
Why Not Use a Pattern-based Parallel

Programming System?

John Anvik, Jonathan Schaeffer, Duane Szafron, and Kai Tan

University of Alberta

Abstract. Parallel programming is seen as an effective technique to
improve the performance of computationally-intensive programs. This
is done at the cost of increasing the complexity of the program, since
new issues must be addressed for a concurrent application. Parallel pro-
gramming environments provide a way for users to reap the benefits
of concurrent programming while reducing the effort required to create
them. The CO2P3S parallel programming system is one such tool which
uses a pattern-based approach to create a parallel program.
Using the Cowichan Problems, this paper demonstrates that the CO2P3S
system contains a sufficient number of parallel patterns to implement a
wide variety of applications. This characteristic is called the utility of
a system. Code metrics and performance results are presented for the
various applications to show the usability of the CO2P3S system and
its ability to reduce programming effort, while producing programs with
reasonable performance. Finally, the extensibility of CO2P3S is illustrated
by describing how a new pattern, called the Search-Tree pattern, was
added to CO2P3S in order to solve two of the Cowichan Problems.

1 Introduction

In many fields of research there exist problems which simply take too long to
solve using a single processor. Only by dividing the problem into separately
computable components and using multiple processors can these problems be
solved in a reasonable time frame.

However, doing so is not without cost. Adding parallelism adds new concerns
to the application, such as synchronization and communication between the
processors. This leads to either an increased complexity of the algorithm, or the
use of a completely different algorithm. It also makes the debugging of programs
more difficult as non-determinism is now introduced. The writing of parallel
programs is known to be a complex and error-prone task, even for experts in the
field.

The state of the art in parallel programming tools is represented by OpenMP
for shared-memory programs and MPI for distributed-memory programming.
These are low-level models in that the user must explicitly represent the paral-
lelism in the code. The user is required to adapt or restructure their application
to accommodate the concurrency. In the case of MPI, this can translate into
hundreds or more additional lines of potentially error-prone code.



However, there is hope. In sequential programming there exist strategies
which may be used across many problems. These strategies are called design

patterns [6] and they encapsulate the knowledge of solutions for a class of prob-
lems. To solve a problem using a design pattern, an appropriate pattern is chosen
and adapted to the particular problem. By referring to a problem by the par-
ticular strategy that may be used to solve it, a deeper understanding of the
solution to the problem is immediately conveyed and certain design decisions
are implicitly made.

Just as there are sequential design patterns, there exist parallel design pat-

terns which capture the synchronization and communication structure for a
particular parallel solution. The notion of these commonly-occurring parallel
structures has been well-known for decades in such forms as skeletons [5, 7], or
templates [10]. Examples of common parallel design patterns are the fork/join
model, pipelines, meshes, and work piles.

Although there have been many attempts to build pattern-based high-level
parallel programing tools, few have gained acceptance by even a small user com-
munity. The idea of having a tool that can take a selected parallel structure and
automatically generate correct structural code is quite appealing. Typically, the
user would only fill in application-dependent sequential routines to complete the
application. Unfortunately these tools have not made their way into practice for
a number of reasons:

1. Performance. Generic patterns produce generic code that is inefficient and
suffers from loss of performance.

2. Utility. The set of patterns in a given tool is quite limited, and if the ap-
plication does not match the provided patterns, then the tool is effectively
useless. Further, a tool may only be suitable for a single type of parallel
architecture.

3. Extensibility. High-level tools contain a fixed set of patterns and the tool
cannot be extended to include more.

The CO2P3S parallel programming system uses design patterns to ease the
effort required to write parallel programs. The system addresses the limitations
of previous high-level parallel programming tools in the following ways:

1. Performance. CO2P3S uses adaptive generative parallel design patterns. An
adaptive generative design pattern is an augmented design pattern which is
parameterized so that it can be readily adapted for an application, and used
to generate a parallel framework tailored for the application. In this manner
the performance degradation of generic frameworks is eliminated.

2. Utility. CO2P3S provides a rich set of parallel design patterns, including
support for both shared and distributed memory environments.

3. Extensibility. MetaCO2P3S is a tool used for rapidly creating and editing
CO2P3S patterns. CO2P3S currently supports 15 parallel and sequential
design patterns, with more patterns under development.



This paper focuses on the utility aspect of CO2P3S. The performance aspect
of using CO2P3S has already been presented [4]. The intent of this paper is to
show that the use of a high-level pattern-based parallel programming tool is not
only possible, but more importantly, it is practical. The CO2P3S system can
be used to quickly generate code for a diverse set of applications with widely
different parallel structures. This can be done with minimum effort, where effort
is measured by the number of additional lines of code written by the CO2P3S
user. The Cowichan Problems are used to demonstrate this utility by showing
the breadth of applications which can be written using the tool. Furthermore,
it is shown that the a shared-memory application can be recompiled to run in a
distributed memory environment with no changes to the code.

First, a description of the CO2P3S system is given in Section 2. The results
of using the system to implement solutions to the Cowichan Problems are then
presented in Section 3. Section 4 illustrates the extensibility of CO2P3S by de-
scribing a new pattern, the Search-Tree pattern, that was necessary in order to
solve two of the Cowichan problems. The use of CO2P3S is illustrated by show-
ing how this pattern was used to implement an IDA* search application. Finally,
some concluding remarks are made in Section 5.

2 The CO2P3S Parallel Programming System

The CO2P3S
1 parallel programming system is a tool for implementing parallel

programs in Java [8]. CO2P3S generates parallel programs through the use of
pattern templates. A pattern template is an intermediary form between a pat-
tern and a framework, and represents a parameterized family of design solutions.
Members of the solution family are selected based upon the values of the pa-
rameters for the particular pattern template. This is where CO2P3S differs from
other pattern-based parallel programming tools. Instead of generating an appli-
cation framework which has been generalized to the point of being inefficient,
CO2P3S produces a framework which accounts for application-specific details
through parameterization of its patterns.

The pattern parameters in CO2P3S can be divided into four types of param-
eters: lexical, design, performance, and verification parameters. Lexical param-

eters are various class and method names in the pattern framework which are
provided by the user. Design parameters are pattern parameters which affect the
overall parallel structure of the generated framework. Performance parameters

introduce optimizations that may improve performance by changing the internal
framework code. However these changes are not visible to the user. Verification

parameters allow for the inclusion of pieces of code in the framework to ensure
its proper use and find errors in user code.

A framework generated by CO2P3S provides the communication and syn-
chronization for the parallel application, and the user provides the application-
specific sequential code. These code portions are added through the use of se-

1 Correct Object-Oriented Pattern-based Parallel Programming System, pronounced
‘cops’.



quential hook methods in the framework code. This abstraction of parallelism
from the application-specific portions, maintains the correctness of the parallel
application since the user cannot change the code which implements the paral-
lelism at the pattern level. However, due to the layered model of CO2P3S [8],
the user has access to lower abstraction layers when necessary in order to tune
the application.

Extensibility of a programming system supports increased utility. CO2P3S
improves its utility by allowing new pattern templates to be added to the system
using the MetaCO2P3S [3] tool. Pattern templates added through MetaCO2P3S
are indistinguishable in form and function from those already contained in
CO2P3S. This allows CO2P3S to adapt to the needs of the user; if CO2P3S
lacks the necessary pattern for a problem then MetaCO2P3S supports its rapid
addition to CO2P3S.

The descriptions of pattern templates generated by MetaCO2P3S are stored
in system-independent XML2 format. This ensures that the patterns generated
by MetaCO2P3S can be used not only by the CO2P3S system itself, but also
by any template-based programming tool which uses XML. The creation of a
system-independent pattern repository can enhance the the utility of all systems
that can use this format since more patterns can be developed and distributed.

The first step in testing the utility of the CO2P3S system was to select a
suitable set of problems to use. The Cowichan Problems were chosen as a non-
trivial set of problems. When the problems were analyzed, it became evident that
CO2P3S lacked the necessary patterns to implement four of these problems.
For another high-level programming system the experiment would have been
over. However, using MetaCO2P3S, we were able to extend CO2P3S to fit our
requirements through the addition of two new patterns: the Wavefront pattern
[1, 2] and the Search-Tree pattern.

3 Using CO2P3S to Implement the Cowichan Problems

Test suites such as SPEC and SPLASH for assessing system performance, abound
in the computing world. In contrast, the number of test suites which address the
utility or usability of a system are few. For parallel programming systems, we
know of only one non-trivial set: the Cowichan Problems [12]. The Cowichan
Problems are a suite of seven problems specifically designed to test the breadth
and ease of use of a parallel programming tool, as opposed to testing the per-
formance of the programs that can be developed using the tool [13]. The goal of
these problems is to provide a standard set of ‘non-trivial’ medium-size problems
by which different parallel programming systems may be compared.

The problems are designed to test different aspects of a parallel program-
ming system. The problems are from a wide selection of application domains
and parallel programming idioms, covering a range from numerical to symbolic
applications, from data-parallelism to control-parallelism, from coarse-grained

2 Extensible Markup Language.



to fine-grained parallelism, and from local to global to irregular communica-
tion. The problems also address important issues in parallel applications such as
load-balancing, distributed termination, non-determinism, and search overhead.
Descriptions of each of these problems can be found in [12].

For our work, one modification was made to the original problem set. The
Cowichan Problems contain a single-agent search problem, the Active Chart
Parsing Problem. The problem involves generating all possible derivations of
a sentence based on an ambiguous grammar. Unfortunately, finding grammars
and sentences sufficiently large to produce programs which run for more than
a few seconds on current processors is difficult. Therefore, a different single-
agent search (IDA*), which was more representative of this class of problems
was selected.

All of the Cowichan Problems have been implemented using CO2P3S. Specifics
of how the patterns were used to implement the problems may be found in [2].
Presented here is an overview of each of the patterns used to solve the problems.
Table 1 provides a summary of which CO2P3S pattern was used to solve each of
the Cowichan Problems. Tables 2 and 3 provide code metrics and performance
results for each solution that was created using CO2P3S.

3.1 The Search-Tree Pattern

The Search-Tree pattern is used to parallelize tree search algorithms, such as
those used in optimization and heuristic search. The nodes of the tree repre-
sent states (e.g. a game board configuration) and the arcs represent movement
between states (e.g. a player’s move). The Search-Tree pattern uses the divide-
and-conquer technique for searching a tree in which the children of tree nodes
are generated up to a certain depth in the tree (divide) and the remaining nodes
are processed sequentially by the processor (conquer).

3.2 The Wavefront Pattern

The Wavefront pattern [1, 2] is applicable to applications where the data depen-
dencies between work items can be expressed as a directed acyclic graph (DAG).
The wavefront denotes the partition between nodes of the graph that have been
computed and nodes that can now be computed because their dependency re-
quirement has been satisfied. While a wavefront may occur in arbitrary DAGs,
the Wavefront pattern restricts the set of dependency graphs to those which
occur in a matrix. Parallelism in the Wavefront pattern results from elements
on the wavefront being data independent of each other, otherwise the elements
could not occur on the wavefront. CO2P3S contains versions of the Wavefront
pattern for both shared-memory [2] and distributed memory architectures [11].

3.3 The Mesh Pattern

The Mesh pattern [8] is used for computing elements of a regular, rectangular
two-dimensional data set where each element is dependent on its surrounding



values and changed over time. In other words, it is used for applications where
the elements are evenly spread over a two-dimensional surface and computation
of an element is dependent on values from either the cardinal points or from all
eight directions, and each element must be recomputed many times. This class
of application includes programs for weather prediction and particle simulation.

The parallelization of an application which uses a mesh is accomplished by
spatially decomposing the mesh into partitions and performing one iteration
in parallel on all the partitions. Boundary values are then exchanged between
partitions and another iteration is done. This continues until a local stopping
condition is satisfied for all elements.

As with the Wavefront pattern, CO2P3S contains both shared-memory [8]
and distributed memory implementations of the Mesh pattern [11].

3.4 The Pipeline Pattern

Pipelines provide a simple way of improving the performance of a task by sep-
arating a task into stages, each of which can be done in parallel. Abstractly,
a pipeline can be regarded as a sequence of stages wherein the stages have a
specific ordering between them so that the results of one stage forms the input
for one or more of the following stages. Each stage of the pipeline can be viewed
as having an object in a certain state, and transition between pipeline stages is
simply a change of state for the object [8].

Traditionally, pipelines are parallelized by assigning one or more threads to
each stage of the pipeline. However, this can lead to load imbalances as some
stages may require more computation and these particular stages may vary dur-
ing a run of the application. The Pipeline pattern [8] in CO2P3S resolves this
problem by taking a work-pile approach to the computation of pipeline stages.
Each stage of the pipeline can be viewed as having a buffer of items to be pro-
cessed in that stage. Since the processing of an item in the pipeline may be
viewed as a transformation from one state to another, in a work-pile approach
threads search the buffers for work, transform items to their next state, and
place them into the next buffer if further processing is required. In this way the
load is balanced across the pipeline.

Algorithm Application Pattern

IDA* search Fifteen Puzzle Search-Tree

Alpha-Beta search Kece Search-Tree

LU-Decomposition Skyline Matrix Solver Wavefront

Dynamic Programming Matrix Product Chain Wavefront

Polygon Intersection Map Overlay Pipeline

Image Thinning Graphics Mesh

Gauss-Seidel/Jacobi Reaction/Diffusion Mesh
Table 1. Patterns used to solve the Cowichan Problems.



3.5 The Effects of Using CO2P3S

The results of using CO2P3S to implement solutions to the Cowichan Problems
are presented here. The results take on two forms: code metrics to show the
effort required by a user to take a sequential program and convert it into a
parallel program, and performance results. Together, these results show that with
minimal effort on the part of the user, reasonable speedups can be achieved. The
speedups are not necessarily the best that can be achieved, since the applications
could be further tuned to improve performance using the CO2P3S layered model
[8].

The results are presented in two tables. Table 2 shows the code metrics from
the various implementations and contains the sizes of the sequential and parallel
programs, how much of the parallel code was generated by CO2P3S, how much
code was reused from the sequential application, and how much new sequential
code the user was required to write. Table 3 provides performance results for
various sets of processors.

Table 2 shows that a sequential program can be adapted to a shared memory
parallel program with little additional effort on the part of the user. The time
required to move from a sequential implementation to a parallel implementation
took in the range of a few hours to a few days in each case. The additional code
that the user was required to write was typically changes to the sequential driver
program to use the parallel framework, and/or changes necessary due to the use
of the sequential hook methods. The extreme case of this is for the Map Overly
problem where there was a fundamental change in paradigm between the two
implementations. In order to use the Pipeline pattern, the user is required to
create classes for various stages of the pipeline. Each of these classes is required
to contain a specific hook method for performing the computation of that stage,
and for transforming the current object to the object representing the next stage.
As this was not necessary in the sequential application, the user was required to
write more code in order to use the Pipeline pattern. For all the other patterns,
the user only had to fill in the hook methods for a generated class.

The performance results presented in Table 3 are for a shared-memory archi-
tecture. The machine used to run the applications was an SGI Origin 2000 with
46 MIPS R100 195 MHz processors and 11.75 gigabytes of memory. A native
threaded Java implementation from SGI (Java 1.3.1) was used with optimiza-
tions and JIT turned on, and the virtual machine was started with 1 GB of heap
space.

Table 3 shows that the use of the patterns can produce programs that have
reasonable scalability. Again, these figures are not the best that can be achieved,
since only the pattern layer of CO2P3S was used. All of these programs could
be furthered tuned to improve the performance. While most of the programs
do show reasonable scalability, the two that do not, Kece and Map Overlay,
are the result of application-specific factors and not a consequence of the use
of the specific pattern. In the case of Kece, the number of siblings processed in
parallel during the depth-first search was found to never exceeded 20. For the
Map Overlay problem, the problem was only run using up to 8 processors, as



Application Sequential Parallel Generated Reused New

Fifteen Puzzle 125 308 123 122 47

Kece 375 539 135 362 42

Skyline Matrix Solver 196 390 224 144 22

Matrix Product Chain 68 296 223 60 13

Map Overlay 85 455 235 60 160

Image Thinning 221 529 350 170 9

Reaction/Diffusion 263 434 205 177 52
Table 2. Code metrics for the shared-memory implementations of solutions to the
Cowichan Problems.

Application 2 4 8 16

Fifteen Puzzle 1.74 3.56 6.70 10.60

Kece 1.93 3.42 4.83 5.80

Skyline Matrix Solver 1.93 3.89 7.84 14.86

Matrix Product Chain 1.81 3.64 7.80 13.37

Map Overlay 1.56 3.11 4.67 -

Image Thinning 1.88 3.53 6.39 10.43

Reaction/Diffusion 1.75 3.13 4.92 6.50
Table 3. Speedups for the shared-memory implementations of solutions to the
Cowichan Problems.

the application ran for 5 seconds using 8 processors for the largest dataset size
that the JVM3 could support.

Table 4 shows the code metrics for using CO2P3S to generate distributed
memory code. As the distributed implementations of the Pipeline and Search-
Tree patterns are not yet complete, only a subset of the problems are shown. A
key point is that although CO2P3S generates very different frameworks for the
shared and distributed memory environments, the code that the user provides
is almost identical. There are only two small differences.

The first difference is that the method signatures of the generated hook
methods for the distributed environment may contain a throws clause. For ex-
ample, in the skyline matrix solver application, the signature of one of the
hook methods for the shared memory environment is operateLeft(. . .). In
the distributed memory environment, the signature becomes operateLeft(. . .)
throws java.rmi.RemoteException. In the second case, if an exception occurs
due to a node failure, the framework code catches the exception and displays
an error. Note that user fills in exactly the same code for the hook methods
in both cases. Therefore, no user code changes are required to move from one
environment to the other.

The second difference is that in the distributed memory environment, the user
must use a try-catch statement to enclose the constructor of the object that initi-
ates the parallel computation. Figure 1 shows an example of the shared-memory

3 Java Virtual Machine



Application Sequential Parallel Generated Reused New

Skyline Matrix Solver 196 1929 1760 144 25

Matrix Product Chain 68 1534 1458 60 16

Image Thinning 221 2138 1968 170 12

Reaction/Diffusion 263 1476 1304 177 55
Table 4. Code metrics for the distributed-memory implementations of solutions to the
Cowichan Problems.

and distributed-memory versions of this statement for the skyline matrix solver
application. It is impossible to absorb this difference into the generated frame-
work code since the user can write code that initiates a parallel pattern from
anywhere in their application code. The important point is that a user can switch
between shared and distributed memory implementations by one trivial change
in their application code. We are unaware of any other high-level parallel pro-
gramming system that supports both shared memory and distributed memory
environments in such a transparent manner. Since work on the distributed mem-
ory patterns is ongoing, no performance results are shown in this paper. However,
we have generated working distributed-memory versions of the Wavefront and
Mesh applications from the Cowichan Problems.

4 The Search-Tree Pattern

Two new patterns were added to CO2P3S to solve the Cowichan Problems. The
Wavefront pattern has been described in [1]. The Search-Tree pattern was also
added to CO2P3S to solve two of the Cowichan Problems. Using the MetaCO2P3S
tool, the CO2P3S system was extended to support this new pattern. Once the
pattern had been designed, adding it to CO2P3S took approximately nine hours.
This demonstrates the extensibility of CO2P3S, which contributes to the system’s
utility.

4.1 Pattern Parameters

The single lexical parameter for the Search-Tree pattern is the name of the class
which represents a node in the tree. This class will contain the hook methods
which are implemented by the pattern user.

This pattern has a single design parameter, the traversal technique. The tree
can be searched in either a breadth-first or a depth-first manner. If the tree is
searched breadth-first then all nodes to a certain depth are expanded in parallel
and the remaining children are then searched in parallel. If the tree is searched
depth-first then all nodes on the left side of the tree are expanded to a certain
depth and the left child at the specified depth is searched sequentially. Once a
left child completes its computation, the sibling nodes are processed in parallel.
Figure 2 shows the order in which nodes are processed for both breadth-first and
depth-first parallel searches. Another possible traversal is best-first. However we



add parameters and parameter values to CO2P3S on a need-only basis and we
do not yet have an application that needs this traversal. We take this approach
to prevent the generation of an overly general framework or the unnecessary
explosion of parameter combinations.

The Search-Tree pattern has one performance parameter, early termination.
This parameter allows for the termination of the search to occur before all nodes
have been searched, such as when an application wants to terminate after finding
one solution as opposed to all solutions.

The Search-Tree pattern introduced a new parameter type to the CO2P3S
system called a verification parameter. In the Search-Tree pattern, the verifi-
cation parameter verifies that the user’s done() method is valid. The done()

method is a hook method in which the user indicates when a node has completed
its computation. If the user states that a node is still waiting for the completion
of its children, but the framework can detect that in fact all children have fin-
ished, then this indicates a fault in the user’s code and an exception is thrown.
This does not prevent the user from specifying the done() method to allow a
sub-tree traversal to halt before all of the node’s children have been processed.
It simply prevents the waiting for more child nodes to be processed when they
have all been processed.

4.2 Pattern Hook Methods

The parallel pattern framework generated by CO2P3S for the Search-Tree pat-
tern contains five hook methods into which the user inserts their sequential code.
Depending on the parameter settings, two additional framework methods may
be generated which the user can make use of in their code. This is demonstrated
in Section 4.4. Only a description of these methods is given here; how the hook
methods are used in the Search-Tree framework is deferred until Section 4.3.
The generated methods are:

divideOrConquer() This hook method indicates whether to generate a node’s
children (i.e. call divide()), which will then be processed in parallel or to
proceed with the sequential computation of the node (i.e. call conquer()).

divide() This hook method generates a node’s children.
conquer() This hook method performs the sequential computation of a node.
updateState(TreeNode child) This hook method allows a node to update its

state based on information which may be extracted from the child. When
each child has completed its computation, it sends this message to its parent
with itself as an argument.

done() This hook method specifies when a node is considered to be finished,
such as when all children have updated their parent or when a child node
finds a solution.

4.3 Implementation of the Search-Tree Pattern

The Search-Tree Pattern uses a work queue model for managing the nodes of
the tree. When a node is divided, its children are placed on the queue and a



fixed number of threads are fed work from that queue. Computation of a node
is accomplished via the process() method shown in Figure 3. In the case of
a depth-first traversal, a second queue (a pending queue) is used to hold the
siblings of a left child until it has been processed. For a depth-first search, when
the children are returned from divide() the first node in the array is assumed to
be the left child and is placed immediately into the work queue. The remaining
children are marked to indicate that they are dependent on the left child node
and placed onto the pending queue. When a node has completed processing, the
pending queue is searched for all nodes which depend on the completed node,
and if any are found they are placed onto the work queue. Once a node has
completed processing, all the children of the node are marked as invalid in case
there was an early termination condition and there were still nodes in the work
queue to be processed. Processing of an invalid node returns immediately as
shown in Figure 3.

Note that while there are many tools which could produce code like that
shown in Figure 3, CO2P3S uses generative design patterns so that only the
portions of the code relevant to the selected traversal method and other param-
eter settings would be generated. Once a traversal method has been selected,
the other portions would not be generated, including the test for traversal type.
This is a simple example of how generative design patterns can improve the
performance of framework code via custom code generation.

The verification of the done() method is accomplished in the following man-
ner. When divide() returns the children of a node, the children are all placed
in a separate list, used for keeping track of which children have finished. As each
child finishes and updates their parent, the respective child node is removed
from the list. Every time that done() returns false, the list is checked to see
that it is non-empty. If the list is ever empty (i.e. verifyDone() returns true)
when done() returns false, then an error has occurred since there are no more
children that require processing and the current node must be finished. Figure 4
shows how updates are propagated up the tree and node completion is verified.

The user of the Search-Tree pattern is never aware of the above details.
They are all internal to the generated framework, and the only view that the
pattern user has is that of the application-specific hook methods. From the
pattern user’s perspective they select a set of parameter values, have CO2P3S
generate the customized parallel framework code, and implement the necessary
hook methods.

4.4 Implementation of IDA* Search

This section provides an example of how CO2P3S is used to generate a parallel
program from a sequential program. Specifically, the IDA* search used in the
Fifteen Puzzle [9] is implemented using the Search-Tree pattern.

For this problem, we would like to perform an IDA* search in parallel on mul-
tiple branches of the tree. Therefore the traversal parameter is set to breadth-
first. Note that from the CO2P3S perspective this is a breadth-first search,
but that the subtrees which are searched sequentially each perform depth-first



searches. As soon as a solution is found the search should terminate, so the early

termination parameter is set to true. Figure 5 shows the parameterization of
the Search-Tree pattern for the Fifteen Puzzle application.

The implementation of the divideOrConquer() hook method returns true

if the depth of the node is less than a specified value to indicate that the node
should be “divided.” Otherwise, false is returned to indicate that the node
should be processed sequentially. The divide() method creates new nodes for
each possible move from a given position. The conquer() method is a wrapper
method for the recursive traversal method from the sequential application. If the
early termination parameter is set, then two framework methods are provided
to the user: canContinue() and terminateAll(). A call to canContinue() is
added to the sequential method so that the processing of the node will stop if
another node indicates that the goal was found by calling the terminateAll()

method. A node is considered done when it has received updates from all of
its children. For this application, a counter is kept of the number of messages
received and the done() method returns true when the counter equals the num-
ber of children. Finally, the update() method collects the nodes in the upper
portion of the tree which are on the path toward the goal state.

In this application, all of the 125 lines were reused from the sequential appli-
cation due to the wrapping of the sequential traversal method in the conquer()

hook method. As only a minor change was needed in the driver program, that
too was almost entirely reused. Only 47 new lines of code were necessary to
convert the sequential program into a parallel program.

5 Conclusions

While parallel programs are known to improve the performance of computationally-
intensive applications, they are also known to be challenging to write. Parallel
programming tools, such as CO2P3S, provide a way to alleviate this difficulty.
The CO2P3S system is a relatively new addition to a collection of such tools and
before it can gain wide user acceptance there needs to be a confidence that the
tool can provide the assistance necessary. To this end, the utility of the CO2P3S
system was tested by implementing the Cowichan Problem Set. This required
the addition of a two new patterns to CO2P3S, the Wavefront pattern and the
Search-Tree pattern. The addition of these patterns highlight the extensibility
of CO2P3S; an important contribution to a system’s utility.

Parallel computing must eventually move away from MPI and OpenMP.
High-level abstractions have been researched for years. The most serious obsta-
cles - performance, utility, and extensibility, are all addressed by CO2P3S. An-
other way in which the utility of CO2P3S is demonstrated is by the MetaCO2P3S
tool, which produces XML description of the patterns so that patterns may be
made available to all for use in other tools through a pattern repository.



this.wavefront = new Skyline(this.height,

this.width,

threads,

this,

this);

(a) Use of shared-memory code.

try{
this.wavefront = new Skyline(this.height,

this.width,

threads,

this,

this);

}catch (java.rmi.RemoteException re) {
re.printStackTrace();

}

(b) Use of distributed-memory code.

Fig. 1. Example of the minor code difference between using shared-memory and
distributed-memory framework code in an application.



1

2 2 2

3 3 3 3 3 3 3 3 3

(a) Breadth-first traversal.

1

2

3

5 5

4 4

(b) Depth-first traversal.

Fig. 2. Tree traversals in the Search-Tree pattern. Nodes with the same value are
processed in parallel.

if(node is invalid) return

if(divideOrConquer())

children = divide()

// This code will only appear if the

// breadth-first parameter setting is selected.

if(breadth-first traversal)

foreach child

add child to work queue

// This code will only appear if the

// depth-first parameter setting is selected.

if(depth-first traversal)

mark first child as left child

add left child to queue

foreach remaining child

add to pending queue

else

conquer()

update parent

Fig. 3. Pseudo-code of the process() method.



update state

remove child from validation list

// This code will only appear if the

// depth-first parameter setting is selected.

if(depth-first traversal)

add nodes to work queue nodes from the

pending queue which are now ready

if(done())

invalidate all children

update parent

else if(verifyDone())

throw exception

Fig. 4. Pseudo-code of the update() method.

Fig. 5. The parameterization of the Fifteen Puzzle in CO2P3S.



References

1. John Anvik, Steve MacDonald, Duane Szafron, Jonathan Schaeffer, Steve Brom-
ling, and Kai Tan. Generating parallel programs from the wavefront design pattern.
Proceedings of the 7th International Workshop on High-Level Parallel Programming
Models and Supportive Environments, April 2002. On CD.

2. John K. Anvik. Asserting the utility of COPS using the Cowichan Problems.
Master’s thesis, Department of Computing Science, University of Alberta, 2002.

3. Steve Bromling. Meta-programming with parallel design patterns. Master’s thesis,
Department of Computing Science, University of Alberta, 2002.

4. Steve Bromling, Steve MacDonald, John Anvik, Jonathan Schaeffer, Duane
Szafron, and Kai Tan. Pattern-based parallel programming. Proceedings of the
2002 International Conference on Parallel Processing, August 2002.

5. Murry Cole. Algorithmic Skeletons: A Structured Approach to the Management of
Parallel Computations. MIT Press, 1988.

6. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

7. Dhrubajyoti Goswami, Ajit Singh, and Bruno R. Priess. Architectural skeletons:
The re-usable building-blocks for parallel applications. In Proceedings of the 1999
International Conference on Parallel and Distributed Processing Techniques and
Applciations (PDPTA’99), pages 1250–1256, 1999.

8. Steve MacDonald. From Patterns to Frameworks to Parallel Programs. PhD thesis,
Department of Computing Science, University of Alberta, 2001.

9. Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach, chap-
ter 5. Prentice Hall, 1995.

10. Jonathan Schaeffer, Duane Szafron, Greg Lobe, and Ian Parsons. The Enterprise
model for developing distributed applications. IEEE Parallel and Distributed Tech-
nology, 1(3):85–96, 1993.

11. Kai Tan. Supporting pattern-based parallel programming in a distributed-memory
environment. Master’s thesis, Department of Computing Science, University of
Alberta, 2002.

12. Gregory V. Wilson. Assessing the usability of parallel programming systems: The
Cowichan problems. In Proceedings of the IFIP Working Conference on Program-
ming Environments for Massively Parallel Distributed Systems, pages 183–193,
April 1994.

13. Gregory V. Wilson and Henri E. Bal. An empirical assessment of the usability
of Orca using the Cowichan problems. IEEE Parallel and Distributed Technology,
4(3):36–44, 1996.


