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Ultra-High Q Features Using CycleGAN
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Abstract—In this work, a microwave planar sensor is used for
liquid material characterization. Two identical complementary
split-ring resonators operating at 3 GHz are coupled to create a
highly sensitive capacitive region. The moderate quality factor of
the sensor ≈ 230 is significantly improved up to ≈ 5040 with loss
compensation using a regenerative amplifier. The moderate qual-
ity factor restrains the passive mode sensor from distinguishing
low concentrations of 1%−4% water in ethanol, while consider-
ably distinct profiles are achievable using the active-mode sensor.
The measured passive mode sensor response is then processed
using CycleGAN, a machine learning algorithm conventionally
used for image-to-image translation. This strongly enhances the
quality factor of the responses, effectively translating them to
the active domain. This improvement reduces the limit of water
detection down to 1% for water-in-ethanol mixture. In addition,
the sensor is used for noninvasive monitoring of glucose levels, in
both passive and active modes. The resolution of the CycleGAN-
boosted response approaches that of the active sensor (≈ 20
mg/dL), showing a considerable enhancement when compared to
the resolution of the passive sensor (≈ 70 mg/dL).

Index Terms—CycleGAN, machine learning, microwave sensor,
loss-compensation, glucose sensing

I. INTRODUCTION

M ICROWAVE sensors have several advantages when
compared to their optical and electrochemical coun-

terparts. They include portability, small form factor, label-
free detection, and most importantly, noncontact sensing. High
level of accuracy can be achieved with inexpensive and low-
profile designs. Over the past two decades, applications of
microwave sensors have been growing in various fields includ-
ing biosensing [1], [2], food quality monitoring [3], material
characterization [4]–[13], environmental monitoring [14]–[20],
and monitoring of mechanical motion and strain [21], [22].

Microwave resonator-based sensors are based on the envi-
ronmental influence on the resonance profile of the sensor [8],
[23]. Since planar sensors expose their sensitive regions to
the surrounding medium, they are susceptible to ambient
variations. The high sensitivity of resonator-based sensors [24]
makes them suitable for high-end applications towards re-
placing conventional and expensive equipment for sensing
minute variations. This high sensitivity is obtained when the
electromagnetic field generated by the sensor propagates and
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interacts with the surrounding medium. While this feature is
the main factor allowing noninvasive sensing, it also leads to
the loss of power in free space. Most such sensors do not
use electronics and act passively. Passive sensors, however,
suffer from typical dielectric and ohmic losses, resulting in
a moderate quality factor. Consequently, the performance of
passive sensors is limited due to low-quality factor resonances.
One compelling method to address this concern, elaborated
in [1], [25], is to amend the sensor with amplifying electronics
to compensate the lost power with a recovering scheme. In
this technique, the passive core resonator is embedded in
a regenerative amplifier or coupled to a negative resistor
that samples the sensor signal at resonance and returns its
amplified form with a modified phase towards a constructive
summation. The net effect is to remove the loss incurred in
various sources. This recently developed platform provides
significant performance enhancement in sensitive applications.
Such active sensors have a high quality factor which increases
the resolution of sensing. Through active design, the quality
factor can be increased by orders of magnitude to achieve
ultra-high resolution sensing [26]–[29]. However, increasing
the electromagnetic wave propagation into free space leaves
it more susceptible to undesired external influences, such as
material proximity, humidity, and temperature [5], [11], [12],
[30], [31]. Therefore, the long-term operation of active sensors
is prone to errors and the sensors need to be encapsulated for
robust functioning. In addition, the electronics require a con-
tinuous power supply. This brings additional challenges that
require either the use of bulky batteries or the implementation
of wireless powering technology [32].

When adopting low-profile passive structures for highly
sensitive applications, the ultra-high quality factor feature of
active sensors needs to be retrieved. An important example
of high-end sensing application can be found in diabetic care.
Normal concentration of glucose in the human body ranges
between roughly 70 mg/dL up to around 110 mg/dL when
measured after overnight fasting. Higher than 140 mg/dL
at 2 hours after a meal is called hyperglycemia, a condi-
tion which may cause serious health complications including
blindness [9], [33], kidney disease [34], and cardiovascular
problems [1], [35]–[37]. Therefore, diabetic patients are
used to monitor their blood glucose level regularly with the
conventional method of pricking the finger for a blood drop
on a test strip of an electrochemical sensor. However, this
method is not convenient to be conducted regularly. Moreover,
a continuous monitoring scheme could facilitate prediction of
near-future trends to trigger preemptive remedial actions.

The concentration of glucose is too low to be determined
accurately across several skin layers (see Fig. 1). For this
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Fig. 1. Microwave sensing scheme combined with CycleGAN network towards improved confusion matrix.

reason, the use of a noninvasive sensor with high resolution is
desired, ideally implemented as a wearable device [2], [38],
[39].

While developing a high-resolution sensing device is de-
sirable in glucose sensing, recent developments of intelligent
systems in microwave engineering [40]–[45] inspires us to
adopt a machine learning-based algorithm in this work.

This novel system uses machine learning [46] to provide
high resolution response without using power-hungry and
error-prone active sensors. It is based on CycleGAN, a tech-
nique that learns mapping between two sets of data using
unpaired dataset [47], [48]. Applied to sensing, it captures
the characteristics of low-to-moderate quality factor profiles
from the passive response (passive domain) into meaningfully
equivalent high-resolution profiles (active domain), all without
the presence of paired training examples. While the passive
domain P and the active domain A are distributed identically,
there could be many mappings G : P 7→ A that will result
in the same distribution. This is resolved by cycle consistency
loss, which ensures that the mapping G is consistent with a
reverse mapping F : A 7→ P . Combination of this loss factor
with adversarial loss leads to the unpaired passive-to-active
mapping (see Fig. 1). We introduce an image representation
of the sensor response to exploit machine learning techniques
available in the image processing domain. This method re-
trieves the active sensor performance in the format of an
intelligent sensory system based on a passive sensor with an
improved accuracy.

II. SENSOR DESIGN

A. Coupled CSRRs

In this work, a planar microwave sensor is designed using
metamaterial-inspired inclusions, namely, complementary split
ring resonators (CSRRs). These structures are normally etched
out of the solid ground to leave a defected ground. Slots are
sized to be 0.5 mm thick, which is an achievable accuracy
through in-house etching process using ammonium persulfate.
The CSRRs have been designed with triangular shape to
achieve a high coupling with another similar resonator through
capacitive coupling. A pair of CSRRs are placed in 0.5 mm

distance from each other as shown in Fig. 2(a) connected to
the active circuit as given in Fig. 2(b). Hereafter, the two res-
onators lined this way are called coupled CSRRs (CCSRRs).
This arrangement is designed to increase the sensitivity of the
sensor when the coupled region between two parallel slots
is used to interrogate the surrounding material. This feature
is shown in Fig. 2(c) with two identical parallel resonators
(R, C, and L). These resonators are coupled to each other
using capacitive slots represented with equivalent J-inverter
configuration given in Fig. 2(c) with coupling capacitor Cm.
This coupling between two resonators results in separation of
the original resonances to new values as follows:

ω1 = 1/
√
L(C + Cm), ω2 = 1/

√
L(C − Cm) (1)

As a results, the two identically coupled resonators are
considered as a new system containing two non-coupled
resonators with two different frequencies (ω1, ω2), where the
modified resonances already contain the coupling information,
this allows them to be cascade in the following analysis. The
whole design is also coupled to the input/output transmission
lines through coupling capacitors CTL.

Another representation of the present network combines
two individual back-to-back resonators that are in series. The
transfer function representation of each resonator is given as
follows:

H1(s) =
K1

sω1

Q1

s2 + sω1

Q1
+ ω2

1

, H2(s) =
K2

sω2

Q2

s2 + sω2

Q2
+ ω2

2

, (2)

where K1 and K2 represent maximum individual transmission
amplitude, ω1 and ω2 are the resonance frequencies (s = jω),
and Q1 and Q2 are the loaded quality factor of each resonator.
Upon activating the amplifier of the circuit, the main contribut-
ing factors for resonator loss, also known as ohmic loss is
compensated. The amplifier in the feedback loop injects extra
power in the system in a constructive way, thereby increasing
the loaded quality factor. This system can be summarized as
follows:

Htotal =
Y (s)

X(s)
=

H1(s)H2(s)

1−AvH1(s)H2(s)
, (3)
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Fig. 2. (a) Schematic of the active CCSRR with corresponding circuit. All
dimensions are in [mm], (b) Equivalent circuit model of the passive circuit.

H1(s)H2(s) =
K1

sω1

Q1

s2 + sω1

Q1
+ ω2

1

×
K2

sω2

Q2

s2 + sω2

Q2
+ ω2

2

. (4)

where the two coupling capacitors CTL before and after the
amplifier Av are assumed to be included into the ampli-
fier transfer function as elaborated in 3 as these frequency-
independent elements act minimally as attenuators preceding
and following the amplifier.

It can be shown that if the two original frequencies are close
to each other (ω1 ≈ ω2):

H1(s)H2(s) = H1(s)

ω1
Q1

Q1

ω1
− Q2

ω2︸ ︷︷ ︸
B1

−H2(s)

ω2
Q2

Q1

ω1
− Q2

ω2︸ ︷︷ ︸
B2

, (5)

then (3) can be rearranged as:

Htotal =
B1H1(s)−B2H2(s)

1−AvB1H1(s)−AvB2H2(s)
. (6)

Fig. 3. Equivalent block diagram of the proposed sensor

Assuming that the resonators are identical, then (6) can be
simplified considering ω1 ≈ ω2, Q1 ≈ Q2, and K1 ≈ K2:

Htotal ≈
B1H1(s)−B2H2(s)

1− 2AvB1H1(s)
≈ B1H1(s)−B2H2(s)

1− 2AvB2H2(s)

=
B1H1(s)

1− 2AvB1H1(s)
− B2H2(s)

1− 2AvB1H1(s)
(7)

Each term in (7) can be simplified as follows:

B1H1(s)

1− 2AvB1H1(s)
=

B1K1

1−2AvB1K1
s ω1

Q1/(1−2AvB1)K1

s2 + s ω1

Q1/(1−2AvB1K1)
+ ω1

2
. (8)

This shows that the original resonators’ parameters, includ-
ing amplitude (K1 and K2) and loaded quality factor, be-
come amplified by the factor of ((1− 2AvB1K1)

−1) or
((1− 2AvB2K2)

−1) as follows:

K1 →
B1K1

1− 2AvB1K1
, Q1 →

Q1

1− 2AvB1K1
(9)

This amplification coefficient is controlled by the active circuit,
which is triggered using the bias voltage VC . The principle
of operation of the regenerative amplifier relies on two main
factors. First, the gain of the system denoted as Av , must be
high enough to compensate the transmission loss of the two
series blocks H1 and H2. Second, the phase of the signal
needs to incur a change of even multiples of 2π so that a
positive construction occurs when the present signal in the
loop joins the input signal. The signal’s phase undergoes a
negative sign within the amplifier. For the rest of the phase
modification, extra transmission lines are used that connect
the core passive resonator to the amplifier. The total length of
35 mm per CSRR, with the dimensions presented in Fig. 2(a),
results in dual resonances around 3.5 GHz. The frequency
of operation affects the depth of penetration into the free
space and sensitivity of the sensor differently. A relatively
high frequency is selected to gain more sensitivity [3], [4].
In addition, the size of the resonator is inversely linked to
the frequency of operation. Finally, the CSRR edges are
folded inwards, similar to the detailed development described
in [5], to reduce the overall sensor size and contribute to its
miniaturization.

B. Loss Compensation in CCSRRs

Microwave sensors need to have loaded quality factor suf-
ficent to overcome high power loss when exposed to external
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Fig. 4. Simulation results of the CSRR with loss compensation representation
in both amplitude and phase of resonance.

materials. This inherent challenge has been addressed using
various loss-compensating mechanisms, but only for single
resonators. However, the proposed system uses a different
type of resonator with intrinsic coupling mechanism. Loss-
compensation treatment of this CCSRR is implemented using
a regenerative amplifier design, as shown in Fig. 3. The input
power from port 1 is coupled to the CCSRR and then flows
on to the active circuitry through a transmission line. The
input power is amplified and phase modified before returning
back to the CCSRR for the second time. Once the returned
power circulates in the CCSRR, it is sampled through the
output transmission line. The phase of amplifier response is
controlled to assure constructive feedback in the resonating
system. This process also affects the transmission (S21) and
reflection (S11) parameters of the sensor. Although the coupled
design results in two adjacent resonances, only one resonance
is designed to meet the criteria for correct phase compensation.
The entire sensor is fabricated on Rogers RO3003 substrate
with dielectric properties of εr = 3.0 and tan(δ) = 0.0013.
A 0.8 mm substrate holds both the passive resonator design
on one side and the active circuitry on the other side. The
active circuit is composed of commercially available surface
mount electronic devices. Sensor performance with an external
loss compensation mechanism is presented in Fig. 4, where
both amplitude and phase responses are shown. The simulation
model includes a shunt negative resistance in series with a
variable phase element from both transmission lines (port
3 and port 4) exiting the CCSRRs to the ground. A fixed
phase value of 126° with a variable negative resistance results
in the sharpened transmission profiles shown in Fig. 4. The
resonance frequency of the sensor changes slightly; however,
the loaded quality factor increases significantly. In an initial
form of operation in active mode, where the negative resistance
is close to −100 Ω, the two resonances yield a very low-
resolution profile. The more compensation is applied to the
coupled resonators, the sharper the resonance becomes. For
this particular example, a typical sharp resonance can be
realized with a negative resistance of −200 Ω. The nature of

R

R

R

R

Ω

Ω

Ω

Ω

Fig. 5. Smith chart characterization with various loss compensation states.

the coupling between the two resonances causes that only one
of them is dominant. In this design, the resonance with lower
frequency is set to be dominant. Once the sensor is exposed
to a change in the environment, the entire resonance profile
shifts downwards. In addition, the resonance frequencies of
adjacent resonators are separated from each other as a result
of the sensor being exposed to an external material. [49],
[50]. Consequently, the net downshift for the lower resonance
is higher than that of the upper resonance. The reason for
selecting the lower resonance is the ability to exploit its larger
resonance dynamics in sensing. The process of loaded quality
factor enhancement can also be verified by monitoring the
phase information in Fig. 4. It can be seen that the phase
diagram for the lower resonance becomes sharper as the
negative resistance increases. The well-determined unloaded
quality factor Q0 for the sensor can be computed using the
following expression [51]:

Q0 =
f0(

f2 − f1
)√

1 +
(G0(f2−f1)

4

)2 , (10)

where f0 is the center frequency, characteristic frequencies
of f1 and f2 are frequencies where phase response has zero
slope (excluding frequency-dependent phase contribution from
the input/output transmission lines), and the gradient G0 is
the slope of phase at the center frequency. When the negative
resistance increases, the quantity (f2 − f1) reduces, and that
results in an increased loaded quality factor. In this simulated
example, the loaded quality factor rises from a nearly passive
structure (R = −100 Ω) of Q0 ≈ 15 up to highly compensated
version (R = −200 Ω) of Q0 ≈ 683. In cases where de-
embedding transmission lines’ effect becomes ambiguous an
alternative solution is to consider the maximum transmission
at resonance frequency f0 (max|S21| = S21 0) and the peak
width (∆f ) at a given level below S21 0 , that is evaluated at
S21 U as follows [52]:

|S21 U |2 =
S2
21 0

S2
21 0 − 2S21 0 + 2

(11)
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Fig. 6. Electric Field concentration (a) on the surface and (b) surrounding
the sensor in both passive (left) and active (right) states.

that result in Q0 = f0
∆f . Another interesting observation

of the sensor performance can be made by examining the
Smith chart shown in Fig. 5. The characteristics are obtained
from port 1 of the simulator for various values of negative
resistance. It is clear that the Smith chart represents better
matching for the curves located close to the central point (1,
0). This is achieved with partial loss compensation for the
case R = −132.5 Ω. However, even though the transmission
loss is fully compensated, the total loaded quality factor is
still not satisfactory. It needs further improvement, which
entails higher negative resistance values resulting in higher
values of Q. However, the reflection coefficient is also high,
resulting in the Smith chart circle to move away from the
central point. This high reflection, in some cases, may result in
damage to the measurement devices. Therefore an attenuator is
needed to quench the reflections in both pathways to the vector
network analyzer. In a commercial implementation, this could
be avoided with the inclusion of line couplers before both ports
1 and 2 of Fig. 3. It should also be noted that the resonance
profiles in Fig. 5 are shown with a different circulation of the
Smith circle that corresponds to either a pole (left resonance)
or a zero (right resonance).

The non-contact feature of the sensor enables it to interro-
gate the adjacent materials. The level of this interaction affects
the dynamic range of the material location with respect to the
sensor. This range is limited in the passive resonator design,
mainly due to the lost power as a path loss when the input
power is transmitted from the resonator to the material. In the
proposed design, this problem is ultimately addressed using a
custom active circuitry. It enables a wider range of operation,
especially when the material under test is distant due to poor
accessibility. Use of loss-compensation techniques provides
higher sensitivity to materials when they are located at a
distance with respect to the sensor. Illustration of the electric
field magnitude in Fig. 6 shows different ranges of propagation
on the surface (Fig. 6(a)), and in the surrounding space
(Fig. 6(b)), through a vertical cross section. It is evident that
the slots are highly heated in the diagram, indicating a good
potential for interaction with external materials. Moreover, the

Fig. 7. (a) Fabricated sensor from top(left) and bottom(right) view, (b) Sensing
deployment.

deeper extension of the electric field into the free space proves
the sensor’s capability in dealing with lossy environment and
materials.

III. MEASUREMENT AND DISCUSSION

The proposed sensor is fabricated on Rogers RO3003 sub-
strate as illustrated in Fig. 7(a) that shows the top and bottom
sections separately. The fabrication process includes printing
patterns on both the top and bottom sides of the substrate using
a laser printer and etching unmasked sections with ammonium
per-sulphate in water solution. In this specific design, special
care must be taken to consider the alignment of the two designs
on both sides of the substrate to establish a correct coupling
between the resonators and transmission lines of the active
circuit. This in-house etching method is followed by soldering
the surface mount devices on the substrate. In the following
step, the performance of the fabricated sensor is verified in
terms of working with external liquids. A µfluidic channel,
purchased from ChipShop [6], is taped on the sensor with an
embedded channel which is 150µm thick and 2.5 mm wide as
shown in Fig. 7(b). A small 175 µm lid separates the channel
from the surface of the sensor. PTFE tubing and fitting are
used to carry the injected fluid into and out of the µfluidic
channel. Input port of the sensor is connected to an attenuator
to remove the possible high reflections of the loss-compensated
sensor back to the network analyzer. All connections are
through phase-stabilized cables to preserve the sensitive phase
information. The measurement results are controlled with
various bias points through Vc, which essentially powers the
amplifier on at different states.

A. Sensor Calibration with Chemicals and Glucose

In this section, the sensor response is calibrated with respect
to the simulation results obtained by standard permittivity
values of the materials with the sensor in active mode. The
loss compensation of the sensor is achieved with a bias voltage
of VC = 1.8 V, wherein the left resonance (see Fig. 4(a)) is
dominantly compensated. Various common chemicals includ-
ing IPA, ethanol, methanol, and water are injected into the
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Fig. 8. Resonance frequency difference compared to air in simulation and
measurement and corresponding sensitivity for various common chemicals
inside µfluidic channel.

TABLE I
DIELECTRIC PROPERTIES OF COMMON CHEMICALS.

Chemical IPA Ethanol Methanol Water
Permitivity εr 4.13 6.8 20 76
Loss tangent tan(δ) 0.57 0.8 0.68 0.14

channel made of polymethyl methacrylate (PMMA) with 150
µm thickness that is separated from the sensor surface with a
175 µm lid. The measured resonance frequency shift from air
is shown in Fig. 8 for all samples. The sensitivity of the design
S = [f0 − fres]/[f0(εr − 1)], where fres is the the resonance
frequency because of the material with εr and f0 is that of
the bare resonance. In parallel, simulation of the proposed
design in Ansys HFSS is conducted on material permittivity
values at 3.5 GHz as given in Table I. The simulation results,
shown in Fig. 8, incorporate active circuit symbolized with
the equivalent negative resistance of R = −180 Ω and the
phase of 126°. The resonance frequency shifts increases as
a result of higher permittivity values, which demonstrates
high agreement between simulation and measurement relative
results. Inaccuracy of the sensor response can be evaluated
from the percentage difference between the simulated and
measured responses, which is capped at 0.02 % on average.
The benefit of using a coupling region between two resonators
is that the corresponding sensitivity drop at higher permittivity
values is not drastic. This feature enables the proposed sensor
to present a decent sensitivity up to 0.03 % as shown in
Fig. 8 considering a tiny sample volume of 4.5 µL inside
a µfluidic channel. Also, the dynamic range of the sensor
encompasses common permittivity range from 1 up to 80 that
corresponds to ∆f = 24 MHz frequency shift. In addition,
the dynamic range of the sensor can be extended by optimizing
this coupling, compared with a microwave sensor utilizing
only one resonator. In the next section, the interaction of the
proposed sensor with a lossy medium is discussed in greater
detail.

In addition to common chemicals, the proposed sensor
response is evaluated for various glucose concentrations in the
range of 50 up to 400 mg/dL with 50 mg/dL increments. These
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Fig. 9. Amplitude shift in simulation/measurement of the proposed sensor
with corresponding AccuCheck response with respect to different concentra-
tions of glucose in DI water [50: 50: 400] mg/dL.
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Fig. 10. Measured sensor transmission response in passive and active mode
of operation.

samples are individually prepared with dissolving glucose
powder in DI water as a baseline for sensor calibration.
The corresponding dielectric properties of glucose solutions
are imported into simulation model and the transmission
amplitude |S21| is analyzed as shown in Fig. 9. Measurements
are replicated for 3 times to obtain repeatable results with
inaccuracies of < 10 mdB. The accuracy of AccuCheck
glucometer is also verified on the prepared samples with the
results shown in Fig. 9 that represent < 10 % inaccuracy in
the glucose level. This measurement depicts the high accuracy
of the proposed sensor along with decent performance from
the commercial gauge.

B. Water in Ethanol Sensing

To evaluate the ability of the proposed sensor to deal with
minute changes in the environment (closer to the limit of
detection), various concentrations of water in ethanol were
prepared and tested with the sensor. A µfluidic channel was
mounted on the sensor to carry the solution, as shown in
Fig. 8(b). The binary solution is created using two syringe
pumps containing water and ethanol. The pumps are set to flow
at different speeds so that the water in the ethanol solution’s
concentration varies within the range of 1% up to 4%. This
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Fig. 11. Structure of CycleGAN. GA→P and GP→A denote active-to-
passive and passive-to-active generators.Discriminators of passive and active
domain are shown as DA and DP , respectively. Cycle consistency loss is
represented as Lcyc.

variation in the amount of water is smaller than the resolvable
range in the passive mode of operation as shown in Fig. 10(a).
A high-fidelity sensing response in bandpass filters, such as
the current work, considers a variation that causes the shifted
resonance profiles not to overlap within a 3-dB bandwidth
region.

The passive mode of operation leads to a confusing response
with the majority of the transmission profiles overlapping one
another. This makes it very difficult to discern the differences
between the individual profiles. To ensure a more robust
performance of the sensor, its loss-compensated response is
also measured with the same solutions of water in ethanol.
As shown in Fig. 10(b), the high loaded quality factor of the
active sensor results in a higher fidelity of its response. This
remarkably enhances the applicability of sensor for detecting
smaller quantities of materials.

The high fidelity of the sensor response is due to the
active circuitry and the delicate phase compensation. How-
ever, this approach also requires high power consumption at
higher frequencies and it hits high frequency-related tech-
nology bottlenecks for circuit design. In addition, scalability
of the active sensor for use in other platforms including
microwave, ultrasound, and optical, is burdensome. To cope
with these limitations associated with the use of active circuit,
in this work, we introduce a novel technique that expands
the applicability of the sensor in passive mode using machine
learning. The use of CycleGAN transformation enhances the
response of a regular sensor, enabling its use for sensitive
measurements and high-end applications. The principle of
operation of CycleGAN and its application to the measured
sensing data are described in the next section.

IV. ARCHITECTURE OF CYCLEGAN MODEL

Mapping between an input image and an output image
is a subset of image processing problems conventionally
performed using a collection of paired images that share
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Fig. 12. Developing heat map diagrams from S-parameter recordings. (a)
Magnitude and phase of S21, (b) Generated heat map diagram.

some common features. Recently, transfer of images from
one domain into another without much feature overlap has
become an interesting topic in machine learning [42], [53],
[54]. However, in many situations, there are not enough paired
images to uniquely define the mapping. In such cases, the
learning process can be supervised on the level of the whole
training by the CycleGAN algorithm.

In this work, CycleGAN is used to overcome the limitations
of passive sensors outlined in the previous section. Drawing on
the definitions common in image processing, the input/output
images refer to the representations of the sensor response in
the passive/active modes. CycleGAN algorithm is used to learn
the relationship between the responses in the two modes. It
captures the characteristics of active responses and applies
them to passive responses, all without the need of a paired
training set.

Conventionally, the low-Q factor of the passive resonance
profile is the main attribute preventing high-resolution sensing.
The proposed method transfers the low-Q profiles into the
equivalent high-Q profiles to facilitate sensing with high-
resolution. In this algorithm (see Fig. 11), a mapping GP 7→A

is trained to transform an image p from the passive domain
P into another image â in the active domain A. The new
image â = GP 7→A(p) is expected to be indistinguishable
from other images in the active domain a ∈ A. The model
includes two discriminators DA and DP such that DP distin-
guishes between the input image p and the translated image
p̂ = GA7→P (a), while DA discriminates between a and the
translated images â = GP 7→A(p). In order to use this scheme
on the sensor dataset, the recorded transmission profiles are
converted into images as follows. The main contributing factor
in the measurement of a two-port system is the transmission
parameter (S21), which is a complex-valued vector. A simple
plot of only amplitude of S21 or its phase over frequency
creates line graphs. However, one can combine these two
graphs as shown in Fig. 12 into a single plot by embedding
the values of magnitude as RGB colors in the plot of phase
vs. frequency. The generated heat map, called H21 hereafter,
is then considered an input image. This conversion results in
512 bins for each frequency and phase. The pixels can accept
a combination of three colors of red (R), green (G), and blue
(B). Therefore, a single measurement is reshaped into an image
with a data volume of size 512× 512× 3.
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Fig. 13. (a) The Architecture of generator and discriminator, (b) A workflow of data preparation to generate the active S21 profile from passive.

The proposed method uses CycleGAN to translate the pas-
sive domain P into the active domain A, where the distribution
of both are forced to be identical using adversarial loss [55].
Since this transformation model might result in many-to-one
mappings, consistency of the transformation cycle must be pre-
served to avoid this ambiguity. To achieve this, the translator
GP 7→A is accompanied with its inverse GA7→P that converts
the active domain into the passive one. This is implemented
by using the output of one generator as the input of the
other generator and combining the two mappings with a cycle
consistency loss [48] that reinforces GA7→P (GP 7→A(p)) ≈ p
and GP 7→A(GA7→P (a)) ≈ a. Therefore, the objective function
of CycleGAN is composed of adversarial loss as well as cycle
consistency loss. The adversarial loss represents the difference
between the real and estimated images, such that in generator
G and discriminator D, the cost function is defined as follows:

L(GA7→P , DP ) = min
θg

max
θd
{EP[logDP (h21P )]

+ EA[log(1−DP (GA7→P (h21A)))]}, (12)

where p and a are the unpaired training datasets, and EP

and EA are the expectations in the output and input images.
The discriminator DA and generator G(P 7→A) are trained
synchronously within a minmax game style with weights θg
and θd.

Input and output images of P and A are trained simultane-
ously, even though they are different representations. Thus,
cycle loss is used to encourage the consistency between
forward and backward training. Then, a secondary consistency
loss is defined as follows:

Lcyc(GA→P , GP→A) = ∥GP→A(GA→P )(h21A)− h21A∥1
+ ∥GA→P (GP→A)(h21P )− h21P ∥1 , (13)

where ∥·∥ is L1 loss and h21 denotes the heat map of the
measured transmission response. The overall loss function
of CycleGAN combines the two aforementioned losses as
follows:

L(GA→P , GP→A, DA, DP ) = L(GA→P , DP )

+ L(GP→A, DA) + λLcyc(GA→P , GP→A) (14)
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Algorithm 1 Minibatch stochastic gradient descent training of CycleGAN
Input: Minibatch H21 Heat Maps → H21Active ∈ A (source domain) and H21Passive ∈ P (target domain)
Output: Update network weights θg(A→P ), θg(P→A), θd(A), θd(P )

Initializing discriminator and generator weights.

1: for number of training iterations do
2: (Ĥ21Passive, H̃21Active)← (G(A→P )H21Active), (G(P→A)Ĥ21Passive)

3: (Ĥ21Active, H̃21Passive)← (G(P→A)H21Passive), (G(A→P )Ĥ21Active)
4: LD(A),(P )

= 1
m

∑m
i=1[logD(Hi

21−(A),(P )) + log(1−D(Hi
21−(A),(P )))] {Calculate DP , DA Loss}

5: θd(A),(P )
← θd(A),(P )

− η∇d(A),(P )
Lcyc {Update discriminator parameters}

6: Lcyc = λ1

∥∥∥H̃21Active −H21passive

∥∥∥
1
+ λ2

∥∥∥H̃21Passive −H21Active

∥∥∥
1

7: LG(A→P )
← 1

m

∑m
i=1(1− logDp(Ĥ

i
21passive)) + Lcyc {Calculate G(A→P ) Loss}

8: θg(A→P ) ← θg(A→P ) − η∇θg(A→P )
LG(A→P )

{Update G(A→P ) Parameters}
9: LG(P→A)

← 1
m

∑m
i=1(1− logDA(Ĥ

i
21active)) + Lcyc {Calculate G(P→A) Loss}

10: θg(P→A) ← θg(P→A) − η∇θg(P→A)
LG(P→A)

{Update G(P→A) Parameters}
11: end for

where λ is a hyperparameter to balance the loss terms, mean-
ing that the consistency loss is λ times more important than
the adversarial loss. In this case, the generators are trained to
produce fake images as close to real ones as possible; and the
discriminators are employed to distinguish more appropriately
between real and fake images. The training stops when the
discriminators reach close to 0.5 probability estimate for fake
image discrimination.

A. Implementation

The proposed CycleGAN network consists of a generator
and a discriminator in the source domain and another identical
pair in the target domain. The passive-to-active generator
network shares its characteristics with the active-to-passive
network; similarly, the active discriminator DA resembles to
the passive one DP . In the next sections, the generator and
discriminator of the design are elaborated.

1) Generator Structure: The generator (see Fig. 13) is
based on U-net [56] architecture; further inspired by U-
net++ [57], the encoder and decoder are linked through
a middle layer. This helps smoother integration of shal-
low and deep features. Normally-distributed weights in
each layer allow deeper model connections to be used
for complex scenarios. The structure of the generator
can be summarized as follows. Let us consider CK as
a 3 × 3 Convolution-BatchInstanceNormReLU layer (C)
with K filters and stride 1. M denotes Maxpooling
layer. DK denotes a 2 × 2 TransposedConvolutionalLayer-
BatchInstanceNormReLU layer with K filters and stride 2,
and 6 Concatenate blocks denoted as Concat.
C32, C32, M, C64, C64, M, C128, C128, M, C256, C256,
D128, Concat., C128, D128, Concat., C128, D64, Concat.,
C64, D64, Concat., C64, D32, C32, D32, Concat., C32, C3.

2) Discriminator Structure: In the discriminator, real- or
fake patches of the images are discriminated using Markovian
discriminator (PatchGAN) [58]. Compared with regular full-
sized image discriminators, this method uses less computa-
tional resources and is compatible with various image sizes. In
addition, the use of least squares loss increases the robustness

TABLE II
MSE, PSNR AND SSIM COMPARISON OF DIFFERENT ALGORITHMS.

REFERENCE: ACTIVE SENSOR RESPONSE.
Methods MSE PSNR SSIM
pix2pix 0.02 17.7194 0.4871
Conventional CycleGAN 0.0049 23.0437 0.7865
This work 0.00146 28.34 0.9167

of its operation. Layers of the discriminator include filters
with sizes of 64, 128, 256, and 512. The first four layers
have a kernel size of 4×4 with LeakyRelu activation function
(to introduce a small positive gradient when a neuron is not
active), followed by the last layer with a sigmoid function.
The discriminator architecture is:
C64, C128, C256, C512.

3) Training: The heat map images (512×512) are resized
to (256×256) to be computationally efficient in the training
process. Reshaped images are fed to the conventional UNet++
except for the batch normalization layer that is simply replaced
with batch-instance normalization (BIN) [59] to normalize
the styles adaptively to the task and selectively to individual
feature maps. Using BIN, the amount of style information
that needs to be propagated through each channel of features
is controllable by a learnable gating parameter. To make the
model more general and benefit from both batch normalization
(BN) in multiclass classification and instance normalization
(IN) in style transfer networks, IN and BN are substituted
by BIN. The networks are trained using stochastic gradient
descent (SGD) with a batch size of 32, momentum of 0.9,
weight decay of 0.0001, and initial learning rate of 0.1. The
network is trained for 150 epochs, where the learning rate is
divided by 10 at epochs 50 and 100. The entire procedure is
formally presented in Algorithm 1.

B. High-resolution Sensor Response Using CycleGAN

In this section, the measured sensor response to water in
ethanol solution is reevaluated with the CycleGAN network
applied to the measured heat maps. Four solutions with 1%,
2%, 3%, and 4% water in ethanol are measured using the
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Fig. 14. (a) Equivalent heat maps for one sample of 1%, 2%, 3%, and 4% water in ethanol using the sensor in passive mode (top row), active mode (middle
row), and passive mode aided with CycleGAN (bottom row), (b) Measured sensor response for one sample of 1%, 2%, 3%, and 4% water in ethanol passive
mode (left), active mode(middle), and CycleGAN-boosted passive mode (right)

proposed sensor in both passive and active operating regime.
The prepared solutions are passed through the µfluidic channel
and the sensor responses are recorded using LabView with 5-
second time resolution. The solution is passed through the
channel to obtain a total of 200 sample measurements per
recording before the syringe is emptied out. This process
is repeated five times to acquire enough data for training
purposes. Each recorded sample is then converted into its
equivalent heat map (H21) which combines the information
on the amplitude and phase of resonance. Plots in the top
and middle rows of Fig. 14(a) show the heat maps obtained
using the passive and active mode, respectively. Corresponding
profiles obtained using CycleGAN trained for 150 epochs are
shown in the bottom row of the figure. The output of this
transformation is a new heat map trained to be similar to the
heat map obtained from the active sensor data.

A magnitude-and-phase representation of the four measured
solutions is shown in Fig. 14(b), including the passive -domain
measurements as well as the active-domain representation used
as the target for CycleGAN training. The outputs obtained
by mapping the passive-domain representations through the
trained network are also included. The general shape of the
high-resolution profiles clearly visible in the output response
of CycleGAN, although there are some nuances in the absolute
values of the S21 magnitude at the resonance frequency. The
high-resolution response of the sensor using CycleGAN has a
loaded quality factor of QCycleGAN ≈ 5040, which exhibits
resolution more than 20 times higher than that of passive
domain QPassive ≈ 230. The frequency dependent resolution
of the sensor in active mode reduces down to ≈ 100 kHz
from ≈ 1 MHz of passive case. The similarity between
CycleGAN-boosted response and the active sensor response is
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Fig. 15. (a) Fingertip measurement Setup, Clarke error grid analysis for
(b) Passive, (c) Active , (d) CycleGAN-boosted passive states of the sensor
response.

evaluated in Table II in terms of several common metrics [60],
[61]. The approach introduced in this contribution is compared
to pix2pix cGAN [62] and to conventional CycleGAN [48].
The proposed network outperforms both algorithms with high
SSIM of 0.9167 and low MSE of 0.00146. This is mainly due
to replacing the ResNet (9 residual block for 256×256 gener-
ator) of conventional CycleGAN [48] with UNet++ [57] and
also substituting instance normalization with batch-instance
normalization [59]. BIN allows replacing Adam optimizer with
SGD, which results in better performance of the network.

C. Glucose Sensing

In another experiment to evaluate the proposed approach,
the CycleGAN-enhanced sensor is employed in an noninvasive
glucose sensing application [1]. The glucose content increases
in the blood as a result of food intake. It gradually drops over
time while being absorbed by the cells. This fluctuation in the
blood glucose level becomes apparent in the interstitial fluid
under the skin with minutes of delay. This leaves a reliable
trace of the actual glucose level deep inside veins. Non-contact
sensing has already shown robustness in glucose sensing using
active regime with high sensitivity and reasonable fidelity.
This has been achieved using sophisticated active circuitry,
which requires constant powering for continuous operation.
An alternative solution can be developed using the approach
proposed in this article: the passive sensor response can be
boosted using CycleGAN. This alternative preserves the high-
Q performance normally offered by the active circuit design,
while using zero-power sensors.

The performance of CycleGAN-boosted glucose sensor was
evaluated using the following experiment. A participant, not
suffering from diabetes, underwent continuous monitoring of
their glucose level. The sensing was noninvasive, implemented

Fig. 16. (a) Simulated SAR on hand when finger is placed on the sensor, (b)
Simulated SAR across frequency for active and passive states of the sensor.

by placing the subject’s index finger on the sensitive region of
the sensor as shown in Fig. 15(a). Since the glucose content
of the interstitial fluid changes the dielectric constant of the
skin, the participant’s right finger was placed in the close
proximity of the sensor surface. While the participant was
asked to minimize their movement during the experiment, the
transmission profile of the sensor was measured continuously.
During this process, 500 data points were recorded with 20-
second resolution and the participant was fed at different times
to control the glucose level.

An Accu-Check commercial glucometer was used to mea-
sure the blood glucose on the left hand finger of the participant
every 5-minutes. The collected measurements serve as a refer-
ence for calibrating the sensor response. Using this technique,
the resonance frequency and amplitude are correlated to the
change in blood glucose level. Passive sensor response, due
to its low-to-moderate loaded quality factor, is more prone
to environmental amplitude noise. Considering this concept,
measurements of the sensor response in both passive and
active regime (performed separately) are analyzed to extract
the resonance frequency. For the passive resonance profile, its
heat map is generated and fed into CycleGAN to obtain high-
loaded quality factor equivalent heat maps. Subsequently, the
resonance profile S21 is extracted from the corresponding heat
maps. The resonance frequency is the most importance feature
of the CycleGAN-generated heat map from CycleGAN as it
must exactly correspond to the original frequency of operation.
To ensure this correspondence, the cycle consistency loss is
used to preserve the resonance frequency.

The accuracy of the proposed sensor in detecting glucose
levels is evaluated using Clarke error grid analysis (EGA) [63].
The results of this analysis, performed on 500 recordings of
the interstitial glucose level, are illustrated in Fig. 15. The
horizontal axis represents the reference glucose level obtained
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from the commercial glucometer, while the vertical axis shows
the level inferred using the proposed approach.

For the passive sensor response (see Fig. 15(b)), 96.2% of
paired sensor reference values fall into region A, which holds
20% of the reference values. Region B, which has next 20% of
reference values in a form acceptable for treatment, contains
3.19% of pairs. In this evaluation, regions C and E do not
contain any paired data. However, 0.59% of the data pairs fall
in region D, which indicates potentially dangerous failure to
detect low or high levels of glucose. The apparently scattered
data points of the passive sensor Clarke EGA confirm that
the low-resolution output can lead to unreliable detection of
resonance frequency. This observation is further supported by
relatively large values of root of mean squared error (RMSE)
of 11.31, mean relative absolute deviation (mRAD) of 7.08,
and mean absolute error (MAE) of 9.09.

For comparison, the same sensor was used in active mode
of operation in the following day. The experimental set-
ting including the measurement time, duration, fasting mode,
food intake pattern, and the participant remained identical to
the passive mode measurement conditions to avoid endoge-
nous/exogenous masking effects. Since this measurement were
conducted in a different session, the results do not correspond
to the passive sensor measurements directly. However, they
can be used to compare the general precision between the
two sensor state operating modes. With loss compensation
in the circuit, the prediction of glucose level became more
precise with much less noise infused into the sensor response.
The resonance frequency of each profile was extracted in
correspondence to each reference glucose level as shown in
Fig. 15(b) and Clarke EGA was also applied to this data. It is
shown that the spread of the predicted values is confined within
a limited area, closer to the diagonal line. The compositional
analysis of these measurement shows that all 100% datapoints
are located in the zone A. The errors measures also attain much
lower values of RMSE = 3.53, mRAD = 2.22, and MAE =
2.85.

Considering the improvements obtained using the active
sensor data, the result of the passive sensor were also analyzed
after CycleGAN transformation. As shown in Fig. 15(c), the
spread of datapoints of Clarke EGA is significantly reduced
compared to that of datapoints obtained using passive sensor
directly and all datapoints fall into zone A. The values of error
metrics are also in line with active sensor response, i.e. RMSE
= 4.013, mRAD = 3.14, and MAE = 3.17. The considerable
improvement between the passive sensor response and the
CycleGAN-boosted response confirms the high potential of the
proposed technique as a general method for improving sens-
ing performance. This approach is not limited to microwave
sensors but could be extended to various other applications.

The electromagnetic wave absorption of the proposed sensor
when being applied to human skin is also simulated in full-
wave simulator HFSS. While the skin is being monitored
continuously, the specific absorption ratio (SAR) is computed
at the frequency of operation and averaged over 10g of tissue
that is considered with the average human hand model as
shown in Fig. 16(a). Maximum SAR values at different cross-
sections of the finger tip is shown in both passive (R=-0.1

kΩ) and active states (R=-0.2 kΩ) of the sensor according to
Fig. 16. The maximum SAR values across all hand volume
over a wide range of frequencies is also shown in Fig. 16(b),
which depicts a fair margin for SAR values (max(SAR)<1
W/kg) compared with the safety threshold of 10 W/kg. This
reassures safe range of applications for clinical trials and
wearable applications.

V. CONCLUSION

In this work, we introduce a CycleGAN-boosting algorithm
as a learnable technique to improve the sensing performance of
low-quality resonance-based sensor response. In particular, an
ultra-high sensitive microwave sensor that leverages a coupled
CSRR design is used as a core of a loss-compensated active
sensor to work at ≈ 3.5 GHz. The mutual coupling between
the resonators provides a region with strongly enhanced sensi-
tivity. The sensor performance in the loss-compensated mode
is significantly improved, with ≈ 10-fold increase of the
loaded quality factor compared to the passive mode response.
However, to avoid the complexity of circuit design and the
need for constant powering, a novel method is introduced
that involves a learning network called CycleGAN. It maps
the measured passive mode S21 response of the sensor to
an equivalent active mode response while increasing the S21

loaded quality factor. It is shown that while low concentration
of water in the mixture of water in ethanol results in intermin-
gled transmission profiles, applying CycleGAN on the passive
mode sensor response not only improves their loaded quality
factor by an order of magnitude, but also helps differentiate
them with higher resolution. Following the same procedure for
noninvasive glucose detection, the CycleGAN-boosted sensor
response results in very low measurement errors, as confirmed
by Clarke error grid analysis. This technique is potentially
applicable to a wide range of applications, where high-end
sensing can be conducted with low-profile sensors amended
with machine learning methods.
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