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Abstract

Automated Machine Learning (AutoML) aims to alleviate human efforts and au-

tomate the time-consuming and iterative processes in the development of machine

learning methods. In this thesis, we study two AutoML tasks: automated Data Aug-

mentation (DA) and Hyperparameter Optimization (HPO). Automated DA searches

for optimal data augmentation policies and is a widely used regularization technique

for training deep neural networks. However, since early approaches, e.g., AutoAug-

ment, cost thousands of GPU hours, there is a recent trend to investigate low-cost

search methods that still yield effective augmentation policies. In this thesis, we pro-

pose a novel multi-armed bandit algorithm, named Bandit Data Augment (BDA),

to efficiently search for optimal and transferable augmentation policies. We design a

reward signal based on each batch training step of neural networks to reduce the eval-

uation cost of augmentation policies. Moreover, we propose the Evolutionary Pruning

algorithm to allocate more search resources on potentially optimal operation pairs,

leading to sparse selection of operation pairs and generalizable policies. Extensive ex-

periments demonstrate that BDA can achieve comparable or better performance than

previous auto-augmentation methods on a wide range of models on CIFAR-10/100,

SVHN and ImageNet benchmarks.

Automated HPO algorithms search for optimal hyperparameter configurations

used in machine learning and are key to boosting model performance in reality. Many

previous HPO methods are based on Bayesian Optimization. However, Bayesian Op-

timization requires sequentially exploring many data samples to find promising con-

figurations. In this thesis, we propose an efficient batch HPO algorithm that utilizes a
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combination of Bayesian Optimization and Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) as a hybrid sampler to sample configurations while balancing ex-

ploitation and exploration. We also propose an ensemble prediction model consisting

of various surrogate models to approximate the objective function more accurately.

We conduct our experiments on 20 HPO datasets from recommendation system sce-

narios. Our approach ranked the 4th and 7th places in the training and tournament

stages of the Automated HPO Contest in QQ Brower 2021 AI Algorithm Competition

at CIKM 2021 AnalytiCup, respectively.
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Chapter 1

Introduction

In the process of developing machine learning methods, tasks, such as designing the

optimal neural architecture for a machine learning problem, choosing image pre-

processing strategies, and fine-tuning hyperparameters, etc., often rely on the past

knowledge of human experts. However, the optimal neural architecture or hyper-

parameter configuration could vary noticeably for different machine learning tasks.

Thus, tuning the architecture or hyperparameter configuration for various machine

learning tasks based on the past knowledge of human experts is time-consuming and

often sub-optimal. Automated Machine Learning (AutoML) [1] aims to automate

these time-consuming and iterative tasks using search algorithms. In this thesis, we

will investigate two AutoML tasks: automated Data Augmentation (DA) [2] and

automated Hyperparameter Optimization (HPO) [3].

1.1 Challenges in AutoML Tasks

Automated Data Augmentation. Deep learning has achieved state-of-the-art

performance on computer vision tasks including image classification benchmarks.

With an increasing learning capability of deep neural networks comes along the over-

fitting issue. Many regularization techniques [4, 5] have been proposed to increase

the generalizability of deep neural networks. DA, which applies image transforma-

tion functions to render images for increasing the diversity of training data, is one
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of the widely used regularization techniques for training deep neural networks [6–10].

Before the development of AutoML [1], designing a suitable strategy for augmenting

specific image datasets relies on the knowledge of human experts [11–17]. Recently,

automated DA, which replaces heuristic augmentation schemes manually tuned by

human experts with automated search algorithms, has attracted much attention.

AutoAugment (AA) [2] proposes a reinforcement learning framework to search for

optimal augmentation policies. As AA evaluates the performance of augmentation

policies by training child networks from scratch, it requires thousands of GPU hours,

prohibiting its wide adoption in reality. Many recent efforts for the automated DA

problem have focused on searching for effective data augmentation policies at a low

cost. Fast AutoAugment (FastAA) [18] utilizes Bayesian Optimization with a density

matching heuristic to minimize the difference between the training and augmented

validation data. DADA [19] reformulates the search for augmentation policies into

an efficient differentiable optimization problem. However, FastAA and DADA do not

evaluate the performance of individual policy directly, which may lead to a perfor-

mance gap between the search and evaluation results of policies, and worse transfer-

ability across different datasets. Thus, deriving an efficient reward signal that directly

measures the performance of individual augmentation policy is one of the challenges

for the automated DA problem.

Previous automated DA works focus on reducing the search cost or increasing

the performance by searching for augmentation policies according to specific training

stages [20] or training samples [21, 22]. In terms of the transferability of augmenta-

tion policies, most previous works demonstrate that augmentation policies can achieve

satisfying performance when being transferred across different neural networks on the

same dataset. However, very little work has been focused on searching for transferable

augmentation policies across different datasets. Additionally, the experimental results

of AA [2] and AdvAA [21] show that there is a performance gap when transferring

augmentation policies searched on one dataset to another dataset. As augmenta-
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tion policies with good transferability across different datasets alleviate the need for

searching on every specific dataset, searching for stationary augmentation policies

that have good transferability across different datasets is another challenge for the

automated DA problem.

Automated Hyperparameter Optimization. Automated HPO [3] has been de-

veloped for AutoML tasks [1], e.g., neural architecture search [23] and hyperparameter

tuning [24, 25], to alleviate the time-consuming and iterative processes in model de-

sign and tuning. HPO methods, such as Grid Search [26] and Random Search [27],

employ a pure exploration strategy that does not exploit rewards of visited config-

urations and thus does not guarantee to converge to the global optimum. Bayesian

Optimization (BO) [28, 29] learns from search history toward finding the global opti-

mum. However, traditional BO approaches need to run many search iterations before

finding good configurations. For HPO tasks such as measuring the performance of a

hyperparameter configuration on training a deep neural network, evaluating the per-

formance of a configuration often takes a long time. Thus, an efficient HPO algorithm

needs to find a globally optimal configuration within a small number of evaluations. In

addition, another desirable characteristic for an efficient HPO algorithm is to robustly

discover a global optimum for various HPO tasks.

1.2 Thesis Scope

In this thesis, we aim to develop efficient search algorithms for solving the automated

DA and HPO problems, respectively.

Automated Data Augmentation. The efficiency of the reward signal is the key

to the efficiency of the search algorithm for the automated DA problem. As AA

[2] trains a deep neural network for multiple epochs to obtain one reward signal

for the sampled augmentation policy, their proposed reward signal prohibits their
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search algorithm applied to real-life applications. Besides, FastAA [18] reduces the

search cost by approximating the performance of augmentation policies indirectly with

the heuristic assumption, which may lead to sub-optimal policies for the evaluation.

Thus, in this thesis, we aim to design an efficient reward signal that measures the

performance of individual policies based on each batch training step of deep neural

networks. Moreover, to address the challenge of searching for effective augmentation

policies with good transferability across different datasets, we aim to leverage the

multi-armed bandit [30] techniques to train a non-parametric bandit model to learn

the explicit ranking of augmentation policies. In addition, we propose an evolutionary

pruning algorithm to allocate search resources to potentially optimal augmentation

policies, thus further improving the convergence speed of our bandit search algorithm.

Automated Hyperparameter Optimization. As traditional BO [28, 29] uses a

single probabilistic surrogate model to find hyperparameter configurations maximiz-

ing the acquisition function, it needs to explore many configurations before finding

good ones. Thus, we propose a hybrid Bayesian Optimization and Evolutionary Strat-

egy (BOES) for efficient HPO in machine learning. Specifically, we propose a hybrid

BO and CMA-ES [31, 32] to sample diverse configurations from corresponding dis-

tributions which balance the exploration and exploitation better. Moreover, we aim

to leverage the prediction power of multiple probabilistic surrogate models through

an ensemble model to reduce the estimation variance and is robust for various HPO

tasks.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 introduces literature

reviews on previous automated DA and HPO methods. Chapter 3 introduces our

proposed BDA algorithm for the automated DA problem and demonstrates our ex-

perimental results on image classification benchmark datasets under various models.
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Chapter 4 introduces our proposed BOES algorithm for the automated HPO problem

and our experimental results for the automated HPO problem. Finally, we summarize

and discuss future works in Chapter 5.
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Chapter 2

Related Work

In this chapter, we discuss previous approaches for automated DA and HPO problems,

respectively.

2.1 Automated Data Augmentation

DA has been an effective method for improving the generalization of deep neural net-

works on supervised and unsupervised learning tasks [33, 34]. For image classification

tasks, image transformation operations such as cropping and flipping [13] are usually

applied as a pre-processing step to augment the training data for introducing more

diversity. To alleviate the requirements of human efforts and prior knowledge on de-

signing good augmentation policies for each specific task, automated DA, which aims

to produce effective augmentation policies automatically using the search algorithm,

has been developed recently.

AA [2] proposes a reinforcement learning framework that trains the Recurrent

Neural Network (RNN) controller to generate a fixed set of stationary augmenta-

tion policies for the target dataset. The reward signal of AA for training the RNN

controller is the validation accuracy of the child network trained with the training

dataset augmented by the sampled augmentation policy from scratch. As obtaining

this reward requires training an image classification child network for multiple epochs,

evaluating augmentation policies with this reward signal is extremely time-consuming

6



and inapplicable for real-world applications. Thus, many recent studies have focused

on reducing the search cost in automated DA.

2.2 Efficient Automated Data Augmentation

2.2.1 Methods Generating Stationary Policies

FastAA [18] proposes a density matching heuristic that assumes good augmentation

policies will not make the distance between the density of the augmented dataset and

the density of the unaugmented dataset large. With this density matching heuris-

tic, the reward signal of FastAA is the performance of a network trained with the

unaugmented dataset on the dataset augmented by the sampled policies. FastAA

uses this reward signal to train the TPE [35] optimizer to avoid training and eval-

uating multiple child networks from scratch. DADA [19] relaxes the discrete policy

search problem into a differentiable optimization problem and solves it with gradi-

ent descent. By encoding individual policies with a joint distribution and optimizing

network and augmentation policy parameters jointly, DADA reduces the search cost

noticeably. However, FastAA and DADA perform the indirect search and cannot

evaluate the performance of individual policies on the target dataset.

Moreover, RandAugment (RandAA) [36] simplifies the search space of AutoAug-

ment into two hyperparameters: the number and the joint magnitude of augmentation

operations. RandAA performs the grid search over these hyperparameters. Although

RandAA does not require extra search cost on a proxy task, grid search on large

datasets like ImageNet still has a large time overhead. Weight-sharing AutoAugment

(WS-AA) [37] reduces the search cost of AA by fine-tuning child models from the

shared pre-trained weights with a small number of epochs to obtain validation accu-

racies as rewards. Even though they reduce the search space by decreasing the number

of magnitude levels for each augmentation operation from 10 to 3, their reward signal

is still time-consuming for high-resolution datasets like ImageNet.
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Compared with previous methods generating stationary augmentation policies,

BDA reduces the search cost considerably with a computationally efficient reward

design, which can be computed in a single batch training step on the validation data.

In addition, as FastAA needs to initially train a network without augmentation from

scratch to kickstart the density matching process, and RandAA uses grid search to

optimize augmentation hyperparameters, they are not efficient on large and high-

resolution datasets. On ImageNet, BDA achieves a substantial reduction in search

cost as compared to FastAA and AA while still directly measures the effectiveness of

individual policies. Note that although DADA is fast, it cannot evaluate the goodness

of individual augmentation policies and thus can hardly achieve transferability across

datasets.

2.2.2 Methods Generating Non-Stationary Policies

Algorithms have also been proposed to search for non-stationary policies, which are

augmentation schedules dependent on the training progress or training samples. PBA

[20] leverages Population Based Training [38] to convert the augmentation policy

search problem into a HPO problem. PBA uses the performance of the network

on the validation dataset during the training procedure with sampled augmentation

policies and the evolutionary mutation of augmentation hyperparameters to learn a

non-stationary augmentation schedule. Moreover, based on the hypothesis that the

model can learn more robust features using harder training samples, AdvAA [21] pro-

poses an adversarial framework to produce augmentation policies that generate harder

augmented training samples. Specifically, AdvAA trains a target network using im-

ages augmented by the augmentation policies produced from the policy network. And

the policy network (the RNN controller) is trained to maximize the training loss of

the target network, thus producing augmentation policies generating harder train-

ing samples. Furthermore, MetaAugment (MetaAA) [22] proposes a sample-aware

meta-learning approach to generate good augmentation policies. MetaAA uses the
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sample re-weighting algorithm [39] to train a policy network taking the image and

augmentation policy features as the input and generating the weights of augmented

images in the training batch to compute the weighted loss of the target network.

BDA produces stationary augmentation policies. Although a non-stationary policy

may yield further performance gain, it is coupled into the network training progress

and thus does not easily transfer across different models or datasets. Moreover,

compared to stationary augmentation policies that can be easily applied to the image

pre-processing procedure before the network training, non-stationary augmentation

policies require further changes to training routines and incur additional overhead in

practical deployment.

2.2.3 Transferable Augmentation Policies

As existing auto-augmentation literature is evolving toward more heavily parameter-

ized policies as in non-stationary or sample-aware methods, another largely ignored

yet important issue is to learn generalizable policies and avoid performing repeated

search everytime when a new dataset is introduced in a production environment.

BDA aims to produce less parameterized policies and generate an explicit ranking of

operation pairs together with their magnitudes. By sparse operation selection and ex-

plicit policy scoring, BDA enables generalizable policies that have steady performance

when transferred across datasets. By finding generalizable policies independent of the

model training progress, it is more convenient to employ BDA-discovered stationary

policies to improve existing neural network training.

2.3 Successive Halving Algorithm

Many previous automated DA approaches [18, 20, 36] convert the automated DA

problem into the augmentation HPO problem. Similarly, we convert the automated

DA problem into a stochastic multi-armed bandit problem in this thesis. Our pro-

posed BDA algorithm takes the idea of the Successive Halving algorithm [40] from
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Hyperband [24] to search for optimal augmentation policies.

The Successive Halving algorithm [40] from Hyperband [24] removes the worst

half of hyperparameter configurations from the search space iteratively. By removing

worse hyperparameters, more computational resources are allocated exponentially to

more promising hyperparameter configurations. In [25] and [41], the authors adopt

Successive Halving and improve the configuration selection method of Hyperband

with Bayesian Optimization and the Sub-Sampling algorithm, respectively. However,

we extend Successive Halving into a novel evolutionary strategy for sparse opera-

tion pair selection, where we eliminate worse augmentation operation pairs from the

search space based on their UCB values exponentially in every round, while in the

meantime increasing the searchable magnitude levels for remaining operation pairs.

Thus, the proposed bandit model converges faster as more computational resources

are progressively allocated to more promising operation pairs.

2.4 Multi-armed Bandits

The multi-armed bandit problem aims to tackle the exploration versus exploitation

dilemma. In the stochastic bandit problem, there are k arms where each arm has an

independent and identically reward distribution [30]. The agent follows an allocation

policy to select an arm to play in each step and receive a reward for the selected arm.

The goal of the bandit algorithm is to maximize cumulative rewards.

The UCB1 [30] algorithm is a classical algorithm for the stochastic multi-armed

bandit problem. For the data augmentation problem, we formulate each possible

augmentation policy as an arm. In each step, the agent chooses the arm i that

maximizes the upper confidence bound (UCB):

ri + C

√︃
2 lnn

ni

, (2.1)

where ri is the average reward of the arm i, ni is the number of times that the arm i

has been played, and n is the total number of arm plays.
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2.5 Bayesian Optimization

Bayesian Optimization (BO) [43] a sequential and derivative-free optimization ap-

proach for finding the globally optimal solutions for black-box objective functions.

The optimization problem solved by BO is defined as follows:

max
x∈X

f(x), (2.2)

where x is the optimization variables belonging to the search space X, f(x) is the

black-box objective function optimized by BO.

2.6 Automated Hyperparameter Optimization

BO [28, 29], which learns a probabilistic surrogate model on the objective function,

is a widely used global optimization algorithm for HPO problems. Gaussian Process

regression [43, 42] assumes a Gaussian Process prior on the objective function and

updates its posterior distribution using the historical data. From a set of randomly

sampled data points, the Gaussian Process regressor selects the data point that max-

imizes the acquisition function for evaluation. Besides, TPE [35] fits two Gaussian

Mixture Models [44] to learn distributions g(x) and l(x) for data points whose ob-

jective function values are higher than and less than a threshold, respectively. TPE

samples data points from the learned distribution l(x) and suggests the data point

maximizing the expected improvement [45] acquisition function for evaluation.

As traditional BO uses a single probabilistic surrogate model to approximate the

objective function, it needs to explore many data points for HPO tasks with a large

search space or complex objective function. Recently, many works have focused on fur-

ther improving the efficiency of vanilla BO methods. BO with Local Search (BOwLS)

[46] combines BO with the local search method. BOwLS samples the starting point

of the local search from the BO model and uses the local minimum to update the BO

model for guiding the next starting point. In addition, Blend Search [47] combines
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the global search and local search strategies to search in a large search space at a low

search cost. Blend Search maintains a pool of search threads consisting of one global

search thread and multiple local search threads. Using the estimated future reward as

the priority metric, Blend Search selects one thread to sample configuration for eval-

uation while balancing the exploitation and exploration. Moreover, Trust Region BO

(TuRBO) [48] proposes a local strategy for BO to solve HPO with high-dimensional

search spaces. TuRBO maintains a collection of local BO models and uses an implicit

bandit approach to allocate samples to promising local BO models. Furthermore,

prior work finds that optimizing a single acquisition function for different HPO tasks

may lead to sub-optimal results [49, 50]. To tackle this problem, HEBO [50] uti-

lizes the multi-objective evolutionary algorithm [51] to optimize multiple acquisition

functions simultaneously for sampling better configurations across various HPO tasks.

Compared to BO, Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

[31, 32] is more effective for optimizing HPO tasks whose objective functions are

ill-conditioned. CMA-ES uses the evolutionary strategy to sample configurations

from a multivariate normal distribution of the search space in a stochastic way. The

mean and the covariance matrices of the distribution are updated with the maximum-

likelihood principle so that sampled configurations converge to the global optimum.

As local search is easier to be stuck at the local optimum, to handle the exploitation-

vs-exploration dilemma, BOES proposes a hybrid sampler combining TPE and CMA-

ES for sampling more diverse configuration candidates from corresponding learned

distributions, respectively. Moreover, instead of approximating the objective func-

tion with a single probabilistic surrogate model as traditional BO, BOES proposes

an ensemble surrogate model which enhances the robustness and capability of BOES

on approximating objective functions across various HPO tasks. Furthermore, BOES

optimizes multiple acquisition functions with single-objective optimizers. Compared

to HEBO that uses the multi-objective optimizer, our approach achieves better per-

formance when exploring the same number of data points.
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Chapter 3

The BDA Algorithm for
Automated Data Augmentation

Automated DA aims to search for effective augmentation policies to introduce more

diversity to the training data for improving the generalizability of deep neural net-

works. As mentioned in Chapter 1, for the automated DA problem, it is significant

to design an efficient reward signal to evaluate the performance of individual aug-

mentation policies. In addition, designing an approach that generates transferable

augmentation policies across different datasets is essential as good transferability al-

leviates the need for searching on every specific dataset. In this thesis, we propose

a novel bandit algorithm to search for transferable and generalizable augmentation

policies at a low cost. We train a non-parametric bandit model to learn an explicit

ranking of augmentation policies, with a bias toward sparse selection of operation

combinations and a computationally efficient rewarding scheme to reduce the search

cost. Our main contributions can be summarized as follows:

First, we propose a bandit algorithm based on the upper confidence bound (UCB)

and the lower confidence bound (LCB) of augmentation policies with a novel evolu-

tionary pruning algorithm that achieves sparsity in selecting operation combinations.

In the pruning algorithm, considering the correlation among policies with the same

operation pair, policies are aggregated by their operation pair. We reduce the number

of active operation pairs in the search space according to their UCB values. In the
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meantime, we progressively increase the number of searchable magnitude levels for

active operation pairs. While prior methods tend to be heavily parameterized and are

not designed for discovering transferable augmentation policies across datasets, BDA

enables exploring more important augmentation operations with more computational

resources, thus leading to generalizable policies.

Second, to reduce the search cost, we design an efficient rewarding scheme to

measure the performance of individual augmentation policies based on each single

step of training. For each batch training step, our reward signal is the net prediction

gain that measures the difference in validation losses between the neural network

trained on the augmented batch and the duplicated network trained on the original

batch. Compared to the reward signal in AA [2] which requires training child networks

from scratch for multiple epochs, and the density matching reward in FastAA [18] that

requires the initial training a network from scratch without augmentation, our reward

signal reduces the search cost dramatically, especially for large and high-resolution

datasets such as ImageNet.

Third, we conduct extensive experiments on image classification benchmark tasks

across different models. Experimental results demonstrate that our approach achieves

comparable or better performance than previous methods [2, 18, 20, 36] on CIFAR-

10/100 [52], SVHN [53] and ImageNet [54] under various models. On ResNet-50,

BDA achieves the best ImageNet accuracy compared to prior stationary augmentation

policies found in the same search space, with a search cost 536 times smaller than AA

and 16 times smaller than FastAA. Moreover, we show that the augmentation policies

found by our approach demonstrate superior transferability and generalizability across

datasets, achieving comparable performance to direct search on target datasets.

3.1 Search Space

Following the design in AA [2], there are 15 augmentation operations in the search

space, e.g., Shear X/Y, Translate X/Y, Rotate, etc. Similar to AA, we adopt an
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Figure 3.1: The example of applying the given augmentation policy to an image and
generating the resulting augmented image.

augmentation policy consisting of two sub-policies. Each sub-policy is defined as

O(λ), where O is one of 15 augmentation operations, and λ is the magnitude level of

the operation O. There is a total of 10 levels for the magnitude, range from 0 to 9.

Thus, the augmentation policy is defined as (O1(λ1), O2(λ2)), where O1 and O2 can

be one of 15 augmentation operations from the search space, λ1 and λ2 can be one

of magnitude levels between 0 and 9. Similarly, the augmentation operation pair is

defined as (O1(·), O2(·)).

Given an image x and an augmentation policy (O1(λ1), O2(λ2)), the augmented

image xaug is defined as:

xaug = O2(O1(x, λ1), λ2). (3.1)

We illustrate the procedure of applying an augmentation policy to an image x in

Figure 3.1.

3.2 Bandit-formulation of Data Augmentation

The multi-armed bandit problem aims to tackle the exploration versus exploitation

dilemma. The agent follows an allocation policy to select an arm to play and receives

a reward in each step. The goal of the bandit algorithm is to maximize cumulative

rewards [30].
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Figure 3.2: Our proposed Bandit framework. For each batch training step, the bandit
model samples an active augmentation policy k. The reward is the loss difference
between the network trained with the original batch and the network trained with
the augmented batch on a validation batch. We perform Evolutionary Operation
Pruning to eliminate worse operation pairs and increase searchable magnitude levels
of promising ones. The whole training and pruning procedures are repeated for 10
rounds.

In the case of automated DA, we propose a non-parametric bandit model to search

for optimal augmentation policies that maximize the cumulative net prediction gain of

augmentation policies on the validation data. Specifically, we treat each augmentation

policy as an arm in our bandit model. Thus, there are (15 × 10)2 arms in the search

space for the bandit model.

An overview of our proposed framework is provided in Figure 3.2. We utilize a

bandit model to perform policy search during the training of the deep neural network.

For each update of the bandit model, it samples a policy to augment a training batch,

and receives the reward signal derived by updating the network separately with the

augmented batch and the original batch, and calculating the net prediction gain as

the validation loss difference of the two updated networks. We also adopt a 10-

round Evolutionary Operation Pruning procedure where for each round, one-third of
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Algorithm 1: The Bandit Data Augment Algorithm

Input: Training set DT , validation set DV and the search space of
augmentation policies {(O1(λ1), O2(λ2))k}nk=1

Output: The bandit model BM
1 Initialize the network θ
/* Initialize the bandit model BM */

2 for every policy p ∈ 1, . . . , n do
3 Sample a training batch BT from DT and a validation batch BV from DV

4 Compute Reward Update(BT , BV , θ, k, BM)

/* The search procedure t is repeated for T search rounds */

5 for t = 1, . . . , T do
6 Initialize the network θ
7 for e = 1, . . . ,max epoch do
8 for every training batch BT ∈ DT do
9 Sample a policy k using Eq. (3.3)

10 Sample a validation batch BV from DV

/* Compute and update the reward for the sampled policy

k */

11 Compute Reward Update(BT , BV , θ, k, BM)

/* Deactivate worse augmentation operation pairs and evolve

magnitude levels of active ones */

12 Evolutionary Operation Pruning(t, BM)

operation pairs are deactivated and searchable magnitude levels of active operation

pairs are expanded. Finally, the bandit model filters out incompetent operations and

derives effective policies.

3.3 The BDA Algorithm

Our BDA algorithm is described in Algorithm 1 as follows:

Given a training set DT , a validation set DV , and the search space of augmentation

policies, we first initialize each augmentation policy in the bandit model with the net

prediction gain computed using sampled training and validation batches in lines 1-

4. Besides, the search procedure t is repeated for T search rounds in lines 5-12.

Specifically, we first initialize a network θ at the beginning of each round. Then, for

every batch training step, the bandit model samples an augmentation policy k to
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train this network with the augmented batch. In the meantime, we train a duplicated

network with the original batch and use the net prediction gain as the reward to

update this sampled policy in the bandit model. At the end of each round of the

search, in line 12, we use Evolutionary Operation Pruning algorithm to deactivate

worse operation pairs and allocate more computational resources to potential optimal

augmentation policies. Moreover, different from UCB1 algorithm that selects the arm

with the maximum UCB, to increase the diversity of augmented data and encourage

the exploration during the search procedure, in line 9, the bandit model samples an

active policy k with the probability of negative LCB Problcbk [55],

Vlcbk =
rtotalk
nk

− C

√︃
2 lnn

nk

, (3.2)

Problcbk =
exp (−Vlcbk)∑︁n
j=1 exp (−Vlcbj)

, (3.3)

where Vlcbk is the LCB value of policy k, rtotalk is the total reward of policy k, n is

the overall number of plays done so far, nk is the number of times that policy k has

been played.

3.3.1 Reward Signal

BDA aims to find a set of augmentation policies that maximize the cumulative net pre-

diction gains of augmented batches. In previous reinforcement learning approaches,

AA [2] obtains one reward signal by training a child image classification network from

scratch with training data augmented by the sampled augmentation policy. This de-

sign of the reward signal makes obtaining enough rewards for training the policy

network (the RNN controller) very time-consuming. To reduce the computational

cost on obtaining the reward signal, inspired by the curriculum learning literature

[56], the authors train adversarial bandit algorithm Exp3.S with the prediction gain,

which is the loss change of the network on a sample x, before and after training on x.
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Algorithm 2: Compute Reward Update

Input: Training batch BT , validation batch BV , network θ, policy k, bandit
model BM

1 Copy weights of network θ to a duplicated network.
2 Train this duplicated network with the original batch BT to obtain the

network θorig

3 Compute the cross-entropy loss of θorig on the validation batch L(BV , θ
orig)

4 Obtain the augmented batch B
augk
T by applying the policy k to every image

in BT using Eq. (3.1)
5 Train the network θ with the augmented batch B

augk
T to obtain the network

θaug

6 Compute the cross-entropy loss of θaug on the validation batch L(BV , θ
aug)

7 Compute the net prediction gain rk for the policy k using Eq. (3.4)
8 Map rk to rkscaled ∈ [0, 1] using Eq. (3.5)
9 Update the bandit model BM :

10 n = n + 1 /* The overall number of plays n */

11 nk = nk + 1 /* The number of times policy k has been played */

12 rtotalk = rtotalk + rkscaled /* The total reward of the policy k */

Since the prediction gain of each augmentation policy will decrease during the net-

work training, it is not suitable to use the prediction gain as the reward signal in the

stochastic multi-armed bandit problem where each policy’s rewards are drawn from

a stationary distribution. Thus, we design our reward signal as the net prediction

gain of the augmented network on the validation data compared to the duplicated

network trained with the original data.

Given a training batch BT and a validation batch BV , the reward signal, the net

prediction gain, is defined as

r = L(BV , θ
orig) − L(BV , θ

aug), (3.4)

where θorig is the weights of the duplicated network trained with the original batch

BT , θaug is the weights of the network θ trained with the augmented batch Baug
T , L is

the cross-entropy loss of network on the validation batch BV .

The right part of Figure 3.2 illustrates how the net prediction gain (the reward

signal) is computed in a single batch training step. Our algorithm for computing the

net prediction gain can be summarized as follows:
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In line 1 of Algorithm 2, to avoid the risk that the network trained without aug-

mentation could diverge from the network trained with augmented data due to the

randomness of stochastic gradients, we copy the weights of the augmented network

θ to a duplicated network before each batch training step. Then, in lines 2-6 of Al-

gorithm 2, we train the duplicated network and the augmented network θ with the

original batch BT and the augmented batch B
augk
T , compute the net prediction gain

using the cross-entropy loss difference of the network trained on the original batch

θorig and the network trained on the augmented batch θaug on the validation data.

Moreover, as the net prediction gain does not belong to the [0, 1] interval, to avoid

fine-tuning the exploration coefficients of UCB and LCB, in line 8 of Algorithm 2,

we use the reservoir sampling algorithm to map the net prediction gain to the [0, 1]

interval with Eq. (3.5). And we update the bandit model for the policy k in lines

9-12 of Algorithm 2.

Since the net prediction gain measures how much the validation loss that the

network trained with data augmented by the sampled policy can reduce compared

to the network trained with the original batch in a single batch training step, this

reward signal reflects the effectiveness of the sampled augmentation policy on the

generalization of the network. By obtaining each augmentation policy’s long-term

cumulative net prediction gain over the search, we can determine the relative goodness

of augmentation policies as stationary policies. Thus, this per-batch training reward

signal is a merit of our BDA algorithm, as it avoids training child networks for multiple

epochs to obtain one reward, which escalates evaluation costs.

Furthermore, as the exploration coefficients of UCB and LCB are affected by the

magnitude of the net prediction gain, to alleviate the effort of fine-tuning these hyper-

parameters, following the reward scaling method used in [56], we implement the

reservoir sampling algorithm to scale the net prediction gain r to the interval [0, 1].

Let {ri}t−1
i=1 be an array that stores the history of net prediction gains, r20

th
and r80

th

be the 20th and 80th percentiles of this array. At time step t, the net prediction gain
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rt is scaled as

rtscaled =

⎧⎪⎪⎨⎪⎪⎩
0.0, if rt < r20

th
,

1.0, if rt > r80
th
,

rt−r20
th

r80th−r20th
, otherwise.

(3.5)

3.3.2 Evolutionary Operation Pruning

We propose the Evolutionary Operation Pruning algorithm to allow the bandit model

to allocate more computational resources to potentially optimal operation pairs, thus

reducing the search cost. From the idea of the Successive Halving algorithm [40]

used in Hyperband [24], to allocate more resources to more promising configurations

and stop worse performing configurations early, the authors abandon the worst half

configurations at each round of the search. Different from the HPO problem where

there are no apparent correlations between different hyperparameters, we design a

hierarchical format for augmentation policies with the correlations among augmenta-

tion policies with the same operation pair yet different magnitude levels taken into

consideration.

In the Evolutionary Operation Pruning algorithm, instead of deactivating worse

augmentation policies iteratively, we aggregate augmentation policies by their oper-

ation pair and perform the operation pair pruning to deactivate worse performing

augmentation operation pairs from the search space gradually. In addition, as it is

beneficial to spend less exploration on the less significant regions of the search space,

we only increase searchable magnitude levels of potentially optimal operation pairs

after each round of pruning. As worse operation pairs are deactivated in the next

round of the search, this algorithm allows us to achieve sparsity in augmentation

operation pairs. Our proposed Evolutionary Operation Pruning algorithm can be

summarized as follows:

As shown in lines 1-2 of Algorithm 3, we first compute the UCB value for every
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Algorithm 3: Evolutionary Operation Pruning

Input: The search round t, the bandit model BM
1 Deactivate all augmentation policies
2 Compute the UCB value for every augmentation operation pair

(O1(·), O2(·))225j=1 using Eq. (3.6)

/* The number of active operation pairs at the search round t */

3 nactive op pairs = 225 × (2
3
)t

4 Sort operation pairs according to their UCB values and activate top
nactive op pairs operation pairs

5 for every operation pair j ∈ active operation pairs do
6 if t ≥ 2 then
7 Increase searchable magnitude levels of active augmentation operation

pair j
8 Activate augmentation policies with the operation pair j and its

searchable magnitude levels

augmentation operation pair:

Vucbj =

∑︁
k∈j rtotalk∑︁
k∈j nk

+ C

√︄
2 lnn∑︁
k∈j nk

, (3.6)

where Vucbj is the UCB value of the operation pair j, k ∈ j represents the policy k

with the operation pair j.

Next, in lines 3-4 of Algorithm 3, we reduce the number of active operation pairs in

the previous search round by one-third. Then, we active potentially optimal operation

pairs according to their UCB values for the next round of the search. Moreover, in

lines 5-8, after the second round of the search procedure, we increase the searchable

magnitude levels of every active operation pair. That is, augmentation policies whose

operation pair is active and the sum of magnitude levels are searchable are active

policies in the next round of the search.

Inspired by the evolutionary strategy, it is beneficial to allocate more search re-

sources to potentially optimal search regions. Thus, we activate a subset of magnitude

levels for every operation pair at the early stage of the search procedure. After several

rounds of search, we gradually increase the number of searchable magnitude levels

of augmentation operation pairs with better performance, which allows our bandit
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Figure 3.3: There are three activated magnitude stages for each augmentation oper-
ation pair. For each augmentation operation pair, every activated magnitude stage
contains augmentation policies of this operation pair with the sum of two augmen-
tation operations’ magnitude levels belonging to the listed low strength, medium
strength, and high strength intervals.

model to spend more search resources on more promising operation pairs and achieve

faster convergence. Specifically, we divide augmentation policies with the same oper-

ation pair into three magnitude stages. The intuition of setting searchable values of

magnitude levels in each magnitude stage is that we divide all possible values of the

operation pair’s magnitude levels sum into low, medium, and high strengths. Every

magnitude stage contains an interval of the operation pair’s magnitude levels sum

from each strength. After the second round of the search procedure, we increase the

magnitude stage of each active operation pair by one and activate its augmentation

policies in its current magnitude stage. As illustrated in Figure 3.3, at the first stage,

active operation pairs whose sum of magnitude levels belong to the set {0, 1, 2, 7,

8, 13, 14} are searchable. At the next stage, active operation pairs whose sum of

magnitude levels belong to the set {3, 4, 9, 10, 15, 16} are also searchable. At the

last stage, all magnitude levels of active operation pairs are searchable.

By reducing the number of active augmentation operation pairs iteratively, we

achieve the sparsity in operation pairs and allocate more computational resources

to potentially optimal operation pairs. Furthermore, instead of allowing the bandit

model to select all magnitude levels of active augmentation operation pairs, we limit

the searchable magnitude levels at the early stage of the search procedure. During

the search, only active operation pairs can have more searchable magnitude levels.
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Therefore, the bandit model wastes less computational resources on less promising

operation pairs and converges faster.

3.4 Experiments and Results

In this section, we evaluate the performance of BDA on CIFAR-10/100 [52], SVHN

[53] and ImageNet [54] datasets across different models including Wide-ResNet [57],

Shake-Shake [58], and PyramidNet [59]. For a fair comparison between algorithms,

we compare our results with stationary policies produced by methods in the same

search space that most other papers used, including AA [2], FastAA [18], RandAA

[36], and DADA [19]. Since the search space of WS-AA [37] is different, containing

only three magnitude levels, we do not compare our approach with them. We also in-

clude results of non-stationary policies found by PBA [20], AdvAA [21], and MetaAA

[22]. Furthermore, we conduct experiments to demonstrate the transferability of our

policies across datasets. Additionally, we perform the ablation study to demonstrate

the effectiveness of our proposed Evolutionary Operation Pruning algorithm.

3.4.1 Implementation Details

CIFAR-10/100 Search For CIFAR-10 and CIFAR-100 datasets, we adopt two

data split settings in the search procedure: (1) We split the training dataset of CIFAR-

10/100 into a training set DT with 40k images and a validation set DV with 10k

images. (2) We include 4k images in the training set DT and 46k images in the

validation set DV . The batch sizes of the training batch BT and the validation batch

BV are set to 32 and 128, respectively. We set max epoch to 200 and T to 10.

Additionally, we use an SGD optimizer with a learning rate of 0.1, a weight decay

of 0.0002, and a cosine learning rate scheduler to optimize the Wide-ResNet 40-2

network. Since we scale the net prediction gain to the [0, 1] interval, the exploration

coefficients C for UCB and LCB in Eqs. (3.2) and Eqs. (3.6) are set to 1.
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SVHN Search We perform the search procedure on the reduced SVHN dataset.

We randomly select 4k samples as the training set DT and include the rest of samples

from the original training dataset in the validation set DV . We set the batch sizes

BT and BV to 32 and 128, respectively. We set max epoch to 200 and T to 10.

The exploration coefficients C for UCB and LCB are set to 1. In addition, same as

the setting in our CIFAR-10/100 search, we use an SGD optimizer with the same

hyperparameters to train the Wide-ResNet 40-2 network.

ImageNet Search Following the setting in Fast AutoAugment, we perform the

search procedure on the reduced ImageNet dataset. We randomly select 6k samples

as the training set DT from 120 classes, include the rest of samples in the same

120 classes in the validation set DV . The batch sizes BT and BV are 32 and 128,

respectively. We set max epoch to 90 and T to 10. The exploration coefficients C for

UCB and LCB are set to 1. We use the same hyper-parameters for training ResNet-50

as Fast AutoAugment.

Evaluation of Augmentation Policies For the segmentation of augmentation

policies for evaluation, we choose the union of policies with UCB values or average

reward values approximately greater than their 80th percentiles. That is, we select

1, 500 policies with top UCB values and 1, 500 policies with top average reward values,

and use the combined policies for evaluating augmentation policies searched on the

CIFAR-10/100, SVHN and ImageNet datasets. We follow Fast AutoAugment [18]

and adopt the same evaluation settings.

3.4.2 Results and Analysis

CIFAR-10 Table 3.1 summarizes our results on CIFAR-10 under different mod-

els. Among the listed approaches that yield stationary policies, BDA achieves the

best performance on Wide-ResNet 40-2, Wide-ResNet 28-10, Shake-Shake-96d, and

PyramidNet+ShakeDrop. Besides, on Shake-Shake-32d and Shake-Shake-112d, BDA
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Table 3.1: CIFAR-10 top-1 test accuracy (%), search cost (GPU hours). For AA,
FastAA, DADA, PBA, MetaAA, and BDA, the augmentation policies are searched
on the reduced CIFAR-10 dataset with Wide-ResNet-40-2. These policies are trans-
ferred to other models for evaluation. For RandAA and AdvAA, the search procedure
is performed on each model separately on CIFAR-10, which does not show the trans-
ferability of augmentation policies across different models.

Stationary Non-stationary

Model No Augment AA FastAA RandAA DADA BDA-4k1 BDA-40k2 PBA AdvAA MetaAA

Wide-ResNet-40-2 94.7 96.3 96.3 − 96.4 96.46 ± 0.069 96.53 ± 0.074 − − 96.79

Wide-ResNet-28-10 96.1 97.4 97.3 97.3 97.3 97.49 ± 0.115 97.58 ± 0.092 97.42 98.10 97.76

Shake-Shake-32d 96.4 97.5 97.5 − 97.3 97.39 ± 0.075 97.39 ± 0.085 97.5 97.64 −

Shake-Shake-96d 97.1 98.0 98.0 98.0 98.0 98.05 ± 0.026 98.04 ± 0.056 97.97 98.15 98.29

Shake-Shake-112d 97.2 98.1 98.1 − 98.0 98.03 ± 0.016 98.03 ± 0.045 97.97 98.22 98.28

PyramidNet+ShakeDrop 97.3 98.5 98.3 98.5 98.3 98.53 ± 0.024 98.54 ± 0.048 98.54 98.64 98.57

Search Cost (hours) − 5000 3.5 − 0.1 9 103 5 − 18

1 BDA-4k represents evaluation results using augmentation policies searched with 4k
training images.
2 BDA-40k represents evaluation results using augmentation policies searched with 40k
training images.

performs better than DADA and achieves comparable performance compared with

AA and FastAA.

When compared with non-stationary policy schedules, BDA performs better than

PBA on Wide-ResNet 28-10, Shake-Shake-96d, and Shake-Shake-112d. Besides, on

Shake-Shake-32d and PyramidNet+ShakeDrop, BDA achieves comparable perfor-

mance compared with PBA. For other listed non-stationary policy methods, MetaAA

and AdvAA achieve better performance across listed models. However, MetaAA

trains the network for 600 epochs until convergence, while other stationary meth-

ods train the network for only 200 epochs for evaluation. For AdvAA, it requires to

perform policy search every time it is applied to a different model, causing larger over-

head in real-life application scenarios. Additionally, unlike the evaluation procedure

of our method, AA, FastAA, and DADA, which sample one policy to transform each

image, AdvAA uses the batch augment trick [60] to augment each image into 8 trans-

formed images. Thus, it is not a fair comparison between AdvAA and other methods,

including AA, FastAA, DADA, and BDA. Furthermore, non-stationary policy sched-
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Table 3.2: CIFAR-100 top-1 test accuracy (%), search cost (GPU hours). For Fas-
tAA, DADA, MetaAA and BDA, augmentation policies are searched on the reduced
CIFAR-100 dataset with Wide-ResNet-40-2. These policies are transferred across
different models for evaluation. Moreover, RandAA and AdvAA perform the search
procedure on each model separately on CIFAR-100.

Stationary Non-stationary

Model No Augment AA FastAA RandAA DADA BDA-4k BDA-40k PBA AdvAA MetaAA

Wide-ResNet-40-2 74.0 79.3 79.4 − 79.1 79.45 ± 0.115 79.61 ± 0.261 − − 80.60

Wide-ResNet-28-10 81.2 82.9 82.8 83.3 82.5 83.48 ± 0.222 83.44 ± 0.253 83.27 84.51 83.79

Shake-Shake-96d 82.9 85.7 85.4 − 84.7 85.01 ± 0.287 84.95 ± 0.091 84.69 85.90 85.97

Search Cost (hours) − − 3.5 − 0.2 11 89 5 − 18

ules are searched based on the progress of the model training procedure. Even though

it is natural to assume that some policies may be good at different training stages

of the neural network. However, compared with stationary policies, which learn the

relative overall effectiveness of augmentation policies on the distribution of dataset,

the transferability of non-stationary schedules across different models and datasets

will be affected if the number of training epochs is noticeably different.

CIFAR-100 Table 3.2 summarizes our results on CIFAR-100 under different mod-

els. On Wide-ResNet 40-2 and Wide-ResNet 28-10, BDA achieves the best perfor-

mance compared with the listed methods generating stationary policies. On Shake-

Shake-96d, our method performs better than DADA. When compared with methods

generating non-stationary policies, BDA performs better than PBA on Wide-ResNet

28-10 and Shake-Shake-96d.

SVHN Table 3.3 summarizes our results on SVHN on Wide-ResNet 28-10. As

shown in the table, BDA achieves better perfomance than DADA and PBA. In addi-

tion, BDA achieves comparable performance compared with AA and FastAA.

ImageNet Table 3.4 summarizes our results on ImageNet under ResNet-50 and

ResNet-200. On the typical benchmark model ResNet-50, BDA achieves noticeably

higher accuracy than other algorithms under the stationary policy category, including
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Table 3.3: SVHN top-1 test accuracy (%), search cost (GPU hours). For AA, FastAA,
DADA, PBA and BDA, augmentation policies are searched on the reduced SVHN
dataset.

Stationary Non-stationary

Model No Augment AA FastAA DADA BDA-4k PBA

Wide-ResNet-28-10 98.5 98.9 98.9 98.8 98.85 ± 0.0001 98.82 ± 0.022

Search Cost (hours) − 1000 1.5 0.1 11 −

Table 3.4: ImageNet top-1/top-5 test accuracy (%), search cost (GPU hours). For
AA, FastAA, DADA, and BDA, the policies are obtained from the search on re-
duced ImageNet with 6k samples from 120 classes using ResNet-50. The policies are
transferred to ResNet-200 for evaluation. For RandAA and AdvAA, the search is
performed on each model separately on ImageNet.

Stationary Non-stationary

Model Baseline AA FastAA RandAA DADA BDA AdvAA MetaAA

ResNet-50 76.3/93.1 77.6/93.8 77.6/93.7 77.6/93.8 77.5/93.5 78.115 ± 0.009 / 93.868 ± 0.007 79.40/94.47 79.74/94.64

ResNet-200 78.5/94.2 80.0/95.0 80.6 / 95.3 − − 80.144 ± 0.008/95.094 ± 0.094 81.32/95.30 81.43/95.52

Search Cost (h) − 15000 450 − 1.3 28 1280 480

AA, FastAA, RandAA, and DADA, at a low search cost. On ResNet-200, our ap-

proach achieves a better result than AA. Although BDA performs slightly worse than

FastAA on ResNet-200, our approach only takes 28 GPU hours and is 16 times faster

than FastAA. Moreover, as a non-stationary augmentation method, AdvAA requires

searching on the entire training dataset, resulting in a high search cost, which is 46

times slower than BDA. Additionally, MetaAA takes 3x training time than a standard

training of a task network, which is 17 times slower than BDA.

Search Cost The last rows from Table 3.1, Table 3.2, Table 3.3, and Table 3.4

compare the search costs of the augmentation methods on the corresponding datasets.

For evaluations on CIFAR-10 and CIFAR-100, augmentation searching methods that

yield stationary policies, e.g., AA, FastAA, and DADA, perform the search procedure

on the reduced CIFAR-10 dataset with 4k training images. Under this search setting,

BDA takes 9 GPU hours to search on CIFAR-10, which is 555 times faster than
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AA. Similarly, for the search on CIFAR-100, BDA takes 11 GPU hours. Although

the search cost is higher than FastAA and DADA, BDA achieves better performance

on Wide-ResNet-40-2/28-10 within reasonable time. In addition, for the search on

SVHN, BDA takes 11 GPU hours, which is 91 times faster than AA.

Furthermore, for high-resolution image datasets like ImageNet, our approach takes

only 28 GPU hours in the search procedure, which is 536 times faster than AA and is

16 times faster than FastAA. For FastAA, the requirement of training a task network

without augmentation from scratch reduces it’s efficiency for ImageNet. Additionally,

although RandAA does not require the extra computational cost on the search pro-

cedure, it uses grid search to optimize the hyperparameters for data augmentation,

whose cost could be extremely high for large and high-resolution image datasets like

ImageNet, which takes several days to train. Comparably, our approach is efficient

for large and high-resolution image datasets like ImageNet.

3.4.3 Transferability and Interpretability

Transferability Across Different Datasets Table 3.5 demonstrates the transfer-

ability of augmentation policies searched by BDA on a low-resolution image dataset to

another image dataset with the same resolution and a high-resolution image dataset.

As AA and PBA demonstrate their performance on CIFAR-100 using CIFAR-10 dis-

covered policies, for a fair comparison with them, we show the transfer results of

BDA on CIFAR-100 using CIFAR-10 discovered policies. Specifically, on the target

dataset CIFAR-100, BDA performs better than AA and PBA on Wide-ResNet-40-2

and Wide-ResNet-28-10 using CIFAR-10 discovered policies.

Additionally, in Table 3.5, we compare our results evaluated with augmentation

policies searched on CIFAR-100 with results evaluated with policies searched directly

on CIFAR-10 and SVHN (image datasets with the same low-resolution) and Ima-

geNet (a high-resolution image dataset). As shown in Table 3.5, CIFAR-100 discov-

ered policies achieve comparable performance to the directly learned policies under
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Table 3.5: The performance of transfering policies across datasets. Transfer evalua-
tions use policies obtained from the search on reduced source datasets CIFAR-10/100
with 40k images using Wide-ResNet-40-2.

Source → Target Datasets Model AA PBA BDA-transfer BDA-direct

CIFAR-10 → CIFAR-100

Wide-ResNet-40-2 79.3 − 79.454 ± 0.0871 79.61 ± 0.261

Wide-ResNet-28-10 82.9 83.27 83.424 ± 0.107 83.44 ± 0.253

Shake-Shake-96d 85.7 84.69 85.013 ± 0.117 84.95 ± 0.091

CIFAR-100 → CIFAR-10

Wide-ResNet-40-2 − − 96.44 ± 0.074 96.53 ± 0.074

Wide-ResNet-28-10 − − 97.53 ± 0.085 97.58 ± 0.092

Shake-Shake-112d − − 98.14 ± 0.064 98.03 ± 0.045

PyramidNet − − 98.58 ± 0.0 98.54 ± 0.048

CIFAR-100 → SVHN Wide-ResNet-28-10 − − 98.881 ± 0.0296 98.85 ± 0.0001

CIFAR-100 → ImageNet
ResNet-50 − − 78.187 ± 0.109 78.115 ± 0.009

ResNet-200 − − 80.18 ± 0.07 80.144 ± 0.008

listed models on CIFAR-10, SVHN and ImageNet. This demonstrates the trans-

ferability of BDA-discovered augmentation policies across datasets with the same

low-resolution images and the transferability from a low-resolution dataset to a high-

resolution dataset, as well as models. Besides, Table 3.5 demonstrates the transfer-

ability of BDA-discovered policies from a dataset with a smaller number of classes

(CIFAR-100) to another dataset with a larger number of classes (ImageNet).

For other stationary and non-stationary augmentation methods, e.g., AA and Ad-

vAA, separate searches on different datasets are required to achieve comparable re-

sults. Specifically, in AA [2], Sec. 5 states ”when training on SVHN, using the

best policy learned on reduced CIFAR-10 does slightly improve generalization ac-

curacy compared to the baseline augmentation, but not as significantly as applying

the SVHN-learned policy”. That is, for AA, CIFAR-10 discovered policies are not

as good as SVHN discovered policies on augmenting SVHN dataset. Besides, in Ad-

vAA [21], Table 6 shows the gap between the performance of the direct search and

the policy transfer on different datasets. For instance, policies learned on ImageNet
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perform worse than those from direct searches by 0.5% and 0.99% on CIFAR-10 and

CIFAR-100, respectively. Thus, augmentation policies found by BDA demonstrate a

better transferability across datasets with different resolutions.

In contrast to conventional methods which may overfit policies to a specific dataset,

BDA is less parameterized by imposing sparsity with Evolutionary Operation Prun-

ing in operation pair selection, thus yielding better generalizability. Therefore, the

transferability across different datasets is a merit of BDA but not demonstrated by

prior works, as it saves the need for searching on specific datasets.

Operation pair performance In addition to searching for optimal augmenta-

tion policies, BDA can discover good and bad augmentation operation pairs for the

dataset, which provides the explainability of the performance of specific augmenta-

tion operation pairs. Considering augmentation policies with the same operation pair

yet different magnitude levels may have a similar performance on augmenting the

dataset, we aggregate policies of the same operation pair to obtain the average re-

ward for each operation pair. We show the performance of different operation pairs

across CIFAR-10, CIFAR-100, ImageNet datasets in Figure 2. We can observe that

the three datasets share some good and bad operation pairs. Specifically, operation

pairs in the right parts (from Posterize to Cutout horizontally) of CIFAR-10/100

heatmaps share a similar pattern, and are mostly suitable for augmenting CIFAR-

10/100. Besides, the upper right corners of CIFAR-100 and ImageNet heatmaps show

a similar pattern, which indicates that these operation pairs in this corner are likely

transferable between CIFAR-100 and ImageNet. Moreover, all heatmaps indicate that

Invert should not be paired with operations other than Solarize, Equalize or Invert

for augmenting CIFAR-100 and ImageNet. The presence of such common knowlege

shared between datasets explains why BDA-discovered policies with sparse operation

pair selection can transfer across different datasets.

Furthermore, to validate that the performance of the operation pair can be reflected
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Figure 2: The heatmaps of average rewards of operation pairs obtained by searching
on CIFAR-10, CIFAR-100 and ImageNet, where y-axis represents the first operation
and x-axis represents the second operation.

Table 3.6: The performance on CIFAR-100 using operation pairs with top 5 average
rewards and operation pairs with bottom 5 average rewards found on CIFAR-100,
where the magnitude level of each operation is randomly sampled.

Model Top 5 Operation Pairs Bottom 5 Operation Pairs

Wide-ResNet-40-2 76.68 ± 0.196 19.58 ± 0.516

Wide-ResNet-28-10 80.39 ± 0.02 21.79 ± 0.22

by its average reward, we show the performance of CIFAR100-discovered operation

pairs with top 5 average rewards and operation pairs with bottom 5 average rewards,

respectively, on CIFAR-100 across listed models in Table 3.6. As shown in Table 3.6,

augmenting CIFAR-100 with operation pairs with bottom 5 average rewards can

noticeably decrease the network’s performance on image classification. Thus, our

design, which aggregates augmentation policies with the same operation pair and

computes the average reward of the operation pair as the performance of the operation

pair, is plausible.

3.4.4 Ablation Study

To demonstrate the effectiveness of the Evolutionary Operation Pruning algorithm,

we perform the search procedure on CIFAR-100 with 40k training images using the

BDA algorithm with a regular Successive Halving strategy [40] instead of Evolutionary
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Table 3.7: Ablation study: top-1 test accuracy (%) on CIFAR-100. Evaluations use
augmentation policies searched on the reduced CIFAR-100 dataset with 40k training
images.

Model BDA-NoPrune BDA-40k-SH BDA-40k

Wide-ResNet-40-2 78.91 ± 0.19 79.23 ± 0.28 79.61 ± 0.26

Wide-ResNet-28-10 82.79 ± 0.29 83.21 ± 0.12 83.44 ± 0.25

Operation Pruning. Specifically, in each round of the search, the method BDA-40k-

SH abandons the worst 1/3 of augmentation policies (O1(λ1), O2(λ2)) (arms) from the

entire search space of operations as well as their magnitudes. Additionally, we show

the performance of BDA without pruning arms. That is, the method BDA-NoPrune

does not abandon any augmentation policies during the search procedure. As shown

in Table 3.7, BDA-40k achieves consistently better results than BDA-40k-SH and

BDA-NoPrune.

Given the same search time, without pruning worse performing augmentation poli-

cies during the search procedure, BDA-NoPrune wastes computational resources on

less promising augmentation polices, thus it achieves worse performance on CIFAR-

100 across listed models compared with BDA-40k-SH and BDA-40k. Moreover, al-

though BDA-40k-SH also uses a Successive Halving strategy to allocate more compu-

tational resources to potentially more promising augmentation policies, this method

does not treat augmentation policies in a hierarchical format. With every augmenta-

tion operation pair treated equally, this method does not have a bias toward maintain-

ing specifically useful operation pairs and fails to achieve sparsity in operation pair

selection. Besides, without increasing the searchable magnitude levels of potentially

useful operation pairs during the search procedure, BDA-40k-SH will lead to quick

reductions of searchable augmentation policies. Therefore, through achieving sparse

selection of operation pairs and evolving searchable magnitude levels of active opera-

tion pairs, the Evolutionary Operation Pruning algorithm can effectively enhance the
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performance of the proposed bandit model.

3.5 Summary

In this chapter, we first introduce the search space of augmentation policies. Then,

we formulate the automated DA problem as a multi-armed bandit problem and give

an overview of the proposed framework. Moreover, we discuss the proposed BDA

algorithm, our design of the reward signal, and the Evolutionary Operation Pruning

algorithm in detail. Finally, we demonstrate and analyze our experimental results

on image classification benchmark datasets [52–54] across different models. In ad-

dition, we perform experiments to demonstrate the transferability of our searched

policies across different datasets and perform the ablation study to demonstrate the

effectiveness of our proposed method.
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Chapter 4

The BOES Algorithm for
Hyperparameter Optimization

For the automated HPO problem, as mentioned in Chapter 1, Bayesian Optimization

(BO) is widely adopted for searching for the globally optimal configuration. In every

search iteration, BO suggests the hyperparameter configuration that maximizes the

acquisition function [45] computed by a probabilistic surrogate model [35, 42] for

evaluation.

However, there are several limitations of traditional BO for HPO tasks. First, as a

single surrogate model cannot efficiently approximate the objective function, vanilla

BO approaches need to run many search iterations before finding good configurations,

especially for high dimensional hyperparameters or a large search space. Second, as

the optimal acquisition functions for different HPO tasks are different, optimizing

a single acquisition function for different HPO tasks may lead to sub-optimal solu-

tions. HEBO [50] uses a multi-objective evolutionary optimizer to optimize multiple

acquisition functions simultaneously to sample better configurations across various

HPO tasks. However, as training a multi-objective optimizer requires more training

data compared to a single-objective optimizer, HEBO may need to explore more con-

figurations to find the optimal one. Finally, traditional BO sequentially suggests a

single configuration for evaluation in each search iteration [61], and can not lever-

age the currently widespread parallel computing resources [62] for faster evaluation.
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Batch BO [63–65] reduces the number of search iterations by suggesting a batch of

configurations in each iteration to be evaluated in parallel.

In this thesis, we propose the BOES algorithm to efficiently and robustly solve

various HPO tasks in machine learning. BOES is a batch algorithm that can leverage

parallel computing resources and perform global search of hyperparameters within a

small number of iterations. BOES uses a hybrid sampler that samples more diverse

configuration candidates both from a BO acquisition function and from a distribution

statistically learned via an evolutionary strategy. These candidates are then ranked

by an ensemble surrogate model that leverages the power of multiple probabilistic

models to reduce estimation variance. Due to the ensemble surrogate model, BOES

is robust and can be used to solve a range of different HPO tasks. Meanwhile,

compared to the multi-objective HEBO [50] (the best solution from the NeuralIPS

2020 black-box optimization challenge), BOES uses a single-objective hybrid sampler

and is more efficient; it reaches better performance than HEBO at the same number

of evaluations. Our main contributions are summarized as follows:

First, we propose a hybrid sampler consisting of TPE [35], CMA-ES [31, 32], and

Latin hypercube [66] to sample multiple configuration candidates to be evaluated by

an ensemble surrogate model. This hybrid sampler can better balance exploitation

and exploration than using a single sampler during the search. While the Latin

hypercube sampler randomly samples configurations that are well spread across the

whole search space, the TPE and CMA-ES samplers suggest configurations from

learned distributions of the reward history.

Second, we propose an ensemble surrogate model consisting of different probabilis-

tic models to predict the performance of hyperparameter configurations generated by

the hybrid sampler and suggest a batch of best configurations for parallel evaluation.

The ensemble model can better generalize to any objective (reward) function which

could have an arbitrary dependence on various performance metrics in a real-world

HPO task, without assuming knowledge of its priors.
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We conduct extensive experiments on 20 HPO datasets that are derived from

realistic yet anonymized industrial tasks, including optimizing hyperparameters for

models or strategies in recommendation systems, etc., in the Automated HPO Contest

in QQ Brower 2021 AI Algorithm Competition at CIKM 2021 AnalytiCup. Our

proposed method ranked the 4th and 7th places in the final contest of this competition,

for the training and tournament stages, respectively.

4.1 Batch Hyperparameter Optimization

The HPO task aims to solve the following optimization problem:

max
x∈X

f(x), (4.1)

where x is the feature vector of the hyperparameter configuration belonging to the

search space X, f(x) is the reward function (the objective function) maximized by

the search algorithm.

For the batch HPO algorithm, in each search iteration, the search algorithm re-

ceives a reward history of explored configurations. Based on the reward history, the

search algorithm suggests a batch of configurations that are to be explored and receive

the corresponding rewards in the next iteration. The goal of the search algorithm is

to find the hyperparameter configuration with the maximum reward under limited

search iterations.

4.2 The BOES Algorithm

4.2.1 Algorithm Overview

Our proposed BOES algorithm is described in Algorithm 4 as follows: When no

hyperparameter configuration is explored, in line 4, we use the Latin Hypercube

sampling to sample num suggest configurations that are well spread across the search

space. Otherwise, in line 6, we use the configuration feature x and the corresponding

reward f(x) from the reward history to train the TPE sampler [35], the CMA-ES
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Algorithm 4: The BOES Algorithm

Input: The objective function f , the search space X
Output: The hyperparameter configuration x with the maximal reward in H

1 Initialize the Ensemble Model EM , the TPE sampler s1, the CMA-ES
sampler s2, the reward history list H = {}

2 for iteration t = 1, . . . , total iterations do
3 if len(H) = 0 then
4 suggested configs =

LatinHypercubeSample(X, num suggest, rand seed)
5 else
6 Fit the TPE sampler s1, the CMA-ES sampler s2, every surrogate

models θ in the Ensemble Model EM to the reward history H
7 suggested configs = {}
8 for i = 1, . . . , num suggest do
9 suggested configs =

suggested configs
⋃︁
{Suggest Config(s1, s2, EM,

X, num tpe, num cma, num latin)}

10 for i = 1, . . . , num suggest do
/* xi is the ith configuration in suggested configs */

11 H = H
⋃︁
{(xi, f(xi))}

12 Run the early-stopping strategy to prune configurations with worse
intermediate rewards (for the final contest)

13 x = argmaxx∈Hf(x)

sampler [31, 32], and surrogate models in the Ensemble model. Then, in lines 8-9,

we use Algorithm 5 Suggest Config to obtain num suggest configurations suggested

from the Ensemble model. As shown in Algorithm 5, first, we sample the given

numbers of configurations with the TPE sampler, the CMA-ES sampler, and the

Latin Hypercube sampler [66], respectively. In lines 3-4 of Algorithm 5, given the

sampled configurations and the acquisition function, we obtain the top configurations

composed of the configuration with the highest Probability of Improvement (PI)

[45] value suggested by every surrogate model in the Ensemble model. Algorithm 5

returns the configuration with the highest frequency in the top configurations. After

obtaining num suggest configurations to be explored, in lines 10-11 of Algorithm 4,

we get the corresponding rewards from the objective function and update the reward

history. Moreover, we use a heuristic early-stopping strategy to prune configurations
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Algorithm 5: Suggest Config

Input: the TPE sampler s1, the CMA-ES sampler s2, the Ensemble Model
EM , the search space X, the number of configurations sampled by
TPE, CMA-ES and Latin Hypercube: num tpe, num cma, num latin

Output: The hyperparameter configuration x suggested by the Ensemble
Model EM

/* Sample configs using TPE, CMA-ES, LatinHypercube sampling */

1 sampled configs = {TPESample(X, num tpe, s1)}⋃︁
{CMAESSample(X, num cma, s2)}⋃︁
{LatinHypercubeSample(X, num latin, rand seed)}

2 top configs = {}
3 for surrogate model θ in the Ensemble model EM do
4 top configs = top configs

⋃︁
argmaxx∈sampled configsPI(x|θ)

5 x = argmaxx∈top configsfreq(x)

with worse intermediate rewards in the final contest. Thus, the algorithm wastes

fewer search resources on less promising configurations. Algorithm 4 returns the

hyperparameter configuration with the highest accurate reward in the reward history.

4.2.2 The Hybrid Sampler

To obtain a batch of suggested hyperparameter configurations, we use the hybrid

sampler consisting of TPE [35], CMA-ES [31, 32], Latin Hypercube [66] samplers to

sample a set of configuration candidates and feed them to the Ensemble model to ob-

tain each suggested configuration. With the help of the TPE sampler, hyperparameter

configurations that maximize the Expected Improvement (EI) [45] acquisition func-

tion can be sampled from the learned posterior distribution of the objective function

ps1(f |H). In addition, instead of sampling configuration candidates from only one

learned distribution, by adding configurations sampled from the multivariate gaus-

sian distribution of the trained CMA-ES sampler and the configurations sampled

with Latin Hypercube (pure exploration sampling) to the configuration candidates,

the hybrid sampler balances the exploitation and the exploration better by providing

more knowledge and diversity from different sampling methods to the configuration

candidates.
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4.2.3 The Ensemble Surrogate Model

As we need to approximate various objective functions accurately with a small num-

ber of explored configurations, it is significant to leverage the capability of multiple

probabilistic surrogate models. We use an ensemble model consisting of an Extra

Tree (ET) [67], a Random Forest (RF) [68], a Gradient Boosting Tree (GBT) [69],

and a Gaussian Process (GP) [42] regressors as probabilistic surrogate models. Each

surrogate model gives a vote to the configuration with the highest PI [45] acquisition

score from the given set of sampled configuration candidates. We use the max-voting

technique from ensemble learning [70, 71] to select the configuration that receives

the most votes as the best configuration to be explored in the next iteration. As

the Ensemble model selects the configuration based on the PI acquisition function

from the configuration candidates sampled from different learned distributions, our

proposed algorithm implicitly optimizes multiple acquisition functions (EI and PI)

which is more effective than optimizing a single acquisition function. In addition,

the combination of the hybrid sampler and the Ensemble surrogate model provides

a robust and effective way for solving the exploitation-vs-exploration dilemma in the

HPO problem.

4.2.4 The Early-stopping Strategy

We propose a heuristic early-stopping (EarlyStop) strategy to stop exploring un-

promising configurations for better search resources allocation in the final contest

where the explored configuration receives the accurate reward until 14 successive

search iterations. Specifically, we prune configurations whose intermediate reward’s

upper confidence bound is less than the maximal value of the accurate rewards of

explored configurations. In addition, we prune configurations with more than 3 iter-

ations whose intermediate reward is less than the 75% percentile of the latest inter-

mediate rewards of explored configurations.
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4.3 Experiments and Results

In this section, we evaluate our proposed BOES algorithm on 20 HPO datasets aiming

to optimize different objective functions for realistic industrial tasks of recommenda-

tion systems from the HPO Contest in the QQBrower 2021 AI Algorithm Compe-

tition. We first introduce the preliminary and the final HPO tasks, as well as the

search space, for this contest. Then, we analyze our performance compared to vari-

ous baseline models, such as Random Search [27], GP [42], TPE [35], etc., and HEBO

[50] (the best solution from the NeurIPS 2020 black-box optimization challenge).

4.3.1 Hyperparameter Optimization Tasks

The Preliminary Contest In the preliminary contest, the total number of itera-

tions that the search algorithm can run is 20. In each iteration, the search algorithm

suggests 5 hyperparameter configurations from the search space under 30 seconds,

which will receive the corresponding accurate rewards of the suggested configurations

in the next iteration. Thus, the number of configurations that can be explored by the

search algorithm is 100.

The Final Contest In real-life scenarios, as computing the accurate reward for the

hyperparameter configuration is very time-consuming, the search algorithm usually

uses the intermediate rewards to approximate the performance of the configuration

and prune those with worse performance early. Based on this scenario, in the fi-

nal contest, each hyperparameter configuration will receive its accurate reward until

having 14 successive iterations, where each intermediate iteration returns an average

reward and the 95% confidence interval of the reward for this configuration. The

total number of iterations that the search algorithm can run is 140. As only the

configurations with the accurate rewards (the final reward received at the 14th itera-

tion) are considered in the final evaluation, the number of configurations that can be

accurately explored by the search algorithm is from 0 to 50.

41



Table 4.1: The average accuracy of 20 datasets under 10 random seeds in the prelim-
inary contest.

Random GP RF ET GBT Ensemble TPE Ensemble + TPE BOES - Latin BOES + LocalSearch BOES

0.1 0.299 0.488 0.631 0.460 0.718 0.459 0.735 0.768 0.784 0.827

Search Space There are 20 optimization tasks in the online test evaluation for

this contest. For each optimization task, the number variables of the hyperparameter

configuration is in the range of 2 (inclusive) to 6 (inclusive). Moreover, the number

of choices of each hyperparameter variable is in the range of 0 (exclusive) to 20, 000

(inclusive). Thus, the size of the search space is in the following range:

104 ≤ dim(X) ≤ 1025. (4.2)

4.3.2 Results and Analysis

The Preliminary Contest. Table 4.1 summarizes our results on 20 datasets where

the average accuracy is averaged over all datasets and repeated under 10 random

seeds. As shown in Table 4.1, the performance of the ensemble surrogate model

consisting of GP, RF, ET, and GBT is noticeably better than the performance of each

single surrogate model. These results demonstrate our proposed ensemble surrogate

model can leverage the power of single surrogate models and approximate various

objective functions better.

Moreover, as the surrogate models mentioned above suggest hyperparameter con-

figurations from a randomly selected set of configuration candidates, we also conduct

experiments using methods that sample configuration candidates based on the histor-

ical rewards. As shown in Table 4.1, the proposed hybrid sampler of BOES, which

consists of TPE, CMA-ES, and Latin Hypercube, performs noticeably better than

using a single BO or Evolutionary sampler to sample candidates for the ensemble sur-

rogate model. Since the hybrid sampler samples promising configuration candidates

from distributions learned from TPE and CMA-ES models, it exploits the knowledge

learned from the explored configurations. Also, Latin Hypercube samples configu-
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Table 4.2: The average accuracy of 20 datasets under 10 random seeds in the final
contest.

HEBO + no EarlyStop BOES + no EarlyStop BOES + SH BOES + proposed EarlyStop

0.291 0.551 0.494 0.781

rations that are well spread across the whole search space provide the exploration

to the configuration candidates. Thus, our proposed hybrid sampler demonstrates a

robust and good ability to balance the exploitation and the exploration during the

search procedure under limited search resources. Furthermore, we show that adding

the local search to our proposed global search method is not beneficial to optimize

the given recommendation system datasets in this contest.

The Final Contest Table 4.2 summarizes our results in the final contest compared

to HEBO [50] without EarlyStop, the classic pruning strategy Successive Halving

(SH) [40], and proposed heuristic EarlyStop strategy. Under the experimental setting

of no EarlyStop strategy where only 50 configurations are explored, our proposed

approach achieves significantly higher performance than HEBO. This demonstrates

our proposed method is more efficient and effective compared to HEBO under small

search iterations. HEBO uses the multi-objective optimization method to optimize

multiple acquisition functions simultaneously that may require more training exam-

ples. Instead, our proposed hybrid sampler and ensemble model implicitly optimize

multi-objective acquisition functions through training the TPE sampler and the en-

semble model with EI and PI acquisition functions, respectively. Moreover, our pro-

posed heuristic EarlyStop strategy performs noticeably better than the SH pruning

strategy in the final contest. This result demonstrates the capability of our heuris-

tic EarlyStop strategy to prune unpromising configurations based on intermediate

rewards and allocate search resources to important search regions.
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4.4 Summary

In this chapter, we first introduce the batch HPO task. Then, we describe our

proposed BOES algorithm for the automated HPO problem in detail. Finally, we

demonstrate the performance of our proposed algorithm on 20 HPO datasets from

recommendation system scenarios provided in the Automated HPO Contest in the

QQBrower 2021 AI Algorithm Competition.
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Chapter 5

Conclusion and Future Work

In this thesis, we study two problems from the AutoML research area: automated

DA and automated HPO. For the automated DA problem, we propose a bandit-based

search algorithm to search for the optimal set of augmentation policies. For the auto-

mated HPO problem, we propose a hybrid Bayesian Optimization and Evolutionary

strategy sampler and an ensemble probabilistic surrogate model to search for the

globally optimal hyperparameter configuration more efficiently.

5.1 Automated Data Augmentation

For the automated DA problem, we propose a novel bandit-based search algorithm

for searching for effective and transferable stationary augmentation policies across

different datasets.

Our extensive experiments demonstrate that BDA can generate effective augmen-

tation policies within a reasonable search cost for the target dataset. Specifically, on

CIFAR-10/100 datasets, BDA achieves comparable or better results than previous

automated augmentation methods, e.g., AA, FastAA, RandAA, DADA, and PBA,

across various models with a low search cost. Moreover, on high-resolution image

datasets like ImageNet, BDA achieves the best performance on ResNet-50 than pre-

vious methods producing stationary policies, including AA, FastAA, RandAA, and

DADA. Additionally, BDA reduces the search cost noticeably on large and high-
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resolution image datasets. On ImageNet, BDA is 536 times faster than AA and is

16 times fast than FastAA. Moreover, in contrast to previous approaches that are

highly parameterized and does not demonstrate good transferability of augmentation

policies across different datasets, BDA is a non-parametric search algorithm for dis-

covering augmentation policies with good transferability across datasets, which is not

shown by prior methods.

5.2 Automated Hyperparameter Optimization

For the automated HPO problem, we propose an efficient batch HPO algorithm com-

bining Bayesian Optimization and Evolutionary Strategy.

Our extensive experiments on the datasets of recommendation systems demon-

strate the effectiveness of BOES. In addition, compared with HEBO [50] (the best

solution from the NeuralIPS 2020 black-box optimization challenge), BOES performs

noticeably better in the final contest. This result demonstrates that our method per-

forms better under limited search iterations. Futhermore, BOES ranked the 4th and

7th places in the training and tournament stages of the final HPO Contest in QQ

Brower 2021 AI Algorithm Competition, respectively.

5.3 Future Work

Automated Data Augmentation. For the automated DA problem, as it is bene-

ficial to search for different augmentation policies for different images, we would focus

on deriving a less-parameterized search algorithm with the effect of data variation con-

sidered. We would try the contrastive learning technique [72] to extract robust image

representations. Then, we would try the contextual-based bandit algorithm to take

the image features as the input, or we would combine the clustering algorithm and

our proposed bandit-based search algorithm BDA to search for augmentation policies

for each image cluster.
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Automated Hyperparameter Optimization. For the automated HPO prob-

lem, we would try combining the TuRBO [48] technique and our proposed BOES

algorithm to develop an efficient search algorithm for large-scale high-dimensional

HPO problems.
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