholes considered inside the orebody are

used, where the other 21 drillholes are not considered in the study.

Parameter Unit Original mean Declustered Mean Difference (%)
Thickness m 4.3 3.5 -17.8

Au g/t 1.7 1.3 -22.5
Ag g/t 9.3 8.6 -7.6
Cu % 3.4 3.1 -19
Zn % 0.9 0.8 -13

Table 3.4: Summary comparison table between simple and declustered histograms
with 46 data considered inside orebody

In the next step of boundary modeling, an additive factor C, modifies the distance

function values, Wilde & Deutsch (2011). C is subtracted from distance function

values that are inside and added to values that are outside. The C parameter at

0m and 30m is shown below, as well as selection of the C parameter is provided in

Chapter 2.

(a) C=0m (b) C=30m

Figure 3.6: DF calculated at each sample location and interpolated with C=0m and
C=30m. Blue color indicates inside while white color shows outside domain. The units
of the DF calculated values are in meters.
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As C increases, the size of the boundary uncertainty region increases. There are

a variety of ways to select the C parameter (Subsection 2.4.3, Chapter 2). In this

case study, the C parameter is chosen to be 30m based on data spacing and expert

judgment. A threshold of (C=0) gives a base case, near (-C) value the threshold is

eroded (small everywhere) and choosing a threshold near (+C) is dilated (big every-

where). Once the limits are defined then we calculate a distribution of uncertainty

in the area is calculated assuming that the threshold is uniform between -C and

+C. Figure 3.7 illustrates the histogram of the calculated distribution areas. Figure

3.8 illustrates the uncertainty bandwidth for C=30m. Table 3.5 shows summary

corresponding values. Figure 3.9 demonstrates illustration of different probability

interval values p10, p30, p50, p70 and p90. Figure 3.10 summarizes the calculated

distribution areas between -30m to +30m.

Figure 3.7: Distribution area uncertainty applied to the band between -30m to +30m. The
units are in m2
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(a) SDF (b) C=-30m (c) C=-20m

(d) C=-10m (e) C=0m (f) C=10m

(g) C=20m (h) C=30m

Figure 3.8: Thresholds applied to different band between (-C) to (+C). The units are in
meters.

49



(a) p10-p90

(b) p10 (c) p30 (d) p50

(e) p70 (f) p90

Figure 3.9: Different probability intervals p10, p30, p50, p70, and p90 applied between (-C)
to (+C). The units are in meters.
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Figure 3.10: Summary illustrative figure table of calculated distribution area for each band
between chosen uncertainty bandwidth -30m to +30m. The units are in m2

Corresponding p-values Contour Area, (m2)

p10 -24 63900
p30 -12 69800
p50 0 76200
p70 12 81800
p90 24 89400

Table 3.5: Table of probability intervals p10, p30, p50, p70, and p90 applied between (-C)
to (+C).The units are in meters.
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3.3.2 Parameter Uncertainty

A multivariate data analysis including principal component analysis, and the rota-

tion transformation technique (Barnett & Deutsch 2015) is considered. The notion

of the PCA-R is introduced in previous chapters. The PCA-R is applied to evaluate

the given data in a multivariate context with one primary [thickness] and four [Au,

Ag, Cu, and Zn] secondary variables with known spatial and statistical relation-

ships. Scatterplots of the original data is shown in Figure 2.9. The primary variable

is decorrelated using the sphere-R transformation technique. Due to reverse rota-

tion, the correlation between the corresponding and output variables is maximized

(Barnett & Deutsch 2015). This minimizes the required rotation to orthogonalize the

variables, which leads to minimal mixing. Therefore, due to mixing effect observed in

the loadings of the transformed variables, it is expected that the the sphere-R loads

the decorrelated variables primarily onto their corresponding primary variable, see

Figure 3.11.
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Figure 3.11: Loading plot with original vs. transformed variables.

The sphere-R variograms in Figure 3.12 overall close to original variograms due to

rotation on associated axes which results in minimal mixing of the original variables.

The mininal mixing is preferred in terms of geostatisitical modeling perspectives
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since it can improve the probability where each variable will be reproduced. Figure

3.12 displays cross-variograms from the rotated variables.

Figure 3.12: Direct and cross-variograms for the five transformed variables of the Red data.

The parameter uncertainty is calculated using the multivariate spatial boot-

strap resampling (MVSB) workflow (Khan & Deutsch (2015) and Rezvandehy et

al., (2015)). The notion of the multivariate spatial bootstrap resampling is intro-

duced and discussed in Chapter 2. The uncertainty is estimated from the MVSB
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sampling accounts for spatial correlation and the relationship between the variables.

Consider Figure 2.9 showing the correlation matrix and bivariate relationships be-

tween the five variables. We are interested in the distribution of thickness as a

response variable to the transfer of uncertainty in other four grade variables [Au,

Ag, Cu, and Zn]. Each set of the prior distributions from the multivariate spatial

resampling is correlated through a realization of the multivariate correlation matrix.

That is, each set of prior distributions from the resampling honors the realizations

of the correlation matrix. Realizations of sample correlation coefficients between the

variables obtained through multivariate spatial resampling are shown in Figure 2.11.

The prior distributions of the mean simulated by MVSB technique in terms of

normal scores transform first obtained of each variable of interest. These results

are only shown with the purpose of tying back to the theoretical spatial resampling

distributions. However, the main interest in this case study is the prior distributions

of the global statistics in original units of the variables. The prior distributions of the

global statistics of the mean and variance for each variable in original units are then

obtained. These results in original units are used to transfer the prior uncertainty

and update to the posterior uncertainty. These original space of the variables are

used to transfer from prior parameter to the posterior parameter uncertainty. The

prior distributions of the mean in original space of each variable from the MVSB

technique is shown in Figure 2.10, Chapter 2.

In the next step, there is a need for transferring the prior parameter uncertainty

to the posterior parameter uncertainty where the uncertainty is updated by condi-

tioning and clipping by the boundary. This is documented by Rezvandehy et al.,

(2015). The posterior uncertainty accounts for: (1) conditioning data, (2) spatial

correlation, and (3) area of interest. The idea of updating the prior uncertainty to

the posterior uncertainty is to achieve realistic uncertainty distributions. The uncer-

tainty for each variable is transferred through the prior sampling distributions of the

global mean. Figure 3.13 shows the posterior mean for each variable after clipping

to the area of interest.
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Figure 3.13: Posterior distributions of the mean in the original space of each variable after
posterior realizations and clipping to the area of interest.

Realizations for each variable of the posterior uncertainty distributions of the

mean in original space of each variable after realizations and clipping to the area of

interest are shown in Figure 3.14 .

The results show that the uncertainty after transferring and updating to the

posterior uncertainty is narrowed, as expected compared to the prior parameter un-

certainty. The is resulted due to conditioning of local distributions by the data and

clipping to the area of interest, see Figure 3.14. The clipping is based on: (1) calcu-

lated signed distance function (SDF) between (-C) and (+C), where C - is the un-

certainty parameter involved in the SDF modeling process for boundary uncertainty
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Figure 3.14: Posterior distributions of the mean for each variable after clipping to a domain
of interest.

characterization; (2) posterior realizations of each variable of interest;(3)clipped areal

limits with different indicators; and (4) trimmed locations to the area of interest.

All variables are clipped to the domain of interest based on these steps where areal

limits will be changed depending on the calculated areal limits/clipped regions, see

Figure 3.14.
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Response variable Unit Exp.value Prior (variance) Posterior (variance)
Thickness m 2.89 0.41 0.32

Au g/t 1.55 0.22 0.15
Ag g/t 9.23 1.07 0.84
Cu % 3.48 0.44 0.31
Zn % 0.79 0.16 0.11

Table 3.6: Summary comparison table of the standard deviation of the global mean
between prior and posterior uncertainty.

In order to roll up of the prior and posterior parameter uncertainty, we can

compare these two parameter uncertainties. In addition, accounting for the mean of

each variable enables a complete range of distribution shapes for each input variable.

A summary comparison table of the standard deviation of the global mean between

the prior and posterior uncertainty is shown in Table 3.6. The complete uncertainty

in the input variables are sampled based on the MVSB and transferred through

the posterior parameter uncertainty. The complete posterior uncertainty based on

transferring through the simulation workflow is illustrated in Figure 3.15.
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Figure 3.15: Posterior uncertainty in univariate distributions based on transferring a
through the simulation workflow from the Red data.

The variogram uncertainty is not a main research topic here; however, the un-

certainty in the variogram could be calculated by the analytical method (Ortiz &

Deutsch 2002) and shown in Chapter 2. To demonstrate the uncertainty in the

variograms, random numbers r ∼ U(0, 1) were sampled to draw realizations of vari-

ograms for each variable and then mapped to different range values:

ai = ai,min + r × (ai,max − ai,min)

Where ai,min - is the minimum base case variogram range distribution,i - is the num-
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ber of variables (i = 1...n), r - is the random number r ∼ U(0, 1), and ai,max - is

the maximum base case variogram range distribution for a given variable. Figure

3.16 shows an illustrative example of different possible scenarios for the experimental

variograms ranges derived from the analytical method where experimental semivar-

iogram is shown in red dots with three possible semivariogram models. Random

Figure 3.16: Uncertainty in the variogram. The experimental semivariogram (red dots)
and three possible semivarigoram models.

sampling defines different variogram model ranges. Figure 3.17 shows one example

of the variogram model for the Zn (zinc) grade value. In the variogram model, red

dots show the experimental variogram with three variogram models (pink, blue, and

black lines) that encompass variogram range uncertainty.

Figure 3.17: One illustration example of the variogram model for the Zn (zinc) grade value
from the Red data. In the variogram model, red dot shows the experimental variogram
with three variogram models (pink, blue, and black lines) that encompass distribution of
the semivariogram range based on the analytical method.

59



3.3.3 Data Uncertainty

Available formats to express the uncertainty in the data include a relative/absolute

measure of uncertainty, probability being within the measure, and so on. Consider

Figure 2.8 illustration of normal probability distribution in units of standard devi-

ation. In this case study, data uncertainty is considered to be a 10% relative error

assuming that distribution of error values is Gaussian and relative to the measured

data value. As an illustration, Figure 3.18 shows one example of calculation data

uncertainty with 10% relative error for thickness at 0.38m with 95.45% chance that

measure falls within two standard deviations of the mean.

Figure 3.18: An example of illustration of the data uncertainty with 10% relative error
applied for thickness at 0.38m. (Histogram bins are used only for an illustration purpose of
the given data with a given value, not for the uncertainty).

3.3.4 Post Processing

Post processing includes evaluation of each realization for all calculations of interest.

The post processing considers all realizations. The block averaging to a scale of

interest is not performed assuming that the study area is related to underground

deposit, and the scale of selectively is unknown, so the calculation of resources are

performed on a point scale. The point scale realizations are used to calculate the
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resources uncertainty, including tonnes of ore, grades, and metal content. Grade-

tonnage curves from simulated realizations are calculated and the sensitivity analysis

capturing the uncertainty impact from the input parameters is performed.

Grade tonnage curves are used for understanding the effect that different cutoff

grades have on the tonnes in the deposit. As the deposit contains more than one

metal of economic value, the calculation of the grade tonnage is based on a metal

equivalent relationship. In this particular case, AuEq (gold equivalent) is used be-

cause it is the metal with greatest economic importance. This procedure is often

applied for polymetallic deposits. The equivalent gold grade considers based on the

recovery and price for each variable. The gold equivalent (AuEq) grade is calculated

based on a recovery and price as follows:

AuEqAU = Au(g/t) (3.1)

AuEqAG = Ag(g/t)×
Agrecovery(%) ×Agprice($/g)
Aurecovery(%) ×Auprice($/g)

(3.2)

AuEqCU =
Cu(mass%)

100
× 2200

lb

t
×
Curecovery(%) × Cuprice($/lb)
Aurecovery(%) ×Auprice($/g)

(3.3)

AuEqZN =
Zn(mass%)

100
× 2200

lb

t
×
Znrecovery(%) × Znprice($/lb)
Aurecovery(%) ×Auprice($/g)

(3.4)

Combining equation (4.1), (4.2), (4.3), and (4.4) results in gold equivalent grade

(AuEq) and it follows as:

AuEq = AuEqAU (
g

t
) +AuEqAG(

g

t
) +AuEqCU (

g

t
) +AuEqZN (

g

t
)

In the gold equivalent formula above, the minor metals are converted and added to

the grade of the major metal. Figure 3.19 shows grade tonnage curve for the AuEq

grade where tonnage will be decreased and grade will be increased as the cutoff
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increases. Figure 3.20 illustrates the importance of each grade value used in the

grades calculation.

Figure 3.19: Grade-tonnage curve of gold equivalent (AuEq) grade.

Figure 3.20: Importance of the grade values for the four grade values, including Au, Ag,
Cu, Zn, and gold equivalent (AuEq) grade value.

After grade-tonnage calculation, tonnes of ore and quantity of metals can be

calculated for resources uncertainty calculation. The resource uncertainty is then

calculated for major summary statistics, including thickness, gold equivalent (AuEq)

grade, tonnes of ore, quantity of metal (QM_AuEq) over the one hundred realiza-

tions. Figure 3.21 shows histograms over one hundred realizations for each variable
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used to calculate the resource uncertainty. Analyzing the calculated resource uncer-

tainty, we can see the average thickness is 2.52 g/t and and average gold equivalent

(AuEq) grade is 1.80 g/t in the deposit.

Figure 3.21: Resources uncertainty over the one hundred realizations in thickness (top left)
gold equivalent (AuEq) grade (top right), tonnes of ore (bottom left), and quantity metal
of gold equivalent (QM_AuEq) grade (bottom right).

Sensitivity is important as we want to know the level of the uncertainty and

where is it coming from. Sensitivity analysis is performed to assess the impact of the

uncertainty in each input parameter. The response variable is a summary measure

such as ounces of gold, or tonnes of ore. The predictor variables are summaries of

the input parameters, that is, factors that have some influence on the uncertainty.

In analyzing the sensitivity analysis, linear and/or quadratic regression can be

applied. The sensitivity analysis study used the GSLIB-like program SABOR. The

full description of the program can be found in Zagayevskiy & Deutsch (2011). In

the tornado chart, the main middle part is divided into two bars. The bars on

the right side of the tornado chart show either sensitivity coefficients and/or their

standardized values. The bars on the left hand side show interaction terms between

variables. The bars are plotted in the same order as bars on the right hand side of
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the tornado chart. These values are plotted in descending order. Positive coefficients

are shown in yellow color, whereas negative coefficients are drawn in green. All bars

are scaled to the largest upper boundary of confidence level of any coefficient or

interaction term. It can be seen from the plot that the regression coefficients have

the largest value; however, interaction terms may also have larger values in some

cases. We can also note that input variables with relatively short coefficients of bars

and interaction terms could be discarded from a model.

Summary statistics including coefficient of determination, its adjusted value,

standard error of model deviations, model utility test based on F statistic, and pre-

diction power of the model (percentage ratio of standard deviations of predicted and

actual values of model response) are presented in the upper left corner of the plot.

The table with means, standard deviations, coefficients of correlation and variation,

sensitivity coefficients and standardized sensitivity coefficients for model response

and each input variable are tabulated in the table on the right of the chart. Coeffi-

cients, whose values are shown in blue in the table, are used for plotting bars. The

specified confidence level is reported in the lower middle of the chart. Thus, the ex-

tended tornado chart visually summarizes results of sensitivity analysis and is useful

for making decisions on the importance of input variables and the appropriateness

of linear and quadratic models.

In both cases, the results will be shown as a tornado chart with the amount

of explained uncertainty depending on the input parameter, and response variable.

In order to better understand the importance and impact of each dependent versus

independent variables, different scenarios are considered. To illustrate the sensitiv-

ity analysis study and expose the results, two main linear and quadratic regression

models are used and compared to each other. The case study used three dependent,

including tonnes of ore, quantity of metal, and gold equivalent (AuEq) grade with

other seven independent variables. The independent variables include area, thick-

ness, gold (Au) grade, variograms of thickness and gold (Au) grade, and relative

error of data of the thickness and gold (Au) grade value. Among these indepen-

dent variables, the two of them that are the most important are area and thickness.
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Sensitivity analysis is then performed using these parameters.

Each time one response variable versus other independent variables are analyzed

both for linear and regression analysis. The results show that both linear and/or

qudratic regression model could be used for sensitivity study where each model in-

dicates reasonable coefficient of determination value individually. During sensitivity

analysis study, however, relative data error of thickness with thickness showed that

these two could be the most important as well along with area and thickness, but

relative error does not have much impact on the model, therefore this will not be

used. After full analysis, a quadratic regression model is selected with QM_AuEq

as a response variable. Predictor variables are plotted with a response variable —

quantity of metal of gold equivalent grade (QM_AuEq). In this case, the both mod-

els resulted same results showing that thickenss and area are the most important

dependent variables, but with slightly different coefficient of variation values of 22%

and 56%, respectively.

In case of selecting the linear or quadratic model with quantity of metal as a

response variable with other seven independent variables would suit better in this

study. In both linear and quadratic models, thickness and area are resulted that

these two parameters are the most important than other variables. The uncertainty

could be explained by these variables. Figure 3.22 illustrates the tornado chart visu-

alizing the effect of change in the value of an input parameter value for independent

variables using the quadratic regression model with the quantity of metal for gold

equivalent grade as a dependent and other seven independent variables, including

area, thickness, variograms and relative data error of thickness and gold (Au) grade

value.
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Figure 3.22: A tornado chart visualizing the effect of change in the value of an
input parameter for predictor variables using quadratic regression models with the
quantity of metal of gold equivalent grade as a response variable.

3.4 Conclusions

Accounting for uncertainty in different parameters is important for a realistic as-

sessment of uncertainty. This case study demonstrates a workflow to assess the

uncertainty in distributions with the purpose of understanding uncertainty. The

uncertainty is assessed using unit operations developed specifically in this study.

This case study is completed in the example of a vein-type deposit so consideration

should be taken into account for different geological settings before proceeding to

any geostatistical modeling. Different methodologies for assessing the uncertainty in

distributions may be considered depending on a type of deposit, prior experience,

and preferences.
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Chapter 4

Case Study: Oilsands Data Set

This chapter demonstrates case study using the Oilsands data. The purpose of

this chapter is to demonstrate the uncertainty assessment workflow with another

deposit. Different methodologies are used for some steps due to different geological

and parameter settings. Section 4.1 introduces the geology and data analysis, Section

4.2 provides the geostatistical modeling methodology and post processing used in the

study; and conclusions are in Section 4.3.

4.1 Geology and Data Analysis

Oil sands are a mixture of sand, water, clay, and bitumen and can be found around

the world, including Russia, Venezuela, and the United States, but the largest de-

posits of the oilsands are located in Canada (Alberta Energy 2015). The case study

uses 3D data related to oilsands surface mining, which contain bitumen and fines

grades, as well as a facies code. The data set over a 2km× 2km area is sampled at

1853 sample locations. 3D displays of bitumen and fines grades in units of mass%

are shown in Figure 4.1. Figure 4.2 shows histograms of the two grade values.

Parameter Unit Count Minimum Maximum
Bitumen % 1853 0 18.428
Fines % 1853 0.951 86.777

Table 4.1: Summary of the Oilsands data used in the case study.
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Figure 4.1: 3D visualization maps of the bitumen (top) and fines (bottom) grades.
The units are in mass%.

Figure 4.2: Histograms of bitumen and fines grade values.

Table 4.2 shows a summary table of simple and declustered statistics for the

bitumen and fines grades.
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Parameter Unit Original mean Declustered Mean
Bitumen % 7.120 6.020
Fines % 31.600 34.830

Table 4.2: Summary comparison table between simple and declustered histograms

Original unit and normal score variograms for the two grades are plotted for

major, minor, and vertical directions. In the horizontal variogram, the red dots and

line is at at N40◦E and the blue dots and line at N130◦E. These are shown through

Figure 4.3 to Figure 4.6.

Figure 4.3: Original unit variograms of bitumen grade value for horizontal and vertical
directions.

Figure 4.4: Original units variograms of fines grade value for horizontal and vertical direc-
tions.

69



Figure 4.5: Normal score variograms of bitumen grade value for horizontal and vertical
directions.

Figure 4.6: Normal score variograms of fines grade value for horizontal and vertical direc-
tions.

Figure 4.7: Cross-plots of bitumen versus fines grades in original units (left) and normal
score space (right).
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In the calculated original units and normal score calculated experimental vari-

ograms for the two major and minor directions, there is a zonal anisotropy where

the variograms do not reach the expected sill/variance of 1.0 for large distances.

The notion and the use of the sphere transformation technique has already been

introduced and discussed in the previous chapters of the study (Barnett & Deutsch

2015). The sphering technique (PCA-R) allows independent analysis of decorrelated

variables. Figure 4.8 shows the PCA plot matrix loadings for the two variables in

normals score units that are being modeled.

Figure 4.8: Loading plots of normal scores vs. transformed variables of the bitumen and
fines grades.

In virtually all reservoir modeling cases, there is a need to model the joint dis-

tribution of multiple variables (Behrens et al., 1998). Multivariate analysis of the

data can be difficult because of increasing dimensionalty in sizes for direct and cross-

variograms. However, this issue could be solved by applying the PCA-R technique

where decorrelated variables are could be modeled/analyzed independently. The var-

iogram models are fit to each variable based on calculated experimental variograms,

and the workflow for cross-variograms between the two variables for three directions

is based on normal score variograms. The PCA-R is applied for cross-variograms

between the two variables. This is a reverse PCA, which projects the orthogonal
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variables back to original units. This minimizes the required rotation to orthogonal-

ize the variables, which leads to minimal mixing. Direct and cross-variograms of the

PCA-R values for three-major, minor, and vertical directions are shown through Fig-

ure 4.9 to Figure 4.11. Readers are referred to external sources for more information

on the sphere-R principal component analysis.

Figure 4.9: Direct and cross-variograms of PCA-R transformed values of bitumen, fines,
and bitumen versus fines grades at N40◦E major directions.
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Figure 4.10: Direct and cross-variograms of PCA-R transformed values of bitumen, fines,
and bitumen versus fines grades at N130◦E minor directions.

Figure 4.11: Direct and cross-variograms of PCA-R transformed values of bitumen, fines,
and bitumen versus fines grades at vertcial directions.

4.2 Geostatistical Modeling Methodology

This case study uses slightly different geostatistical approaches compared to the first

case study due to different geological and parameters settings of the Oilsands data.
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The general approach follows as:

1. Analyzing and modeling boundary surfaces (Deutsch 2003)

2. Declustering data distribution where relevant statistics are representative in a

deposit prior to modeling

3. Modeling of spatial continuity for all variables of interest

4. Facies modeling

5. Constructing uncertainty models for all variables of interest using geostatistical

simulation

6. Performing post processing and sensitivity analysis in order to understand the

impact of each input variable

These models can be applicable for both long and short term decision making. In

the following steps, each of the modeling steps will be presented in more detail. The

application is for more than one variables; however, the same workflow could also be

applied to a single variable.

4.2.1 Structure Analysis and Modeling

As discussed above, it is essential to have a sound workflow for each modeling

methodology. Some references on determination and analysis of stratigraphic co-

ordinates and correlation include (Pyrcz & Deutsch 2014). Reservoirs are often

made up of a number of layers where each layer corresponds to a specific period of

time in the creation of the reservoir. The surfaces separating these specific layers re-

veal rapid or discontinuous geological changes. The most common correlation styles

include proportional, truncation, onlap, and combination (Pyrcz & Deutsch 2014).

A common approach for capturing stratigraphic continuity includes modeling conti-

nuity of facies and reservoir properties as proportional between top and base surfaces

structures. Figure 4.12 shows a schematic illustration of stratigraphic coordinates

corresponding to a proportional correlation style (Deutsch 2003). 2D maps of a top
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surface structure and thickness from the seventy eight well locations are shown in

Figure 4.13.

Figure 4.12: Schematic cross-section illustration of stratigrpahic transform for a propor-
tional grid (Deutsch 2003).

Figure 4.13: 2D location maps of a top surface structure (left) and thickness (right).

Histograms of the top surface structure and thickness are also illustrated in Figure

4.14. The minimum and maximum depth of the top structure are 242.5 MASL and

265.5 MASL, while the minimum and maximum thickness of the structure are 42.5m

and 117m. Cell declustering of top surface structure and thickness is performed to

determine appropriate weights. A cell declsutering with cell size of 450m is applied

with same the weights both for top surface and thickness. The cell declustering

diagnostic plot of these two structures is shown in Figure 4.15. The same cell size

is used for thickness because of the same configuration of data. A normal scores
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tranform is then performed.

Using the normal scores, variograms of the top surface structure and thickness

are calculated and modeled. The variograms are calculated for the major direction

at N40◦E (red line) and minor direction at N130◦E (blue lines) both for the top

surface and thickness. The calculated and fitted experimental variograms are shown

in Figure 4.16. The experimental variograms of thickness, see Figure 4.16 (right)

show a slightly cyclic behavior.

Figure 4.14: Histograms of a top surface structure (left) and thickness (right).

Figure 4.15: Declustered mean vs. cell size for top surface structure.
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Figure 4.16: Experimental and fitted variograms models of a top surface structure (left)
and thickness (right) for two diffrent directions.The major directions are chosen at N40◦E
(red line) and minor directions at N130◦E (blue line).

Geostatistical modeling workflows rely on multiple realizations in order to fully

characterize the uncertainty in distributions. Therefore, it is important to account for

parameter uncertainty in the uncertainty calculations. The parameter uncertainty

in the top surface structure and thickness is quantified using the spatial bootstrap

(SBS). 100 realizations were drawn from the spatial bootstrap for the top structure

and thickness. The uncertainty in the mean is of primary importance. In addi-

tion, uncertainty in thickness is also calculated. Figure 4.17 shows distributions of

uncertainty for a top structure (a) and thickness (b) from over one hundred realiza-

tions. Figure 4.18 shows volumetric uncertainty obtained from the SBS over the one

hundred realizations.
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(a) (b)

Figure 4.17: Distributions of uncertainty in the mean top structure (a) and mean
thickness (b) obtained from the spatial bootstrap (SBS).

Figure 4.18: Volumetric uncertainty of thickness over the 100 realizations.

100 realizations of the top structure and thickness were generated using the con-

ditional Gaussian simulation at the seventy eight well locations. The uncertainty

in the distribution of top surface structure and thickness are transferred into real-

izations by different input distributions. Figure 4.19 shows a contour map of a top

surface structure depth and thickness showing the distribution of seventy eight well

locations from one realization. To analyze the top structure and thickness for dif-

ferent features, cross-sectional views are also plotted at different sections arbitrarily

and these are shown in Figure 4.20 and Figure 4.21.
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Figure 4.19: Contour map of a top structure depth(top) and thickness (bottom)
showing the seventy eight well locarions from one realization. The units are in
MASL and meters.
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Figure 4.20: Cross-sectional views of top structure selected arbitrarily along X-axes
at different reference values and slices. Reference value at 257.5 m and slice at 500m
(top); Reference value at 260.5 m and slice at 1000m (bottom).

Figure 4.21: Cross-sectional views of thickness structure selected arbitrarily along
X-axes at different reference values and slices. Reference value at 86.15 m and slice
at 500m (top); Reference value at 66 m and slice at 1000m (bottom).

4.2.2 Facies Modeling

There is a need to group the facies together into high and low bitumen content sets

because some of the original facies are very small in global proportion. High bitumen
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content with corresponding low content for fines is considered as good (more ore),

and low bitumen-content fines is considered bad (more waste). Some of the facies

codes were combined due to limited data. The category that corresponds to the facies

code [50] has average bitumen content of 8.1% and fines content of 27.5% responds

to 1247 samples and assigned with facies indicator code of 1. The remaining facies

codes [30, 31, 69, 70, 61, 40, and 60] are grouped together for total number of 606

samples are assigned with an indicator facies code of 0. A table of the averaged

grades with their rankings and proportions is shown in Figure 4.22.

Figure 4.22: Illustrative summary figure table with an extracted by 2km× 2km area and
with rankings and proportions.

Indicator variograms for major, minor, and vertical directions are calculated and

fitted. Major directions are calculated at N40◦E (red line) and minor directions at

N130 ◦E (blue line). Figure 5.23 shows the calculated indicator variograms.

The uncertainty in distributions proportions quantified using the spatial boot-

strap (SBS). 100 realizations of spatial bootstrap were run in order to quantify the

uncertainty in distributions. Figure 4.24 shows one realization of distribution uncer-

tainty in proportions obtained from the SBS for the proportion of combined facies

one.

The vertical coordinate is defined as the relative distance between the surface

top and base structure. This allows us to infer horizontal correlation and preserve

geologic structure in the final numerical model. Proportional gridding is used to
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Figure 4.23: Experimental and fitted indicator variograms models of bitumen and facies
grades for two diffrent directions.The major directions are chosen at N30◦E (red line) and
minor directions at N130◦E (blue line) and vertical variograms (right).

Figure 4.24: Distributions of uncertainty in proportions from one realizations using the
spatial bootstrap (SBS) for combined facies one.

conform the existing top and base where proportional strata vary in thickness due to

different geology such as compaction or sedimentation rate, or structurally deformed

and faulted. The minimum thickness is fixed approximately at nine meters; and the

correlation grids match with the existing grids. Readers are referred to (Pyrcz &

Deutsch 2014) for more information on modeling prerequisites including stratigraphic

correlation and coordinates.

Facies are important in reservoir modeling because properties of interest are

highly correlated with facies type. Sequential indicator simulation (SIS) is applied
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with the GSLIB-like program BlockSIS for facies modeling. Each time a different

random number (RN) seed is used to generate multiple realizations One of the pre-

requisites for performing the facies modeling is to model indicator variograms and

define global proportions. Indicators variograms are calculated and global propor-

tions are defined from the available data. Figure 4.25 shows facies modeling results

for different slices with realization 1.

Figure 4.25: Facies modeling of Sequential Indicator Simulation (SIS) with two category
types for XY, XZ, and YZ slice orientations at realization 1.

Post processing after facies modeling is then performed. The sequential Gaus-

sian simulation (SGS) is performed over the 100 realizations for bitumen and fines

grades. All maps from realizations show great variability; however, there are some

similar features. The highest bitumen grade is located in the northwest. Realiza-

tions 25, 50, 75, and 100 are plotted to examine the highest and lowest regions in

the deposit. The mapped realizations in Figure 5.26 show that realization 75 a low
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region in the southeast, while realizations 25 and 50 illustrates almost similar area

from low to high region in the northwest to southwest regions, respectively. The sim-

Figure 4.26: Four realizations of bitumen obtained from sequential Gaussian simulation.

ulated models are then checked for histogram reproduction. Figure 4.27 shows the

histogram of realization from bitumen. In addition, histogram reproduction of the

two variables are also checked over the 100 realizations, see Figure 4.28. The results

show that realizations mean of bitumen and reference bitumen was 6.34 and 6.02

with a difference of 5%. The fines grade is also checked for histogram uncertainty

and reproduction where the reference mean was equal to 34.83 and the mean from

realizations equal to 33.02, which also a 5% difference approximately.

In the next step, we can pair each indicator simulation with different top structure

and thickness, bitumen and fines realizations. In addition, bitumen and fines grades

are merged based on their facies models. One facies realization is needed for each

simulated realization. One realization of merged facies models with bitumen and

fines is illustrated in Figure 4.29. In Figure 4.30 we can see the demonstration of

pairing the top structure and thickness with different cross-sectional views.
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Figure 4.27: Histogram of simulated bitumen from one hundred realization. The units are
in mass%.

Figure 4.28: Histogram reproduction of bitumen and fines grade values.

Figure 4.29: Merged facies realizations with simulated bitumen and fines grade realizations
for XY, XZ, and YZ slice orientations at realization 1 arbitrarily.
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Figure 4.30: Illustration of pairing with top structure and thickness with different cross-
sectional views. Cross-sectional views show slices at X=100 m and Y=90m (top) and X=90m
and Y=100m (bottom)

4.2.3 Post Processing

In post processing, the resources uncertainty is calculated and sensitivity analysis

is performed. Assume that the grade and fines can be considered with the AER

recovery function by Equation 4.1 and the fines recovery function by Equation 4.2

(Sanford 1983). According to the AER operating criteria, a recovery function could

be defined:

1. If the as mined bitumen grade (g) is >11, then the recovery is 90%
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2. If the as-mined grade is <11%, then the recovery is defined by Equation 4.1

R(g) = −202.7 + 54.1g − 2.5g2 (4.1)

R(f) = 87.5 + 0.273f − 0.037f2 (4.2)

Where f is the fines. The bitumen cutoff grade given by AER is 7% and the recovery

from the Equation 4.1 is 53.5%. Using a recovery function with multiple variables

requires complex thresholds in order to define ore and waste. In practice, having a

low fines content yields adequate recovery in terms of profitability. Using the mixture

model the bitumen grades and fines are combined into a single variable termed as

mass recoverable bitumen (MRB) based on the AER recovery function (Equation

4.1) and the fines recovery function (Equation 4.2) has the following:

R(g, f) =
2 · R(g) · R(f)
R(g) + R(f)

(4.3)

The fines recovery function is calculated from the Equation 4.2. In this study, the

mass recoverable mass bitumen cutoff grade is obtained based on the AER recovery

function (Equation 4.1) and the fines recovery function from Sanford (1983), defined

by Equation 4.2, which defined as mixture model defined by Equation 4.3. Every

realization in each block has a unique recovery both for bitumen grades and fines.

The bitumen for each block and realization gives function for bitumen whereas the

fines for each block and realization gives the recovery function for fines. Then com-

bining the bitumen grades and fines using the Equation 4.3, the mass recoverable

bitumen (MRB) is defined, which is 3.078%. Tonnes of ore, waste, and other pa-

rameters are calculated using the MRB cutoff grade with raw bitumen density of

1012kg/m3. Figure 4.31 shows histograms of MRB cutoff grade averaged over the

100 realizations.
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Figure 4.31: Mass recoverable bitumen (MRB) cutoff defined in terms of grade and fines.

Figure 4.32 (a) shows scatterplot between bitumen and fines grades in units of

[mass%], and (b) shows cumulative distribution of bitumen grade with AER recovery

and cutoff grade, and linear cutoff grade. Figure 4.32 (b) demonstrates a recovery

function in terms of fines and grade’s mixture model using the AER cutoff grade

of 7% and fines cutoff grade derived from Sanford (1983). The blue and red lines

show the AER cutoff grade and recovery function, which is 7% and 53.5%, respec-

tively, whereas the blue line represents a nonlinear cutoff grade with a constant

grade/recovery value of 6% approximately. Figure 4.33 shows ore/waste indicator

(left) and bitumen grade obtained from the MRB cutoff grade calculation (right).

Uncertainty for resources is calculated by evaluating every realization for all calcu-

lations of interest. This is done by computing the resource on every realization and

assembling a distribution of the 100 values for each response variable of interest. His-

tograms of the calculated resources for bitumen grade, tonnes of ore, and quantity

of bitumen is shown in Figure 4.34.
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(a) (b)

Figure 4.32: Scatterplot between the bitumen and fines grades (a) and AER bitumen
recovery, cutoff grade, and nonlinear cutoff grade (b).

Figure 4.33: Illustration of ore/waste(left) and bitumen grade (right) based on MRB cutoff
grade.

As the last step of the case study, sensitivity analysis is performed to assess the

impact of each uncertainty. The sensitivity analysis is performed using the same

methodology applied in the first case study. The sensitivity analysis used same

GSLIB-like program called SABOR developed by Zagayevskiy & Deutsch (2011).

In the tornado chart, the main middle part is divided into two bars. The bars on

the right side of the tornado chart show either sensitivity coefficients and/or their

standardized values. The bars on the left hand side show interaction terms between

variables. The bars are plotted in the same order as bars on the right hand side of

the tornado chart. These values are plotted in descending order. Positive coefficients

are shown in yellow color, whereas negative coefficients are drawn in green. In the

case of examining the linear regression model, other bars on the left side of the
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Figure 4.34: Histograms of calculated resources for tonnes of ore (top left), bitumen (top
right), and bitumen quantity of metal (bottom left).

tornado represent either sensitivity coefficients or their standardized values without

uncertainty. All bars are scaled to the largest upper boundary of confidence level of

any coefficient or interaction term. It can be seen from the plot that the regression

coefficients have the largest value; however, interaction terms may also have larger

values in some cases. It also can be noted that input variables with relatively short

coefficients of bars and interaction terms could be discarded from a model. In this

particular case study, the linear model could be recommended for the given data set.

Summary statistics including coefficient of determination, its adjusted value,

standard error of model deviations, model utility test based on F statistic, and pre-

diction power of the model (percentage ratio of standard deviations of predicted and

actual values of model response) are presented in the upper left corner of the plot.

The table with means, standard deviations, coefficients of correlation and variation,

sensitivity coefficients and standardized sensitivity coefficients for model response
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and each input variable are tabulated in the table on the right of the chart. Coeffi-

cients, whose values are shown in blue in the table, are used for plotting bars. The

specified confidence level is reported in the lower middle of the chart. Thus, the ex-

tended tornado chart visually summarizes results of sensitivity analysis and is useful

for making decisions on the importance of input variables and the appropriateness

of linear and quadratic models.

The dependent variables include tonnes of ore, bitumen equivalent grade, and

barrels of bitumen. There are nine independent variables. The predictor variables

include top surface structure, thickness, mean bitumen and fines grades, and facies

proportions. In all cases, the sensitivity analysis shows that the uncertainty would be

explained with three predictors. These three predictors include proportions, thick-

ness, and bitumen grade. The coefficient of determination value in all cases was

around R-sq=95%, where uncertainty is explained by the three most parameters

mentioned above.

In this case study, a linear or quadratic regression models can be applied to

understand the impact of each predictor variable as both of them could be applied

after analyzing each response versus predictor variables. Figure 4.35 illustrates a

tornado chart with a linear regression model. For illustration, the barrels of bitumen

is selected as the response with the nine predictors in order shown in the figure.

Three predictors have the most impact/importance: thickness, bitumen, and facies

proportions.
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Figure 4.35: A tornado chart visualizing the effect of change in the value of an response
versus predictor variables.

4.3 Conclusions

A reliable estimate of uncertainty is necessary in order to help decision makers in

terms of reserve/resource classification, development decisions, and investment deci-

sions. The case study for modeling some oilsands data show different geostatistical

modeling methodologies in order to assess the resource uncertainty in a model. The

used methodologies can be summarized as: (1) analyzing, determining, and mod-

eling different structures, (2) facies modeling, including obtaining distribution of

grades, modeling of spatial continuity, and (3) constructing uncertainty models fol-

lowed by post processing and sensitivity analysis. The applied workflow accounts

for the uncertainty in different input parameters.
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Chapter 5

Conclusions

Assessing uncertainty in a resource model is an important task. One of the challenges

during resource modeling is parameter and data uncertainty. In addition, uncertainty

issues have not been fully addressed in modern work practices despite the importance

of uncertainty in resource modeling. A development of this research is to capture,

quantify, and assemble uncertainty into a practical modeling workflow. The goal is a

realistic and fair measure of uncertainty in resource modeling. In this study, robust

and practical concepts of resource modeling with uncertainty are developed.

5.1 Topics Covered and Contributions

Uncertainty depends on many factors, such as uncertainty in input parameters, data

quality, and so on. These factors are discussed and a theoretical framework is devel-

oped and presented.

There are five main unit operations. These operations were incorporated and

used to quantify and assemble uncertainty in different input parameters of interest.

These include model setup, boundary, data, and parameter uncertainty, as well as

post processing. General background and a review of relevant research is given in

Chapter 1. A conceptual basis for resource modeling with uncertainty is introduced

in Chapter 2. Each unit operation targets one aspect of the study; however, de-

pending on the available data some of the unit operations vary from problem to

93



problem.

Chapter 2 also covers implementation aspects of resource modeling with uncer-

tainty. Realizations of input parameters are generated and transferred to posterior

realizations and assembled in order to perform post processing where evaluation is

performed for every realization for all calculations of interest. The uncertainty is

directly observed and the relationship between the input parameters are illustrated

in a sensitivity study. Lastly, the developed conceptual workflow is presented with

two case studies in Chapters 3 and 4. The presented case studies demonstrate the

modeling process with two different deposits. Through each of these topics addressed

the goals put forth in Chapter 1 are met. The outcomes of the conceptual work-

flow provides useful information to understand the uncertainty in complex geological

settings.

The work provides three main contributions. The first is a conceptual workflow

for assessing resource uncertainty. The developed theoretical workflow documents

best practices to capture uncertainty. This considers different types of uncertainties

and different implementation details depending on the deposit type.

The second contribution includes a clear documentation of the theoretical work-

flow. The documentation of the concepts for quantifying uncertainty is not fully

defined in the literature with respect to each parameter for resource modeling. The

presented workflow is applicable to resource modeling with uncertainty with deposits

of varying complexity.

The third contribution is an understanding of uncertainties and their confound-

ing factors. It is understood that uncertainty may have an impact on a project at

any stage of mining. Considering uncertainty at early stages of a modeling process,

therefore, is an important factor. Understanding uncertainty influences future de-

cision making including additional drilling, long term planning and sequencing of

mining operations.
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5.2 Future Work

The concepts developed in this work show that the framework is practical for assess-

ing uncertainty and is applicable for models from low to high complexity; however,

future work remains. The following are some directions for future work:

• Determination of the acceptable level of uncertainty. The format for uncer-

tainty statement could be customized depending on the deposit type and time

in the mining lifecycle. There is no clear guideline for choosing the thresholds

of acceptable uncertainty.

• Improved techniques to quantify parameter uncertainty. Different techniques

could be applied to quantify the uncertainty in distributions. Selecting im-

proved techniques would allow for the better integration of assessing uncer-

tainty in input parameters that is practical.

• Data uncertainty with spatial correlation. Consideration of data uncertainty in

the sampling is vital as the data may contain missing values or a sampling data

error. Dealing with missing values and sampling errors in data with spatial

correlation may be important.

• Understanding the number of realizations. In resource modeling, generating

realizations/simulations is required, therefore, we run many realizations, but

how many realizations is enough for assessing and modeling of uncertainty? It

is necessary to understand and select realizations until the results are stable

and enough to provide justification for a final model.

• Establishing a unified sensitivity analysis and addressing impactful parame-

ters. Uncertainty is an important aspect of a resource modeling so we want to

understand impacts of uncertainties coming from different input parameters

and fully integrate sensitivity analysis.

• Uncertainty must also be transferred into mine planning and further decision

making. The ability to transfer the assembled uncertainty through the mining
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is essential. This will help decision makers in terms of long term economic

feasibility, or mine planning, or risk assessment.

5.3 Recommendations

We wish for the lowest uncertainty possible. There are many parameters that influ-

ence resource uncertainty. In order to reduce uncertainty, it is important that the

input parameters and their sources are known for more investigation. The presented

concepts provides a framework for assessing uncertainty in a resource model. The

presented conceptual workflow is robust and practical. Different methodologies may

be considered to quantify uncertainty or improved resource modeling depending on

the type of deposit.
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