University of Alberta

Cloning and characterization of the peptide synthetase gene cluster involved in the nonribosomal biosynthesis of fusaricidin-type antifungal antibiotics in Paenibacillus polymyxa PKB1

by

Jingru Li

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy
in

Microbiology and Biotechnology
Department of Biological Sciences

Edmonton, Alberta
Fall 2007

Library and
Archives Canada
Published Heritage
Branch
395 Wellington Street
Ottawa ONK1A 0N4 Canada

Bibliothèque et Archives Canada

Direction du
Patrimoine de l'édition
395, rue Wellington Ottawa ON K1A 0N4 Canada

Your file Votre référence
ISBN: 978-0-494-33013-5
Our file Notre référence
ISBN: 978-0-494-33013-5

NOTICE:

The author has granted a nonexclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or noncommercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

AVIS:
L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.

Abstract

Paenibacillus polymyxa (formerly Bacillus polymyxa) PKB1 produces fusaricidin-type antifungal antibiotics that inhibit the growth of Leptosphaeria maculans, a plant pathogenic fungus causing blackleg disease of canola. Fusaricidin consists of a guanidino-modified β-hydroxy fatty acid linked to a cyclic hexapeptide with four residues present in the D-configuration.

Using a reverse genetic approach based on the conserved motifs of nonribosomal peptide synthetases, the entire fusaricidin biosynthetic gene cluster (fus) was cloned and sequenced, and spans 32.4 kb including an open reading frame (fusA) encoding a six-module peptide synthetase. The second, fourth and fifth modules of fusaricidin synthetase (FusA) each contain an epimerization domain, consistent with the incorporation of D-amino acids in these positions of fusaricidin. However, the sixth module, corresponding to D-Ala, lacks an epimerization domain. The sixth adenylation domain of FusA was produced at high levels in Escherichia coli and shown to activate D-Ala specifically, providing evidence for direct selection and activation of a D-amino acid by a typical prokaryotic peptide synthetase. The fus cluster also includes genes presumably involved in biosynthesis, modification, and activation of the lipid moiety of fusaricidin. However, no genes for regulation, resistance, or transport functions were encountered.

To confirm the involvement of fusA in fusaricidin production, a modified PCR-targeting mutagenesis protocol was developed to create a fusA mutation on the chromosome of PKB1. A DNA fragment internal to fusA was replaced by a gene disruption cassette containing two antibiotic resistance markers for independent selection of apramycin resistance in E. coli and chloramphenicol resistance in P. polymyxa. The inclusion of an oriT site in the disruption cassette allowed efficient transfer of the inactivated fusA allele into P. polymyxa by intergeneric conjugation from E. coli. Targeted disruption of fusA led to the complete loss of the antifungal activity against L. maculans, suggesting that fusA plays an essential role in the nonribosomal synthesis of fusaricidin. The boundaries of the fus gene cluster were determined using the same mutagenesis strategy.

The results presented in this thesis provide the basis for genetic manipulation of fusaricidin production in P. polymyxa PKB1, and furthermore, for construction of novel antibiotics by combinatorial biosynthesis.

Acknowledgements

I would like to thank Dr. Susan Jensen for providing me with the opportunity to work on this project, and for all her kindness, advice and guidance throughout my graduate study. I thank Alberta Research Council for their continuing interest in this project, and in particular, Dr. Saleh Shah for providing the degenerate oligonucleotide primer B1 and sequences of PCR-amplified peptide synthetase gene fragments from P. polymyxa PKB1. In addition, I would like to thank Dr. Sui-Lam Wong for his critical comments on my thesis.

A special thank to Annie Wong for patiently answering my questions, and for her technical assistance with sequencing part of the fosmid inserts. I thank Nathan Zelyas for his friendship and helpful discussions with me about gene expression and protein purification. I would also like to thank Dr. Mike Harrington for sharing his broad knowledge in many areas of biology.

I thank Huirong Chen, Dongfang Hui, and Wei Wang for becoming my best friends, and for their endless encouragement and support in my hard times. In addition, I would like to express my sincere gratitude to my parents for their unconditional love of me and confidence in my abilities to succeed, without which this work would not have been completed.

Finally, I would like to acknowledge the financial support for my research and graduate study by the Natural Sciences and Engineering Research Council of Canada, and the Department of Biological Sciences at the University of Alberta.

Table of Contents

Page

1. Introduction. 1
1.1 Canola. 1
1.2 Leptosphaeria maculans 2
1.3 Paenibacillus polymyxa 4
1.4 Nonribosomal peptide synthetases 6
1.4.1 Catalytic domains of modular peptide synthetases. 8
1.4.1.1 Adenylation domain: the primary determinant of substrate specificity 10
1.4.1.2 Thiolation domain: the peptidyl carrier protein 11
1.4.1.3 Condensation domain: the nonribosomal elongation factor. 12
1.4.1.4 Thioesterase domain: the nonribosomal hydrolase or cyclase 13
1.4.1.5 Modifying domains: tailoring enzymes embedded in NRPSs 15
1.4.2 Rational design of NRPSs towards construction of novel peptides 17
1.5 Nonribosomally synthesized lipopeptides 20
1.6 Hybrid peptide-polyketide synthetase systems 21
1.7 Main objectives of this thesis 24
2. Materials and methods 43
2.1 Strains of bacteria and fungi, plasmids, reagents and supplies 43
2.2 E. coli procedures 44
2.2.1 Growth conditions. 44
2.2.2 Preparation of E. coli electrocompetent cells and electroporation. 45
2.2.3 Preparation of colony lifts 46
2.3 Paenibacillus polymyxa procedures 47
2.3.1 Growth conditions and media 47
2.3.2 Purification of genomic DNA from P. polymyxa 48
2.3.3 Plasmid isolation from P. polymyxa 48
2.3.4 Preparation of P. polymyxa electrocompetent cells and electroporation 50
2.3.5 Transfer of DNA into P. polymyxa by intergeneric conjugation 51
2.3.6 Antifungal activity bioassay 51
2.3.7 HPLC analysis of fusaricidin production 52
2.4 DNA manipulations. 53
2.4.1 Gel purification of DNA fragments 53
2.4.2 Polymerase chain reaction (PCR) 54
2.4.3 Transfer of DNA fragments onto nylon membranes 56
2.4.4 Labeling of DNA probes 57
2.4.5 Hybridization of Southern and colony blots 57
2.4.6 DNA sequencing and analysis 58
2.4.7 Preparation of P. polymyxa genomic libraries 59
2.4.8 Creation of an $\mathrm{Apra}^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ oriT disruption cassette 60
2.4.9 PCR-targeted gene disruption 61
2.5 Protein analysis 62
2.5.1 Overproduction and purification of the internal adenylation domain
FusA-A6 62
2.5.2 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 64
2.5.3 ATP-PPi exchange assay 64
3. Results and discussion 743.1 Analysis of the peptide synthetase gene fragments amplified from
P. polymyxa PKB1 75
3.2 Screening of the first SuperCos-1 genomic library of P. polymyxa PKB1 76
3.2.1 The first screening of PKB1 genomic library, with the B1J6-10 fragment. 77
3.2.2 The second screening of PKB1 genomic library, with the B1J6-17 fragment 79
3.2.3 Sequence analysis of the insert DNA of cosmid Col-8 81
3.2.4 Sequence analysis of cosmid Col-19. 83
3.2.4.1 Identification of a putative fusaricidin synthetase gene, orf7. 83
3.2.4.2 Cloning of a continuous chromosomal fragment downstream of orf7 84
3.3 Preparation and screening of a second SuperCos-1 genomic library of
P. polymyxa PKB1 86
3.4 Preparation and screening of a fosmid genomic library of P. polymyxa PKB1 87
3.5 Disruption of putative fusaricidin synthetase genes 89
3.5.1 Identification of selectable markers for use in P. polymyxa PKB1 90
3.5.2 Transformation of P. polymyxa PKB1 with an integrational vector carrying the fus-asn gene fragment. 90
3.5.3 Insertional mutation of fus-asn via double crossover 92
3.5.4 Preparation of fusaricidin-nonproducer mutants using a modified Redirect ${ }^{\ominus}$ technology 94
3.5.4.1 Adaptation of the PCR-targeting protocol for P. polymyxa 94
3.5.4.2 Disruption of the putative peptide synthetase gene orf7 on cosmid Col-19 97
3.5.4.3 Phenotype of the orf7 mutants. 99
3.6 Analysis of the fusaricidin biosynthetic gene cluster and the flanking regions. 100
3.6.1 Modular organization of the fusaricidin synthetase 101
3.6.1.1 Condensation (C) domains 102
3.6.1.2 Epimerization (E) domains 104
3.6.1.3 Thiolation (T) domains 106
3.6.1.4 Adenylation (A) domains 106
3.6.2 Determination of the substrate specificity of the A domain in the sixth module of FusA 109
3.6.3 N -terminal lipidation of fusaricidin 110
3.6.4 The 3 ' boundary of the fusA gene cluster. 111
3.6.5 The 5 ' boundary of the fusA gene cluster. 111
3.6.5.1 Preparation of the $y m c C$ mutant 112
3.6.5.2 Preparation of the $k t p$ mutant 113
4. Conclusions, significance and future research 169
4.1 Conclusions and significance 169
4.2 Proposed future research. 172
5. References 175
6. Appendices 189
Appendix A: The nucleotide sequence of the insert DNA of cosmid Col-8. 189
Appendix B: The nucleotide sequence of the insert DNA of cosmid Col-19 206
Appendix C: The nucleotide sequence of the fusaricidin biosynthetic gene cluster and the flanking regions from P. polymyxa PKB1 221

List of Tables

Page
1.1 The conserved core motifs found in the common catalytic domains of nonribosomal peptide synthetases 42
2.1 Bacterial and fungal strains used in this study 66
2.2 Cloning vectors and recombinant plasmids used in this study 68
2.3 Oligonucleotide PCR primers used in this study 71
3.1 Predicted substrate specificities of the adenylation (A) domains derived from the PCR-amplified peptide synthetase gene fragments, based on the selectivity-conferring codes of NRPSs 161
3.2 Summary of the proposed functions of ORFs identified within the insert of cosmid Col-8. 162
3.3 The substrate specificity-conferring codes of the adenylation domains derived from ORFs identified in the cosmid inserts of Col-8 and Col-19 163
3.4 Summary of the proposed functions of ORFs identified within the insert of cosmid Col-19. 164
3.5 Summary of ORFs identified in the fusaricidin biosynthetic gene cluster and the flanking regions. 166
3.6 The amino acid residues lining the substrate-binding pockets of the adenylation domains in fusaricidin synthetase FusA 168

List of Figures

Page
1.3.1 Primary structure of the fusaricidin-type lipopeptide antibiotics produced by P. polymyxa. 26
1.4.1 Schematic representation of the module and domain organization of nonribosomal peptide synthetases 27
1.4.2 Schematic diagram of amino acid adenylation and subsequent thiolation during nonribosomal peptide synthesis 28
1.4.3 Extraction of the substrate specificity-conferring residues by alignment of the amino acid sequences in the region of core motifs A4 and A5 29
1.4.4 Posttranslational modification of the peptide synthetase (NRPS), from the inactive apo-form to the active holo-form, prior to peptide biosynthesis. 30
1.4.5 Peptide bond formation between two amino acids that are thioester-bound to the thiolation (T) domains of two successive modules, mediated by the condensation (C) domain 31
1.4.6 A schematic diagram showing two termination strategies of nonribosomal peptide synthesis 32
1.4.7 Modifications of amino acid substrates being incorporated into nonribosomal peptides, catalyzed by optional modifying domains 33
1.4.8 Possible strategies to construct hybrid peptide synthetases for the synthesis of new peptide products 35
1.5.1 Nonribosomally synthesized cyclic lipopeptides produced by Bacillus subtilis. 37
1.6.1 Schematic diagram of catalytic functions of Type I PKS domains 39
1.6.2 Proposed modular organization of the hybrid NRPS-PKS synthetase encoded by the leinamycin biosynthetic gene cluster (lnm) 41
3.1.1 The PCR primers used to amplify fragments of the peptide synthetase genes from P. polymyxa PKB1 114
3.2.1 Southern analysis of cosmid Col-8 identified in the first screening of the SuperCos-1 genomic library of P. polymyxa PKB1 117
3.2.2 Southern analysis of the positive cosmids identified in the second screening of the first SuperCos-1 genomic library of P. polymyxa PKB1 118
3.2.3 ORF organization of the insert DNA from cosmid Col-8 119
3.2.4 The structures of commonly used polymyxin-type antibiotics produced by P. polymyxa 121
3.2.5 ORF organization of the insert DNA from cosmid Col-19. 122
3.2.6 Schematic representation of the peptide synthetase gene comprising orf7 from Col-19 and the PCR-amplified fragment TOPO-19. 123
3.4.1 Southern analysis of the hybridizing fosmids identified in the pSMART-FOS genomic library of P. polymyxa PKB1 125
3.4.2 Southern analysis of the fosmids 4G9 and 6D11 identified in the pSMART-FOS genomic library of P. polymyxa PKB1 126
3.5.1 Southern analysis of the putative fus-asn single-crossover mutants 127
3.5.2 Gene disruption of the fus-asn fragment in P. polymyxa PKB1 via double crossover 128
3.5.3 Analysis of the putative fus-asn double-crossover mutants by colony PCR 130
3.5.4 Southern analysis of the putative fus-asn double-crossover mutants 131
3.5.5 Restriction analysis of the plasmid DNA isolated from chloramphenicol resistant $\left(\mathrm{Cm}^{\mathrm{R}}\right) P$. polymyxa exconjugants 132
3.5.6 Diagrammatic representation of the $\mathrm{Apra}^{\mathrm{R}}$ oriT and $\mathrm{Apra}^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ ori T disruption cassettes 134
3.5.7 PCR amplification of the Apra ${ }^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ oriT gene disruption cassette for preparation of orf7 mutants using a modified Redirect ${ }^{\oplus}$ technology 135
3.5.8 Construction of the mutant cosmid Col-19 containing a disrupted copy of orf7 136
3.5.9 Gene disruption of the chromosomal copy of orf7 in P. polymyxa PKB1 138
3.5.10 PCR verification of the P. polymyxa orf7 mutants 140
3.5.11 Southern analysis of the P. polymyxa orf7 mutants 132
3.5.12 The antifungal activity of A4, A5, and A6 mutants carrying the orf7 disruption compared to the activity of PKB1 strain 144
3.5.13 HPLC analysis of methanol extracts from the wild-type and A4 mutant cultures 145
3.6.1 ORF arrangement of the fusaricidin biosynthetic gene cluster 146
3.6.2 Module and domain organization of the fusaricidin synthetase encoded by fusA 147
3.6.3 Comparison of the conserved core motifs within the condensation (C) domains of FusA 148
3.6.4 Alignment of the amino acid sequences of six thiolation (T) domains in FusA 149
3.6.5 Alignment of the amino acid sequences in core motifs A4 and A5 of FusA-A6 compared to other known A domains assigned to activate L- or D-Ala 150
3.6.6 Amino acid sequence of the adenylation (A) and thiolation (T) domains in the sixth module (FusA-M6) of fusaricidin synthetase FusA 151
3.6.7 Overeproduction and purification of His-tagged recombinant FusA-A6 protein 152
3.6.8 Relative activities of the purified FusA-A6 protein for various amino acid substrates determined using the ATP-PPi exchange assay 153
3.6.9 PCR-targeted mutagenesis of $y m c C$ in P. polymyxa PKB1 154
3.6.10 Verification of the P. polymyxa ymc C mutants by PCR reactions. 156
3.6.11 Comparison of the antifungal activity of wild-type PKBI with the $y m c C$ and $k t p$ mutants. 158
3.6.12 PCR analysis of the P. polymyxa ktp mutant. 159

List of Symbols

α	Alpha
β	Beta
δ	Delta
Δ	Deletion
ε	Epsilon
γ	Gamma
λ	Lambda bacteriophage
μ	Micro
Ω	Omega

List of Abbreviations

A	Adenylation domain / alanine
aa	Amino acid
aadA	Streptomycin resistance gene
ACP	Acyl carrier protein
ACV	δ-(L-a-aminoadipyl)-L-cysteinyl-D-valine
Ala	Alanine
amp	Ampicillin resistance gene
aac(3)IV	Apramycin resistance gene
Asn	Asparagine
AT	Acyl transferase domain
B	Asparagine or aspartic acid
BHI	Brain heart infusion medium
Blast	Basic local alignment search tool
bp	Base pair
BSA	Bovine serum albumin
C	Condensation domain / cysteine
cat	Chloramphenicol resistance gene
Ci	Curie
Cy	Cyclization domain
D	Aspartic acid
DAB	$2,4-$ diaminobutyric acid
dATP	Deoxyadenosine triphosphate
dCTP	Deoxycytidine triphosphat
dGTP	Deoxyguanosine triphosphat
DH	
dITP	Dehydratase domain
DNA	Deoxyinosine triphosphate
dNTP	Deoxyribonucleic acid
DTT	Deoxynucleotide triphosphate
dTTP	Dithiothreitol
E	Eeoxythymidine triphosphate
EDTA	Enoylreduction domain
ER	

F	Phenylalanine / Farad
FMN	Flavin mononucleotide
FRT	FLP recognition target
g	Gram
G	Glycine
GB	Glucose broth
Gln	Glutamine
Glu	Glutamic acid
Gly	Glycine
H	Histidine
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HPLC	High Performance Liquid Chromatography
I	Isoleucine
Ile	Isoleucine
IPTG	Isopropyl- β-D-thiogalactopyranoside
K	Lysine
kan	Kanamycin resistance gene
kb	Kilobase
kDa	KiloDalton
KR	Ketoreductase domain
KS	Ketosynthase domain
kV	KiloVolt
L	Leucine
LB	Luria-Bertani medium
Leu	Leucine
ORF	Methylation domain / molar / methionine frame
M	Neomycin resistance gene
N	Nonribosomal peptide synthetase
neo	Nick translation
NRPS	nt

Orn	Ornithine
oriT	Origin of transfer
Ox	Oxidation domain
P	Proline
PAGE	Polyacrylamide gel electrophoresis
PCP	Peptidyl carrier protein
PCR	Polymerase chain reaction
PDA	Potato dextrose agar
PDB	Potato dextrose broth
PEG	Polyethylene glycol
Phe	Phenylalanine
PKS	Polyketide synthase
4'-PP	4'-phosphopantetheine
Q	Glutamine
R	Reductase domain / arginine
RNase	Ribonuclease
rpm	Revolutions per minute
S	Serine
SAM	S-adenosylmethionine
SDS	Sodium dodecyl sulfate
Ser	Serine
SOB	Super optimal broth
SSC	Standard saline citrate
T	Thiolation domain / threonine
TCSS	Trypticase soy with starch medium
TE	Thioesterase domain / Tris-EDTA buffer
TEMED	N,N,N', ${ }^{\prime}$-tetra-methylethylenediamine
Thr	Threonine
Tris	Tris(hydroxymethyl)-aminomethane
Trp	Tryptophan
Tyr	Tyrosine
U	Unit
UV	Ultraviolet

V	Valine / volt
Val	Valine
v / v	Volume per volume
W	Tryptophan
w / v	Weight per volume
x	Unknown amino acid
X -gal	5-bromo-4-chloro-3- β-D-galactopyranoside
Y	Tyrosine
Z	
ZOI	Glutamine or glutamic acid
	Zone of inhibition

1. Introduction

1.1 Canola

The history of canola as a crop goes back to oilseed rape or rapeseed, a member of the family Crucifereae and the genus Brassica along with 3,000 other species. Today, four species of Brassica are grown in many areas of the world for the production of animal feed and vegetable oil for human consumption: biennial or winter annual forms of Brassica napus in Europe and China, summer annual forms of B. napus or B. rapa in western Canada, B. juncea which predominates in India, and B. carinata in eastern Africa (Rimmer and Vandenberg, 1992). The close genetic relationship existing among Brassica species has enabled plant breeders to transfer useful characteristics from one species to another through cross hybridization. Canola (mainly B. napus and B. rapa) was initially bred in Canada through traditional plant breeding techniques in the 1970s. Compared with rapeseed plants, canola contains reduced levels of both glucosinolates, producing toxic byproducts upon hydrolysis, and erucic acid, a fatty acid that has been related to heart disease in humans when present at high concentrations. The word "canola" is derived from "Canadian oil, low acid", and it is now used worldwide to describe varieties of rapeseed, from which rapeseed oil with less than 2% erucic acid and rapeseed animal meal with less than $3 \mathrm{mg} / \mathrm{g}$ of glucosinolates are obtained (Vaisey-Genser and Eskin, 1982). Many insects, such as flea beetles, may infest canola at various growth stages. However, severe losses in canola yield are mainly associated with phoma stem canker (blackleg) disease caused by the fungus Leptosphaeria maculans, which has been documented for over 100 years. Blackleg is an endemic disease in the main rapeseed
growing areas of Australia, Canada and Europe, but rare in the areas of oilseed rape grown in Scotland, India and China (Gugel and Petrie, 1992).

1.2 Leptosphaeria maculans

The soil-inhabiting fungus Leptosphaeria maculans (anamorph: Phoma lingam) causes blackleg, the most severe disease of Brassica species (particularly B. napus and B. rapa). Strains of L. maculans have been classified into two groups based on their cultural, biochemical and genetic characteristics: the highly virulent or aggressive group that grows slowly, causes damaging stem cankers, and produces phytotoxin sirodesmins (the causal agent of blackleg), and the weakly virulent or nonaggressive group that grows rapidly, causes less damage on plants, and fails to produce sirodesmins (Mcgee and Petrie, 1978; Williams and Fitt, 1999). Attempts to mate in vitro between these two groups of L. maculans have failed, and there has been no evidence of natural interstrain mating, as well.
L. maculans can produce pycnidiospores asexually within pycnidia, and ascospores sexually within pseudothecia. Ascospores present on infested canola stubble act as the primary inoculum of blackleg disease. They are released during rainfall and spread by wind as aerosols, which usually coincides with the sowing period, resulting in infection of the emerging seedlings (Hall, 1992). Pycnidiospores are the secondary inocula, which are spread by rain splash onto the leaves of neighboring canola plants (Gugel and Petrie, 1992; Hall, 1992). Following initial infection of the leaves through stomata or wounds, the fungus grows intercellularly through the plant tissues as a biotroph, and spreads down the plant from the leaves to the stem and even to the roots. After this symptomless stage,
the fungus induces plant cell death and degradation, and utilizes the degraded cellular components as nutrients to produce more pycnidia and pycnidiospores in the dead tissues, resulting in dark lesions on all infected areas. Stem infection can produce a girdling blackened canker along the stem, hence the so-called blackleg. This stem cankering causes premature ripening of the pods due to disrupted water and nutrient transport, and more severely lodging and death of the plants. Due to dramatic loss in oilseed production associated with blackleg, cultural, chemical and other methods have been used to control both the severity and spread of the disease.

Ascospores of L. maculans can survive in the infested land using the remaining rapeseed residues as nutrients. Therefore, a four-year crop rotation is recommended in most oilseed rape growing areas, which provides time (three years) for infested rapeseed residues to break down before the next successive oilseed rape crops (Gugel and Petrie, 1992). Degradation of infected residues can be facilitated by raking, burning or burying, and improved methods are being sought (Khangura and Barbetti, 2001). Sustainable management of phoma stem canker also requires breeding of rapeseed cultivars with resistance to L. maculans isolates at both seedling stage, to impede initial spreading from the leaves to the stem, and adult plant stage, to prevent the development of stem lesions. Blackleg resistant cultivars of B. napus have been developed by plant breeders in Europe, Australia and Canada (Gugel and Petrie, 1992; Rimmer and Vandenberg, 1992). In addition, extensive studies have been conducted to identify genetic sources of rapeseed resistance (Gugel and Petrie, 1992; Rimmer and Vandenberg, 1992). Genetic modification of oilseed rape through the introduction of resistance genes from other plants or genes coding for production of antifungal compounds, was also reported (Wang
et al., 1999). Furthermore, fungicidal seed and soil treatments, as well as foliar applications of fungicides, were adopted for control of L. maculans infection in different oilseed rape growing regions (Gugel and Petrie, 1992; Kharbanda, 1992). However, given environmental and health concerns about the use of chemicals, the development of natural and efficient biocontrol agents for blackleg disease is more desirable.

Kharbanda and Dahiya (1990) identified a strain of Penicillium verrucosum that inhibited the growth of L. maculans by producing a secondary metabolite called citrinin. However, the toxicity of citrinin on farm animals prevents its use as a biocontrol agent. More recently, an isolate of Paenibacillus polymyxa was obtained from canola stubble, producing antifungal peptides that are able to inhibit L. maculans in greenhouse trials (Beatty and Jensen, 2002). It was found that several fungicides and herbicides approved for use on canola crops in Canada had no effect on this P. polymyxa isolate, so it has the potential to be used as a direct biocontrol agent, either alone or in combination with conventional fungicides and herbicides.

1.3 Paenibacillus polymyxa

The free-living soil bacterium Paenibacillus polymyxa was a member of the genus Bacillus. It was regrouped into a new genus Paenibacillus (paeni- meaning almost) and described as the type species based on 16S rRNA sequence similarity (Ash et al., 1993; Jurtshuk et al., 1992). P. polymyxa is a Gram-positive, rod-shaped, motile organism, and the cells develop subterminal ellipsoidal endospores when nutrients become limited. As the species name suggests (poly-myxa meaning much-slime), P. polymyxa produces a large amount of extracellular levan in liquid or on solid media (Han, 1989; Shida et al.,

1997a, 1997b). When grown on carbohydrate-rich solid media, the colonies are usually coated with shiny, opaque capsular slime. This species appears to contain a circular genome of approximately 4.3 Mb with a $\mathrm{G}+\mathrm{C}$ content of 45%. There has been only one report of P. polymyxa plasmid, in which a cryptic linear plasmid (pFS 1) was isolated from P. polymyxa SCE2 strain (Rosado and Seldin, 1993).
P. polymyxa populations are often found in the rhizosphere of various crop plants (Heulin et al., 1994; Holl et al., 1988). They exhibit plant growth promoting properties such as nitrogen fixation, phosphate solubilization, and secretion of plant growth promoting compounds (Heulin et al., 1994; Jisha and Alagawadi, 1996). Certain strains of P. polymyxa are able to enhance plant growth indirectly by stimulating symbiotic bacterial populations to grow in the rhizosphere (Petersen et al., 1996). In addition, P. polymyxa displays antagonistic activity against plant pathogenic fungi by producing various degrading enzymes and antibiotic compounds (Dijksterhuis et al., 1999; Heulin et al., 1994).
P. polymyxa strains have been shown to produce a wide range of peptide antibiotics, which may provide them with a growth advantage in the competitive soil environment. The peptide metabolites that have been identified in various isolates of P. polymyxa are generally classified into two groups according to their antimicrobial activities. Members of the first group include the polymyxins (Katz and Demain, 1977), polypeptins (Sogn, 1976), jolipeptin (Ito and Koyama, 1972a, 1972b), gavaserin and saltavalin (Pichard et al., 1995), which are typified by antibacterial activity against both Gram-negative and Gram-positive bacteria, as well as by the presence of the nonproteinogenic amino acid, 2,4-diaminobutyric acid (DAB). The second group consists of a single family of closely
related peptides variously designated as gatavalin (Nakajima et al., 1972), fusaricidins A to D (Kajimura and Kaneda, 1996, 1997), or LI-F antibiotics (twelve distinct compounds) (Kuroda et al., 2000; Kurusu et al., 1987), all of which contain an unusual fatty acid side chain, 15-guanidino-3-hydroxypentadecanoic acid. Their antagonist activity against fungi and Gram-positive bacteria with no effect on Gram-negative bacteria distinguishes this second group of peptides from the first. All peptides of this second group will hereafter be referred to as fusaricidins in this thesis. The general peptide sequence of the fusaricidins was determined as $\mathrm{L}-\mathrm{Thr}-\mathrm{X}_{2}-\mathrm{X}_{3}$-D-allo-Thr- X_{5}-D-Ala (Figure 1.3.1A). The β hydroxy fatty acid is attached to the N -terminal L-Thr, via an amide linkage, and the peptide is cyclized by an ester bond between the carboxy group of the C-terminal D-Ala and the β-hydroxy group of the N -terminal L-Thr. The antimicrobial activity of fusaricidins has been shown to vary depending on the particular amino acids present at three variable positions in the peptide moiety.

In summary, P. polymyxa, a naturally soilborne bacterium, possesses several properties desirable in a biocontrol agent active against plant pathogenic fungi, including production of highly resistant endospores and various peptide antibiotics, as well as intrinsic resistance to several fungicides and herbicides approved for use on oilseed rape in Canada.

1.4 Nonribosomal peptide synthetases

Bioactive peptides that are produced by microorganisms represent a large group of diverse natural products, including antibiotics, immunosuppressive agents, toxins, enzyme inhibitors, and so on. Therefore, the investigation of their biosynthetic
mechanisms is of great benefit to medicine, agriculture, and biological research. Some of these peptides, such as nisin and subtilin, are synthesized ribosomally through proteolytic processing and posttranslational modifications of the gene-encoded precursors. Yet another class of natural peptides, with remarkable structural diversity, was shown to be assembled by the nonribosomal peptide synthetases (NRPSs), the multi-enzyme complexes used as assembly lines directing the stepwise peptide elongation (Marahiel et al., 1997; von Dohren et al., 1997).

The nonribosomal mechanism of peptide biosynthesis was first reported as early as the 1970s by Lipmann and coworkers. The synthesis of some peptide antibiotics was first observed in cellular extracts that had been treated with ribonuclease, and subsequently it was noted that the cyclic antibiotics gramicidin S and tyrocidine from Bacillus appeared to be synthesized by large enzymes in a way similar to fatty acid synthesis (Lipmann, 1971; Lipmann et al., 1971; Lipmann, 1973). In this nucleic acid-independent pathway, large enzyme complexes are used as both template and biosynthetic machinery to direct the incorporation of amino acids into peptide polymers. In contrast to ribosomal biosynthesis, nonribosomally produced peptides contain not only the common 20 amino acids but also nonproteinogenic residues, such as D-amino acids or carboxy acids. Additionally, a common feature of many nonribosomal peptides is their cyclic or branched cyclic structures that are modified by N-methylation, glycosylation, oxidative cross-linking, as well as the incorporation of fatty acids and small heterocyclic rings. These structural peculiarities clearly distinguish nonribosomally synthesized peptides from ribosomal peptides and proteins, and play an important role in proper interaction between peptide compounds and their specific molecular targets in the cell (Marahiel et
al., 1997; von Dohren et al., 1997). Moreover, nonribosomal peptides are very often produced as homologous series instead of single compounds, suggesting the relatively broad specificity of this biosynthetic pathway compared to ribosomal peptide synthesis. Therefore, it was speculated that enzymatically-directed peptide synthesis may have existed prior to, but evolved in parallel to, the ribosomal mechanism (Lipmann, 1971).

1.4.1 Catalytic domains of modular peptide synthetases

By using both genetic and biochemical approaches, studies on the nonribosomal mechanism of peptide biosynthesis have advanced substantially in the past decades. Despite the structural diversity, synthesis of most nonribosomally assembled peptides employs a common "multiple carrier thiotemplate mechanism" (Lipmann, 1980). According to this model, amino acid substrates are first activated by the peptide synthetase enzymes, and subsequently transferred to the free thiol groups of multiple enzyme-bound cofactors of the 4'-phosphopantetheine (4'-PP) type. These 4'-PP cofactors act as flexible swinging arms that are able to transfer the thioester-bound amino acids from one site to the next on the peptide synthetases for optional modification or peptide bond formation. During the stepwise peptide elongation, all intermediates are covalently tethered to the protein template as thioesters via the 4'-PP cofactors.

It is now generally accepted that nonribosomal peptide synthetases (NRPSs) are organized into an assembly line of modules, each responsible for the incorporation of one amino acid substrate into the peptide product (Marahiel et al., 1997; von Dohren et al., 1997). Usually, the number and order of modules within the NRPSs directly corresponds to the number and sequence of amino acid residues in the synthesized peptide, since
nonribosomal peptide synthesis generally proceeds in a colinear way from the N -terminus to the C-terminus. Peptide synthetases of this type are hence referred to as linear NRPSs. In contrast, peptides composed of dimers of two, or trimers of three, are synthesized by iterative NRPSs, whose modules and domains are used more than once during the peptide assembly. Nonlinear NRPSs represent a third biosynthetic strategy of nonribosomal peptide synthesis, in which the arrangement of modules and domains does not correspond to the peptide sequence (Mootz et al., 2002).

Each module consists of structurally and enzymatically independent domains connected by flexible linker regions. Each domain fulfills a specific catalytic or carrier function during nonribosomal peptide synthesis, and domains retain enzymatic activities when expressed heterologously as isolated proteins. In most cases, the individual domains can be identified easily at the protein level by the presence of characteristic, consensus amino acid sequences (Table 1.1). It has also been shown that these core motifs contain highly conserved residues directly involved in the domains' functions. The adenylation domain, the thiolation domain and the condensation domain are three core domains that are necessary for the nonribosomal biosynthesis of the peptide backbone, and thus define a minimal elongation module (Figure 1.4.1) (Challis and Naismith, 2004). The initiation module or loading module usually lacks a condensation domain, while the most downstream termination module has an extra specialized C-terminal thioesterase domain for the release of the fully assembled peptide chain. In addition, modules may contain optional domains that introduce modifications of the amino acids being incorporated into the peptide product.

1.4.1.1 Adenylation domain: the primary determinant of substrate specificity

The first step in nonribosomal peptide synthesis is the selection and activation of a specific substrate by the adenylation (A) domain. The A domain, about 550 amino acids in length, catalyzes the activation of an amino acid as aminoacyl adenylate, resulting from transfer of AMP from ATP to the substrate in the presence of Mg^{2+} and release of pyrophosphate (Figure 1.4.2) (Dieckmann et al., 1995). The corresponding reaction in ribosomal peptide synthesis is carried out by aminoacyl-tRNA synthetases, but these two enzyme families share no similarity in either sequence or structure (Eriani et al., 1990; Rapaport et al., 1985). In addition, compared with aminoacyl-tRNA synthetases, the NRPS A domains exhibit relaxed substrate specificity, capable of activating more than one amino acid.

The A domains belong to the superfamily of adenylate-forming enzymes that includes firefly luciferases and acyl-CoA ligases (Turgay et al., 1992). The resolution of the crystal structures of two A domains, the Phe-activating A domain (PheA) of the gramicidin synthetase GrsA from Bacillus brevis, and the stand-alone A domain (DhbE) of the bacillibactin synthtase, activating aryl acid 2,3-dihydroxybenzoate (DHB), from Bacillus subtilis, provides detailed insight into the structural basis of substrate recognition and adenylation (Conti et al., 1997; May et al., 2002). These two enzymes share a similar folding pattern, composed of a large N -terminal subdomain and a small C -terminal subdomain that are linked by a hinge region. The active site, where the substrate binds, is located at the interface of the two subdomains. It was found that most of the conserved core motifs (A1-A10) reside surrounding the active site. This observation confirms the importance of these consensus motifs for the catalytic activity of the A domain, which
had been demonstrated using site-directed mutagenesis and photoaffinity labeling experiments (Gocht and Marahiel, 1994; Pavela-Vrancic et al., 1994). Comparison of the amino acid residues lining the substrate-binding pocket in PheA with the corresponding moieties in other A domains led to the identification of important residues involved in substrate recognition by A domains (Figure 1.4.3) (Challis et al., 2000; Stachelhaus et al., 1999). Introduction of targeted mutations within the selectivity-conferring residues of PheA resulted in predicted alterations of the substrate specificity (Stachelhaus et al., 1999). Therefore, these residues can be defined as the codons of nonribosomal peptide synthetases. Using the nonribosomal code, it is now possible to predict the substrate specificity of biochemically uncharacterized A domains simply by sequence analysis.

1.4.1.2 Thiolation domain: the peptidyl carrier protein

In the next step of nonribosomal biosynthesis, the aminoacyl adenylate intermediate is transferred to the free thiol group of the 4^{\prime}-phosphopantetheine ($4^{\prime}-\mathrm{PP}$) cofactor, which is covalently bound to the thiolation (T) domain of about 80 residues, located directly downstream of the A domain (Figure 1.4.2). Since the T domain shows high similarity to the acyl carrier proteins (ACP) of polyketide synthases and fatty acid synthases, this domain is also referred to as peptidyl carrier protein (PCP) (Stachelhaus et al., 1996; Weber et al., 2000). The T domain is the only NRPS domain without its own autonomous catalytic function, but all aminoacyl or peptidyl intermediates tethered to the flexible 4'PP cofactors can be transported to other catalytic domains for subsequent reactions. The 4^{\prime}-PP cofactor is attached to the side chain of an invariant serine residue within the core sequence $[\mathrm{LGG}(\mathrm{HD}) \mathbf{S}(\mathrm{LI})]$ of the T domain. The posttranslational apo-to-holo
modification of T domains by binding the $4^{\prime}-\mathrm{PP}$ cofactor, is catalyzed by dedicated $4^{\prime}-\mathrm{PP}$ transferases using coenzyme $\mathrm{A}(\mathrm{CoA})$ as a common substrate (Figure 1.4 .4 A), which occurs before the actual peptide biosynthesis (Lambalot et al., 1996; Schlumbohm et al., 1991). Genes encoding 4'-PP transferases in bacteria are often found adjacent to peptide synthetase genes.

1.4.1.3 Condensation domain: the nonribosomal elongation factor

Condensation (C) domains (about 450 amino acids in length) located N -terminal of A domains, are responsible for the stepwise N - to C - terminal elongation of the peptide chain. They catalyze peptide bond formation between the upstream T domain-bound amino acid or peptidyl chain and the downstream T domain-bound amino acid (Figure 1.4.5) (Stachelhaus et al., 1998). Usually, the number of C domains within NRPSs is consistent with the number of peptide bonds in the synthesized peptide. Recently, by sitedirected mutations in the tyrocidine synthetase TycB of ten residues highly conserved among eighty other C domains, a possible catalytic mechanism of the C domain was proposed, involving the Arg residue in the core motif C2 (RHExLRTxF), and the His and Asp residues in the core motif C3 (MHHxISDG) (Bergendahl et al., 2002).

The elucidation of the crystal structure of a freestanding C domain, VibH of the vibriobactin synthetase from Vibrio cholerae, revealed the presence of an active site at the interface of the two subdomains of VibH (Keating et al., 2002). The cognate substrates of VibH, 2,3-dihydroxybenzoate and norspermidine, are proposed to enter the active site from opposite faces of the C domain, which correspond to the so-called donor site, accepting the amino acid or peptide chain tethered to the upstream T domain, and the
acceptor site, accepting the amino acid tethered to the downstream T domain. Biochemical studies of various C domains indicated that the acceptor site exhibits selectivity towards both the stereochemistry (L- or D-configuration) and the side chain of cognate amino acids (Belshaw et al., 1999; Ehmann et al., 2000). Although the donor site appears to be more tolerant of substrates with noncognate side chains, stereoselectivity towards the upstream thioester-bound amino acid, or the C-terminal amino acid of the growing peptidyl chain, was also observed at this position (Clugston et al., 2003). Therefore, in addition to A domains, C domains act as a second selectivity barrier, which may explain how directionality of nonribosomal peptide synthesis is realized.

1.4.1.4 Thioesterase domain: the nonribosomal hydrolase or cyclase

In order to regenerate the NRPS machinery for the next round of synthesis, the fully assembled peptide has to be promptly released once it reaches the end of the assembly line. This reaction is usually accomplished by the type I thioesterase (TE) domain, which is about 250 amino acids in length and located at the C-terminus of the last module. The first insight into the protein structure of this domain type was gained from the crystal structure of Srf-TE, a TE domain excised from the surfactin synthetases, showing that TE domains belong to the family of α / β hydrolases (Bruner et al., 2002). The full-length peptide chain tethered to the most downstream T domain is first transferred to the hydroxyl group of the highly conserved serine residue within the GxSxG core motif of the TE domain, resulting in the formation a peptidyl-O-TE intermediate (Figure 1.4.6A) (Schneider and Marahiel, 1998). The ester bond is subsequently cleaved either by the attack of a water molecule (hydrolysis) to give a linear peptide carboxylate, or by
intramolecular attack of an internal nucleophile (cyclization) to produce a cyclic or branched cyclic peptide (Figure 1.4.6A). The released peptide backbones may undergo postsynthetic modifications, such as cross-linking or halogenation, by the action of dedicated enzymes associated with NRPSs (Walsh et al., 2001). These chemical modifications enlarge the structural diversity of nonribosomal peptides, and introduce structural rigidity and stability against proteolytic degradation. Furthermore, the constrained structures of nonribosomally synthesized peptides ensure precise interaction with their cellular targets.

Since it is difficult to achieve peptide cyclization in non-biological organic chemistry synthesis without protecting all side chains, most of the studies on TE domains have focused on the cyclization mechanism for the development of new strategies to synthesize cyclopeptides. Biochemical characterization of the TE domains excised from several NRPS systems indicated that TE domains display high levels of stereoselectivity and regioselectivity by choosing one specific residue within the peptide chain as the intramolecular nucleophile for cyclization (Grunewald et al., 2004; Kohli et al., 2001; Trauger et al., 2000; Tseng et al., 2002). In addition, it was shown that the peptide chain is pre-organized in a product-like conformation by intramolecular hydrogen bonds during the cyclization reaction, which probably plays an important role in substrate recognition by the TE domain (Trauger et al., 2001). Investigation of the substrate specificity of TE domains would allow generation of diverse cyclic peptide libraries that could be probed for improved or novel biological activities (Kohli et al., 2002).

In some NRPS gene clusters, genes encoding 250 -aa proteins with sequence similarity to type II thioesterases were identified. Mutagenesis studies showed that these
external thioesterases are important but not essential for effective peptide production (Schneider and Marahiel, 1998). The specific function of type II thioesterases (TEIIs) in nonribosomal synthesis is assumed to be regeneration of inactive NRPSs with acyl groups attached to the $4^{\prime}-\mathrm{PP}$ cofactors of T domains, the so-called misprimed NRPSs. The posttranslational apo-to-holo modification of T domains by binding of the 4 '-PP cofactors is catalyzed by $4^{\prime}-\mathrm{PP}$ transferases, using CoA as the $4^{\prime}-\mathrm{PP}$ donor. Due to the low substrate specificity of 4^{\prime}-PP transferases, various CoA derivatives, mostly present in the form of acyl-CoAs, can serve as substrates in the modification process. However, the acylated 4'PP cofactors transferred onto T domains would prevent recognition by adjacent domains, resulting in inactive misprimed NRPSs. In these cases, TEIIs can efficiently regenerate the misprimed NRPSs to the active holo form by hydrolyzing these acyl groups (Figure 1.4.4B) (Schwarzer et al., 2003). More recently, it was suggested that TEIIs can also recover activity of NRPSs that are loaded with incorrect amino acid substrates by the A domains and have thus become stalled during peptide synthesis (Yeh et al., 2004). Both findings may explain the observation that disruption of TEII genes caused drastically reduced production of the corresponding peptides, but did not completely abolish the productivity (Schneider and Marahiel, 1998).

1.4.1.5 Modifying domains: tailoring enzymes embedded in NRPSs

In addition to the incorporation of various unusual amino and carboxy acids, peptide synthetases can also introduce structural diversity into the peptide products by carrying out modifications of substrates during peptide chain elongation.

N-methylation of the peptide backbone is a typical modification of nonribosomally synthesized peptides, especially those of fungal origin, which prevents peptide bonds from proteolytic cleavage. This modification is mediated by a 450 -aa N -methylation (M) domain that generally resides between the adenylation and thiolation domains (Burmester et al., 1995; Haese et al., 1993; Haese et al., 1994). Transfer of the methyl group from the cofactor S-adenosylmethionine (SAM) to the thioester-bound amino acid probably occurs prior to peptide bond formation (Figure 1.4.7A).

Another common structural feature of many nonribosomal peptides is the occurrence of D-amino acids, which inhibits proteolytic degradation and contributes to the bioactive conformation. In most cases, modules incorporating D-amino acids contain an extra epimerization (E) domain (about 450 residues), located at the C-terminal end of the thiolation domain. The E domain catalyzes racemization of the T domain-bound amino acid or of the C-terminal amino acid of the peptidyl chain, to form an equilibrium between the L- and D-conformers (Figure 1.4.7B). To ensure exclusive incorporation of the D -amino acid into the peptide chain, the C domain within the downstream module selectively accepts the D-enantiomer at the donor site, and catalyzes the condensation reaction between the upstream D-amino acid and the downstream amino acid (Belshaw et al., 1999; Linne and Marahiel, 2000; Luo et al., 2002; Stachelhaus and Walsh, 2000).

Two novel modification domains have been identified in modules responsible for heterocyclic ring formation, such as thiazolines, oxazolines, thiazole and oxazole rings. The 450-aa heterocyclization (Cy) domain, which replaces the usual C domain in these modules, first carries out peptide bond formation and then catalyzes heterocylization of the side chain of serine/threonine/cysteine residues with the newly formed peptide bond
(Figure 1.4.7C) (Gehring et al., 1998; Keating et al., 2000; Miller and Walsh, 2001). The resulting thiazolines or oxazolines can be further oxidized into the aromatic thiazole or oxazole rings by the action of an FMN-dependent oxidation (Ox) domain (about 250 aa, Figure 1.4.7C), which resides C-terminal to either the A or T domain (Du et al., 2001; Schneider et al., 2003; Silakowski et al., 1999).

As an alternative in termination of nonribosomal peptide synthesis, a reductase (R) domain of 350 aa in length, in place of the TE domain, is involved in the biosynthesis of gramicidin A and myxochelin A (Gaitatzis et al., 2001; Kessler et al., 2004; Silakowski et al., 2000). In these systems, the R domain utilizes NADPH as a cofactor to reduce the C-terminal carboxy group of the synthesized peptide chain and release a linear aldehyde or even the corresponding alcohol (Figure 1.4.6B).

1.4.2 Rational design of NRPSs towards construction of novel peptides

The modular peptide synthetases represent the protein templates for nonribosomal peptide synthesis, with each module composed of several structurally and functionally independent domains catalyzing the sequential enzymatic reactions on the growing peptide chains. The nature, number and order of modules and domains within NRPSs determine the primary structure of the peptide product. With the ever-increasing need for new antibiotics and pharmaceutical drugs, the modular organization of NRPSs could be utilized for combinatorial biosynthesis of novel bioactive peptides by rearrangement of modules and domains to construct hybrid peptide synthetases. During manipulation, the choice of the fusion site between modules or domains is one of the most crucial points. Biochemical and structural studies have led to precise identification of the domain
borders, as well as the linker regions in between (Mootz et al., 2000). The lack of highly conserved residues within the linkers gives them the advantage of being suitable positions for artificial fusions of domains or modules. A minimal elongation module of NRPSs consists of three core domains in the N - to C - order of $\mathrm{C}-\mathrm{A}-\mathrm{T}$, suggesting three different strategies to recombine individual domains (Mootz and Marahiel, 1999): (a) intramodular fusion between a C domain and an A domain (C-AT), (b) intramodular fusions between an A domain and a T domain (CA-T), and (c) intermodular fusions between a T domain and a C domain (CAT-CAT) (Figure 1.4.8).

The first type of fusion (Figure 1.4.8a) has been employed for targeted exchange of the A domain and the accompanying T domain in the Leu-activating module of the surfactin synthetases, for several other AT di-domains of bacterial or fungal origins with different amino acid specificities (Stachelhaus et al., 1995). These engineered synthetases produced the predicted surfactin variants, but at a much lower level compared with the native system, which could be explained by the substrate specificity of C domains at the acceptor site for the cognate amino acid.

The second intramodular fusion between an A domain and a T domain (Figure 1.4 .8 b) was expected to overcome the limitation imposed by the C domain's selectivity. One successful example of this type of fusion has been reported in construction of bimodular hybrid enzymes in vitro (Doekel and Marahiel, 2000). In these experiments, two different A domains, one from the tyrocidine synthetase TycB and the other from the bacitracin synthetase BacA, were separately fused to a T domain that is attached to the termination module (including a TE domain) of the tyrocidine synthetase TycC. Production of the predicted dipeptides by the hybrid NRPSs was observed, suggesting
that the interaction between foreign A and T domains is efficient enough to allow thiolation of noncognate amino acids. This result also indicates a considerable degree of tolerance towards noncognate substrates at the donor site of C domains, in contrast to the specificity at the acceptor site.

The third possible fusion site is located between two complete modules (Figure 1.4 .8 c). The feasibility of artificial module fusion was first demonstrated by generation of di-modular hybrid peptide synthetases through fusion the Pro-activating module with the Orn-activating module, or with the Leu-activating module, all from the tyrocidine synthetases (Mootz et al., 2000). The TE domain was also fused to the C-terminus of the di-modular peptide synthetases. Subsequently, incubation of the hybrid NRPSs with the D-Phe-incorporating module of the tyrocidine synthetase TycA, gave rise to the predicted tripeptides D-Phe-Pro-Orn, and D-Phe-Pro-Leu.

The strategies presented above have focused on the recombination of NRPS modules or domains to rebuild a new biosynthetic system for a desired product. In comparison, targeted modification of natural peptides by site-directed mutagenesis of the specificityconferring residues within the A domains (Challis et al., 2000; Eppelmann et al., 2002; Stachelhaus et al., 1999), is a rather small alteration (Figure 1.4.8d). For example, in the study of CDA, the calcium-dependent lipopeptide antibiotics produced by Streptomyces coelicolor, the substrate specificity of the seventh Asp-activating module of CDA synthetases was rationally changed to asparagine recognition by point mutations of two residues in the corresponding A domain, which led to production of a CDA analog containing Asn residue, instead of Asp, at the seventh position (Uguru et al., 2004). However, one drawback of this approach was the dramatic reduction in productivity of
the engineered synthetases, which could be caused by the substrate specificities of the downstream C domain and the terminal TE domain.

In addition, there are many other manipulations of practical interest to generate structural diversity in the peptide products, such as introduction or deletion of modification domains at a certain position (Figure 1.4.8e), manipulation of ring size in cyclic peptides, or construction of hybrid products by fusion of NRPSs with modular polyketide synthases (Section 1.6). It has also been possible to alter the length of the peptide chain by translocation of the C-terminal TE domain (Figure 1.4.8f) (de Ferra et al., 1997).

1.5 Nonribosomally synthesized lipopeptides

Lipopeptides are composed of a linear or cyclic peptide with a long fatty acid moiety covalently attached to its N -terminus, and they have received considerable attention for their antimicrobial and surfactant properties, as well as other physiological activities. Lipopeptides are produced by a variety of bacterial genera, including Bacillus, Pseudomonas, and Streptomyces, through nonribosomal peptide synthetases. It has been suggested that the fatty acid moieties of lipopeptides are incorporated into the peptide products by direct transfer of the fatty acid to the first activated amino acid of the peptide chain. Although enzymes catalyzing this reaction have not been identified so far, a condensation domain preceding the first NRPS module was observed in all reported lipopeptide synthetases, serving as a good candidate for this catalytic activity.

Bacillus subtilis strains are known to produce two groups of cyclic lipopeptides: the surfactin group, including surfactin, lichenysin, fengycin (synonymous to plipastatin),
esperin, which contains a β-hydroxy fatty acid, and the iturin group, including iturin, mycosubtilin, bacillomycin, which contains a β-amino fatty acid. The peptide synthetase operons for iturin-type lipopeptides have been completely sequenced and characterized (Duitman et al., 1999; Moyne et al., 2004; Tsuge et al., 2001). The deduced peptide synthetase enzymes share the same modular organization as other NRPS systems, but additionally contain functional domains with homology to fatty acid synthases/polyketide synthases (Section 1.6) and an amino transferase domain (presumably responsible for activation of a long-chain fatty acid, modification with a β-amino group, and incorporation of the resulting β-amino fatty acid), along with the first module of NRPSs to form a hybrid synthetase (Figure 1.5.1A). In contrast, genes required for synthesis and/or modification, and incorporation of the β-hydroxy fatty acid moieties of surfactintype lipopeptides, have not yet been identified in either the peptide synthetase operons or the flanking regions (Figure 1.5.1B) (Cosmina et al., 1993; Konz and Marahiel, 1999; Steller et al., 1999; Tosato et al., 1997). The lipohexapeptide fusaricidin produced by P. polymyxa is structurally similar to surfactin in that both contain a β-hydroxy fatty acid. However, unlike surfactin-type lipopeptides, the lipid moiety of fusaricidin is modified by addition of a guanidino group and thus it is reasonably postulated that the fusaricidin biosynthetic gene cluster may harbor genes encoding enzymes involved in fatty acid synthesis and/or modification, as seen in the mycosubtilin biosynthetic operon (Figure 1.5.1A).

1.6 Hybrid peptide-polyketide synthetase systems

Polyketides are a large group of natural products synthesized through sequential condensation of simple carboxylic acids, and some of known polyketides have been widely used in medicine and agriculture for their antagonistic activities against bacteria, fungi, viruses, and parasites, as well as for their immunosuppressive and antitumor properties. Synthesis of the macrolide subgroup of polyketides (e.g. erythromycin) is catalyzed by large multifunctional enzyme complexes known as Type I polyketide synthases (PKSs) with modular organizations resembling those of nonribosomal peptide synthetases (Cane and Walsh, 1999). A minimal elongation module of PKSs also consists of three enzymatic domains: an acyl transferase (AT) domain for selection and transfer of carboxylic acid monomers, an acyl carrier protein (ACP) for docking of the monomers or the growing polyketide chain as enzyme-bound thioesters, and a ketosynthase (KS) domain for decarboxylative condensation between two adjacent acyl thioesters to extend the polyketide chain (Figure 1.6.1). Like T domains (or peptidyl carrier protein, PCP) of NRPSs, ACPs of PKSs are posttranslationally modified by covalent attachment of CoAderived 4'-phosphopantetheine (4'-PP) groups, catalyzed by a subgroup of 4'-PP transferases specific for the ACPs of fatty acid synthases and PKSs (Walsh et al., 1997). Once the polyketide chain reaches its full length at the most downstream ACP, a specialized thioesterase (TE) domain, usually found at the C-terminus of PKSs, catalyzes the release of the polyketide product. Additional domains responsible for modifications of the carbon backbones of polyketides have also been identified (Figure 1.6.1) (Cane and Walsh, 1999). Together, PKSs apparently share very similar modular organizations and biosynthetic strategies with NRPSs, which allows production of hybrid peptidepolyketide metabolites with novel biological activities by combining individual NRPS
and PKS modules for combinatorial biosynthesis, or more directly by engineering naturally occurring hybrid NRPS-PKS synthetases that integrate peptide synthesis and polyketide synthesis.

A rapidly increasing number of hybrid NRPS-PKS systems has been identified and characterized in the past few years. Leinamycin, as one example among many, is an antitumor antibiotic produced by Streptomyces atroolivaceus, consisting of an unusual 1,3-dioxo-1,2-dithiolane moiety fused to a hybrid peptide-polyketide macrocyclic ring containing two amino acid residues, D-Ala and L-Cys (Figure 1.6.2). Cloning and sequencing of the leinamycin biosynthetic gene cluster revealed a putative hybrid NRPSPKS mega-synthetase, which is composed of an NRPS initiation module and an NRPS elongation module, followed by eight PKS modules with unusual domain organization (Figure 1.6.2) (Tang et al., 2004). It was proposed that leinamycin biosynthesis was initiated by activation and loading of the amino acids D-Ala and L-Cys to their cognate NRPS modules. Subsequent cyclization and oxidation of these two residues gave rise to an NRPS-bound thiazole intermediate, which was then transferred to the downstream PKS modules for stepwise elongations with carboxylic acids. The fully assembled hybrid peptide-polyketide backbone was released and cyclized with the action of the C-terminal TE domain to produce a macrolactam intermediate, which was further modified by fusion of the 1,3-dioxo-1,2-dithiolane moiety to yield the mature leinamycin molecule.

Sequence analyses of hybrid NRPS-PKS synthetase genes and comparisons with the known NRPS and PKS genes, have revealed the presence of putative intermodular and interpolypeptide linker regions that were presumably required for transfer of the peptidyl or polyketide chain between NRPS and PKS modules within hybrid NRPS-PKS systems
(Du et al., 2001). These results provided the first mechanistic insight into intermodular communications within hybrid NRPS-PKS synthetases, which must be taken into consideration for future attempt at construction of hybrid peptide-polyketide biosynthetic templates.

1.7 Main objectives of this thesis

In a previous study by Beatty and Jensen (2002), an environmental bacterium isolated from canola stubble, which was highly inhibitory to the growth of L. maculans in vitro, was determined to be a strain of Paenibacillus polymyxa based on its biochemical and morphological characteristics, as well as 16 S rRNA sequence similarity, and was given the strain designation PKB1. The antifungal activity of PKB1 against L. maculans was found to be mainly attributable to production of a mixture of fusaricidin variants A and B around the onset of sporulation (Figure 1.3.1B). Although purification methods and primary structures of fusaricidins have been described, the biosynthetic details of these cyclic depsipeptides are still unknown. The usefullness of P. polymyxa $\mathrm{PKB1}$ as a biocontrol agent for the blackleg disease of canola caused by L. maculans may be improved by increasing the production of fusaricidin variants associated with the antifungal activity. In order to fulfill this goal, investigation of the detailed biosynthetic steps involved in fusaricidin production is a necessary first step. On the basis of their structural similarity to several lipopeptides isolated from Bacillus strains (e.g. surfactin and lichenysin), it was hypothesized that the peptide moiety of fusaricidin is synthesized nonribosomally by peptide synthetases. The study presented in this thesis was initiated by isolation of the peptide synthetase gene responsible for fusaricidin biosynthesis in P.
polymyxa PKB1. The reverse genetics method established by Turgay and Marahiel (1994), using degenerate primers derived from the highly conserved motifs within NRPSs, was adopted to amplify peptide synthetase gene fragments from the PKB1 genome, which were subsequently used to identify the putative gene encoding fusaricidin synthetase by probing the genomic DNA libraries. Mutagenesis studies were carried out to determine if the putative fusaricidin synthetase gene is involved in the production of fusaricidins by the PKB1 strain. In addition, the chromosomal regions surrounding the fusaricidin synthetase gene were analyzed to identify the complete fusaricidin biosynthetic gene cluster. Finally, the amino acid specificity of an internal adenylation domain within the fusaricidin synthetase was investigated in vitro. ${ }^{1}$

[^0]
X_{2} : D-Val, D-allo-Ile, or D-lle
X_{3} : L-Tyr, L-Val, L-Ile, L-Phe, or L-allo-Ile
X_{5} : D-Asn, or D-Gln

B

	Amino acid positions		
	$\mathbf{X}_{\mathbf{2}}$	\mathbf{X}_{3}	$\mathbf{X}_{\mathbf{5}}$
A	D-Val	L-Val	D-Asn
B	D-Val	L-Val	D-Gln

Figure 1.3.1 Primary structure of the fusaricidin-type lipopeptide antibiotics produced by P. polymyxa. (A) Amino acid substitutions tolerated at three defined positions in fusaricidin variants are presented. Residues are numbered according to the order of synthesis. (B) Amino acid substitutions in fusaricidins A and B, the two variants associated with the antifungal activity of $\mathrm{PKB1}$ strain against L. maculans.

Figure 1.4.1 Schematic representation of the module and domain organization of nonribosomal peptide synthetases. A minimal elongation module typically consists of three core domains: an adenylation (A) domain, a thiolation (T) domain, and a condensation (C) domain. The initiation module usually lacks an N -terminal C domain, and the termination module contains an additional thioesterase (TE) domain at the C-terminus. In the case of heterocyclic ring formation, the C domain is replaced by a heterocyclization (Cy) domain, which is often coupled to an oxidation (Ox) domain. The N -methylation (M) domain and the epimerization (E) domain are optional domains that introduce modifications of the amino acids being incorporated into the elongating peptidyl chain. The TE domain is sometimes replaced by a reductase (R) domain as an alternative mechanism of termination. Adapted from Challis and Naismith (2004).

Figure 1.4.2 Schematic diagram of amino acid adenylation and subsequent thiolation during nonribosomal peptide synthesis. The amino acid substrate is first activated as an aminoacyl adenylate by the action of the adenylation (A) domain. This unstable intermediate is then bound as a thioester to the thiol group of the 4^{\prime}-phosphopantetheine cofactor (represented by a wavy line), which is covalently attached to the thiolation (T) domain located downstream of the A domain.

Structural anchor
residues

Specificity-conferring
residues lining the
substrate-binding pockets

Extraction of putative residues
involved in substrate binding
\checkmark

Figure 1.4.3 Extraction of the substrate specificity-conferring residues by alignment of the amino acid sequences in the region of core motifs A4 and A5. Two examples are shown, the Phe-activating adenylation domain from the gramicidin synthetase GrsA, and the Asp-activating adenylation domain from the surfactin synthetase SrfA-B. The highly conserved position 517 (Lys) is located in the core motif A10. Conserved motif sequences A4 and A5 are underlined. Adapted from Stachelhaus et al. (1999).
(A)

Figure 1.4.4 Posttranslational modification of the peptide synthetase (NRPS), from the inactive apo-form to the active holoform, prior to peptide biosynthesis. (A) The 4^{\prime}-phosphopantetheine ($4^{\prime}-\mathrm{PP}$) cofactors, represented by wavy lines, are transferred from coenzyme $\mathrm{A}(\mathrm{COA})$ onto the thiolation (T) domains with the action of dedicated 4^{\prime} - PP transferases. (B) If acyl-CoAs are used as substrates by the 4^{\prime}-PP transferases, type II thioesterases (TEIIs) can hydrolyze the acyl groups attached to the 4^{\prime}-PP cofactors, and then regenerate the misprimed NRPS to its active holo form (Section 1.4.1.4). Adapted from Schwarzer et al. (2002).

Figure 1.4.5 Peptide bond formation between two amino acids that are thioester-bound to the thiolation (T) domains of two successive modules, mediated by the condensation (C) domain. Shown is the nucleophilic attack of the α-amino group of the downstream substrate on the electrophilic thioester bond of the upstream substrate to give an amide bond during peptide biosynthesis.

(A)

(B)

Figure 1.4.6 A schematic diagram showing two termination strategies of nonribosomal peptide synthesis. (A) Hydrolysis or cyclization of the peptide chain catalyzed by the C-terminal thioesterase (TE) domain. (B) Alternatively, the C-terminal carboxyl group of the peptide is reduced by the reductase (R) domain to yield an aldehyde.

(C)

Figure 1.4.7 Modifications of amino acid substrates being incorporated into nonribosomal peptides, catalyzed by optional modifying domains. (A) The N -methylation (M) domain mediates the transfer of the methyl group from the cofactor Sadenosylmethionine (SAM) to the amino group of a thioester-bound amino acid. (B) The epimerization (E) domain catalyzes the racemization of the thioester-bound amino acid to form an equilibrium between the L- and D-conformers, and subsequently the condensation (C) domain exclusively incorporates the D-conformer into the peptide chain. (C) The heterocyclization (Cy) domain catalyzes both peptide bond formation and heterocyclization of the side chain of cysteine (or serine, or threonine) with the amino acid bound to the preceding module. The heterocyclic rings may be further oxidized by the action of an additional oxidation (Ox) domain, using FMN (flavin mononucleotide) as the cofactor. Adapted from Konz and Marahiel (1999).

(a)

(b)

(c)
(d)

$\stackrel{\omega}{u}$

(f)

Figure 1.4.8 Possible strategies to construct hybrid peptide synthetases for the synthesis of new peptide products.

Figure 1.4.8 (continued) Recombination of peptide synthetase templates can be realized by domain fusions (a) between condensation (C) domains and adenylation (A) domains, (b) between adenylation (A) domains and thiolation (T) domains, or (c) between thiolation (T) domains and condensation (C) domains. Other strategies include (d) alteration of the substrate specificity of A domains ($a \boldsymbol{a} \rightarrow \mathrm{aa}^{*}$), (e) introducing modifying domains (such as an N -methylation (M) domain) or deleting a modifying domain (such as an epimerization (E) domain), (f) translocation of the thioesterase (TE) domain to shorten the length of the peptide product. Adapted from Mootz and Marahiel (1999).
(A)

Mycosubtilin

(B)

Surfactin

Figure 1.5.1 Nonribosomally synthesized cyclic lipopeptides produced by Bacillus subtilis.

Figure 1.5.1 (continued) Two examples are shown, (A) mycosubtilin carrying a β-amino fatty acid, and (B) surfactin carrying a β-hydroxy fatty acid. The ORF arrangement of each lipopeptide biosynthetic operon, the deduced domain organizations of the peptide synthetases, and the primary structure of the produced lipopeptide are illustrated. The amino acid substrates, all in L-configuration, of the adenylation domains are indicated.

Figure 1.6.1 Schematic diagram of catalytic functions of Type I PKS domains.

Figure 1.6.1 (continued) A minimal elongation module of Type I PKSs consists of three core domains: an acyl transferase (AT) domain, an acyl carrier protein (ACP), and a ketosynthase (KS) domain. The AT domain selects appropriate monomer substrate, usually malonyl-CoA $\left(\mathrm{R}^{\prime}=\mathrm{H}\right)$ or methylmalonyl-CoA ($\mathrm{R}^{\prime}=$ Methyl $)$ as the extender unit, and transfers the already activated acyl group to the thiol group of the 4'phosphopantetheine cofactor (represented by a wavy line) covalently attached to the adjacent ACP. The KS domain then catalyzes decarboxylative condensation between the upstream acyl group of the growing polyketide chain and the downstream thioester-bound extender unit to elongate and translocate the polyketide chain to the downstream ACP. Prior to the next condensation cycle, the β-carbonyl group may remain unchanged, or be partially or fully reduced with the action of three optional modifying domains: first, ketoreduction by ketoreductase domain (KR) to yield a β-hydroxyl group, followed by dehydration (by dehydratase domain, DH) to introduce the α, β unsaturation in the polyketide chain, and finally, enoylreduction (by enoyl reductase domain, ER) to produce a methylene function at the β-carbon.

Figure 1.6.2 Proposed modular organization of the hybrid NRPS-PKS synthetase encoded by the leinamycin biosynthetic gene cluster (lnm). Genes encoding NRPSs, hybrid NRPS-PKS, and PKSs are represented by black arrows. The amino acid residues to be incorporated into leinamycin are shown as NRPS-bound thioesters. The question mark represents a domain of unknown function. The methyltransferase (MT) domain catalyzes O-methylation of the β-hydroxyl group (Figure 1.6.1). Adapted from Tang et al. (2004).

Table 1.1 The conserved core motifs found in the common catalytic domains of nonribosomal peptide synthetases. Adapted from Konz and Marahiel (1999) and Schwarzer et al. (2003).

Domain	Core motif ${ }^{a}$	Consensus Sequence ${ }^{b}$
Adenylation	A1	L(TS)YxEL
	A2 (core 1)	LKAGxAYL(VL)P(LI)D
	A3 (core 2)	LAYxxYTSG(ST)TGxPKG
	A4	FDxS
	A5	NxYGPTE
	A6 (core3)	GELxIxGxG(VL)ARGYL
	A7 (core4)	Y(RK)TGDL
	A8 (core5)	GRxDxQVKIRGxRIELGEIE
	A9	LPxYM(IV)P
	A10	NGK(VL)DR
Thiolation	T (core6)	DxFFxxLGG(HD)S(LI)
Condensation	Cl	SxAQxR(LM)(WY)xL
	C2	RHExLRTxF
	C 3 (His)	MHHxISDG(WV)S
	C4	YxD(FY)AVW
	C5	(IV)GxFVNT(QL)(CA) \times R
	C6	(HN)QD(YV)PFE
	C7	RDxSRNPL
Thioesterase	TE	GxSxG
N -methylation	M1 (SAM)	VL(DE)GxGxG
	M2	NELSxYRYxAV
	M3	VExSxAROxGxLD
Epimerization	El	PIOxWF
	E2 (His)	HHxISDG(WV)S
	E3 (race A)	DxLLxaxg
	E4 (race B)	EGHGRE
	E5 (race C)	RTVGWFTxxYP(YV)PFE
	E6	PxxGxGyG
	E7 (race D)	FNYLG(QR)

${ }^{a}$ Former nomenclature is given in parentheses.
${ }^{b}$ Single-letter amino acid codes are used. Alternative amino acids in a specific position are indicated in parentheses; X represents any amino acid at that position.

2. Materials and methods

2.1 Strains of bacteria and fungi, plasmids, reagents and supplies

The strains and plasmids used in this study are listed in Table 2.1 and Table 2.2, respectively. P. polymyxa PKB1 (=ATCC 202127) and Leptosphaeria maculans were obtained from P. Kharbanda, Alberta Research Council (Vegreville, Canada). The Staphylococcus plasmid vector $\mathrm{pC194}$, which replicates in P. polymyxa and imparts chloramphenicol resistance, and the E. coli plasmids pBEST501 and pBEST502, carrying the same neomycin resistance gene selectable in Bacillus subtilis, were obtained from the Bacillus Genetic Stock Center (Ohio State University, Columbus, OH). The E. coli plasmid pBM-SPECT carrying a spectinomycin resistance marker functional in Bacillus subtilis was provided by S.L. Wong, Department of Biological Sciences, University of Calgary. Cosmid and fosmid clones identified from the PKB1 genomic DNA libraries, or prepared for mutagenesis studies, are described in Section 3 (Results and discussion) along with their use.

Chemicals used in preparations of media and buffers were reagent grade, and were purchased from Sigma (St. Louis, MO), BD (Sparks, MD), or ICN (Aurora, OH) unless otherwise indicated. Restriction endonucleases and other DNA modifying enzymes were obtained from Roche (Laval, QC) and New England Biolabs (Mississauga, ON). Both electrophoresis apparatus and electroporation apparatus were purchased from Bio-Rad Laboratories (Hercules, CA). Hybond-N nylon membranes used for Southern analyses and colony hybridizations were purchased from Amersham Biosciences (Buckinghamshire, UK). DNA oligonucleotide primers were synthesized by Molecular Biology Service Unit (MBSU, Department of Biological Sciences, University of

Alberta), Qiagen (Alameda, CA), or IDT (Coralville, IA). An Eppendorf 5415 microcentrifuge was used for microcentrifugation, and a Beckman Model J2-21 centrifuge was used for centrifugation of large-volume bacterial cultures. Bacterial and fungal cultures were grown using a cell production roller drum (Bellco Biotechnology), or a G-24 incubator shaker (New Brunswick Scientific CO.). The sources of all the other materials used in this study are described in the subsequent subsections along with their specific use.

2.2 E. coli procedures

2.2.1 Growth conditions

Luria-Bertani (LB) medium (1% tryptone, 0.5% yeast extract, $0.5 \% \mathrm{NaCl}$), or SOB medium (2% tryptone, 0.5% yeast extract, $0.05 \% \mathrm{NaCl}, 2.5 \mathrm{mM} \mathrm{KCl}, \mathrm{pH} 7.0$, supplemented with $10 \mathrm{mM} \mathrm{MgCl}_{2}$ and 20 mM MgSO 4 before use), was commonly used to grow E. coli cultures at $37^{\circ} \mathrm{C}$ unless otherwise indicated. When required, antibiotics were added to growth media at the following concentrations: ampicillin, $100 \mu \mathrm{~g} / \mathrm{ml}$; apramycin, $50 \mu \mathrm{~g} / \mathrm{ml}$; chloramphenicol, $25 \mu \mathrm{~g} / \mathrm{ml}$; kanamycin, $50 \mu \mathrm{~g} / \mathrm{ml}$; neomycin, 50 $\mu \mathrm{g} / \mathrm{ml}$; streptomycin, $50 \mu \mathrm{~g} / \mathrm{ml}$; spectinomycin, $50 \mu \mathrm{~g} / \mathrm{ml}$. In addition to the antibiotic ($12.5 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol), LB medium used for isolation of fosmid DNA from E. coli cultures was supplemented with 1x Replication Induction Solution (L-arabinose, Lucigen, Middleton, WI), which induces the expression of a medium-copy origin of replication (oriV) in the vector and thus increases the fosmid yield. All E. coli strains were stored at $-70^{\circ} \mathrm{C}$ as 20% glycerol stocks.

2.2.2 Preparation of E. coli electrocompetent cells and electroporation

The desired E. coli strain was grown for 16 h in 2 ml LB medium at $37^{\circ} \mathrm{C}$, from which 1 ml of the fresh 16 h culture was used to inoculate 200 ml of LB medium in a 500 ml flask. The culture was then incubated at $37^{\circ} \mathrm{C}$, shaken at 250 rpm until the OD_{600} reached $0.5-0.6$. The cells were harvested by centrifugation at $2,500 \mathrm{xg}$ for $10-15 \mathrm{~min}$ at $4^{\circ} \mathrm{C}$, washed once with 200 ml , then with 100 ml , and then with 50 ml of $4^{\circ} \mathrm{C} 10 \%$ glycerol. The washed cells were resuspended in $3-4 \mathrm{ml}$ of $4^{\circ} \mathrm{C} 10 \%$ glycerol per 100 ml of the original culture. During these steps, care was taken to keep the cells chilled at $4^{\circ} \mathrm{C}$ at all times. The cell suspension was then flash frozen in a dry ice-ethanol bath in $40 \mu \mathrm{l}$ aliquots and stored at $-70^{\circ} \mathrm{C}$ for future use.
E. coli BW25113/pIJ790 and BW25113/pKD46 electrocompetent cells used in the PCR-targeting mutagenesis studies were prepared using SOB medium, which was incubated at $28^{\circ} \mathrm{C}$ to maintain the temperature-sensitive plasmids. When necessary, Larabinose (10 mM) was added to the growth medium to induce the expression of λ Red recombination functions. Cells harvested from the 50 ml original culture (with an OD_{600} of ~ 0.6) were washed once with 50 ml and then once with 25 ml of $4^{\circ} \mathrm{C} 10 \%$ glycerol. After the last wash, the supernatant was discarded and the cell pellet was resuspended in the residual $100-150 \mu \mathrm{l} 10 \%$ glycerol, and $50 \mu \mathrm{l}$ of the cell suspension was used immediately for electroporation.

For transformation of DNA into E. coli, previously frozen electrocompetent cells were slowly thawed on ice before use. Plasmid DNA or ligation product was added to a microcentrifuge tube containing $40 \mu \mathrm{l}$ electrocompetent cells. The mixture was transferred into a 2 mm gap disposable electroporation cuvette (Molecular BioProducts)
placed in a Bio-Rad Gene Pulser ${ }^{\circledR}$ II apparatus, and pulsed with an electric charge of 2.5 kV and $25 \mu \mathrm{~F}$ capacitance. Immediately after the pulse, 1 ml of $4^{\circ} \mathrm{C}$ LB medium was added to the cuvette, and the cells were then allowed to recover by incubation in a cell production roller drum at $37^{\circ} \mathrm{C}$ or $28^{\circ} \mathrm{C}$ for $1-2 \mathrm{~h}$. To isolate the desired transformants, the transformation mixture was plated on LB agar (1.5\% agar) containing appropriated antibiotic(s), and the plates were incubated for $16-24 \mathrm{~h}$ at either $37^{\circ} \mathrm{C}$ or $28^{\circ} \mathrm{C}$ as required. In some cases, $40 \mu \mathrm{l}$ of 100 mM IPTG (isopropyl- β-D-thiogalactopyranoside) and $80 \mu \mathrm{l}$ of $2 \% \mathrm{X}$-gal (5-bromo-4-chloro-3- β-D-galactopyranoside) were spread on each plate before inoculation for blue-white selection.

2.2.3 Preparation of colony lifts

The cosmid/fosmid-containing E. coli colonies were patched with sterile toothpicks onto LB agar plates containing appropriate antibiotics. The plates were incubated at $37^{\circ} \mathrm{C}$ for $14-16 \mathrm{~h}$, and then chilled at $4^{\circ} \mathrm{C}$ for at least 30 min before use. To take the colony lift, a Hybond-N nylon membrane of the appropriate size was carefully placed on the agar surface, and its position was marked on the bottom side of the plate. After 1 min , the membrane was gently removed and treated with a series of solutions, in order to lyse the cells and release the cosmid/fosmid DNA. The membrane was placed with the colony side up on 3MM paper filters (Whatman, Philadelphia, PA) saturated with (1) 10% SDS for 1 min , (2) denaturation solution ($0.5 \mathrm{M} \mathrm{NaOH}, 1.5 \mathrm{M} \mathrm{NaCl}$) for 5 min , (3) neutralization solution ($1.5 \mathrm{M} \mathrm{NaCl}, 0.5 \mathrm{M}$ Tris- $\mathrm{HCl}, \mathrm{pH} 7.5$) for 3 min and this step was repeated once more. Finally, the membrane was vigorously washed in 2x SSC buffer (0.3 $\mathrm{M} \mathrm{NaCl}, 0.03 \mathrm{M}$ tri-sodium citrate) to remove the cell debris, and air dried for 1 h . DNA
was fixed onto the membrane by baking for 2 h at $80^{\circ} \mathrm{C}$ in a vacuum oven, and then the membrane was wrapped in plastic and stored at room temperature.

2.3 Paenibacillus polymyxa procedures

2.3.1 Growth conditions and media

P. polymyxa was routinely cultivated in glucose broth (GB, 1% glucose, 1% peptone, 0.2% beef extract, 0.1% yeast extract, $0.5 \% \mathrm{NaCl}$) or on GB agar plates (containing 1.5% agar) at $37^{\circ} \mathrm{C}$ for fast vegetative growth (Rosado and Seldin, 1993). Fusaricidin production by P. polymyxa was optimized at $28^{\circ} \mathrm{C}$ in a complex medium PDB-soy, a mixture of equal volumes of potato dextrose broth (PDB, Difco) and Soy medium (1.5% soy bean flour, 4.7% soluble starch, $0.01 \% \mathrm{KH}_{2} \mathrm{PO}_{4}, 0.02 \% \mathrm{FeSO}_{4}-7 \mathrm{H}_{2} \mathrm{O}$, pH 6.8) (Salowe et al., 1990). P. polymyxa culture grown in TCSS liquid medium (3\% trypticase soy, 1% soluble starch) at $37^{\circ} \mathrm{C}$ for 24 h was used to inoculate PDB-soy medium as $1 \%(\mathrm{v} / \mathrm{v})$ inoculum, which was then incubated at $28^{\circ} \mathrm{C}$ while being shaken at 250 rpm . Brain Heart Infusion (BHI) medium was used for conjugation experiments and for the preparation of P. polymyxa genomic DNA and plasmids. When required, antibiotics were added to growth media at the following concentrations: apramycin, 25 $\mu \mathrm{g} / \mathrm{ml}$; chloramphenicol, $5-10 \mu \mathrm{~g} / \mathrm{ml}$; polymyxin $\mathrm{B}, 25 \mu \mathrm{~g} / \mathrm{ml}$. Potato dextrose agar (PDA, 2.4% PDB, 1.5% agar) was used for growth of L. maculans and for the fusaricidin bioassay. Paenibacillus spore stocks were prepared by scraping the sporulated colonies from one PDA plate into $0.5-1 \mathrm{ml} 20 \%$ glycerol in one 1.5 ml microcentrifuge tube, and the spore stocks were stored at $-70^{\circ} \mathrm{C}$.

2.3.2 Purification of genomic DNA from P. polymyxa

Genomic DNA from P. polymyxa was prepared by a modified version of the protocol used for isolation of genomic DNA from Streptomyces (Hopwood et al. 1985). P. polymyxa culture, grown in 50 ml BHI for $16-20 \mathrm{~h}$ at $28^{\circ} \mathrm{C}$ and shaken at 250 rpm , was harvested by centrifugation at $12,000 \mathrm{xg}$ for 10 min . The cell pellet was washed twice with 10.3% sucrose, and then resuspended in 4 ml fresh lysozyme solution (25 mM Tris$\mathrm{HCl}, 25 \mathrm{mM}$ EDTA, 0.3 M sucrose, pH 8.0) containing $4 \mathrm{mg} / \mathrm{ml}$ lysozyme and $100 \mu \mathrm{~g} / \mathrm{ml}$ RNase A. The sample was incubated at $37^{\circ} \mathrm{C}$ for 45 min , followed by the addition of SDS and proteinase K to give final concentrations of 2% and $0.2 \mathrm{mg} / \mathrm{ml}$, respectively. The cell lysate was incubated for 15 min at $37^{\circ} \mathrm{C}$, then extracted twice with equal volumes of phenol-chloroform-isoamyl alcohol solution (25:24:1, v/v) and then twice with equal volumes of chloroform-isoamyl alcohol solution ($24: 1, \mathrm{v} / \mathrm{v}$). After the last extraction, genomic DNA in the aqueous phase was precipitated by adding two volumes of 95% ethanol and 0.1 volume of 3 M sodium acetate. The tube was gently inverted until a white fibrous material came out of the solution, and then kept on ice for $5-10 \mathrm{~min}$. The clump of genomic DNA was wound up using a sterile micropipette tip and washed once in 70% ethanol. After centrifugation for 5 min , the DNA pellet was air dried at room temperature for 10 min , dissolved in $50-200 \mu \mathrm{l}$ of 10 mM Tris- HCl buffer (pH 8.5), and stored at $4^{\circ} \mathrm{C}$.

In some cases for PCR reactions, Sigma ${ }^{\circledR}$ GenElute ${ }^{\text {TM }}$ Bacterial Genomic DNA Kit was used for quick preparation of high-purity genomic DNA from 2 ml BHI cultures grown at $37^{\circ} \mathrm{C}$ for $14-16 \mathrm{~h}$.

2.3.3 Plasmid isolation from P. polymyxa

Plasmid DNA was isolated from P. polymyxa using a method previously described by Belliveau and Trevors (1989) with a few modifications. Briefly, the plasmid-bearing P. polymyxa strain was grown at $37^{\circ} \mathrm{C}$ for $16-18 \mathrm{~h}$ in 10 ml BHI medium supplemented with the appropriate antibiotic(s) using a cell production roller drum. The culture was split into six 1.5 ml microcentrifuge tubes, and the cells were collected by centrifugation at $14,000 \mathrm{rpm}$ for 5 min . The cell pellet in each tube was resuspended in $100 \mu \mathrm{l}$ of E buffer (40 mM Tris- $\mathrm{HCl}, 2 \mathrm{mM}$ EDTA, 6.7% sucrose, pH 8.0) supplemented with 2 $\mathrm{mg} / \mathrm{ml}$ lysozyme, and the tubes were incubated at $37^{\circ} \mathrm{C}$ for 30 min . After adding $200 \mu \mathrm{l}$ fresh lysis buffer (50 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.0,6.7 \%$ sucrose, $3 \% \mathrm{SDS}, 0.15 \mathrm{M} \mathrm{NaOH}$), the tubes were gently inverted 20 times to mix the contents, followed by incubation at $60^{\circ} \mathrm{C}$ for 20 min . The cell lysates were neutralized with $100 \mu \mathrm{l}$ of 2 M Tris- $\mathrm{HCl}(\mathrm{pH} 7.0)$, mixed by gentle inversion, and incubated at $37^{\circ} \mathrm{C}$ for 20 min . Following the addition of $50 \mu \mathrm{l}$ of 5 M NaCl , the tubes were kept on ice for an additional 1 h before centrifugation. The supernatants containing plasmid DNA were transferred to fresh tubes, and treated with RNase A $(100 \mu \mathrm{~g} / \mathrm{ml})$ and proteinase $\mathrm{K}(100 \mu \mathrm{~g} / \mathrm{ml})$ for 15 min at $37^{\circ} \mathrm{C}$. Then the samples were extracted once with equal volumes of phenol-chloroform-isoamyl alcohol solution and once with equal volumes of chloroform-isoamyl alcohol solution, after which plasmid DNA in the aqueous phase was precipitated with 2 volumes of 98% ethanol for $16-24 \mathrm{~h}$ at $-70^{\circ} \mathrm{C}$. The DNA pellets were obtained by centrifugation at maximum speed for 15 min , washed once with 70% ethanol, and redissolved in $10 \mu \mathrm{l}$ of 10 mM Tris- HCl buffer (pH 8.5). The DNA samples from six preparations were pooled into one microcentrifuge tube and stored at $-20^{\circ} \mathrm{C}$.

2.3.4 Preparation of P. polymyxa electrocompetent cells and electroporation

The wild-type P. polymyxa PKB1 strain was grown in 20 ml GB liquid medium at $28^{\circ} \mathrm{C}$ for 24 h , shaken at 250 rpm . This starter culture (2 ml) was used to inoculate 200 ml GB broth in a 500 ml flask, which was then incubated at $28^{\circ} \mathrm{C}$, shaken at 250 rpm , until the OD_{600} reached $\sim 0.7-0.8$. The cells were harvested by centrifugation at $10,000 \mathrm{x} \mathrm{g}$ for 15 min at $4^{\circ} \mathrm{C}$, washed twice in $50 \mathrm{ml} 4^{\circ} \mathrm{C}$ sterile distilled water and then once in 50 ml $4^{\circ} \mathrm{C}$ HEB buffer (272 mM sucrose, $1 \mathrm{mM} \mathrm{MgCl} 2,7 \mathrm{mM}$ HEPES, pH 7.3) (Rosado and Seldin, 1993). After the washes, the cells were resuspended in $2 \mathrm{ml} 4^{\circ} \mathrm{C}$ HEB buffer, and $800 \mu \mathrm{l}$ aliquots of the cell suspension were dispensed into 1.5 ml microcentrifuge tubes. The cell aliquots were then used immediately for electroporation, or flash frozen in a dry ice-ethanol bath and stored at $-70^{\circ} \mathrm{C}$ for future use.

For electroporation of plasmid DNA into P. polymyxa, previously frozen electrocompetent cells were slowly thawed in an ice-water bath, and then the DNA sample $(0.5 \mu \mathrm{~g})$ was added to one microcentrifuge tube containing $800 \mu \mathrm{l}$ electrocompetent cells. The contents were mixed by gently pipetting, and transferred into a 4 mm gap disposable electroporation cuvette (Molecular BioProducts). After incubation on ice for 5 min , the cells were pulsed with an electric charge of 2.5 kV and $25 \mu \mathrm{~F}$ capacitance, using a Bio-Rad Gene Pulser ${ }^{\circledR}$ II apparatus. Immediately after the pulse, 1 $\mathrm{ml} 4^{\circ} \mathrm{C} \mathrm{GB}$ broth was added to the cuvette, and the cell suspension was kept on ice for 15 min before transferring to a sterile 15 ml disposable centrifuge tube containing 7 ml GB liquid medium. The electroporated cells were recovered by growing at $28^{\circ} \mathrm{C}$ for 2 h , shaken at 100 rpm , after which the cells were collected by centrifugation at $3,000 \mathrm{xg}$ for 5 min . The cell pellet was resuspended in $500 \mu \mathrm{l}$ GB broth, and aliquots of $100 \mu \mathrm{l}$ were
spread on GB plates containing the appropriate antibiotic(s), followed by incubation at $37^{\circ} \mathrm{C}$ for up to 24 h .

2.3.5 Transfer of DNA into P. polymyxa by intergeneric conjugation

Both E. coli donor strain (ET12567 containing the non-transmissible plasmid pUZ8002 and the plasmid/cosmid/fosmid to be mobilized) and the wild-type PKB1 recipient strain were grown in BHI broth (supplemented with antibiotics as appropriate) for $12-14 \mathrm{~h}$ at $37^{\circ} \mathrm{C}$, shaken at 200 rpm . Donor and recipient cells were washed three times with equal volumes of fresh BHI medium, and then mated (donor $/$ recipient ratio $=$ 5:1) on $0.22 \mu \mathrm{~m}$ Millipore ${ }^{\circledR}$ filters (Millipore Corporation, Bedford, MD) placed on BHI plates. Following 16 h of incubation at $28^{\circ} \mathrm{C}$, cells from each filter were resuspended in 2 ml of BHI broth and $200 \mu \mathrm{l}$ aliquots were spread on GB agar plates containing chloramphenicol ($5 \mu \mathrm{~g} / \mathrm{ml}$) to select for P. polymyxa exconjugants, and polymyxin B (25 $\mu \mathrm{g} / \mathrm{ml}$) to counterselect against the E. coli donor strain. Usually, chloramphenicol resistant colonies that appeared after 24 h incubation at $37^{\circ} \mathrm{C}$ were patched onto fresh GB plates containing higher concentrations of chloramphenicol ($10 \mu \mathrm{~g} / \mathrm{ml}$) and polymyxin B $(50 \mu \mathrm{~g} / \mathrm{ml})$ for a clearer selection of chloramphenicol resistant P. polymyxa exconjugants.

2.3.6 Antifungal activity bioassay

Production of fusaricidins by P. polymyxa strains was detected by bioassay with L. maculans as the indicator organism. L. maculans was stored at $-70^{\circ} \mathrm{C}$ as a 20% glycerol stock of pyenidiospores, which was prepared by scraping the lawn of L. maculans grown on PDA plates into sterile 20% glycerol. The mixture was then vigorously vortexed and
filtered through sterile cotton fluff and aliquots of 1 ml were collected into microcentrifuge tubes. For the fusaricidin bioassay, PDA plates $(24.5 \mathrm{~cm} \times 24.5 \mathrm{~cm}$ square petri dishes) were spread with $0.5-1 \mathrm{ml}$ of L. maculans spore stock, and sample wells were punched out of the agar with a sterile cork borer. For small-scale extraction of antifungal material, P. polymyxa was grown in 20 ml PDB-soy medium at $28^{\circ} \mathrm{C}$ for 72 h , shaken at 250 rpm . Culture samples $(1.5 \mathrm{ml})$ were harvested by microcentrifugation at $14,000 \mathrm{rpm}$ for 10 min , and cell pellets were resuspended in $100 \mu \mathrm{l}$ of methanol with the aid of a small sterile plastic pestle. Following incubation at room temperature for 30 min , cell suspensions were centrifuged and the fusaricidin-containing supernatants were applied to wells of the bioassay plate, along with the solvent control $(100 \mu \mathrm{l}$ of methanol). Alternatively, $750-\mu \mathrm{l}$ amounts of whole cultures, or culture supernatants, or uninoculated PDB-soy media (the control) were mixed with equal volumes of methanol and supplemented with $10 \mu \mathrm{l}$ of 1:10 diluted glacial acetic acid. After 30 min incubation at room temperature, cells were harvested by centrifugation and $500 \mu \mathrm{l}$ of each supernatant was air dried to $\sim 100 \mu$ l. These concentrated extracts were then applied to wells of the bioassay plate. Bioassay plates were incubated for 24 h at room temperature exposed to room light, and then at $28^{\circ} \mathrm{C}$ in the dark for an additional 72 h .

2.3.7 HPLC analysis of fusaricidin production

P. polymyxa PKB1 or fusA mutant strain A4 were grown in 200 ml PDB-soy medium at $28^{\circ} \mathrm{C}$ for 48 h . Each culture was mixed with an equal volume of methanol and then supplemented with KCl at a concentration of $5 \%(\mathrm{w} / \mathrm{v})$. After 30 min of incubation at room temperature, each cell suspension was harvested by centrifugation, and 25 ml of
the supernatant was applied to a SepPak C18 cartridge (Waters) that had been prewetted with 5 ml of methanol and rinsed with 5 ml of water. The loaded cartridge was then eluted with 5 ml of water, 5 ml of 40% methanol, and finally 5 ml of 80% methanol. The 80% methanol extracts were concentrated to dryness under a stream of air and dissolved in 1.0 ml of 50% methanol. Samples $(0.05 \mathrm{ml})$ of each 80% methanol concentrate were analyzed by C18 reversed-phase chromatography on a Bondclone $10 \mu \mathrm{C} 18$ column (8 by 100 mm ; Phenomenex) at a flow rate of $2.0 \mathrm{ml} / \mathrm{min}$ using a $15-\mathrm{min}$ linear gradient ranging from 30% methanol to 90% methanol, both in 0.1% formic acid, with detection at 220 nm . Fractions (0.5 ml) were collected across the gradient, dried, and bioassayed against L. maculans.

2.4 DNA manipulations

Routine DNA manipulations and analyses were carried out as described by Sambrook et al. (1989). Restriction digestion of DNA was performed according to the manufacturers' protocols (New England Biolabs, or Roche). The ligation reaction was 20 $\mu \mathrm{l}$ in volume, and the molar ratio of the insert to the vector is maintained at $3: 1-5: 1$. The mixture of vector, insert and sterile distilled water was pre-heated at $50^{\circ} \mathrm{C}$ for 5 min and then kept on ice for 2 min . After adding $1 \mu \mathrm{~T} 4 \mathrm{DNA}$ ligase (Roche) and the corresponding 1 x ligation buffer, the ligation mixture was incubated at $16^{\circ} \mathrm{C}$ for $16-20 \mathrm{~h}$. In the case of blund-end ligation, PEG 8000 was added into the reaction to give a final concentration of $15 \%(\mathrm{w} / \mathrm{v})$.

2.4.1 Gel purification of DNA fragments

DNA fragments fractionated by electrophoresis on standard agarose gels were purified using the QIAquick Gel Extraction Kit (Qiagen, Mississauga, ON) following the manufacture's instruction. DNA was eluted from the spin column into $30 \mu \mathrm{l}$ elution buffer supplied with the kit.
P. polymyxa genomic DNA fragments were also purified from 0.8% low-meltingpoint agarose gels by agarase digestion. Briefly, the gel slices containing DNA fragments of desired sizes were excised and soaked in two volumes ($1 \mathrm{mg} \sim 1 \mu \mathrm{l})$ of $1 \mathrm{x} \beta$-Agarase buffer (New England Biolabs) in a 1.5 ml microcentrifuge tube. The tube was incubated at $4^{\circ} \mathrm{C}$ for 30 min , and then heated at $65^{\circ} \mathrm{C}$ until the agarose gel completely dissolved ($\sim 10 \mathrm{~min}$). After the molten agarose was cooled to $\sim 42^{\circ} \mathrm{C}$, the enzyme β-Agarase I (New England Biolabs) was added to the sample at 1 unit per 100 mg of the original agarose gel. The tube was incubated at $42^{\circ} \mathrm{C}$ for an additional 3 h to allow complete digestion of agarose. Following the addition of 0.1 volume of 3 M sodium acetate, the tube was chilled at $4^{\circ} \mathrm{C}$ for 15 min , microcentrifuged at $14,000 \mathrm{rpm}$ for 15 min , and the supernatant was transferred to a new microcentrifuge tube. DNA was precipitated by adding 2 volumes of isopropanol along with incubation for up to 24 h at $-20^{\circ} \mathrm{C}$. Finally, the DNA pellet was washed in 70% isopropanol, air dried and redissolved in an appropriate volume of TE buffer (pH 8.0).

2.4.2 Polymerase chain reaction (PCR)

Routine PCR reactions ($25 \mu \mathrm{l}$) contained 100 ng plasmid DNA or 250 ng genomic DNA as template, 10 pmol of each primer, and $0.5 \mu \mathrm{l}(\sim 2.5 \mathrm{U})$ Taq DNA polymerase (Fermentation Service Unit, Department of Biological Sciences, University of Alberta) in

1x Taq buffer (50 mM Tris- $\mathrm{HCl}, \mathrm{pH} 9.0,1.5 \mathrm{mM} \mathrm{MgCl}_{2}, 0.4 \mathrm{mM} \beta$-mercaptoethanol, 0.1 $\mathrm{mg} / \mathrm{ml}$ bovine serum albumin, 10 mM ammonium sulfate, 0.2 mM of each dNTP). PCR reactions were carried out using thin-walled microcentrifuge tubes (0.2 ml) along with a T-Gradient thermocycler (Biometra, Goettingen, Germany). The oligonucleotide primers used for PCRs described in this thesis are listed in Table 2.3.

For preliminary identification of P. polymyxa mutants, colony PCR was performed using fresh GB cultures grown at $37^{\circ} \mathrm{C}$ for 16 h . Cells harvested from $100 \mu \mathrm{l}$ of P. polymyxa culture were washed once with $100 \mu \mathrm{l}$ of 10.3% sucrose solution, resuspended in $25 \mu \mathrm{l}$ sterile distilled water, and heated at $95^{\circ} \mathrm{C}$ for 15 min . Following microcentrifugation at $7,000 \mathrm{rpm}$ for $5 \mathrm{~min}, 5-10 \mu \mathrm{l}$ of the supernatant was used as template in a $25 \mu \mathrm{l}$ PCR reaction.

For amplification of a DNA fragment corresponding to the internal adenylation domain (FusA-A6) of the fusaricidin synthetase, the Expand High Fidelity PCR system (Roche) was used to improve the fidelity of the PCR product. Amplification was conducted in a $50 \mu \mathrm{l}$ reaction containing 250 ng fosmid DNA (6D11), 300 nM of each primer, $200 \mu \mathrm{M}$ of each dNTP , and $0.75 \mu \mathrm{l}(2.6 \mathrm{U})$ enzyme mix in 1 x Buffer 2 (with 1.5 mM MgCl 2), under the following PCR conditions: $94^{\circ} \mathrm{C}$ for $2 \mathrm{~min} ; 10$ cycles of $94^{\circ} \mathrm{C}$ for $15 \mathrm{~s}, 55^{\circ} \mathrm{C}$ for 30 s , and $72^{\circ} \mathrm{C}$ for $90 \mathrm{~s} ; 20$ cycles of $94^{\circ} \mathrm{C}$ for $15 \mathrm{~s}, 55^{\circ} \mathrm{C}$ for 30 s , and $72^{\circ} \mathrm{C}$ for 90 s with the extension time increased by 5 s per cycle; and a final elongation step of $72^{\circ} \mathrm{C}$ for 7 min .

For generation of long PCR products, PCR reactions were set up using the Expand Long Template PCR system (Roche). The $50 \mu \mathrm{l}$ reaction mixture consisted of 500 ng genomic DNA, 500 nM of each primer, $500 \mu \mathrm{M}$ of each dNTP , and $0.75 \mu \mathrm{l}$ (3.75 U)
enzyme mix in 1 x Buffer 2 (containing 2.75 mM MgCl). Amplification was carried out with the following program: $94^{\circ} \mathrm{C}$ for $2 \mathrm{~min} ; 10$ cycles of $94^{\circ} \mathrm{C}$ for $10 \mathrm{~s}, 55^{\circ} \mathrm{C}$ for 30 s , and $68^{\circ} \mathrm{C}$ for $7 \mathrm{~min} ; 20$ cycles of $94^{\circ} \mathrm{C}$ for $15 \mathrm{~s}, 58^{\circ} \mathrm{C}$ for 30 s , and $68^{\circ} \mathrm{C}$ for 7 min with the extension time increased by 20 s per cycle; and a final elongation step of $68^{\circ} \mathrm{C}$ for 7 min .

For direct cloning of PCR-amplified DNA fragments, 1 unit of Taq DNA polymerase was added to the reaction mixture immediately after amplification. The tube was incubated at $72^{\circ} \mathrm{C}$ for 10 min in order to introduce the $3^{\prime} \mathrm{A}$-overhangs necessary for cloning into the $\mathrm{pCR}^{\circledR} 2.1-\mathrm{TOPO}^{\circledR}$ vector (Invitrogen, Carlsbad, CA). The TOPO ${ }^{\circledR}$ cloning reaction was set up following the manufacturer's instructions.

2.4.3 Transfer of DNA fragments onto nylon membranes

Restriction enzyme digested DNA was fractionated by agarose gel electrophoresis, stained in ethidium bromide solution, and photographed under UV light. The agarose gel was treated by soaking in depurination solution $(0.25 \mathrm{M} \mathrm{HCl})$ for 10 min with gentle agitation, then in denaturation buffer ($1.5 \mathrm{M} \mathrm{NaCl}, 0.5 \mathrm{M} \mathrm{NaOH}$) for 30 min with gentle agitation, and finally in neutralization buffer ($1.5 \mathrm{M} \mathrm{NaCl}, 0.5 \mathrm{M}$ Tris- $\mathrm{HCl}, \mathrm{pH} 7.5$) for 30 min with gentle agitation. Fractionated DNA fragments were transferred onto a Hybond-N nylon membrane (Amersham) by capillary blotting following the manufacturer's instructions. DNA was fixed onto the membrane by baking for 2 h at $80^{\circ} \mathrm{C}$ in a vacumm oven. The membrane was either used immediately in hybridization experiments or wrapped in plastic and stored at room temperature in a dark place for future use.

2.4.4 Labeling of DNA probes

Double-stranded DNA fragments or linearized plasmids were labeled with $[\alpha-$ ${ }^{32}$ P]dCTP by nick translation (Hopwood et al., 1985; Sambrook et al., 1989). The reaction mixture ($30 \mu \mathrm{l}$) contained $0.1-1 \mu \mathrm{~g}$ probe DNA, $1 \mu \mathrm{l}$ each of 1 mM unlabelled dATP, dGTP and dTTP (Roche), $1 \mu \mathrm{l}(10 \mu \mathrm{Ci})\left[\alpha{ }^{32} \mathrm{P}\right] \mathrm{dCTP}$ (Amersham), $2.5 \mu \mathrm{l}$ of $1: 10^{4}$ diluted DNAse I (Roche), and 0.5μ I DNA polymerase I (Roche) in 1x nick translation buffer (50 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.4,10 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ DTT, $50 \mu \mathrm{~g} / \mathrm{ml}$ BSA). After incubation at $15^{\circ} \mathrm{C}$ for $1-2 \mathrm{~h}$, the nick translation reaction was terminated by adding $15 \mu \mathrm{l}$ of $0.5 \mathrm{M} \mathrm{EDTA}(\mathrm{pH} 8.0)$. The radiolabeled DNA probe was then denatured by boiling for 5 min , chilled on ice briefly, and used immediately in hybridization experiments.

2.4.5 Hybridization of Southern and colony blots

The nylon membrane with bound DNA was placed in a hybridization bottle (Robbins Scientific), and was pre-wetted first in sterile distilled water and then in the hybridization buffer (1 mM EDTA, 7% SDS, $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$, pH 7.2). When there was significant overlap of the blot in the tube, a nylon mesh of larger size was used in order to separate the overlapped layers. The membrane was prehybridized with $100-150 \mu \mathrm{~g} / \mathrm{ml}$ denatured salmon sperm DNA in $25-50 \mathrm{ml}$ hybridization buffer. The bottle was incubated in a hybridization oven (Fisher Scientific) at $65^{\circ} \mathrm{C}$ for $1-2 \mathrm{~h}$ before the denatured, radiolabeled DNA probe was added. After hybridization for at least 12 h at $65^{\circ} \mathrm{C}$, the membrane was rinsed briefly in 2 x SSC $+0.1 \%$ SDS, and then washed twice (5 min each) in the same solution at room temperature, twice (10 min each) in $1 \mathrm{xSSC}+0.1 \%$ SDS at $65^{\circ} \mathrm{C}$, and three times (5 min each) in $0.1 \mathrm{x} \operatorname{SSC}+0.1 \%$ SDS at $65^{\circ} \mathrm{C}$. The
membrane was wrapped in plastic, and placed in a phosphorimager (Molecular Dynamics model 445 SI) to develop autoradiograms from 2 h to 24 h .

For re-hybridization analysis, the membrane was stripped of the bound DNA probe by soaking in boiling 0.1% SDS solution. The SDS bath was allowed to cool to room temperature, and the stripping procedure was repeated once. Finally, the membrane was rinsed with 2 x SSC, and the removal of the radiolabeled probe was confirmed using the phosphorimager.

2.4.6 DNA sequencing and analysis

Routine DNA sequencing was performed using the DYEnamic ET Terminator Cycle Sequencing Kit (Amersham). The reaction ($20 \mu \mathrm{l}$) was set up with 500 ng plasmid DNA, or 800-1000 ng of cosmid/fosmid DNA partially digested with ScaI, as template. The reaction mixture also contained 5 pmol of primer and $4-8 \mu \mathrm{l}$ of the ET sequencing premix in lx ET buffer (80 mM Tris- $\mathrm{HCl}, 2 \mathrm{mM} \mathrm{MgCl} 2$, pH 9.0). The sequencing reaction was carried out in a Biometra ${ }^{\circledR}$ T-Gradient thermocycler using the program consisting of 30 cycles of $96^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 60^{\circ} \mathrm{C}$ for 1 min . After the reaction cycles, $2 \mu \mathrm{l}$ salt solution (1.5 M sodium acetate, $\mathrm{pH}>8.0,250 \mathrm{~nm}$ EDTA) and $80 \mu \mathrm{l}$ of 95% ethanol were added to the tubes, which were then kept on ice for 15 min followed by centrifugation at room temperature for 15 min . The DNA pellet was washed once with 70% ethanol, air dried for up to 5 min , and then sent to MBSU at University of Alberta, from where the DNA sequence information was obtained. The nucleotide sequences of cosmids Col-8 and Col-19 were determined by SeqWright DNA Technology Services (Houston, TX). DNA sequencing of two fosmids, 4G9 and 6D11, was carried out in part
by SeqWright, and gaps were closed by direct sequencing of fosmid DNA, performed by MBSU. The nucleotide sequence data were compiled and analyzed using either GeneTools 2.0 (BioTools Inc., Edmonton, Canada) or DNA Strider 1.2 (Marck, 1988). The online programs BLAST (http://www. ncbi.nlm.nih.gov/BLAST/) and ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html) were used for homology searches and prediction of open reading frames (ORFs), respectively.

2.4.7 Preparation of \boldsymbol{P}. polymyxa genomic libraries

The first P. polymyxa genomic DNA library was constructed using the SuperCos-1 Cosmid Vector Kit (Stratagene, La Jolla, CA) according to the manufacturer's instructions. Briefly, the SuperCos-1 vector was digested with $X b a \mathrm{I}$, dephosphorylated with calf intestine alkaline phosphatase (CIAP), and then digested with BamHI. Genomic DNA from P. polymyxa PKB1 was partially digested with Sau3AI for an appropriate time interval to obtain insert fragments predominantly of the desired size (30-42 kb). After dephosphorylation with CIAP, the insert DNA was ligated into the BamHI site of the precut cosmid vector. The resulting ligation mixture was then packaged in vitro with Gigapack III Gold packaging extract (Stratagene), and transfected into E. coli XL1-Blue MR host strain supplied along with the kit.

The second SuperCos-1 library was constructed following the same procedures mentioned above, except that the Sau3AI partially digested genomic DNA from PKB1 strain was size-fractionated by sucrose gradient centrifugation before ligation into the cosmid vector. A sucrose solution in sterile distilled water (22.5\%) was frozen in a centrifuge tube for at least 12 h at $-20^{\circ} \mathrm{C}$ in a vertical position and thawed slowly at room
temperature. This freeze-thaw cycle was repeated once more, and care was taken not to disturb the gradient $(10 \%-35 \%)$ that had formed. The DNA sample was gently loaded onto the surface of the sucrose gradient, and then the tube was centrifuged using a SW-40 Ti rotor at $35,000 \mathrm{rpm}$ for 24 h at $4^{\circ} \mathrm{C}$, after which fractions of approximately $700 \mu \mathrm{l}$ were transferred into clean tubes. The contents of each fraction were examined by agarose gel electrophoresis to determine which fractions contain genomic DNA fragments between 30 kb and 42 kb . The DNA fragments of desired size ($30-42 \mathrm{~kb}$) were then precipitated from the sucrose solutions, dephosphorylated, and ligated into the BamHI site of the SuperCos-1 vector.

The third genomic library was constructed using the CopyRight ${ }^{\text {TM }}$ Cloning Kits (Lucigen, Middleton, WI) following the manufacturer' instructions. Chromosomal DNA from PKB1 strain was partially digested with Sau3AI and size-fractioned on a 0.8% low-melting-point agarose gel. The region containing DNA fragments of 35 to 45 kb was excised and recovered from the gel by agarase digestion. After precipitation with isopropanol, the purified genomic DNA fragments were ligated with BamHI-digested, dephosphorylated pSMART-FOS fosmid vector at $16^{\circ} \mathrm{C}$ for 16 h . The ligation reaction ($10 \mu \mathrm{l}$) contained 70 ng insert DNA, 70 ng fosmid vector, 1 mM ATP, and 1 unit of BAC Clone ${ }^{\mathrm{TM}}$ Ligase in the 1 x BAC Clone ${ }^{\mathrm{TM}}$ Ligation buffer, from which $4 \mu \mathrm{l}$ of the resulting ligation mixture was packaged in vitro with Gigapack III XL packaging extract (Stratagene) followed by transfection into the E. clonil ${ }^{\mathfrak{B}}$ Replicator ${ }^{\mathrm{TM}}$ host cells.

2.4.8 Creation of an Apra ${ }^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ oriT disruption cassette

The P. polymyxa fusA, ymcC and ktp mutants were prepared using a modified version of the recently described Redirect ${ }^{\mathcal{Q}}$ PCR targeting system (Gust et al., 2003). None of the antibiotic resistance cassettes included as part of the original Redirect ${ }^{\circ}$ system (Plant Biosciences, Norwich, UK) were suitable for use with P. polymyxa directly, and so a new plasmid construct, pJL9, carrying a hybrid gene disruption cassette Apra ${ }^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ oriT, was prepared. Briefly, the Apra ${ }^{\mathrm{R}}$ oriT $\left[\operatorname{aac}(3) I V\right.$ and ori $T_{\mathrm{RK} 2}$] cassette from pIJ773 was cloned into pIJ2925 as a HindIII-EcoRI fragment to give the plasmid pJL7. The chloramphenicol resistant gene cat was removed from pC 194 as a Sau3AHpaII fragment and inserted between the BamHI and $A c c \mathrm{I}$ sites of pIJ2925 to generate pJL1. The cat-containing PstI-EcoRI fragment of $\mathrm{pJL1}$ was then cloned into pBluescript $\mathrm{SK}+$, from where the cat gene was excised as a SmaI fragment and inserted into a unique NaeI site located between the oriT and $\operatorname{aac}(3) I V\left(\mathrm{Apra}^{\mathrm{R}}\right)$ genes in the plasmid pJL7, to produce the plasmid pJL9. The new hybrid resistance cassette ($\mathrm{Apra}^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ oriT) imparted both apramycin resistance for selection in E. coli and chloramphenicol resistance for selection in P. polymyxa.

2.4.9 PCR-targeted gene disruption

The Apra ${ }^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ oriT disruption cassette was amplified by PCR using a gel-purified 2.5-kb Bg III fragment from pJL9 as template. Each primer consists of a $39-\mathrm{nt}$ targeting sequence at the 5^{\prime} end, identical to regions flanking the target gene, and a 19 - or $20-\mathrm{nt}$ priming sequence at the 3 ' end, derived from the disruption cassette. The reaction ($50 \mu \mathrm{l}$) was set up using 50 ng gel-purified DNA fragment, 50 pmol of each primer, $0.5 \mu \mathrm{l} \mathrm{Taq}$ DNA polymerase, and $1 \mu \mathrm{l}$ of 1:50 diluted Pfu DNA polymerase (Fermentation Service

Unit, Department of Biological Sciences, University of Alberta) in 1x Taq buffer. Amplification was conducted under the following PCR conditions: $94^{\circ} \mathrm{C}$ for 2 min ; 10 cycles of $94^{\circ} \mathrm{C}$ for $45 \mathrm{~s}, 50^{\circ} \mathrm{C}$ for 45 s , and $68^{\circ} \mathrm{C}$ for $2 \mathrm{~min} ; 15$ cycles of $94^{\circ} \mathrm{C}$ for 45 s , $55^{\circ} \mathrm{C}$ for 45 s , and $68^{\circ} \mathrm{C}$ for 2 min with the extension time increased by 2 s per cycle; and a final elongation step of $68^{\circ} \mathrm{C}$ for 5 min . The linear PCR product was introduced by electroporation into E. coli BW25113 carrying both pIJ790 and the cosmid carrying the target gene, wherein the λ Red functions encoded by pIJ790 promoted homologous recombination between the target gene and the PCR-amplified disruption cassette. To prepare $y m c C$ and $k t p$ mutants, the λ Red recombination plasmid pKD 46 was used as a substitute for pIJ790, along with the use of fosmid 4G9, while all other conditions remained the same. The resulting mutagenized cosmid/fosmid, in which the target gene was replaced by the disruption cassette, was then transformed into E. coli ET12567/pUZ8002, and from there introduced into wild-type P. polymyxa PKB1 strain via intergeneric conjugation.

2.5 Protein analysis

2.5.1 Overproduction and purification of the internal adenylation domain FusA-A6

A DNA fragment encoding the sixth A domain (FusA-A6) was amplified from fosmid 6D11 using the Expand High Fidelity PCR system (Roche) with primers JRL37 and JRL38 (Section 2.4.2). The PCR product was first cloned into $\mathrm{pCR}^{\circledR} 2.1-\mathrm{TOPO}{ }^{\circledR}$ (Invitrogen), and then excised as an NdeI-BamHI fragment, which was ligated into a similarly digested vector $\mathrm{pET}-19 \mathrm{~b}$ (Novagen, Darmstadt, Germany). The recombinant expression plasmid was transformed into E. coli BL21(DE3) and one transformant was
grown in 2.5 ml LB medium containing $100 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin for 16 h at $37^{\circ} \mathrm{C}$. The whole 16 h culture was added into 50 ml LB medium supplemented with $100 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin in a 250 ml flask, which was then incubated at $37^{\circ} \mathrm{C}$ with shaking at 300 rpm until the OD_{600} reached ~ 0.6. When induced with 1 mM IPTG, the culture yielded an N terminally His-tagged FusA-A6 protein after an additional 4 h of growth at $22^{\circ} \mathrm{C}$. Purification of soluble His-tagged FusA-A6 protein was performed by Ni^{2+}-affinity chromatography (Qiagen) according to the manufacture's protocol. Briefly, the 50 ml culture was harvested by centrifugation at $4,400 \mathrm{xg}$ for 20 min . The cell pellet was frozen in a dry ice-ethanol bath, thawed on ice, and resuspended in 5 ml lysis buffer (50 $\mathrm{mM} \mathrm{NaH} 2 \mathrm{PO}_{4}, 300 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ imidazole, $2 \mathrm{mM} \beta$-mercaptoethanol, pH 8.0) supplemented with $1 \mathrm{mg} / \mathrm{ml}$ lysozyme. The cell suspension was incubated on ice for 30 min and then sonicated on ice using a 2.5 mm probe (Branson Sonifier 450) for $10 \times 10 \mathrm{~s}$ on low setting. The cell lysate was centrifuged at $10,000 \mathrm{xg}$ for 20 min at $4^{\circ} \mathrm{C}$, and 4 ml of the supernatant was mixed with $1 \mathrm{ml} 50 \% \mathrm{Ni}-\mathrm{NTA}$ slurry in a 25 ml flask, which was incubated at $4^{\circ} \mathrm{C}$ for an hour with shaking at 200 rpm . The resulting mixture was loaded into a 5 ml plastic syringe barrel plugged with cotton wool, and endogenous proteins that unspecifically bound to the Ni-NTA matrix were removed by washing the column three times with 4 ml wash buffer $\left(50 \mathrm{mM} \mathrm{NaH}_{2} \mathrm{PO}_{4}, 300 \mathrm{mM} \mathrm{NaCl}, 20 \mathrm{mM}\right.$ imidazole, 2 mM β-mercaptoethanol, pH 8.0). The purified His-tagged protein was then eluted with 4×0.5 ml of elution buffer $\left(50 \mathrm{mM} \mathrm{NaH}{ }_{2} \mathrm{PO}_{4}, 300 \mathrm{mM} \mathrm{NaCl}, 250 \mathrm{mM}\right.$ imidazole, $2 \mathrm{mM} \beta-$ mercaptoethanol, pH 8.0). The second and third eluates were pooled together and desalted into assay buffer (50 mM sodium phosphate, $\mathrm{pH} 8.0,10 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 2 \mathrm{mM}$ dithiothreitol, 1 mM EDTA) using a $\mathrm{NAP}^{\mathrm{TM}}-5$ column (Amersham Pharmacia Biotech,

Uppsala, Sweden). The purity of the recombinant protein was checked by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis with Coomassie Brilliant Blue staining. Protein concentration was determined by using a calculated ε_{280} for purified FusA-A6 of $65,375 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ (Pace et al., 1995).

2.5.2 SDS-polyacrylamide gel electrophoresis (SDS-PAGE)

Protein samples were examined by electrophoresis on a 10\% SDS-polyacrylamide gel using a Mini-Protein ${ }^{\circledR}$ III Electrophoresis Cell (Bio-Rad). The resolving gel was prepared with 10% Acrylamide/Bis solution (37.5:1, Bio-Rad), 0.1% SDS, and 0.375 M Tris- $\mathrm{HCl}(\mathrm{pH} 8.8)$, and each 10 ml gel solution was polymerized with $5 \mu \mathrm{TEMED}$ (N,N, N',N'-tetra-methylethylenediamine, Bio-Rad) and $50 \mu \mathrm{l}$ of 10% ammonium persulfate (Sigma). The stacking gel is composed of 4% Acrylamide/Bis solution (37.5:1), 0.1% SDS, and 0.125 M Tris- HCl (pH 6.8), and each 5 ml gel solution was polymerized with $25 \mu \mathrm{l}$ of 10% ammonium persulfate and $5 \mu \mathrm{l}$ TEMED. Samples were prepared for electrophoresis by mixing with equal volumes of 2 x loading buffer (0.225 M Tris- HCl , pH 6.8, 50% glycerol, 5% SDS, 0.05% bromophenol blue, 0.25 M dithiothreitol) and boiling for 5 min . PageRuler ${ }^{\text {TM }}$ Prestained Protein Ladder Plus (Fermentas) was used as the molecular weight marker. The gel was run at room temperature in 1 x running buffer (0.3% Tris base, 1.44% glycine, 0.1% SDS, pH 8.3) at 200 V for $45-60 \mathrm{~min}$, and the protein bands were visualized by staining the gel with Coomassie Brilliant Blue as described by Sambrook et al. (1989).

2.5.3 ATP-PPi exchange assay

The amino acid specificity of purified recombinant FusA-A6 protein was determined using an ATP-PPi exchange assay, performed as previously described by Mootz and Marahiel (1997) with minor modifications. Reaction mixtures contained 50 mM sodium phosphate (pH 8.0), 2 mM MgCl , 2 mM dithiothreitol, 2 mM ATP, 1 mM amino acid substrate, $0.2 \mu \mathrm{Ci}$ tetrasodium $\left[{ }^{32} \mathrm{P}\right]$ pyrophosphate (Perkin Elmer, Boston, MA) and 0.1 mM tetrasodium pyrophosphate. Reactions were initiated by the addition of recombinant FusA-A6 protein to a final concentration of 250 nM in a total volume of 100 μ l. After incubation at $37^{\circ} \mathrm{C}$ for 15 min , reactions were stopped by adding 0.5 ml of termination mixture ($1.2 \%[\mathrm{w} / \mathrm{v}]$ activated charcoal, 0.1 M tetrasodium pyrophosphate, and $0.5 \mathrm{M} \mathrm{HClO}_{4}$). The charcoal was sedimented by microcentrifugation at $14,000 \mathrm{rpm}$ for 5 min , washed once with 1 ml distilled water, and resuspended in 0.5 ml distilled water. The samples were then added to scintillation vials containing 4 ml scintillation fluid, and the radioactivity bound to the charcoal was determined using the Beckman LS 3801 liquid scintillation counter. ${ }^{12}$

[^1]

Table 2.1 (continued)

Strain	Relevant description ${ }^{a}$	Source / reference
P. polymyxa strains		
PKB1	Wild-type strain producing fusaricidins	P. Kharbanda, Alberta Research Council
A1/A5	fusA disruption mutants (single crossover), Apra ${ }^{\mathrm{R}}, \mathrm{Cm}^{\mathrm{R}}$	This study
A4/A6	fusA disruption mutants (double crossover), $\mathrm{Apra}^{\mathrm{R}}, \mathrm{Cm}^{\mathrm{R}}$	This study
\#3/\#12	$y m c C$ disruption mutants (single crossover), $\mathrm{Apra}^{\mathrm{R}}, \mathrm{Cm}^{\mathrm{R}}$	This study
\#8/\#11	$y m c C$ disruption mutants (double crossover), $\mathrm{Apra}^{\mathrm{R}}, \mathrm{Cm}^{\mathrm{R}}$	This study
T1	ktp disruption mutant (double crossover), Apra ${ }^{\mathrm{R}}, \mathrm{Cm}^{\mathrm{R}}$	This study
Fungal strain		
L. maculans	Indicator organism for fusaricidin bioassay	P. Kharbanda, Alberta

${ }^{a}$ Apra ${ }^{\mathrm{R}}$, apramycin resistance; Cm^{R}, chloramphenicol resistance; $\mathrm{Str}^{\mathrm{R}}$, streptomycin and spectinomycin resistance; Te^{R}, tetracycline resistance.

Table 2.2 (continued)

Plasmid	Relevant description ${ }^{\text {a }}$	Source / reference
pIJ790	λ Red expression plasmid, gam bet exo araC replot ${ }^{\text {ls, }}, \mathrm{Cm}^{\text {R }}$	Gust et al. (2003)
pJH101	E. coli-based integrational vector, $\mathrm{Amp}^{\mathrm{R}}, \mathrm{Tet}^{\mathrm{R}}, \mathrm{Cm}^{\mathrm{R}}$	Ferrari et al. (1983)
pJL1	pIJ2925 carrying the cat gene from $\mathrm{pCl} 194, \mathrm{Amp}^{\mathrm{R}}, \mathrm{Cm}^{\mathrm{R}}$	This study
pJL5	pBluescript SK+ carrying the cat-containing PstI-EcoRI fragment of pJLl, $\mathrm{Amp}^{\mathrm{R}}, \mathrm{Cm}^{\mathrm{R}}$	This study
pJL7	pIJ2925 carrying the Apra ${ }^{\text {R orit }}$ gene disruption cassette from pIJ $773, \mathrm{Amp}^{\mathrm{R}}, \mathrm{Apra}^{\mathrm{R}}$	This study
pJL9	plJ2925 carrying the $\mathrm{Apra}^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ oriT gene disruption cassette, $\mathrm{Amp}^{\mathrm{R}}, \mathrm{Apra}^{\mathrm{R}}, \mathrm{Cm}^{\mathrm{R}}$	This study
pJL-asn:cat		This study
pJL-asn:JH101	p.IH101 carrying the fus-asn gene fragment, $\mathrm{Amp}^{\mathrm{R}}, \mathrm{Tet}^{\mathrm{R}}, \mathrm{Cm}^{\mathrm{R}}$	This study
pKD46	λ Red expression plasmid, gam bet exo arab rep $1011^{\text {1s }}$, Amp ${ }^{\text {R }}$	Datsenko and Wanner (2000)
pSET Ω	E. coli plasmid carrying aadA, the spectinomycin-streptomycin resistance gene selectable in Streptomyces, Str $^{\mathrm{R}}, \mathrm{Spec}^{\mathrm{R}}$	O^{\prime} Connor et al. (2002)

Table 2.2 (continued)

Plasmid	Relevant description ${ }^{\text {a }}$	Source / reference
pSKNeo-S	pBluescript II SK+ carrying a neomycin resistance gene cassette selectable in Streptomyces, Amp ${ }^{\mathrm{R}}, \mathrm{Neo}^{\mathrm{R}}$	Jensen's lab
pSMART-FOS	E. coli fosmid cloning vector for PKB1 genomic library preparation, single cos site, parABC repE oriS oriV, Cm^{R}	Lucigen
pUC118	E. coli phagemid cloning vector, $\mathrm{Amp}^{\text {R }}$	Vieira and Messing (1987)
pUC119	E. coli phagemid cloning vector, $\mathrm{Amp}^{\text {R }}$	Vieira and Messing (1987)
pUC1198	pUC119 derivative in which the bla gene (Amp ${ }^{\mathrm{R}}$) was replaced by the aadA gene from pSETR, Str $^{\mathrm{R}}$, Spec $^{\text {R }}$	This study
pUZ8002	A non-transmissible plasmid encoding transfer function for mobilizing oriT-containing plasmid/cosmid/fosmid from E. coli to P. polymyxa, tra, RP4, $\mathrm{Kan}^{\mathrm{R}}$	Paget et al. (1999)
SuperCos-1	E. coli cosmid cloning vector for PKB1 genomic library preparation, dual cos sites, Amp ${ }^{R}$, $\mathrm{Kan}^{\mathrm{R}}$	Stratagene

${ }^{a}$ Amp R, ampicillin resistance; $\mathrm{Apra}^{\mathrm{R}}$, apramycin resistance; Cm^{R}, chloramphenicol resistance; Kan ${ }^{\mathrm{R}}$, kanamycin resistance; $\mathrm{Neo}{ }^{\mathrm{R}}$, neomycin resistance; $\mathrm{Str}^{\mathrm{R}}$, streptomycin resistance; Spec $^{\mathrm{R}}$, spectinomycin resistance; Tet $^{\mathrm{R}}$, tetracycline resistance.

Table 2.3 Oligonucleotide PCR primers used in this study.

Primer	Sequence ($\left.5^{\prime}-3^{\prime}\right)^{\text {a }}$	Use / function ${ }^{\text {b }}$
B1	CCG GCC GCT GCG GIT G(CT)(AT) (CG)IA C	Primer pair for amplifying peptide synthetase genes from the PKB1 chromosome
J6	ATG AGA ATT CTA GAG CTC IGA (AG)TG ICC ICC (aC)ag	
JRLI	tac gig gg gcc tat ctg act at	Primer pair for PCR verification of fus-asn gene disruption
JRL3	tCt gct ata ctg gga tge gct ana	
JRL15-RD	CCT GAT GGC Aat att gan tat ttg gg egg atc gac cat att CCG gGg atc cgi cga cc	Primer pair for PCR-targeting mutagenesis of orf7 (or fusA)
JRL16-RD	TtT GAC TAG acg gac cac git ccg gig ttc anc cat anc tgt agg ctg gag ctg ctt c	
JRL18'	gCG cat cca gca ant ata cag cca cgit	Primer pair for amplification of the TOPO-19 fragment
JRL19 ${ }^{\prime}$	agc ctg tcg ttit gat gca tcg git tcg	
JRL14	tcG gcc gaa ttt gac gic tga gan	Primers for PCR verification of orf7/fusA disruption
JRL30	TCC GTC TCC TCC ACC AAA GCC TCT	

Table 2.3 (continued)

Primer	Sequence (5'-3')	Use/function
JRL31-RD	CTC TTT TTC ATAAGAACG GAT GGA GAG AAT ACT CTA ATG ATT CCG GGG ATC CGT CGA CC	Primer pair for PCR-targeting
JRL32-RD	GCT AAT CAG CAC GGG TAC ATC CTT TTTATA GAT ACA TTA TGT AGG CTG GAG CTG CTT C	mutagenesis of $k t p$

Table 2.3 (continued)

Primer	Sequence (5'-3')	Use/function
SEJ18	CCG GCG GTG TGC TGC TGG TC	Primer pair for amplification of an
SEJ19	CGG CAT CGC ATT CTT CGC ATC C	aac(3)/V-specific fragment

${ }^{a}$ Alternative nucleotides at a particular position are shown in parentheses; engineered restriction sites are underlined.
${ }^{b}$ The usage of each PCR primer is described in details in Sections 2 \& 3.

3. Results and discussion

Strains of P. polymyxa are known to produce various peptide antibiotics presumably synthesized by nonribosomal peptide synthetases (NRPSs). In addition to fusaricidins, three larger peptide metabolites were also detected in PKB1 liquid culture (Beatty and Jensen, 2002). This suggests that there may be at least three separate peptide synthetase gene clusters on the chromosome in addition to the putative gene cluster encoding the peptide synthetase responsible for fusaricidin biosynthesis. To clone the fusaricidin biosynthetic gene cluster (fus), peptide synthetase gene fragments were amplified from PKBl to serve as probes for screening genomic DNA libraries. The highly conserved core motifs located in the adenylation and thiolation domains of NRPSs were targeted for degenerate primer design. In addition, Stachelhaus et al. (1999) and Challis et al. (2000) previously identified amino acid residues within the adenylation domains of peptide synthetase modules that are involved in amino acid substrate recognition. Accordingly, the PCR primers used for probe preparation were designed for amplification of a fragment encompassing the specificity-conferring codons of an A domain. From the resulting PCR products, two possible fus-specific NRPS gene fragments were selected as probes based on the predicted substrate specificity of the derived A domains. A total of three PKB1 genomic libraries were prepared and screened, and finally, the entire fus gene cluster was cloned and characterized. In addition, a modified PCR-targeting mutagenesis protocol was developed to create targeted mutations on the chromosome of P. polymyxa PKB1. This allowed verification of the involvement of $f u s A$, the single peptide synthetase gene identified in the fus cluster, in the nonribosomal synthesis of fusaricidins, and determination of possible boundaries of the fus gene cluster. Taken together, this study
provides the basis for genetic manipulation of fusaricidin production in P. polymyxa PKB1, and furthermore, for construction of novel antibiotics by combinatorial biosynthesis.

3.1 Analysis of the peptide synthetase gene fragments amplified from \boldsymbol{P}. polymyxa PKB1

In order to clone the fusaricidin biosynthetic genes, degenerate oligonucleotide primers corresponding to two conserved core motifs, A2 and T, found within peptide synthetases, were designed by Dr. P. H. Beatty and colleagues at Alberta Research Council (Figure 3.1.1). P. polymyxa PKB1 genomic DNA was used as template for PCR amplification of putative peptide synthetase gene fragments. The colleagues at Alberta Research Council also kindly cloned and sequenced all PCR products. We analyzed fifteen different PCR-amplified fragments of the expected size, approximately 1.65 kb , and all of them gave terminal DNA sequence information indicating that they were derived from peptide synthetase genes. Eight of the fragments gave sufficient sequence information to allow analysis of the internal core motifs, A3 to A10, in their deduced amino acid sequences. According to the selectivity-conferring codes identified within the adenylation (A) domains of NRPSs (Challis et al., 2000; Stachelhaus et al., 1999), substrate specificities of the A domains derived from these eight PCR-amplified fragments were predicted (Table 3.1). On this basis, DNA fragments B1J6-2, B1J6-3, B1J6-5, B1J6-14, and B1J6-19 apparently encode peptide synthetase modules that specifically recognize glutamic acid or ornithine. Neither of these amino acids has been identified as a component of fusaricidin, suggesting that these fragments were not derived
from the peptide synthetase gene cluster for fusaricidin. Since P. polymyxa strains are known to produce a variety of peptide metabolites in addition to fusaricidin, it was not unexpected to isolate NRPS genes for other peptide products. The DNA fragment B1J610 showed high similarity to the Asn-activating A domain from tyrocidine synthetase TycC (GenBank accession no. AAC45930), and appeared to be the most suitable probe for subsequent screening of a PKB1 genomic DNA library since asparagine was considered a unique residue of fusaricidins and it has not been found in any other peptide metabolites isolated from P. polymyxa so far. The deduced amino acid sequences of the other two PCR-amplified fragments, B1J6-7 and B1J6-17, displayed high levels of homology with adenylation domains activating threonine. Since all fusaricidin analogs have invariant threonine (or allo-threonine) residues at the first and fourth positions of the peptide moiety (Figure 1.3.1), the fragment B1J6-17, the more completely defined of the two Thr-specific probes, was chosen as a second probe for library screening. This fragment exhibits about 80% identity to the Thr-activating module of the fengycin synthetases from Bacillus subtilis (GenBank accession no. CAA09819).

3.2 Screening of the first SuperCos-1 genomic library of P. polymyxa

PKB1

SuperCos-1 cosmid vector is an efficient tool in genomic sequence analysis because of its capacity to accommodate large DNA fragments (30-42 kb). The first SuperCos-1 genomic library of PKB1 was constructed by partial Sau3AI digestion of genomic DNA, dephosphorylation of the insert fragments, and ligation into the unique BamHI site of the cosmid vector. The resulting ligation mixture was packaged in vitro, and then transfected
into E. coli XL1-Blue MR cells for amplification. The insert DNA in recombinant cosmids can be excised using the NotI or EcoRI restriction sites flanking the BamHI cloning site (EcoRI / NotI / BamHI / NotI / EcoRI). Due to the potential presence of multiple NPRS gene clusters on the chromosome of P. polymyxa, the cosmid library was screened with two different PCR-amplified peptide synthetase gene fragments as probes, in an effort to isolate cosmids containing NRPS genes from the fusaricidin biosynthetic gene cluster.

3.2.1 The first screening of PKB1 genomic library, with the B1J6-10 fragment

In a preliminary analysis of the SuperCos-1 genomic library, ten randomly-selected recombinant cosmids were digested with NotI restriction enzyme to assess their insert sizes. It was shown that all of these cosmids contained DNA inserts of above 23 kb , suggesting that most clones in the cosmid library may have large size inserts. A total of ca. 2,000 colonies from the genomic library were then screened at moderate stringency, using B1J6-10 (the Asn-specific fragment) as a probe. Positive clones hybridizing with the probe were subjected to colony hybridization with B1J6-17 (the Thr-specific fragment) as a probe. This was done to identify cosmids carrying peptide synthetase genes which encode both Asn-activating and Thr-activating modules, as expected for fusaricidin biosynthesis. Twenty-six positive cosmids obtained from the second round of hybridization were digested with EcoRI, electrophoresed on an agarose gel, transferred onto a nylon membrane and hybridized with the fragments B1J6-10 and B1J6-17, respectively. This Southern analysis was used to distinguish insert size and restriction pattern. Only one cosmid, designated Col-8 (with an insert of $\sim 39 \mathrm{~kb}$), hybridized to both
probes and was selected for further study. The cosmid Col-8, together with genomic DNA from the wild-type PKB1 strain, were digested with various restriction enzymes and analyzed by Southern hybridization (Figure 3.2.1). When the membrane blot was probed using the Asn-specific fragment B1J6-10, a 3.2-kb EcoRI fragment from Col-8 strongly hybridized to the probe, whereas the corresponding fragment was not seen in the EcoRI digestion of genomic DNA. Instead, the genomic digest had a smaller EcoRI fragment of 2.2 kb that hybridized to the same probe, B1J6-10. This discrepancy suggests that the insert DNA of Col-8 may have rearranged or contain non-contiguous chromosomal fragments.

The two hybridizing EcoRI fragments from either Col-8 or the PKB1 chromosome were subcloned and fully sequenced. The $2.2-\mathrm{kb}$ EcoRI fragment was obtained by subcloning a mixture of fragments between 1.9 kb and 2.3 kb from the EcoRI-digested genomic DNA and subsequent screening the plasmid library using the fragment B1J6-10. By detailed analysis of the deduced amino acid sequence, an incomplete Asn-activating module typical of NRPSs was identified in the 3 ' portion of the $3.2-\mathrm{kb}$ EcoRI fragment from Col-8, whereas its 5^{\prime} portion shows homology with phosphotransferase system (PTS) glucose-specific components. The 2.2-kb genomic EcoRI fragment also encodes a partial peptide synthetase module, consisting of a partial condensation domain, a putative Asn-activating adenylation domain, a full thiolation domain, and a partial epimerization domain. Alignments of the nucleotide sequences of these two EcoRI fragments with the PCR-amplified fragment B1J6-10 revealed that B1J6-10 shares the same DNA sequence with the 2.2-kb EcoRI fragment, indicating direct amplification of B1J6-10 from this locus on the chromosome, and that the two EcoRI fragments have the same sequence in
the 3^{\prime} portion, but not in the 5^{\prime} portion. It was apparent that the $3.2-\mathrm{kb}$ EcoRI fragment may contain at least two discontinuous genomic DNA fragments. By end sequencing of Col-8 insert DNA, the $3.2-\mathrm{kb}$ EcoRI fragment was found to reside at one end of the insert, with the PTS gene adjacent to the SuperCos-1 vector (Section 3.2.3). This result led to the hope that sequence discontinuity was restricted to the end of the cosmid insert.

Among the known peptide metabolites produced by P. polymyxa, fusaricidins are the only peptide products containing D-Asn as a component. The high level of similarity between the $2.2-\mathrm{kb}$ EcoRI fragment and the D-Asn-incorporating module from mycosubtilin synthetase MycB (GenBank accession no. AAF08796) suggests that this fragment is likely to be part of the fus gene cluster and thus was designated as fus-asn. Efforts were taken to investigate the role of fus-asn in fusaricidin biosynthesis by disruption of the chromosomal copy of fus-asn in P. polymyxa PKB1 (Section 3.5).

3.2.2 The second screening of PKB1 genomic library, with the B1J6-17 fragment

Fusaricidin represents a mixture of several lipopeptides, in which the residues at the second, third and fifth positions in the peptide portion are highly variable. Amino acid substitutions at defined positions were also reported for many other nonribosomally synthesized peptides. It was previously demonstrated that the amino acid composition of the peptide products can be affected by changing the relative concentrations of certain amino acids in the growth media (Ruttenberg and Mach, 1966). The diversity in the peptide sequence can also be related to the relatively broad substrate specificities of the respective A domains of NRPSs in comparison with those of aminoacyl-tRNA synthetases. For example, in the tyrocidine synthetase TycC, the A domain in the third
module was found to activate and incorporate $\mathrm{L}-\mathrm{Tr}$ in position seven of the resulting peptide to give tyrocidine variant D , while the same position in tyrocidine A, B and C is replaced by an L-Tyr residue, indicating that L-Tyr can be recognized and activated by an A domain that displayed substrate specificity primarily for L-Trp (Mootz and Marahiel, 1997). That is, the predicted substrate specificity based on the specificity-conferring code of an A domain may not necessarily be consistent with the actual occurrence of amino acids in the corresponding position of the peptide product. Accordingly, it was hypothesized that the A domain responsible for incorporation of the asparagine or glutamine residue in the fifth position of fusaricidin peptides (Figure 1.3.1), may activate both amino acid residues, but the specificity-conferring code of this A domain could be similar to that of a Gln-activating domain rather than an Asn-activating one. If this is the case, the fus-asn fragment, encoding a partial Asn-activating module, may not be part of the fusaricidin biosynthetic gene cluster, but rather part of a NRPS gene cluster for some as yet uncharacterized Asn-containing peptide metabolites from P. polymyxa. Under those circumstances, using the Asn-specific fragment B1J6-10 as the only probe for screening the genomic library could exclude identification of cosmids carrying the fusaricidin synthetase genes. Therefore, the remaining PCR-amplified NRPS gene fragments were examined again, and the fragment B1J6-17 with high similarity to Thractivating modules was selected as the only suitable probe for a second screening of the cosmid library. Although threonine residues are present in several of the other peptide metabolites produced by P. polymyxa, as well as in fusaricidins, none of the other PCRproduced probes exhibit substrate specificities that are consistent with the primary structure of fusaricidins.

As expected, screening the genomic library with the B1J6-17 probe yielded many positive clones. By restriction analysis and Southern hybridization, five cosmids Col-9, Col-10, Col-15, Col-19 and Col-20 were isolated, which hybridized with the probe but showed restriction patterns different from each other and from that of Col-8, suggesting that they were distinct cosmid clones. In addition, Southern analyses revealed that cosmids Col-8, Col-9, Col-10, Col-15, and Col-20 had similar restriction fragments that hybridized with the B1J6-17 probe, while distinct hybridizing bands were detected in the other cosmid Col-19 (Figure 3.2.2). These findings suggest that the six cosmids could be divided into two main groups. Five cosmids Col-8, Col-9, Col-10, Col-15, and Col-20, probably contain overlapping DNA inserts and thus comprise group 1. The single cosmid Col-19, making up group 2, apparently contains genes from a separate locus on the chromosome, indicating that two distinct peptide synthetase gene clusters were identified in the PKB1 strain. A representative member of the first group of clones, Col-8, and the only member of the second group of clone, Col-19, were selected for further study, and the complete sequences of their DNA inserts were determined by a commercial DNA sequencing agency (SeqWright).

3.2.3 Sequence analysis of the insert DNA of cosmid Col-8

The 39-kb insert of Col-8 (Appendix A) covers four complete and four partial open reading frames (ORFs), all in the same transcriptional direction (Figure 3.2.3A). Sequence analysis revealed that the $3.2-\mathrm{kb}$ EcoRI fragment previously subcloned from Col-8 resides at the extreme 5^{\prime} end of the insert DNA, and overlaps with orfl and orf2,
encoding a partial phosphotransferase system component and an incomplete peptide synthetase module, respectively (Figure 3.2.3, Table 3.2).

Downstream of orf2 were four ORFs, orf5, orf6, orf7, and orf10, homologous to known NRPS genes (Figure 3.2.3, Table 3.2). By comparison with the specificity codes extracted from other peptide synthetases, it was predicted that the amino acid substrates, most likely to be recognized by the A domains within the deduced amino acid sequences of these four ORFs, are threonine, isoleucine, and ornithine (Table 3.3). Since neither isoleucine nor ornithine is present in fusaricidin, the peptide synthetase gene fragments identified in Col-8 are unlikely to be part of the fusaricidin biosynthetic gene cluster. However, none of the peptide metabolites described from P. polymyxa isolates contain ornithine (2,5 -diaminovaleric acid). Instead, the closely related compound DAB (2,4diaminobutyric acid) is found in several P. polymyxa peptide products, but not in fusaricidin. Therefore, the modules identified as incorporating ornithine may actually represent DAB-activating modules. By analyzing the deduced amino acid sequences, I identified a putative Ile-activating module followed by two putative Orn-activating modules within orf6, and a putative Thr-activating module flanked on either side by a putative Orn-activating module within orf10. Obviously, the amino acid sequence, Ile-DAB-DAB or DAB-Thr-DAB, is inconsistent with the structure of fusaricidin. However, polymyxin, a well-known peptide antibiotic from P. polymyxa, is the only one of the DAB-containing products of this species to include amino acid sequences of both Ile-DAB-DAB and DAB-Thr-DAB (Figure 3.2.4). In addition, sequence analysis of orf7 revealed the presence of a putative Thr-activating module including a C-terminal TE domain, which matches the occurrence of $\mathrm{L}-\mathrm{Thr}$ at the C -terminal position of the
polymyxin peptide. Based on these findings, it was postulated that $\mathrm{Col}-8$ and the other cosmids of the first group of clones may represent the polymyxin biosynthetic gene cluster, but additional experimentation is clearly required before that conclusion can be firmly established.

The predicted gene products of orf8 and orf9, located between orf7 and orf10, are homologs of ABC transporter proteins (Table 3.2). ABC-type transporters flanking peptide synthetases are believed to be required for extracellular export of the peptide product (Gaisser and Hughes, 1997). Hence, it was proposed that orf8 and orf9 may be involved in the secretion of polymyxins.

3.2.4 Sequence analysis of cosmid Col-19

$\mathrm{Col}-19$, the single cosmid of the second group of clones that hybridized to the B1J617 probe, contains an insert DNA of 36.4 kb (Appendix B), and covers 11 complete and 3 partial open reading frames. The organization and proposed functions of the ORFs identified within Col-19 are shown in Figure 3.2.5 and Table 3.4, respectively.

3.2.4. 1 Identification of a putative fusaricidin synthetase gene, orf7

Sequence analysis of Col-19 revealed the presence of an incomplete 9,750-bp open reading frame, orf7, encoding a peptide synthetase presumably involved in fusaricidin biosynthesis. This partial ORF starts with an ATG codon at nt 6508 and is preceded by a putative ribosome-binding site (AGGAG) located 8 bp upstream (Appendix B). Within the deduced amino acid sequence of orf7 (designated ORF7), three modules typical of peptide synthetases were identified, although the third module is truncated at the C-
terminus. As shown in Figure 3.2.6, a total of nine catalytic domains can be distinguished: three in the first module, four in the second, and two in the third (the last domain is incomplete). The predicted substrate specificities of the A domains in the first and second modules were consistent with the first two amino acids, Thr and Val, in the peptide moiety of fusaricidin (Table 3.3). In addition, the presence of an epimerization (E) domain at the C-terminal end of the second module indicated that the activated amino acid valine is likely to be converted into the D-configuration and accordingly, D-Val will be incorporated into the peptide product at position two. Furthermore, the N -terminal condensation (C) domain in the first module exhibited 58% similarity to the first C domain of the surfactin synthetase SrfA-A, which is believed to act as an acceptor for the fatty acid moiety of the lipopeptide, surfactin (Cosmina et al., 1993) (see Section 3.6.1.1 for detailed discussion). Taken together, these findings suggest that the peptide synthetase encoded by orf7 is responsible for incorporation of L-Thr in the first position, and D-Val in the second position of the peptide product, and the L-Thr residue is associated with a lipid moiety. All of these features are in agreement with the primary structure of fusaricidin, but given the large number of peptide metabolites known to be produced by P. polymyxa and the possibility of other as yet undescribed peptides, independent confirmation of the involvement of orf7 in fusaricidin production was carried out (Section 3.5.4).

3.2.4.2 Cloning of a continuous chromosomal fragment downstream of orf7

Disruption of orf7 completely abolished the antifungal activity of strain PKB1 (Section 3.5.4), indicating that it is part of the fusaricidin biosynthetic gene cluster (fus)
and encodes the first three modules of fusaricidin synthetase. However, sequence analysis of Col-19 indicated that orf7 is truncated at the 3^{\prime} end, preventing complete analysis of the fus gene cluster. For sequencing the continuous chromosomal region downstream from orf7, long-distance PCRs were performed (Figure 3.2.6). The primer JRL19' was designed based on the 3^{\prime} end sequence of orf7. The pairing primer JRL18' was derived from the fus-asn fragment, based on the assumption that the partial Asn-activating module encoded by fus-asn would be responsible for the incorporation of D-Asn in the fifth position of fusaricidin, and thus fus-asn would be located downstream of orf7 on the chromosome. A PCR product of about 4.5 kb , designated TOPO-19, was obtained using $\mathrm{PKB1}$ genomic DNA as the template, and then cloned into $\mathrm{pCR}^{\circledR} 2.1-\mathrm{TOPO}^{\circledR}$ vector for full sequencing. The deduced amino acid sequence of TOPO-19 showed high similarity to Thr-activating modules associated with an epimerization domain (Figure 3.2.6). This result suggests that TOPO-19 probably encodes the fourth module of fusaricidin synthetase, incorporating D-allo-Thr in position four of the peptide product, and so Col19, like Col-8, appears to contain a noncontiguous DNA fragment not representative of the genome sequence.

Surprisingly however, it was found that TOPO-19 was actually amplified from two JRL19' primers, while the other primer JRL18' was not detected at either end of the PCR product. Despite repeated attempts varying conditions of PCR reactions, such as the concentrations of primers, enzyme and MgCl_{2}, the annealing temperature, the extension time and the number of cycles, it was never possible to amplify a DNA fragment that would link orf7 to the fus-asn fragment. This observation implies that long-distance PCR reactions using primers JRL18' and JRL19' were unsuccessful, or that the fus-asn
fragment is not located nearby the orf7 region due to the unusual gene arrangement in the fusaricidin biosynthetic gene cluster. It also could be that the fus-asn fragment is not involved in fusaricidin biosynthesis as previously assumed (Section 3.2.2); instead, it may be part of a NRPS gene cluster synthesizing peptide metabolites that contain D-Asn residues, but have not been identified from P. polymyxa so far.

3.3 Preparation and screening of a second SuperCos-1 genomic library of P. polymyxa PKB1

The presence of discontinuous genomic DNA fragments within cosmids Col-8 and Col-19 indicated that rearrangement of the insert DNA had occurred in the first genomic library. Alternatively, small non-contiguous DNA fragments may have been randomly incorporated into cosmids during library construction, since the partially digested chromosomal DNA was not size-fractionated before ligation into the SuperCos-1 vector. Furthermore, even after two additional rounds of screening the first genomic library, Col8 was the only positive clone that hybridized to both B1J6-10 and B1J6-17 probes, suggesting that genomic sequences of the PKB1 strain were not completely represented in this library, and thus it was not suitable for further investigation. Therefore, a second SuperCos-1 library of PKB1 was prepared with size-selected genomic DNA fragments.

The Sau3AI partially digested genomic DNA was fractionated by sucrose gradient centrifugation (Section 2.4.7). Fractions of the sucrose gradient were examined by agarose gel electrophoresis to determine which fractions contain DNA fragments between 30 kb and 42 kb . The DNA fragments of desired size were precipitated from the sucrose solution, dephosphorylated, and ligated into the BamHI site of SuperCos-1 vector. Based
on the assumption that the fus-asn fragment would still be part of the fusaricidin synthetase genes, it was used as a probe to screen approximately 3,000 colonies from the second genomic library. Twenty-four cosmids were obtained in the first screening of the library. These cosmids could be divided into four groups according to their restriction patterns; however, one group of clones shared the same restriction pattern with Col-8. Southern analysis showed that these four groups of clones gave four distinct EcoRI fragments hybridizing with the fus-asn fragment. Of the four hybridizing fragments that were subsequently cloned and fully sequenced, one EcoRI fragment had the same nucleotide sequence as the 3.2 kb EcoRI fragment from Col-8, while the other three fragments all consisted of truncated peptide synthetase genes fused to fragments of other unrelated genes, indicating that DNA rearrangement of cosmid inserts also occurred in the second genomic library, despite careful attention to size selection of insert DNA fragments during library construction. Therefore, it was proposed that the instability of peptide synthetase genes occurring in both cosmid libraries may be associated with the potential disadvantages of SuperCos-1 vector, and so a single-copy cloning vector was used for constructing a third genomic library of P. polymyxa PKB1.

3.4 Preparation and screening of a fosmid genomic library of P. polymyxa PKB1

SuperCos-1 vector has several advantageous features for generating genomic libraries for sequence analysis. It has a pUC origin of replication and is maintained at high copy number, giving rise to high cosmid yield. It also contains two bacteriophage promoters flanking the multiple cloning site, allowing for synthesis of insert end-specific

RNA probes for chromosomal walking. However, the high copy number of recombinant clones and vector-driven transcription into the insert DNA may cause difficulties in cloning of certain DNA sequences, such as toxic genes, large inserts, and AT-rich or highly repetitive DNA (Kieleczawa, 2005). To circumvent these apparent instability problems, a third genomic library of PKB1 was constructed using pSMART-FOS, a single-copy fosmid vector designed for stable maintenance of DNA inserts. Once genomic library construction was complete, addition of L-arabinose in the growth medium would indirectly activate an inducible medium-copy replication origin located in the vector, increasing fosmid yield up to 50 copies per cell. Another advantageous feature of this vector is the lack of transcription into or out of the insert. The presence of transcriptional terminators on both sides of the cloning site greatly stabilizes recombinant fosmids, and reduces the cloning bias against unstable targets.

To prepare a fosmid library, P. polymyxa PKB1 genomic DNA was partially digested with Sau3AI, and DNA fragments of 35 to 45 kb were selected and cloned into the BamHI site of pSMART-FOS vector. A $1-\mathrm{kb}$ EcoRI fragment obtained from the fragment TOPO-19, designated P-tyr, was used as a probe to screen 550 colonies from the fosmid library (Figure 3.2.6). Twenty-one hybridizing fosmids isolated in the first screening were digested with HindIII and used in Southern analysis. A 3.4-kb HindIII fragment hybridizing with the P-tyr probe was detected in four fosmids, 1C2, 3A9, 4G9, and 6D11, as well as in PKB1 genomic DNA, suggesting that these four fosmids probably contain overlapping inserts (Figure 3.4.1). However, 1C2 and 3A9 were excluded from further study as both fosmid inserts appeared to have rearranged during DNA amplification with addition of L-arabinose. Southern analyses showed no evidence
of rearrangement of the insert DNA in the other two fosmids 4G9 and 6D11 (Figure 3.4.2), and thus these fosmids were sequenced by a commercial DNA sequencing service (SeqWright). In-house primer walking sequencing was also performed to fill in the gaps between DNA sequence contigs obtained from Seqwright. Finally, sequence analysis of both fosmid inserts yielded approximately 48 kb of contiguous DNA sequence information, which harbors the entire fusaricidin biosynthetic gene cluster (fus). However, before the fosmid sequences became available, a partial peptide synthetase gene, orf7, was identified on comid Col-19, which appeared to encode part of the fusaricidin synthetase (Section 3.2.4). Mutagenesis study was carried out to confirm the involvement of orf7 in fusaricidin production (Section 3.5.4), and subsequent analysis of the fus gene cluster assembled from two fosmid inserts revealed that orf7 is part of the fusaricidin synthetase gene fusA (Section 3.6.1).

3.5 Disruption of putative fusaricidin synthetase genes

In order to assess the importance of the peptide synthetase genes, fus-asn cloned from the PKB1 chromosome and orf7 identified on cosmid Col-19, for fusaricidin biosynthesis, gene disruption experiments were performed. Since the genetic properties of P. polymyxa in general and the PKB1 strain in particular have not been fully characterized, attempts were made to identify antibiotic resistance markers that are capable of providing a clear selection at a single copy on the chromosome, and to develop efficient methods for introducing mutant alleles of the target genes into the chromosome of P. polymyxa.

3.5.1 Identification of selectable markers for use in P. polymyxa PKB1

A series of antibiotic resistance genes, functional in either Bacillus or Streptomyces, were tested for suitability of use in P. polymyxa. The plasmid pCl 194 was originally isolated from Staphylococcus aureus, and carries the chloramphenicol resistance gene cat. It has been proved to be capable of replication in P. polymyxa and to confer chloramphenicol resistance $\left(\mathrm{Cm}^{\mathrm{R}}\right)$ on the cells (Bezzate et al., 2000). Therefore, E. coli plasmids, carrying resistance markers to be tested, were fused to pCl 94 at the unique HindIII site to give E. coli-Paenibacillus shuttle vectors, which were then separately introduced into P. polymyxa PKB1 by electroporation. The susceptibility of PKB1 transformants harboring the resistance genes to the corresponding antibiotics at concentrations commonly used to inhibit Bacillus spp. was tested. At the same time, the minimum inhibitory concentrations of various antibiotics on the wild-type PKB1 strain were determined. Finally, in addition to the chloramphenicol resistance gene cat from pC 194 , the apramycin resistance gene $a a c(3) I V$ carried within the $\mathrm{Apra}^{\mathrm{R}}$ oriT disruption cassette from pIJ773 (Section 3.5.4), and the streptomycin resistance gene aadA from the plasmid pSETS, also appeared to be useful antibiotic markers in P. polymyxa. None of the other antibiotic resistance markers that I have tested, such as the spectinomycin resistance marker from pBM-SPECT, the neomycin resistance genes from pBEST501, pBEST502, and pSKNeo-S, were suitable for use in P. polymyxa because they did not confer useful levels of resistance.

3.5.2 Transformation of P. polymyxa PKB1 with an integrational vector carrying the fus-asn gene fragment

An E. coli-based integrational vector, $\mathrm{pJH101}$, was used to disrupt the fus-asn fragment in the chromosome of PKB1 via a single homologous recombination. The plasmid pJH 101 contains the cat gene from $\mathrm{pC1} 194$ and thus confers chloramphenicol resistance on P. polymyxa. Since it cannot replicate in P. polymyxa, chloramphenicol resistant transformants can only occur when the plasmid is integrated into the chromosome, which depends on the presence of a DNA fragment in the vector homologous to the target gene in the chromosome. The 2.2-kb EcoRI fragment fus-asn was originally obtained from the PKB1 chromosome, and encodes a partial peptide synthetase module presumably incorporating D-Asn into the peptide product. This DNA fragment was subcloned into a unique EcoRI site of pJH101 to give the integrational construct pJL-asn:JH101, which was then passed through a non-methylating E. coli strain, ER1447 or ET12567, before transformation into PKB1 cells by electroporation. Chloramphenicol resistant transformants were isolated, apparently resulting from single crossovers between the cloned copy and the chromosomal copy of fus-asn.

Genomic DNA from the wild-type PKB1 strain and four putative fus-asn mutants was digested with KpnI and was used in Southern analysis to determine if pJH101 had integrated into the chromosome. The plasmid $\mathrm{pJH101}$ was linearized by digestion at the unique EcoRI site, and the linearized plasmid was used as a probe in the subsequent hybridization experiment. Since neither pJH101 nor fus-asn contains a KpnI restriction site, genomic DNA from the mutants was expected to produce a single hybridizing band that should not be present in the wild type. However, no fragments of the expected size ($>9.8 \mathrm{~kb}$) were seen to hybridize with the pJH 101 probe in the lanes containing DNA from either mutants or wild-type PKB1 (Figure 3.5.1), indicating that these Cm^{R} single-
crossover mutants may have reverted to the wild type by excision of the integrated vector via a second single crossover, or that they may actually represent spontaneous chloramphenicol resistant mutants of P. polymyxa PKB1. Even though more Cm^{R} transformants with the plasmid pJL-asn: JH 101 were examined by Southern hybridization, no integrated copy of $\mathrm{pJH1} 01$ on the chromosome was detected. Since no stable mutants generated by a single homologous recombination could be obtained, construction of a stable mutation of fus-asn by double crossover was attempted.

3.5.3 Insertional mutation of fus-asn via double crossover

The strategy used for generation of PKB1 mutants in which fus-asn is inactivated by insertion of an antibiotic resistance gene is outlined in Figure 3.5.2. The ampicillin resistance gene (bla) in the plasmid pUC119 was replaced by the aadA gene from the plasmid $\mathrm{pSET} \Omega$, which had been shown to confer streptomycin resistance $\left(\mathrm{Str}^{\mathrm{R}}\right)$ on P. polymyxa, to give a new delivery vector $\mathrm{pUC} 119 \Omega$. The chloramphenicol resistance gene, cat, from the plasmid $\mathrm{pC1} 194$ was cloned into the vector pIJ 2925 to give the plasmid pJL1, from where the cat gene was excised as a BglII fragment. The cat-containing BglII fragment was then inserted into a unique BgIII site located in the middle of the fus-asn fragment that had been cloned in $\mathrm{pUC} 119 \Omega$, to produce the gene disruption construct pJL-asn:cat. After passing through a methylation-deficient E. coli strain, ER1447 or ET12567, the plasmid pJL-asn:cat was introduced into PKB1 by electroporation. Chloramphenicol resistant transformants were selected and then grown in non-selective media to isolate chloramphenicol resistant but streptomycin sensitive mutants $\left(\mathrm{Cm}^{\mathrm{R}} \mathrm{Str}^{\mathrm{S}}\right)$, which presumably would result from replacement of the chromosomal copy of fus-asn by
the cat-disrupted copy via two homologous recombinations, one on either side of the cat marker.

The insertion of the cat gene in fus-asn on the chromosome was first examined by colony PCR. The primers JRL1 and JRL3 were designed to amplify a $1.4-\mathrm{kb}$ fragment from the wild-type copy of fus-asn, while the cat-disrupted copy of fus-asn was expected to produce a larger PCR product of 2.4 kb (Figure 3.5.2). As shown in Figure 3.5.3, however, seven $\mathrm{Cm}^{\mathrm{R}} \mathrm{Str}^{\mathrm{S}}$ mutants all gave a single PCR fragment that is the same size as the fragment amplified from the wild-type strain, indicating the absence of the catdisrupted copy of fus-asn in their chromosomes. Southern analysis was also used to test for gain of the chloramphenicol resistance marker in the chromosome. When the catcontaining BglII fragment removed from the plasmid pJL 1 was used as a cat-specific probe, no hybridizing bands were observed in the lanes containing genomic DNA from either wild-type PKB1 or the mutants (Figure 3.5.4). Taken together, these findings suggest that the $\mathrm{Cm}^{\mathrm{R}} \mathrm{Str}^{\mathrm{S}}$ colonies obtained were likely to be spontaneous chloramphenicol resistant mutants of PKB1.

The fus-asn fragment was originally isolated from P. polymyxa PKB1 genomic DNA and therefore there should be sites of homology between the gene disruption construct pJL-asn:cat and the chromosome of PKB1. It was hypothesized that the homologous regions flanking the cat marker in the mutation construct pJL-asn:cat may be too short for recombination to occur, thus preventing selection of chloramphenicol resistant mutants resulting from double crossovers between the wild-type copy of fus-asn and the cat-disrupted copy. In general, the frequency of homologous recombination is proportional to the lengths of the homologous fragments used and so the use of large

DNA fragments in the gene disruption construct is recommended. However, the frequency of transformation by electroporation is constrained by the size of the plasmid to be transferred. Therefore, a more efficient mutation delivery method was required for introduction of large disruption construct into P. polymyxa.

3.5.4 Preparation of fusaricidin-nonproducer mutants using a modified Redirect ${ }^{\text {© }}$

technology

Intergeneric transfer of DNA from E. coli to P. polymyxa by conjugation has been previously reported (Bezzate et al., 2000), which offers the possibility of creation of targeted mutations in the chromosome of PKB1 strain using the Redirect ${ }^{\mathbb{C}}$ PCR targeting system originally developed for use with Streptomyces coelicolor (Gust et al., 2003). In this strategy, a chromosomal gene cloned in a cosmid is replaced in E. coli by a PCRamplified antibiotic resistance cassette that is selectable both in E. coli and in Streptomyces. The inclusion of an ori $T_{\mathrm{RK} 2}$ site in the disruption cassette allows the mutant cosmid to be conjugated from E. coli into Streptomyces with the action of a nontransmissible plasmid pUZ8002. Theoretically, this protocol should be straightforward to extend its use to P. polymyxa because most genetic manipulations can be done in E. coli cells. However, some modifications were still required before the same technology could be applied to P. polymyxa.

3.5.4.1 Adaptation of the PCR-targeting protocol for P. polymyxa

In order to verify that intergeneric conjugation mediated by ori $T_{\mathrm{RK} 2}$ and pUZ8002, provided as part of the Redirect ${ }^{\mathcal{©}}$ system, would occur between E. coli and P. polymyxa,
the E. coli-Paenibacillus shuttle vector pC194-apra was constructed by ligation of the Staphylococcus plasmid pC194, which is able to replicate in P. polymyxa and imparts chloramphenicol resistance, into the HindIII site of the E. coli plasmid pIJ773, which has the Apra ${ }^{\mathrm{R}}$ oriT disruption cassette and is supplied with the Redirect ${ }^{(\mathcal{O}}$ PCR targeting materials. The plasmid pC194-apra now contains an origin of transfer (ori $T_{\mathrm{RK} 2}$), as well as autonomous origins of replication for both E. coli and P. polymyxa, and thus could be introduced into $\mathrm{PKB1}$ strain by intergeneric conjugation. However, no Cm^{R} exconjugants were obtained on agar plates containing both chloramphenicol, to select for the plasmid pC194-apra, and nalidixic acid, to counterselect against E. coli donors in conjugation procedures of the original Redirect $^{\circ}$ protocol. In the meantime, the plasmid pC194-apra was transformed into PKB1 cells by electroporation as a control. P. polymyxa transformation mixtures were spread on agar plates containing chloramphenicol with or without nalidixic acid, but Cm^{R} transformants only occurred in the absence of nalidixic acid. The inhibitory effect of nalidixic acid on P. polymyxa was further confirmed by the observation that wild-type PKB1 cells were also sensitive to this chemical. Therefore, nalidixic acid could not be used with P. polymyxa and was replaced by polymyxin B sulfate, which exhibits antimicrobial activity mainly against Gram-negative bacteria, in conjugation experiments. The susceptibility of wild-type PKB1 to polymyxin B was tested and it was proved to be effective at killing E. coli but harmless to wild-type P. polymyxa PKB1 at $25 \mu \mathrm{~g} / \mathrm{ml}$.

Plating P. polymyxa conjugation mixtures on agar plates containing polymyxin B and chloramphenicol yielded many Cm^{R} colonies. To verify that these Cm^{R} colonies are true P. polymyxa exconjugants harboring the shuttle plasmid pC194-apra, and not
spontaneous chloramphenicol resistant mutants or residual E. coli colonies, one Cm^{R} colony was picked and streaked on PDA plates to test for the ability to sporulate. The endospore-forming P. polymyxa colonies confirmed by microscopy were grown in liquid medium for plasmid preparation. The plasmid DNA isolated from P. polymyxa cells was first examined by agarose gel electrophoresis (Figure 3.5.5A), and then was used to transform E. coli cells. The plasmid purified from the apramycin and chloramphenicol resistant E. coli transformants was proved to be the plasmid pC194-apra by restriction analysis (Figure 3.5.5B), thus confirming that the shuttle plasmid pC194-apra could be transferred from E. coli to P. polymyxa PKB1 by intergeneric conjugation.

Initially it seemed that the Apra ${ }^{\mathrm{R}}$ oriT cassette (from pIJ773) alone might be suitable for PCR-targeted mutation in P. polymyxa, since the $\operatorname{aac}(3) I V$ gene carried within the Apra ${ }^{\mathrm{R}}$ oriT disruption cassette appeared to be a useful antibiotic marker that conferred apramycin resistance on P. polymyxa (Section 3.5.1). However, upon transfer of the shuttle plasmid pC194-apra into P. polymyxa PKB1 by conjugation, no Apra ${ }^{\mathrm{R}}$ exconjugants could be recovered in the presence of both apramycin and polymyxin B . PKB1 transformants containing the plasmid pC194-apra were also found to be sensitive to this combination of antibiotics, although their growth was unaffected in the presence of either apramycin or polymyxin B alone. The lethal effect on P. polymyxa caused by combination of apramycin with polymyxin B is not fully understood, but it prevents use of the $\operatorname{aac}(3) I V$ gene as a selectable marker in conjugation experiments. Hence, a new plasmid construct, pJL9, carrying a hybrid gene disruption cassette containing aac(3)IV, ori $T_{\mathrm{RK} 2}$, and cat (from $\mathrm{pC194}$) was prepared (Section 2.4.8), allowing for independent selection of Apra ${ }^{\mathrm{R}}$ (encoded by aac(3)IV) in E. coli and Cm^{R} (encoded by cat) in P.
polymyxa. Like the disruption cassettes used in the Streptomyces system, the new Apra ${ }^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ oriT cassette employs the same $19-\mathrm{nt}$ and 20 -nt priming sequences for PCR amplification, and contains the same FRT sites for FLP recombinase-mediated excision (Figure 3.5.6).

3.5.4.2 Disruption of the putative peptide synthetase gene orf 7 on cosmid Col-19

In order to confirm the involvement of the orf7 gene fragment identified on cosmid Col-19 in fusaricidin production, orf7 mutants were created by using the PCR targeting mutagenesis protocol adapted for use in P. polymyxa, and the effect of this mutation on the antifungal activity against L. maculans was assessed. A segment ($\sim 2.4 \mathrm{~kb}$) internal to orf7 was targeted for PCR primer design. Amplification of the Apra ${ }^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ oriT cassette using primers JRL15-RD and JRL16-RD resulted in accumulation of the expected ~ 2.5 kb DNA fragment (Figure 3.5.7), which was subsequently transformed by electroporation into E. coli BW25113 carrying both pIJ790 expressing λ Red recombinase, and the orf7bearing cosmid Col-19. With selection for Apra ${ }^{R}$ transformants, a mutagenized form of the Col-19 cosmid in which the internal $2.4-\mathrm{kb}$ segment of orf7 was deleted and replaced by the Apra ${ }^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ ori T cassette, was obtained through λ Red-mediated homologous recombination between the linear PCR product and the cosmid (Figure 3.5.8). The desired gene disruption in the mutant Col-19 cosmid was verified by restriction analysis and PCRs (see details below). The mutant Col-19 cosmid carrying the disrupted orf7 allele was then passed through the nonmethylating E. coli host strain ET12567, and mobilized in trans by the non-transmissible plasmid pUZ8002 into PKB1 via intergeneric conjugation (Figure 3.5.9).

Among the resultant Cm^{R} exconjugants, four independent mutants (A1, A4, A5, and A6) were isolated which gave the expected size fragment (697 bp) in PCR tests using the $\operatorname{aac}(3) I V$-specific primers SEJ18 and SEJ19 (Figure 3.5.10A). The second PCR reaction using SEJ19 primer with a flanking locus-specific primer JRL14 showed that all four mutants had new junctions and correct integration of the disruption cassette on their chromosomes (Figure 3.5.10B). A third reaction was performed with JRL14 primer and a locus-specific primer JRL30 to test for loss of the $2.4-\mathrm{kb}$ segment targeted for replacement by the disruption cassette. As shown in Figure 3.5.10C, no PCR products were obtained from mutants A4 and A6, but the other two mutants A1 and A5 produced a locus-specific fragment (984 bp) that was expected to be amplified from PKB1 chromosome only, indicating the presence of a wild-type copy of orf7 in A1 and A5 mutants.

Genomic DNA from the wild-type PKB1 strain and the four orf7 mutants was also examined by Southern analysis to confirm the nature of the mutations. When the catcontaining $B g l$ II fragment from the plasmid pJL1 (Section 3.5.3) was used as a catspecific probe, a 2.3-kb PstI fragment hybridizing to the probe was detected in the four mutant samples, but not in the wild type, consistent with the expected gene replacement by the $\mathrm{Apra}{ }^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ oriT cassette in all orf7 mutants (Figure 3.5.11B-1). However, when the same blot was stripped and re-probed with an PstI fragment internal to orf7, which encompasses the region replaced by the $A p r a{ }^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ oriT cassette, a hybridizing band of the expected size (2.85 kb) was seen in the wild-type sample but also in the A1 and A5 mutants (Figure 3.5.11B-2). No hybridization to the probe was seen in lanes containing genomic DNA from the A4 and A6 mutants. Taken together, these findings suggest that
disruption of orf7 by the antibiotic resistance cassette in mutants A4 and A6 resulted from gene replacement via double crossover within orf7. However, complete sequence analysis of Col-19 revealed the presence of discontinuous genomic DNA fragments both upstream and downstream of orf7 (Section 3.2.4). This finding leaves open the possibility that homologous recombinations may have occurred in the upstream and/or downstream non-orf7 sequences, leading to deletion of other genes flanking orf7 from the chromosome (see Section 3.6.1 for further discussion). In the other two orf7 mutants A1 and A5, the entire mutant cosmid presumably integrated into the chromosome by single crossover, resulting in both a wild-type and a mutant copy of orf7 present on their chromosomes.

3.5.4.3 Phenotype of the orf7 mutants

The orf7 disruptants were cultivated in sporulation medium PDB-soy, along with wild-type PKB1, to assess fusaricidin production. After 72 h , methanol extracts of the cell and spore pellets, the culture supernatant, and the entire culture were tested for antifungal activity against L. maculans (Figure 3.5.12). When compared to wild-type PKB1, mutants A4 and A6 had completely lost the ability to produce antifungal material. In contrast, the two single crossover mutants gave bioassay results indistinguishable from the wild type (data not shown for Al). Whether these mutants reverted to wild type upon growth in the absence of antibiotic selection, or whether production was due to the wildtype copy of the orf7 gene remaining on their chromosomes was not determined.

Partially purified methanol extracts of wild-type and orf7 mutant A4 cultures grown in PDB-soy medium were also analyzed by HPLC. This work was kindly performed by

Dr. Jensen and Annie Wong, a technician in our lab. Here, I present their HPLC results in support of my overall conclusions. Although no authentic standards are available for the various analogs of fusaricidins, extracts from the wild-type culture showed a series of A220 peaks eluting between 15 and 17.5 min upon reversed-phase chromatography, and fractions corresponding to these peaks showed bioactivity against L. maculans, consistent with the presence of fusaricidins. HPLC analysis of corresponding extracts from the A4 mutant showed a simpler profile with several peaks missing in this area, and no bioactivity was detected in these or any other fractions (Figure 3.5.13). On this basis, it was concluded that the A4 mutant does not produce detectable fusaricidins and therefore the putative peptide synthetase gene orf7 is essential for fusaricidin biosynthesis.

When wild-type P. polymyxa PKB1 is grown on PDA or other carbohydrate-rich media, colonies exhibit a thick capsular layer of slime, presumably due to production of extracellular levan (Han, 1989). Interestingly, when the orf7 mutants A4 and A6 were grown on PDA plates, the colonies produced noticeably larger amount of capsular slime than was observed for either wild-type PKB1 or the single crossover mutants A1 and A5. This observation may indicate a relationship between polysaccharide synthesis and antibiotic production in P. polymyxa.

3.6 Analysis of the fusaricidin biosynthetic gene cluster and the flanking regions

The two overlapping fosmids (4G9 and 6D11) isolated from the pSMART-FOS genomic library of P. polymyxa PKB1 (Section 3.4) yield a contiguous DNA sequence of approximately 48 kb (Appendix C), covering the entire fusaricidin biosynthetic gene
cluster (fus) and flanking regions. The fus gene cluster spans 32.4 kb and includes 8 ORFs. The organization and assigned functions of these ORFs are shown in Figure 3.6.1 and Table 3.5, respectively. More than 6 kb of DNA from each flank of the fus cluster was also sequenced. The boundaries of the fus cluster are predicted based on the nature of the gene products encoded by the fus cluster, and on gene disruption analyses. Genes identified in the biosynthetic gene cluster include those necessary for assembly of the peptide backbone, and synthesis and incorporation of the lipid moiety of fusaricidin, but genes for regulation, export, and resistance were not detected in the region.

3.6.1 Modular organization of the fusaricidin synthetase

The fus gene cluster includes a large ORF of about 23.7 kb , encoding a protein of 7,908 amino acids with a molecular mass of $888,101 \mathrm{Da}$. The predicted gene product shows highest similarity to bacitracin synthetase (BacC) from Bacillus licheniformis (GenBank accession no. AAC06348). Sequence analysis revealed that the partial ORF orf7 identified on cosmid Col-19 corresponds to the 5^{\prime} end of this NRPS gene. Therefore, the complete ORF identified in the fus cluster was designated as the fusaricidin synthetase gene, fusA, and accordingly, the fusaricidin-nonproducer mutants A4 and A6 created by disruption of orf7 (Section 3.5.4) are referred to as fusA mutants in the rest of this thesis. To ensure that targeted mutation of fus A occurred with no unintended deletion of neighboring genes, Southern analysis could have been performed, in which genomic DNA from wild-type PKB1 and the A4 and A6 mutants was digested with restriction enzymes that cut outside of fusA and generate large-size restriction fragments, and then the fractionated and blotted DNA was probed with DNA fragments corresponding to
regions flanking fusA. Alternatively, a wild-type copy of fus A carried on a plasmid could have been introduced into the fusA mutant (A4 or A6) to see whether fusaricidin production could be restored. However, such a complementation test would be made difficult by the very large size of fusA and lack of its own promoter for gene expression in P. polymyxa.

The translation of fusA appears to start with an ATG codon at nt 17,682 , located 8 bp downstream of a putative ribosome-binding site (AGGAG) (Appendix C). By comparison with other peptide synthetases, six functional modules were identified within the deduced amino acid sequence (FusA) of fusA (Figure 3.6.2). Each module contains the three common catalytic domains of NRPSs, an adenylation domain, a thiolation domain, and a condensation domain. The last module terminates with a C-terminal thioesterase domain that is presumably required for cyclization and release of the peptide product. Most of the highly conserved core motifs characteristic for individual domains of NRPSs are found in the modules of fusaricidin synthetase.

3.6.1.1 Condensation (C) domains

The fusaricidin synthetase FusA contains five typical C domains that presumably catalyze peptide bond formation between two adjacent amino acid residues of fusaricidin. An additional C domain was detected at the N -terminus of the first module of FusA, which shows the highest similarity (approximately 40% identity) to the first C domain of the surfactin synthetase SrfA-A (GenBank accession no. BAA02522) (Figure 1.5.1), responsible for the incorporation of the first three amino acids into the lipopeptide surfactin, but only around 23% identity to the remaining five C domains in FusA. This
can be explained by the observation that C domains are not normally present in the initial modules of NRPSs, except for lipopeptides, a subgroup of nonribosomally synthesized peptides whose peptide chain is N -terminally attached to a fatty acid (Section 1.5). The presence of an N -terminal C domain $\left(\mathrm{C}_{\mathrm{N}}\right)$ preceding an A and a T domains in the initiation module, as seen in the first module of FusA, has been reported for many characterized lipopeptide synthetase systems from bacilli, actinomycetes, and pseudomonads, such as the surfactin (Cosmina et al., 1993), daptomycin (Miao et al., 2005), and arthrofactin (Roongsawang et al., 2003) synthetases. These N -terminal C domains are presumed to be required for attachment of the lipid moiety as an early step of lipopeptide biosynthesis. Since they catalyze the coupling of fatty acids, rather than amino acids, to the first amino acid of the peptide chain, these initial C domains may share features not found in regular C domains, and so greater similarity is seen within this group than with other internal C domains (Figure 3.6.3). The primary structure of fusaricidin shows an N -terminal Thr residue acylated with a β-hydroxy fatty acid, as is also the case for surfactin. Thus, the high homology between the first C domain in FusA and that in SrfA-A further supports the proposal that the peptide synthetase encoded by fusA is responsible for fusaricidin biosynthesis.

Moreover, the remaining five C domains in FusA can be subdivided into two groups according to their locations. They are C_{D} domains (in FusA-C3, FusA-C5, and FusA-C6) that are preceded by an epimerization domain and accept an upstream D-amino acid at the donor site, and C_{L} domains (in FusA-C2 and FusA-C4) that are located immediately downstream of a T domain and accept an upstream L -amino acid at the donor site. Distinct differences between the C_{D} and C_{L} domains and similarity within the same
domain type were seen in the amino acid sequences of the conserved motifs (Figure 3.6.3). This may reflect the stereoselectivity of C domains towards the C -terminal amino acid of the growing peptidyl chain in the course of the condensation reaction (Section 1.4.1.3).

3.6.1.2 Epimerization (E) domains

In most peptide synthetases produced by Gram-positive bacteria, modules that incorporate D-configured residues contain an additional domain responsible for epimerization, found downstream of the T domain. An L-amino acid is activated and then the E domain catalyzes L to D racemization of the thioester-bound amino acid (Section 1.4.1.5). Modifying epimerization (E) domains were detected at the C-terminal ends of the second, fourth and fifth modules of FusA, consistent with the incorporation of Damino acids in these positions of fusaricidin peptides. However, the sixth module FusAM6, corresponding to D-Ala, lacks such an E domain, suggesting that a different mechanism is adopted for D-Ala incorporation in fusaricidin biosynthesis.

Two distinct mechanisms of D-amino acid incorporation by a module without an E domain have been encountered so far. In the lipo-undecapeptide arthrofactin, for example, there are no E domains detected in any of the three arthrofactin synthetases, although seven of the eleven amino acids are in the D-configuration. Biochemical analyses demonstrated that A domains in modules corresponding to D -amino acids were specific for activation of L-isomers, and epimerase activity was provided by a new type of C domain with dual epimerization and condensation functions, located immediately downstream of the T domain acylated with the amino acid undergoing epimerization
(Balibar et al., 2005; Roongsawang et al., 2003). It was also suggested that the occurrence of D-amino acids in lipopeptides syringomycin (Guenzi et al., 1998), syringopeptin (Scholz-Schroeder et al., 2003), enduracidin (Yin and Zabriskie, 2006), and ramoplanin (Walker et al., 2005) probably involves the same mechanism as demonstrated for arthrofactin.

The second, but very rare strategy for incorporation of D-amino acids without the action of an E domain, involves the direct activation of D-isomers by the A domains. Initially, only two instances of this mechanism are known, in cyclosporin (Dittmann et al., 1994; Weber et al., 1994) and HC-toxin synthetases (Scott-Craig et al., 1992; Walton, 1987), both from fungal systems. Although these NRPSs have been reported to incorporate D-Ala directly, no biochemical studies using purified recombinant A domains have been conducted. However, both gene clusters do encode independent alanine racemases to generate the required D-Ala (Cheng and Walton, 2000; Hoffmann et al., 1994). As this thesis was being written, another example of a D-Ala-specific A domain of bacterial origin was reported for the leinamycin synthetase (Tang et al., 2007), a hybrid nonribosomal peptide-polyketide synthetase produced by Streptomyces atroolivaceus (Section 1.6). Cloning and sequencing of the leinamycin biosynthetic gene cluster revealed a novel type of NRPS initiation module, composed of two isolated proteins: LnmQ (adenylation protein) and LnmP (thiolation protein) (Figure 1.6.2). It was demonstrated biochemically that LnmQ directly activates D-Ala and loads it onto LnmP to initiate the biosynthesis of leinamycin (Tang et al., 2007).

Since the amino acid incorporated by FusA-M6 occupies the C-terminal position of the fusaricidin peptide, this excludes the possibility that epimerization of an L-Ala residue
is catalyzed by a downstream dual C / E domain, as seen in the case of arthrofactin synthetases. Therefore, either free D-Ala may be directly selected and activated by the A domain of FusA-M6, as was shown for leinamycin biosynthesis, or possibly an external racemase may be involved in transformation of thioester-bound L-Ala to D-Ala.

3.6.1.3 Thiolation (T) domains

The six thiolation domains in FusA can be divided into two groups according to their conserved motifs. Modules FusA-M2, FusA-M4 and FusA-M5 are associated with E domains, and in these modules, the T domains upstream of E domains all contain a core sequence of LGGDSIK. It has been demonstrated that the aspartate residue (in bold) in front of the conserved serine residue in T domain core motifs is essential for proper interaction between the T domain and downstream E domain, and subsequent racemization of the thioester bound L-amino acid to its D-isomer (Linne et al., 2001). In contrast, the core sequence of the T domain found in FusA-M6 (LGGHSL) matches that of T domains not associated with E domains (xGGHSL), such as those found in the first and third modules. This finding is consistent with the absence of an E domain in the termination module of FusA. Furthermore, significant differences between these two groups of T domains were observed in the downstream regions of the core motifs (Figure 3.6.4), which may reflect the requirement of proper positioning of T domain-bound amino acid at the E domain during substrate epimerization.

3.6.1.4 Adenylation (A) domains

By comparison with the amino acids lining the substrate-binding pocket in the Pheactivating domain of the gramicidin S synthetase GrsA, a "nonribosomal code" specifying important residues involved in substrate recognition by A domains has been defined by two independent groups (Challis et al., 2000; Stachelhaus et al., 1999) (Section 1.4.1.1). The corresponding amino acid residues were examined in the six A domains of FusA, and the substrate specificity of each A domain was predicted (Table 3.6).

The A domain in the first module FusA-A1 incorporating L-Thr, and the one in the fourth module FusA-A4 incorporating D-allo-Thr, both share the same signature sequence as the Thr-activating domain from fengycin synthetase FenD (GenBank accession no. CAA09819).

The substrate recognition sequence of FusA-A2 is most similar to that of the Valactivating A domain from surfactin synthetase SrfA-B (GenBank accession no. BAA08983), which also activates isoleucine to a lesser extent (Elsner et al., 1997). The presence of tryptophan at position 278 of the specificity code was suggested to be important for recognition of the smaller side chain of valine as compared to that of isoleucine (Challis et al., 2000), and a tryptophan residue is found at this position in FusA-A2. The incorporation of D-Val, D-Ile, or D-allo-Ile as substrates in the second position of fusaricidins indicates an even broader substrate specificity, possibly due to substitutions of Ile299 \rightarrow Leu and Gly $322 \rightarrow$ Cys in FusA-A2 compared to SrfA-B.

FusA-A3 contains a signature sequence most closely resembling the 3-hydroxy-L-Tyr-activating domain from chloroeremomycin synthetase CepB (GenBank accession no. CAA11795). However, considerable similarity to the Phe-activating domains from TycA
and GrsA synthetases (GenBank accession no. AAC45928, and CAA33603, respectively) was also noted in the A4-A5 regions that define most of the substrate-binding pockets in A domains. In addition, the specificity-conferring residues identified in FusA-A3 are mainly hydrophobic. Together, these findings may indicate an overall relaxed specificity towards aromatic and hydrophobic amino acid residues at the third position, as seen in the fusaricidin variants.

The specificity code of FusA-A5 matches that of the Asn-activating A domain from tyrocidine synthetase TycC (GenBank accession no. AAC45930). Replacement of D-Asn by another polar residue D-Gln at the fifth position in several fusaricidin variants indicates that this conservative substitution is tolerated by the corresponding A domain. Although the same substrate recognition sequence (DLTKIGEVG) is found in the Asnactivating A domain derived from the fus-asn gene fragment, previously subcloned from the PKB1 chromosome (Section 3.2.1), FusA-A5 is not identical to fus-asn in the nucleotide sequences. This further confirmed that fus-asn should be part of a separate NRPS gene cluster responsible for biosynthesis of Asn-containing peptide metabolites, other than fusaricidins, in P. polymyxa PKB1.

The amino acid substrate for FusA-A6 cannot be predicted because its signature sequence shows no similarity to A domains with assigned specificities, including those activating L- and D-Ala (Figure 3.6.5). Ala-specific A domains, whether for L- or Disomers, show relatively weak similarity, perhaps because the small size of the alanine sidechain allows greater variability in the residues lining the Ala-binding pocket to be tolerated (Challis et al., 2000). With the exception of FusA-M6, the predicted substrates
for the A domains of each module of fusaricidin synthetase correspond to the residues found at the respective positions of the fusaricidin peptides.

3.6.2 Determination of the substrate specificity of the A domain in the sixth module of FusA

In order to determine the substrate specificity of FusA-A6, a DNA fragment corresponding to the adenylation domain of FusA-M6 was amplified from fosmid 6D11, and cloned into pET-19b. Based on the previously described A domain borders (Mootz and Marahiel, 1997), the N-terminal end of the FusA-A6 domain was set at 101 aa upstream from the core motif A2 (LKAGGA), and the C-terminal end at 17 aa upstream from the core motif T (LGGHSL) (Figure 3.6.6). After expression in E. coli, a soluble protein with the predicted molecular mass of 64 kDa was obtained and purified by Ni^{2+} affinity chromatography (Figure 3.6.7). Enzymatic activity of the purified recombinant FusA-A6 protein was determined by an ATP-PPi exchange assay with various amino acids as substrate. From the results obtained (Figure 3.6.8), it was evident that FusA-A6 is specific for activation of D-Ala, with very low tolerance for L-Ala (less than 1% of D Ala), or any other amino acids ($1-4 \%$ of D-Ala).

In previous studies of cyclosporin and HC-toxin synthetases (Dittmann et al., 1994; Scott-Craig et al., 1992; Walton, 1987; Weber et al., 1994), the specificity for D-Ala activation by respective A domains was predicted based on the colinearity rule of NRPSs. However, the D-Ala-dependent ATP-PPi exchange reactions that were performed in both fungal systems used entire peptide synthetase proteins and therefore could not exclude the possibility that external racemases were co-purified from the producer organisms
(Cheng and Walton, 2000; Walton, 1987; Zocher et al., 1986). The data from the present study, as well as the leinamycin synthetase system (Tang et al., 2007), clearly show that a recombinant A domain, from a peptide synthetase of prokaryotic origin, exclusively recognizes and activates a D-amino acid as the substrate. While the cyclosporin and HCtoxin biosynthetic gene clusters each encode a distinct alanine racemase catalyzing conversion of L- to D-Ala (Cheng and Walton, 2000; Hoffmann et al., 1994), an alanine racemase specific for the fus cluster or the leinamycin biosynthetic gene cluster was not encountered. However, alanine racemases are widely present in bacteria where they provide D-Ala essential for cell wall synthesis.

3.6.3 N -terminal lipidation of fusaricidin

Fusaricidins belong to a group of nonribosomal peptides that are modified at the N terminus with a fatty acid. The lipid side chains of lipopeptide antibiotics are believed to play an important role in their interactions with their cellular targets, such as cell membranes. The predicted gene products of six ORFs upstream of fusA show homology to enzymes involved in either fatty acid synthesis (fusB, fusC, fusE, fusF and fusG) or amino acid biosynthesis (fusD) (Table 3.5), and accordingly, are likely to synthesize and/or modify, and activate a fatty acid precursor for attachment to the amino group of the N-terminal L-Thr residue of fusaricidin. The acyl-CoA ligase encoded by fusF may couple coenzyme A (CoA) to an acyl group, which is then transferred to an acyl carrier protein (ACP) for elongation, possibly involving the gene products of fusB, fusC and $f u s G$, although no gene encoding an ACP-like protein was found in the fus cluster. During this process, a $\beta-\mathrm{OH}$ group must be preserved or introduced into the growing fatty
acid chain, and ultimately, the activated fatty acid must be further modified by addition of a guanidino group. Alternatively, perhaps an arginine residue is deaminated to 5guanidino pentanoic acid, then activated and transferred to ACP for elongation by a process analogous to type II fatty acid biosynthesis. Acylation of the N-terminal amino acid with the modified fatty acid is presumably catalyzed by the initial condensation domain in the first module of FusA (Section 3.6.1.1). Further studies are needed to clarify the catalytic roles of these fatty acid genes upstream of fusA in fusaricidin biosynthesis.

3.6.4 The 3^{\prime} boundary of the fus A gene cluster

At $1,141 \mathrm{bp}$ downstream from the translational stop codon of $f u s A$ and oriented in the opposite direction, a 624-bp ORF encoding a putative protein of 207 amino acids was detected (Figure 3.6.1). This gene product shows the greatest similarity to proteins of the α / β hydrolase fold family ($\sim 45 \%$ identity) and has one conserved $G x S x G$ motif typical of thioesterases. Although it shows no significant similarity to the C-terminal TE domain of FusA, it may catalyze hydrolysis of acyl groups inappropriately attached to the 4'-PP cofactors of fusaricidin synthetase, as have been demonstrated for other type II thioesterases (Section 1.4.1.4). Therefore, this ORF was designated as fusTE. DNA sequence further upstream of fusTE showed 99% identity to a P. polymyxa 16 S rRNA gene and beyond that a 23 S rRNA gene is apparent (Table 3.5). Therefore, fusTE was assigned as the 3^{\prime} boundary of the fusA gene cluster even though no gene disruption studies were conducted to confirm its involvement.

3.6.5 The 5^{\prime} boundary of the fus A gene cluster

3.6.5.1 Preparation of the $y m c C$ mutant

About 10 kb of DNA sequence upstream of fus G was examined in order to identify additional genes potentially involved in fusaricidin production (Figure 3.6.1). An ORF $(y m c C)$, starting $1,160 \mathrm{bp}$ upstream of fusG, encodes a protein product of 177 aa with similarity to YmcC (from Bacillus licheniformis ATCC 14580), a protein with unassigned function. The counterpart of $y m c C$ in the Bacillus subtilis 168 genome precedes a cluster of putative polyketide synthase genes. In order to determine whether $y m c C$ plays a role in fusaricidin biosynthesis, $y m c C$ mutants were created using a PCRtargeting mutagenesis method as previously described for preparation of fusA mutants, with a minor change. The primers JRL42-RD and JRL43-RD were used to amplify by PCR the Apra ${ }^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ oriT disruption cassette from the template plasmid pJL9. The λ Red expression plasmid pIJ790 could not be used with the P. polymyxa fosmid clones since both pIJ790 and the pSMART-FOS vector confer chloramphenicol resistance. Therefore, the $y m c C$-bearing fosmid 4 G 9 was transformed into E. coli strain BW25113 carrying pKD46. Like pIJ790, pKD46 expresses λ Red functions when induced by L-arabinose, but it contains the ampicillin resistance gene bla instead of the Cm^{R} marker, allowing selection in the presence of pSMART-FOS-derived fosmids. The PCR-generated disruption cassette was then introduced by electroporation into E. coli BW25113 harboring both pKD46 and 4G9. With selection for Apra ${ }^{\mathrm{R}}$ transformants, the mutant fosmid $4 \mathrm{G} 9: \Delta y m c C$ was obtained where the entire $y m c C$ gene was deleted and replaced by the disruption cassette. The mutagenized fosmid was introduced into the wild-type P. polymyxa PKB1 strain by intergeneric conjugation (Figure 3.6.9), and four ymc C mutants were identified among the Cm^{R} exconjugants by PCRs.

Two PCR reactions were carried out using the $a a c(3) I V$-specific primers SEJ18 and SEJ19, and primer SEJ18 with a flanking locus-specific primer JRL45, respectively. All four mutants gave locus-specific fragments of the expected sizes, indicating that they have the $\mathrm{Apra}{ }^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ oriT disruption cassette integrated at the correct locus on their chromosomes (Figure 3.6.10A). A third reaction, using two flanking locus-specific primers JRL44 and JRL45 to test for loss of the target gene, revealed that all ymcC mutants had the expected-size fragments specific for gene replacement by the disruption cassette, but mutants \#3 and \#12 also produced the $y m c C$-specific fragments, indicating the presence of a wild-type copy of $y m c C$ in both mutants (Figure 3.6.10B). Together, these observations suggest that mutants \#8 and \#11 probably resulted from the replacement of $y m c C$ with the gene disruption cassette via double crossover, while the other two mutants \#3 and \#12 contain both wild-type and mutant copies of $y m c C$, presumably resulting from integration of the entire fosmid into the chromosomes by a single homologous recombination.

The $y m c C$ mutant (\#8) that had been isolated and confirmed by PCR reactions was fermented in PDB-soy medium, along with the wild $]$ type PKB1 strain. After 72 hours of growth, fusaricidin production in both cultures was assessed by bioassay with L. maculans as the indicator organism. Since the zones of inhibition produced by $y m c C$ mutant and wild-type PKB1 are quite similar in size (Figure 3.6.11), disruption of the $y m c C$ gene appeared to have no apparent effect on production of fusaricidin.

3.6.5.2 Preparation of the $k t p$ mutant

ABC-type transporter systems were identified within several peptide synthetase gene clusters (Gaisser and Hughes, 1997; Mootz and Marahiel, 1997; Quigley et al., 1993; Roongsawang et al., 2003). Gene disruption of either the transporter or the synthetase in Proteus mirabilis resulted in the same swarming-defective phenotype (swarming appeared to be associated with peptide/polyketide production in this case), suggesting that the transporter proteins may play a role in the secretion of corresponding peptide products (Gaisser and Hughes, 1997). However, no genes encoding transporter-like proteins were found in the sequenced region downstream of fusA.

An ORF, oriented in the same transcriptional direction as $y m c C$, is located further $1,630 \mathrm{bp}$ upstream (Figure 3.6.1). The predicted gene product of 445 aa shares sequence similarity with potassium uptake transporter proteins and so this ORF was designated $k t p$. To determine if this protein product was involved in export of fusaricidins, ktp mutants were generated by following the same PCR-targeting protocol as described in the preparation of $y m c C$ mutants, except that the PCR primers JRL31-RD and JRL32-RD were used to amplify the $\mathrm{Apra}^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ oriT disruption cassette. By using three PCR reactions with $\operatorname{aac}(3) I V$-specific primers and locus-specific primers, one ktp mutant T 1 was identified, in which the wild-type copy of $k t p$ was replaced by the $A p r a{ }^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ oriT disruption cassette via double crossover recombination (Figure 3.6.12). However, this mutant strain still produced wild-type level of fusaricidins, as judged by bioassay of culture extracts against the indicator fungus L. maculans (Figure 3.6.11), thus indicating that the gene product of $k t p$ is not required for export of, or self-resistance to, fusaricidins.

In the sequenced region further upstream from $k t p$, a variety of housekeeping genes were encountered (Table 3.5), and most of them have functional counterparts in Bacillus genomes. However, none of these ORFs encoded functions obviously related tfusaricidin biosynthesis. Therefore, the 5 ' boundary of the fus cluster is likely defined by fus G. ${ }^{12}$

[^2]

Figure 3.1.1 The PCR primers used to amplify fragments of the peptide synthetase genes from P. polymyxa PKB1. The oligonucleotide primers B 1 and J 6 were designed to recognize the conserved core motifs A 2 and T , common to all peptide synthetases, respectively. Annealing of these primers to peptide synthetase genes would result in amplification of a DNA fragment of approximately $1,650 \mathrm{bp}$.

Figure 3.2.1 Southern analysis of cosmid Col-8 identified in the first screening of the SuperCos-1 genomic library of P. polymyxa PKB1. The cosmid DNA from Col-8 and genomic DNA from wild-type PKB1 (WT) were digested with various restriction enzymes before being subjected to Southern analysis. The membrane with blotted DNA was probed with the PCR-amplified fragment B1J6-10. The two EcoRI fragments from either Col-8 or genomic DNA, which hybridized to the probe, are indicated.

A

B

C

Figure 3.2.2 Southern analysis of the positive cosmids identified in the second screening of the first SuperCos-1 genomic library of P. polymyxa PKB1. The cosmid DNA from Col-8, $\mathrm{Col}-9, \mathrm{Col}-10, \mathrm{Col}-15, \mathrm{Col}-19$ and $\mathrm{Col}-20$, as well as genomic DNA from the wild-type PKB1 strain (WT), was digested with PstI (A), EcoRI (B) and HindIII (C), respectively. The PCRamplified fragment B1J6-17 was used as a probe in the Southern analysis.

A

B

Figure 3.2.3 ORF organization of the insert DNA from cosmid Col-8.

Figure 3.2.3 (continued) (A) The long white bar represents the insert of Col-8, and the fine line represents the SuperCos-1 cosmid vector. ORFs encoding peptide synthetases are represented by black arrows (or bars) and the other ORFs are shown in gray. The truncated ends of incomplete ORFs are shown by short vertical double lines, and their transcriptional directions are indicated by arrows. The long double lines represent possible discontinuities in the nucleotide sequence of cosmid insert. The 3.2-kb EcoRI fragment previously subcloned from Col-8 is also indicated. The figure is not drawn to scale. (B) Domain organizations of the peptide synthetases derived from orf2, orf5, orf6, orf7, and orf10. The incomplete adenylation domains identified within the deduced amino acid sequences of orf2 and orf5 do not contain enough sequence information to allow predication of their substrate specificities.

${ }^{a}$ DAB: 2,4-diaminobutyric acid
${ }^{b}$ The fatty acid chain is attached to the α-amino group of the N-terminal DAB.
${ }^{c}$ Cyclization of the peptide occurs via an amide bond between the γ-amino group of DAB at the fourth position and the α-carboxyl group of the C -terminal threonine residue.

Figure 3.2.4 The structures of commonly used polymyxin-type antibiotics produced by P. polymyxa (Katz and Demain, 1977). All amino acids are in the L-configuration unless indicated otherwise.

Figure 3.2.5 ORF organization of the insert DNA from cosmid Col-19. The black arrow represents the peptide synthetase gene orf7, while the other ORFs are shown in gray. The truncated ends of incomplete ORFs are shown by short vertical double lines, and their transcriptional directions are indicated by arrows. The long double lines represent possible discontinuities in the nucleotide sequence of cosmid insert. The figure is not drawn to scale. See Table 3.4 for predicted functions of assigned ORFs.

Figure 3.2.6 Schematic representation of the peptide synthetase gene comprising orf7 from Col-19 and the PCR-amplified fragment TOPO-19.

Figure 3.2.6 (continued) By using P. polymyxa PKB1 genomic DNA as template, the fragment TOPO-19 was amplified with primer JRL19', derived from the 3^{\prime} end of orf7. Domain organizations of the peptide synthetase deduced from the assembled DNA sequence, and from the fus-asn fragment are illustrated. The predicted substrates of the adenylation domains are indicated. The dashed line represents the assumed PCR product amplified by using primer JRL19', and primer JRL18' derived from the A-domain in the deduced amino acid sequence of fus-asn. The P-tyr probe used for screening the fosmid genomic library of P. polymyxa PKB1 and the $3.4-\mathrm{kb}$ HindIII fragment hybridizing to the P-tyr probe (Figure 3.4.1) are also shown.

Figure 3.4.1 Southern analysis of the hybridizing fosmids identified in the pSMARTFOS genomic library of P. polymyxa PKB1. The fosmid DNA from twenty-one positive clones and genomic DNA of wild-type PKB1 (WT) were digested with HindIII before being subjected to Southern analysis. The membrane was hybridized with the probe P-tyr, corresponding to the Tyr-activating adenylation domain (Figure 3.2.6). The four fosmids, bearing the $3.4-\mathrm{kb}$ HindIII fragment hybridizing to the probe (Figure 3.2.6), are indicated.

Figure 3.4.2 Southern analysis of the fosmids 4G9 and 6D11 identified in the pSMARTFOS genomic library of P. polymyxa PKB1. The fosmid DNA, and genomic DNA from wild-type PKB1 (WT) were digested with EcoRI before being subjected to Southern analysis. The membrane shown on the left hand side was probed using the EcoRIdigestion mixture of 6 D 11 , while the membrane on the right hand side was hybridized with the gel-purified EcoRI fragments obtained from 4G9.

Figure 3.5.1 Southern analysis of the putative fus-asn single-crossover mutants. Genomic DNA from wild-type PKB1 (WT) and four Cm^{R} mutants (2-1, 2-9, 2-10, and 312) was digested with $K p n I$ before being subjected to Southern hybridization. The membrane was probed using the EcoRI-digested plasmid pJH101. The $5.4-\mathrm{kb}$ hybridizing band indicated in the most left lane is the linearized form of pJHl 01.

fus-asn mutant chromosome

Figure 3.5.2 Gene disruption of the fus-asn fragment in P. polymyxa PKB1 via double crossover.

Figure 3.5.2 (continued) The plasmid pJL-asn:cat in which fus-asn is disrupted by insertion of the chloramphenicol resistance gene (cat) was transformed into the wild-type PKB1 strain. Replacement of the chromosomal copy of fus-asn by the disrupted copy via two crossovers should give rise to chloramphenicol resistant, but streptomycin sensitive P. polymyxa mutants. The fus-asn gene fragment is represented by the gray bar truncated on both sides by black double lines, and the surrounding chromosomal regions are represented by double lines. The locations of PCR primers used in subsequent PCR verification and the expected sizes of PCR products are also shown. The aadA gene is a streptomycin resistance marker taken from the plasmid $\mathrm{pSET} \Omega$.

Figure 3.5.3 Analysis of the putative fus-asn double-crossover mutants by colony PCR. Cells harvested from fresh cultures of wild-type PKB1 (WT) and seven putative fus-asn mutants ($22,28,38,41,52,68$, and 73) were lysed by boiling, and then supernatants of the cell lysates, as well as the plasmid pJL-asn:cat, were separately used as template in the PCR reaction with two fus-asn-specific primers JRL1 and JRL3 (Figure 3.5.2). Lane M: lambda DNA/PstI marker.

Figure 3.5.4 Southern analysis of the putative fus-asn double-crossover mutants. Genomic DNA from wild-type PKB1 (WT) and six $\mathrm{Cm}^{\mathrm{R}} \operatorname{Str}^{\mathrm{S}}$ mutants (28, 38, 41, 52, 68, and 73), as well as the plasmid pJL-asn:cat (control), was digested with BgIII. The fractionated and blotted DNA was probed using a cat-specific probe. The 1 kb hybridizing band indicated in the control lane is the cat-containing BglII fragment excised from the plasmid pJL-asn:cat (Figure 3.5.2).

exconjugants.

Figure 3.5.5 (continued) (A) Agarose gel electrophoresis of the uncut plasmid DNA isolated from P. polymyxa Cm^{R} exconjugants (right hand lane), resulting from conjugation of the E. coli-Paenibacillus shuttle vector $\mathrm{pC194}$-apra into wild-type PKB1, and the uncut plasmid pC194-apra isolated from E. coli (left hand lane), which was constructed by fusion of the Staphylococcus plasmid $\mathrm{pCl} 194\left(\mathrm{Cm}^{\mathrm{R}}\right)$ to the E. coli plasmid pIJ773 (Apra ${ }^{\text {R }}$) at the HindIII site. P. polymyxa genomic DNA co-purified with the plasmid was observed as background smear. (B) The plasmid DNA obtained from Cm^{R} exconjugants was transformed into E. coli by electroporation. From the resultant apramycin and chloramphenicol resistant transformants, the plasmid DNA was purified and digested with HindIII (lanes 1\&2), and then was electrophoresed on the agarose gel together with the HindIII-digested plasmid pC194-apra (lane 3). Lane M: lambda DNA/PstI marker.

The original Apra ${ }^{\text {RoriT }}$ disruption cassette used in the Streptomyces system :

The hybrid Apra ${ }^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ oriT disruption cassette used in this study:

Figure 3.5.6 Diagrammatic representation of the $\mathrm{Apra}^{\mathrm{R}}$ oriT and $\mathrm{Apra}^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ ori T disruption cassettes. The Apra ${ }^{\mathrm{R}}$ oriT disruption cassette was isolated from the plasmid pIJ773 as a $1.4-\mathrm{kb}$ EcoRI/HindIII fragment, and the hybrid Apra ${ }^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ oriT disruption cassette was isolated from the plasmid pJL9 as a $2.5-\mathrm{kb}$ BgIII fragment. The hatched bars represent the priming sequences P 1 (19 nt) and P 2 (20 nt) that are supplied as the 3^{\prime} ends of PCR primers used for amplification of the disruption cassette. FRT represents the FLPrecombinase recognition target site.

JRL15-RD

PCR amplification

Figure 3.5.7 PCR amplification of the $\mathrm{Apra}^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ oriT gene disruption cassette for preparation of orf7 mutants using a modified Redirect ${ }^{\bullet}$ technology. By using a gelpurified $2.5-\mathrm{kb} B g / \mathrm{II}$ fragment from the plasmid pJL9 as template, the $\mathrm{Apra}^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ oriT disruption cassette containing $\operatorname{acc}(3) I V\left(\mathrm{Apra}^{\mathrm{R}}\right)$, cat $\left(\mathrm{Cm}^{\mathrm{R}}\right)$, ori $T_{\mathrm{RK} 2}$, and two FRT sequences was amplified with PCR primers JRL15-RD and JRL16-RD. Each primer includes a 39 -nt extension sequence at the 5 ' end (black bar) identical to the region flanking the target DNA fragment, and a 19 - or 20 -nt priming sequence at the 3^{\prime} end (hatched bar) identical to the disruption cassette.

Figure 3.5.8 Construction of the mutant cosmid Col-19 containing a disrupted copy of orf7.

Figure 3.5.8 (continued) A 2.4-kb segment internal to orf7 (grey arrow) was targeted for PCR primer design (JRL-15RD and JRL-16RD). The PCR-amplified Apra ${ }^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ oriT disruption cassette was transformed into E. coli BW25113/pIJ790 carrying the cosmid Col-19, in which the λ Red functions encoded by pIJ790 promoted homologous recombination between the linear PCR product and the cosmid Col-19, resulting in replacement of the target segment internal to orf7 by the disruption cassette. The white bars represent the rest of the cosmid insert DNA. The antibiotic resistance genes (neo for $\mathrm{Kan}^{\mathrm{R}}$, bla for $\mathrm{Amp}^{\mathrm{R}}$) on the cosmid vector are also shown. The figure is not drawn to scale.

Figure 3.5.9 Gene disruption of the chromosomal copy of orf 7 in P. polymyxa PKB1.

Figure 3.5.9 (continued) The mutant cosmid Col-19 carrying the disrupted-copy of orf7 was mobilized into PKB1 via intergeneric conjugation, where exchange with the wildtype copy occurred. Cm^{R} P. polymyxa exconjugants were selected, and successful integration of the disruption cassette in the chromosome was confirmed by PCRs and Southern hybridization. The chromosomal DNA is indicated by double lines. The locations of PCR primers and the expected sizes of PCR products were shown.

(A)

(B)

(C)

Figure 3.5.10 PCR verification of the P. polymyxa orf 7 mutants.

Figure 3.5.10 (continued) Genomic DNA from four independent mutants A1, A4, A5, and A6, as well as the wild-type PKBl strain (WT), was amplified by using a pair of $\operatorname{aac}(3) I V$-specific primers SEJ18 and SEJ19 (A), primer SEJ19 and a primer JRL14 flanking the segment targeted for gene replacement (B), primer JRL14 and an orf7specific primer JRL30 (C), respectively. The expected sizes of PCR products are indicated in all three reactions. See Figure 3.5.9 for the locations of PCR primers. Lane M1: lambda DNA/BstEII marker; lane M2: lambda DNA/PstI marker.

A
The wild-type copy of orf7

The mutant copy of orf 7

(1)

方

(2)

Figure 3.5.11 Southern analysis of the P. polymyxa orf 7 mutants.

Figure 3.5.11 (continued) (A) Diagrammatic representation of the chromosomal orf7 region in the wild-type PKB1 strain and the orf7 mutant. The double lines represent the rest of the chromosomal DNA. (B) Southern hybridization results of the PstI digested genomic DNA from the wild-type PKB1 strain (WT) and the four orf7 mutants (A1, A4, A5, and A6). The membrane with bound DNA was first probed with a cat-specific probe (B-1), and then stripped and re-probed with a $2.85-\mathrm{kb}$ PstI fragment internal to orf7 (B2).

Figure 3.5.12 The antifungal activity of A4, A5, and A6 mutants carrying the orf7 disruption compared to the activity of PKB1 strain. Both mutants and the wild-type strain were grown in PDB-soy medium for 72 h , and then a well bioassay was used to evaluate the antifungal activity of the bacterial culture (a), the cell and spore pellet (b), and the culture supernatant (c) against L. maculans. The zones of inhibition were observed after 3 days.

Figure 3.5.13 HPLC analysis of methanol extracts from the wild-type and A4 mutant cultures. Methanol extracts of whole PDB-soy medium-grown cultures were partially purified before analysis by absorption to a Sep-Pak C_{18} cartridge. Concentrated bioactive material was then separated by reversed-phase HPLC with gradient elution. Fractions were collected across the elution profile and bioassayed against L. maculans. The bioassay sample wells were 10 mm in diameter, which was the minimum zone of inhibition (Z.O.I) observable.

Figure 3.6.1 ORF arrangement of the fusaricidin biosynthetic gene cluster. The black arrow represents the peptide synthetase gene fusA whereas other fusaricidin biosynthetic genes are shown in gray and flanking regions are in white. The P-tyr probe used for screening the pSMART-FOS genomic library of P. polymyxa PKB1, and the overlapping fosmid inserts isolated in this study are shown. See Table 3.5 for proposed functions of assigned ORFs. The figure is not drawn to scale.

Figure 3.6.2 Module and domain organization of the fusaricidin synthetase encoded by fusA.

	C1	C2	C3	C4	C5	C6	c7
consensus	$S \times A Q x R_{M Y}^{L W} x L$	RHExLRTxF	$\text { MHHxISDG }{ }_{\mathrm{V}}^{\mathrm{W}}$	$\mathrm{YXD}_{\mathrm{Y}}{ }_{\mathrm{A}}^{\mathrm{AVW}}$	${ }_{V^{\prime}}^{I_{X F V N T}}{ }_{\text {LA }}^{Q C}$	$\begin{aligned} & \mathrm{H}_{\mathrm{ND}} \mathrm{Y}_{\mathrm{VFFE}} \end{aligned}$	RDxSRNPL
C_{N} domains							
FusA-C1	TNAQKRIWYT	QYDAFRIRI	MHHIISDGIS	YIQYIAD	IGMEVSTAAAR	HQKYPYN	KDI-QRLFG
SrfA-A-C1	TDAQKRIWYT	RNDAMRLRL	VHHVISDGIS	FIDHVLS	LGMFVSTVPLR	HQKYPYN	SSL-TKLET
DptA1-Cl	TAAQQSVWLA	ETEALRTRF	YHHTALDGYG	LAGVLTE	PCMLANDVPLR	HQRERGE	AGL-ARVTV
Arfa-Cl	TAAQLDIWLD	RHDALRTIL	AHHLIVDGWG	YIDEIEA	LGLFAQVSAVR	HQREPVS	RSQ-LFEVT
C_{1} domains							
FusA-C2	SSAQKRLYVL	RHESLRTGE	MHHIISDGVS	YKDYAVW	IGMFVNTLALR	HODYPFE	RDV-SRNPI
FusA-C4	SSAQKRLFIL	RHGSIRTRE	MHHIVSDGVS	YTDYAVW	IGMEVGTVALR	NQDYPFE	RDL-SRNPI
C_{D} domains							
FusA-C3	TPMQKGMLFH	RHAILRTNE	FHEIVMDGWC	YSRYIEN	IGLFINTIPVR	YDTYPLF	QDIISHIMV
EusA-C5	TPMQKGMLFH	RHAILRTGF	FHHIVMDGWC	YSRYIEN	VGLEINTVPIR	YDTYPLY	QDLISHIMI
FusA-C6	TPMQKGMLFH	RHAILRTNE	SHHIILDGWC	YSQYIQN	IGLFINTVPVR	YDSYPLY	QDLISHIMV

Figure 3.6.3 Comparison of the conserved core motifs within the condensation (C) domains of FusA. Alternative amino acids at a particular position in the core motifs are indicated. The N-terminal C domains of the surfactin synthetase SrfA-A from Bacillus subtilis (GenBank accession no. BAA02522), the daptomycin synthetase DptA from Streptomyces roseosporus (GenBank accession no. AAX31557), and the arthrofactin synthetase ArfA from Pseudomonas sp. MIS38 (GenBank accession no. BAC67534), were used in comparison with the initial C domain of FusA. C_{L} and C_{D} domains of FusA represent condensation domains following modules incorporating L- and D-amino acid residues, respectively. Shading indicates sequence identity with the consensus sequence. The condensation domains in each peptide synthetase are numbered according to their order in the protein.

FUSA-T1 YIAPRTAVEAQMVLIWQDILGVARVGVRDNFFETGGHSLRATVLVSR黄HKELGCSISIREVFQSPTV要SLAQLVKKHIPTLYE
FusA-T6

FusA-T2
FusA-TA
Fusat-T5

FUSA-T3 SEAPRTPVEIQLAEIWQEVLGVESAGVKDNEFHFGGHSLRAALLVSRERKEMNREISERAFESPTIEGLTRAIEGYTPLNEE YIPPRTQTEVELAQIWTEVLGVQEIGVKDHEFELGGHSLKVLGLIQKISSGMGVQLPLQLVENLPTVEEMAHEISKLRAKDAP
 YEPPRTKAEEALASVWQGVLGAQQVGIHDHFFDLGGDSIKAIOYSSRHEQAGYK-LEMKDUFKYPTHAELSPYLQAAGRTEEQ FTAPRTDVENILASIWQGVLGVPLVGIHDNFFELGGDSIRSIOVSSRLOAGYK-IEMKDEFGYPTEAELAQRVSVVSRIADK

Figure 3.6.4 Alignment of the amino acid sequences of six thiolation (T) domains in FusA. Consensus core motifs are underlined. The residues in front of the conserved serine residues are shown in bold. Shading indicates sequence differences in the downstream regions of the core motifs between these two groups of T domains.

Figure 3.6.5 Alignment of the amino acid sequences in core motifs A4 and A5 of FusAA6 compared to other known A domains assigned to activate L- or D-Ala. Deduced specificity-conferring residues are shaded in light grey, and structural anchor residues are shaded in dark grey. Conserved motif sequences A4 and A5 are underlined. Abbreviations for protein names are as follows: Cssa, cyclosporine synthetase from Tolypocladium inflatum (GenBank accession no. CAA82227); Hts, HC-toxin synthetase from Cochliobolus carbonum (GenBank accession no. AAA33023); Cpps, d-lysergyl peptide synthetase from Claviceps purpurea (GenBank accession no. CAB39315); SafB, saframycin Mx1 synthetase B from Myxococcus xanthus (GenBank accession no. AAC44128). LnmQ, the stand-alone adenylation domain of leinamycin synthetase from Streptomyces atroolivaceus (GenBank accession no. AAN85530). The A domains in each peptide synthetase are numbered according to their order in the protein.

SVAVQPTIRIDELELITPEEKSQIIEVWGDTAAPYPREQTLHGIF JRL38	45 a
EEKAALTPDRTALIYGETELTYGELHQQANRLARTLRAQGVRPDQ	90aa
A1	
PVGIMVERSLEMIIGIHAILKAGGAYVPIDPEFPEDRIRHMLEDS	135 aa
A2	
GAKLLITKNHLKDRFPETGTILALDDPQMYHADSSNLEPIAGPEH	180 a
LAYIIYTSGSTGKPKGVMIEHRSAVHTLSQLEAEYPMLAGDRELL	$225 a \mathrm{a}$
A3	
KTIFTEDESVPELFCWFFGQGTLVILPQGVDKDPMALLEAVDTNR	2702 a
A4	
ITHLNLVPSMLSVLVQYLKESGTQGFLTLKYLFACGETLPAKLVE	315aa
EYYKVSPYAVLENIYGPTEAAVYATRYTTSLETAALTHVPIGKPY	360 aa
A5	
ANVQVWMMDSASQVSPVGVPGELCIAGEGVARGYFNQPDLTAEKF	$405 a \mathrm{a}$
A6	
IPHPYKPGARIYRTGDLARWLPDGNIEYLGRIDHQVKIRGYRIEI	450 a
A7 A8	
GEVEAQILKVPSVQEAVALALADSTGSTQLCAYFVAEEGLAAGVL	495 aa
REALASELPSYMIPIAFVQLAQMPLNPNGKLDRKALPAPEALLRS	$5403 a$
$\begin{array}{ll} \text { A9 } & \text { A10 } \end{array}$	
TAEYIPPRTQTEVELAQIWTEVLGVQE IGVKDHEEELGGHSLKVL	$585 a \mathrm{a}$
GLIQKISSGMGVQLPLQLVFNLPTVEEMAHEISKLRAKDAP	626 aa

Figure 3.6.6 Amino acid sequence of the adenylation (A) and thiolation (T) domains in the sixth module (FusA-M6) of fusaricidin synthetase FusA. Conserved core motifs of the A and T domains are underlined. The locations of two PCR primers, JRL37 and JRL38 used to amplify a DNA fragment corresponding to the A domain of FusA-M6, are indicated.

Figure 3.6.7 Overeproduction and purification of His-tagged recombinant FusA-A6 protein. Lane 1: prestained protein ladder; lane 2: whole cell extract obtained before IPTG induction; lane 3: whole cell extract obtained after 4 h -induction with IPTG; lane 4: protein purified by Ni^{2+}-affinity chromatography.

Figure 3.6.8 Relative activities of the purified FusA-A6 protein for various amino acid substrates determined using the ATP-PPi exchange assay. The control reaction without amino acids was subtracted from all reactions with amino acid substrates.

Figure 3.6.9 PCR-targeted mutagenesis of $y m c C$ in P. polymyxa PKB1.

Figure 3.6.9 (continued) The mutant fosmid 4G9: $\Delta y m c C$, in which $y m c C$ was deleted and replaced by the $\mathrm{Apra}^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ oriT disruption cassette was obtained using a PCRtargeting protocol (Figure 3.5.8), and then was introduced into the wild-type PKB1 strain via intergeneric conjugation. Homologous recombination between the mutant fosmid and the PKBl chromosome resulted in replacement of the wild-type copy of $y m c C$ by the disruption cassette, which was then verified by PCR reactions. The locations of PCR primers used and the expected sizes of PCR products were shown. The double lines represent the chromosomal region flanking $y m c C$.

Figure 3.6.10 Verification of the P. polymyxa ymcC mutants by PCR reactions.

Figure 3.6.10 (continued) Genomic DNA from the wild-type PKB1 strain (WT) and the four independent $y m c C$ mutants (\#3, \#8, \#11, \#12), as well as the fosmid DNA from 4G9 and 4G9: $\Delta y m c C$, was amplified by using a pair of $a a c(3) I V$-specific primers SEJ18 and SEJ19 (A-1), primer SEJ18 and a primer flanking the locus of $y m c C$, JRL45 (A-2), primer JRL45 and another flanking locus-specific primer JRL44 (B), respectively. See Figure 3.6.9 for the locations of PCR primers. Lane M: lambda DNA/PstI marker.

Figure 3.6.11 Comparison of the antifungal activity of wild-type PKB1 with the $y m c C$ and $k t p$ mutants. The $y m c \mathrm{C}$ mutant \#8 and the ktp mutant T1 were obtained by gene replacement with the $\mathrm{Apra}^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ oriT disruption cassette using a PCR-targeting mutagenesis method. After grown in PDB-soy medium for 72 h , the wild-type and mutant cultures were bioassayed against L. maculans. Methanol extracts of the bacterial culture (1), the cell and spore pellet (2), and the culture supernatant (3) were used in the well bioassay, and the antifungal inhibition zones were observed after 3 days of incubation.

Figure 3.6.12 PCR analysis of the P. polymyxa ktp mutant.

Figure 3.6.12 (continued) (A) Diagrammatic representation of the region encompassing $k t p$ (grey arrow) in the wild-type PKB1 chromosome, and the chromosomal region encompassing the Apra ${ }^{\mathrm{R}} \mathrm{Cm}^{\mathrm{R}}$ oriT disruption cassette that had replaced the wild-type copy of $k t p$ in the mutant. The double lines represent the rest of P. polymyxa chromosome. The locations of PCR primers used and the expected sizes of PCR products were indicated. (B) Genomic DNA from the wild-type PKB1 strain (WT) and the $k t p$ mutant T1, as well as the fosmid 4G9, was amplified by using a pair of $a a c(3) I V$-specific primers SEJ18 and SEJ19 (1), two primers flanking the locus of $k t p$, JRL35 and JRL40 (2), primer JRL35 and a $k t p$-specific primer JRL36 (3), respectively. Lane M1: lambda DNA/BstEII marker; lane M2: lambda DNA/PstI marker.

Table 3.1 Predicted substrate specificities of the adenylation (A) domains derived from the PCR-amplified peptide synthetase gene fragments, based on the selectivity-conferring codes of NRPSS.

A domain	Positions of amino acid residues involved in substrate recognition									Predicated substrate
	235	236	239	278	299	301	322	330	331	
B1J6-2	D	A	W	I	F	G	G	M	P	Glu
B1J6-3	D	A	W	I	F	G	A	I	T	Glu
B1J6-5	D	V	C	E	T	G	T	I	E	Om
B1J6-7	D	F	W	N	*	G	M	*	*	Thr
B1.J6-10	D	L	T	K	I	G	E	V	G	Asn
B1J6-14	D	V	G	E	I	G	A	P	*	Orn
B1J6-17	D	F	W	N	I	G	M	V	H	Thr
B1J6-19	D	V	G	E	I	G	S	I	D	Orn

$" * "$ represents unidentified amino acids.

Table 3.2 Summary of the proposed functions of ORFs identified within the insert of cosmid Col-8.

ORF	Nucleotide position (start-stop)	Top BLAST hit	Proposed function
orfl	108-1037	Phosphotransferase system, glucose-specific IIABC component [Bacillus thuringiensis serovar israelensis ATCC 35646] EAO5 1304	Sugar transport
orf2	1489-4260	Mycosubtilin synthetase, MycB [Bacillus subtilis] AAF08796	Peptide synthetases
orf5	6633-9023	Mycosubtilin synthetase, MycC [Bacillus subtilis] AAF08797	
or6	9101-19921	Gramicidin S synthetase 2 [Brevibacillus brevis] BAA06146	Polymyxin biosynthesis?
orf 7	20076-23384	Bacillomycin synthetase, BmyC protein [Bacillus amyloliquefaciens FZB42] CAE11248	
orf8	23374-25200	Putative ABC-transporter TycD [Brevibacillus brevis] AAC45931	Extracellular transport of polymyxin?
orf9	25197-26930	Putative ABC-transporter TycE [Brevibacillus brevis] AAC45932	
orfI0	27221-38977	lichenysin synthetase A [Bacillus licheniformis ATCC 14580] AAU22002	Polymyx in biosynthesis?

Table 3.3 The substrate specificity-conferring codes of the adenylation domains derived from ORFs identified in the cosmid inserts of Col-8 and Col-19.

Adenylation domain		Amino acid residues involved in substrate recognition									Predicated substrates
		235	236	239	278	299	301	322	330	331	
$\frac{\infty}{0}$	orf6-A1	D	G	F	L	L	G	L	V	Y	Ile
	orf6-A2	D	V	G	E	1	S	A	I	D	Orn
	orf6-A3	D	V	G	E	I	S	A	1	D	Orn
	orf7-A	D	F	W	N	1	G	M	V	H	Thr
	orfl0-A1	D	V	G	E	I	S	S	I	D	Orn
	orfl0-A2	D	F	W	N	1	G	M	V	H	Thr
	orf10-A3	D	V	G	E	I	S	S	1	D	Orn
$\frac{9}{8}$	orf7-A1	D	F	W	N	1	G	M	V	H	Thr
	orf7-A2	D	A	F	W	L	G	C	T	F	Val

${ }^{a}$ The adenylation domains derived from each ORF are numbered according to their order in the deduced amino acid sequence.

Table 3.4 Summary of the proposed functions of ORFs identified within the insert of cosmid Col-19.

ORF	Nucleotide position (start-stop)	Top BLAST hit	Proposed function
orf]	557-2404	Phosphotransferase system, trehalose-specific enzyme II, BC component [Geobacillus kaustophilus HTA426] BAD76032	Sugar transport
orf 2	2559-3236	Transcriptional regulator GntR family [Geobacillus thermodenitrificans NG80-2] ABO67006	Regulation of fusaricidin biosynthesis?
orf 3	3400-4196	Two-component response regulator [Clostridium difficile 630] CAJ67933	
or 4	4387-4737	Acetolactate synthase large subunit [Saccharopolyspora evythraea NRRL 2338] CAL99949	Possibly required for acylation of the N -terminal amino acid residue with a fatty acid in the early steps of fusaricidin biosynthesis.
orf5	4944-6002	3-oxoacyl-(acyl-carrier-protein) synthase II [Carboxydothermus hydrogenoformans Z-2901] ABB14567	
orf6	5902-6414	(3R)-hydroxymyristoyl-[acyl carrier protein] dehydratase [Bacillus cereus ATCC 14579] AAP09846	
orf7	6508-16257	Bacitracin synthetase 3; BacC [Bacillus licheniformis] AAC06348	Fusaricidin biosynthesis

Table 3.4 (continued)

ORF	Nucleotide position (start-stop)	Top BLAST hit	Proposed function
orf10	$17810-18916$	ABC transporter (substrate-binding protein) [Geobacillus kaustophilus HTA426] BAD76195	
orfl1	$18949-20499$	L-arabinose transport, ATP binding protein [Geobacillus thermodenitrificans NG80-2] ABO67160	Export of fusaricidin?
orf12	$20483-21646$	L-arabinose ABC transporter (permease) [Geobacillus kaustophilus HTA426] BAD76193	
orf16	$23613-24056$	Leucine-responsive regulatory protein [Bacillus thuringiensis serovar israelensis ATCC 35646] EAO55604	Amino acid metabolism
orf17	$28978-30189$	DegT/DnrJ/EryC1/StrS aminotransferase [Clostridium thermocellum ATCC 27405] ABN53760	

Table 3.5 Summary of ORFs identified in the fusaricidin biosynthetic gene cluster and the flanking regions.

ORF	Gene	Nucleotide position (start-stop)	Size of the protein product (aa)	Proposed function
1	$g a t$	$853-1428$	191	Glutamine amidotransferase of anthranilate synthase
2	$a d l$	$1432-2328$	298	4-amino-4-deoxychorismate lyase
3	$d p s$	$2361-3191$	276	Dihydropteroate synthase
4	$d n a$	$3390-3752$	120	Dihydroneopterin aldolase
5	$h p k$	$3762-4310$	182	7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase
6	$x r e$	$4271-4462$	63	Transcriptional regulator of Xre family
7	$d u s$	$4508-5536$	342	tRNA-dihydrouridine synthase
8	$g r e A$	$5730-6227$	165	Transcription elongation factor
9	$l y s R S$	$6338-7858$	506	Lysyl-tRNA synthetase
10	$k t p$	$7949-9286$	455	K uptake transporter protein
11	$y m c C$	$9579-10112$	177	YmcC (unknown function)

Table 3.5 (continued)

ORF	Gene	Nucleotide position (start-stop)	Size of the protein product (aa)	Proposed function
12	fus G	10739-11473	244	Enoyl-ACP reductase
13	fusF	11534-12946	470	Acyl-CoA ligase
14	fusE	12991-14214	407	Aldehyde dehydrogenase
15	fusD	14211-15911	566	Acetolactate synthase
16	fusC	16118-17176	352	β-ketoacyl synthase
17	fusB	17076-17588	170	(3R)-hydroxymyristoyl-ACP dehydratase
18	fusA	17682-41408	7908	Peptide synthetase
19	fus TE	42549-41926	207	α / β hydrolase
20	$r r n A-16 s$	43187-44711		16S ribosomal RNA
21	$r m A-23 s$	45016-47943		23S ribosomal RNA

[^3]Table 3.6 The amino acid residues lining the substrate-binding pockets of the adenylation domains in fusaricidin synthetase FusA.

Adenylation domain	Residue positions involved in substrate recognition										Predicted substrate	Corresponding residue in fusaricidin
	235	236	239	278	299	301	322	330	331	517		
FusA-A1	D	F	W	N	1	G	M	V	H	K	Thr	L-Thr
FusA-A2	D	A	F	W	L	G	C	T	F	K	Val	D-Val, D-allo-Ile, or D-Ile
FusA-A3	D	A	S	T	L	A	G	V	C	K	3H-Tyr	L-Tyr, L-Phe, L-Val, L-He, or L-allo-Ile
FusA-A4	D	F	W	N	1	G	M	V	H	K	Thr	D-allo-Thr
FusA-A5	D	L	T	K	1	G	E	V	G	K	Asn	D-Asn, or D-Gln
FusA-A6	D	F	P	N	F	C	I	V	Y	K	*	D-Ala

[^4]
4. Conclusions, significance and future research

4.1 Conclusions and significance

Fusaricidins are a group of lipopeptide antibiotics produced by Paenibacillus polymyxa PKB1, consisting of a guanidinylated β-hydroxy fatty acid linked to a cyclic hexapeptide including four amino acid residues in the D-configuration (Figure 1.3.1A). The antifungal activity of fusaricidins against Leptosphaeria maculans, a plant pathogenic fungus causing phoma stem canker (blackleg) disease in canola, makes P. polymyxa PKB1 of interest as a potential agent for biocontrol of blackleg disease. To understand the detailed biosynthetic steps involved in fusaricidin production, the complete fusaricidin biosynthetic gene cluster (fus) has been cloned and characterized from PKB1 strain. Surprisingly, other than fusA encoding the peptide synthetase itself, and genes apparently associated with the synthesis and attachment of the N -terminal guanidino-lipid moiety, no genes for regulation, resistance or transport were found in the cluster. The production of fusaricidins must rely upon these functions being provided by genes located elsewhere in the chromosome.

D-amino acid residues are important elements of nonribosomally produced bioactive peptides. Examination of the fusaricidin gene cluster revealed that two distinct strategies for D-amino acid incorporation are employed in fusaricidin synthetase FusA. The occurrence of D-amino acids in the second, fourth and fifth position of fusaricidins is apparently mediated by epimerization domains present in the corresponding modules, whereas no comparable E domain is found in the sixth module corresponding to D-Ala. Incorporation of a D-amino acid in the C-terminal position of the peptide backbone, as seen in fusaricidin synthetase, is rarely observed in other NRPS systems described so far,
but at least one other example exists. δ-(L- α-aminoadipyl)-L-cysteinyl-D-valine (ACV) synthetase, the first enzyme in the biosynthetic pathways of penicillins and cephalosporins in both eukaryotes and prokaryotes, is a peptide synthetase that incorporates a D-amino acid (D-Val) as the C-terminal residue of peptide products. However, it also contains an additional E domain in the last module, presumably catalyzing racemization of the activated L-Val into its D-isomer. In the study presented in this thesis, it was demonstrated that the sixth A domain of FusA exhibits stereospecificity exclusively for D-Ala, a characteristic reported previously in two eukaryotic NRPS systems, and only demonstrated biochemically using a freestanding A domain of the leinamycin synthetase from a streptomycete (Section 3.6.1.2). Together, both demonstrations of activating a D-amino acid by a recombinant A domain open up the possibility of direct incorporation of D-configured residues into novel peptides as an additional option in combinatorial biosynthesis.

Fusaricidin synthetase is also unusual among bacterial peptide synthetases in that a single enzyme, FusA, is responsible for biosynthesis of the entire fusaricidin peptide, a structural feature more typically associated with fungal peptide synthetases. In bacterial systems, genes encoding NRPSs are generally organized into operons, and biosynthesis of peptide products typically involves two or more peptide synthetase proteins, each consisting of one or more functional modules. In contrast, modules of the fungal NRPSs reside within single polypeptide chains, as in the case of cyclosporin synthetase (Weber et al., 1994). The monocistronic nature of fusA, together with the presence of two pathways to incorporate D-amino acids, observed previously only in HC-toxin synthetase from the fungus Cochliobolus carbonum (Cheng and Walton, 2000), makes fusaricidin
synthetase more similar to fungal than to bacterial peptide synthetases. However, additional sequence analysis, such as $\mathrm{G}+\mathrm{C}$ content of fus A and the flanking regions, is definitely needed before a eukaryotic origin for the fusaricidin synthetase gene could be proposed.

In order to verify the involvement of the single peptide synthetase gene fusA in fusaricidin biosynthesis, targeted mutations were created on the chromosome of PKB1. The specific mutagenesis protocol used in P. polymyxa PKB1 is based on the PCR targeting system developed by Datsenko and Wanner (2000) for use in E. coli, and adapted for mutation of Streptomyces (Gust et al., 2003). In this approach, chromosomal genes cloned on a cosmid or fosmid vector can be specifically disrupted in E. coli by recombination with a PCR-amplified antibiotic resistance cassette flanked by two 39 nt DNA sequences identical to the target gene. The presence of an oriT site in the disruption cassette permits conjugation to be used for subsequent transfer of the mutated cosmid/fosmid from E. coli to the organism that is the source of the target gene. Compared to the electroporation procedure available for P. polymyxa strains, intergeneric transfer of DNA from E. coli to P. polymyxa by conjugation was found to be much more efficient for PKB1, and therefore the use of conjugation to introduce the gene disruption constructs into P. polymyxa was an attractive feature of this approach. In addition, the presence of large homologous DNA pieces flanking the target gene on the cosmid/fosmid clones would greatly increase the recombination frequency.

To adapt the Redirect ${ }^{\ominus}$ technology for P. polymyxa, an antibiotic resistance cassette functional in P. polymyxa was required. For this purpose, the cat gene from a Staphylococcus plasmid pC194, one of the very few selectable markers useful in P.
polymyxa, was used to construct a special hybrid disruption cassette containing two antibiotic resistance genes, $a a c(3) I V\left(\mathrm{Apra}^{\mathrm{R}}\right)$ for selection in E. coli and cat $\left(\mathrm{Cm}^{\mathrm{R}}\right)$ for selection in P. polymyxa. Although Apra ${ }^{\mathrm{R}}$ can be selected directly in P. polymyxa, it was subsequently determined that apramycin in combination with polymyxin B was lethal for P. polymyxa. Therefore, inclusion of the cat gene in the disruption cassette was necessary to allow use of chloramphenicol for selection of P. polymyxa exconjugants in which the chromosomal copy of the target gene was replaced by the disruption cassette via homologous recombination, together with polymyxin B to counterselect E. coli donors. The usefulness of this protocol in P. polymyxa was demonstrated by the generation of fusaricidin biosynthesis mutants (A4 and A6) in which fusA was inactivated by insertion of the gene disruption cassette, and by determination of the fus cluster boundaries through gene replacement of two ORFs ($y m c C$ and $k t p$) in the flanking region. While the resulting $y m c C$ and $k t p$ mutants were unaffected in fusaricidin production, the complete loss of antifungal activity in fusA mutants A4 and A6 provides evidence that fusA is part of the fusaricidin biosynthetic gene cluster and is essential for the production of fusaricidins. To our knowledge, this represents the first reported use of PCR targeting for gene disruption in Paenibacillus and provides a valuable new technique for generating specific mutations in this and perhaps other related genera.

4.2 Proposed future research

The study described in this thesis provides evidence of a nonribosomal mechanism for the biosynthesis of fusaricidin in P. polymyxa PKB1. Since the fus gene cluster does not contain genes needed for regulation of fusaricidin production and product secretion,
future work should involve identification of these missing genes, which must reside elsewhere on the chromosome and/or perhaps be shared with another NRPS gene cluster. This could be done by transposon mutagenesis of the PKB1 strain. From mutants that lose the antifungal activity against L. maculans, the chromosomal regions adjacent to the transposon could be cloned and sequenced in order to identify new genes that are essential for fusaricidin biosynthesis.

In addition, cloning of the NRPS gene associated with fusaricidin production now makes it possible to undertake genetic manipulation of peptide production, and would potentially increase the antifungal activity of this organism. Fusaricidin is a mixture of at least twelve cyclic depsipeptides, resulting from the relaxed substrate specificity of the individual A domains of fusaricidin synthetase. Bioassay results have shown that the antimicrobial activity of fusaricidin analogs vary depending on the particular amino acids present at three defined positions in the peptide sequence. Previous studies (Beatty and Jensen, 2002) also revealed that the antifungal activity of PKB1 strain against L. maculans was mainly attributable to production of a mixture of fusaricidins A and B (Figure 1.3.1B). Therefore, the individual adenylation domains in the second, third and fifth module of FusA should be overexpressed and purified to determine their actual substrate preferences, as has been done for FusA-A6. Recently, alterations of A domain's selectivity have been achieved by point mutations of the specificity-conferring codes within the surfactin and CDA synthetases (Eppelmann et al., 2002, Uguru et al., 2004). This site-directed mutagenesis approach offers the potential to bias the substrate specificities of the relevant fusaricidin synthetase modules, thereby increasing the yield of fusaricidin analogs associated with the greatest antifungal activity. Ultimately, this
research would aid in the biocontrol of the fungal pathogen L. maculans with enhanced effectiveness and less environmental harm.

Cloning of the polymyxin synthetase gene cluster could be another potential topic of future research. Sequence analysis of cosmid Col-8, obtained from the first SuperCos-1 genomic library of P. polymyxa PKB1, revealed the presence of a complete ORF, orf6, and two partial ORFs, orf7 and orf10, encoding NRPS modules that presumably synthesize part of the peptide moiety of polymyxin (Section 3.2.3). The involvement of orf6, orf7 or orf10 in polymyxin production could be tested by creation of targeted mutations in the PKB1 chromosome using the PCR targeting mutagenesis protocol developed in this study, and then a DNA fragment corresponding to one of these three ORFs could be used as a probe to screen the pSMART-FOS genomic library in an effort to isolate fosmid clones that may contain peptide synthetase genes from the polymyxin biosynthetic gene cluster. ${ }^{12}$

[^5]
5. References

Ash, C., Priest, F.G., and Collins, M.D. (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Leeuwenhoek 64: 253-260

Balibar, C.J., Vaillancourt, F.H., and Walsh, C.T. (2005) Generation of D amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains. Chem Biol 12: 1189-1200.

Beatty, P.H., and Jensen, S.E. (2002) Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can J Microbiol 48: 159-169.

Belshaw, P.J., Walsh, C.T., and Stachelhaus, T. (1999) Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. Science 284: 486-489.

Bergendahl, V., Linne, U., and Marahiel, M.A. (2002) Mutational analysis of the C-domain in nonribosomal peptide synthesis. Eur J Biochem 269: 620-629.

Bezzate, S., Aymerich, S., Chambert, R., Czarnes, S., Berge, O., and Heulin, T. (2000) Disruption of the Paenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere. Environ Microbiol 2: 333-342.

Bruner, S.D., Weber, T., Kohli, R.M., Schwarzer, D., Marahiel, M.A., Walsh, C.T., and Stubbs, M.T. (2002) Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE. Structure 10: 301-310.

Burmester, J., Haese, A., and Zocher, R. (1995) Highly conserved N-methyltransferases as an integral part of peptide synthetases. Biochem Mol Biol Int 37: 201-207.

Cane, D.E., and Walsh, C.T. (1999) The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases. Chem Biol 6: R319-325.

Challis, G.L., Ravel, J., and Townsend, C.A. (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7: 211-224.

Challis, G.L., and Naismith, J.H. (2004) Structural aspects of non-ribosomal peptide biosynthesis. Curr Opin Struct Biol 14: 748-756.

Cheng, Y.Q., and Walton, J.D. (2000) A eukaryotic alanine racemase gene involved in cyclic peptide biosynthesis. J Biol Chem 275: 4906-4911.

Clugston, S.L., Sieber, S.A., Marahiel, M.A., and Walsh, C.T. (2003) Chirality of peptide bond-forming condensation domains in nonribosomal peptide synthetases: the C 5 domain of tyrocidine synthetase is a (D)C(L) catalyst. Biochemistry 42: 12095-12104.

Conti, E., Stachelhaus, T., Marahiel, M.A., and Brick, P. (1997) Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S . Embo J 16: 4174-4183.

Cosmina, P., Rodriguez, F., de Ferra, F., Grandi, G., Perego, M., Venema, G., and van Sinderen, D. (1993) Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol 8: 821-831.

Datsenko, K.A., and Wanner, B.L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Pro Natl Acad Sci USA 97: 6640-6645.
de Ferra, F., Rodriguez, F., Tortora, O., Tosi, C., and Grandi, G. (1997) Engineering of peptide synthetases. Key role of the thioesterase-like domain for efficient production of recombinant peptides. J Biol Chem 272: 25304-25309.

Dieckmann, R., Lee, Y.O., van Liempt, H., von Dohren, H., and Kleinkauf, H. (1995) Expression of an active adenylate-forming domain of peptide synthetases corresponding to acyl-CoA-synthetases. FEBS Lett 357: 212-216.

Dijksterhuis, J., Sanders, M., Gorris, L.G., and Smid, E.J. (1999) Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. J Appl Microbiol 86: 13-21.

Dittmann, J., Wenger, R.M., Kleinkauf, H., and Lawen, A. (1994) Mechanism of cyclosporin A biosynthesis. Evidence for synthesis via a single linear undecapeptide precursor. J Biol Chem 269: 2841-2846.

Doekel, S., and Marahiel, M.A. (2000) Dipeptide formation on engineered hybrid peptide synthetases. Chem Biol 7: 373-384.

Du, L., Chen, M., Sanchez, C., and Shen, B. (2000) An oxidation domain in the BlmIII non-ribosomal peptide synthetase probably catalyzing thiazole formation in the biosynthesis of the anti-tumor drug bleomycin in Streptomyces verticillus ATCC15003. FEMS Microbiol Lett 189: 171-175.

Du, L., Sanchez, C., and Shen, B. (2001) Hybrid peptide-polyketide natural products: biosynthesis and prospects toward engineering novel molecules. Metab Eng 3: 78-95.

Duitman, E.H., Hamoen, L.W., Rembold, M., Venema, G., Seitz, H., Saenger, W., Bernhard, F., Reinhardt, R., Schmidt, M., Ullrich, C., Stein, T., Leenders, F., and Vater, J. (1999) The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Pro Natl Acad Sci USA 96: 13294-13299.

Ehmann, D.E., Trauger, J.W., Stachelhaus, T., and Walsh, C.T. (2000) Aminoacyl-SNACs as small-molecule substrates for the condensation domains of nonribosomal peptide synthetases. Chem Biol 7: 765-772.

Elsner, A., Engert, H., Saenger, W., Hamoen, L., Venema, G., and Bernhard, F. (1997) Substrate specificity of hybrid modules from peptide synthetases. J Biol Chem 272: 4814-4819.

Eppelmann, K., Stachelhaus, T., and Marahiel, M.A. (2002) Exploitation of the selectivity-conferring code of nonribosomal peptide synthetases for the rational design of novel peptide antibiotics. Biochemistry 41: 9718-9726.

Eriani, G., Dirheimer, G., and Gangloff, J. (1990) Aspartyl-tRNA synthetase from Escherichia coli: cloning and characterisation of the gene, homologies of its translated amino acid sequence with asparaginyl- and lysyl-tRNA synthetases. Nucleic Acids Res 18: 7109-7118.

Ferrari, F.A., Nguyen, A., Lang, D., and Hoch, J.A. (1983) Construction and properties of an integrable plasmid for Bacillus subtilis. J Bacteriol 154: 1513-1515.

Gaisser, S., and Hughes, C. (1997) A locus coding for putative non-ribosomal peptide/polyketide synthase functions is mutated in a swarming-defective Proteus mirabilis strain. Mol Gen Genet 253: 415-427.

Gaitatzis, N., Hans, A., Muller, R., and Beyer, S. (2001) The mtaA gene of the myxothiazol biosynthetic gene cluster from Stigmatella aurantiaca DW4/3-1 encodes a phosphopantetheinyl transferase that activates polyketide synthases and polypeptide synthetases. J Biochem 129: 119-124.

Gehring, A.M., Mori, I., Perry, R.D., and Walsh, C.T. (1998) The nonribosomal peptide synthetase HMWP2 forms a thiazoline ring during biogenesis of yersiniabactin, an iron-chelating virulence factor of Yersinia pestis. Biochemistry 37: 11637-11650.

Gocht, M., and Marahiel, M.A. (1994) Analysis of core sequences in the D-Phe activating domain of the multifunctional peptide synthetase TycA by site-directed mutagenesis. J Bacteriol 176: 2654-2662.

Grunewald, J., Sieber, S.A., and Marahiel, M.A. (2004) Chemo- and regioselective peptide cyclization triggered by the N -terminal fatty acid chain length: the recombinant cyclase of the calcium-dependent antibiotic from Streptomyces coelicolor. Biochemistry 43: 2915-2925.

Guenzi, E., Galli, G., Grgurina, I., Gross, D.C., and Grandi, G. (1998) Characterization of the syringomycin synthetase gene cluster. A link between prokaryotic and eukaryotic peptide synthetases. J Biol Chem 273: 32857-32863.

Gugel, R.K., and Petrie, G.A. (1992) History, occurrence, impact, and control of blackleg of rapeseed. Can J Plant Pathol 14: 36-45.

Gust, B., Challis, G.L., Fowler, K., Kieser, T., and Chater, K.F. (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100: 1541-1546.

Haese, A., Schubert, M., Herrmann, M., and Zocher, R. (1993) Molecular characterization of the enniatin synthetase gene encoding a multifunctional enzyme catalysing N-methyldepsipeptide formation in Fusarium scirpi. Mol Microbiol 7: 905-914.

Haese, A., Pieper, R., von Ostrowski, T., and Zocher, R. (1994) Bacterial expression of catalytically active fragments of the multifunctional enzyme enniatin synthetase. J Mol Biol 243: 116-122.

Hall, R. (1992) Epidemiology of blackleg of oilseed rape. Can J Plant Pathol 14: 46-55.
Han, Y.W. (1989) Levan production by Bacillus polymyxa. J Ind Microbiol 4: 447-451.
Heulin, T., Berge, O., Mavingui, P., Gouzou, L., Hebbar, K.P., and Balandreau, J. (1994) Bacillus polymyxa and Rahnella aquatilis, the dominant N_{2}-fixing bacteria associated with wheat rhizosphere in French soils. Eur J Soil Biol 30: 35-42.

Hoffmann, K., Schneider-Scherzer, E., Kleinkauf, H., and Zocher, R. (1994) Purification and characterization of eucaryotic alanine racemase acting as key enzyme in cyclosporin biosynthesis. J Biol Chem 269: 12710-12714.

Holl, F.B., Chanway, C.P., Turkington, R., and Radley, R.A. (1988) Response of crested wheatgrass (Agropyron cristatum L), perennial ryegrass (Lolium perenne) and
white clover (Trifolium repens L) to inoculation with Bacillus polymyxa. Soil Biol Biochem 20: 19-24.

Hopwood, D.A., Bibb, M.J., Chater, K.F., Kieser, K., Bruton, C.J., Kieser, H.M., Lydiate, D.J., Smith, C.P., Ward, J.M., and Schrempf, H. (1985) Genetic manipulation of Streptomyces: a laboratory manual. John Innes Foundation, Norwich, UK.

Horinouchi, S., and Weisblum, B. (1982) Nucleotide sequence and functional map of pC 194 , a plasmid that specifies inducible chloramphenicol resistance. J Bacteriol 150: 815-825.

Itaya, M., Kondo, K., and Tanaka, T. (1989) A neomycin resistance gene cassette selectable in a single copy state in the Bacillus subtilis chromosome. Nucleic Acids Res 17: 4410.

Ito, M., and Koyama, Y. (1972a) Jolipeptin, a new peptide antibiotic. I. Isolation, physico-chemical and biological characteristics. J Antibiot 25: 304-308.

Ito, M., and Koyama, Y. (1972b) Jolipeptin, a new peptide antibiotic. II. The mode of action of jolipeptin. J Antibiot 25: 309-314.

Janssen, G.R., and Bibb, M.J. (1993) Derivatives of pUC18 that have BglII sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies. Gene 124: 133-134.

Jisha, M.S., and Alagawadi, A.R. (1996) Nutrient uptake and yield of sorghum (Sorghum bicolor L Moench) inoculated with phosphate solubilizing bacteria and cellulolytic fungus in a cotton stalk amended vertisol. Microbiol Res 151: 213-217.

Jurtshuk, R.J., Blick, M., Bresser, J., Fox, G.E., and Jurtshuk, P., Jr. (1992) Rapid in situ hybridization technique using 16 S rRNA segments for detecting and differentiating the closely related gram-positive organisms Bacillus polymyxa and Bacillus macerans. Appl Environ Microbiol 58: 2571-2578.

Kajimura, Y., and Kaneda, M. (1996) Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8. Taxonomy, fermentation, isolation, structure elucidation and biological activity. J Antibiot 49: 129-135.

Kajimura, Y., and Kaneda, M. (1997) Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8: isolation, structure elucidation and biological activity. J Antibiot 50: 220-228.

Katz, E., and Demain, A.L. (1977) Peptide antibiotics of Bacillus - chemistry, biogenesis, and possible functions. Bacteriol Rev 41: 449-474.

Keating, T.A., Marshall, C.G., and Walsh, C.T. (2000) Reconstitution and characterization of the Vibrio cholerae vibriobactin synthetase from VibB, VibE, VibF, and VibH. Biochemistry 39: 15522-15530.

Keating, T.A., Marshall, C.G., Walsh, C.T., and Keating, A.E. (2002) The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains. Nat Struct Biol 9: 522-526.

Kessler, N., Schuhmann, H., Morneweg, S., Linne, U., and Marahiel, M.A. (2004) The linear pentadecapeptide gramicidin is assembled by four multimodular nonribosomal peptide synthetases that comprise 16 modules with 56 catalytic domains. J Biol Chem 279: 7413-7419.

Khangura, R.K., and Barbetti, M.J. (2001) Prevalence of blackleg (Leptosphaeria maculans) on canola (Brassica napus) in Western Australia. Aust J Exp Agric 41: 71-80.

Kharbanda, P.D. (1992) Performance of fungicides to control blackleg of canola. Can J Plant Pathol 14: 169-176.

Kharbanda, P.D., and Dahiya, J.S. (1990) A metabolite of Penicillium verrucosum inhibitory to growth of Leptosphaeria maculans and Rhizoctonia solani. Can J Plant Pathol 12: 335 (Abstract).

Kieleczawa, J. (ed) (2005) DNA sequencing: optimizing the process and analysis. Jones and Bartlett, Sudbury, MA.

Kohli, R.M., Trauger, J.W., Schwarzer, D., Marahiel, M.A., and Walsh, C.T. (2001) Generality of peptide cyclization catalyzed by isolated thioesterase domains of nonribosomal peptide synthetases. Biochemistry 40: 7099-7108.

Kohli, R.M., Walsh, C.T., and Burkart, M.D. (2002) Biomimetic synthesis and optimization of cyclic peptide antibiotics. Nature 418: 658-661.

Konz, D., Doekel, S., and Marahiel, M.A. (1999) Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. J Bacteriol 181: 133-140.

Konz, D., and Marahiel, M.A. (1999) How do peptide synthetases generate structural diversity? Chem Biol 6: R39-48.

Kuroda, J., Fukai, T., Konishi, M., Uno, J., Kurusu, K., and Nomura, T. (2000) LI-F antibiotics, a family of antifungal cyclic depsipeptides produced by Bacillus polymyxa L-1129. Heterocycles 53: 1533-1549.

Kurusu, K., Ohba, K., Arai, T., and Fukushima, K. (1987) New peptide antibiotics LI-F03, F04, F05, F07, and F08, produced by Bacillus polymyxa .1. Isolation and Characterization. J Antibiot 40: 1506-1514.

Lambalot, R.H., Gehring, A.M., Flugel, R.S., Zuber, P., LaCelle, M., Marahiel, M.A., Reid, R., Khosla, C., and Walsh, C.T. (1996) A new enzyme superfamily - the phosphopantetheinyl transferases. Chem Biol 3: 923-936.

Li, J., Beatty, P.K., Shah, S., and Jensen, S.E. (2007) Use of PCR-targeted mutagenesis to disrupt production of fusaricidin-type antifungal antibiotics in Paenibacillus polymyxa. Appl Environ Microbiol 73: 3480-3489.

Li, J., and Jensen, S.E. (2007) Nonribosomal biosynthesis of fusaricidins by Paenibacillus polymyxa PKB1 involves direct incorporation of a D-amino acid. (submitted).

Linne, U., and Marahiel, M.A. (2000) Control of directionality in nonribosomal peptide synthesis: role of the condensation domain in preventing misinitiation and timing of epimerization. Biochemistry 39: 10439-10447.

Linne, U., Doekel, S., and Marahiel, M.A. (2001) Portability of epimerization domain and role of peptidyl carrier protein on epimerization activity in nonribosomal peptide synthetases. Biochemistry 40: 15824-15834.

Lipmann, F. (1971) Attempts to map a process evolution of peptide biosynthesis. Science 173: 875-884.

Lipmann, F., Gevers, W., Kleinkauf, H., and Roskoski, R., Jr. (1971) Polypeptide synthesis on protein templates: the enzymatic synthesis of gramicidin S and tyrocidine. Adv Enzymol Relat Areas Mol Biol 35: 1-34.

Lipmann, F. (1973) Non-ribosomal polypeptide synthesis. Acta Endocrinol Suppl (Copenh) 180: 294-300.

Lipmann, F. (1980) Bacterial production of antibiotic polypeptides by thiol-linked synthesis on protein templates. Adv Microb Physiol 21: 227-266.

Luo, L., Kohli, R.M., Onishi, M., Linne, U., Marahiel, M.A., and Walsh, C.T. (2002) Timing of epimerization and condensation reactions in nonribosomal peptide assembly lines: kinetic analysis of phenylalanine activating elongation modules of tyrocidine synthetase B. Biochemistry 41: 9184-9196.

MacNeil, D.J., Gewain, K.M., Ruby, C.L., Dezeny, G., Gibbons, P.H., and MacNeil, T. (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111: 61-68.

Marahiel, M.A., Stachelhaus, T., and Mootz, H.D. (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97: 2651-2674.

Marck, C. (1988) 'DNA Strider': a 'C' program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res 16: 1829-1836.

Mavingui, P., and Heulin, T. (1994) In-vitro chitinase and antifungal activity of a soil, rhizosphere and rhizoplane population of Bacillus polymyxa. Soil Biology \& Biochemistry 26: 801-803.

May, J.J., Kessler, N., Marahiel, M.A., and Stubbs, M.T. (2002) Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases. Proc Natl Acad Sci USA 99: 12120-12125.

Mcgee, D.C., and Petrie, G.A. (1978) Variability of Leptosphaeria maculans in relation to blackleg of oilseed rape. Phytopathology 68: 625-630.

Miao, V., Coeffet-Legal, M.F., Brian, P., Brost, R., Penn, J., Whiting, A., Martin, S., Ford, R., Parr, I., Bouchard, M., Silva, C.J., Wrigley, S.K., and Baltz, R.H. (2005) Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology 151: 1507-1523.

Miller, D.A., and Walsh, C.T. (2001) Yersiniabactin synthetase: probing the recognition of carrier protein domains by the catalytic heterocyclization domains, Cy 1 and Cy 2 , in the chain-initiating HWMP2 subunit. Biochemistry 40: 5313-5321.

Mootz, H.D., and Marahiel, M.A. (1997) The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. J Bacteriol 179: 6843-6850.

Mootz, H.D., and Marahiel, M.A. (1999) Design and application of multimodular peptide synthetases. Curr Opin Biotechnol 10: 341-348.

Mootz, H.D., Schwarzer, D., and Marahiel, M.A. (2000) Construction of hybrid peptide synthetases by module and domain fusions. Proc Natl Acad Sci U S A7: 5848-5853.

Mootz, H.D., Schwarzer, D., and Marahiel, M.A. (2002) Ways of assembling complex natural products on modular nonribosomal peptide synthetases. Chembiochem 3: 490-504.

Moyne, A.L., Cleveland, T.E., and Tuzun, S. (2004) Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol Lett 234: 43-49.

Nakajima, N., Koyama, Y., and Chihara, S. (1972) New antibiotic, gatavalin .1. Isolation and Characterization. J Antibiot 25: 243-246.

O'Connor, T.J., Kanellis, P., and Nodwell, J.R. (2002) The ramC gene is required for morphogenesis in Streptomyces coelicolor and expressed in a cell type-specific manner under the direct control of RamR. Mol Microbiol 45: 45-57.

Pace, C.N., Vajdos, F., Fee, L., Grimsley, G., and Gray, T. (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4: 2411-2423.

Paget, M.S., Chamberlin, L., Atrih, A., Foster, S.J., and Buttner, M.J. (1999) Evidence that the extracytoplasmic function sigma factor sigmaE is required for normal cell wall structure in Streptomyces coelicolor A3(2). J Bacteriol 181: 204-211.

Pavela-Vrancic, M., Pfeifer, E., Schroder, W., von Dohren, H., and Kleinkauf, H. (1994) Identification of the ATP binding site in tyrocidine synthetase 1 by selective modification with fluorescein 5'-isothiocyanate. J Biol Chem 269: 14962-14966.

Petersen, D.J., Srinivasan, M., and Chanway, C.P. (1996) Bacillus polymyxa stimulates increased Rhizobium etli populations and nodulation when co-resident in the rhizosphere of Phaseolus vulgaris. FEMS Microbiol Lett 142: 271-276.

Pichard, B., Larue, J.P., and Thouvenot, D. (1995) Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiol Lett 133: 215-218.

Quigley, N.B., Mo, Y.Y., and Gross, D.C. (1993) SyrD is required for syringomycin production by Pseudomonas syringae pathovar syringae and is related to a family of ATP-binding secretion proteins. Mol Microbiol 9: 787-801.

Rapaport, E., Yogeeswaran, G., Zamecnik, P.C., and Remy, P. (1985) Covalent modification of phenylalanyl-tRNA synthetase with phenylalanine during the amino acid activation reaction catalyzed by the enzyme. J Biol Chem 260: 9509-9512.

Rimmer, S.R., and Vandenberg, C.G.J. (1992) Resistance of oilseed Brassica spp to blackleg caused by Leptosphaeria maculans. Can J Plant Pathol 14: 56-66.

Roongsawang, N., Hase, K., Haruki, M., Imanaka, T., Morikawa, M., and Kanaya, S. (2003) Cloning and characterization of the gene cluster encoding arthrofactin synthetase from Pseudomonas sp. MIS38. Chem Biol 10: 869-880.

Rosado, A., and Seldin, L. (1993) Isolation and partial characterization of a new linear DNA plasmid isolated from Bacillus polymyxa SCE2. J Gen Microbiol 139: 1277-1282.

Ruttenberg, M.A., and Mach, B. (1966) Studies on amino acid substitution in the biosynthesis of the antibiotic polypeptide tyrocidine. Biochemistry 5: 2864-2869.

Salowe, S.P., Marsh, E.N., and Townsend, C.A. (1990) Purification and characterization of clavaminate synthase from Streptomyces clavuligerus: an unusual oxidative enzyme in natural product biosynthesis. Biochemistry 29: 6499-6508.

Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular cloning: a laboratory manual, $2^{\text {nd }}$ ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

Schlumbohm, W., Stein, T., Ullrich, C., Vater, J., Krause, M., Marahiel, M.A., Kruft, V., and Wittmann-Liebold, B. (1991) An active serine is involved in covalent substrate amino acid binding at each reaction center of gramicidin S synthetase. J Biol Chem 266: 23135-23141.

Schneider, A., and Marahiel, M.A. (1998) Genetic evidence for a role of thioesterase domains, integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis. Arch Microbiol 169: 404-410.

Schneider, T.L., Shen, B., and Walsh, C.T. (2003) Oxidase domains in epothilone and bleomycin biosynthesis: thiazoline to thiazole oxidation during chain elongation. Biochemistry 42: 9722-9730.

Scholz-Schroeder, B.K., Soule, J.D., and Gross, D.C. (2003) The sypA, sypS, and sypC synthetase genes encode twenty-two modules involved in the nonribosomal peptide synthesis of syringopeptin by Pseudomonas syringae pv. syringae B301D. Mol Plant Microbe Interact 16: 271-280.

Schwarzer, D., Finking, R., and Marahiel, M.A. (2003) Nonribosomal peptides: from genes to products. Nat Prod Rep 20: 275-287.

Schwarzer, D., Mootz, H.D., Linne, U., and Marahiel, M.A. (2002) Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases. Proc Natl Acad Sci USA 99: 14083-14088.

Scott-Craig, J.S., Panaccione, D.G., Pocard, J.A., and Walton, J.D. (1992) The cyclic peptide synthetase catalyzing HC-toxin production in the filamentous fungus Cochliobolus carbonum is encoded by a 15.7-kilobase open reading frame. J Biol Chem 267: 26044-26049.

Shida, O., Takagi, H., Kadowaki, K., Nakamura, L.K., and Komagata, K. (1997a) Emended description of Paenibacillus amylolyticus and description of Paenibacillus illinoisensis sp. nov. and Paenibacillus chibensis sp. nov. Int J Syst Bacteriol 47: 299-306.

Shida, O., Takagi, H., Kadowaki, K., Nakamura, L.K., and Komagata, K. (1997b) Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47: 289-298.

Silakowski, B., Schairer, H.U., Ehret, H., Kunze, B., Weinig, S., Nordsiek, G., Brandt, P., Blocker, H., Hofle, G., Beyer, S., and Muller, R. (1999) New lessons for combinatorial biosynthesis from myxobacteria. The myxothiazol biosynthetic gene cluster of Stigmatella aurantiaca DW4/3-1. J Biol Chem 274: 37391-37399.

Silakowski, B., Kunze, B., Nordsiek, G., Blocker, H., Hofle, G., and Muller, R. (2000) The myxochelin iron transport regulon of the myxobacterium Stigmatella aurantiaca Sg al5. Eur J Biochem 267: 6476-6485.

Sogn, J.A. (1976) Structure of peptide antibiotic polypeptin. J Med Chem 19: 1228-1231.
Stachelhaus, T., Schneider, A., and Marahiel, M.A. (1995) Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 269: 69-72.

Stachelhaus, T., Huser, A., and Marahiel, M.A. (1996) Biochemical characterization of peptidyl carrier protein (PCP), the thiolation domain of multifunctional peptide synthetases. Chem Biol 3: 913-921.

Stachelhaus, T., Mootz, H.D., Bergendahl, V., and Marahiel, M.A. (1998) Peptide bond formation in nonribosomal peptide biosynthesis. Catalytic role of the condensation domain. J Biol Chem 273: 22773-22781.

Stachelhaus, T., Mootz, H.D., and Marahiel, M.A. (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6: 493-505.

Stachelhaus, T., and Walsh, C.T. (2000) Mutational analysis of the epimerization domain in the initiation module PheATE of gramicidin S synthetase. Biochemistry 39: 5775-5787.

Steller, S., Vollenbroich, D., Leenders, F., Stein, T., Conrad, B., Hofemeister, J., Jacques, P., Thonart, P., and Vater, J. (1999) Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem Biol 6: 31-41.

Tang, G.L., Cheng, Y.Q., and Shen, B. (2004) Leinamycin biosynthesis revealing unprecedented architectural complexity for a hybrid polyketide synthase and nonribosomal peptide synthetase. Chem Biol 11: 33-45.

Tang, G.L., Cheng, Y.Q., and Shen, B. (2007) Chain initiation in the leinamycin-producing hybrid nonribosomal peptide/polyketide synthetase from Streptomyces atroolivaceus S-140. J Biol Chem 282: 20273-20282.

Tosato, V., Albertini, A.M., Zotti, M., Sonda, S., and Bruschi, C.V. (1997) Sequence completion, identification and definition of the fengycin operon in Bacillus subtilis 168. Microbiology 143: 3443-3450.

Trauger, J.W., Kohli, R.M., Mootz, H.D., Marahiel, M.A., and Walsh, C.T. (2000) Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature 407: 215-218.

Trauger, J.W., Kohli, R.M., and Walsh, C.T. (2001) Cyclization of backbone-substituted peptides catalyzed by the thioesterase domain from the tyrocidine nonribosomal peptide synthetase. Biochemistry 40: 7092-7098.

Tseng, C.C., Bruner, S.D., Kohli, R.M., Marahiel, M.A., Walsh, C.T., and Sieber, S.A. (2002) Characterization of the surfactin synthetase C-terminal thioesterase domain as a cyclic depsipeptide synthase. Biochemistry 41: 13350-13359.

Tsuge, K., Akiyama, T., and Shoda, M. (2001) Cloning, sequencing, and characterization of the iturin A operon. J Bacteriol 183: 6265-6273.

Turgay, K., Krause, M., and Marahiel, M.A. (1992) Four homologous domains in the primary structure of GrsB are related to domains in a superfamily of adenylate-forming enzymes. Mol Microbiol 6: 529-546.

Turgay, K., and Marahiel, M.A. (1994) A general approach for identifying and cloning peptide synthetase genes. Pept Res 7: 238-241.

Uguru, G.C., Milne, C., Borg, M., Flett, F., Smith, C.P., and Micklefield, J. (2004) Active-site modifications of adenylation domains lead to hydrolysis of upstream nonribosomal peptidyl thioester intermediates. J Am Chem Soc 126: 5032-5033.

Valser-Genser, M., and Eskin, N.A. (1982) Canola oil, properties and performance. Canola Coucil of Canada. Manitoba.

Vieira, J., and Messing, J. (1987) Production of single-stranded plasmid DNA. Methods Enzymol 153: 3-11.
von Dohren, H., Keller, U., Vater, J., and Zocher, R. (1997) Multifunctional peptide synthetases. Chem Rev 97: 2675-2706.

Walker, S., Chen, L., Hu, Y., Rew, Y., Shin, D., and Boger, D.L. (2005) Chemistry and biology of ramoplanin: a lipoglycodepsipeptide with potent antibiotic activity. Chem Rev 105: 449-476.

Walsh, C.T., Gehring, A.M., Weinreb, P.H., Quadri, L.E., and Flugel, R.S. (1997) Post-translational modification of polyketide and nonribosomal peptide synthases. Curr Opin Chem Biol 1: 309-315.

Walsh, C.T., Chen, H., Keating, T.A., Hubbard, B.K., Losey, H.C., Luo, L., Marshall, C.G., Miller, D.A., and Patel, H.M. (2001) Tailoring enzymes that modify nonribosomal peptides during and after chain elongation on NRPS assembly lines. Curr Opin Chem Biol 5: 525-534.

Walton, J.D. (1987) Two enzymes involved in biosynthesis of the host-selective phytotoxin HC-toxin. Proc Natl Acad Sci US A 84: 8444-8447.

Wang, Y.P., Nowak, G., Culley, D., Hadwiger, L.A., and Fristensky, B. (1999) Constitutive expression of pea defense gene DRR206 confers resistance to blackleg (Leptosphaeria maculans) disease in transgenic canola (Brassica napus). Molr Plant-Microbe Interact 12: 410-418.

Weber, G., Schorgendorfer, K., Schneider-Scherzer, E., and Leitner, E. (1994) The peptide synthetase catalyzing cyclosporine production in Tolypocladium niveum is encoded by a giant 45.8-kilobase open reading frame. Curr Genet 26: 120-125.

Weber, T., Baumgartner, R., Renner, C., Marahiel, M.A., and Holak, T.A. (2000) Solution structure of PCP, a prototype for the peptidyl carrier domains of modular peptide synthetases. Structure 8: 407-418.

Williams, R.H., and Fitt, B.D.L. (1999) Differentiating A and B groups of Leptosphaeria maculans, causal agent of stem canker (blackleg) of oilseed rape. Plant Pathol 48: 161-175.

Yeh, E., Kohli, R.M., Bruner, S.D., and Walsh, C.T. (2004) Type II thioesterase restores activity of a NRPS module stalled with an aminoacyl-S-enzyme that cannot be elongated. Chembiochem 5: 1290-1293.

Yin, X., and Zabriskie, T.M. (2006) The enduracidin biosynthetic gene cluster from Streptomyces fungicidicus. Microbiology 152: 2969-2983.

Zocher, R., Nihira, T., Paul, E., Madry, N., Peeters, H., Kleinkauf, H., and Keller, U. (1986) Biosynthesis of cyclosporin A: partial purification and properties of a multifunctional enzyme from Tolypocladium inflatum. Biochemistry 25: 550-553.

6. Appendices

Appendix A: The nucleotide sequence of the insert DNA of cosmid Col-8

7081 ttgagtactt gggccggatt gaccatcagg tgaaaatccg tggattccgg atcgagatcg
7141 gcgagattga agagcagctt ctgaagatcg actccgtgca ggagacgatc gtaatcgcgc 7201 gggaaggcaa aagcgggcaa gaactgtgcg cttatctggt cgcgggccgc ccgcttacge
7261 tcggcgagct gagaagcgcg ctggcgcaaa aattgccgaa ttacatgatt ccggcgcatt
7321 ttgttcagct tccgcggatg cogctcacgc cgaacgacaa aatcgaccgc aaggetttgc 7381 ccgctccgga aggaaacgcg ctgaccggcg gcgggtacgt agctccccgc aatgaagccg 7441 agcggacgct tgccgatgtg tggcaggcgg tattgaacgc cgatcgcgtt ggggtaacgg 7501 atcatttctt cgagctgggc ggagactcaa tcaagtccat tcaggtatct tcgaggcttc 7561 atcaagccgg gtacaagctg gaaatacggg atttgttcaa atatccgact atctcacagc 7621 tcagcctgca tgtgaaaccg atcggacgta ccatcgatca aggtgaaata acgggtgaaa 7681 cggcgctgac gccgattcag cattggtttt tcgagagctc ctttgcggac ccgcatcatt 7741 tcgaccagtc ggtgatgctg taccggaagg aacgcttcga cgaagagacg gtacgtcagg 7801 tgctgcaaaa gctggccgag catcatgacg cottgcggat ggtgttccgc aagacggaac 7861 aagggtttag cgcgcggaac cgcgcgattc aggaaggcgg gctgttcacg ctggacgtgt 7921 tcgacttcaa ggatgcggag aataccgcgc aggctgtgga agcgaaggga acggacattc 7981 a 7 gegggcat cgatctggag aacgggcccc tcgtgaaggc gggactgttc cggtgcgcgg 8041 acggcgatca tttgctgctc gcggttcatc atgccgtggt ggacggcgtg tcttggcgca 8101 ttttgatgga ggatttcgct ctgggttacg agcaggccgg caaaagcgag gaaattcgtt 8161 tcccggcgaa aacggatgcg taccgcactt ggtccgagca getggcegct tacgcgcaaa 8221 gcccggagat ggcgaaggaa cgggcctatt ggcaggccgt ggaacaaatt gcggttccgg 8281 ccgtgccgaa ggatctggag gcggacgtta cgacgcagca ggacagcgaa tcgctgttcg 8341 tccgtttgac tcccgaagaa acggagctgc tgctgaagcg ggttcaccgg gcctacaaca 8401 ccgaaatgaa cgatattttg ataacggcgc tcggcatagc cgttcgcaag tggacgggac 8461 acgaaagggt gcggatcaat ctcgaaggac acggacgcga atcaatcgga acggatatcg 8521 acatcacgcg cacagtcggc tggtttacga ccaagtttcc ggtcgtcctg gagccggaaa 8581 ccgaccggga tttggcctat cagattaad aggtcaagga aagcttgcgc cgcattccga 8641 acaaggggct tgggtacggc gtatgccgct atctctccaa atcggaggat ggctttgttt 8701 ggggcgcaga gccggaaatt aattttaact acctcggcca gttcgacgat gatgtcaacc 8761 aggacgagat cggcatatct tcttattcca gcggcagcce ggccagcgac cggcaggcce 8821 gcagctttgt gctggatatc aacggcatgg tgctggacgg cgctttatcg ctcgatctca 8881 gctacagceg gaagcagtat cgcaaggaaa cgatggaagc cttcgctcag cggcttgagc 8941 aadgtctccg agagctcatt acccactgcg caggcaadga aaacaccgaa ttgacgccga 9001 gcgacgtgca attaaaggct tgaccatcgc ggaattggag caaatcgccc agcgctcggg 9061 ccatctcggg gaaatcgaaa atatttactc gcttacgccg atgcagaagg gcatgtggtt 9121 ccacagcgcg cttgaccgac aaacggccgc ttacttcgag cagacgcggt ttacgatgcg 9181 gggagcgctc gacgtccagc ttttcgagag gagctggatg gagcttgcga aacgtcatct 9241 ggtgctgcgg gcgaattttg tgaaaggacc ggcgggcgag cogctgcaaa tcatataccg 9301 cgacaagccg gtcggctttg aatatgaaga gctgcttcat ttgcaggcgg acgagaaaca 9361 agcgtatttg gataaaagg ccgaggatga caagcttcgc ggcttcgaca tggaaaatga 9421 cgcgctcgtt cgggttacga tcctgcgcac cgaagagcaa agctatcatg tgctgtggag 9481 tttccagcat attttgatgg acggctggtg cctgccgcag ctgacgcagg agctgtttga

12001 gaaaagcgtg ctcggactgg agcacatcgg ggttcatgac aacttcttcg acctgggcgg 12061 ccattccctg cgggcgacga cactggtgag caaggtgcat caggagctga acgtcgagct 12121 gcctctgcgc gacgtattcc gctactcgac gatcgaagag atggctctcg ccatctcccg 12181 gatcggagag cagtcgttct cgtcgattcc gctggcgggc gcaagagcat attatccgct 12241 ttcctcagct cagaagcggc tgtttatcct gatcagctg gaaggggccg atcagagcta 12301 caacatgccg ggcgtgctgc tgctggaagg atcgattgac cggagcctgc tggagaaggc 12361 tttccgcgga ctgatcgcac ggcacgaaac gctgcgaacc ggctttgaga tcgtacaagg 12421 cgaagctgta cagcgcattt acgagagcgt cgactttgcc gtcgagtacc gtcatgtgag 12481 cgaggaagaa gcgcccgaag tcgtgcaggc cttcatccgg cctttcgact tggcgaagcc 12541 tccgctgctg cgggcggagc tcgtagagct ggcagccgaa cgttatttgc tgatgttcga 12601 catgcaccat atcgtctccg acggggtttc gatggacgtg ttagtcgagg aactcgttcg 12661 tatgtacggc ggcgagtcat tagagccttt gcgcattcaa tacaaggact atgcggtatg 12721 gcagcagtcg gacgagcaaa aagtgcagtt gaaacgcgag gaagcttact ggctggaccg 12781 ttaccggggc gagctgccgg ttctggaaat gccgacggac tatccgcgtc ctgccgtgca 12841 gagctttgag ggacaaacgc tgacgtcctt cgtggacgag gcaacgaacg aaggcttgaa 12901 gcagctggcc gctcaaagag gaacgacgct gtatatggtg ctgcttgcgg catataccgt 12961 gcttttgcat aaatacacag gtcaggacga tttgatcgtc ggaacgtcga ttgcgggcag 13021 aacgcacgga gacacgcagc ctttgatcgg aatgttcgtc aatacgctgg cgctccgcaa 13081 ttatccggct tcggagaaga cctttctgtc gtatctggaa gaagtgaaag aaacgacctt 13141 aggcgcttac gagcatcaga attatccgtt cgaagagctc gtcgataaag tgcaggtcag 13201 ccgggatttg agccgcaacc cgctgtttga cacgatgttc tccetgcaaa acttggagga 13261 taaagagttt gagttggaag ggctgaaatt gtccccgtac cctagcgaat acggcacggc 13321 caagttcgac ctgagtgtgg atgttacgga agaaaatggc ggcctggagt gcagctttga 13381 attcgcaacg gctctttata aagaaagcac gatccggcgg ctgtcgactc atttcggaca 13441 tttgctcgta acgatcgtaa gccgtccgga tgcgaagatc gccgagctga acttgctgac 13501 ggcagaggaa aaagaacaaa ttctcggcgc gtttaacccg gcgcagcctg aagcggctcc 13561 tgtggcggcg ttccaccggc tgttcgagga acaggcggag cgcacgecgg aagcggaggc 13621 cgtcgtgtac gagaacgacc ggctgacgta tgcggagctg aacgagcggg cgaaccgctt 13681 ggcggctacg ctgcgcgcaa gcggcatcgg ccgggagacg atcgtcggca ttctcgccga 13741 gcgttcggtg gacttgctgg tggccgtgct ggccgtctgg aaagcgggcg gggcgtatgt 13801 gccgctcgac ccggattatc cggcggagcg cgtgcggttc atgctcgaag acagcggagc 13861 gaaggtactg ctgacgcaaa cggcgctgcg agagcgtgct gaagcctggc tcgacgaaga 13921 ggagctggcg ctggcggcgg tgctgtacct cgacgacgaa acttcgtaca gcgaggagcg 13981 gacgaatgcc gacagcttcc atgaagcccg tccggaggat ctggcgtacg tgatctatac 14041 gtcaggaacg acgggcaagc cgaagggcgt gatgatcgag caccgcagcc tggtgaacac 14101 ggcggcgggc taccggcggg aataccggtt ggatgagttc ccggtgcggc tgctgcagct 14161 cgccagcttc tcgttcgacg tgttcgtagg agatatcgcg cggacgctgt acaacggagg 14221 cacgatggtg attgtgccga aggacgaccg gatcgatccg tctcgtctgc accactggat 14281 ggagcgggag cgggtcacca tcttcgaatc gacgccggcg ctgatcgtgc cgttcctgga 14341 gtacgtgcac gagcagcggc tggatatgag ctggatggag ctgttgatca cgagctcgga 14401 cagctgcagc gtggcggatt accggacctt gcaggaacgc ttcggctcgt tgttccggat

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14461 tatcaacgca tacggcgtga cggaagcggc gatcgactca agtttctacg acgagccgct
14521 gacgaagctg ccgcagacag gcaatgtgcc gatcggcaaa gcatggctga atgcgaaatt
14581 ctacatcgtg gacgcgcatc tgaacccggt gccggtcggg gtgctgggcg agctggttat
14641 cggcggagtt ggggtagcgc gcgggtactt gaaccgtccg gagctgacgg aagagaagtt
14701 cgtagacagc ccgttcgccg cgggcgagcg gctgtaccgc acgggagact tggcgcggtg
14761 gatggaagac ggcaacgtgg acttcatcgg ccggatcgac aaccaggcga aaatccgggg
14821 ctaccggatc gagacgggcg agatcgagtc gcagctgctg cgggtggaag gcgtgcgcga
14881 agcggtggtg ctggttcgaa gtgacgcgaa cgggcagaag gcgctatgcg cgtattgcac
14941 gccgggtacc ggagcggagc tggcggtgaa cgatttgcgc agcgcgctgg cgcaggagct
15001 gccgggctac atgatcccgt cgtacttcgt ggagctggag cgcctgcctc tgacgccgaa
15061 cggaaagatt gaccggaagg cgttgccagc gccggaaggg gaagcgggaa gcggaacgga
15121 gtacgtcgca ccgcgcaatg agctggaaac gaagctggcg gcgatttggc aggaggtgct
15181 ggggcttgcg aaggagattg gcgttcacga caacttcttc gacatcggcg gccactccet
15241 gcgggcgacg acgctggtca gcaagattca taaagagttg aacgtggatc tgccgctgcg
15301 cgacgtgttc cgccattcca cgatcgagag catggcggcc gccatttccc ggctggatga
15361 gcagacattc gttgccattc cggtggcgga tggccgagag gtgtacccgc aatcttttgc
15421 tcaaaacgt ctctttatcc tgaatcaact ggaaggcgcg gagcttagct acaacatgcc
15481 ggaagcgatg ctgctggagg gtgctttaga ccgggcaagg ttcgaagaag cgttccgtaa
15541 gctcgtggcg cggcatgaaa tgctgcgcac cgggttcgaa atggtggatg gcgaagcatc
15601 gcagcggatt taccaggacg tgaattttgc cgtggagttc tatcgagcgg atgagcaaga
15661 ggccgaagag acggttcgcc gtttcgtccg tccgtttgac ttggcgaagc ctccgctgct
15721 gagggtaggc cttgttgagc tggctccgga acgccatatt ctaatgtacg acatgcatca
15781 tattatttcc gacggcgtct cgatggaaat ctttgttgaa gaattcgtcc gcttgtacgg
15841 cggcgagcaa ttggagcctc tgcgcattca gtacaaagac tacaccgttt ggcagcattc
15901 gcaggagcag aaggaacggc ttcagcgtca ggaggcgtac tggctggaca tgttccaagg
15961 cgagcttccg gtgctggaaa tgccgaccga ctatccgcgt ccggccgtgc agagctacga
16021 aggccaaacg ctggagtttt tctttgacgc ttcgaaaacc gacggcctga agcagctggc
16081 ctcggaaacg ggcacgacgc tgtttatggt gctgcttgcg gcgtataacg tccttctgca
16141 taatattca ggtcaggaag acgtgatcgt cggtacgccg attgccggaa ggaatcatgg
16201 agatgtgcag cagttgatcg ggattttctt aacacgctg gctatccgca gttatccggc
16261 ttcggagaag acattcctgt catacctgaa cgaagtcaaa gaaacgaccc tccacgcctt
16321 cgagcatcaa aactatccgt tcgaagaatt ggtggacaag gtgcaagtca cccgtgattt
16381 aagccgcaat ccgctcttcg acacgctgtt tacgatgcag aatacggaga acgaggaatt
16441 tgagctggaa gggcttcgcc tgattcctta tccgagcgca ctggataccg cgaagtttga
16501 tatcagcttg gatgtgagcg aggagaacgg cggcttggat tacagcttcg aatatgcgac
16561 ggctctctac aaaggggaga cgatcgaacg gctggcaaaa cattacgagc agctgctcgt
16621 aacgatcgta agccgtccgg atgcgaagat cgccgagctg aacttgctga cggcagagga 16681 aaaagaacaa attctcggcg cgttccaccc ggcgcagccg gaagcggctc ctgcggccgc
16741 gttccactgg ctgttcgagg aacaggcgga gcgcacgccg gaagcggcgg ccgtcgtgta
16801 cgagaacgac cggctgacgt atgcggagct gaacgagcgg gcgaaccgct tggcggctac
16861 gctgcgtgca agcggcatcg gccgggagac gatcgtcggc attctcgccg agcgttcggt

16921 ggacttgctg gtggccgtgc tggccgtctg gaaagcgggc ggggcgtatg tgccgctcga 16981 cccggattac ccggcggagc gcgtgcggtt catgctcgaa gacagcggag cgaaggtgct 17041 gctgacgcaa acgccgctgc gagagcgtgc cgaagcctgg ctcggcgaag aggagctggc 17101 gctggcggcg gtgctgtacc tcgacgacga agcgtcgtac agcgaggagc ggacgaatgc 17161 gccgctggaa gcggatgatc acttgcacga atgccgtccg gaggacctgg cgtacgtgat 17221 ctatacgtcg ggaacgacgg gcaagccgaa gggcgtgatg atcgagcacc gtagcctggt 17281 gaacacggcg gcgggctacc ggcgggaata ccggttggat cagttcccgg tgcggttgct 17341 gcagctcgca agcttctcgt tcgacgtgtt cgtgggagat atcgcgcgga cgctgtacaa 17401 cggaggcacg atggtgattg tgccgaagga cgaccggatc gatccgtctc gtctgcacca 17461 ctggattgag cgggagcggg tcaccatctt cgaatcgacg ccggcgctga tcgtgccgtt 17521 cctggagtac gtgcacgagc agcaactgga tatgagccgg ttggagctgt tgatcacgag 17581 ctcggacagc tgcagcgtgg cggattaccg gaccttgcag gaacgcttcg gctcgttgtt 17641 ccggatcatc aacgcatacg gcgtgacgga agcggcgatc gactcaagct tctacgacga 17701 ggagctggcg aagctgccgc agacaggcaa tgtgccgatc ggcaaagcgt ggctgaatgc 17761 gaaattctac atcgtggatg cgcatctgaa ccoggtgccg gtcggggtgc tgggcgagct 17821 ggtcatcggc ggagtcggag tggcgcgcgg gtacttgaac cgtccggagc tgacggaaga 17881 gaagttcgta gacagcccgt tcgccgcggg cgagcggctg taccgcacgg gagacttggc 17941 gcggtggatg gaggacggga acgtggactt catcggccgg atcgacaacc aggcgaaat 18001 ccggggctac cggatcgaga cgggcgagat cgagtcgcag ctgctgcggg tggaaggcgt 18061 gcgcgaagcg gtggtgctgg ttcgaagtga cgcgaacggg cagaaggcgc tatgcgcgta 18121 ttacacgccg gataccggag cggagctggc ggtgaacgat ttgcgcagcg tgctggcgca 18181 ggagctgccg gggtacatga tcccgtcgta tttcgtggag ctggagcgcc tgcctctgac 18241 gccgaacgga aagattgacc ggaaggcgct gccagcgccg gaaggggaag cgggaagtgg 18301 aacggagtac gtcgcaccgc gcaatgagct ggaaacgaag ctggcggcga tttggcagga 18361 ggtgctgggg cttgcgaagg aggttggcgt tcacgacaac ttcttcgaca tcggcggcca 18421 ctccctgcga gcgacgacgc tggcgggcaa ggtatttaag gaattaaacg tcaacctgcc 18481 gttgcgcgac gtattccgtc actcgacgat tgcggcgatg gccgaggcga tcgcccggat 18541 ggaacggcgg gagcatgagg ccattcctca agcggaggag agagagtact accctctgtc 18601 ctccgcgcag aaacggctgt tcattcagca cacgctggat ggagcggatc agctttacaa 18661 catgccggag ctggtgcagg tggaaggcga gtttgatata gaccggttgg aagcggcctt 18721 gcggaaattg ataacacggc atgaatcgct gcgcaccggt tttgaaatcg tgaaggccga 18781 agcggttcag cggatttacc cgcaggtcga ttttgctatc gagcatcatc aagcggataa 18841 agaggatgcg gctcaaatcg agcagatcgt ccgcagcttc gttcgtccgt ttgatctcgg 18901 caagccgccg ctgctgcgcg coggggtcat cgagctggag ccgaacctgc atattctcct 18961 tttcgacatg caccatatgg tgtccgacgg cgtatcgatg gcgattgtga tcgatgagtt 19021 ctcgagtttc tacgccgggg aagaactgcc gccactgcgc attcaataca aggattatgc 19081 cgtttggcag cagtcgaagg cccaccgaga gcggatcggg cggcaggaag tgtactggct 19141 gcaaaccttc gaaggcgagc tgccgacggc ggacctgccg atggactacg aacggtctgc 19201 ggctcgcagc tacgaaggcg cgcatctgga gttcgacgtc gaagcttcgc tctctgcgcg 19261 gctgcgcgaa ttggcggccg agcgtgaaag cacactgttc atggtgctgc ttgcggctta 19321 taccgtgctg ctgtccaagt acagcgggca ggaggacttg gtcgtgggca ccccggtggc

19381 gggaagaacg aacgccgatt tggaaccggt catagggatg tttgtcaata cgctggcgat 19441 ccgcaatcgt cogtcgggcg acaaaacgtt cttgtcctac ctggaagaag tgaaggaaac 19501 ggctttgggt gctttcgaga accaagatta tccattcgag gagctcgtgg agcgtttgaa 19561 tgtgaagcgg gagccgggcc gcttcccgct gttcgatgcc gttttcgact tgcaaaatat 19621 cgaagaacga gacgccgagc tggaaggggt cagcctgaag acttacgagc ttgaccattt 19681 ggaagaagcg aagttcgatc tgacgctgtt tatgtatgaa aacaacgggg cgctgagcgg 19741 gggcttcttc tacgccacca agctgttcaa agaagcgatg atcogcacct tgaccgagga 19801 ttacctgcgg gtactgtctc aaattgcgga aaatccacaa ctcgagctaa gccggattga 19861 atgtcataaa ccgacggcag gcgcaaagag tgccgtcgat acgatcgaat tcgcgttcta 19921 atcctacaag cgcgcctccg cogtcaagcg aaagcggcge gcatcccaag gaagacggcg 19981 aacaacgtcc aagcccgtaa acgcgcaggc cgaaagcaag ctttttcgga cctgcgcctg 20041 ggcatgcggt cacttcattt ttaggggagg tacaaatgaa atctttgttt gaaaaggaag 20101 aacagtactg gagcggcaag tttgacgccg atgacagcct gagcttcctt ccctacagtc 20161 aatcctccaa attatccgcc gacggggaag ctgcggccga gccgggcttg cttcaccgta 20221 ctctgccgag cgaactctcg gagagaatca tttgcctcgc caacggttcg gatttggctt 20281 tgtacatgat tgttttggca ggagtaaaaa gcctgctgtt caagtatacc gggcgggace 20341 aagtgctggt cggcatgcct tcttatagcg cagaccccga cgggactccg cegccgcatg 20401 acatcttggt gatcaagacg tccgtaagce gccagactac gctgaaaacg ctgctcgggg 20461 gcatcaaage ctccatcggc gaggcgetgg agcatcagca cctgcetttt cggaaaatgg 20521 tggagccgct ccatctggac tatacggggg acggcctccc ggtcgtcaac accgtcgtat 20581 ccttcgctcc gattcatccg gaaccgctgg gtaaccgggt ggcggccgat acgttttttc 20641 gcttcgaccg ccaaaaccac tccatcgagc tggaaataag ctttgacggg cagcggtacg 20701 agcgcgcatt tgtggaacag gcggccgacc atcttgttag gctgctgtcc gtgcttttat 20761 ttcagccgga tctggagctc ggacaagccg atgtgctgtc cccagacgag agggagacgc 20821 tgctgaagcg atttaatgac accgaaagcg ggttcgagcg ggggaaaacg atttacggct 20881 tgttcgaaga acaggcggag ctttacccgg acaacgtggc cgccgtcatg aacgagcggc 20941 agctgaccta cegcgagctg aacgagcgat ccaaccgcct tgcgcggaag ctgcggaaga 21001 cgggagtaga agcggaccag ctggtagcga ttctggccga acgctcgctc gatatggttg 21061 tcggcattct ggcgattctc aaagcgggcg gagcatacgt gcctgtcgat cccgactacc 21121 cggaggagcg catccgcttc atgatcgagg attcgggcgc gccgttattg ctgattcaaa 21181 agcatctgca cgagaagacc gacttcgcag gaacgcgcct cgaattggac gatttcgttt 21241 ggggcgacag aggggcggac tccgccgatg cgctggacge ttcgaacctg gagcegattt 21301 ccgggccggg caacctggct tatgtcatct acacgtcggg aacgaccggc agaccgaaag 21361 gaacgctgat cgagcataag aacgtcgtgc gcctcctgtt caacgacaag aacctgttcg 21421 acttcgggcc gtccgacacg tggacgctgt tccactcgtt ctgcttcgat ttctccgtct 21481 gggaaatgta cggagcgctg ctgtacggag gcaagctggt catcgtaccg ccgctcacgg 21541 cgaaaatcc agcegatttc ctggcgctgc tgggccgega acaggtcacg attttgaacc 21601 agacgccaac gtacttctac cagctgctgc gtaaggtctt ggcggaccat ccgtacgatc 21661 tgcggattcg caacgtcatc ttcgggggcg aagcgctgag tccgctgctg ctcaaggget 21721 tcaagacgaa gtacccggag acgaagctga tcaatatgta cggcattacc gagacgacgg 21781 ttcacgttac gtataaggaa atcacgtggg tcgaaatgga ggcggcgaag agcaatatcg

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B: The nucleotide sequence of the insert DNA of cosmid Col-19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12121 agaactgggg atttggtacg ctggcttcca gatgggaatt tggagtttaa aggaagaatt 12181 gatgagcagg tcaaaatacg tggttaccgc atcgaactcc ctgaaatcga ggcccaactg 12241 gccaaggtgg agtcagtaat cgacgccgta gtggtcgttc gcgcggatga gcttggcgag 12301 aagcagcttt gcgcttatta tgtggcggat cgtacgctca cggcaggcga agtacgtctt 12361 tccctatcgc aggtacttcc aggctatatg attccatcct actttatcca gatggatcgt 12421 atgccattaa cgtcaaacgg aaaagtggac cgcaggtctc tgccggctcc tcaagtaggc 12481 gcgcatacag gacggaagta tacagctcct cgtacaccgg ctgaggaagc tttggcatct 12541 gtctggcaag gggtgctggg tgccaaacag gtgggtatcc atgacaattt ctttgaattg 12601 ggtggagact ccataaaagc tattcaggtg tcgtcacggt tactgcaggc tggctatcgg 12661 ttagagatga agcagctgtt caatcgcca accattgccg agctaggcgc ggaaatacaa 12721 acggctgtgc atatggctga acagggagtt gtgcgtggaa cgactcgctt gactccagtc 12781 caacagtggt tctttggacg gaagcaggca gaacctcatc acttcaatca agcggttatg 12841 ctgtatcgtg aacagggatt tgaagaaaag gccttgcatc aggtgctaag aaaactcgct
12901 gagcatcatg acgcccttcg catggttttc cgtcagacag agcatggcta cgaagcttgg 12961 aatcgtgatc ttgatgaagg agagctttat agcctgttca ccgctgattt acggaatgaa
13021 tccgatccga ctgcagccat tacatcgctg tcggatgaca ttcagcgcag tatcaatctg 13081 gcagaaggcc cgctgctgaa gttaggactt ttccattgtc aggatggaga ccaccttcta 13141 atcgtgatcc accatttggt ggtggacgga gtatcctggc ggattttgtt cgaggatatt 13201 gcagcaggct atgagcaggt gattcaagga caagcgctga cattcccgca gaagacggat 13261 tccttccgtg actggggaga cgcccttgct cgttattcgg aaggtcctga tatggagact 13321 catcgggcgt attggagaga gctggaggat cagccactcg aacagttgcc gaaggatgag 13381 gctgtggaaa gccttctttt acaggatagc aaagtagtaa cagcacaatg gactctagaa 13441 gaaaccgacc aattgttgag aaaagcccat cgtgcttatc aaacagagac gaatgatctg 13501 ctattaactg ctctgggcat ggcggtatcc aaatggtctg gcatcggaaa ggttgctgtg 13561 aatctggaag gacacggtcg tgagccgatt ataccgaata tcgacatcac ccgtaccgta 13621 ggctggttta caagtcaatt tccggtgatt ttagacttgg gggatgaccc ggaagtggcc 13681 tccttgatca agtctgtgaa agaggggcta cgccggattc cgaacaaagg tattggctac 13741 gggttgctca aacgatggc aagtcagttg gatgaagaca gcttcagctt acagcctgag 13801 atttctttta actatctggg gcaatttgat caggatttgc aaggaagctc gttgcagatt 13861 tctccttatc cgaccggaag cgcccaaagc ttgttggagg aaccggccta tacgctagac 13921 atcaatggca tggtgacgga cggagccttg actctgacga ttacctataa cggaaaacag 13981 tataagtcat ctacgatgga acagctcgct ggatatattg aagaaagcct gcgggagctt 14041 ctccagcatt gcgtaaacca agaaaaaacc atattgacac caagcgacgt gcttgcgaag 14101 ggtctaagca ttgccgatct ggaggagctt tctaagcaga cgagtcacat tggcgatatt 14161 gagaatgtat atagtctgac accgatgcag aagggcatgc tgttccatga tatgtttgag 14221 ccgcatacag gtgcttattt tgagcaggct gcctttgact ttaagggtag ctttgatccg 14281 accgccttcg gacacagtct ggatgcagtg gtggagcgtc atgctatcct gcgcacgaac 14341 ttttacagcg gatggggcag cgagcctttg caggttgtat ttcggcacag aggcgctaaa 14401 ttggtgtacg aagacctgcg ggagatgaat gcatcgcagc gcgaagctta tctgaagaca 14461 tttggtgcta aggacaaagc actgggcttc aacctagctg aagacgagct tctccgtgta 14521 tcaattctac aaacagatga agagagcttc cgtctcttat ggagctttca ccacatcgtc

14581 atggatgggt ggtgtgttcc gttaattacg caggaggtat ttgaacacta tttgccctc
14641 ctggaaggaa gagagccgca gttggcagag gttcatccgt acagtcgata tatcgaatgg
14701 ctggaacagc aggatgaagc agctgcgtcc aactattgga gccgatatct ggccggttac
14761 gagcagcaga cgcttttacc tcaagtcggt ggagcaagta agggagaagg ctatgtagca
14821 gaaaagctga attatcctct cagcagggaa ttgactgagc gccttgaaaa ggtggccagg
14881 gatgcccatg tcacgatgaa tatattgctg cagtccctct ggggcattgc gcttcaacgc
14941 tataacggta gcaaggatgt cgtgtacgga agtgtagtat caggcagacc agcagaaatt
15001 ccgggcattg atcggatgat cggtttgttc atcaatacga ttcccgttcg tgtgaagaca
15061 gaggagaatc tccccttcac agttctgatg aagcagcagc aggaacaata tatggcttct
15121 catatgtatg acacctaccc gctgtttgag attcaggctc agacggatca gaagcaggat
15181 ctaatctccc atattatggt gtttgagaac tatcctgtgg aagaggaggt agagcgtctg
15241 ggtggtggcg aggctgcctt tgagattgag gaagcggagc ttcttgagca aacgaattat
15301 gattttaatt taattgtcct ccctggcgaa gaaatgagat tgctgttcca gtacaatgca
15361 cttgtttatg acccagtgac aattgaacaa atcaagggcc atctggttca cctcatggaa
15421 caaattgtag agaaccctgc catttccgtg gatgcactag aattagtcac gccgcaggag
15481 agagaacaga ttctgaacgt atggggaaat acaaaaggca tttacgagca ctgtaacacg
15541 ttccacgggc tgttggagga acaggcggga cgaacgccgg atgcgactgc catttggttc
15601 gaggacgaga gtctgaccta tgccgagctc aatgcaaaag ccaatggact ggcgagaagg
15661 ctccgtactc agggaatcaa gacgggagat ctggtgggac tgattgctga acggtcgctc
15721 gaaatgatcg ttgggatcta cggcattatg aaagccgggg gtgcctatgt tccaatcgat
15781 ccagagtatc cgaaagaacg aatcagttac atgcttgaag attccggggc gaagctgatc
15841 cttacacagg cccatctctt ggagcatctt ggatggacgg aaaatgtttt gctgctggat 15901 gaatcatcga cctatgatgc cgatacctcg aatttggagg atactgctgg cccggatgat
15961 ctggcttacg tgatctacac ttcaggtacg acgggtcagc ctaagggcgt attagtcgag
16021 catcggggac taccgaatct ttcggacgta tacgggacac acttcgaagt tacaccgcag
16081 gatcggatcg ttcagtttgc aagcctgtcg tttgatgcat cggtttcgga aattttaacg
16141 gcgctgagcc acgggggtgt tctgtgcatc ccttctacac aagatatttt agatcttcat
16201 aagttcctcc tacgggtttt aatccttcaa gcacgcgttg acgcgggcct tatttaggtg
16261 atgtatatct ttaaatata ttagtaatag taataggcgc actgaatatg tggataagtc 16321 actgtaaccc taataaaatc aagcctatcc acatgtgtat aaattgtgta taggctctga 16381 acttgttcag gttggatttt tgatttttcc tattaggttg ttgataactt taaacagatc 16441 ctgatccact tgaatggatt tggagatttt ttcgtgcgca tgaatgacag tcgtatgatc 16501 acgcccaccg aaagcttcgc cgatttttgg caaagaatag tcggttagct cacgagacag
16561 gtacatggca atctgtcgtg gaaaagctac agccttcgtc cgcttacgcg ctttaaaatc 16621 ctccagccgt agattgtaaa attccccgac ttgatgctgt atatcctgaa tcgtgatcaa 16681 gcgatgtttt ctatggctaa ggccatttat gttcatcgaa accagatcat tccattgtat 16741 attcgtttat ccgtgactga cctgttccct ttaattcaca cagatgctga gcccaattta 16801 gatatggtgc tgtttatcgg cacggtacat tatctggttt cgggagaaga tgatgtatct 16861 aaagagccga tgaagctggg ggaagtagac aagttgcttt ataaaacgga ctctattcta 16921 gagtctctgt cgcagcggat cgtagctgac ccgtctaagc ggtatccatc tatttataaa 16981 gaaaattcgt tcaatgaatc ggtagatctt ttatcaataa tacccggttc tttttgagcc

17041 aatgatataa tgatgaaaag gaagatgttg gatgcgggat aatgcttcca catcagaaag 17101 ggtgttattt catatgccta catacaacaa actggtgcgg gatcggattc cgcacctcat 17161 tatgtctcaa ggcaaggaat gtcggacacg cattttggac ccagaggaat acaagcagga 17221 actgcgaacc aagcttcgtg aagaagccga ggaatatttt gaagccgaaa aagatcagga 17281 tgcgctggaa gaactggcgg atatgctgga agttatccga gcgttggcag aagaacatgg 17341 agcgaatgca gcagagctgg acaagctgcg ggcagacaaa gccgaggcac gcggcggatt 17401 ccaggagcgg gtgtttttaa ttgatgtcga tgaaggtaaa agttaactaa aatatttcaa 17461 agataagcac attcaaaagg ggagcttgat aactggagct accttttttt gtctcttttt 17521 aagcacccag tatggcgaaa attataagt ggaagttatt ttaatttatt tacaagccat 17581 atgactattt agtcaacgag tttcatgtta tctcctccaa cttctacctc cctacacaaa 17641 ggttaaaatt ttataaaaa agttcaaaac cagcaaagac ctttccgggc ctggaatgat 17701 accatgtgtt tgcacataaa aaaggagag gcgctcattg cctcacttat gtaagcgcta 17761 tctaatttca actctaatca gcacttacct tctaattgac ccgcatcaca tgaggaaagg 17821 ggaacttcat atgaaaaag gagctgttgt cgtatggctt ctggttttgg ccctgatgct 17881 ttcggcctgt aatttggcgg agagtggaac gggcagcaag gaaaaaggct atgtaggcat 17941 ttccatgccg accaaatcgt ccgagcgttg ggtaggggac ggggagaata tggttcggtt 18001 gtttcaggag caaggctata aaacggattt acagtacgcc gaggacgtgg tggaaaacca 18061 aatctcccaa atcgaaaata tgatcaccaa gggtgtcaat gttatggtga tcgcttcgat 18121 cgatggaaac acgctgacgg atgtgattca gaaggcacac gaccgaggca ttcaggtcat 18181 ttcttacgac cgtctgattc gcaacacacc gtatctgacg tattatgcga ccttcgataa 18241 ctttaaggtg ggcgtgctac aggcggcata tattgagaaa aagttgggac tcaaggaagg 18301 caaaggccca ttcaatatcg agctgttcgg tggttcaccg gatgataata acgcttattt 18361 cttctttaat ggtgcgatgt ctatacttaa accgtacgtg gattccggca aactggtcgt 18421 gcgcagcaag cagatgacga tggcgcagat cgctacactg cggtgggatg gagcattggc 18481 ccagtcgcga atggataacc tgctgagtgc gtactattcg ggggctaatc tggatgcggt 18541 actatcccct tatgacggca ttagcatcgg tatcatttca tccctaaag gggtcggata 18601 tggatcagcg aacaagccgc tgccgatcat tacagggcag gatgcggagc tggcttccat 18661 caagtcgatt gtggctgggg agcagacgca aactgtattt aaggatactc gcaagctggc 18721 tgagcaaacg gtcgtgatgg ccaacagcat tttacagggc aagcaagcgg aagtgaatga 18781 caccgaatcc tataacaacg gtaaaaggt cattcctgct tacttacttg atccgatctc 18841 ggtggatcgt acgaatgtgg aaaaggatat tgtcggcagt cactattaca ccaaagagca 18901 aatcggactg aaataagagt aagaatccaa ccgaaaggag cgtatcccat gactggaatc 18961 attttggaaa tgaagggaat taccaaaacc tttcccggcg tgaaggcatt ggaaaatgta 19021 aatctcaagg tcaaggaagg cgaaattcat tccctgtgcg gtgagaacgg tgcaggcaaa 19081 tcgacgctga tgaaggtact aagcggtgta tatccgcatg gaacctatga aggggatatt 19141 gttttccagg gcaaaacgtg tgagttcaag gatatcaagc agagcgagga attgggcatt 19201 gtcattatcc atcaggagct ggcgctaatc ccgtatctct cgattgcgga aaatatttat 19261 ctgggcaacg aacgcgccag tggcggcgtg attgattgga aagagacttt tgtaggaaca 19321 cgcgagctgc tgtccaaggt cggtttgagt gaaaatccca atacattagt tacgaacatc 19381 ggggtcggga agcaacaact ggtcgaaatt gcgaaagcgc tctctaaaaa ggtgaagctg 19441 cttattctcg atgaaccgac agcggcgttg aatgaggatg atagtgaaaa tctgcttaat

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34261 gtctagtccc attaatttga cgattggcgg agaatcaaag caattgactg ctcaaggtgt 34321 acttactgga ggtgggacgg aaaatgtatc cggtgtcgaa tggacttctt cgaatgcggc 34381 tgttgctacc gttgaagatg gtcttgttcg tccacttgcc aaaggcgtga cttacattaa 34441 ggcaagcaaa gatgaactta aagcacaaac gattgtgtat gtgcgttctt cttctcaggc 34501 gttagtattg agtgcaactg gggccaaatc ggtctttctg ggtagctccc caattcaggt 34561 tagtgcaacc gatgttaacc tgactggcgg caaaacagat gtaaccaaca cggcagaatg 34621 gacttcctcc aatccgctgg ttgccacagt cgagcaagga aaaatcacac caatggatgc 34681 aggcaattcg acgattacag cgtcctatca cggtttgagc aagactctga agattaatgt 34741 acttccaacg gttgaaaaac tggtttcgag caaagccagt ctgaccctcg aaacaggagg 34801 caaacttct ctccegagta tatctgctta tttggtcaat ggagcaaaaa aagcagttca 34861 atccgatgta aatggagct taagcagtga aagtgcagtt aaaatagcaa atggtaagct 34921 agttgcagtg aacccaggca gtgcaacatt gacagcaacg gtaggtgcac tcaaactgga 34981 tattccagtg actgtgcaat acaaagtact taaactaacc gcttcagaga aaaaatacgt 35041 attggttgca ggtcaagaag caagtattcc gacagtaaaa gcacacatgg ctggtggcgg 35101 aatccttgat gttaccaatc aggtaagctg ggtaggtaca acagccgcag ttacagtagc 35161 aaatggtaaa gtaaaagcgg tgaatggcgg taactctgga atcaaggcta tgtatatgaa 35221 caatatgtg aagtacctg tcattgtgga aggagccatt tctacattga caccaagctt 35281 ttcgagtgct gatatgaatt tgaaaggaag caagtccatc aagatcatcg gcatatatac 35341 ggatggtaaa aaagctacgc tgagcagtaa agtgaaatgg acaacatcga atgcttccgt 35401 agcgatcgta aaaggctctt ccattaaagc cgttggaatt ggaaacgcaa cgattacggg 35461 cacatatcag gataagtcgt ttaacgttga gatcaaggtc acacctaagc tgctcaaact 35521 ggtattgagc aataaaaacc tgaaattgcc taaaggctcc tctcaagtac ttagtgtgaa 35581 tgcagtttat gattcaggcg caactaccaa tgtgacaagc tcagcggtat ggacatcttc 35641 caaccgtcg atcgtacagg ttactggcgg tcaggtgaag gcgattgata ccggaagttc 35701 cagtatcaaa gtagtctatg gtggtaagac tgtagcgaca tcggccagag tgttaaaata 35761 gtctacgcat attgctacat ccacttatac aaaataaccc ccggtccaaa gacagggggt 35821 tattttcagc ttattctacg ccgtcctgat aatgattttt ccagtgctta tcgcctttgt 35881 gtgcgaagtc ttcaactgtc ttttccaagg tagctaccag ttgggcttta atctcagaaa 35941 ttgtgtctcg gaacagtctt tcttccgtac cattgatttt ttcaccatat agagcctgag 36001 cggctataaa ttgacgatgt tgctccacaa aactgtcaat cgaatgcaat gcatgctcca 36061 cgtattggga aatgctatga tgctcgttag gcagttgcaa ttttaattca tgaactctgt 36121 ttaataatgc catgatgatc aaaagtgtta accgctttga ttagtccaat agcaccgatg 36181 gatacgagat catgtcgcaa tttcttcgaa tgaactgacg ataagtgcgg aacaaaccag 36241 tgctgcaagt gagcaggtgt cccaggctgt gcaagaaata gccagtggtg cagaaaagca 36301 gactacaggg ctggaaaata attcggtggc cctcgatgaa attgcacagg ggatcaccca 36361 aatcgctgaa cgctcgattt cggtagctga gttggccaaa cgatc

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C: The nucleotide sequence of the fusaricidin biosynthetic gene cluster and the flanking regions from P. polymyxa PKB1

4681 gctgtttgta gatgagcgcg agaagccgct tagcttgcaa atttttggag gcgaccgcaa 4741 atctttggtg gaagcggcga aagtcgtaaa ccaggagacg aatgcagata ttattgacat 4801 caatatgggc tgcceggttc ccaaagtgac caaatgtgat gcaggcgctc gttggctgct 4861 tgatccaaac aagatttatg agatggtatc ggcggtagtg gaatcggtaa gcaagccggt 4921 taccgtcaaa atgcgtattg gttgggatag cgagcatatt tatgccgtag agaacgctcg 4981 cgctgttgaa cgtgccggag gtcaggccgt tagcgtacat ggccgtacac gggagcaact 5041 gtatacggga catgcgaatt gggatattat aaaagaagtt aaagaagcag tttccattcc 5101 tgtaattgga aacggtgatg tggcatcacc ggaagatgcc cgccgtatgc tggatttgac 5161 caattgtgat ggcgttatga tcggacgtgg tgctctgggg aatccgtgga tgctctaccg 5221 tacgattgag tacctgcaaa cgggcgagct gttgcccgat ccttcaccgg aagaaaaaat 5281 ccgcattgcc attctgcata tggatcgtct ggttgcattg aggggtgaag cagtagctgt 5341 ccgtgaaatg cgtaagcatc tggcttggta cctcaaaggg tttaaaggtt cggcacgtat 5401 taaggatgtc attatggaag aacaaagcg cgacgatatg gtacgcattt tggatcaatt 5461 tgtatctcaa ttgcacatgg tagataacga tgagccttct acaagcgctg cttctcctgc 5521 tgctgttgcg caataaggaa gctgttccgg cctgtgcacg cgattgactt ttccaattgc 5581 ttgccctata atcgttcagt ataaaatctt gatgtatgct acaaattgtg tgcagctctc 5641 aagacaacag caggaaatgt tctcattccc tcagagtggc atattatgtt ttgaaagcgt 5701 gcattccgat gcacttttaa acttttccca tgacaggaga atcggttaag atgagcgata 5761 aagaagtcat tctgacacag gaaggtctta gaaagctcga agatgagctt gagaacttaa 5821 agtctgtcaa acgccgcgaa gtggctgaac ggattaaggt agccatcgga tacggagata 5881 ttagtgaaaa ctccgaatat gaggatgcga agaatgagca ggcctttatt gaaggccgtg 5941 tattacgtt ggaaaagatg ctacgcaatg cccgcattat caatagtgat gaaattgaca 6001 ccgatgttgt gggagtagge gcaactgtga ccgttgaaga tttggaattc ggagatatta 6061 cagagtatgc tatcgtaggt tccgcogaat cogatccgct acagaataag atttcgaatg 6121 aaagtccggt tggcaaggca attctcggta agaaaaaggg aactgttgtg gatgtcaccg 6181 ttccagcagg cgttattcaa tataaaatcg tggatatcaa gaaataagac acggactttg 6241 gaatttaatg taaaagcttc cttgtggaag ctttttttct ctacacccgg acggaccccg 6301 gcccgtctat tcatattgaa ggagctgatt tagcaccatg tcggatgaaa ctactaacca 6361 ggaatcacaa gaaaatcgcg aggaattaag tgaactattg caaattcgcc gtgccaaatt 6421 ggacgagctt cgctcattgg gcattgatcc ttttggacgc aadtacatac gcacggctga 6481 agcgggcgta ctactgagca agtatgacag tttgactaag gaagaactgg aagaaaagaa 6541 tattgaagtt agcatagcag gccgtattat ggctaaacgt gtgatgggga aagccagctt 6601 tgctcatata caggatctta gtggacgtat tcaaatttat gttcgtcaag acacggtacc 6661 tgaatccaaa tataaagcat ttggtatttt ggatctgggc gatattgttg gtgttaaggg 6721 cgtgctcttt aaaaccaaa caggcgaaac gacaatcaaa gtgctggata ttgaggtctt 6781 gtccaaatcc ttgtatccat taccagagaa atatcatggc ctgaaggatg ttgaattgcg 6841 ttaccgtcag cggtatgtcg atttggttat gaaccctgaa gtacaaaaaa cgttcattac 6901 acggtcccgt attattcaat ccatgcgtcg ttatctcgat tcgctcggct atttggaagt 6961 tgaaactcca acattgcatt ctattgctgg cggggcggca gcgaagccat ttgttacgca 7021 ccataatgca ttggacatgc agctttatat gcgtattgct attgaactcc atttgaaacg 7081 actaattgtc ggtggaatgg agaaagtata tgagatcggt cgtgtttacc gtaatgaagg

9601 ctgaagtttt attttgggtt tttgttgttg caggcttgat cgcaaggtat atgtttggct 9661 tgaagaagtt aggcggtctt cttttactat ttacccccat tattgatatc ctgttactga 9721 ttgcggtgtt catcacggtg aaaagtggca tggagattac gactgctact ggcttggcgg 9781 cctgttattt tggtattaca gtagcatttg gtcataggtt aattaagtgg gcggatgtgc 9841 ggttctccca ttggtttggt aagggaccca agcctgaacg caagtatggt gctgctcatg 9901 caaaagagga acggataggt tggttgcttc accttttggg ctgggctata ggtaatgctt 9961 tgttgctcgc catcattgtg tatgttgatg atcctcagcg tacggtgtct ttggagggca 10021 ttatgcaaac atgggcaatc gttctggcaa tcgactttgt tgtctccttt agctatactt 10081 tagctcccaa aaaacaaaag cgtagtctat aaaggttaag acttacactt agatgatatc
10141 tggctggtca ctcaggatgt tcaaatcgga agagtcattg ttggtgaaaa tgaagtggtt 10201 acttccggta ggtgggtgat tctgtcatcg gaatgtaaat atttacaaaa atatactgat 10261 tttatgttta actcgctttg acagtcacct tgtttttgcc tcgctacctt ttttcacata 10321 catgtattcc tttcgatttg aacacagacc aacagaagca acacaactat ttcttgtgag 10381 atgacagaca gcatacacga tgtgttttct agaccttagt aagaaggatc gttgtaagac 10441 gaatttatgg gtctagtatg gaggcacttg gaatttgaaa aaattgggct cgagattata 10501 gctaaaatca actgcggagt agtgttctac ccattcacac aaattttaaa ataaattttg 10561 tgatttgcct aaaacgtcgc ctatccaagt ttggcaatta acgcgataat attccaggaa 10621 agattacata tgtctataaa tgtagacata cgcaattaag ttgttatttt gtttaaaaat 10681 gtaaaaaaga aaggtggttt ctgtggcagt actactgagc ggtaagaaca ttttgattat 10741 gggcgtggct aataacagga gtattgcctg ggggacagct caatctttag ctgctgaagg 10801 agcacagctc atttttactt acgaaaatga gagggttgca gagcgggtac taaagctcgt 10861 tgaaaccatt ccgggagcac tggtctgtcc ttgtaatgta caaagcaatg aagagcttga 10921 tgcattggcg gattttctaa aagaaaaagt aggcgtattg catggttatt ttcacagtgt 10981 cgcttatgct aaggctgagg atttggatgg cttgttcgtt gacacttctc gcgaggggtt 11041 cgctgttgca caagaaatca gtgcctattc tctggctgct gtatcccgtc gagtataccc 11101 actgatgaca gagggtggaa gtatcgtcac catgacgtat attggcgcag aacgagcgat 11161 caaaaattac aacgttatgg gtgtagcgaa ggcttcactg gaagccagca tgcgctatct 11221 gtcgaatgat ctgggcacat atggcattcg tgtaaatgcg atttccgctg gtccgatacg 11281 gaccttggct gcctatggca ttaaagattt taacacaatg ctcaaacata ttgaagaaac 11341 tacgccccta cgcaagacgg ttgatacgtc ggaagtcgga gatacggcgt tattcctatt 11401 ttcccattta tcgagaggca ttacgggtga agttatccat gtagatgctg gataccatat 11461 tacggggatg taaggaggga acgttgtgct tattacgcat acggattgcc gtattatctc 11521 acctgaagga gttatgacta gggagcgtct ggagcgagac gttacgatct tctcccggat 11581 gttgacgctc agaggaattc ccgaagacgg tagagtgatt ctgaaagcgg ccaattccta 11641 ttggtttgtt gtgtctctgt tctccctgtg caatattgct gtttcggtga ctgtggtgga 11701 cgagcagact gtgctcgatg aggtggccca aatctatgat gaagcgggtg cctgttgcat 11761 cettacggat tccgatttag aacttcctca tgctctcgtt attctgattc aagatctgat 11821 tcaagaagaa gcagtacacc cggattgggt gggagagcca aagcttgaag ccctcgactt 11881 tagcaagtgg tgcgagaggt cagatgcgct cattctgtat tcttcaggta cgacgggcaa 11941 acccaaggga atcgtgaaag ctggttcagc ttttatggag aatatcaggc attccataca 12001 cgccatgaac tacctaccgt ctgaccatat gctccccgtt gtgccttttt ctcattttta

12061 tggaatctca cttatcttct cctggtggtt a acttcatgt tctctcatca tctgcaatcc 12121 aaaaaacctc tggagcgtca ttgcaagtat tacgaaagac cgggcgacgg tcgtagacgc 12181 taacccctct gctttttaca ccttgttgcg tatgctaaac cgaaaacccg aacaactgga 12241 aatggtcaag gaagctccgg tgcgcatgtg gtgcgtaggc ggttccccac ttacccagga 12301 ccttgaagag aaatttaaca acatatttgg acagcccctg ctgaatggtt acggcctttc 12361 tgaactgggc aacgttacgc tggggacgct agagtgtccg aagggttgtg gcctaccatt 12421 acctggtgtg gatctgaaaa tactagattc tacaggcaac cagcaggcgg acggtatcgt 12481 aggcgaagtg tggatacgca gtgctggatg catggaaggt tatctaaatc gtccagacct 12541 gacgcaatcc gttctacagg acggctggtt caagacgggg gacctgggct atctggatga 12601 cggaatgctg tatgtcattg gtcgcagcgg taagacggtc aaccggatgg gctacatggt 12661 atctccggtc tatattgagg accgaattgg ttcgctaggc taccgatcct gcgtgattac 12721 cttggaggat gaggctaaag ggacattgct tgtcgcattc atcgaaagtg attcctcaca 12781 ggtcgtgcct gtgctccgca aagagatgag tcaggtactc ccttcataca tgtttcccga 12841 tcttttgctt ccgctcgatc attttccttt aatcgcaat ggaaaagtag atcgtctgga 12901 gatggagcgt gttgctctag agaaagctgc ttctcgcaaa gcataacaag atatatacca 12961 aaactgcata caggaaaggg agaatgtgcc atgagtataa atccagaact ggcagaaaac 13021 acactgtttc tgaaaaggca tgaatctatt ctgaaatgcc tcaattattt gattgaaaat
13081 cggcaggaag tgatggatat tctcacacaa ttttcatcct atcgggctgc caatgcagaa 13141 attgactcca cgatcctcac acttcaaggt gctctgcaag aagtgcagac ctatcagcca 13201 agctggcaac gatctatggc tgtatttatg ccttccaacg tcattttgta ctcctatgca 13261 ttatacctct tgattccgtc cctgtacgtt gaaaatatag actttcgccc ttcttctcac 13321 gtaaacgagt acgtcaacat gctgcatgaa aagcttcagg ctgtacatgg attacccatc 13381 tatattcgta aggttagcca gaaggtgttc atggagaatt ccgtgatgcc agctgatatt 13441 gtggtgttca cgggaagcta taccaatgca gagaagatca aaaacagat tcgaaaagat 13501 cagctctaca ttttttacgg acaaggacta aatcctttca tcatcggacc tgatgcagat 13561 ctggagctgg cggttaccga tgtgatccga atgagattgt tcaactctgg acaagactgc
13621 ctaggccccg acatcattct ggtacatcaa gatgtgagtg agcatttcaa agatctgctg 13681 attcaacagc ttgaccaact cgtgtttggt gccaacgatg atccgaacgc aaactatacc 13741 cctatattct ataagacac gctatattcg gtttccgaat atttcaatac gaatgataag 13801 tttattattt acggcggcgg cattgatttc cgtacaaaa agatggagcc aacggttgta 13861 tatagtgaat tggatcagaa tctggagatt attgagtatt tttcgccagt cttcaatgta 13921 gttagctacc aagacgacga gcaattgatc aagcgtattt cctccagtta tttcagtgaa 13981 cgtgcaatgg gttgcagctt atacggatcg gagcacctga ctgacgttct gcgaaagaag 14041 cacacgctga ccattaatca gacgcttgag gatgtggatc aaggcaataa gccttttggt 14101 ggctacggca cgatgtcgaa ctatattttt tacgatttca agctcatttc gaagccgatc 14161 ttgatttcag aaattgtcgc agaatatttg tcggaaaaga ggagtttggt atgactgcga 14221 gcttctttcc ctgggatgcc atcattggct acttaaaatc ggctggggtt cagcatctct 14281 ttggattacc aagtgatgat ctcaaaatcg tatcgtcact cccctcatcc ggtatggatt 14341 ttattctgtg taagatcaa cgtaatgcgg tgttcatggc agcaggttat gcgctcacca 14401 ccaaccagat gtccgtgtgt gttgtgggga aaggccctgc gctcagtaat acactcacag 14461 ggctactgga agccaaaaac ctgggcgctc cgctcctgct tctggcgctt ggcactggcg

14521 gagacaagct gggtacccga tcctttcagg aagcggatca aatctcactc gtgaagccgc 14581 tcgtaaaatg ggcttatcgt gtcgagcatg tggatcggct tgtatgggcg atggagcggg 14641 ctgccttttt ggctatcaat ggagcaccgg gtcctgtcta tatcgaactc cctgaaaacc 14701 tgatggacca gcctgtgcca acagggcttc agtttacccc accagaaaag ctgtcgtgct 14761 ctccgtctcg tcgggagttg gatgcggcgt gggggattat tgagaacgcc cgcaggccac 14821 tcattctagt cggaggcgga atgaagtcag gtacaggtga tgtgattgaa cggtttgcta 14881 accaacatgg agcggccttg ttcgcaaccg cctcgggacg gggcgtagtt gatgaagacc 14941 acgaactctt ctgtggtgtt gcgggactct atacagatct tagtctaaga caaatctgga 15001 aggaatctga tgtggtaatc acactgggta gtcgattgga agaaacggct actttcgagt 15061 gggatatttt gctacaggat acacctttga ttcaagtcaa tgtaaatctg gaggattttg 15121 cacacgaata caggggtatc aaggtgctgg gtgatggata tgcagcggtg gagcagtggc 15181 ttgaacggcg cggccaggag cctgatggag tgtggcttga aacgattagg agctgtaaac 15241 aggaggcttt ttctcacagg gctatttatt tggaagagct gaaaaagacc cctggaatcc 15301 acgttcctga gctgctggac atgattcaga cggagttccc tgaaaatctg gtgcttcttc 15361 aagagaatgg attgcaggat atgtggtcct atttttatcc atattttcgc tttgcccaag 15421 gctctctttc gattgttcct agtgatcaaa cgagtcttgg attcggtgcg gctgctgctc 15481 tgggagcaag cgtggcaaca caacgtccag tagtggcact tgtaggtgac ggtgcgttca 15541 atctcttttg ttcggatttt atgacggcgg tggagtatca aataccgtta atctatctcg 15601 tacttaataa tggtgggtat ggttggttac agaatcagat gaattataag catctcacag 15661 ggcagtccct cccgtttgtt tctgaggcgg ccaagacagg aattcaaatt cctcagtacg 15721 agtttgtgga aagtcttgca attcggagta agggagaggc acgggaacag cttcagcttg 15781 cttggcaaaa gtatcaggag aacaagcttg tgatcgtcga ggtatatgct gatcttgcgg 15841 atgtgcatga aaaaatcagt catgtgtatg gcgactttcc tctctacgag caacaggctt 15901 ctaagaatta atttcaacga aggacgtgga tacagtgaga agacgtgttg tagtgactgg 15961 acagggagtc gtaacgccga tcgggcttaa tcttacggat ttctggaatt cactgttgga 16021 agggaaaagt ggaatcggac ctgtcactgc tttcgataca gcggacattc cgacaaagat 16081 cggtgcacag gttacgggct ttgacccatt gcaatatatg agcaagaagg aagctaataa 16141 agtcgcacag ttcactcagt ttgctttggc ggctgcccgg caggcagtgg agcaatcaaa 16201 attagtgatt gatgagcgga atgcaagtcg cgtgggagtt attgtcggct ctggagcagg 16261 cggcctcgac gttatagagg agaactttgg gaaattaaca aagcttggtc ccaaaagagt 16321 ttctccttat tttgtttcct cgatgatgat taattcagca cctggtgaaa tctccattgc 16381 tattggagcc aaggggcctt cttttgctgt ggttacggct tgtgccacag gaagtaatgc 16441 cattggtgag gcattacgta cgatccagta cggcacggct gatgtcgtgg ttgccggtgg 16501 agcagaagcc aattttagtc aacttgatct ggcatctttt gcgaatatcc atgctctctc 16561 cagacgtaat gaagagccgc agaaggctag tcgtccgttt gatgtggatc gcgatggatt 16621 cgtcatcggt ggaggagcag gagtcttggt gctggaggag ttggagtatg ctttgaaccg 16681 cggagccact attctggccg aagttgtggg ttacggatgc acaactgatg cgtatcatat 16741 cacggctcca gatccctcag gctccggccc ggcagaagcg atcaatatcg cactgcagga 16801 tggcggctta acaccgcagg aaatcgacta cgtcaatgcc cacggtacga gtacgccatt 16861 taatgatcgt atggagatta atgctattca aaaagtattc ggggagcatg ccccccgttt 16921 ggcgatatcg tctattaat ccatgactgg tcatttaatg ggcggtgcag gggcagtcga

16981 attaattgcg actgtgcaga gtatgattca cagcaaagta ccaccgacac tcaattgcga 17041 caatcctgag gctcctgaat tgaactttgt gccgcatgta tatcaggaac gcgaggtccg
17101 cgcggcgatt agcaattcat ttggtttcgg agggcacaac gtctgccttg ctgttcgcaa 17161 gtgggaaggg gaataagcct gtgagcgaag agctaatcca tatcccggat gtgcttccgc 17221 accggtaccc atttcttctg ttggatggcg tgaccgggta cgaaacgtcg caatgggcga 17281 agggatacaa gcttgtcacc tggagtgagt ggttcattac tgacactaac ccatacatgc 17341 ctcctatgtt gattgtggag tcgcttgcac aattagcggc attcgctgcg attgataaaa 17401 aaggcatttc atacctgact aacctcaatg gaattcgatt ccacagcttg gccaagcctg 17461 gagaccgaat tgatctctat tttgaagtga tcaagcgtcg gcggggctat attctcggaa 17521 gcggtcgggc ttccgtaggg gatcgattgg tggttgaggc ggaagaaatt gtttcactgg 17581 atcaatgacg gggtggaagc gtacgttaaa ctgtcctttt gtcctcctga ctgccaggtg 17641 cagcgggagg atattcacat catggaatag gagtgaatga gatgaatgac atgcagttat 17701 atgatttaac aaatgcgcag aagcgtatat ggtataccga attactctac ccagatacgt 17761 cagtgtcaca gctttccggt acagctagga tgaaggggca tatcaatatt gctgccttta 17821 tgcagtccat taatttgatt atcaaacagt atgatgcgtt ccgcatccgt attacctcag 17881 tggatggagt gcctcagcag tacgtcgttc cttatgaaga gagacagttg gagtgcctgg 17941 atcttagtca ctatgaaagt gtatctgagg tggaagcctt acttgagcaa cacaaaagaa 18001 aacccttgcc cctgctggat tctgagctct tccagttttt aattgtgaag attagcgagg 18061 aagagtattg gattaatatc aagatgcacc atattatttc tgacgggatc tcaatggtgg 18121 tctatggcaa tcagctgaca gcattttaca tggagttaat tcaaggaaat gaaccgaagc 18181 tgggcgacga ttgctcgtat attcaatata ttgcagatga gaatgcatac gaactttctg 18241 acagatacca aaggataag gcttactggc tagataaatt ttccgatttg cctgagctta 18301 cgggttggaa gtcatataat ccgttatctt taagcaccca cgccgttcgg gagcatttta 18361 ccgtaccaga agtgctatat cacgagctgc aagcattttg ccaacagaat aggatttctt 18421 tgttccagtt cttcatgggt gcgatgtata tctacataca caaaatgacg aatcagccgg 18481 atgtggtgat tggcacttcg ttcgctaacc gggggaacaa aaaagagaag caaagatag 18541 gtatgttcgt cagcaccgct gctgccagaa catacgtcaa aaaggatata gatgtgttga 18601 gcttcctgca ggatgtagcc agagatcaga tgtcagtcct gcggcatcag aaatatccat 18661 acaatcagtt attcaggat cttagagaaa tgcatgggaa caaggatatt cagcggcttt 18721 ttggcgtttc aatggaatat cgtcttatca attgggttga tttggatgat gtgcgtattt 18781 tgacagatta tgatttctgc ggggacgaag tgaacgattt cgtgtttcat atcgtggaga 18841 tcctggatga aggcgaactg gtactggatg tcgattatcg gacagagctg tttgaacgca 18901 gtgaagttaa ggacatggtt tcccagttgc ttacgatcgc cgagcagatc attcattcac 18961 ctcagctttc tatcgcagag gtaagcttat taggtgaacc agaagagcaa tccattttgg 19021 ctctttcgga aggcgccgca gtcgattatc cacgagagaa gaccattcat ggcttattcg 19081 aggaacaagc cgagcgcacg ccagatcacg tagccgttca gatggacgag cagagcatta 19141 catacctagc tctaaacgag caggctaacc agcttgcgag atatttgcgc tccgagggag 19201 taggggcaga tacgctcgta gggattatgg ctgaccgttc cttggagatg gtcatcggga 19261 tgttggccat tttgaaagca ggtggtgcct atgtaccaat tgaccccgat tatcccgaag 19321 agcgtatcca ctatatgctg gaggattcag gtgtaagtct gttgctcacc caaagtcatc 19381 tatgggagag caccactttt gacggaaagc ttgtgagtct ggacgaagct gcaacgtata

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24361 tgttcgagga tattgcagca ggctatgagc aggtgattca aggacaagcg ctgacattcc 24421 cgcagaagac ggattccttc cgtgactggg gagacgccct tgctcgttat tcggaaggtc 24481 ctgatatgga gactcatcgg gcgtattgga gagagctgga ggatcagcca ctcgaacagt 24541 tgccgaagga tgaggctgtg gaaagccttc ttttacagga tagcaaagta ataacagcac 24601 aatggactct agaagaaacc gaccaattgt tgagaaaagc ccatcgtgct tatcaaacag 24661 agacgaatga tctgctatta actgctctgg gcatggcggt atccaaatgg tctggcatcg 24721 gaaaggttgc tgtgaatctg gaaggacacg gtcgtgagcc gattataccg aatatcgaca 24781 tcacccgtac cgtaggctgg tttacaagtc aatttccggt gattttagac ttgggggatg 24841 acccggaagt ggcctccttg atcaagtctg tgaaagaggg gctacgccgg attccgaaca 24901 aaggtattgg ctacgggttg ctcaaaacga tggcaagtca gttggatgaa gacagcttca 24961 gcttacagcc tgagatttct tttaactatc tggggcaatt tgatcaggat ttgcaaggaa 25021 gctcgttgca gatttctcct tatccgaccg gaagcgccca aagcttgttg gaggaaccgg 25081 cctatacgct agacatcaat ggcatggtga cggacggagc cttgactctg acgattacct 25141 ataacggaaa acagtataag tcatctacga tggaacagct cgctggatat attgaagaaa 25201 gcctgcggga gcttctccag cattgcgtaa accaagaaaa aaccatattg acaccaagcg 25261 acgtgcttgc gaagggtcta agcattgccg atctggagga gctttctaag cagacgagtc 25321 acattggcga tattgagaat gtatatagtc tgacaccgat gcagaagggc atgctgttcc 25381 atgatatgtt tgagccgcat acaggtgctt attttgagca ggctgccttt gactttaagg 25441 gtagctttga tccgaccgcc ttcggacaca gtctggatgc agtggtggag cgtcatgcta 25501 tcctgcgcac gaacttttac agcggatggg gcagcgagce tttgcaggtt gtatttcggc 25561 acagaggcgc taaattggtg tacgaagacc tgcgggagat gaatgcatcg cagcgcgaag 25621 cttatctgaa gacatttggt gctaaggaca aagcactggg cttcaaccta gctgaagacg 25681 agcttctccg tgtatcaatt ctacaaacag atgaagagag cttccgtctc ttatggagct 25741 ttcaccacat cgtcatggat gggtggtgtg ttccgttaat tacgcaggag gtatttgaac 25801 actattttgc cctcctggaa ggaagagagc cgcagttggc agaggttcat ccgtacagtc 25861 gatatatcga atggctggaa cagcaggatg aagcagctgc gtccaactat tggagccgat 25921 atctggccgg ttacgagcag cagacgcttt tacctcaagt cggtggagca agtaagggag 25981 aaggctatgt agcagaaaag ctgaattatc ctctcagcag ggaattgact gagcgccttg 26041 aaaaggtggc cagggatgcc catgtcacga tgaatatatt gctgcagtcc ctctggggca 26101 ttgcgcttca acgctataac ggtagcaagg atgtcgtgta cggaagtgta gtatcaggca 26161 gaccagcaga attccgggc attgatcgga tgatcggttt gttcatcaat acgattcccg 26221 ttcgtgtgaa gacagaggag aatctcccct tcacagttct gatgaagcag cagcaggaac 26281 aatatatggc ttctcatatg tatgacacct acccgctgtt tgagattcag gctcagacgg 26341 atcagaagca ggatctaatc tcccatatta tggtgtttga gaactatcct gtggaagagg 26401 aggtagagcg tctgggtggt ggcgaggctg cctttgagat tgaggaagcg gagcttcttg 26461 agcaaacgaa ttatgatttt aatttaattg tcctccctgg cgaagaaatg agattgctgt 26521 tccagtacaa tgcacttgtt tatgacccag tgacaattga acaaatcaag ggccatctgg 26581 ttcacctcat ggaacaaatt gtagagaacc ctgccatttc cgtggatgca ctagaattag 26641 tcacgccgca ggagagagaa cagattctga acgtatgggg aaatacaaaa ggcatttacg 26701 agcactgtaa cacgttccac gggctgttgg aggaacaggc gggacgaacg ccggatgcga 26761 ctgccatttg gttcgaggac gagagtctga cctatgccga gctcaatgca aaagccaatg

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

```
4 4 0 4 1 ~ g t t a a c a c a t ~ t a a g c a t t c c ~ g c c t g g g g a g ~ t a c g g t c g c a ~ a g a c t g a a a c ~ t c a a a g g a a t ~
4 4 1 0 1 ~ t g a c g g g g a c ~ c c g c a c a a g c ~ a g t g g a g t a t ~ g t g g t t t a a t ~ t c g a a g c a a c ~ g c g a a g a a c c
44161 ttaccaggtc ttgacatccc tctgaccgtc tagagatagc ttccttcgac agaggagaca
4 4 2 2 1 ~ g g t g g t g c a t ~ g g t t g t c g t c ~ a g c t c g t g t c ~ g t g a g a t g t t ~ g g g t t a a g t c ~ c c g c a a c g a g )
4 4 2 8 1 ~ c g c a a c c c t t ~ a t g c t t a g t t ~ g c c a g c a g g t ~ c a a g c t g g g c ~ a c t c t a a g c a ~ g a c t g c c g g t ~
4 4 3 4 1 ~ g a c a a a c c g g ~ a g g a a g g t g g ~ g g a t g a c g t c ~ a a a t c a t c a t ~ g c c c c t t a t g ~ a c c t g g g c t a ,
44401 cacacgtact acaatggccg gtacaacggg aagcgaaatc gcgaggtgga gccaatccta
44461 gaaaagccgg tctcagttcg gattgtaggc tgcaactcgc ctacatgaag tggaattgct
4 4 5 2 1 ~ a g t a a t c g c g ~ g a t c a g c a t g ~ c c g c g g t g a a ~ t a c g t t c c c g ~ g g t c t t g t a c ~ a c a c c g c c c g
44581 tcacaccacg agagtttaca acacccgaag tcggtggggt aacccgtaag ggagccagcc
4 4 6 4 1 ~ g c c g a a g g t g ~ g g g t a g a t g a ~ t t g g g g t g a a ~ g t c g t a a c a a ~ g g t a g c c g t a ~ t c g g a a g g t g )
4 4 7 0 1 ~ c g g c t g g a t c ~ a c c t c c t t t c ~ t a t g g a g a a t ~ c g t t t c c t g c ~ a a t g g a a a c a ~ t t c a a a t a t g
4 4 7 6 1 ~ a ~ g g c g t a a g c ~ t t c a a a a a c t ~ a c t c a c t c g t ~ t g c t c a g t t t ~ t g a g a g t t c a ~ a a c t c t c a a a ~
4 4 8 2 1 ~ a a a a a g c t g g ~ t t a t t t a c a g ~ c t t t g c a c c t ~ t g a a a a c t g g ~ a t a c c g a a a c ~ g a a a t t g c g t ~
44881 tttagaatat tcctttaagc tgatcttgtg taaacaagtg aaataaaggt agcaggtaag
4 4 9 4 1 ~ g a a a g a t c t t ~ t t g c c t t t g g ~ c a a a a a t c a t ~ t c t t t a t c g a ~ a c a t c g a c a t ~ t t t c t t t c t t ~
4 5 0 0 1 ~ t g a a a g a a a a ~ g t c t a g g t t a ~ a g c t a c a a a g ~ a g c a c a c g g a ~ g g a t g c c t a g ~ g c g c c a g g a g , ~
4 5 0 6 1 ~ c c g a c g a a g g ~ a c g t g g c g a a ~ c a a c g a t a a g ~ g c c t c g g g g a ~ g c t g t a a g c a ~ a g c t t t g a t c
4 5 1 2 1 ~ c g g g g a t g t c ~ c g a a t g g g g a ~ a a c c c g g c t g ~ t c t t c a t c g a ~ c a g t c a c t t t ~ c t g c t g a a t a , ~
4 5 1 8 1 ~ c a t a g g c a g a ~ a t a g a g g c a g ~ a c c a g g g g a a ~ c t g a a a c a t c ~ t a a g t a c c c t ~ g a g g a a g a g a ~
4 5 2 4 1 ~ a a a c a a t a g t ~ g a t t c c g t c a ~ g t a g c g g c g a ~ g c g a a c g c g g ~ a t t a g c c c a a ~ a c c a a g g a g c
4 5 3 0 1 ~ t t g c t c c t t g ~ g g g t t g t g g g ~ a c g t c t c a c a ~ t g g a g t t a c a ~ a a g g a a c c g g ~ t t a g a t g a a g g
4 5 3 6 1 ~ a g g t c t g g a a ~ a g g c c c g c c a ~ g a g a a g g t a a ~ a a g c c c t g t a ~ g t t c a a a a c t ~ t g t t c c c t c c
4 5 4 2 1 ~ g a g a c g g a t c ~ c c g a g t a g t g ~ c g g g g c a c g t ~ g a a a c c c c g t ~ a t g a a t c c g g ~ c a g g a c c a t c
4 5 4 8 1 ~ t g c c a a g g c t ~ a a a t a c t c c c ~ t g g c g a c c g a ~ t a g t g a a g c a ~ g t a c c g t g a g ~ g g a a a g g t g a ~
45541 aaagcacccc ggaaggggag tgaaatagat cctgaaaccg tgtgcttaca agaagtcaga
4 5 6 0 1 ~ g c c c t a t t g a ~ t g g g t g a t g g ~ c g t g c c t t t t ~ g t a g a a t g a a ~ c c g g c g a g t t ~ a c g t t c c c g t ~
4 5 6 6 1 ~ g c a a g g t t a a ~ g g t g a a g a g c ~ t g a a g c c g c a ~ g c g a a a g c g a ~ g t c t g a a t a g ~ g g c g a a t g a g )
4 5 7 2 1 ~ t a c g t g g a c g ~ t a g a c c c g a a ~ a c c g g g t g a t ~ c t a c c c c t g t ~ c c a g g g t g a a ~ g g t g c g g t a a , ~
4 5 7 8 1 ~ c a c g c a c t g g ~ a g g c c c g a a c ~ c c a c g c a t g t ~ t g a a a a a t g c ~ g g g g a t g a g g ~ t g g g g g t a g c
45841 ggagaaattc caatcgaacc cggagatagc tggttctccc cgaaatagct ttagggctag
4 5 9 0 1 ~ c c t c g g a a a a ~ a a g a g t c g t g ~ g a g g t a g a g c ~ a c t g a t t g g g ~ t g c g g g g c c c ~ g c a a g g g t t a ~
4 5 9 6 1 ~ c c a a g c t c a g ~ t c a a a c t c c g ~ a a t g c c a t g g ~ a c t t a g t t c c ~ g g g a g t c a g a ~ c a g t g a g t g c
4 6 0 2 1 ~ t a a g a t c c a t ~ t g t c g a a a g g ~ g a a a c a g c c c ~ a g a c c a t c a g ~ c t a a g g t c c c ~ c a a g t g t g t g )
4 6 0 8 1 ~ t t a a g t g g g a ~ a a g g a t g t g g ~ a g t t g c a c a g ~ a c a a c c a g g a ~ t g t t g g c t t a ~ g a a g c a g c c a ,
4 6 1 4 1 ~ c c a t t g a a a g ~ a g t g c g t a a t ~ a g c t c a c t g g ~ t c g a g t g a c t ~ c t g c g c c g a a ~ a a t g t a a c g g
46201 ggctaaacac accaccgaag ctatggcttg atgcaatgca tcaggggtag gggagcgttg
46261 aatgcgggtt gaaggtgtac cgtaaggagc gctggactgc attcaagtga gaatgccggt
4 6 3 2 1 ~ a t g a g t a a c g ~ a a a a g a t c t g ~ t g a g a a t c a g ~ a t c c g c c g a a ~ a g c c t a a g g g ~ t t c c t g a g g a ~
4 6 3 8 1 ~ a g g t t c g t c c ~ g c t c a g g g t a ~ a g t c g g g a c c ~ t a a g g c g a g g ~ c c g a t a g g c g ~ t a g t c g a a g g
46441 acaacaggtc gaaattcctg taccaccgta atccgttatg agcaatgggg tgacgcagta
```

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[^0]: 25
 ${ }^{1}$ A version of this chapter has been published. Li et al. 2007. Applied and Environmental Microbiology. 73: 3480-3489.

[^1]: 65
 ${ }^{1}$ A version of this chapter has been published. Li et al. 2007. Applied and Environmental Microbiology. 73: 3480-3489.
 ${ }^{2} A$ version of this chapter has been submitted for pulication. Li and Jensen 2007.

[^2]: 115
 ${ }^{1}$ A version of this chapter has been published. Li et al. 2007. Applied and Environmental Microbiology. 73. 3480-3489.
 ${ }^{2}$ A version of this chapter has been submitted for pulication. Li and Jensen 2007.

[^3]: ${ }^{a}$ The proposed function of each ORF is predicted based on the nature of the best matching protein identified by BLAST search.

[^4]: " 3 H -Tyr represents 3 -hydroxy-L-tyrosine.
 ${ }^{\text {bu** }}$ " represents uncertain amino acid.

[^5]: 174
 ${ }^{1}$ A version of this chapter has been published. Li et al. 2007. Applied and Environmental Microbiology. 73: 3480-3489.
 ${ }^{2}$ A version of this chapter has been submitted for pulication. Li and Jensen 2007.

