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ABSTRACT

A WAFER FABRICATION ASSESSMENT MODEL
BASED ON CLUSTERING OF IC FAILURE PATTERNS

This study presents a generalized model for the performance assessment
of integrated circuit (IC) fabrication processes. The primary advantage of
the proposed cluster model lies in its ability to provide quality confidence
information about dies and wafers, while requiring only the standard die
failure patterns as data. The relationship between the relative positions cf
dies and the pattern of die failure is explored. This relationship can be
adequately represented by a Gaussian weighting function. The values
from the model can be used to monitor the performance of a fabrication

process over time.

This thesis discusses in some detail the current literature ~n the
statistical assessment of the performance of wafers. The existing .dels
include consideration of defects as randomly distributed points and the
use of critical areas to determine yield. The thesis demonstrates the
limitations of these concepts and how the proposed cluster model avoids

many of these limitations.

A detailed example is presented in this thesis to demo. ..rate the cost
reduction generated by the proposed model through early screening based

on individual die cluster values.
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CHAPTER 1

FACTORS IN THE PERFORMANCE ASSESSMENT OF IC
FABRICATION

INTRODUCTION

To remain competitive in an aggressive semiconductor manufacturing
market, integrated circuit (IC) facilities are continually striving to
improve their fabrication processes. Tbhis is reflected by the current
research into new methods and materials. Technological limits caused
by the acceleration of failure mechanisms have only prompted the
development of new techniques. This progress is illustrated in Figure 1,
which also shows the submicron technology being investigated presently.

The approximate minimum widths of . ach technology aiso are indicated.

The concerns over reliability have also prompted research in design
(design for testability), and testing (detection, analysis, and elimination of
failure mechanisms [1]). This thesis analyzes failure mechanisms at the
earliest point in the integrated circuit life cycle, the circuit fabrication.
The model proposed in this thesis assesses the performance of the circuit
fabrication process by characterizing the clustering of failure patterns

that occur on a finished wafer.
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Figure 1. Progress of gate and device interconnect materials

shov/ing the minimum dimensions for each technology [2].

Using the proposed methodology, facilities could reduce costs on
encapsulation and quality control testing, by rejecting potentially weak
(but functional) circuits after the on-wafer circuit tests. The proposed
methodology also could be used in the development of failure mode
signature analysis such that manufacturers, could in the future, detect
anomalies not normally uncovered by traditional testing methods. By
correlating these anomalies with the various stages in the fabrication

process, control could be improved.

The proposed model will augment current methods of assessing
fabrication performance. In a later section, the means by which the
model may be incorporated into a fabrication facility's testing structure

will be shown.



To develop the model, various concepts were analyzed that pose problems
to current methods of designing assessmen: models. These concepts,
explained briefly here, will be examined and “he specifications for the
proposed cluster model will be developed from the analysis of these

concepts.

First, binary values are used represent die yield. However, binary values
cannot reveal the range of quality differences between dies. As a result,
the separation of dies based on their quality is achieved through costly

testing procedures.

Secondly, dies are considered independent from each other for the
purposes of analysis and hence their arrangement on a wafer is not
important. To most assessment methods, two wafers with the same yield
will appear identical, even if the patterns of failure on the wafers are

entirely different.

Lastly, many yield models and yield assessment tools are based on studies
of defects rather than die yields. One defect process that is easily
measured on wafer surfaces is particle contamination. As a result, many
models are based on the patterns of distribution of particle defects.
However, the transition from defect models to yield models is a difficult
one since yield is affected by faults, a subset of defects that have an adverse
effect on the structure of a circuit. The characteristics determined for

defects do not necessarily hold for the characteristics of faults.

To overcome this transition, the concept of critical area was developed.

Critical area is the subset of the die area that is used by signal lines and



operational devices. Thus, if a simulation study places a defect within a

critical area, the defect would be considered a fault.
SCOPE AND TERMS OF THE THESIS

Defininz the Scope

The diagram shown in Figure 2 shows the stages involved in the
production and implementation of integrated circuit products. This
thesis involves the areas indicated in bold with most of the emphasis on
wafer processing, which involves fabrication of circuits on the wafer

surface.

Silicon wafers Dual in-line package Failure
Silicon crystal % ¢
E TN
”

' Encapsulatnon ]

| Processing

Silicon ingot
Integrated circuit Systems
dies or "chips”

Figure 2. The physical life cycle of a typical integrated circuit
product from the growth of the silicon ingot, and manufacturing
to ultimate failure at some point in the future.

Further explanations of the fabrication process may be cbtained from

various texts (3, 4, 5].



A portion of integrated circuit products produced on every fabrication line
have latent flaws that result in early failures under normal operating
conditions. As a quality contro: measure, this portion of dies is induced to
fail by using specially designed acceptance testing methods. The ICs that
fail are part of the failure distribution known as "infant mortality”. This

is illusirated in Figure 3, with the two other stages of the failure

distribution.
FAILURE RANDOM
RATE ERRORS
(FITS)
INFANT
MORTALITY WEAROUT
+ ELECTROMIGRATION
DOMINANT + OXIDE DEFECTS * SOFT ERR{RS * HOT CARRIER
RELIABILITY | * PARTICULATE/ « OXIDE/SILICON INJECTION
CONCERNS MASKING DEF. DEFECTS » OXIDE WEAROUT
+ CONTAMINATION | «LATCH UP « CONTAMINATION
REMEDIES +« GETTERING « HIGH SIGNAL » INVENTIONS
« CLEANER ROOMS STRENGTH DESIGN - ALLOYS
(AUTOMATION) OF CKTS AND - BARRIER METALS
+ SCALED VOLTAGE PROCESSES - HIGH PERMITIVITY
« SCREENING « Si+METAL DEFECT - DIELECTRICS
CONTROL +* PROCESS CONTROL
«EPI « SCALED VOLTAGE
«CMOS (LOW DUTY
CYCLE)

Figure 3. Failure distribution in IC products [6].

To control "infant mortality”, and to ensure that a high quality product
reaches the customer, the quality control for an integrated circuit involves
a range of compliance tests. Table 1 outlizies the tests, or screens listed in

MIL-STD-883, Test Methods and Procedures for Microelectronics.



Table 1. MIL-STD-883 screening process tests in sequence [1].
(a) AT THE MANUFACTURING SITE

(1)
(2)
(3)

wafer lot acceptance
assembly die shear and bond-pull
precap visual and seal

(b) AT THE MANUFACTURER, A. TEST LABORATORY OR A.QUALIFIED USER

1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
a7
(18)
19)

While all facilities may not use the complete set of screens for their

product line, every facility employs some form of quality assurance to

bake

temperature cycling
constant acceleration

fine leak

gross leak

PIND (particle impact noise detection)
serialization

electrical functional
burn-in

electrical functional (repeat)
parametric drift

fine leak (repeat test)

gross leak (repeat test)

final electrical functional
X-ray inspection

quality conformance
external visual inspection
QA preshipment, data review
package

prevent flawed components from reaching their customers.

The proposed methodology would be used following the step (a) (1) wafer
lot acceptance, to eliminate as early as possible (and thus without further

expense) integrated circuits that may not survive a facility's set of quality

assurance tests.

Definition of Fabrication Terms

The terms that will be most commonly used in this thesis are defined as

follows.



§ O 1

Integrated Circuit: Commonly called a "chip” or IC, an
integrated circuit is an electronic circuit whose
components, such =as resistors, capacitors, and
transistors, are in the submicron to 10's of microns
range. This allows the total chip area to be as small as
several square millimeters while providing the
functionality of discrete component circuits many orders

larger in size.

Ingot: An ingot is a cylinder of electronic grade
semicondﬁcter erystal usually 10 to 15 cm in diameter,

and up to 60 cm in tength.

Wafer: A wafer is a circular slice cut from an ingot. One
side is usually highly polished in preparation for
processing integrated circuits. Wafers are usually

processed in groups known as lots.

Dies: Upon completion of the circuit fabrication, the
wafer carries a grid of integrated circuits. The cir~uits
are referred to as dies while they are part of the wafer,

and as chips when they are separated.



Dual in-line package: To provide physical protection
from the environment, ICs are encapsulated in a plastic
or ceramic enclosure. The most popular form of

enclosui is the dual in-line package which has a row of

electrical contacts on either side.

Definition of Performance Terms

To develop a method of assessing performance, it will be necessary to

begin with the definition of various performance terms.

Definition of Quality

Quality will be defined as 'the totality of features and characteristics of a
given product that bear upon its ability to satisfy a given need.' [1] The
'features and characteristics' will be the set of functional and parametric
specifications (an agreed upon description of expected operation [7]) set by
the facility and the customer. The 'given need' will be the definition of the

use of an IC product in a particular function.

The definition of quality bears heavily upon the facility's criteria for

defining die failure.



Definition of Die Failure

A die failure is the condition where the circuit operates outside a set of
given specifications [7]. That is, the die functions either incorrectly or not

at all, or some parameter varies outside a specified range.

Determining the exact specifications to dictate whether a die has failed
and should be rejected, is still the subject of much debate and depends
largely upon the operating specifications of the particular fabrication
facility. In some instances, only degradation of the signals may occur
although the chip continues to function correctly. Some manufacturers

may consider this a failure, while others do not [1, 8].

Definition of Yield

Whether a tested die complies or fails to comply with the quality
assurance specifications is referred to as the "die yield". This parameter
is represented numerically by the binary values '1' or '0’. Dies that pass a
set of compliance tests are called "accepted dies", while those which fail

are called "rejected dies".

The total number of accepted dies on the surface of a wafer is defined as
the "wafer yield". This yield value is either expressed as an integer or as
a ratio of the number of accepted dies to the total number of dies on the

wafer.



Definition of Defect

A defect in a die is the presence, absence, or modification of a physical
form within the die. When a defect causes a failure in a die either by its
nature or position, it also will be referred to as a fault. Thus, faults are a
subset of all defects on a wafer. This definition will be important when
discussing models and methods currently in existence since the
characteristics determined for defects (which is often the case) may not

necessarily hold for faults.

A defect, as defined here, will include common processing problems as
small as dust particles and signal line breaks, or as large as iripioper ion
implantation levels over an entire wafer. It will be understood that a
defect may occur anywhere on the area of a die, on circuit patterns, on
unused spaces, or on both if the defect is large enough. A defect also may
be contained in the body of the wafer under the surface of the die. While
many authors recognize that defects vary in size and form [9, 10], the most
commonly used models to simulate yield use point defects that occur on

the surface of the wafer [11, 12].

The Die Testing Process

The Wafer Acceptance Stage

After the circuit fabrication, the dies are tested according to MIL-STD-883
specification for wafer lot acceptance. The following is an overview of this

test stage.

10



The uncut dies are evaluated with series of on-wafer tests using
Automated Test Equipment (ATE) [13]. The ATE makes electronic contact
with every die through fine probes, and applies a set of qualifying tests for
the particular product. This includes testing the functions of the die, and
measuring its electrical parameters. If a die fails any of the tests, it is
marked with an ink dot. An example of a tested wafer with marked dies

is shown in Figure 4.

Passed dic

@ | Failed dic

——

Figure 4. A sample wafer after ATE testing, showing failed

dies marked with ink.

The process to arrive at the pattern shown in “igure 4 is demonstrated in
Figure 5, which shows a possible sequene: «of three on-wafer tests; open
and short circuit, general functionality. «rd output voltage level. To the
right of the flowchart is the percentag:: o dies that could be encapsulated
if the testing was concluded at that point. It follows then, that on-wafer
testing could be extended, and this could reduce the final number of

accepted dies.



Wafer Processing Percent of accepted dies
Complete

Fail 10% 90% Tests the die's power
‘ and ground lines. Die
passes if it can power-up

normally.

70% Tests the die's internal
circuitry. Die passes if
set of inputs produces
expecied outputs.

General Fail 20%

7 Functionality

Output

Fail 30%
Voltage Level A

40% Tests the output voltage
for a set of inputs. Die
passes if output is within
a specified range.

. Dies Marked,
Dies Encapsulated Discarded
Accepted Dies Rejected Dies

Figure 5. The flow of an on-wafer testing process consisting of
three tests.

The wafer results at the end of each of the three tests are shown

graphically in Figure 6. Dies that fail some prior test are not tested again.

12



I l s 3 H

et/ R

Test] ——p Test2 ———p Test3 ——p Final
Result

D Passed all tests to this point
. Failed Test n

B Failed some previous test

Figure 6. An example of the on-wafer testing process showing
the progression of die rejection at each test stage.

The proposed methodology would accept the results of the wafer

acceptance stage and analyze the patterns of die failure.

13



CEAPTER 2

RATIONALE FOR THE CLUSTER MODEL

INTRODUCTION

The models presented in much of the literature often originate from other
fields of study. To adapt the models to the wafer fabrication field, the
premises corresponding to the original model require transformation.
Such transformations must always be done with extreme care, since the
original and the present fields of study may contain an inherent set of
principles that are considerably different. In the original context, a model
mzy have accounted for the necessary factors to produce accurate results.
However, a second field may contain factors that may not be accounted for

in the original model and thus inaccurate results are produced.

The theory of quality and reliability in the wafer fabrication field is an
extension of traditional manufacturing concepts. While much of the
theory applies, the original manufacturing context involves the
production of finished pieces that are produced independently. As a
result, the theory was designed to analyze populations of independent
items or events. Relationships exist in the wafer fabrication field that
should be accounted for in models and assessment tools in order to

produce accurate results.
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The two types of relationships within the scope defined for this thesis are
1) the relationship between the wafers that are produced from the same
ingot, and ii) the relationship between integrated circuits produced from

the same wafer. These are briefly explained below.

Wafers are sliced from an ingot and therefore inherit the crystal structure
(including any crystal defects), and any imbedded impurities. By the very
nature that wafers are cut from one ingot, an association is established

between consecutive wafers.

Similarly, integrated circuits inherit the crystal structure and impurity
level that exists in the area that they occupy on the wafer. Since crystal
structures and impurity levels may vary across the wafer [14], circuits
from localized areas of the wafer should exhibit similar electrical
parameters such as threshold voltage, while circuits from separate areas
could have large differences in these parameters. Thus, an association is
established between circuits in neighbouring grid locations. As well,
environment conditions may affect only localized areas. A section of the
wafer may be exposed to contaminants or be subject to stresses that affect

a localized group of circuits, but not those in a remote area of the wafer.

These relationships are not considered in typical manufacturing models
and typical wafer fabrication models do not account for them. The
proposed cluster model will incorporate the relationships between circuits
to provide a method of assessment of the fabrication quality. The sections
that follow analyze these relationships and establishes the criteria for the

structure of the proposed model.
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QUALITY TESTING RESULTS AND THEIR INTERPRETATION

The result of present die tests is either an acceptance or a rejeclion of a
particular die based on whether the die can perform a set of functionality
tests properly and whether the various electrical parameters are within
the tolerable limits. This amounts to comparing the die's quality to the
facility's standard or ideal. The binary values 1' and '0' represent quality
levels above the minimum standard and below the minimum standard
respectively. However, such a result cannot reflect the range of variation
between the dies that pass the set of compliance tests. That is, an
assignr »nt of 'l' implies that a die meets or exceeds the quality level
required by the facility, but provides no indication of how much the die

quality is above the minimum acceptable quality level.

To be accepted, a die may have any value for a tested parameter, so long as
that parameter is within the stated bounds. Under present testing
methods, the levels of these variations are usually ignored and all
accepted dies appeai’ to have identical test results. Thus all accepted dies

would appear to be of equal quality.

As a result, a method is required to produce real-valued numbers to allow
for improved fabrication assessment. Since the data from each test is not
kept, the proposed cluster model will assign a value based on the yield

results of the dies in the local area.
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DIE INDEPENDENCE

Similar to the traditional manufacturing concept, the test result for a die
is considered to represent the quality of only the tested die, and the quality
of the tested die is assumed to be independent of all the other dies on the
wafer. This precludes the possibility of the test results for one die being
associated with those of nearby dies, even though the tests were not
necessarily designed in that manner. If dies are considered independent
of each other, this implies that their arrangement on a wafer is not
important. Hence, two wafers with the same yield would be considered

1dentical even if the patterns of failure on the wafers is different.

Figure 7, is an example of two wafers, with the same yield of 50%.

Yield = 50% Yield = 50%
Wafer Cluster = 25% Wafer Cluster = 38%

Accepted die

_ Rejected die

Alignment Flat

Figure 7. Two wafers with identical yield and different die

failure patterns. Shown as well are the results of the cluster

model analysis for each wafer.

For the dies from both wafers to be of equal quality requires that the faults

that caused the die failures are smaller than the size of a die (to ensure

independence between dies), and that the distribution of failures is

17



uniformly random (to ensure all wafer regions are identical). However,
dies may be affected by influences that are neither smaller than a die nor
distributed randomly over the wafer. Consider the example of wafer sheet

resistance.

Sheet resistance

Wafers tend to exhibit sheet resistance variations across their surface as a
result of the ngot growth process. The variations in sheet resistance
affect the dielectric breakdown [15], current, voltage, and other

parameters essential for normal operation of integrated circuits.

Ingots grown by the Czochralksi technique, exhibit impurity variations in
both axial and radial resistance. When the ingot is sliced straight across
its diameter into wafers, the variations, form a resistivity pattern unique

to every wafer.

An ecxample of one pattern is shown in Figure 8.

Figure 8. Wafer resistivity pattern with contours at 1%
increments [16]
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The proposition is made that dies should not be considered independent
since factors that affect die yield are not necessarily randomly distributed
or physically smaller than a die. Thus, the concept of analyzing the
arrangement of accepted dies is proposed to be an important part of

assessing the fabrication process that produced the wafer.
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CHAPTER 3

THE CLUSTER MODEL

INTRODUCTION

The purpose of the proposed model is to assess the performance of the
fabrication process by characterizing the die failure patterns that occur on
a finished wafer. By revising the understanding of the die testing process
and the produced results, it is possible to develop a procedure to analyze a
wafer's failure patterns, and provide a guide to improving fabrication

performance.

The proposed procedure produces a value that represents the failure
pattern on the wafer. This value may be used to clarify the binary
(accepted/rejected) information provided by the die testing process. This
measure will be referred to as the cluster value, and it is one that could
become an important tool in developing quality confidence intervals for
individual dies as well as forming a numerical basis for comparing

wafers.

Demonstration of the Cluster Model using a 1-D Example

To introduce the concepts used in the cluster model, a one-dimensional
example will first be presented. This example will start at the end of the

wafer acceptance stage. The areas covered will be the development of the
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die proximity function, the assignment of the cluster value for a die and a

wafer, and finally examples of the use of the model.

The one-dimensional data will be obtained from a single row of dies from
a hypothetical wafer. After a wafer has passed through the wafer
acceptance stage, the accepted dies will be assigned the value of '1' and

the rejected dies will be assigned '0'. This is illustrated in Figure 9.

Figure 9. Binary value assignment to wafer test data.

To show yield data from a wafer in a simpler form, a bar chart will be

used to reflect the yield of each die (1 or 0) in a row.



1 Accepted '1'

Test Result
Rejected '0’

.
1 2 3 4
Die number

Figure 10. Development of the 1-D model from wafer data. The

bar chart represents the yield of each die in a row as determined

by the ATE.

The specific data that will be used to develop the model is shown in Figure

11. A row of 10 dies will be used, of which 6 have passed the compliance

tests and 4 have failed.

Accepted '1'
Test Result

Rejected 0’

1 2 3 4 5 6 7 8 9 10
Die number

Figure 11. Data for the 1-D example.



Overview of the Die Proximity Function for the 1-D Example

The analysis begins by tabulating the proximity of the dies surrounding
die 1. The tabulation is used to produce proximity factors (Fy, Fy, Fy, ...)
which will be used in subsequent calculations. Each die is analyzed in

turn, and the currently analyzed die will be referred to as the reference

die.

The proximity factor Fy is equal to the binary value of the reference die,
and for die 1, Fp is 1. Subsequent proximity factors, F;, F9, ..., are the total
number of accepted dies contained in equidistant sets from the reference
die. Set 1 is defined as >those dies that are immediately adjacent to the
reference die. Set 2 is defined as the set of dies that are two dies away

from the reference die. Three sets are illustrated in Figure 12.

Set 1 where d=1

Set 2 where d=2

+ ® Set 3 where d=3

Figure 12. Equidistant sets for 1-D example. Each set consists
of 2 dies an equal distance from a reference die. The value for
the corresponding proximity factor is equal to the number of
accepted dies in the set.

The number of sets may be made arbitrarily large. In this example, only

Set 1 for proximity factor F;, and Set 2 for proximity factor Fg will be used.

23



Proximity factor F; for the first die is 1 since there is only one acce:ted die

immediately adjacent to it.

5 6
Die number

Figure 13. Tabulating the number of accepted dies in Set 1 with
die 1 as the reference die (1-D).

Proximity factor F2 is 0 since there are no accepted dies two dies away

from the first die.

1 2 83 4 5 6 7 8 9 10
Die number

Figure 14. Tabulating the number of accepted dies in Set 2 with
die 1 as the reference die (1-D).

When dies are on or near the edge of a wafer, as for die 1, the equidistant
sets may extend past the edge, and hence past the point where data is
available. In that case, the 'dies' past the edge are assigned a value of '0'

representing 'rejected dies'.

The results for the first die are shown in Table 2.

Table 2. Proximity factor results, Fy, Fy, Fo, for die 1 (1-D).

Die|Fy | F; | F,
T11[1]°
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The next die, die 2 is designated the reference die and the tabulation
process is repeated. Proximity factor Fy is 1, since die 2 is an accepted die.
Proximity factor Fy is 1, since there is only one accepted die immediately
adjacent to die 2, i.e., die 1. Proximity factor Fs is O since there are no

accepted dies two dies away.

Table 3. Proximity factor results for the first and second die (1-
D).

The tabulation process continues through to the last die, here die 10. The

die proximity factors for this row of dies are shown in Table 4.

Table 4. Proximity factor values for all the dies in the 1-D
example.

Die

|
=

Bow~ouhswoH
HRHOOHOO - M
o = T
~oHMROHNDo oD

Overview of the Cluster Value for the 1-D Example

In order to assign a cluster value to each die, the proximity factors
determined for each die are weighted with a set of coefficients. The

cluster value for the ith die will be evaluated by Equatic:. 1 wher: the
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number of terms in the cluster function is equal to the number of
proximity factors determined for each die.

n
Ci= (p()FO +(p1F1 + (p2F2 + <p3F3 + ... = Zq}ij (1)
j=0
For now, the weighting coefficients ¢g, ¢1, 92 wWill be arbitrarily assigned
the values 1, 0.75, and 0.25 respectively for illustration purposes only.

Table 5 contains the proximity factors for each die and the cluster value

based on the given weighting coefficients.

Table 8. Proximity factor and cluster values for the dies in the
1-D example. ‘

Die FO Fl F2 Ci
1 1 1 0 [1.75
2 1 1 0 |1.75
3 0 1 2 |1.25
4 0 1 1 |1.00
5 1 0 0 |1.00
6 0 1 1 ]1.00
7 0 1 2 1125
8 1 1 1 12.00
9 1 2 0 |2.50

101 1 1 1 ]2.00

Graphing the individual cluster values above the individual yield values

for the ten dies produces the graph in Figure 15.
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Figure 15. Cluster values for the 1-D data set in graphical

form. The cluster value graph is aligned with the yield values

for the data set.

Visually, the curve reflects the clustering of the die failure patterns. The
cluster value for a die is high when positioned in close proximity to
accepted dies. Conversely, the cluster value will be low when a die is in a
region of rejected dies. The exact level of the cluster value for each die

depends upon the values chosen for the weighting coefficients ¢g, 91, ¢2.

Overview of Analysis using Cluster Values for the 1-D Example

It is possible to analyze dies that were previously described only in terms
of an accepted/rejected label with respect to their cluster values. If the

dies in this example are ranked according to their cluster value, as shown



in Table 6, a facility can determine which dies to encapsulate and which

to reject.

Table 6. Ranking of the dies in the 1-D example based on the
cluster values.

Rank | Die | c;
1] 9 {250
2 | 8 1200
3 {10 | 2.00
411|175
51 2 {175
6 | 3 125
71 7 1125
8 | 4 |1.00
9] 5 100
10| 6 ]11.00

For instance, a facility may determine a cutoff point in the form of a
minirtim acceptable cluster level for accepting dies for a particular
application. Figure 16 shows an example with the minimum acceptance
level (MAL) set to 1.50. Dies with cluster values above 1.50 (dies 1, 2, 8, 9,
and 10) would continue through the rest of the fabrication process while

the rest would be rejected or packaged for less demanding applications.
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Figure 16. Acceptance level for a particular application.

The Die Cluster Value and Infant Mortality

The cluster value for each die indicates its proximity to other accepted and
rejected dies. The lower the cluster value for an accepted die, the closer is
its position to an area of rejected dies. If any of the die failure
mechanisms extend past the edges of the rejected dies, the accepted dies
close by could be affected. It follows that accepted dies with low cluster
values may be correlated to dies contributing to infant mortality rates in
finished products. Setting the MAL to a low value could result in cost
savings of further processing by rejecting these dies at the wafer test
stage. Figure 17, shows an example of the minimum acceptance level set
to 1.25 to stem infant mortality. For this data set, all but three of the dies

would be accepted and processed further.
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Figure 17. Acceptance level for infant mortality reduction.

For demanding environments such as military applications, facilities
conld set the acceptance level to an extremely high value, 2.75 for
instance. Only dies with cluster values higher than this level would be
considered for these applications. All other dies could be packaged for
less demanding environments. Figure 18 shows that the entire example

data set would be rejected for such an application.
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Figure 18. Acceptance level for demanding applications.

This type of evaluation may result in significant cost reductions for highly
demanding applicatiqns that normally test large v~lumes of ICs in order
to accept just a few. The cost reduction also could be supplemented by the
sales of dies that would normally be destroyed in the intense testing

process for less demanding applications.

The cluster method not only facilitates the analysis of dies but also has the
capability of analyzing wafers and the progress of the fabrication process

over time.

Development of the 1-D Wafer Cluster Value

The wafer cluster value is produced by the addition of the cluster value of
each die multiplied by the die's Fg term. This is equivalent to the

summation of the cluster values for only the accepted dies (whose Fy



values are 1). The wafer cluster function for the kth wafer will take the
form of Equation 2 where N is the number of dies on the wafer.

N
weg = ZFOi X Cj (2)
1=1
The objective of the wafer cluster value is to reflect the level of grouping of
the accepted dies for a particular wafer. This enables wafers to be

compared and ranked thus enabling the fabrication process to be

evaluated over time.

THE CLUSTER MODEL

Development of the 2-D Die Proximity Function

The 2-D die proximity function performs the same operation for a matrix
of dies as the 1-D die proximity function does for a row of dies. The
equidistant sets for calculating the proximity factors are now two-
dimensional. Set 1 is defined as those dies that are immediately adjacent
(one die unit measured centre to centre) to the reference die. Set 2 is
defined as the set of dies whose centres are a distance V2 from the

reference die centre. The first five sets are shown in Figure 19.



Setl,d=1 Set 2,d =2
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¢
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Set3,d =2 Set4,d =5 Set 5,d = V8
Figure 19. Equidistant sets for 2-D analysis.

The proximity factors are determined in the same manner as they were
for the 1-D case. The proximity factor Fy is equal to the binary val. - of the
reference die. The number of accepted dies in each equidistant set is
totalled to produce the proximity factors F;, Fg, and so on. In Figure 20, a
die pattern is shown where the centre die is designated as the reference
die. The die proximity function would produce 1 for Fy since the reference
die is an accepted die. The number of acceptcd dies in Set 1 is 3. Thus, Fy

is 3. The number of accepted dies in Set 2 is only 1. Hence, Fy is equal to 1.

Reference Die

Accepted Die

@ e @ | Rejected Die
Sample Set
Refdieis1 #Accepted=3 #Accepted=1
Fy=1 FF=3 =1

Figure 20. Calculation of proximity factors Fo, F; and Fs for a
sample pattern.
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An Example of the 2-D Cluster Model

The use of the 2-D die proximity function may be demonstrated through a
wafer with nine dies as shown in Figure 21. The illustration represents a
wafer that has been tested by a set of compliance tests and four dies of the

nine have been rejected.

2 3

A

B|l@|@ . .
cla P @ | Rejected Die

Accepted Die

Figure 21. An example wafer with nine dies.

In this example only Set 1 and Set 2 will be used. The tabulating begins
with the first die, Al, being chosen as the reference die. Since Al is an
accepted die, the proximity factor Fo is 1. There is only one accepted die
immediately adjacent to Al (in Set 1), F; is equal to 1. In Set 2, there are
no accepted dies, and Fy is equal to 0. This is illustrated in Figure 22 (a).
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Figure 22. Determining proximity factors Fy, F;, and Fy (2-D)

As in the 1-D example, when the sets extend past the edge of the wafer,
the 'dies’ beyond the wafer are considered rejected dies and counted as
zero. While this biases the calculations to represent a higher failure level

at the edge, the number of accepted dies at the edge are usually fewer in

number [17].

The next die, A2, is made the reference die as illustrated in Figure 22 (b),
and the tabulation is repeated. The process continues with the rest of the

dies on the wafer as illustrated in Figure 22 (c) to (i).

The results appear in Table 7.



Table 7. Proximity factor values for all the dies in the 2-D
example.

Die FO F1 F2
Al 1 1 0
A2l 1 2 1
A3} 1 2 0
Bi| 0O 1 2
B2| 0 3 2
B3| 1 1 2
Ci| O 1 0
C2| 1 0 1
C3| 0 2 0

As in the 1-D case, the cluster value is assigned to each die by weighting
the proximity factors with a set of weighting coefficients. The form of the

cluster equation is the same as before.

n
¢i = 9oFo +¢1F1 + ¢2Fp + gsF3 + ... = _2‘(,)%1«3- €)
j=
where: ¢; - cluster value for the ith die
¢j - weighting coefficient for the jth equidistant set
F; - proximity factor for the jth equidistant set
n - number of equidistant sets

For now, the coefficients ¢g, 91, o2 will be arbitrarily assigned the values 1,
0.75, and 0.25, respectively for illustration purposes only. Table 8 contains
the proximity factors for each die and the cluster vaiues based on the

given weighting coefficients.



Table 8. Proximity factor and cluster values for the dies in the
2-D example.

Die FO Fl F2 Ci
Al | 1 1 0 | 175
A2 1 2 11| 275
A3l 1 2 0 | 250
Bl O 1 2 1125
B2| 0 3 2 {275
B3| 1 1 2 | 225
Ci| o 1 0 | 075
C2| 1 0 1 1125
C3| o 2 0 | 1.50

The cluster values may be represented with a three dimensional bar
chart. This is illustrated in Figure 23. The same bar chart with the data
from the rejected dies removed clearly shows the difference in cluster

values of the accepted dies.

(b) (c)

Figure 23. Transition from binary data to cluster values: (a)

original binary data, (b) cluster values for all dies, (c) cluster

values for accepted dies only.

As in the 1-D example, the cluster values reflect the pattern of die failure.

When a die is situated among accepted dies, the cluster value will be high

for that die. When a die is in a region of rejected dies, the cluster value



will be low. Again, the exact level of the cluster value for each die depends

upon the values chosen for the weighting coefficients ¢g, 91, 2.

Overview of Analysis using Cluster Values for the 2-D Example

The dies in this example may now be analyzed with respect to their
cluster values. The minimum acceptance level (MAL) is represented as a
plane on the 3-D graph of cluster values. As in the 1-D example, the MAL
may be adjusted depending upon the application. The resulting position
of the plane dictates which dies will be further processed and which will
be rejected or used for less demanding applications. In Figure 24, the
MAL was set up for a hypothetical application. In this data set, all but

one die are suitable for the application.

Figure 24. Example of a minimum acceptance plane set for a
particular application requirement. Here one of the five
accepted dies would not be accepted for use in the application
environment.



Development of the 2-D Wafer Cluster Value

The 2-D wafer cluster value is produced by the addition of the cluster value
of each die multiplied by the die's Fy term. This is equivalent to the
summation of the cluster values for only the accepted dies (whose F,
values are 1). The form of the wafer cluster function for the kth wafer is
the same as in the 1-D example. This is shown in Equation 4 where N is
the number of dies on the wafer.

N
we = ) Foyx ¢ (4)

i=1
Again, the objective of the wafer cluster value is to reflect the level of
dispersion or grouping of the accepted dies for a particular wafer. This
enables wafers to be compared and ranked thus enabling the fabrication

process to be evaluated over time.

INSIDE THE CLUSTER MODFL

Objectives of the Proximity Factor Weighting Coefficients

The weighting coefficients ¢ are picked to accomplish two objectives.
First, the coefficients should weight the proximity factors appropriately to
produce a unique die and wafer cluster value for each unique pattern of
the accepted dies, i.e., two patterns should not by a matter of coincidence
produce the same die and wafer values. Second, the range of cluster
values should represent the range of patterns. That is, the die cluster

value should be highest on a relative scale for an accepted die when it is
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surrounded by accepted dies and lowest when an accepted die is
surrounded by rejected dies. Similarly, the wafer cluster value should be
highest on a relative scale for a wafer when it bears all accepted dies and

lowest for a wafer when it bears all rejected dies.

(me———]

Accepted Die

@ | Rejected Die

(a) (b) (c) (d) (e)

Figure 25. Examples of die failure clustering patterns.

The die and wafer cluster values should be highest for Figure 25 (a) and
lowest for Figure 25 (e).

The following section presents the method used to determine the function
to produce the ¢ weighting coefficients such that the die cluster value and

the wafer cluster value meet the above constraints.

Determining a Fuanction for the Weighting Coefficients

Two functions will be compared with respect to the ¢ weighting
coefficients they produce for the proximity factors, Fy, Fy, Fg, F3, Fy4, and
F5. Only the first five equidistant sets have been chosen to keep
computations manageable and yet obtain a significant level of variation
between the results of the functions. The two functions that have been
chosen for testing are the inverse distance function, and the Gaussian

normal function.



The value for the ith weighting coefficient is obtained from a given
function by evaluating the function at a point representing the distance
from a reference die to the ith equidistant set. For example, Set 2 is the set
of dies a distance V2 from the reference die. The weighting coefficient ¢,
will be the value of a given function evaluated at V2. This is demonstrated

in Figure 26 with a sample function.

Weighting Coefficientsp Produced from Sin(x)/x Function
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Figure 26. Weighting coefficients ¢ produced from Sin(x)/x
function. The x value of each weighting coefficient ¢ is the
distance used in its corresponding equidistant set (i.e., Set 1 d=1,
Set 2 d=V2, Set 3 d=2, Set 4 d=V5, Set 5 d=V8, etc.). By evaluating »
function at each corresponding distance produces a value for
each ¢.



The Inverse Distance Function

Figure 27. General form of the inverse distance function where
the surface is defined by flx,y) = 1/NV(x2 + y2).

The inverse distance function requires an adjustment at the origin since

mathematically the value at that point is infinite. With ¢g¢= « the

contributions from all proximity factors except F, become insignificant.

As shown in Figure 28, the value of three for the origin produces a
suitable gentle curve. As a test, the cluster value equation was applied to
a set of wafers with ¢y set to 6, 12, and 18. Every set of cluster values
produced was functionally equivalent to the cluster equation using ¢g=3
as a result of the weighting coefficient g9 dominating the equation. Hence,

3 was chosen for the value of g.
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Figure 28. Special form of the inverse distance function used in
the generation of weighting coefficients.

The weighting coefficients from the inverse function are, g9 = 3, ¢; = 1,
gz~ 0.71, o3 = 0.50, 94 = 0.45, and 95 = 0.35. Thus the equation for the
cmster value becomes Equation 5.

¢; = 3*F, + 1*F; + 0.70710678*F; + 0.5*F3 +
0.4472136*F +0.35355339*F5 (5)



The Gaussian Function

Figure 29. General form of the Gaussian function where the

surface is defined by Equation 6.

While the Gaussian function (defined by Equation 6) and its associated
parameters, the population standard deviation ¢ and the population mean
u, are usually used in a statistical context, the cluster model uses the
function simply as a mathematical function to generate the weighting

coefficients.

. 2y — 1 —_1,—
o 09 = s e ©)

The parameter ¢ will be used to control the shape of the Gaussian function
as shown in Figure 30. The parameter puis set to zero since the function
will always be centred over the reference die. The parameter x is defined

as the distance between die centres in die length units.



fix.0)

K

Modification of shape parametas withp fixed
9 <0, <03

Figure 30. Control of the Gaussian function shape through
modification of parameter o.

Since only proximity factors up to F5 are of interest, the shape of the

Gaussian function is set such that proximity factors Fg and higher, if they

were to be included, would not contribute significantly to the cluster value.

It was found that if the weighting coefficient for Fg was set to 1/10 the
value of the weighting coefficient for Fy, this requirement would be

achieved. The value of ¢ required to set this shape is 1.39797181. This

corresponds to the function shown in Figure 31.
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Figure 31. Gaussian function using ¢ =1.40 with the curve
scaled to set the maximum height to one. Note that the value of
e (for dies 3 units away) is one tenth of the value of ¢g.

The weighting coefficients for this function are ¢g9 = 1.00, ¢; = 0.77, ¢3 =
0.60, ¢3 = 0.36, 04 = 0.28, and 95 = (.13. The cluster equation using this set

of coefficients becomes Equation 7.

c; = 1*Fg + 0.77426368*F; + 0.59948425*F +
0.35938137*F3 + 0.27825594*F4 + 0.12915497*F 5 (7)

Test Set for the Eucluation of the Functions

To formulste a basis for comparing the functions, test wafers of 3x3 dies

were generated using binary sequence encoding. With 9 accepted or

rejected dies arranged in a 3x3 pattern, there are 512 (29) possible die
patterns. Using binary sequence encoding, each sequential number from

0 to 511 is transformed into a die pattern by converting the number into a
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nine digit binary equivalent. The binary number is mapped onio the 3x3
grid using the exponents of 2 which are mapped out beginning with the
lower right corner of the grid. For example, wafer 98 has the die pattern

shown in Figure 32.

98 = 0528 + 0x27 + 0x26 + 0>25 + 0x2% + 0x23 + 0x22 + 0x2! + 0>20=0011 0601 0y

81716 0j0}1

[876543210JE> T3 I:> TTotlo
f00110001 0} 21110 oo
Binary Exponent Resulting
equivalent assigrment wafer

Figure 32. The creation of a test set using the wafer number to
generate a unique die layout. The wafer number is converted
into a 9 digit binary representation which is transposed onto the

3x3 grid.

A table of proximity factors (shown in Appendix Table A3), from Fy to Fs,
was constructed from the patterns on the 512 wafers using the first five

equidistant sets. The analysis of wafer 96 is shown in Figure 33.

.
...............................

............

............

Figure 33. Analyzing of the first cell of wafer 98 to obtain the
corresponding set of proximity factors. The dies past the wafer
edge are considered rejected or '0'.

A portion of the proximity factor table is shown in Table 9 for the patterns

shown in Figure 34.
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0/0}1 0/0]1 0{0}1 0j0}1 0j0]1
110]0 110 1{0]0 11010 110]0
0]0{0 0]0]1 0{1]0 0j1]1 1{0}0
9% 97 RN 9 100

Figure 34. A sample of the set of die patterns used.

The complete list of proximity factors is found in Appendix Table (A3).

Table 9. A portion of the factor table for the 512 test wafers
(from Appendix Table A3). Wafer proximity factors are simply
the sum of all individual die proximity factors.

Wafer Number|| Fo || Fy | Fo | F3 | F4 | F;
9% 2 ' 0 0 0 2 0

97 3 0 0 2 4 0

9B 3 0 2 0 4 0

9 4 2 2 2 6 0

100 3 2 0 0 2 2

Since patterns with the same values of proximity factors will have the
same wafer cluster value, it is possible to increase the efficiency of the
evaluation by discarding those wafers with equivalent proximity factors.
Duplicate proximity factor table entries result from graphical pattern
manipulations of a wafer die pattern. The possible manipulations are
orthogonal rotation, mirroring, and cell shifts. For instance, wafer 98
has a proximity factor table entry of {3 02 0 4 0}. Progressive rotation and
mirroring of this wafer, as shown in Figure 35, produces other wafers

with the same relative pattern and the same proximity factor values.



Yi1 010 0 1 0]1 110
0 0[O0 0|0 0 0
110}0 10{11]0 oj1]0 0 11010
Second One rotation Original One rotation Mirror
rotation produces #98 produces produces
produces #264 #161 #140

#140
0]0 1{0]0 110 011 111
0|0 010 0l11]0 0|1 0[o0]0
11171 1({010 0 0 0jo|1 0jo0jo
1\ P —> 1\
Rotation Shift Original Shift Rotation
produces #7 produces #146 produces produces
#290 #73 #446

Figure 35. Proximity factor and pattern equivalent wafers
determined from pattern manipulations.

With the duplicates removed, 86 unique wafers out of the original 512 and
their corresponding unique proximity factor values are retained. This
represents nn 83% reduction in the test set and consequently in the

computational requirements.

Comparison Method

The maximum clust;,er value produced by the two functions differed
greatly as did the increments in the cluster values of successive test
wafers. To form a basis for comparison, the following method was used.
The 86 test wafers were arranged in order of the cluster values produced
by the Inverse Distance function. Each wafer was assigned an ordinal
value from 1 to 86 indicating its position in the sort order. The test wafers

were then resorted using the Gaussian function. The wafers were
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assigned a second set of ordinal values. These two ordinal lists were used
to compare the results of the two functions. The sort order for each
function is given in Appendix Table A3, with a portion reproduced in

Table 10.

Table 10. A portion of the data for the 86 test wafers showing
the proximity factor values, the calculated cluster values and the
order of the wafers when sorted on each of the two sets of cluster
values (from Appendix Table A3).

Test Cluster Values Sort Order
Wafer| FO F1 F2 F3 F4 F5 Inv. Gau. Inv. Gau.

of 0 0 0 0 0 0 0 0 1 1

1 1 0 0 ¢ 0 o0 3 1 2 2

3 2 2 0 0 0 o0 8 3.549 7 7

51 2 0 0 2 0 0 7 2.719 5 5

7 3 4 0 2 0 0 14 6.816 16 16
10 2 O 2 0 0 0 7414 3.199 6 6
11 3 4 2 0 0 0] 14414 7.296 17 17
95 6 12 8 4 4 2| 40153 22.896 n 71
971 3 0 0 2 4 0] 11.789 4.832 9 9
98 3 0 2 0 4 0] 12.203 5.312 10 10
99 4 2 2 2 6 0| 19.097 9.136 21 20
101 4 2 0 4 4 2} 18496 8.357 19 19
1021 4 4 2 0 4 2| 19910 9.667 30 27
365! 6 8 0 10 8 41 35992 18.531 59 59
367 7 12 4 10 12 4} 47.609 26.139 75 75
381 7 12 8 10 8 4] 48.649 27424 76 76
383 8 18 12 10 12 4| 62266 36.580 84 84
495 8 16 8 12 16 4] 60226 34.465 83 83
511 9 24 16 12 16 4| 176.883 46.455 86 86

The sort order indicates each function's ordering of the test wafers from
the least clustered accepted die patterns to the most clustered accepted die
patterns. The graph in Figure 36 shows the similarity in sort order

between the two functions. This graph uses the last two columns of Table



10 with test wafers sorted in the order of Inverse Distance which therefore

appears as a straight line.

8o 4 -
70 4
60 +
50 +

40 4

Sort Order

30 4+ /2
~ — Inverse Distance
20 T -= Gaussian

10 +

0 + t : t t t t }
0 10 20 30 40 50 60 70 80
Test Wafer Sort Order (as Defined by Inverse Distance Function)

Figure 36. Inverse Distance and Gaussian sort list in the order

specified by the Inverse Distance function.

To determine which function produced the best ordering of the test
wafers, the wafers with the most disagreement in sort order were
examined. Figure 37 is an enlarged section of the above graph showing

the order of the 20th to 30th test wafers.
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Figure 37. Enlarged view of the sort order based on Inverse
Distance. The 24th and 27th test wafers (wafer numbers 106 and

45) are sorted by the Gaussian function as the 28th and 24th

wafers.

The 24th and 27th test wafers (wafer numbers 106, and 45) were compared

since the two functions differed greatly in the ordering of the two. Figure

38 shows the two test wafers with the proximity factor table entries.

Wafer Wafer

F(106) ={424240}
F(45) ={440440}

Figure 38. Test wafer patterns 106 and 45, and the
corresponding proximity factors.



From the list of proximity factors, both wafers have the same number of
accepted dies {from Fp). Wafer 45 has a larger F; proximity factor than
wafer 106 which indicates that more of the dies are immediately adjacent
(in this case, 1 set of dies more). However, wafer 106 has a significantly
higher Fg factor which indicates that more of the dies are corner adjacent
(in this case, 2 sets of dies more). The sort order for these two is highly

dependent upon the weighting assigned to the proximity factors.

To solve the dilemma in order the wafers should be placed, the wafers can
be examined in terms of the clustering patterns of the rejected dies.
Wafers with high clustering of accepted dies should also have a
correspondingly low clustering of rejected dies. The wafer cluster value
for rejected dies, wcgy, is calculated through the addition of the cluster
values for the rejected dies. Mathematically, this is performed by
multiplying the cluster value of each die, ¢;, with the complement of the

yield for the individual die, equivalent to (1 - Fy;), as shown in Equation 8.

N

WCREK = 2 Fo; x¢ (8)
i=1

The layout with the greatest clustering of rejected dies should be
considered lower in the accepted sort order. Wafer 106 has a rejected
proximity factor list of F(106) = { 54 6 4 4 2 }, and wafer 45 has a rejected
proximity factor list of F(45)= {58444 0}. Wafer 45 has a larger F;
proximity factor than wafer 106 which indicates that more of the dies are

immediately adjacent (in this case, 2 set of dies more). Wafer 45 has a



smaller Fg proximity factor indicating 1 set fewer of dies that are corner

adjacent.

As a result, wafer 45 has the greatest clustering of rejected dies.
Therefore, it should be lower in the sort nrder. This is the sort order
suggested by the Gaussian function. Other examinations of wafer sort
order differences produce the same results: the Gaussian function
produces the most "correct” sort order or comparison method between

wafers. It is suggested that the Gaussian function with ¢ =1.39797181

should be uced as a starting point in the analysis of wafers.

Future Directions

The difference between the two functions above is the weighting of the five
proximity factors. As can be seen from the above example, even subtle
differences in the coefficient weighting will produce variations in the
manner wafers are sorted. Thus, a possible future enhancement to the
cluster model is one where the coefficient weighting changes over the

yield range from 0% to 100%. Consider Figure 39.
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1 2 3 4 5 6 7 8
Average Value of Each Factor within each Decade of Test Wafers

Figure 39. Relative contribution of each proximity factor to the
cluster value as the yield for the 86 data wafers changes from 0%

t0 100%.
Figure 39 not only shows the rise in the cluster value as yield increases
but also that the proximity factors increase at different rates. Through

empiricl scudies, it may be possible to represent the weighting coefficient

as a function rather than as a constant.



CHAPTER 4

COMPARISON OF THE CLUSTER MODEL TO INDUSTRIAL MODELS

THE OBJECTIVES OF EXISTING MODELS

This section compares the objectives and the results of industry accepted
models for yield to those of the proposed cluster model. Before examining
the cbjectives of the various models, the following question is raised: "Why
do researchers model yield?" The generally accepted answer is to
understand the factors that affect yield and by doing so provide an insight
how these factors may be controlled to produce the highest level of yield.
Ultimately, the exact form of this answer will depend on the objectives of

the individual researcher and the objectives of their facility.

In this thesis, the second part of this answer, how factors may be
controlled to produce the highest level of yield, is here considered the more
important of the two parts. Unless the research into yield in some way
produces procedures and algorithms for improving manufacturing lines,
the research becomes an ¢nd in itself. In current literature [19-23],
various authors attempt to understand the processes that control yield
through researching various mathematical models based on forms such
as compound Poisson, negative binomial, or Neymann Type A. However,
the method of applying the results of the models to improving yield in the

fabrication line in their works is implied but not implemented.



On the other hand, methods put forth by companies such as Enhansys
Inc. [14], and authors such as Casper and Soren [18], provide practical

approaches that are directly applicable.

THE OBJECTIVES OF THE CLUSTER MODEL

The cluster model, urnlike currently existing models that provide methods
for yield prediction, provides a yield analysis method [19]. At the end of
the wafer acceptance stage, the cluster model provides information about
the accepted dies to permit decisions to be made about further processing.
Using the values that are generated from the model, it is possible to sort
dies by their proximity to clusters of accepted dies. This proximity may be
shown, with further empirical studies, to have a possible correlation to
the reliability of the die. Thus, dies that are not part of, or close to,
clusters of accepted dies may be removed from further processing as a
cost saving measure. The model also facilitates automatic apalysis and
sorting of wafers and dies since these processing decisions may be made a

part of the regular testing and sorting procedures.

MODELS BASED ON RANDOMLY DISTRIBUTED POINT DEFECTS

It is commonly considered that many of the causes of die failure
mechanisms, referred to here as faults, are random in nature [20].
Assuming this is the case, these faults could be modeled through
mathematical functions that describe random events. The most

commonly used function in industry is the Poisson distribution.

o7



Analysis of Poisson distribution for modeling point defects

In this section, the premises of the Poisson distribution are analyzed to

evaluate its effectiveness to predict yield from fabrication data.

The following terms will be used:

the number of point defects per wafer
the number of dies on a wafer

the probability that a die contains point defects

e T Z 3

probability that a die contains no point defects
Other terms will be defined as required.

If n point defects are randomly distributed among N dies on a wafer, then
each die on the wafer is equally susceptible to point defects. The number
of point defects per die can vary from 0 to n point defects about the mean
number of point defects per die. This variation in the number of point
defects per die can be described by a binomial distribution characterized by
two parameters, namely p and n, where n is the number of point defects
per wafer and p is the probability that an individual die contains point
defects. The probability q that a die contains no point defects is calculated

as follows:
q = 1 - p (9)

Each term in the expansion of the binomial distribution represents the
probability that an individual die contains a certain number of point
defects. The terms of the binomial distribution are shown in

Equation (10).



(P + @2 = p® + nC; p! q1 + nCo p2 qv-2 + ...
+ nCy p¥ qk + ... + nC, p» (10)

where: p0 - probability that a die contains 0 point defects
nCj, nCo, nCy - binomial coefficients
nCj pl g™t - probability that a die contains 1 point defect
nCz p2 g2 - probability that a die contains 2 point defects
nCk p¥ g™ - probability that a die contains k point defects

nCp p? - probability that a die contains n point defects

The probability that a die contains k point defects is the kth term of the

expansion.

P(k) = nCy pk qnk (11)

Each die on a wafer has an equal probability of containing point defects
based on the precondition that the point defects are uniformly distributed
among the N dies on the wafer. Therefore, the probability p that an

individual die contains point defects is,

p = UN (12)

The probability q that a die contains no point defects is,

g=1-p = 1-(WN) = (N-1)/N (13)

Equation 11 can be rewritten to include equations 12 and 13 as follows:

P(k) = nCyk (UN)k ((N-1)/N)n-k
(N-l)n'k

N»n

nCy (14)



The yield of a die (the condition k=0) can i cstimated as follows:

(N-1)n
P(0) = “No (15)

The expected number of dies on a wafer that have no defects is,
E{Ng) =P} x N (16)
where: Ng - number of dies on a wafer with no defects

The yield, Y, for a given wafer is defined by the following expression:

number of dies with no point defects
total number of dies on the wafer

E(Np)/N
P(0) a7

Y =

If the number of defects n per wafer is significantly greater than the
number of defects per die k (n >> k), then the following terms in the
binomial expression, P(k), can be simplified as follows:

Cy = n! _ () (n-1) (n-2) ... (n-k) (n-k-1) (n-k-2) ...
DYk = @k)! = (n-k) (n-k-1) (n-k-2) ...

= (n) (n-1) (n-2) ... (n-k+1)

:::nk

(N-1)n-k 1 (N-nn-k 1
T=ﬁ-§—(mzﬁ—ig(l.lm)n (18)

The term (1 - YN)® can be expanded into the following series:

+ n@-1) I/N)2  n(n-1)(n-2) W/N)3 +.

1-0
N 21 3 - 19)



If the term n is very large (the condition (n-1) = n), the above expression

can be approximated as follows:

/N)2 /N)3
(“2!) ] (—“3!) + .. (20

1-n/N+

The above MacLaurin expression is equivalent to the following

exponential function:

en/N= 1.n/N+@N)2-@mN)3 +...
= em (21)
where: m = n/N

Rewriting the binomial expression for P(k) with the above

approximations produces the following Poisson distribution:

P) = 2= €2 _ Mm% om 22)

The primary question, then, concerning the Poisson representation of the
wafer failure process is, "How accurate does the Poisson probability

distribution represent the binomial distribution?"

If (and only if) the point defects are randomly distributed over the entire
surface of the wafer, can the Poisson distribution parameters
(representing an estimate of a wafer’s yield) be modified to be functionally
dependent upon the area of a die, A, and the number of wafer defects per
unit die area, Do = n/NA (where N is the numker of dies per wafer). If
the average number of point defects per die is given by m = n/N, then m

may be represented as in Equation 23.



_ DoNA
= N

= DoA (23)

B
I
rdl

Then P(k) may be expressed as Equation 24.

mk M _(l)+o_A.)_l_{_ e-DoA

Pk = 57 e™ = —q (24)
The yield of a water (the condition k=0) is equal to:
P(k=0) = YIELD = eDoA = em (25)

It is clear from Table 11 that as the number of defects per wafer, n,

increases, the error in the Poisson model results increases significantly.

Table 11. Comparison of the Poisson model of yield to the
binomial model based on two sample sets of wafers, one wafer
with 3 dies and one with 4 dies.

YIELD
N | n | POISSON MODEL BINOMIAL MODEL| % ERROR
311 v.716531311 0.666666 7.48
3 |2 0.513417119 0.444444 15.52
3 13 0.367879441 0.296296 24.16
4 11 0.778800783 0.75 3.84
4 | 2 0.606543066 0.5625 7.83
4 | 3 0.472366553 0.421875 11.97
4 | 4 0.367879441 0.31640625 16.27

If the average number of defects per die, m, is small (less than 0.33), then
the Poisson model provides a good estimate of the binomial failure model.
As a result, the Poisson model should be limited to the analysis of high
yield wafers only.



Modifications to the Poisson distribution

It is generally accepted that the Poisson distribution is net an adequate
model of yield if the defect density is high. To use the Poisson distribution
in these circumstances, researchers have modified the distribution using

partitioning [20, 21], or region density calculations.

Figure 40. An example of partitioning two distinct theoretical
zones of defect density on a wafer.

In actual practice, the contours that would be required to properly zone

the various defect densities would be more of the order of Figure 41.



Figusa 41. Yield contour based on a sample wafer's die failure

pattern. [based on research performed by author]

This diagram was formed from a die failure pattern with the contours
indicating the relative pattern of accepted dies to rejected dies. As shown
in the previous section, modeling yield with the Poisson distribution
produces significant errors when the defect density is high. In addition,
it has been shown by Petritz [22] that Poisson modeling of yield is

pessimistic if the defects are clustered or grouped.

In either case, it becomes prudent to test the data to ensure that it is

randomly distributed over the area of interest.

In Figure 42, two particle patterns are shown that were included in an

analysis using the Poisson distribution [8].
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Figure 42. Particle maps obtained with an electronic particle
detector.

In the reference, the patterns were partitioned into a grid of 6x6 cells, and

the number of defects in each cell was recorded.

2 3 1 0 0 0O 0 0 0 0 0 O
0O 1 11 0 0 0 001 0O
0 6 2 0 1 O 0 01 1 1 0
2 1.0 1 2 0 6 111 2 0
4 2 0 0 3 0 282010 0 0 O
2 1. 2 2 4 0 1 202219 4 1
Pattern 1 Pattern 8

Figure 43. Particle counts from a grid analysis of patterns 1

and 8 Each number represents the number of particles found in

each cell.

For pattern 1, the frequency of particles per cell is graphed in Figure 44

with the theoretical expected values E(x) obtained using the Poisson

distribution.
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Figure 44. The observed frequency of defects per cell
superimposed upon the calculated expected values for pattern 1.

Visually, the observed and expected values correspond to one another. As

a validation of the fit, the x2 value for pattern 1 was calculated. In this
case, there are two degrees of freedom using the rule of combining data
such that no E(x) is less than 5. The %2 value was determined to be 4.3657.
This is below the %2 value of 5.991 (using a significance of 0=0.05). The
pattern, then, is acceptable as data for a Poisson distribution, and a

simulation should produce reasonable results.

In a similar fashion, the frequency of defects per cell for pattern 8 is

graphed in Figure 45, with the theoretical expected value E(x).
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Figure 45. The observed frequency of defects per cell and the
calculated expected values for pattern 8.

Visually, the observed and expected values do not correspond well to each
other for this defect pattern. This is to be expected due to the high number
of defects found in some cells. In this case, there are four degrees of
freedom (using the rule of combining data such that no E(x) is less than
5), and thus the x2 value must be below 9.488. The %2 value for pattern 8
was calculated to be approximately 56, well above 9.488, and as such a

Poisson distribution would not provide a good fit.

The level of defects and the clustering of defects do not affect the cluster
model since it uses the die yield as data and hence is not subject to the

restrictions of the Poisson modeling method.



Numeric Vertical Yield Mappin~

As stated previously, the cluster model was designed a a yield analysis
method. Current yield analysis methods begin by combining the die yields

for the same die location over a group of wafers as shown in Figure 46.

Figure 46. Vertical yield maps are generated by totaling the
number of die yields for each die location over an entire set of
wafers. [23]

This produces a combined yield map as shown in Figure 47.
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Figure 47. Numeric vertical yield map for 35 wafers [23]. The
blank squares are the locations of the process monitors.

This data is shown as a three dimensional graphic in Figure 48.

Figure 48. Surface rendering of the data in the vertical yield
map for 35 wafers.



Visually, the pattern in Figure 48 is very complex, which suggests that
many defect processes are acting upon the wafer group. This may be a
result of extrinsic factors such as the fabrication process varying with
time, or intrinsic factors such as wafer crystal and resistivity variations.
In either case, this method produces a database that is extremely difficult

to divide into its individual components.

As a result, a limitation of the numeric vertical yield method is an
insensitivity to sudden changes in the fabrication process. Any variations
that occur in the process, become masked by the rest of the data in the set.
While the method can show the gradual changes in the process by
comparing the analysis for wafer sets at different points in time, it cannot

provide an indication of trend from one wafer to the next.

As well, this method assumes that failure patterns are aligned to the
alignment flat of the wafer. Those that are, would arise from the
processing equipment which handles each wafer in the same orientation.
However, wafer resistivity, particulate contamination, and many other
contributors to die failures are insensitive to the alignment flat, and as a

result, are insensitive to the orientation of a wafer.

By concentrating on one wafer at a time, the cluster model provides a
structure within which to analyze the processes that have affected each
wafer individually. If the patterns of the process vary from one wafer to
the next (as the unique die failure patterns on each wafer would suggest),
any information conveyed in the patterns would be lost upon combining

with data from other wafers.
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CHAPTER 5

APPLICABILITY TO RELIABILITY ENGINEERING AND
FABRICATION LINES

INTRODUCTION
The design of ti.- -+ . .- mnodel allows it to be easily introduced into a
fabrication line. Since ATE (automatic test equipment) usec

microprocessors, the additional code to calculate the cluster value for
each die can easily be implemented. With the code in place, the ATE can
generate reports of the die and wafer cluster values thus enabling the

process modifications as outlined in this section.

COST SAVING MEASURES

The cluster method may be used by manufacturers as a cost saving
measure. The screening of accepted dies that have a high probability of
failing in later quality control tests allows the saving of packaging,
processing, and testing costs. These accepted dies will be referred to as
"marginal” dies, indicating that although passed by the ATE, normal
operating conditions could cause them to fail. Identifying the dies as
early as possible in the manufacturing process eliminates the expense of
bonding, encapsulation, and the associated quality controls. If burn-in

tests are usually performed, even greater savings could be realized.
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Pre-encapsulation testing for marginal dies

The cluster value for each die indicates its proximity to other accepted and
rejected dies. The lower the cluster value for an accepted die, the closer is
its position to an area of rejected dies. If any of the die failure
mechanisms extend past the edges of the rejected dies, the accepted dies
close by could be affected. Such dies could be marginal since the failure
mechanisms that resulted in rejected dies may be latent or undetected in

the accepted die.

In practice, marginal dies would be identified in the following manner.
Using the ATE as the numeric processor for the cluster method, the
results of the wafer acceptance test would be used to calculated cluster
values for each die. The accepted dies are then sorted in descending order

by their cluster values. This is shown in Figure 49.

Rank {Cluster | Die

Value | #

1 2.61 78
2 2.58 79
3 2.51 41
4 2.51 62
100 | 096 | 15

102 0.80 2
103 | 076 |186
O Accepted die 104 0.61 13

@ Rejected die

Die Failure Pattern Dies ranked by cluster value

Figure 49. A set of 104 accepted dies from a wafer test ranked
in descending order by cluster value.



Assume that the MAL was calculated to be 0.90 by a previous set of tests.
Those dies with cluster values greater than the MAL will be processed as
usual. The dies with cluster values lower than the MAL, will be rejected
or used in less demanding environments. In this case, the lowest four
ranking dies in Figure 49 would be removed. Since most ATE are
designed to mark dies that do not pass compliance tests, the dies
designated as marginal by tneir cluster values, could be marked as well at

this point. This then maintains continuity in normal operations.

Determining the Minimum Acceptance Level

The identification of marginal dies is performed indirectly and due to the
number of failure modes possible on a wafer, is subject to inaccuracy. It
is entirely possible that accepted dies with low cluster values could pass
all quality assurance tests. As a result, it is important to set the MAL to
the appropriate level such that the possible rejection of such dies is offset

financially by the rejection of dies that are marginal.

To determine an appropriate MAL for a particular product (encapsulated
die) on a stable fabrication line, the original die locations on the source
wafers are tracked for each product. At each quality assurance screen,
the failing products are recorded on a diagram of the wafer from which
they were produced. At the end the quality assurance tests, the wafer

diagram would be similiar to the one shown in Figure 50.
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Rank | Die
#
1 78
2 | B
kK 41 LM\ Fajled at wafer acceptance
Zmm] ]
4 62 B== Failed encapsulation tests
101 15 B- B Failed burn in tests
102 9 B O Passed all stages and tests
103 | 186
104 | 13
Dies ranked by Fina! results recorded
cluster value by original die position

Figure 50. Final results recorded by orginal die position. The

test results of each of the products is recorded in the original die

position. The relationship between the final state of each

product and the original die cluster value may now be
established.

When the testing is complete, the optimum value of MAL must be
determined. The optimum value of MAL would reject a significant
portion of marginal dies (to save further processing costs) without
rejecting a significant amount of high quality dies (the source of revenue).
Table 12 shows that setting the MAL to 0.98 for the sample data set would
cut off five marginal (grey) dies without rejecting a single high quality die
(white). Setting the MAL to 1.22 would reject 11 marginal dies and one

high quality die.
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Table 12. The table shows the ranking of the accepted dies from
Figure 50 in descending order of cluster values. The die
categorization is: B — failed at encapsulation stage (as a direct
result of the encapsulation process), @ — failed during burn in
tests, or O — passed all stages and tests.

261 O 225 0O 1.94 O 1.69 00O 1.26
2.58 224 O 1.93 O 1.9 0O 1.26
2,51 0O®O0 222 0OOB®O (1982 O 1.58 0O 1.23 O
2.50 OO 220 O 181 O 1.57 O 1.22
247 0O 219 190 O 153 & 1.20
243 ®O 215 O 1.88 O 147 BO0O 1.19
239 0O 214 O 1.87 0O 1.45 0O 1.18
2.38 OO 212 100 1.86 0O 143 DO®W 1.08
237 O 2.08 OR 184 O 141 O 1.04
2.36 & 2.07 QO 1.82 0O 1.40 a 1.01 O
234 B 2.06 O 1.80 OO 1.39 0O 0.98
231 ® 2.04 OO 1.78 0O 1.37 O 090 @
220 e 198 B 1.77 0O 133 BEa 080 B8
SEG 1.97 0O\ 1.7 03 1.31 0O 0.76

1.95 O 1.70 O 1.29 0O 0.61

Choosing the most appropriate value of MAL becomes a trade off between
conflicting objectives. If the value is low, the MAL will provide little
benefit since few of the marginal dies will be rejected. For the data set
shown in Table 12, only one marginal die has a value lower than 0.75.
Therefore, the MAL must be set to at least 0.75 to have any noticeable
effect. If the MAL is high, it will reject many of the high quality dies as

well as the marginal dies.
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Figure 51 shows several examples where the same set of dies are divided
into two groups, those with cluster values greater than the MAL and

those whose values are less. Each group shows the result of a change in

MAL.
100 T 100 7 100 1
90 + 90 90 ¥
80 + 80 T 801
o 70T MAL=12 OT MAL=1.4 ‘OT MAL=1.9
5 607 60 1 €0 T
> 504 50 T 50T
Eel
E 407 40 1 40T
2 404 30 4+ 30+
20+ 20 T 20T
10 + l—-—-LI == 107 10 T

0 0
CV>MAL CV<MAL CV>MAL CV<MAL CV>MAL CV<MAL

[ Total Dies per Group Marginal Dies per Group

Separation of Accepted Dies by
Cluster Value (CV) and Minimum Acceptance Level (MAL)

Figure 81. The accepted dies are divided based on their cluster

va ues: those dies with cluster values > MAL, anc dies with

cluster values < MAL. Those in the first group will be
processed, those in the second group will be discarded or
processed for less demanding environments.

To find the optimum value for margine! die rejection, the full range of
MAL values should be tested and the cost/benefit analyzed for each point.
In Figure 52, the profit is graphed for a set of dies against a range of MAL
values. As the value of MAL increases, the number of marginal dies in
the final lot is reduced. This reduces the expenses involved in

encapsulating and testing these dies. However, a portior. of the high

quality dies is removed as well which reduces the eventual number of
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sales. The optimum value ¢f MAL occurs where the financial gains of not
processing the marginal dies are offset by the loss in revenue due to the

removal of high quality dies.

4 T
3
o
© 2 <+
2
k=
o 4
o«
1 -t
0 { t ‘ ——t $ i 4 $ % f {

0.5 07 0.8 0.9 1 1.1 1.2 13 14 15 16 1.7 1.8
MAL Values (Minimum Acceptable Level)
Figure 52. Financial return with increasing MAL. As the

MAL value reaches the high end, a significant portion of the

¢ies is removed. As a result, the revenue drops off sharply.

As shown in Figure 52, there is a gradual rise in profit until a level is
reached where most of the marginal dies are removed. Thus, further
increases in MAL will remove more of the high quality dies which
reduces the number of revenue generating dies. For this data set, the
ideal MAL is 1.22 which from Table 12 would eliminate 11 marginal dies
and 1 high quality die. In practice, the MAL must be estimated over a set

of wafers since the exact MAL values will vary from wafer to wafer.

Summarizing the philosophy behind the cost savings, ii the cluster values

are related to the success or failure of the dies at later processing stages,



then the early rejection of low cluster value dies reduces the expense of

processing dies that may not survive.

A facility could extend the idea of the MAL to multiple values, and develop
multiple cutoff points that represent quality confidence intervals. This is

1llustrated in Figure 53.

.l261] -
79 258 LeVEl A
41251
621251 Level B
15 | 0.90 Level C
21080 T~
186} 0.76 Level D
13{061 -
Failed Failed
DieS L
Wafer Acceptance Dies ranked Intervals
by cluster developed
value through
empircal
studies

Figure 53. Using multiple MALs for discriminating between
levels of cluster values. Each level could indicate a suitability for
different quality requirements.

Tracking of the Fabrication Progress

The fabrication process may be tracked though charts of the wafer yield
vs. the wafer cluster value. For each level of yield on the chart, there will
be a minimum and a maximum cluster value (i.e., the number of ways n
accepted dies may be arranged on a grid with N spaces). As a result, the

chart has a hysteresis shape shown in Figure 54.
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26-(
241
22 -

Wafer Yield

4 6 8 10 12 14 16 18 20
Cluster Value

Figure 54. A product hysteresis curve. Every product (with a
unique wafer grid) will have a unique hysteresis curve.

With two characteristics for the wafer, the yield and the cluster value, it is

now easier te discern the nature of the changes that affect production.
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CHAPTER 6
CONC LUSIONS

This thesis examined several models which are presently used for
analyzing the performance of the IC fabrication process. Each of the
existing models were analyzed for their short::mings and the analysis

formed the basis for the Cluster Model.

Chapter 1 presented an overview of the curreni rz:zarch in models which
analyze IC fabrication and IC failure. Chapter 2 then discussed the basis
of current models with respect to defect size and distribution (i.e., defects
are considered to b‘e points which are distributed in a random but
homogeneous manner). Wafer resistivity was then given as an example
of defect distribution which countered these premises. From this, the
cluster model was designed to deal with defects which may be distributed
in a nonhomogeneous manner or whose dimensions may be as large as

the wafer.

Chapter 3 described the formation and the use of the cluster model. The
cluster model assigns quality confidence intervals to dies instead of the
currently used rank of pass/fail. These intervals are assigned by
examining each die in relation to the yield results of its neighbouring

dies.



Chapter 4 showed the mathematical development of the Poisson
distribution. It is suggested that the Poisson distribution is not
universally applicable especially when defects are not distributed in a
random homogeneous manner. The level of calcalation error from the
Poisson function was shown with respect to various quantities and
arrangements of defects. The Poisson distribution model differs as well
from the cluster model in that it examines defects whereas the cluster
model analyzes yield. Chapter 5 showed applications of the cluster model
in terms of cost savings measures and as a tracking tool. Finally, future

directions for the model were discussed.

The cluster model was developed by analyzing in detail the foundations of
existing models and contrasting those with physical processes found in
the course of IC fabrication. Future inquiries of this nature will lead to an
improved understanding of the fabrication system as a whole and
ultimately to a greater understanding of the development of performance

assessment models.
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APPENDIX

TABLES USED IN THE DEVELOPMENT

OF THE CLUSTER MODEL

Table Al. The fellowing is a complete list of the 512 patterns
listed in 86 rows. The first value in each row is the pattern that
was used as part of the 86 unique wafers.
numbers in each row indicate patterns that are equivalent to the
first and may be obtained through graphical pattern
manipulation of the first pattern.

i R
2 1 2 4
3 3 6 9
4 5 40 65
5 7 56 173
6 10 17 20
7 n 19 22
8 12 33 66
9 13 37 4i
10 14 28 35
11 16 39 57
12 21 42 81
13 23 58 89
14 27 54 216
16 29 43 46
16 30 51 90
17 31 585 59
18 456 195 360
19 47 61 203
20 63 219 438
21 68 257

22 69 261 321
23 70 76 100
24 T 77 263
25 78 228 291
26 79 295 457
27 84 273

28 85 277 337
29 86 92 116
30 87 93 279
31 94 244 307
32 95 311 473
33 97 133 263
34 98 140 161

484

340
212
309
409
500
322
266

259
329

275
345

32
36
320
448
136

132
104

120
168
184
139
155

406

265
356

281
372

64
48

160

308

289
449

305
465

128
72

272

264
134
137
150
336
464

202
408
217

488

385
452

401
468

256
144

88
193

145
201

209
218

192

152
194

148
210

232
248

288

176
262

164
294

278
310

384

200
296
312

344
434

208
328

274
402

368
436

304
352

280
420

404
440

400
386

290
456

418
472

The additional

416
388

392
480

424
496



141
197
204
205
135
142
143
198
199
206
207
149
156
137
213
220

151
158

214
215
222
223

174
227
235

190
243
251
334
237
427
431
350
253
443
447

333
369

349
375
455
463
47
479

165
269
267
271
300

167
297
301
230
303
284
177

285
283
287
316
179
183
313
317
246
319

234
362
430

250
378
446
355
363

491
371
379
507

357
461

373
477

4817
503

225
323

331
450
169
233
387
361
236
423
338
282
241
339
433
347

185
249

377
252
439
426
490

442
414

397
366

494
413
382

510

453
485

469
501

493
509

270
326

358

172
302

364

299
459

286
342
374

188
318

380
315
475

399

415

330

332

421

226
428

391

395
486

346
348
437

242
444

407
411
502

429

445

460

2¢8
458

451

419
4by

370
369
476

314
474

467
435
505

462

478

396
389

481

394
482

454

425
492

412
405
497

410
498

470
441
508

483

499



Table A2. The following is a complete list of the die failure
patterns for the 86 unique wafers.

o[ 50 0
0 0 0

0 0 0
1[0 0 0
0 0 0

0 0 1
3[0 0 ©
0 0 0

0 1 1
5[0 0 0
0 0 0

1 0 1
70 0 0
0 0 0

1 1 1
100 0 0
0 0 1

0 1 ¢
110 0 0
0 0 1

0 1 1
1270 0 0
0 9 1

1 0 0
1370 0 0
0 0 1
D0 1
14500
0 0 1
P11 o
157000
0 0 1

1 1 1
2100 D
0 1 0
10 1
23[[0 0 0
0 1 ¢

1 1 1
210 0 D
0 1 1

0 1 1

70

71

78

79

84

85

86

87

94

95

97

98

99

101

0 0 1
0 0 0
1 1 0
0 0 1
0 0 0
1 1 1
0 0 1
0 0 1
1 1 0
0 0 1
0 0 1
1 1 1
0 0 1
0 1 0
1 0 0
0 0 1
0 1 0
1 0 1
0 0 1
0 1 0
1 1 0
06 1
0 1 0

1 1 1
0 0 1
211
1 1 0
0 0 1
0 1 1
1 1 1
0 0 1
10 0
0 0 1
0 0 1
1 0 0
0 1 0
0 0 1
1 0 0
0 1 1
0 0 1
1 0 0
1 0 1

111

113

114

115

117

118

121

122

123

124

125

126

127

0 0 1
1 0 1
1 1 1
0 0 1
1 1 0
0 0 1
0 0 1
1 1 0
0 1 0
0 0 1
1 1 0
0 1 1
0 0 1
1 1 o0
1 0 1
0 0 1
1 1 0
1 1 0
0 0 1
1 1 o
1 1 1
0 0 1
1 1 1
0 0 1
0 0 1
1 1 1
0 1 o
0 0 1
1 1 1
0 1 1
0 0 1
1 1 1
1 0 0
0 0 1
1 1 1
1 0 1
0 0 1]
1 1 1
1 1 0
0 0 1
1 1 1
1 1 1

229

231

238

239

245

247

254

255

325

327

335

341

343

3561

01 1
1 0 0
1 0 1
01 1
10 0
1 1 1
0 1 1
1 & 3
1
0T
1 6 1
(1 1 1
0 1 1
1 1 6
1 0 1
0 1 1
1 1 0
1 1 1
0 1 1
1 1 1
1 1 0
0 1 1
111
1 1 1
T 0 1
0 0 o0
1 0 1
T 0 1
0 0 0
1 1 1
1 0 1
0 0 1
1 1 1]
T 0 1
01 0
1 0 1
T 0 1
0 1 0
1 1 1
T 0 1
0 1 1
1 1 1
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Table A3. The following is a complete list of the proximity factors and
cluster values for the 86 unique wafer patterns. The sort orders .r each
of the cluster value assignments is also listed. The cluster value formula

that results from the inverse distance function is:

¢; = 3*Fp + 1*F; + 0.70710678*F2 + 0.5*F3 +
0.4472136*F4 +0.35355339*F; (A1)

The Gaussian function produces the foll ywing cluster value formula:

ci = 1*Fo + 0.77426368*F + 0.55448425*F5 +
0.35938137*F3 + 0.27825594*F, + 0.12915497*F; (A2)

‘Cluster Values Sort Order
Wafer | FO F1 F2 F3 F4 F5 Inv. Gau. Inv. Gau.

0 0 0 0 0 0 0 0 0 1 1

1 1 v 0 0 0 0 3 1 2 2

3 2 2 0 0 0 0 8 3.549 7 7

5 2 0 0 2 0 0 7 2.719 5 5

7 3 4 0 2 0 0 14 6.816 16 16
10 2 0 2 0 0 0 7414 3.199 6 6
11 3 4 2 0 0 0] 14.414 7.296 17 17
12 2 0 0 0 2 0 6.894 2.557 4 4
13 3 2 0 2 2 0| 12.894 5.824 14 13
14] 3 2 2 0 2 0] 13.309 6.304 15 15
151 4 6 2 2 2 0] 21.309 11.120 34 34
21 3 0 4 2 0 0] 12.828 6.117 13 14
23 4 6 4 2 0 0] 21.828 11.762 36 36
271 4 8 4 0 0 0] 22828 12592 37 37
29 4 4 4 2 2 0| 20.723 10.770 33 33
30] 4 6 4 0 2 0 21.723 11.600 35 35
31 5 10 6 2 2 01 31137 17615 58 58
45 4 4 0 4 4 0f 19.789 9.648 27 24
47 5 8 4 4 4 0] 29617 16143 52 52
63 6 14 8 4 4 0] 41446 24.186 74 74
68 2 0 0 0 0 2 6.707 2.258 3 3
69 3 0 0 4 0 2] 11.707 4.696 8 8
70 3 2 0 0 2 2] 12.602 5.363 12 11
71 4 4 0 4 2 2] 19.602 9.349 23 23




Cluster Values Sort Order
Wafer{ FO F1 F2 F3 F4 F5 Inv. Gau. Inv. Gau.
78 4 4 2 0 4 2] 19910 9.667 29 26
79 5 8 2 4 4 21 28910 15202 49 47
84 3 0 4 (4] 0 2| 12.536 5.656 11 12
85 4 0 6 4 0 21 18.950 9.293 20 22
86 4 4 4 0 2 2| 20430 10310 31 31
87 5 6 6 4 2 2% 28844 15495 48 49
94 5 8 6 0 4 21 29.739 16.162 54 54
95 6 12 8 4 4 21 40153 22.896 n 71
97 3 0 0 2 4 0] 11.789 4.832 9 9
98 3 0 2 0 4 0} 12203 5.312 10 10
99 4 2 2 2 6 0| 19.097 9.136 21 20
101 4 2 0 4 4 2| 18.496 8.357 19 19
102 4 4 2 0 4 2] 19910 9.667 30 27
103 5 6 2 4 6 2| 27805 14210 44 43
105 4 4 0 4 4 0] 19.789 9.648 28 25
106 4 2 4 2 4 0f 19.617 9.778 24 28
107 5 6 4 4 6 0] 28512 15151 47 46
108 4 4 0 2 4 2| 19496 9.187 22 21
109 5 6 0 6 6 2| 27390 13.730 41 41
110 5 6 4 2 6 2] 28219 14.690 45 45
111 6 10 4 6 8 2] 38113 20.781 65 63
113 4 2 4 2 4 0| 19.617 9.778 25 29
114 4 4 4 0 4 0| 20617 10.608 32 32
115 5 6 6 2 6 0] 28926 15631 50 50
117 5 4 6 4 4 2] 27739 14.503 43 44
118 5 8 6 0 4 21 29.739 16.162 55 55
119 6 10 8 4 6 21 39.047 21.904 68 58
121 5 8 4 4 4 0] 29617 16143 53 53
122 5 8 6 2 4 0] 30.031 16.623 56 56
123 6 12 8 4 6 0] 40340 23.194 72 72
124 5 8 4 2 4 21 29324 15.682 51 51
125 6 10 6 6 6 2| 38.633 21.424 67 67
126 6 12 8 2 6 2| 40.047 22,734 70 7
127 7 16 10 6 8 21 51356  30.024 80 80
170 4 0 8 4 0 0] 19657 10.233 26 30
171 5 4 8 4 4 0] 28446 15.443 46 48
173 5 4 4 4 8 0| 27406 14.159 4 42
175 6 8 8 6 8 0| 38235 21.372 66 66
186 5 8 8 4 0 0] 30657 17.428 57 57
187 6 12 10 4 4 0) 40860 23.837 73 73
189 6 10 8 4 8 0] 39.235 22202 69 69
191 7 16 12 6 8 0O} 52.063 30.964 82 82
229 5 4 2 4 8 2] 26699 13.218 40 40
231 6 8 4 6 10 2| 37.008 19.789 62 61
238 6 8 8 4 8 2| 37942 20.912 63 64
239 7 12 8 8 12 2] 48731  27.559 77 77




Cluster Values Sort Order
Wafer | FO F1 F2 F3 F1 F5 Inv. Gau, Inv. Gau.
245 6 8 8 4 8 2 37.942 20.912 64 65
247 7 14 10 6 10 2 50.250 29.032 79 79
254 7 16 12 4 8 2| 51.770  30.504 81 81
255 8 20 14 8 12 21 63.973 38.350 85 85
325 4 0 0 8 0 4 17.414 7.392 18 18
327 5 4 0 8 4 4| 26.203 12.602 39 38
335 6 8 2 8 8 4] 36.406 19.011 60 60
341 5 0 8 8 0 4 26.071 13.188 38 39
343 6 6 8 8 4 4 36.860 19.946 61 62
351 7 12 10 8 8 4 49.063 27.904 78 78
365 6 8 0 10 8 4 35.992 18.531 59 59
367 7 12 4 10 12 4 47.609 26.139 75 75
381 7 12 8 10 8 4] 48.649 27424 76 76
383 8 18 12 10 12 4] 62.266  36.580 84 84
495 8 16 8 12 16 4 60.226 34.465 83 83
511 9 24 16 12 16 4| 176.883 46.455 86 86




