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ABSTRAC]
A study is made of thin inextensible clastic rods undergoihg
large deflecticns when subiect to coucentrated and distributed loads.
»
. A ‘
. . . e,
A general numerical method is developed for .50lution of the
re
problem of determining the deformed share of a rod when the loading
and boundary conditions are specified. Some specific boundary value
problems are solved including the problem of a tapered cantilever
bent under its own weight. Experimen:al verification of the numerical./
method is given for the problem of a uniform rod pinned at both ends
and hanging under its own weight.
The inverse problem of deLcrmining the leading of a rod
needed to deform it to a Specified shape is also considered. Some

<

special analytic solutions are presented and a numerical integration

method is used for more general shares.
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CHAPTER 1
INTRODUCTION

N In recent years considerable attention has beer focused on

the production of oil and\gas reservoirs throﬁgh offshore pipelines.
¢ .

The‘laying of fhgse pipelines in deep water, particular;y in the
Arctic, can be extreTely difficult. One method of installing these
'pipélines is to lay it continuously from a barge or throusgh a trench
in the ice. To avoid buckling or overstressing the pipe during this
procedure the rad_us pf curvature of the pipe must.be kept above some
minimum allewable value.: This can be done by supporting the pipe in
a bouyant stinger or flexible truss as shown in Figure 1. AIn design—
igg £his sﬁpporting strucéure.two types of problems musg be solvgd.
In the uﬁper supported region the designer can choose an-optimum shape
for the pipe. The su?porting loads requiréd to give the‘pipe this
shépe must then be found. In the lower gnsuppérted region‘the‘pipe
deforms due to its weight. The loading of the pipe in this reglon
is then known and to check the radius of curvature the deformed shape
of the pipe must be determined.

‘ These proﬁlems can BevSolved by treating the pipe as a thin
inexteqsible god loaded by bofﬂ distributed anqkponcentrated loads.
As in the usuallBernoulli—Euler beémltheory the bending moment at any

point along the rod is proportional to the curvature at that point.

In the small deflection theory this relationship is linearized by

“a

7 . -
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neglecting the Square and higher powvers of {he slope of the rod as
" J

~J

small compdred to unity. For this problem the square of the slope
of the pipel}ne cannot be neglected and the nonlincar relatioinship
must be used.
The general problem of nonlinear bending of ghin rods requires

v

three basic components. These are the {ree or unloaded shape of the

rod} the loading of the rod, and the deformed shape of the rod.: The

R . .
-usual problem considered is that % which the free shape and loading

of the rod are given. The deformed shape‘of-the rod must then be
determined. The ihverse problem is that of finding the free shape
of the rodﬂwhen the loading and the dcformeq shape are specified. A
further problem is that in which the free and deformed shapes of the
rod are given and the required loading is to be found. The two
Pipeline problems mentioned previously are special cases of the

first and third prgblcms given above whére the free shaps of the rod

is a stralght llne The second problem of determlnlng the free shape

"2

q/ﬁ5f the rod 1s not appllcable to the study of initially straight rods.

) In Chapter IIJ;he geverning drfferenrial eduatibns for the-
three general problems given above are derived. These equatlons are
valid for a rod of varying cross section end subject to nonuniform
disttibuted loading. Chapter III considers the problem of determining
the deformed shape of an 1nrrlally straight rod loaded by distributed

and concentrated loads. A general numerical method is presented

which can be easily applied to the pipeline)problem and to problems



¢
of rods with varying crosg section and nonuniform distribuyed loadings.
With this numerical methog only a small Programable desk computer wirth
limitchmcmury is needed (o give éccurnto solutions. The numerlcal

o

method ? compared to two of the few analytical solutiom known for
problems of this t)pe Experimental verification of the numerical
method is presented in Chapter V for the case of a thin rod deformed
under its own weight when pinned at both"ends The problem of *

findlng the dlstrlbuted loadlng necesadry to deform an initially

Straight rod to specified shape is treated in Chapter 1v, Some



CHAPTER 1]
BASIC CONSIDERATIONS

2.1 Classif{ggE}gp of Prgxigg§jﬁliglkxgg>Problems
The problem of nonlinear bending of thin rods has received
considerable attention in the’pas;. The usual problem solved is that
of deterﬁining the deformed shape of the tod when the free shape and .
loading are specified. . The elasticaprgblem of an initially'stréight
rodégent it a plane cdrve by couples and forces at‘its end points waé
“firs; solved by Euler [25]. The pProblem of an initially straight
horizontal cantilever with a vértical concentrated load at its free
end was t;eated approximately by Boyd [4] and Gross and Lehr [12].
Barton [1] ang Bisshopp and Drucker [3] later solved this probleq
in terms of elliptic integrals. Analytical solutiogs were obgained
by Conway [7] agd Sato [20] for the case of an initially ;;rved
cantilever. Saelman [l9J considered the problem of horizontal and
vertical loads acting simultaneously at the free end of an initially
sgraight cantilever. The Same problem has been solved by Mitchell [17]
for an initially curved rod. Frisch-Fay [9] considered the case of g1
cantilever loaded by several concentrated vertical loads. The
problem of a simply supported ro. with a central concentrated load
has been solved by Conway [6] and Cosppdnétic [11].

For problems involving uniformly distributed loads very few

analytical solutions “have been obtéined. Rummel and Morton [14]

~



presented‘an approximate solution for the case of a‘horizontal
cantilever subject to a vertical uniformly distributed load. This
same case was treated by Bickley [2] and later by Rohde [18] using
an approximagecgeries solution. Seames and Conway [22] produced
a tabular ﬁethod using tangential circular ares whicg'could be used
to approkim;tely solve this problem and others, including problems
with initially curved rods. " Iyengar and Rao [lS]lused a series
solution to solve the problem of a simply supported rod loaded
simultaneously by a uniformly distribuﬁed }Qad and a central concentrated
load. The case of a cantilever subjected to a uniform normal load
has been solved analytically by Mitchell [17]. Lippmann, Mahrenholtz
anq Johnspn [16] have used an analog computer to solve various
distfibuted load problems, including that of a cantilever with a
varying distributed load and flexural rigidity. Thewmonograph by
Frisch-Fay [9] includes mainly solutions of this fifst typeaaf problem.
Reference is made to many of the analytical and numerical solutions .
mentioned above. | ‘

More recently various numerical methods have been used to
- solve these pfoblems, some giving more accurate results for proglehs
previously considered. A finite difference method has been uséﬁ by
Wang,”Lee and Zienkiewicz [29]. Wang [28] has proposed a numerical
‘method which can be used in problems with several concentfgﬁﬁd loads.

~

His proposed method for rods with distributed loads is in error as

4

bointed out by Hdlden [13]. A finite element procedure has been



developed by Tada and Lee 124] for nonlinear bending problems. Schmidt
and Da Deppo [21] have used ;n extension of Rhodes [18] series solution
to provide a hore accurate solution for the deformed shape of a canti-
lever with a uniformly diétributed load and to providé a solution for
the post buckling béhavior of'a~heavy column. The nonlinear bending

of a cantilever of variable cross section has been considered by

Verma and Kr%shna Murt); [27}. Recently a fourth order Runge—KutFa
method has béen used by Holden [13] to give accurate solutionsAfor
problems with uniformly distributed loads. Yang [30] has used a
matrix displacement method to find the deformed shapes of beams and
frames with ;oncentrated and distributed loads.

The problem of finding the free shape of a rod necesgsary to
give a specified deformed\;hape when a known loadlng is applied has
received some attention in the past. Truesdell [26] found the free
shape of é cantilever which becomes straight when defotmed by a uniformly
distributed load. The general solution for the free shape of a
cantllevér with a specified deformed shape and loading was given by
Mitchell [17].

The third type of problem, Ehaglin wﬂicﬁ the free and deformed
shapes are specified and the required loading is to be found, has
received little attention in the past. - Thléltype of problem occurs in

the bending of bandsaw blades [10] and in the bendlng of a pipe to a

specified shape [8].



2.2 §asic.E(uatioQ§

As in all of the investigations referenced in section 2 1
this work considers the deformation of thin- 1nexten81ble rods loaded

in one plane by static concentrated and distributed loads. It'is

rod deforms only in the plane of ioading,due to bending alone. The

tQd is assumed to be thin so that the longitudinal strains in 'the

rod remain small. The relative rotations in the rod can still be

large and this leads to large deflections.of the rod. According to
o

the Bernoulli~Euler law the bending moment M at any point ip the

rod is proportional to the change in curvature of the rod. Thus

M = EL [d-e- - @J o (2.1)

I . L~

where EI is t;e flexural rigidity of the cross section of the rod and
$(s) and 0(s) define respectively the free and d%formed configurations
of the rod as shown in Figure 2. i

fhe equilibrium £quations of the rod dfe given by Frisch-
Fay [9] and can be obtained from consideration’ of a small sectan of
the deformed rod as shown in Flgure 3. |

T, Vv and M are the tension, shear force and bending moment

réspectivelyﬂ The dlstrlbuted }oad per unit length can be resolved

. into components W (s) and w ‘(s) actlng parallel to the. x and y axis
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FIGURE 3: 4 Small Section of Deformed Rod
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FIGURE 4:

Section of Rod with Normal ang Tangential Loads
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N
or into components»wn(s) and w£(s) acking normal‘and tangential.to
the rod as shown in Figure 4. The static equilibrium of forces
Tesolved in the x anq y directions requires

O

+fZFy = 0= - wyds + Vcos6 - (V + dV) cos(o + de)
iv

= Tsin® + (T + dT) sin(s + do) = 0

P

After expanding and neglecting second order terms this equation reduces

to
‘ I
£ (Ts106) -~ 9 (veoss) - w =+ o L (2.2)
ds ds ' y .
Similarly
rd
:tzFx =0 = w.ds - Tcos® + (T + dT) cos(8 + do)
+ (V + dv) s$in(0 + d6) - Vsing = 0
which reduces to
—(L(Tcose):k-q—(V' 0) +w =0 ‘? (2.3
ds ds V7O Vx ié )

In some applications it is more suitable to consider these equations
-resolved in the normal and tangential directions. This can be done
directly by considering the static equilibrium of forces resolved in-

these directions or by first performing the indicated differentiations



-y

11.
in equations (2.2) and (2.3) and then multiplying equation (2.2) by
cosb and equation (2.3) by - sing.~ Adding‘ﬁhe_reSUIting equations

gives

v ! : '
T %; - gé = wxsinO + wycosG =W (2.4)

Similarly multiplying (2.2) by siné and (2.3) by cos6 and adding the

two equations gives 4

dr | .do - o )
s + V ds = wxcosO + wyslne = - | (2.5)

The moment equilibrium equation requires that

ED ZMC =0=M+dM -~ M - vV + dv) ds + wxds . gﬁ siné
- w ds ds cosf

y 2

Neglecting second order quantities gives

a_ o | | (2.6)

The deformed shape of the rod has been expressed in terms of-
the fﬁnction 8(s). It is sometimes more convenient to express the

shapemas y = k(x)i



12,

These coordinates are related by the following equations

s ‘ ~
x =x_+ f cosf ds P
s
(o}
\ y = yo + f sinO. ds i
. So . b )
) (2.7)

8 = arctan (gﬁ)

’/ ' 2
s + f 1+ (

o

0
]

£

where (xo, yo)uare the coordinates of the rod at s = g .

2.3 The Problem of Unknown Deformed Shape

In this' problem the free shape of the rod ¢(§) and t@e
dlstrlbuted loadlng Vo and wy or v and W, and any concéntrgéeahioads

: J
are specified. The deformed shape of the rod 8(s) must then be

<

I . ' ﬁ
determined. Integrating equation (2.2) and equation (2.3) gives
[}
s € '
Tsin® - Veost - [ w ds = ¢ (2.8)
. o y 1
s
Tcos6 + Vsine + w ds = ¢, (2.9)
o .

If the boundary conditions T = Tb, V= Vo and 6 = B at s = 0 are



13.

(2.10)

adding gives

S
V+ sing [ w ds + cosg

s
) [ wyds = 02 sing - cl cosf

[0} N

4

7 Substituting for V‘from €quation (2.6) ang for M fronm equation (2.1)

then gives

. s . .
d o _ dy -
ds [El(ds ds)J + sing Of wxds + cos® f wyds

9

= c2 s$inf -~ cl cosf

o

then equation (2.11) becomes ap integral di

. n 7% Wy A
-fferentiii;iggation for _
. \
8(s) given by _ >
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o s
i d dé _ d¢ . .
Lo = |EI(— - + + gy s
3 ds [ (ds ds)] sing Of (wtcose ¥, sin0) ds
3 [#] s .

+ cos9 f (wncosO - w.sing) ds .

o
o
= <, sinf - S coso (?.12)

A general numerlcal method is presented it Chapter 111 for.

solv1ng this' type of problem. 4 , ) *

'2.4 The Problem of Unknown Free Shape
- ———————2° _-nknown Free Shape

In this problem the deformed shape 0(s) and the loading are
quaified.' The free shape ¢(s) is to be determined. Rearranging

equatxon (2 11) gives T

!

wf' s
n.‘ d¢, “w 4 de s A
I [EI : ds EI s sinf Of wxds

o

s
— cosb of wyds + <, sinf - ¢, cos8 | (2.13)

This is a liqgar seéond order ordinary differential equation
for @(s). Mitchell [17] gives the‘general solution of thisg equation
for a captilever beam. If w and wt aaf speclfled then equation (2. 12)
agaln gives a linear ordinary second order differential equation for
$(s). _ ThlS problem has been included for completeness and will not be

.

consideﬁed further.
v
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2.5 The Problem of Unknown Logdin
T ———— . iKnown Logding

In this problems the free and deformed shapes of thg#rod are
specified and the required loading must pe determined. Substituting'

for V in equation (2.4) and (2.5) gives

f 2
46 47 199 _doy | - ~
T ds 5 [Ll(ds ds)] wn 0 (2.14)
ds
dT d do d¢ de
- 4 = — = = .
ds ds [él(ds ds)J ds + wt 0 (2.15)

These two differéﬁtial equations involve the unknown functions
T(s), wt(s) and wnks). Some addi;ional relation between these functions
is required for solution of thig problem. For example if the rod is
loaded by ga normal load wn(s) only, then w, = 0. Equation (2.15) is
then a first order ordinary differential equation which can be solved
for the tension T(s). Equétion (2.14) cén then be solved for the
required normal load. If the rod is loaded only by a tangentia]

. distributed load then equations (2.14)’ahd (2.15) can be solved algebra-



6.

ordinary differential for T(s). The normal load F(s) can then be

obtained from equation (2.14). .

Chapter 1V considers solutions of this type of problem for

. the case of an initially str

aight rod.
@

Analytical solutions are given
5

for special cases and a numerical integration is used for more general *

-

shapes.
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!
CHAPTER 111

NUMER1CA]J, SOLUTION OF THE PROBLEM or

UNKNOWN DEFORMED SHAPE {

3.1 Basic Numerical Method

P

4

4 This Chaptcr considers the ploblem of determining the shape
-
of an 1n1tlally stqa;ght rod loaded by distributod and conccntrated

loads. vThe_numeriCal eolutlon presented can be extended to treat

@ < \l}‘ \ .
initially curved rods. - NN
o . . .
It was found in section” 2.3 that a second order nonlinear
@ = -

differential equatibn must be solved to obtain the deformed shape of

the rod 6(s). The solution of this nonlinear equation can be avoided

l 4 N «
by considering the rod as g4 series of short Segmentg. Within each

_.Segment only small relative rotatlons occur whlle the segment as*a

-

. .“',.'

whole undergoes large rotations. If the problem is treated as an

initial value problem then, the overall ﬂam be built up by solving
&

LF

a lineaTr initial value problem in each segment. The 1n1t1al conditions
used in each segment can be obtalned by using geometric and force

compatibility conditions at the‘jun%'ion with the previous segment. The
. s) . 4 )

actual boundary value problem .is ?d}Ved by considering a series of

overall initial valye problems which converge to the required boundary

S
3

conditions.
The use of these segmen&s allogs ?olutlon of problems involving

. B
ural rigidity, as well as

varying dlstrlbuted loads and varylng fl

g
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problems with several concentrated Jloads.

3-2 Solution for the Rod Segment

‘. B . .
Since each segment undergoes only small relative rotations
the angle 6 will be small with respect to some local x and y axis as

shown in Figure 5.

e

FIGURE 5: General Rod Segment

Neglecting the term 62 as small compared to unity for an

PR

. ! R
Initially sttaight rod equation- (2.11) becomes

2

d ' _ ,
EI dsz +hswx6-+ swy = TO(O - B) + Vo‘ (3.1)

A
3

where w, and wy are uniform distributed loads acting parallel to the
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Jocal n uﬁé yléxls ;;d 1he floxural rlfldlty ET is constant along the
tleméﬂt.-\Thg cungtan§§? and <, ;n equation (2.11) have been
dludted u51n& chatlon‘(Z 10) for the initial conditiong T =17

vV = VO and 0 =/é at s = ?u

Equation (3.1) is a linear ordinary differential equat ion
which can be solved for the deformed shape of the segment 0(s) subject
to the initia] conditions M = M and 0 = 8 ar s = Q.

This equation gaﬁ be nondimensionalized by_multlplyln& by
62 where § ig the length of the segment and Lhen dividing by the

flexural rigidicy.

This gives

d26 w ¢ TO § V & w & T6 L
2 T e T B Bl P T TEr 8 3.2)
" dp
erep'=§
S
- Defining the quantities
o
T0 62 Vo 62
Yo T TFI Yo T TEI
L]
(3.3)
wX 63 1% 63
X = w:——L‘_
EI EI

then equation (3.2) can be written as



2

2
dp

+ - G -
[xe To] vo To

For an initially straight rod equatio

do
M = EI ds

The nondimensional bending

given by

=_@_Q v o=
"TELT @

The solution to the homogeneous part
terms of Bessel functions however it

series solution.

Assuming
® 67= bX akpk
k=0

then the initial conditions 6 = B and

givew

20.

B ~ yp (3.4)

ns (2.1) and (2.6) become

ve? 42 e
EI =~ 2 SN2
do

R

of equation (3.4) can be found in

is more convenient to use a power

(3.6)
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a =R ) a, = 3.7)

Substituting equation (3.6) into the differential equation (3.4) and

-~
solving for the coefficient a gives
¢
¢
a, = v0/2 ay = (TO Hy ~ XB = ¥)/6
T, % X a '
20 k-2 k=3 k=4,5,6... (3.8)

T k(k - 1)

: ) .
Neglecting the term 9 as small compared to unity gives the local x and

Yy coordinates of the deformed shape from ‘equation (2.7) as

—

)

<
4

. v
f 0ds - 4
0

where x = 0 and y = 0 at s = (. The nondimensional coordinates are then
(352)

Substituting for <, in equation (2.9) from equation (2.10) .and applying

the small angle approximation gives

==
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where w 1is constant. 1
X

Nondimensionalizing this equation gives

: \
T=g Tt vOB - v8 - xp - (3.10)

-

1f uniform normal and tangential distributed loads v and W,

are applied to the segment then equation (2.12) can be used. Applying

the small angle approximation to this equation gives

526 s s
EL = + 6w s +06w [ods +u s-w [ ods

ds o o

= To ® ~-8) + V0

where again the rod is initially straight and the flexural rigidity EI

has been taken as cofistant in the segment.

I

Rearranging this eqﬂifgon and defining
: p

. S
6s = [ eds
(o}

gives

T . A"

2 B , B
Elg—g+w(l+ee)s+w(6—‘6)s=T(6—B)+V
 ds nA t AO

N

(o]

LS
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The term 06 can be neglected compared to unity. Thig gives

!
d20 s .
EI 5+ (wt s - TO)8 - v, f 8ds
ds . o
=V -T B~w g (3.11)
o o n B
Defining
’ Y 63 . w 63
= -2 and : £ = t
" TR EI

v
then €quation (3.11) can be nondimensionalized in the same manner as

equation (3.2) tb give

d2

) p
2t @ -t )0 - [ g
do o

e

=V, =18 - (3.12)

Using the power serieg solution given by equation (3.6} then ao and ai

are given by équation'(3.7).

Substituting this power ceries into (3.12) yields

¢

@, = v0/2 ay = (To ¥ = n)/6

kT k(k - 1) o J - 3.13)
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Substituting for W and <, in equation (2.9) and using the

small angle approximation gives
s
T=T +VB-Ve~w s-w [ 6ds
o o t n
o
The nondimensional tension is then given by

= + - - -
T=T tvB . vl - £p - ny/é

3.3 Equations for the Numerical Method

(3.14)

The rod is divided into N segments each of length &, with

the¢ segments numbered from 1 at the starting point to N. The scheme

for assembling the segments is shown in Figure 6

Y4

FIGURE 6: Scheme for Assemb{fzg/Se

R

gments\\\\\ .
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where Xy and yj are the local coordinaggﬁg;TB\égivﬁpe~jth segmeut and

X and Y are the global set of axis.

angles from the local Xj

end of the jth segment. The angle Yj

axis to the tangents at the beginning and

Bj and ¢j are respectively the

is measured from the global X

axis to the tangent at the end of the jth

The bending moments at the beginning and end of the jth
- - . ﬁ
Segment are respectively Aj and Bj’ the tensions Cj and Dj
shear forces Fj and'Gj as shown in Figure 6.

Cﬁlobal nondimensional

A L

* = —d_
AJ EI*
C_L2
C* = -1
3j EIL*
F,L2
= 1

i EI*

where L is the length of the rod and EI* is a representative f1

rigidity for the rod.

]

quantities can be defined as

segment.

(3.15)

exural

Nondimensional quantities based on the segment length and

flexural rigidity of the jth segment are’

&
o

o
o
N

mr—‘
[ey &SN
.

:zf:n
=t
. O

(3.16)

]
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In the numerical method it is necessary to convert from
global nondimensional quantities to segment nondimensional quantities

at the beginning of the'jth segment. Using equations (3.15) and

(3.16) then ‘

“a, = A*¥/(r. N
aJ ] (rJ )
(3.17)

2

c, = C¥/(r. N

Nj J ( J )

£, = F*/(r. N%)

J ] J

where
EI, .
rj = EI% (3.18)

and N is the number of segments.

. v , . .th
The inverse conversion is used at the end of the j segment

given by

J i3
D* = d, r, N2 ~ (3.19)
3 J ] ,

° »
Gx = g r N2
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’

Before the series solution for ¢(p) can be evaluated in the
.th . . .o
j segment, the angle Bj which determines the position of the xj and
Y. axis must be chosen. The simplest choice is to let.Sj be zero,
then the local axis will be tangent to the beginning of rthe segment.
If the xj axis was placed through the end points of the segment, then
the angle 6(s) measured with respect to this axis intuitively would
be smaller at points along the segment than the angle taken with
respect to the tangential axis. 1In deriving the solution for the

. . 2 .

general segment in section 3.2 the term 6° was neglected as being
small compared to unity. It is desirable to make this error term as

small as possible in the segment. The average value of 62 in the

segment is given by

1
'(ez) = f 6? dp (3.20)
AN

From equations (3.6), (3.7) and (3.8)'for the general rod segment

2
vV p7 o e
s

8 =B +up+
- ° k=3 [

Approximating 6 by the first three terms of this series

gives

v - .
6 =8 +up +2~°p . (3.21)
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.

and from equation (3.20) for this linear curvature approximation of the

* shape

H \Y u \% H oV
2 2 o) o o o o o
= . — _—_ —_ —_— + -
ODpvg =87+ 285G+ 59 + 3 720 4

g = - ) 7 (3.22)

3.9) the local y-coordinate of the end point of the

From equation (
!shape given by equation (3.21) is

4 uO \)O
B+ 5=+ o)

e

which equd zero when B is given by equation (3. 22) Thus with this

choice of | 'he local x axis passes through the end- p01nts of the
linear cudiiture approximation of the deformed'shape of the segment.
1 only the first two terms of the series are used then this

gives a circular arg approximation for the shape of the segment.

- Minimizing ezAVE gives B = — /2 which is equivalent to positioning

3
£

the local axis through the end p01nts of the c1rcular arc approximation
of the deformed segment.,

If only the first term of the series is used then 6 = B and

ezAVE is minim;zgd when 8 = 0. The x—axis 1s then tangent to the

S



[¢N

29.

beginning of the segment. Using equation (3.22) the angle ﬁj‘which

determines the orientation of the local xj and yj axis can be chosen

e

\”_ f )
B. (3aj + J.)/6 (3.23)

J

as

Evaluating equations (3.5) and (3.6) at the end of the jth segment where

p =1 gives

¢. = I «
] k=0: k
b, = I kaq (3.24)
J =1 _ .
8. = L k(k-1) q
I k=2 k
The local coordinates of the end of the segment are
x ‘ &
X,
p=1 |
and
Y, © a
= -l = \_k C T .
hj 8 [ fo K+1 » - 3.26)
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If the segment 1s loaded by constant nondimensional distributed
loads Xj.and ¢j Parallel to the Xj and yj axis then frop equatiﬁns (3.7)
and (3.8)

1 i % f fj/Z

. 3.27
% ( )
@ = (c Gy~ xJ ak_3)/[k(k—l)]
k=4,5¢6 ...
and from equation (3.10) .
d. =c, +fp - 9. = x. (3.28)
I3 5T T By Ty :

If constant nondimensiong] distributed loads 1,

and gj act
. .th
normal and tangential to the j

segment then from equations (3.7) and
(3.13)

i a, = f /2
s :‘!“

(3.29)

' S ' k=4,5,6
. | )
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(3.30)

In some problems both types'of constant distributed loads may be

applied to the Segment. Since both element solutions satisfy linear

ordinary differential equationsAthe Superpositipn Principle can be M E

§

used to give the values of ay for the combined loading -of the j

segment.

th

The angle Yj at the end of the jth segment from Figure 6 o

is given by

If X, Yj are the global coordinates of the end of the jth

J

from Figure 6.

¢
X, =
J

Y

J-

The nondimensional global coordinates of the end of the jth

then gigeﬁ by

(3.31)

segment then

Xip* CIPR cos(y, | - B - (yj)fp=l sin(y, ; - B,)

Y, =Y, + . . - B.) + x. si . - B,
-1 (yJ)I‘pzv1 COS(YJ_l 8 'XJ’p=l n(YJ_l 5)

Segment are
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X
. 1 .
R (I N PO .1 ~ B.) —h.sin(y, . - g,
j L j-1 N (YJ‘l J J (YJ‘l J_)]
Ej - D
Y& = YRty sintv. - B) +hcos(y. | - B. 3.32
Hly ity -1 ; 3 ’(Yj_l J)] ( )

Given the quantities Bj’ Dj’ Gj at the end of the jth segment
then if .no éonccntrated forces' act on the rod, the forces and bending

. . th .
moment acting at the start of the (j+1) Segment are given by

= B
A T
=D
EL I
-r
=G
TG w
A
or in nondimensional form -
*\ = *
N Af,q = B
* = * .4 .& ! ) ,
Cj+l Dj “ (3.33)
h
F* = Gx s

% L :
jtl j : ,
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If concentrated forefs or couples are applied to the rod
then these are assumed to act at the junction of the segments. Equation

(3.33) must then be modified to account for these loads.

3.4 Numerical Procedure

The usual nonlinear bending problem solved is the two point .
boundary value problem in which boundary conditions are specified at
both ends of the rod. An easier problem to solve ig the initial value
problem where all boundary conditions are specified at one end of the
rod. The numerical procedure for solving this problem is given in
subsection 3.4.1. The boundary value problem can be considered as an
initial value problem in which some of the initial conditionsare not
known. If these initial conditions can be found so that the solution
té the initial ;alue proBlem also satisfies the boundary conditions
at the ;nd of the rod"téen this constitutes the solution to the
boundary value prdblem. In subsection 3.4.2 an iferative method is

presented which can be used to find these unknown initial conditions

and thus obtain the solution to the boundary value problen.

3.4.1. - Numerical Solution of the Initial Value Problem

’
If the Bending moment, shear force, tension, global coordinates
and slobe of the beginning of the rod are known then.the solution for

the total rod can be built up by solving each segment successively

—

&



Starting with segment 1. Figure 7 shows a general rod with the six

boundary quantities at each end.

—> X

FIGURE 7: Boundary Quantities of Rod

The nondimensional coordinates at the beginning of the rod

are given by

X ' Yo' ,
F - and . Yg = L_ (3-34?

X*
o

where L is Lhe length of the rod and the slope is given the angle Yo

In terms of the notation for the first Segment the global nondimensional
moment, shearnforce and tension at the beginning of the rod are AI FI
Cf. Given tﬁ‘se six quantities then the solution for the flrst«segment

2
can be obtained.
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t L,
For the j h element given the initial quantities A?, F?, C;,

X;_ Y;—l and the flexural rigidity ratio rj then the following

next segment.
1. The segment nondimensional moment aj »- Shear force f and
tension cJ are calculated from equation (3.17).
2. The angle Bj which determines the local Xj and yj axis is
chosen using equation (3.23).

3. The series solution given in equations (3.24) and (3.26) is
used to calculate the angle ¢j taken with respeet to the
local xj axis, the Segment nondimensiona] moment bj’ shear
force gj; and local coordinate_hj at the end of the jt
segment. The coeffieient o in the series solution are glven
by eqeatlon (3. 27) if nondimensional uniform distributed loads
x . ¢ are applled parallel to the xJ and yJ axis. If
uniform distributed tangehtlal and normal leads g aﬁd nJ
are applled to the element then the coefficients are given
by equation (3.29). \ K
4. The segment nondimensional. tension at the end'of the jth

segment d is then glven by equatlon (3.28) if x and{tl)j

‘are applied and by equation (3.30) if loads g and nj are

~ given.
5. The global nondiﬁensional coordinates df”the eeZJof tﬁe jth

segment X;’ Y; are then ¢alculated from equation (3.32).

;
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6. The angle Tj defining the s;ope of the end of the jth segment
with respect to the global Xj axis is calculated from
equation (3.31).

7. The global nondimensional moment B;’ shear force G} and
tension D; at the end of the jth segment are then obtained
from equations (3.19).

8. Equation (3.33) can then be used to calculate the global

\<
nondimensional moment A* +1° shear force F §+1° and tenslon
o

3

Dj+l at the beginning of the (j+l) segment.

. . % * *
The ‘quantities Aj+l’ , XJ, Yj are now known.

*
Fj+l’ C_]+l’ Y5

The procedure can be repeated Successively to obtain the end point
quantities for alj] segments. The nondimensional moment B&, shear force

*
GN’

th
N segment then become the end conditions for the rod as shown in

tension Dﬁ, cdordinates Xﬁ and Y§, and angle YN at the end of the

. Figure 7,

3.4.2, Solution of the Boundarz Value Prablem

specified at the start of the rod to give a complete solutionv: In
the two point boundar} value problen if (6=M) quantltles are specifled
at the beglnnlng of the rod then M quantities (ql, qz, ces qM) must
be specified at the end of the rod. Let the spec1fied values of t@ese

quantities pe %, *, +++ q*. " This meang there are M unknown uantities,
1’ 93 M qu

~

Q“
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(3.35)

The vector g can be treated as a function of Z since for given values

of Z the values of g can be obtained by solving the initial value

problem as in section 3.4.1.

solved by finding valués of Z which satisfy the equation

p(2) = q(2) -gq*=0

The boundary value problem can then be

© (3.36)

By beginning with the end of the rod which gives the least

“number of unknown initial conditions then at most equation (3.36) will

by a system of three equations involving three unknowns. By tactful

positioning of the global axis, use of overall equilibrium equations

and of symmetry of loading and boundary conditions, the @umber of

unknown initial quantities can be reduced to one or two in most

problems. B

This system of equations can be solved numericaily using

a variation of Newtons Method.

Newtons iteration is given by
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i+l i -1 i : : . (3.37)

: 4 ‘
where Qé = p(Z") and where the M x M matrix J has the general term

p .
ST | o
2
In this problem the above partial differentiation cannot be

evaluated. A backward difference formulatidn can be used instead. The

general term of J can then be given as

8 .
i i i-1 i i
g - ( ) - pk(zl ’ 2 3 eeey Z,Q"l, ZQ, s ZQ.+1, cesy ZM)
k2 Zi _ Zi—l
£ L

(3.38)

Starting with guesses g? and El then equations (3.37) and
(3.38) can be iterated until convergende is obtained. The one
dimensional form. of this method is usually called the secant method.

In this work the M-dimepsional form of this method will be referred

to as the M-dimensional secant method.

7

3.5 Example Boundary Value Problems

TﬁiS‘section Presents four boundary value problemé solved _
using the numerical method outlined in the Previous section. The
first problem con31dered is that of a unlform horlzontal cantilever

with a horizontal concentrated load applled at the(free end. The
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numerical solution with various numbers of segments is compared to the
known analytical solution. The pProblem of a uniform cantilever subject
to a uniform normal load is also considered. Again comparison is made
to the analytical solution. The third problem is that of a rod of uniform
weight per unit length pinned at both ends. No analytical solution of
this problem has been found. Experimental verification of the numerlcal
solution of this problem is given in Chapter V. The last problem
considered is that of a cantilever of nonun1f01m flexural stiffness
subject to a nonuniform distributed weight loading. The numerlcal
solution 1s compared to a previous analog computer solution. AThe same
problem with an additional concentrated end load is also considered.
These problems are solved using the general computer program
given in Appendix I. Several lines of this program must be spec1allzed
to solve a partlcular problem. Appendix I gives the specialized groups

of lines used to solve the above problems.

3.5.1. - The Elastica Problenm

This section con81ders the elastieca problem of an inltlally
straight horlzontal cantilever loaded by a concentrated horlzontal f
?load P at the free end as shown in Figure 8a. ‘A two point nonlinear:
boundary value problem must be solved to determlned the deformed shaée
of the._ rod ) |

This problem can be solved analytically in terms of elliptic«
integrals (see Frisch—Fay [9]1). With axis located as in Figure 8a, the

coordinates of the deformed shape are given by
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\ 7777770777
N

-~ FIGURE 8: The Elastica



X*

n

X/L

]

Q

Y* = y/p,

2p cos¢/K(p)

where L is the length of the canti%éVer, P = sin(y/2),

and p = g/, The nondimensiona] load is given by

N
~

PL° o
P*=E\I*=K(p)

1

L-h

-

41.

(3.39)

¢ = am[pK(p), p]

(3.40)

N § o . . .
where EI* isﬁfﬁe flexural rigidity of the rod. E(¢,p) and F(é,p) are

the incomplete elliptic integrals of the first and second kinds with

modulus P and amplitude $. TheAcomplete elliptic integrals of the

first and second kinds are K(p) =\E(§5 pP) and E(p) =

E(Z, p).

The lengths ( and h as shown ip Figure 8a are then given

from equation (2.39) by

d* = §~= Y# / = 2p/K(p)
p=0
h* = %.= X* /4F = [2E(p) - K(p)]/K(p)



of the notatiyl Kven in Figure 7 for the end condltlons of the general

rod then the known initial conditlons are X* = 0, Yg = 0, the moment

o
Af = 0, the shear force Ff = ~P#*siny and' tension Cl = - P*cosy. The
unknown initig] angle is Y = y and the angle at the clamped end of

the rod is YN’ with specified: value YN 0.
The numerical results for thlS problem were obtalned u81ng

the general computer program in Appendix I, For the case of a

The énalytical solution was evaluated using the elliptic.fntegral tables

‘

given in reference [23].
- . ’
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In, Table Y} the values of vy, d* and h* given by these solutions
\‘\ " . E

are compared. The subscripts N and A refer respectively to the numerical

solution using N segments and to the analytical elliptic integral solution.

In the elliptié integral solution the angle y is first specified and
’ \

then P* is calculated. This value of P* is then used in the numerical
method.

The program was run with the local segment axis positioned
through the end points df the linear curvature approximation to the
segment of the rod, through thé3circular arc approximation, and
tangential to the beginning of tﬁé\segmeﬁt§ Using the linear curvature
approximation to position the local axis tended to give the most

accuzixe results. However as the number of segments is increased the

\

differences in the solutions using these: three methods become insignifi-

N ",

cant. Also when the number of segments is.doubled ‘the error in the
N ~\ ‘,‘ ‘
numerical solution is approximately halved. \Ihis relationship beccmes
: R
. . A . ; . .
_more exact as the number of segments is 1ncreasgg. If this relationship

®,
P \

is satisfied exactly then

= 2q% - q% ‘ e ;
q 295 ~ 9§ ‘ | 3 (3.43)

i R

s
where gq*represents one of the quantities y, d* or h* and the subscripts
indicate the number of segments used in the numerical solution. With

o

P* = 4.65056 then h*_ = 0.11908 and h* _ = 0.12111, using eqéation (3:43) -

80

gives a better estimate of h* as

160
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TABLE 1: Comparison of the Numerical Method
using -Different Numbers of Segments
to the Analytical Elastica Solution

P* = 2.55406 By = - Gay +£0/5
Number
Seggints YN ‘ d§ hﬁ
1 I o.6s770 0.41022 “0391233
5 0.55716 | 0.34392 0.92412
10 0.54064 0.33403 0.92812
20 0.53211 0.32896 0.93026
40 0.52784 0.32642 0.93134
80 0.52572 0.32516 | 0.93189 \
160 0.52466 0.32452 0.93216
2a%, -a%, 0.52360 0.32388 0.93243
A“;igﬁ%ﬁal Y, = 0.52360 d% = 032390 h = 0:93243
P* = 4.65056
n C‘b" ‘ ‘v
1 | 2.27013 - 1.00447
5 . 2.15960 - 0.81142 )
10 2.13035 .  0.80572 o.oééiéf
20 2.11305 0.80409 0.1073%?'
0 2.10387 0.80354 0.11507 -
80 2.09916 © 0.80334 . 0.13908
160 2.09679 0.80325 {“'6.12111
2q%¢ ak, 2.09442 3 L. 0.80316 , 012314
eyeeall y, =2.0000 df = 0.80317 hf = 0.12316



45.

h* = 2(.12111) - .11908 = .12314

»

-

This result is accurate to four significant figures while hgo and

Bawl

hf60 aré!only correctvto two. The values of y, d* and h*'given by
equationi(3.43) with N = 80 are show? in Table 1. This type of
convergence was obtained in all problems involving uniform rods with
concentrated and uniformly distributed loéds.
a

Table 2 compares the valugs of the nondimensional X and Y
coordinates given by tﬁe,gumerical method? (N = 160) to the analytic
elastiqa solution at five‘points aleng the cantilever. For P% = 2.55406
the rod i%s approximately parallel to the X axis. 1In this casé the
relative error im thé values of X* decrease along the rodlﬁhile the
errors in Y* increase: For the case of P* = 4.05060 the rod is

approximately parallel to the Y axis and the errors in Y* decrease

along the rod while the errors in X* increase.



TABLE 2:

Comparison of the Numerical Method

to the Analytic Elastica Solution
at Various Points along the Rod

46.

PX = 2.55406 N = 160 8, = (Ga, + fj)/b
s Numerical Method Analytic Solution |
I X* Y* X* Y%
160 160 A A
0.17394 0.09871 0.17404 .09853
0.35256 0.18857 0.35275 .18822
1 0.53888 0.26095 0.53913 7 0.26046
0.73306 0.30812 0.73325 .30753
0.93216 0.32453 0.93243 .32390
P* = 4.65056
-0.09569 0.17555 -0.09526 .17579.
-0.16122 0.36396 -0.16030 .36437
-0.16026 -0.56281 7 0.15877 .56281
;0.06132 '0.73267 -0.05937 .f3281
0.12111 0.80325 0.12316 .80315

A\
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3.5.2. The Cantilever with Uniform Normal Load

This problem is presented to compare the solution using the
numerical method to one of the few analytic solutions ohtained for
rods loaded by distributed loads. The préblem of an initially
stréight cantilever loaded by a uniform normal load per unit length P

has Peen solved. by Mitchell [17].

YT

X

— X

FIGURE 9: Cantilever with Normal Load

v

In terms of the polar coordinates shown in Figure 9 the deformed shape

of the cantilever is given by ’
ot [P 5 ey | |
0 = 3 in. ———§~—‘ - — sin —~£§—l~ (3.44)

\

where
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3
px = YL r*x = L
EI* L
and
* = % !
LT Js=L
p &

The nondimensional load P* and the radius rf are related by the equations

-~

F(o,k) = ¥3 (13 . (3.45)

where F(Q,k) is the incomplete elliptic integral of the first kind and

sin Y (k) = 15°. Also ,,//

1- (/3 + 1)(P*)2/3(r§)2/2
/

2 = cos (3.46) .

1+ (3 - DenBan?,

These equations can be solved by choosing 'Q, solving equation (3.45)

oy
e

for P* and then using equation (3.46) to determine rf.

Then
P*(r*)3
Yy =90 l = ﬁ-sin— — L
. -3 8
p=0
(3.47)
h
* = — = b3
h L~ I} cos BL
d . } - .
X = = = * 1
d L rL éln.eL
s

where
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3
*(p*k
P (rL)

%
4 ’\.

As in the elastlca problem this problem can be solved uslng
the one dimensional secant method starting from the free end. The
known initial quantities are X = 0, Y =0, A =0,cC, =0, F, = 0.

[o) o} 1 1 1
The angle v = Y, must then be found such that the anéle Yﬁ at the
~ clamped end of the cantilever is given by»YN = 0. i

The nondimensional normal load on the jth segment of the

rod is
n, = 20 o P*/(er3)

where the flexural rigidity ratio«rj =1 for a canfilever of uniform
Cross section.

ﬁﬁhe values of y, d* and h* from the numerical method using
the linear 'curvature approximation to position the segment axis are
compared to the analytlcal results inTable 3. Thlsymethod tended to
give better results than using a circular arc approximation to posifion
the local axis or using tangential segment axis. As in the elastica
problem as the number' of segments is increased the dlfferenceo in the
results using these three methods become insignificant, ~Again for
large numbers of ségments the errors tend to be halved when the number

of segments is doubled.



TABLE.3: Comparison of the Numerical Method
with the Analytical Solution for a

Cantilever with Uniform Normal Load

7

P* = 3.29814
Number ’
Segients R dﬁ h§
I - " 0.54969 - 0.405244 0.92448
2 0.54852 0.397524 0.91181
3 0.54788 0.39567 0.90829
4 T 0.54749 0.39510 0.90720
5 0.54720 0.39464 0.90676
10 0.54641 0.39385 0.90637
20 0.54590 0.39340 0.90638
40 0.54560 0.39317 . 0.90647
A“;igﬁiial Y, = 0.54530 d% = 0.39292 h# = 0.90657
P* = 14.32502
1 2.38750 T 1.11968 . - -0.32026
3 2.24554 0.82766 -0.09431
5 2.20156  ° 0.81722 -0.07390
10 2.15238 0.81810 -0.04230
20 2.12397 | 0.82041 © -0.02205
40 2.10926 0.82188 -0.01119
80 - 2.10184 0.82267 ~ -0.00563
160 2.09811 0.82308 -0.00282
fnalytical Y, = 2.09440 d% = 0.82350 h% = 0.00000




51.

3.5.3. Ihg_§tiffenéq_£@£gparx

The deformed shape of a rod of uniform weight per unit

length W when pinned at both ends has not been determined analytically.

Given the coordinates of the ends of thé rod and that the bending
moment at each end is.zero then the three dimensional secant method
could be used to determine the three remaining initial conditions.
For the symmetric case shown in Figure 10a the vertical component of
the reaction at.each end of the rod is WL where L is the half length
of the rod. Using this fact then the problem could be solved using
the two dimension secant method.

In Chapter V this problem is treated experimentally with

the ends of the rod supported by strings at some angle o with respect

to X axis as shown in Figure 10b. If the global axis are positioned
as in Figure 11 then<:he solution can be found using a one dimensional
secant method starting at the pinned end of the rod.

The knéwn initial conditions are X* = O,,Y; = 0, and the
moment A¥ = 0. From symmetry the shear forgg at the mid point of the
rod is zero. For eqﬁi;ibrium the vertical c;mpsnent of F is Fy = WL
and the horizontal component is Fx ; = WL ctn a. The tension and
shear férce at the beginning of the rod are then

¥

Cl = WL(siny + ctnu cosy)

F1 = WL(cosa - ctnoa siny) o

-7
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(a) ~

BEY
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(b)

FIGURE 10: The Stiffened Catenary

Fa&&

FIGURE 11: Position of Global Axis
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4{‘ *

In global no?dimensional form

(@]
*
I

1" = W*(siny + ctna cosy)

Fl* = W*(cosy - ctng siny)

where the reference flexural rigidity grs is taken as the flexural

rigidity of the rod.

of the known boundary conditions gt the end of the rod, say YN =0

The distributeq loads used ip the jth element are

e d . T

W= ~_w‘81n(yj_l - Bj)

‘ W, = W cos (Yj-l ~ .Bj)

The nondimensional loads are then
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3
wx $ 3 {9
, = = - W¥.si . - B, N -
X B sm(YJ_l BJ)/(rjt )
: J
w 63 3
= L o oy - N
wJ L cos(yj_l Bj)/(rj )
J \
For a uniform rod
EI, {
rj B EIl* 1

The numerical results were obtained using the general program in
Appendix I specialized for this problem. Figure 12 sho:s the shape of
the rod for various nonaimensionai weighté with o = arctan 2. Keep-
ingvthe angle « constanf and increasing the nondimensional weight
W* is equivalent to decreasing the stiffness of the rod while keeping
the actual weight of the rod and the end feactions constant. As W* ig
increased the shapé Qf_the rod approaches the true catenary solution.
Figure 13 can be used to determine the dimensionless vertical
deflection d* = {/1, énd the horizontal span h* = h/L fqr rods over
thejéntire range of possible néndimensional weights; and for values
of the éngié o ranging from a = 0 to a=m/2. The case of a rod
supported only by vert}cai end reaétions occurs when'a = 71/2. (As o

is decreased the horizontal component of the end reaction increases.

This horizontal component approaches infinity as a approaches zero.
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FIGURE 12:

CATENARY

Shapes of Stiffened Catenary with Varying
Flexural Stiffness
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3.5.4. The Tapered Hoavxﬁﬁantilgxgzﬁyith (ggcongfatoqakggg

In this problem a trapezoidal strip of uniform density is
deformed by its weight and a concentrated load P at its free end.

The load P wil] be treated as a follower force acting at a specified

This problem can be solved numerically using a one dimensional
secant method starting at the free end. The known initial conditions
are XO =0, Y = 0, A% = 0, Cf = P* cosa and Ff = -P* sina, where

Px = PLZ/EI*. The reference flexural rigidity EI* jig taken as the

The top view of the cantilever ig shown in Figure 14b. The
ratio of the widths is defined as t = bo/bL. If t = 0 then the
cantilever is triangular. The .special casge of a uniforn cantilever

is given by t = 1,

The width of the Strip at any point is given by

M) = b [t +p(1-t)) 7. (3.48)
where p = g/

For a strip of constaht thickness the flexural rigidity at
any point ig p%oporfional to the width of the Strip. This gives the

flexural rigidity ratio

~



(b)

Y4

~

FICURE 14:

The Tapered

Cantilever
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El(p
r(p) = "“(*) =t ot p(l-t) (3.49)
The weight peuzunit length of the strip W will also be proportional to

the width b(s) giviag

W(s) _ % o (1-0) _ ‘ (3.50)

where wl is the weight per unit length of the strip at p = ].

In the numerical procedure segments with constantgf®BRULral
a u .

rigidity and uniform loads must be used. The shape is approximated

by coffdtant width vetments with -the width taken at the mid point of

Lhe segment. Starfing at the free end of the strip with segment 1,

. . .t L
the mid point of 'he i h segment 1s given by

0. = (j=.5)/N ) (3.51)
AN " A

The {lexural rigidity ratio for the jth element is then

EI, - ‘
-— ) — k. ‘
‘ ;rj = EE%—— r(pj) . ) (3.52)
5 The distributed:loads in the segment are

.

Vy T T W(pj) Siﬂ(Yj_l - Bj).

Ry

-

=
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o= W(p, ) cos(y. - R, ]
By T WG ol ) ¢

In nondimeusional form after simplification using equations

(3.50), (3.51) and (3.52) thény ' )

[

» 3 L .

w 6 3
X
= e = w* 31 —_ :
Xj EL y bln(Yjﬁl Bj)/N
f}} Yy 63 3
= A = * - R
vy Elj WX cos (Yj_l- B J/N

. 3 . . . .
where WE = WL L7/EI* is the nondimensional weight per unit length at -
the base of the cantilever.
The general program specialized for this problem as given

in Appendix I was run for the special case of a triangular cantilever

I

(t

0) with a variable load P applied perpendicular to the free end

it

(a

1/2). The results with WK = 10 are shown in Figure 15. When P*
is zero the results can be compared to the analog computer solution

of Lippman, Mahrenholtz and Johnson [16]. Their results are tabulated
for specified values of the angle Y. Given this ;nltlal angle Y Y
then th? loadlng parameter WE can be treated as the unknown quantity

which must be found using the one dimensional secant method to give

L . .
a4 zero slope at the base of the cantilever. Comparison of these

reéPlts 1s given in Table 4. ‘ (i::iﬂ’

~



y . h* d*

w? =10
02 1= Q =77/2
r.;)"
ol v v Ty
0 02 . 04 06 08 10
‘ *
p’

”

FIGURE 15: Solution for the Tapered Cantilever with Varying
End Load
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TABLE 4: Comparison of Numerica] Method

with Lippman et a] [16]

>
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Yy = 10°
h&umber of h* = h/L_ d* = 4/, Wf———~
Segments
10 0.99033 10.12987 3.1081
20 0.99025 0.13033"_ 3.1549
40 0.99023 0.13045.- . 3.1669
80 ' 0.99022 0.13047 3.1700
,_Reference[lél_J 0.993 0.129 3.18
Yy = 30°
10 0.91357 0.38018 10.060
20 0.91288 0.38130 10.221
40 " 0.91271, . 0.38157 10. 266
80 _ 0.91266 0.38163 10.278
Reference[16] 0.899 0.372 10.2
y = 70°
10 , 0.53817 | 0. 78444 o 39.559
20 0.53563 - 0.78476 | 40.354
40 0.53511 0.78463 ©40.614
.80 . 0.53506 r 0.78457 , 40.708
Reference[lé] 0.539 ' 0.784 - 40,7
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CHAPTER 1v O 5

o

SOLUTION OF THE PROBLEM OF UNKNOWN LOADING

4.1 Basic E uations

A

The problem of determining the distributed loading necessary
to bend a rod to a specified deformed shape was introduced in section
2.5. The spgclal case of an initially straight uniform rgd is
consddered in this chapter. .The solutions obtained could be'e;tended
to consider initially curved rods.

For many problems the loads are applied normal and tangential
to the rod. As well one load which often need be considered ls that
duc to gravity. Fnr these cases the loads v and W, shown in Figure

o

‘*16 are given by

F + W coso o (4.1)

b
]

G - W sind : (4.2)

£
[}

where W is the weight per unit length and F and G are normal and .

tangential forces per unit length applied to the rod.



. FIGURE 16: Loading of Rod

{f-,:‘l@ - gr 46 _ + W cosg (4.3)
+ds 3 v
o ds
dT a% de
—_ = = -+ i .
4ot EI 74 G + W sing (4.4)

ds

where the flexyraj rigidity EI is constant., Equations (4.3) ang (4.4)

can be nondimensionalized to give

3 ‘ . A
&0 _de L, coso A | (4.5)
dp 3 . :
dp & ’
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2
dat | 4% a0

T = - g+ w sing ' (4.6)
dp de dp

where the nondimensjionaj quantities used are

?
oonf w3 BN
EL YT EI o
|
4.7)
_s .. m’ : _oL’?
P 1 EI 8% E

and in which I ig the length of the rod. The nondimensional moment

and shear force are

2 2

M1, deo VL d’o

= = = — = —= [.
9] El o and v Bl dpz (4.8)

In equations (4.5) ang (4.6) the deformed shape 0(p) is known. These
equations contain three unknowns (), £(p) and g(p) and therefore
some additional rélationship between these quantities must be known

in order to o&tain a solution.

,(/

-

13

'4.2 Proportional Loading

and thereby allow solution of equations (4.5) and (4.6), one possible

relationship is

g = uf o _ (4.9)



where i is a constant. This cap correspond to the case of

resistance such as would occur in a bandsaw blade with im

sliding or during sliding.

pending

Substituting €quation (4.9) into €quation (4.6) and then
eliminating f from €quation (4.5) and (4.6) gives
-~
T 2 3
0
gl + §~*T = - Q_g §Q-+ w sing + py cosf + | g~§- (4.10)
0 g dp© 9P | do
The solution to this first order linear differentia] equation is
-ub uo d26 de d36
T =8 [C + f e (- -§--— + w sing + Hw cos + E*-*) do]
de . 3
v dp dp
(4.11)
The distributed load { is thep given from equatiop (4.5) as
?
3
0 0
f =1 d8 -4 - w cosH (4.12)
dp 3
dp

&

The constant C can be evaluated using

b Y
<

p=0 : p=0

Equation (4.3) becomes

d36 B
Hw cosb +'H~§—)dp]
dp

(4.13)
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The evaluation of equations (4.11) or (4.13) and (4.12) gives the
tension in the rod and the normal force distribution. The momen t
and sbéar force can be evaluated direatly from equation (4.8).

The special case of normal loadihgralone is given with
u = 0 in the previous solution. For the éase of only tangential
loading{&&g normal load f is zero. From equation (4.5) the tension

in the rgg%is given by

£

A 3 . .
T = (w cosd + —~«)/- | (4.14)
dp

_Solving equation (4.6) then gives the tangential®load

- <L ‘ ’ “(4.15)

4.3 Sgecial\%olutiqg§

e
In this section some special solutions of equations (4.12)

and (4. 13), and equations (4.14) and (4. 15) are considered.

4.3.1. Circular Arc

2

If the rod is bent into the circular arc then

8 = ap ‘ (4.16)
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where a is a constant which corresponds to the nondimensional moment .

The shear force is zero everywhere.

For proportional loading equation (4.13) can be easily

n
integrated to give

. -pa w . 2., Tua
T =1 e(\p P + ———— {2 usin ap + (1-u )(e'U P cos ap)]

a(l+u™) ;

(4.17)

with the corresponding' expression for f from equation (4.12) given by

f =201 - wcos ap

If only a tangential load is applied to the rod then from equation
(4.14)
T = s‘cos ap f ‘ I (4.19)

and from equation (4.15) the tangented distributed load is given by

g =2 wsin ap v : R (4.20)‘

4.3.2. Linear Variation of Curvature

I

8

For this‘case the sl%e of the rod can be given by



Q0 : 2 Qo
= - — (1- + - + .
9 2 ( p) 5 80 (4.21)
where the nondimensional moment at p = 0 is Qo and 80 is the angle.

It has been assumed in equation (4.21) that at p = 1 the curvature
is zero. The nondimensional shear force in this case is a constant

given by

For proportional loading equation (3.13) gives

uo p

T = e—ue{To e %+ f e“e[Qoz(l—p) + wsin® + pwcosB] do}~
o : )
(4.22)
wihere 6 is given by equation (4.21). This can be reduced to
QO —qup(Z-p)/Z QO
cr= (1. - ) e + —
o H H
2. ~ 2 (1-p)2/2
w ue (1-p)"/2 o
o . e  cos u
+ e [(sinc + pcosc) f 12 du
V28 - /2 u
o . . (o}
2 (1-p)°%/2 °
’ ‘ ° e—uusin u
. + (pwsinc + cosc) f ———175———'du] (4.23)
: & Q /2 u
o
Qo
where ¢ = —— + 0
: 2 o
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The remaining integrals can be evaluated using a power series

to give .
2 ~uQOp(2—o)/2 Q
T=(1 -—)e + —
o u M
2 2
uﬂo(l—o) . H8 (1-p9 g,
+ (1-p) we {(sinc + p cosc)[AC——fT?———~) - A(;“)]
' 2
u90(1~o) Q -
+ (nwsine - cosc)[B( 2——**) - B(E“)] (4.24)
where
5
© i/2 or (i-1)/2 i-k (i-2k) 1
Alw) = L2 éi}%‘ - ;k)' 2'+;
i=0 k=0 e T
and o
- B
i-1 or i-2
02 2 ikt imakel i
B(u) = £} & — n ; ‘
i=]1 k=0 .(Zk + 1)! (@ 2k DY 21 + 1)

?

In the summation the upper limit that gives an integer value is

used. ) N a

v
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Given the nondimensional tension

U then normal load f can N
be found from ¢quation (4.12), If the load w is zero then the
solution is much simpler. From equation (4.23) the tension is given
by '

Q “ust p(2-p)/2 £
o o

0
= - — + — 4.
; (10 2 ) e " {(4.25)
and from equation (3.12) the normal load is then
; ' Q “HR 0 (2-p)/2 ¢ : -
f=0 Tp)[(x -9 e © + -] (4.26)
o o 2 u
4.3.3. Normal Loqgigg_iﬁ_jLQl
When the external load is normal to the rod equation (4.11)
can be integrated in general to give
2 "
T = +; 29-) + o [ sin6 dp (4.27)

for the nondimensional tension

The integral in the last term corresponﬂs
&
s within a constant,

to the value of the nondimensional vertical coordin

ate.
?V The external normal force f is given by. -eéquation (4.12) and the® shear

force/and bending moment can be calculated from eqﬁatlon (4.8)
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4.4 The General Case

. . . . < :
For the cases in which the shape is such that cequations (4.11)
€7 ‘
or (4.13) cannot be integrated analytically then the integration must
. 2
be done numerically. 0Often the specified shape is given in terms of
the cartesian coordinates instead of tho function 0(s).
When the shape is given as y = k(x) a thpson'srulc integration

procedure is used to first determine the lengtheof the rod L from the

equation

G

d . dy,?2 1/2 .
L = O[ bl‘+ ("] dx | (4.28)

where d is the horizontal distance bégwcen the ends of the required
3

' : S y :
shape. Once the length is known the ébapc function is put into the

K

form

E 4

e (4.29)
Frém‘equation (2.7) in terms of the nondimcn;ional coordinates
(/ 0 = arctan (Q{)
; de /
and : ".vh  (4.30)
:da < 2 ~1/2 \

. x
d {1+ (dg) i



’
[

i . v B Co . .
*. glve an expression of the following form for the tension «w

c

of ¢ . . .
: ,x _ < ue £ -
() = T a0 T R ‘
[ s N N ' p. ’
h From equation (4.30) the coordinate p is gived
* . )
- 3 L 1/2 ® .
. dAr . 2 Tt
p(6) = [ 1+ (1. de.
' E 12 g .
O ] O
where p = 0 at £ = 0. ,
e 2 . . . ) L

>

73.
\
Equations (4.30) can be  used (o obtain the folloving
derivatives. :
du d A dy 2 3/2 7
o= 5 11 ¢ \
dp 2 de
t ds
2 3 =2 2 -3
dv d7A i 2 A A 1A
. R LI SN =3 Gl )
dy) ds,” S R -
T3 4 | -5/2 3 7/2
do d A - dA 2 d”A "y da 1A 2
T s T SO (D7)
- dd”,  a¢ - T T o
—~. o A
2 e, =1/2 2 0a 5 =9/2
’ d”x 3 dA 2 d A3 dy 2 2
. RS L o A I e A S M P IR AP ey ‘
‘ de© - dé . :
(4.31)
- - These exprcssibﬁscan be Substituted.in equation k4.13)“t0

as a function

(4.32)
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The integrals in equation (4.32) and (4.33) can be evaluated
numericadly using a Simpson rule integration procedure.

The normal load (&) can then be evaluated by substituting

equations (4.30) and (4.31) into equation (4.12). Similarly the moment

v
~and

h »
2(£) and shear force v(¥) can be evaluated. by Substituting for do
14

2

d o .

Ty in Cquatim}f (4.8) from equation (4.31).
o

dp

4.5 _A&&\'uu‘u{] ¢ kI’r»Qb_l em wi th Sgglg;ﬂmmifivd

¢

As an example consider the family of shapes shzwn in Figure '17.

v

. “‘ i
The shape is given by a seventh, order polynomial .
/ i
y = ¥ a. x : N (4.34)
. . 1 .
i=0 ‘
w
. - r
whith satisfies the conditions ' 2 o
' o o _ . Y
y(0) = y'(0) = y"(0) = ¢ . . \
, ¥ =h y'(@) = 3D =0 o (4.35)
‘e V ! :'. 1/ i . - ¢ .
. “ _‘ - 5 .
] » .
d h o, d
H) = = 5) = C» . - ¥
YQ) =5y G) R ’

<

' The conditions in (4.35) correspond to a rod that has zero -

slope and moment on the two en%?. "Also the rod has a change in«elevation

&

of h for a horizontal distance d. The second last conditian ensures

)

B
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symmetry about the mid point while the last is ugedto give a family
of shapes.

Using these conditions the cocfficients in (4.34) are

ao = al = az = O
- r -
l_aBdZ, 70 - 32 h/d
aad3 -315 160 C
4 /
an = 546 ~288 (4.36)
5 N
a6d -420 g 224
7
a7d 120 - 64
[ J — - ) )

. Given C, h and d the length of the rod' L can be found from

équation (4.28). '

The nondimensional coordinates of the shape are then given

by
S y=o£ b, gl : | (4.37)
where b, =.a, Li—'l o ’ i=20,1, 2, ... 7.
i i : :

Figure 17 shows the shapes of the rod in néndimensional form

with h/d = 0.4 for three values of C.
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The quces required to majntaiq these shapes can be calculaféd
using the procedure of section 4.4, For this problem the normal load is
positive and negative in different regions/of the rod. To keep the
frictional force appiiod'in one diréction aiong the rod 1 was taken
as positive in the region where the normal force wasg pofitive and as
negative where the normal force was negétive. Fiéure 18 shows the

S : .
normal forcesg réquircd for the case of wA; 100 and v =0.1. The initial
tension at p = 0 was taken as r;i= 10. The-teqsion in the rod.for three

values of C is shown in Figure 19. The shear force and fﬁhding moments

along the rod are shown respectively in Figures 20 and 21.
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CHAPTER V

EXPERIMENTAL CONSIDERATIONS

- i

LY

5.1 Experimental Procedure

Experimental verification of the numerical solution for

“

the stiffened catenary broblem'considered fh section 315.3. is given
in this chapter.

The‘boundary eonditionsffor this problem can be duplicat§?
expe€rimentally. The prézedure followed was tb suspend a 6 foot long,
1/16 1nch diameter steel rod by thin threads at both ends. A Cooke,

Troughton and Simms preclSlon level was used to posltlon the ends of
? fﬂ
the IOd‘it the Same,level. The coordinates of six points along one

half the rod were measured- -using a cathetometer (made by Gaertncr
@“ oy
5 xQ .
Scientific Corporatlon) and a 30 inch long brass scale clamped to* the

-

edge of a 2.5 foot by 5,0 foot surface table as shown in Figure 22,

- »

The cathetometer was used to Measure the vertlcal ‘coordinates of
points along the rod. Lts ge!ﬁscope;ﬂnd micrometer screw have a
gf»'ﬁ

dlsplacement of only Z%anhés,fihus larger dlsplacemenLS had to be.
. fe g b 5 a
measured 1n several 1ncrementsr The horlzqnfal coordinates'of points

~
along the rod were measured’using‘the brass scale in conjunction with
, ] . g

-

"a vernler Scale attached to the base of the cath%tometer. These
'lcoordlnates were measured for three dlfferent slopes of the supportlng'

threads. These slopes were determined by measurlng the horlzontal and

L. »

“vertiéal" dlstances between two p01nts ‘on the . threads u31ng ‘the brass

scale and cathetometer.A The;experlmental data is giﬁen in Appendiséll.
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§
5.2 Caleulations and Results "
ni !
The nondimensional coordinates of the deformed rod are
given by :
~. - )
Y X%* = X/L CoYR = Y/L (5.1)

I

where X; Y and L are shown in Figure 11.  The values of these

-

coordinates at points along the rod as calculated ‘from the experimental

data using equation (5.1) are shown in Figure 23. .

The angle o defined in Figure 11 is given by

& = arctan (AY/4X> (5.2)

.

«  where AX and AY aré‘the horizontal and vertical distances between two
r‘ . I3

points on the éupporting’threads. The values of a calculated from

{

the experimerital measuréments of AY dnd AX are given in Appendix "I11 .

(Table 8). »
The‘nondiﬁensiqnalweight of the.fod és defineg i&‘secgion .
3.5.3.Vis given by TR {_  ’ ?
L - " 2': _ , . . -
et L | | (5:3) 4

for_a circular rod of diameter D.
RS, _

For ‘the rod used in the experiment

¢

{-._..-,J
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. ;. . 6 . . .
with E = 29.8 x j0° psi, the nondimensiona] welpght is NWF = 1.805:

Using this value of Wr&and the values of « given in Table 8

LU

the numerical solution tor Lhc@shapcs of “tif rod can be evaluatag.

These shapes are compareq to the expcrimentally determined points

in Figure 23.

-3 Error Analysis .

¢
5

The deformed shape of the rod hag been determined experimentally
by measuring the coordinates oL points aloug the rod. It has alEP been
found by experimentally determining the loading parameters for the rod

and then using the nimerical method to calculate the shape 5f‘fhe rod.

e

Both solutions are based on éxperimentally méaSured qu&ntifies which

&

have some error associated with “them. ' }
. h .

If x is the measured value of a ‘Eﬁntity with® correct value

: . , o ¢ : :
q, the error is defined as ; .
L , e ‘ 2

, ' i = A .
If the quantity q is a function of several quamtif~.'gﬁsa9 q = F(a,b,c.d)
then the error e(q) is given .by . :
s \
2 4 a2 o
e () = & G e"m) ¥ . (5.5)
n=a - ‘ .



when the errors e(a),.e(b), e(c)aand -e(d) aré symmetric and independent

(see Reference [5]).

The largest differences between the experjmentally ac;ermir_).e/gi‘?fg
- » ="
L}

A

-

“roordinates and the values foudd using the numerical method occur at
—N . . ’ ]
1 L . -
the lowest point of the catenary.. The values of the X-coordinates and

vertical deflection at this point are h and\d as shown in Figure 11.

The valuts of these quanfities measured experimentally are referred
~ ’ - '&“’

- to as hE and'dE, and those calgulated using the numerical method as

~,

\

hN and dN. | . : ‘ / .
L : n
‘The nondimensional values ©f thpse quantities are / e
Y o ' ) \ ' yo‘ ‘\ t
peos B and - ax = 4 ‘ (5.6)
. v P , L
e 3 “
Uéing equations (§A5).and (5.6) the relative errors in hE and dE a
[ R - D
N are given by
4
2 ’ .
fmg) = fmy # ea) ‘
: . . (5.7)
cfen = o+ Pay o .

. whére the relative error of the quantity q is defined as

e(q) = _ﬂqu : (5.8)
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e(h), ¢(d) and t (L) are the relative errors in the measured values h,

fl
d and L.

Determining't(hﬁ) and ((d§) Is more complicated. The
quantities h§ and d§ are functions of the quantities W* and o which in

turn are functions of several experimentally measured quantltics

Using equations’(5.3), (5.5) and (5.8) gives the relative
%

error in the nondimensional weight as

2 2 2 2 2
© W =) 44ty + Firy 4162y (5.9)
Fod .

Similarly the relative error in q 1s given by

o

2 2 2 1/:
[AX e (Ay) +>AY ez(AX)] /4

e(a) = ¢+

- (Ai'+ Ai) a

After éalculating e(a) and e{W*) the relative errors in-h§ and d§ are

(5.;0)

given by
2
2 2
* : *
€ (d*) = (]* a_d 82((1) + _wji a Ez(w*) [
N d§ o d* aw*
i
2 ¥ o 2 ) .
- ohx 3h# . :
2 a N 2 W* "N 2 (5.11)
*¥) = | = N _ Y *
e” (h¥) {hﬁ a J €7 (a) +[* aw*J e (W*) _

The partlal derlvatlve must be evaluated nuéerlcally from

= -

the numerical solution. The wvalyes of h* d§ and the partial

derivatlves calculated with the three values of o and W* = 1.805 are

giv;% in Appendix III.

{
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Using the data in Appendix I} the relative errors L(hE) and
A}
E(d;) were calculated from equation (5.7). These are given in
Table 5.

\ 3
The relative errors ¢ (W*) and e(a) were calculated from

equations (5.9) and (5.10) from the experimental data with e(E) = + 1%.
The relative errors C(hﬁ) and C(d§) were then calculated from equation

*
(5s11) using the quantities in Appendix IIl. These relative errors

expressed as a percentage are given in Table 5.
. ¥

s . TABLE 5

*Percentage Errors in the Numerical and Experimental Solutions

Case 1 Case 2 Case 3
€(d%) + 0.5 + 0.3 + 0.2
e(d}) ®  + 0.6 t 1.4 + 1.6
e (h¥) + 0.1 + 0.1 + 0.1
e(hﬁ) + 0.01 + 0.1 + 0.2
= } B
f

The differences between the numerical and experimental values
of d* and h* were calculated. In_all cases this difference was less

than the sum of errors given by the two methods. That is . {//

lag - ax] < Jeam | + le (e ]

-
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and

A

ha = hi| < fe(ha) |+ e (hz) |

B ¥ .
This means>there is a region of intersection of the inﬁ@fval‘di + e(dE)'
’ );¥ and the interval dﬁ b e(dg) and similar!y for hﬁ and hE’ It can:be
concluded that within the accuracy of this experimeﬁt no significant
differenée was found between the numerical solution and the e*petimental

results.
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CHAPTER VI !

CONCLUDING REMARKS

6.1\ Summary

\\ ®

The pipeline problem mentioned at the beginning of this

thesis requires solution to two types of problems of nonlinear bend-
»

k-

ing of thin rods. These have been considered for tire” case of an

Y
- ¢+

initially straight rod. o
.

B

P A general numerical method has, been presentea to solve the
problem of determining thé deformed shape of an initially straight
rod when the loading is given. This‘method can be used to solve
problems of rods with Qaryingiflexural stiffness and Qith any. 0
.combination and number of concentrated forces, couples and nOnuniform

distributed loads applied to the rodi Because of the use of.only

one segment of the rod at a time in the numerical method, the

calgulations can be done én a small computingﬂgacility‘Suc;‘as the

HP9820A desk top programm;ble calculato;.

The problem of finéing'the distributed loading(necessary

to deform a straight rod to a specified shape has also been considered.
k Normal and tangential distributed loads in combinatiop with a uniform
gravitationél load were used. A geﬁeral numerical integration

technique was developed for problems where the specified shépe is

given in Cartesian coordinates. From the example problem considered

s



then some 1nterpolatlon function must be used to determine the requ1red

{

in section 4.5 it can be secen that small changes in the specif}od

shape of the rod lead to large changes in the required distributed

L)
. ) . ?
loads. ’

An experimental verification of the numerical method for

the problem of the stilfened catenary has been given. The experimentally

determined deformed shape and the numerical solution agree within t?e

estimated experimental errors for the particular rod considered.

o

6.2 Afeas of Further Research .

The methods and solutions mentioned above can be extended
to consider rods which are initially curved. For the problem of

finding the required loading to bend a rod to a specified shape it

_is possible to consider the shape given in polar coordinates or

through parametric equations. In the solution of this problem the'

function defining the shape of the rod must be differentiated several

.

times. Also if the shape is specified as a set of discrete points

s N -

1

kloadlng These steps can be av01ded by using a vagriation of the

numerical method used to solve the problem of unknown deformed shape.
If the rod is divided into a series. of segments each loade& by a
uniformly distributed or concentrated load then the values of these
loads could be detepmined using ;‘one dime;sional secant m!thod SO,
that the rod passes through spec1f1ed p01nts of the requlred shape
functlon. The segment solutions needed have already been developed

iﬂr the problem of unknown deformed shape. o C g
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The dynam%c problem of determining the natural frequencies
and modes of vibration of the rods mentioned. above could-also be
considered. This may be of somé’iﬁbortance‘in the léying of offshore

pipelines as they can be excited by ocean currents.

-

€
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APPENDIX I

o

L) N ‘
GENERAL PROGRAM FOR THE NUMERICAL METHOD OF CHAPTER 111

P

. This program has been set up to solve the Peundary value

o v

problem as in section 3.@. It can be used to solve problems with

- N .
varying distribxted loads and nonuniform cross sections by consider-

N .

igg the rod as a series of segments with uniform cross sections ang

uniform distributed loads which approx;mate the distributed loading

-'gnd fod cross sections.

¥

The first part of the brogram solves the initial value

problem as,described in section 3.4.1. This can be used with loads

X and ¥ in the segment or with tangential loads % and n. The
~ . a -

secondjbart of the program is used to find the»unknown;initial

conditions in the boundary value problem. It has béen yritten‘for

the case of one and two unknown initial conditions. The case for

~ three unknown quantities can be:-set up using the equations in section

3.4.2.

- The program has been written with the form of language

used in the 9820A Hewlett ?ackard programmable desk computer. The
register nﬁmbers (R1, R2, ... étc) used in the actual program have
been replaced by the variable names. ?he a?row used in the program
statemen;s’indicates that theAegpréssion to the left of the arrow
is'calculated and a %igned to the register representing the quantity

to the right of the'arrow. In the first part of the program the
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. ¢
subscript j which was used’in section 3.3 and section 3.4 to_ indicate
- - \
.th ) oy
the j segment pas been dropped. Line 5 and 6 are used to assign
) ~\ 4 -

known and unknown initial conditions at the beginning of the rod for

-

a particular boundary value problem. Line 7 assigns the value of the
. 1

€

ratiq of segment flexural rigidity to the reference rigidity(as def ined

'

in equation (3.18). Line 10 assigns values to the constant segment
diftribgted load§ Xj and'wj or nj and gj. Line 21 is used to.Lerminate
tﬁe elem;nt series solution: .
For one unknown initial condition the one dimensional form
.of equatioﬁ (3.36) giyen by equatioq (3.42) must be solved for Z which
is assigned to the“unknown initial condikioﬁ in line 5 or 6. The
" quantity q%* is the‘specified value of thé‘quantity q which is given

-

at the end of the rod. One of the quantities B#*, D¥, G*, X*,6 Y*,6 v
4 .
at the end of the rod is assigned to q in line 34 of.the General.

Program Part 2 (with.ljD secant)” The one dimensional form of the

iteration given‘by equations\‘3.37) and (3.38) is

LR @2 pzh
p(zh) ~ p(z7'y

v - c

Voo

. et o
RS

AP o 1 P ,
3/ Two initial guesses Z and Z must be used to start this iteration.

-

With two unknown initial conditions the General Program
Part 2 (with 2-D Secant Method),muét be used to solve the equatiohs~
' R
L

‘ = - * =

¥
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P y V. _ X = . ¢
Py(Zys 2)) = 4, (2], 2)) = ay* = 0 |

where Zl’ 22 are the unknown initial conditions at the start of the

rod assigned in lines 5 and 6 and ql* and qz* are thé required values

of 9 and-q2 which are the quantities specified at thegend of the rod
. ' N

and assigned in lines 34.
The iteration used in this program is the two dimensional

form of that given bj'equations (3.37) and (3.38).

: | \

Z§i+1) - Zli«;p[Jzz pl(zli’ Zzi) ~ I pzlei’ sz)]/D

Zéifl) 3 Zzi "'[311 pZ(Zli’ zzi)’t o1 pl(zli’ Zzi)]/D

where v

, L

o ni= ey z,") nglkzli‘lf'zgi)]/(zli-zli_l)
a ‘ Uyp © fpl(zli’ zzi) B pl(zli? Zzi_l)]/(22i"zziﬁl)
Iy = [pz(éli, 2,b - pzezl’i‘wl, zzi)l/<zli—zli‘i>
3, - (e, 2,%, 2, fp2<zli, 2, " h1e bz,
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[

D= Jp2 9 9

- o : #
N 1 1
Initial guegsses (Zlo, ZZO) and (Zl s 22 ) must be used to start this

iteration. ' ’ -

General Program - Part 1 (with distributed segment loads Xj and wj)

ty
:

N = number of segments used. N = number of points at which
. i
data is printed.
1. Enter, N, Np’ [loading parameters for a particular problem].

2. Print, N, Np,'[loading parameters for a particular problem].

3.  GOTO 37. g

4. 1—>J:'
@

500 L 1T 2X%5 [ 1Y% [ ]-y.

6.« [ 1 »A% [ ]-cCx [ ] Fx

7.0 ]y
¢ 8. A%/ (xN) - a3 c*/(er) > ¢; F*/(;Nz) > f.

9. - (3a+ £)/6 + 8. 7 1 .

0. 0 1ol 1oy

11. 4 - k. fg | | ;

12. B ra_,5a-~ a_gs £/2 > ap o5 (ca - x8 - lP){/6 3 %1

T+ oa +

13. ak_4 k=3 ak—Z + ak;l > P

BN S
14. ak_3 + Zak-Z + 3ak—l -+ b.
15. Zak_z + Gak—l > g
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16. % 4 + ak_3/2‘+ ak_2/3 + ak—l/é > hf

17.  (cq,.

k-2 T X/ (RG> q

18. ¢ + ak > ¢; b + kak -+ b.

19. g + k(k-1) @ > g; h + ak/(k+l) -+ h.

20. k+1 > k.

k-2 7 k=3 k-1 T Opps 4 7 *k-1°
21., 1f ABS[OLk + "1 + ak_z] >[ ]; GoTO 17.

22: ¢+ fg - gy - x * d.
. /

23. X* + (cos(y-B) - hsin(y-B))/N » X*,
24, 5Y* + (sin(y-B) + hcos(y-8))/N » Y.
25. vy - g + ¢ +‘Y-

2 2 .
26. brN » B*; drN° - D*; grN” - G*,

27. 1f Q # 1; GOTO 31.

4

. 28. If ABS sin(Jan/N) > 1E-6; GOTO 31.
29. PRINT, J, B*, D%, G*, ‘
30. , PRINT, X*, Y*, v, - -
31. B* > A*; D* > C*; G* » Fx,
32, 1f J # N; J'+ 1 - J; GoTo 7.

33. If Q = 1; GOTO [END].

General Program - Part 1 (with distributed segment normal and tangential

- £
1938§\;j and ”i)

Modifications to General Program - Part 1 (with loadsxj and wj).'

10 [ J->¢&; [ 7]~n.

12. 8 > o a->a £/2 » o (ca=n)/6 -+ o

~

k~4° k-3’ k-2° k-1"
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17. (cuk_2 - ak_3(1+l/k))/(k(k—l)) MR
22, ¢+ fB - gd - € - nh » d.

-

General Prowram - Part 2 (1-D Secant Method)

3. [ ]+ q.

35. If R = 1; GOTO 41. e

36. If R = 2; GOTO 43. . g
37. ENTER 2°, 71, q». ‘ |

o 1 g ) -
38. PRINT z°, Zz , g*. v

o Zi_l' 1 i

39. 27 -» AR AN
40. 2715 z5 1 5 R; coTo 4. S
41, q - q* - pl—l,

42. 7' > z; 2 5 R GOTO 4.
43. q - q* > pt; PRINT, i, pt, z1. §
4. If ABS p~ < [ I3 1 - Q GOTO 4.

45. zl _ ((Zl—Zl_l)/(pl-pl_l)) pl . Zl+l;

46, Zi - Zl—l; pi > pi_l.
47, Z;+l > Zi.
48. 1+ i > i3 GOTO 42. e

49. END.

t;{’&

GeneralTProgram - Part 2 with Two-Dimensional Secant Method

[}

3.1 Toqp5 11+ g,.

35. If R = 1; GOTO 44.



36.
37.
38.
39.
40.
41.
42.
43,
. b4,
45."
46.
47,
48.
49.
s0.
51.
52.
53.
54.
55.
56.
57.
58.

59.

'2; GOTO 48.

n

If R

If R = 3; GOTO 50.

ENTER, 2.°, 2.9 z.} 21

—k.

1
PRINT, Z.°, Z.°, z.°, Z2 s ql*, qz*-

1 > iy

1 i

Zl > Zl; 22 > 22; 1 » R; GOTO 4.

o C oL o x .
9 -9 * > pl(l,l), SORR Pl p2(1,1).

N R I
PRINT, i, Pl ’ P2 ’ Zl ’

If ABS[p,"] < [ -] and ABS[p,"1 < [ 13 1+ Q; GOTO 4.

i . i-1 .
Zl -> Zl, 22 > ZZ’

2 + R; GOTO 4.

- * i1 - * i.i-1)..
4 = 9% > py(E,i-1); 4y = 9* > p,(1,i-1)..

i-1
Zl - Zl’ Z

i-1
2 T

1
[p, (i,1)

[pl(i,i)

[pz(i,i)

[pz(i,i)

11 922 7 I Iy 2 D

i
1

i

2

i i-1, i

ST T I

- pl(i—l,i)]/(zli"
- Py (L, 1-1)1/ (2, -
P, ti-1,1)]/(z, -

- pz(i,i—l)]/(zzé‘z

; 3 > R; GOTO 4.

i-1
1
21—1) 5y

li—l) 5 3

i-1
2

) > 3

)+ J

2.0 - [J11 pz(i,i) - J21 Pl(i,i)]/D > Z
7 i—l-'

11°
12°
21°

22°

1

2

- ql* -+ pl(i—l,i);‘q2 L Pl pz(i—l,i)-

i+1

i+

1



‘ , 10s5.

60. i + 1 > i; GOTO 43.

61. END.

t

Specializeq_lggg§ to Solve Particular Boundary Value Problems!i‘

’

Somé lines of the geéneral program must be specialized for
solving a particular problem. These lines are shown below for the

A

“problems treated in section 3.5.

Elastica Problem : Tl
—===2>-ta roblem .

G ;

General Program - Part 1 (with distributed loads Xj and wj).

1. . ENTER N, Np’ P*,

2. PRINT. N, Np, P*,

5.0 0+ Xk 0o yA; 7 o Y.

6. 0 » A%; - px cosy » C*; - P* ging » Fx,
-7. 1->r. |

10. 0 » X3 O'+ Y.

>

General Programy - Part 2 (with-lfD,secant method).

3. Y > q,
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Cantilever with Uniform Normal Load
rd .

{
Gerieral Program - Part 1 (with distributed’ loads gj and nj).

1. ENTER N, N, Pp*,
\ p
2. PRINT. W, Np, P,
S0 0> X* 05 Yx; Z 5y, L
6. 0 > A*; 0 » C*; 0 > F*.
7. l->r.,
10. 0 > ¢; P*/(rN3) > n.
o : -

‘General Program - Part 2 (with 1-D secant method).

34. vy > q.

-

Stiffened Catenary

2 General Program - Part 1 (with distributed loads Xj and wj).

1.  ENTER N, N, a, Wk
2. , PRINT N, N> @, W,
5.0 0> X% 0 » Y*; Z > v,

Y
6. 0 » A%; W*(ctna cosy - siny) - C*; w*(c3§%§+ ctna siny) »> F*,

7. 1+ r.
™

10. - W* sin(y<B8)/ (cN°) - X; Wk co§(Y¥6)/(rN3) > Y.
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General Progaam - Part 2r(withll—D Secant).

S 34y s q.

4

Nonuniform Cantilever (with specified distributed load an concentrated
| end load).
N\
General Program - par¢ 1 (with distributed loads Xj and wj).
1. \ENTFR N N, WA, Px, g, .
2. PRINT N, Np, W %, P%, q, ¢,
5. 0~ X*; 0 » Y*5 Z > y.
6. 0> A% px COSA > C*; - Pk ging Fx,
7. t + (J~.5)(l~t)/N >r. . N
10. - W, * sin(y-'B)/N3 + X3 wL* cos(YfB)/N3 >y

[ 4

General Program - part 2 (with 1-p Secant).

34. v > q, . C ' |

Nonuniform Cantilever (with Y, Specified and No. concentrated gnd load).
. . Lo 3

General Program - Part 1 (with distributed loads xj‘and wj).

1. ENTER ¥, Np,' Yo" t.
2. PRINT W, yp, yo; t.
5. 0+ X*; 0 » Y*; Yo * V-

6. 0+ A*; 0 » C*: 0 -» F*,
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7. t + (J-.5)(1-t)/N »:1.

10. -z sin(y-B)/N3 »>x; 2 cos(Y—S)/N3 > P

General Program - Part 2 (with 1-D secant).

4

34. vy > q.



\APPENDIX 17

EXPERIMENTAL DATA

Data for this rod is given below:

\

the horizontal and vertical distance‘Ax

the thread were measured.

Horizontal’and Vertical Distances Between Points on

weight of half rod WL
length of half rod 1,

diameter of rod D

yu

28.2

1}

36.0

n

I+

+

0.1 grams

0.03 inches

109.

he rod.

v

0.0625 + 0.0002 inches;

To. determine the slope of the threads Supporting the rod

3

TABLE 6

and AY;between two points on ..

These distances are given in Table 6.

-

Thread

Case

Ax(t 0.02 in.) 'AY(i 0.002 1in.)
1 3.66 1.040
2 1.55 1.9Q0
3 0.00 - 1.241

-
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o APPENDIX 111
NUMERICAL SOLUTION

The values given in Table 8 were calculated using the ?
numerical method to solve the stiffened catenary problem of section
P .
3.5.3. This solution 'is compared to an experimental solution in

Chapter v, S )

TABLE 8
Quantities Calculated using the Numerical
Solution for the Stiffened Catenary Problen
with W = 1,805
Case 1 ‘ Case 2 Caée 3
R 0.2769 0.8805 1.571
d* o0 0.2219 . 0. 3259
) ‘  LY b : | |
ad*‘ . 4;" N T . ‘
Fry : 0.015 . 0.069 0.14
‘*
24 0.28 0.15 0.18
h* - 0.9932 10,9687 0.9313
. N m ‘
" oh*
Frrs ~0.0020 ~0.020 -0.060
, o
Fal ~0.035 ~0.043 ~0.076
i



