
Page | 1  

 

CONVENTIONAL-HARDWARE GNU-LICENSED 
(CHGL) INFRASTRUCTURE 
A WISE ARCHITECTURE 
For a Small Business to an Enterprise 

 

 

 

 

 

 

 

 

 

 



Page | 2  

 

Table of Contents 
Introduction ..................................................................................................................................... 3 

Methodology ................................................................................................................................... 3 

Finding the best architecture ....................................................................................................... 3 

Finding Hardware ....................................................................................................................... 5 

Finding software ......................................................................................................................... 6 

Stability testing ........................................................................................................................... 7 

DISCUSSION ................................................................................................................................. 7 

Execution .................................................................................................................................... 7 

ESXi and CentOS ................................................................................................................... 7 

OpenConnect server .............................................................................................................. 11 

CA and Server Cert. .............................................................................................................. 12 

Why SSL? ............................................................................................................................. 19 

Spoke Hardware spec. ........................................................................................................... 21 

Move to OpenWRT............................................................................................................... 27 

Technical challenges ............................................................................................................. 35 

Conclusion .................................................................................................................................... 39 

Bibliography ................................................................................................................................. 40 

 

  



Page | 3  

 

INTRODUCTION 

This project aimed to achieve the goal of providing a cost-effective and easy to deploy 

architecture design, fulfilling business infrastructure requirements for multi-site and branch 

headquarter needs. The project considered all positive network performance factors such as 

redundancy, security, and availability in its design and deployment. 

This experiment and implementation reached the goal of facilitating companies to interconnect 

their branches by using conventional devices. This solution fits all ranges of need from an 

enterprise-class of a network, to a small office with one or two employees. 

Additionally, using free software would not prevent businesses from a necessary upgrade to gain 

higher throughput. Using conventional hardware under the GNU licensed software made an 

outstanding opportunity to have a budget network in any size. 

Universal design method and implementation facilitated all sorts of teleworking needs, which 

could be a home, workplace, or a remote foreign location connection. 

Different hardware has been studied and tested for this practice, the greatest of which was chosen 

to implement. In this design and implementation practice, considering network security was the 

main factor. In all steps, the architect tried to follow the best practices and reliable network 

design principals. 

METHODOLOGY 

Finding the best architecture 

Different methodologies define the way various network components communicate with each 

other. Choosing different topology can change the availability, security, cost, and complexity of 

the system. Before I choose a method for interconnection, I must have a brief overview of 

communication methods. 

Mesh, one of the primary methods of communication, aims to deliver the message in one hop 

from one end to the other. Therefore, the full mesh needs all sites in the network fully 

interconnected. 

As fig.1 shows, every site has a link to the other peers. 

In the partial mesh, only some of the sites have redundant paths to the other peer. 

As fig.2 shows, R2 does not have a direct link to the R3 and R4. 



Page | 4  

 

Alternatively, Star topology uses hub and spoke approach. In essence, the hub acts as an access 

point or gateway for all sites, which act as spokes. This point-to-point (single-hop site to center) 

communication in star topology makes the implementation and the management more 

straightforward. 

Figure 1       Figure 2 

 

 

 

 

 

 

 

 

 

Figure 3 

Simplicity in management and implementation could be the main reason for choosing the hub 

and spoke approach for this project. Therefore, I picked hub and spoke as the target architecture 

and started searching for a server to act as a hub and experimented with using conventional Wi-

Fi Routers as spokes. 



Page | 5  

 

Finding Hardware 

As mentioned in the proposal, a big portion of the project is selecting the hardware needed to 

implement the architecture. The central portion of that is the hub, which can run on an old server 

running hypervisor, making it capable of handling other tasks at the same time for the business. 

Also, a cheap, available and reliable conventional Wi-Fi Router as a spoke was required, which 

would be capable of replacing the firmware and converting it to a generic router. 

For the hub hardware, HP 

ProLiant DL380 G61 was 

chosen, which cost less than 

$300.Vmware vSphere ESXi 

5.52 hypervisor was then 

installed (using free license 

offers by VMware for 

hypervisor only). 

 

Using hypervisor will make the implementation more comfortable, and ensure OS maintenance 

tasks will perform smoothly. It also adds a form of redundancy and reliability in the future if I 

add more hosts into the cluster. 

Also, to have better reliability, the decision was made to use old server hardware with redundant 

power supply and ECC memory, and not a regular PC. 

 It is necessary to mention that spoke 

hardware is selected between many 

different products. Firmware 

availability, software compatibility, 

and hardware stability were the main 

factors in the choice. Wireless Router 

TP-Link Archer C7 ver: 2.03 was the 

choice here, which cost less than $40.  

 

1 https://h20195.www2.hpe.com/v2/getdocument.aspx?docname=c04282582 

2 https://www.vmware.com/ca/products/esxi-and-esx.html 

3 https://www.tp-link.com/ca/home-networking/wifi-router/archer-c7 



Page | 6  

 

Finding software 

For the OS on the Hub, I used CentOS4 (Community Enterprise Operating System), which is one 

of the most reliable GNU licensed5 OS.  

For the VPN server, many open-source options were available. Openswan6 is an IPsec with lots 

of overhead, and Tcpcrypt7 has its own unique features, but was not a good fit for this project. 

SoftEther8 as a functional clone of the OpenVPN9 could be a choice, but after some tests and 

study, OpenConnect10 (OC) selected as the best option to provide VPN functionality on the hub. 

An OpenConnect client was initially created as a VPN client to cover numerous security 

vulnerabilities of Cisco's AnyConnect VPN11 client. Then the OC client was developed to be a 

complete replacement of CiscoAnyConnect and addressed all of its deficiencies, and is now 

acting as Cisco alternative for any Linux user. 

OpenConnectServer12 (OCserv), as the best pick for the server-side VPN software, was designed 

to provide SSL VPN to make spoke to hub interconnection; it also has complete compatibility 

with the OC client software. 

For the replacement OS (firmware) on the spoke’s hardware, research was conducted on all 

available open-source firmware software, including DD-WRT13, AdvancedTomato14 , and 

OpenWRT15. OpenWRT was picked as the most stable, full-featured and highly customizable 

embedded firmware for the TP-Link gateway. This firmware was also cross-checked with 

hardware compatibility, using hardware compatibility matrix with the route’s architecture and 

the processor capabilities. 

 

4 https://www.centos.org/about/ 

5 http://mirror.centos.org/centos/7/os/x86_64/EULA 

6 https://www.openswan.org 

7 http://www.tcpcrypt.org 

8 https://www.softether.org 

9 https://openvpn.net 

10 https://www.infradead.org/openconnect/ 

11 https://www.cisco.com/c/en/us/support/security/anyconnect-secure-mobility-client/tsd-products-support-series-home.html 

12 https://ocserv.gitlab.io/www/index.html 

13 https://dd-wrt.com 

14 https://advancedtomato.com 

15 https://openwrt.org/about 



Page | 7  

 

Stability testing 

Testing the stability for the hub was done using CentOS installed as a VM machine, while 

running multiple VPNs against it to see how the OCserv reacts. 

Testing the stability of the client device was a more challenging process. Factory firmware of the 

wireless router was removed and replaced with the OpenWRT firmware, which was then tested 

by using the gateway as a home internet router for multiple days. By completing this phase, it 

was made sure that the router OS matches to the hardware, and is stable enough to use as the 

client spoke router. 

The next phase of testing was about evaluating the system service and throughput using iPerf16 

software to generate traffic from each end on TCP and UDP and observing the desired output, 

and running this test from one end of the network to the other end, to mimic the site to site 

communication. 

Moreover, the final step for testing included providing this service to multiple individuals and 

collecting their experience and feedback with using this system. 

DISCUSSION 

Execution 

ESXi and CentOS 

The VPN hub execution and testing were done by installing and deploying ESXi and CentOS 

and using the package manager to install the OCserv. 

ESXi was set up using VMware guides (VMware, n.d.) on the HP server after downloading a 

copy of the hypervisor ISO file from the VMware website and a free copy of hypervisor license 

key. ESXi was then installed from CD-Rom after setting the Boot priority settings on the server 

BIOS setup settings, and booting from CD-Rom. This Internal SD-Card was selected in the setup 

steps to be the target of the ESXi installation storage. The SD-Card was then formatted and ESXi 

was installed completely. Then in the next reboot, the management IP address was changed to 

make the host reachable from the lab network. vSphere Client software was used, and installed 

on Windows to connect to the host, and add the server hard disk drive as Datastore. The next step 

was to upload the CentOS Minimal image ISO file downloaded from the CentOS website or the 

mirrors to the datastore. A new virtual machine was added to the host and CentOS v7 64-bit was 

selected as OS type. 20 Gigabyte of thin provisioned disk was then dedicated to the VM. All 

 

16 https://iperf.fr 



Page | 8  

 

default VM settings were accepted and the virtual network card assigned to the “VM Network” 

vSwitch. CentOS ISO image was selected as CD/DVD image from the datastore and VM 

installation started by powering on the VM. 

The CentOS was installed by following the guide (centos, n.d.), after which a local user account 

was added to the CentOS and the root password was set. The VM was then rebooted, and this 

time installed CentOS bootup and prompted for credentials. 

  

After a successful login to the server by running these commands, I could make sure SSH service 

is available and running and read the IP address assigned to the OC server using DHCP and start 

using PuTTY17 to SSH to the server. 

 

 

 

17 https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html 



Page | 9  

 

As is visible, the IP address showed in the output of the “ip a” command, and “ens160” is the 

name of the interface I have on the VM machine. 

This VM will be my hub server, and servers should always use static IP addresses.  The server IP 

address changed through the SSH session and network service restarted for the change to apply. 

Elevation to the root was required. 

[ocadmin@oc ~]$ sudo su 

[sudo] password for ocadmin: 

[root@oc ocadmin]# 

  

[root@oc ~]# nmcli -p dev 

===================== 

  Status of devices 

===================== 

DEVICE  TYPE      STATE      CONNECTION          

---------------------------------------------------------------------- 

ens160  ethernet  connected  Wired connection 1  

lo      loopback  unmanaged  --                  

[root@oc ~]#  

  

[root@oc ~]# ip a         

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group 

default qlen 1000 

    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 

    inet 127.0.0.1/8 scope host lo 

       valid_lft forever preferred_lft forever 

    inet6 ::1/128 scope host  

       valid_lft forever preferred_lft forever 

2: ens160: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group 

default qlen 1000 

    link/ether 00:50:56:b9:6f:a9 brd ff:ff:ff:ff:ff:ff 

    inet 192.168.254.9/32 brd 192.168.254.9 scope global noprefixroute ens160 

       valid_lft forever preferred_lft forever 

    inet6 fe80::250:56ff:feb9:6fa9/64 scope link  

       valid_lft forever preferred_lft forever 

  

[root@oc ~]# vi /etc/sysconfig/network-scripts/ifcfg-Wired_connection_1 

HWADDR=00:50:56:B9:6F:A9 

TYPE=Ethernet 

PROXY_METHOD=none 

BROWSER_ONLY=no 

BOOTPROTO=none 

IPADDR=192.168.254.9 

PREFIX=32 

GATEWAY=192.168.254.2 

DNS1=8.8.8.8 

DEFROUTE=yes 

PEERROUTES=no 



Page | 10  

 

IPV4_FAILURE_FATAL=no 

IPV6INIT=no 

NAME="Wired connection 1" 

UUID=5786644a-4c6e-3691-aa43-99d04d253944 

ONBOOT=yes 

AUTOCONNECT_PRIORITY=-999 

ZONE=trusted 

~                  

  

# systemctl restart network 

 

The change was also verified by using CentOS NetworkManager “nmtui-edit” and “nmtui-

connect” guide (Red_Hat_Enterprise_Linux, n.d.) to activate the settings. 

# nmtui-edit ens160 

# nmtui-connect  

  

 

The next step was to make sure that the server has a route for its gateway and the DNS server IP 

address is correctly assigned. 

[root@oc ~]# ip r 

default via 192.168.254.2 dev ens160 proto static metric 100  



Page | 11  

 

192.168.254.2 dev ens160 proto static scope link metric 100  

192.168.254.9 dev ens160 proto kernel scope link src 192.168.254.9 metric 100  

[root@oc ~]# 

[root@oc ~]# cat /etc/resolv.conf  

# Generated by NetworkManager 

search qt.local 

nameserver 8.8.8.8 

[root@oc ~]# 

  

Now the CentOS was ready for OCserv package installation. However, before that, I needed to 

make sure that I had good Internet access. Also, to make sure the server received all necessary 

update packages, the following commands were used. 

[root@oc ~]# ping www.centos.org  

PING www.centos.org (81.171.33.202) 56(84) bytes of data. 

64 bytes from ip-81.171.33.202.centos.org (81.171.33.202): icmp_seq=1 ttl=46 

time=158 ms 

64 bytes from ip-81.171.33.202.centos.org (81.171.33.202): icmp_seq=2 ttl=46 

time=158 ms 

 

[root@oc ~]# yum update 

Loaded plugins: fastestmirror 

Loading mirror speeds from cached hostfile 

 * base: centos.les.net 

 * epel: mirrors.sonic.net 

 * extras: muug.ca 

 * updates: centos.ca-west.mirror.fullhost.io 

Resolving Dependencies 

--> Running transaction check 

  

OpenConnect server 

After installing all updates and software patches, it was time to install OCServ, using the manual 

(gitlab, n.d.). 

The EPEL repository was then added (fedoraproject, n.d.). 

[root@oc ~]# yum install epel-release 

[root@oc ~]# yum update 

  

It is good to know that CentOS users, along with other Linux distributions like Scientific Linux, 

Oracle Linux, and Red Hat Enterprise Linux (RHEL), can easily access and install packages for 

commonly used software using Extra Packages for Enterprise Linux (EPEL) repository. This 

repository was created to provide greater ease of access to software on Enterprise Linux 

compatible distributions. (Singer, n.d.) 

OCserv package and GNU TLS utilities were installed. 



Page | 12  

 

[root@oc ~]# yum install ocserv gnutls-utils 

  

CA and Server Cert. 

Because OCserv is an SSL server and server authentication is based on certificates, I needed to 

add a certificate directory and create a new certificate authority (CA) template. (Guoan, n.d.) 

[root@oc ~]# mkdir /etc/ocserv/cert 

[root@oc ~]# cd /etc/ocserv/cert/ 

[root@oc cert]# echo "cn = "OC VPN" 

> organization = "QT" 

> serial = 1 

> expiration_days = -1 

> ca 

> signing_key 

> cert_signing_key 

> crl_signing_key" > certauth.tmplate 

[root@oc cert]# ls 

certauth.tmplate  

  

Then the Certificate Authority’s certificate needed to be created using a generated private key, 

and the template was made. 

 

[root@oc cert]# certtool --generate-privkey --outfile certauth-key.pem 

Generating a 2048 bit RSA private key...  

[root@oc cert]# certtool --generate-self-signed --load-privkey certauth-

key.pem --template certauth.tmplate --outfile certauth-cert.pem 

Generating a self signed certificate... 

X.509 Certificate Information: 

        Version: 3 

        Serial Number (hex): 01 

        Validity: 

                Not Before: Sun Feb 16 04:25:30 UTC 2020 

                Not After: Fri Dec 31 23:59:59 UTC 9999 

        Subject: CN=OC VPN,O=QT 

        Subject Public Key Algorithm: RSA 

. 

[Intentionally omitted] 

. 

Signing certificate... 

[root@oc cert]#  

Now I had the CA certificate, as well as a pem file which included my public key and private key 

for the CA. 

[root@oc cert]# ls 

certauth-cert.pem  certauth-key.pem  certauth.tmplate 

[root@oc cert]# 



Page | 13  

 

The next step was to create the server certificate template and publish a server certificate using 

the server cert template, server’s private key, and the CA private key and CA certificate. 

[root@oc cert]# echo " cn = "qtocserv" 

> dns_name = "www.qt.local" 

> organization = "QT" 

> expiration_days = -1 

> signing_key 

> encryption_key 

> tls_www_server" > server.tmplate 

[root@oc cert]# 

[root@oc cert]# certtool --generate-privkey --outfile qtocserv-key.pem 

Generating a 2048 bit RSA private key... 

[root@oc cert]# ls 

certauth-cert.pem  certauth-key.pem  certauth.tmplate  qtocserv-key.pem  

server.tmplate 

[root@oc cert]# 

[root@oc cert]# certtool --generate-certificate --load-privkey qtocserv-

key.pem --load-ca-certificate certauth-cert.pem  --load-ca-privkey certauth-

key.pem --template server.tmplate --outfile qtocserv-cert.pem 

Generating a signed certificate... 

X.509 Certificate Information: 

        Version: 3 

        Serial Number (hex): 5e48c9800a632fa71c609c95 

        Validity: 

                Not Before: Sun Feb 16 04:48:00 UTC 2020 

                Not After: Fri Dec 31 23:59:59 UTC 9999 

        Subject: CN=qtocserv,O=QT 

        Subject Public Key Algorithm: RSA 

. 

[Intentionally omitted] 

. 

Signing certificate... 

[root@oc cert]# 

The outputs were then moved to the “ssl” directory. 

[root@oc cert]# ls 

certauth-cert.pem  certauth.tmplate   qtocserv-key.pem 

certauth-key.pem   qtocserv-cert.pem  server.tmplate 

[root@oc cert]# mv certauth-cert.pem qtocserv-key.pem qtocserv-cert.pem 

/etc/ocserv/ssl/ 

[root@oc cert]# 

Moreover, like all Linux services, OCserv also has a configuration file that I adjusted, in order to 

force it to use the OCserv password file for the spoke’s gateway authentication. 

The config file /etc/ocserv/ocserv.conf changed to comment(#) the default method and added the 

password file for authentication method. 

[root@oc cert]# cd /etc/ocserv/ 

[root@oc ocserv]# vi ocserv.conf  

  



Page | 14  

 

 

To use the generated certificate for server authentication, I needed to assign the config file to use 

those cert files. 

 

 

Furthermore, this hub needed to assign an IP address per spoke after they connected, and to do 

that, I needed to uncomment a line and assign a correct network into it. With this change, my 

clients would get an IP address from the range 172.16.17.0/24 

ipv4-network = 172.16.17.0 

ipv4-netmask = 255.255.255.0 

 

DNS servers needed to be added to the config too: 

dns = 1.1.1.1 

dns = 8.8.8.8 

dns = 4.2.2.2 

dns = 4.2.2.3 

dns = 4.2.2.4 

  

In my implementation, I also had other adjustments to the config file. For security reasons, I did 

not want to accept two connections using the same credentials; at the same time, it was not ideal 

to limit the system to accept a limited number of connections. 

max-clients = 0 

max-same-clients = 1 

  



Page | 15  

 

In order to have a better and more reliable communication, I needed to detect and eliminate the 

dead connections. Therefore, I added the keepalive and dead-peer-detection (DPD) to the config. 

keepalive = 32400 

dpd = 90 

mobile-dpd = 1800  

  

To have a better connection quality and use the most bandwidth, OCserv used UDP instead of 

TCP after connection establishment. Therefore I asked OCserv to use a timer to fall back in case 

of an issue. 

switch-to-tcp-timeout = 25 

 

For the MTU on the WAN or Internet connection, there are occasional limitations, and each 

VPN connection should detect its own maximum MTU for the tunnel interface. 

try-mtu-discovery = true 

  

For the SSL key refreshment, a timer was set. 

rekey-time = 172800 

rekey-method = ssl 

  

After the client connects, I expect to see a new virtual network interface added to the server and 

“vpns” is the prefix for the VPN interfaces. 

device = vpns 

  

The following was added for the default domain search, and to keep all DNS queries and 

response secure. 

default-domain = qt.local 

tunnel-all-dns = true 

 

Moreover, for security reasons, I changed the service port to a different TCP and UDP port. I 

wanted to have this service run on ports other than the default port of HTTPS, to make 

confusions on the firewalls on the path. 

tcp-port = 543 

udp-port = 543 



Page | 16  

 

  

Because I added a service to this server, I needed to make sure that those customized ports were 

allowed on the CentOS firewall. (Linode, n.d.) To make the job simple at this step, I just added 

the server main interface “ens160” to the trusted zone of the firewall, and activated that. 

[root@oc ~]# firewall-cmd --zone=trusted --add-interface=ens160 –permanent 

[root@oc ~]# firewall-cmd --set-default-zone=trusted 

[root@oc ~]# firewall-cmd --reload 

  

We added the following to check what zone is active and which rules are in effect. 

[root@oc ~]# firewall-cmd --get-active-zone 

trusted 

  interfaces: ens160 

  sources: 0.0.0.0/0 

[root@oc ~]# sudo firewall-cmd --zone=trusted --list-all 

trusted (active) 

  target: ACCEPT 

  icmp-block-inversion: no 

  interfaces: ens160 

  sources: 0.0.0.0/0 

  services: 

  ports: 

  protocols: 

  masquerade: no 

  forward-ports: 

  source-ports: 

  icmp-blocks: 

  rich rules: 

        rule family="ipv4" source address="0.0.0.0/0" accept 

[root@oc ~]# 

  

As the design displays, all site to hub authenticates itself by the username and password; 

therefore, adding usernames to the password file as indicated in the configuration file was 

required. 

We then created the password file in the configuration directory and added some usernames and 

passwords. 

[root@oc ~]# touch /etc/ocserv/passwd 

[root@oc ~]# ocpasswd -c /etc/ocserv/passwd -g default site1 

Enter password: 

Re-enter password:  

 

At this step, OCserv service started and checked to see if the connection can be established or 

not. A service start or restart was required to load the newly adjusted config file and after that, 



Page | 17  

 

Cisco Anyconnect client tried from a Windows machine. Moreover, to make this service 

available in all system startups, I needed to enable it using “systemctl.” 

[root@oc ~]# systemctl start ocserv 

[root@oc ~]# systemctl enable ocserv 

Symlink was then created from from /etc/systemd/system/multi-user.target.wants/ocserv.service 

to /usr/lib/systemd/system/ocserv.service. 

 [root@oc ~]# systemctl status ocserv 
● ocserv.service - OpenConnect SSL VPN server 

   Loaded: loaded (/usr/lib/systemd/system/ocserv.service; enabled; vendor 

preset: disabled) 

   Active: active (running)  

     Docs: man:ocserv(8) 

 Main PID: 1245 (ocserv-main) 

To test the service, I needed to run the Cisco AnyConnect to check against that. I received two 

warning messages through the process and that is all about the self-signed server certificates, but 

connection established. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 18  

 

 

 

 

 

 

 

However, at this step, something surprising happened that did not allow Site Router (mimicked 

by a Windows machine using Cisco Anyconnect) to see anything from the corporate resource. 

As I know, all operating systems are acting as a router, and the expectation was, if this 

connection established, the client (172.16.17.x/24) should be able to see the corporate network 

(192.168.254.x/24). However, because of the CentOS secure configuration about the IPv4 

forwarding, OS eliminates all forwarding from one network interface to the other, and this 

connection as a new network interface needed to be allowed by a forwarding capability of the 

OS.  

  



Page | 19  

 

For example, “vpns0” as the new dynamic network interface which is created after the first 

established connection, needed to have forwarding access to the “ens160” which is the corporate 

resource. 

3: vpns0: <POINTOPOINT,UP,LOWER_UP> mtu 1434 qdisc pfifo_fast state UNKNOWN 

group default qlen 500 

    link/none 

    inet 172.16.17.1 peer 172.16.17.2/32 scope global vpns10 

       valid_lft forever preferred_lft forever 

    inet6 fe80::29d3:7294:d947:632f/64 scope link flags 800 

       valid_lft forever preferred_lft forever 

2: ens160: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group 

default qlen 1000 

    link/ether 00:50:56:b9:6f:a9 brd ff:ff:ff:ff:ff:ff 

    inet 192.168.254.9/32 brd 192.168.254.9 scope global noprefixroute ens160 

       valid_lft forever preferred_lft forever 

    inet6 fe80::250:56ff:feb9:6fa9/64 scope link 

       valid_lft forever preferred_lft forever 

Furthermore, ip forwarding needs to be enabled. so open /etc/sysctl.conf: 

We then tested to query and see if IPv4 forwarding is enabled already on the OS. 

[root@oc ~]# sysctl net.ipv4.ip_forward 

net.ipv4.ip_forward = 0  

To fix this issue, I enabled one of the CentOS network settings for IPv4 Forwarding, but to run a 

quick test, I executed this command to enable IPv4 forwarding. (kvasirsg, n.d.) 

[root@oc ~]# sysctl -w net.ipv4.ip_forward=1 

Moreover, to make this change permanent on the OCserv and have the same settings all the time 

when OS reboots, I needed to add a line to the “sysctl.conf”, and ask for applying. 

[root@oc ~]# cat /etc/sysctl.conf 

[root@oc ~]# echo "net.ipv4.ip_forward = 1" >> /etc/sysctl.conf 

[root@oc ~]# sysctl -p /etc/sysctl.conf 

net.ipv4.ip_forward = 1 

 

Why SSL? 

Though earlier in the architecture part of the report, I could have discussed the SSL/TLS VPN 

functionality and benefits in comparison with IPsec VPN, the intention was to show how easily 

an SSL/TLS VPN server could be configured and deployed and then dive into the technical 

details. Details could be discussed, regarding how strong the encryption implemented on each 

method and how the encryption key will manage. It is also needed to discuss what protocols and 

ports were used and which network layer was involved in the process, as well as looking at ease 

of deployment, and higher performance. The protocol was implemented to provide data privacy 



Page | 20  

 

and integrity, and would accomplish this by making sure that the connection is secure. This is 

because each connection uses a key that generates based on the shared secret negotiated on TLS 

handshake separately for symmetric crypto to encrypt and decrypt data. Then the sender and 

receiver would negotiate the details of the encryption algorithm keys for data transmission. 

(Transport_Layer_Security, n.d.) 

It is good to know that both parties can authenticate using public-key or at minimum, as noticed 

in OCserv config, the server-side authenticated by the client. Message integrity was provided, 

which leads to data loss and alternation prevention. 

In other words, the TLS connection will use TCP/IP application-layer functionality to do the 

encryption. Unlike IPsec VPN, which is complicated and needs lots of client-side setup and 

maintenance, SSL can setup quickly, as noticed in the implementation phase of the report. 

IPSec connections require a pre-shared key to exist on both the client and the server in order to 

encrypt and send traffic to each other. The exchange of this key presents an opportunity for an 

attacker to crack or capture the pre-shared key. 

SSL VPNs do not have this problem because they use public-key architecture to negotiate a 

handshake and exchange encryption keys securely. This fact about the implementation for this 

project may be challenged, by presenting how SSL VPNs allow untrusted, self-signed certificates 

and do not verify clients which is vulnerable to man-in-the-middle attacks. This is correct, but all 

these flaws are manageable by using public certificates and adding client-side certificate 

authentication and one-time passwords (OTP) into the equation. However, TLS/SSL still has a 

long list of vulnerabilities. 

There is a significant issue about the IPSec VPN, which does not use the open-source protocol, 

and that creates some challenges in verifying the truthfulness of the code. Projects like “Bullrun” 

remind us not to apply any software or hardware using a proprietary protocol, code, firmware, or 

software. (BISCHOFF, n.d.) 

The architecture I designed was built to work over the internet almost from everywhere, and 

therefore how this security protocol deals with firewalls is important. SSL-based VPNs are 

application layer VPNs, and they can efficiently bypass firewalls. In contrast, Encapsulating 

Security Payloads (ESP), a principal member of the IPSec protocol suite, have no port numbers, 

and that would be a problem traversing such firewalls doing NAT, which would block the whole 

connection. There is a workaround here to address this issue by using UDP port 4005 and 

encapsulating the whole packet, but using that trick would add some overhead and could cause 

other issues.  

https://www.comparitech.com/vpn/what-is-a-man-in-the-middle-attack/
https://www.digicert.com/cert-inspector-vulnerabilities.htm
https://www.digicert.com/cert-inspector-vulnerabilities.htm


Page | 21  

 

18 

In comparison, SSL uses the standard HTTPs port TCP 443, and by default, this traffic is 

allowed and Firewall NAT friendly. I specifically used this part of the SSL functionality to 

bypass the limited Internet access, if needed by this architecture. 

19 

Spoke Hardware spec. 

The most challenging part of the project was the TP-Link Archer C7 ver: 2.0 hardware 

specification, and making sure that this hardware is compatible with the OpenWRT. 

 

18 http://techgenix.com/ipsec_passthrough/ 

19 http://blog.fourthbit.com/2014/12/23/traffic-analysis-of-an-ssl-slash-tls-session/ 



Page | 22  

 

After briefly studying this router, I noticed that this hardware could be identified as one of the 

most reliable WiFi Routers in the market, and also has an excellent hardware design. This 

gateway has multiple hardware revisions, 1 to 5, that are each a bit different. 

20 

21In order to better view the hardware, let us have a look at the motherboard first. 

 

  

 

 

 

 

 

 

 

 

 

20 Lable shows the version of the hardware Ver2.0. 

21  



Page | 23  

 

 

 

Version 1 to 3 uses independent antennas for 2.4Ghz and 5Ghz. The 2.4Ghz uses a pigtail cable 

to connect to the internal copper antenna attached to the frame, while the 5Ghz connects to the 

external antenna at the back of the frame. 

 

 

 

 

 

 

 

 

 



Page | 24  

 

 

 

 

 

 

 

 

 

In contrast, version 4 to 5 are equipped 

with three dual 2.4 and 5GHz antennas. 

Other than that, Version 1-3 uses a Mini 

PCI-e slot on the motherboard to attach 

the external 5Ghz network card, but on 

newer revisions, a card is embedded on 

the motherboard. 

The second step was hacking the 

hardware and creating a way to access the CLI (command-line interface) console of the WiFi 

Router in order to change the firmware. 

It is good to know that boot loader on this Wif Router is U-Boot, which is an opensource 

universal boot loader. 

The processor is a Qualcomm Atheros QCA9558-AT4A 720MHz MIPS32® 74Kc™ core from 

MIPS Technologies equipped with a 3×3 MIMO for 2.4GHz 802.11b/g/n. This microcontroller 

is a high-performance, low-power, 32-bit MIPS RISC core. (mips, n.d.) (wikipedia, n.d.) 



Page | 25  

 

 

 

 

 

 

 

 

The processor on the card is a QCA9880-BR4A equipped with 3×3 MIMO for 5GHz 

802.11a/n/ac. (qca9880-br4a, n.d.) 

The other chip on the board is an 

AR8327N-BL1A, which is the 7-

port Gigabit Ethernet switch chip 

with non-blocking switch fabric, a 

high-performance lookup unit 

with 2048 MAC address, and a 

four-traffic class Quality of 

Service (QoS) engine. This chip 

also supports hardware NAT, 

including the basic NAT and 

Network Address Port Translation 

in full, restricted, port restricted 

and symmetric NAT. (AR8327, 

n.d.) 

The other significant chip on the board that I can locate two of are Winboard W9751G6KB-25 

with DRAM 512Mb DDR2-800, x16, which means the total memory of this board is one 

Gigabyte. (winbond, n.d.) Also, a Non-Volatile Flash NOR IC 

can be seen on the system W25Q128FVSIG. (digikey, n.d.) 



Page | 26  

 

 

 

 

 

 

 

The other two essential parts of the board are a serial port 

use to access the CLI of the system, and the JTAG (Test Action 

Group) port, which is placed there for verifying designs and 

testing, and to write software and data into internal non-

volatile Flash. (archer-c7-1750, n.d.) 

 

 

 

To get access to the console port, a JST connector was needed, and then a USB to Serial (RS232) 

adapter could be used. 

 

 

 

 

 

 

 

 

 

At this step, I needed to find the pinot to determine the VCC/GND/TX and RX. I can easily use a 

voltmeter to do this job by grounding the voltmeter by antenna connector and connecting the 

other end to the pins. The VCC was 3.4, th TX was at a voltage around 3 volts, and the RX and 

Ground were at 0 volts. 



Page | 27  

 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, USB adapter detected as COM3, and I started PuTTY using serial COM3, and Baud-

rate 115200 DataBits 8 and Stopbits 1 and no Flowcontrol. 

 

Move to OpenWRT 

To perform this action, I first needed to make sure that I did not do any official firmware 

upgrades from the TP-Link website. Moreover, I needed to check the compatibility matrix on 

OpenWRT website to see which firmware would work with the platform. 

The following is the compatibility matrix of OpenWRT TP-Link Archer C7 ver: 2.0 

(TableOfHardware, n.d.) 



Page | 28  

 

  

As shown, Version 2 is compatible even with version 19.07.1, which is the latest version. I went 

with 18.06.1 for this project. Firmware can be downloaded from the OpenWRT website and the 

TP-Link router web interface can be used to upgrade. 

After the upgrade, the output of the CLI will change to OpenWRT. 

Please press Enter to activate this console. 

  

  

  

BusyBox v1.28.4 () built-in shell (ash) 

  

  _______                     ________        __ 

 |       |.-----.-----.-----.|  |  |  |.----.|  |_ 

 |   -   ||  _  |  -__|     ||  |  |  ||   _||   _| 

 |_______||   __|_____|__|__||________||__|  |____| 

          |__| W I R E L E S S   F R E E D O M 

 ----------------------------------------------------- 

 OpenWrt 18.06.1, r7258-5eb055306f 

 ----------------------------------------------------- 

root@OpenWrt:/# 

 

This is when I can SSH into the box using a cable to the LAN ports.  

login as: root 

root@192.168.248.1's password: 

  

  

BusyBox v1.28.4 () built-in shell (ash) 

  

  _______                     ________        __ 

 |       |.-----.-----.-----.|  |  |  |.----.|  |_ 

 |   -   ||  _  |  -__|     ||  |  |  ||   _||   _| 

 |_______||   __|_____|__|__||________||__|  |____| 

          |__| W I R E L E S S   F R E E D O M 

 ----------------------------------------------------- 

 OpenWrt 18.06.1, r7258-5eb055306f 



Page | 29  

 

 ----------------------------------------------------- 

root@OpenWrt:~# 

  

Also, I can add LuCI Web UI by installing the package using “opkg.” It is useful to mention that 

about 3500 different packages are available to use on the platform. 

root@OpenWrt:/# opkg update 

root@OpenWrt:/# opkg install luci 

 

The next step is to change the LAN interface IP address to 192.168.248.1/24, and enable the 

DHCP to start from 100 for 150 numbers which are enough for a site. 

 

 

 

 

 

 

 

I then needed to check the bridge interface option and make sure this LAN interface (which is all 

four physical switch ports) is a member of a bridge. For Firewall settings, I need to include the 

LAN interface as a trusted interface. 

 

 

 

 

 

The other interface I need to work on is the WAN interface. I need to be a DHCP client on that, 

and make sure that the default gateway checked on that, so that this interface will take the traffic 

out of the site to the Internet. DNS IP address is also needed to be set. WAN interface can then 

be set as an untrusted interface on Firewall settings. 



Page | 30  

 

 

 

 

 

 

 

 

On the Firewall settings, I need to make sure that Masquerading checked to do PAT on the WAN 

interface. And if I want to have remote access to the site Router, I can allow the SSH and WEB 

on the firewall. 

 

 

The other two essential interfaces are Wireless 2.4Ghz and 5Ghz that WPA-2 security settings, 

which need to be adjusted using the PSK (Preshared Key. A suitable channel then needs to be 

picked, one that has the least interference in the environment. 

Both Wireless interfaces need to be assigned to the LAN bridge. 

 

 

 



Page | 31  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To verify the configuration, I can connect to the LAN port and get the IP address from the router, 

and SSH to the router, in order to verify that I get a public IP address on the WAN interface and 

am also able to ping the internet. 

root@OpenWrt:~# ifconfig 

br-lan    Link encap:Ethernet  HWaddr 84:16:F9:D6:D1:ED 

          inet addr:192.168.248.1  Bcast:192.168.248.255  Mask:255.255.255.0 

          inet6 addr: fd61:7f1f:2d06::1/60 Scope:Global 

          inet6 addr: fe80::8616:f9ff:fed6:d1ed/64 Scope:Link 

          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1 

          RX packets:85620 errors:0 dropped:0 overruns:0 frame:0 

          TX packets:111445 errors:0 dropped:0 overruns:0 carrier:0 

          collisions:0 txqueuelen:1000 

          RX bytes:7072287 (6.7 MiB)  TX bytes:85915660 (81.9 MiB) 

  

eth0      Link encap:Ethernet  HWaddr 84:16:F9:D6:D1:EE 

          inet6 addr: fe80::8616:f9ff:fed6:d1ee/64 Scope:Link 

          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1 

          RX packets:668617 errors:0 dropped:0 overruns:0 frame:0 

          TX packets:5984 errors:0 dropped:0 overruns:0 carrier:0 

          collisions:0 txqueuelen:1000 

          RX bytes:47441303 (45.2 MiB)  TX bytes:1299279 (1.2 MiB) 

          Interrupt:4 



Page | 32  

 

  

eth0.2    Link encap:Ethernet  HWaddr 84:16:F9:D6:D1:EE 

          inet addr:68.149.108.66  Bcast:68.149.111.255  Mask:255.255.252.0 

          inet6 addr: fe80::8616:f9ff:fed6:d1ee/64 Scope:Link 

          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1 

          RX packets:668617 errors:0 dropped:40 overruns:0 frame:0 

          TX packets:5976 errors:0 dropped:0 overruns:0 carrier:0 

          collisions:0 txqueuelen:1000 

          RX bytes:35406197 (33.7 MiB)  TX bytes:1274487 (1.2 MiB) 

  

eth1      Link encap:Ethernet  HWaddr 84:16:F9:D6:D1:ED 

          inet6 addr: fe80::8616:f9ff:fed6:d1ed/64 Scope:Link 

          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1 

          RX packets:23059 errors:0 dropped:0 overruns:0 frame:0 

          TX packets:20399 errors:0 dropped:0 overruns:0 carrier:0 

          collisions:0 txqueuelen:1000 

          RX bytes:13718616 (13.0 MiB)  TX bytes:1720724 (1.6 MiB) 

          Interrupt:5 

  

eth1.1    Link encap:Ethernet  HWaddr 84:16:F9:D6:D1:ED 

          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1 

          RX packets:23036 errors:0 dropped:0 overruns:0 frame:0 

          TX packets:20384 errors:0 dropped:0 overruns:0 carrier:0 

          collisions:0 txqueuelen:1000 

          RX bytes:13302385 (12.6 MiB)  TX bytes:1636729 (1.5 MiB) 

  

lo        Link encap:Local Loopback 

          inet addr:127.0.0.1  Mask:255.0.0.0 

          inet6 addr: ::1/128 Scope:Host 

          UP LOOPBACK RUNNING  MTU:65536  Metric:1 

          RX packets:18238 errors:0 dropped:0 overruns:0 frame:0 

          TX packets:18238 errors:0 dropped:0 overruns:0 carrier:0 

          collisions:0 txqueuelen:1 

          RX bytes:1676371 (1.5 MiB)  TX bytes:1676371 (1.5 MiB) 

  

wlan0     Link encap:Ethernet  HWaddr 84:16:F9:D6:D1:EB 

          inet6 addr: fe80::8616:f9ff:fed6:d1eb/64 Scope:Link 

          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1 

          RX packets:0 errors:0 dropped:0 overruns:0 frame:0 

          TX packets:4685 errors:0 dropped:0 overruns:0 carrier:0 

          collisions:0 txqueuelen:1000 

          RX bytes:0 (0.0 B)  TX bytes:692114 (675.8 KiB) 

  

wlan1     Link encap:Ethernet  HWaddr 84:16:F9:D6:D1:EC 

          inet6 addr: fe80::8616:f9ff:fed6:d1ec/64 Scope:Link 

          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1 

          RX packets:100089 errors:0 dropped:0 overruns:0 frame:0 

          TX packets:135728 errors:0 dropped:0 overruns:0 carrier:0 

          collisions:0 txqueuelen:1000 

          RX bytes:9172246 (8.7 MiB)  TX bytes:103511093 (98.7 MiB) 

  

root@OpenWrt:~# 

  

I can then check the routing table. 



Page | 33  

 

root@OpenWrt:~# route -n 

Kernel IP routing table 

Destination     Gateway         Genmask         Flags Metric Ref    Use Iface 

0.0.0.0         68.149.108.1    0.0.0.0         UG    0      0        0 

eth0.2 

68.149.108.0    0.0.0.0         255.255.252.0   U     0      0        0 

eth0.2 

192.168.248.0   0.0.0.0         255.255.255.0   U     0      0        0 br-

lan 

root@OpenWrt:~# 

root@OpenWrt:~# ping www.google.com 

PING www.google.com (172.217.3.196): 56 data bytes 

64 bytes from 172.217.3.196: seq=0 ttl=57 time=30.504 ms 

64 bytes from 172.217.3.196: seq=1 ttl=57 time=29.394 ms 

  

I then needed to add the OpenConnect Client to this Router using “opkg” installer. (opkg, n.d.) 

root@OpenWrt:~# opkg install openconnect 

Package openconnect (7.08-8) installed in root is up to date. 

  

All interface configuration like I did above will record on /etc/config/network. Therefore, I can 

add the openconnect client settings in that file. The connection was named “'ser2pichesh”, and it 

attempted to make a connection to the public server name “ser2.pichesh.com” on port “543.” 

(openconnect, n.d.) 

root@OpenWrt:/# cat /etc/config/network 

  

config interface 'loopback' 

        option ifname 'lo' 

        option proto 'static' 

        option ipaddr '127.0.0.1' 

        option netmask '255.0.0.0' 

  

config globals 'globals' 

        option ula_prefix 'fd61:7f1f:2d06::/48' 

  

config interface 'lan' 

        option type 'bridge' 

        option ifname 'eth1.1' 

        option proto 'static' 

        option netmask '255.255.255.0' 

        option ip6assign '60' 

        option ipaddr '192.168.248.1' 

  

config interface 'wan' 

        option ifname 'eth0.2' 

        option proto 'dhcp' 

        option peerdns '0' 

        option dns '8.8.8.8' 

        option metric '0' 

  



Page | 34  

 

config interface 'wan6' 

        option ifname 'eth0.2' 

        option proto 'dhcpv6' 

        option reqaddress 'try' 

        option reqprefix 'auto' 

        option peerdns '0' 

        option auto '0' 

  

config switch 

        option name 'switch0' 

        option reset '1' 

        option enable_vlan '1' 

  

config switch_vlan 

        option device 'switch0' 

        option vlan '1' 

        option ports '2 3 4 5 0t' 

  

config switch_vlan 

        option device 'switch0' 

        option vlan '2' 

        option ports '1 6t' 

  

config interface 'ser2pichesh' 

        option proto 'openconnect' 

        option server 'ser2.pichesh.com' 

        option port '543' 

        option authgroup 'DEFAULT' 

        option serverhash 'ff7be8c2f88edbfb29074950354659e5f5924903' 

        option username 'openwrt' 

        option password 'wrtopen' 

        option auto '0' 

  

root@OpenWrt:/# 

  

When I start the OCclient connection on the LuCI, it connects and gets a correct IP address from 

the OCserver DHCP pool 172.16.17.x/24. 

 

 

 

 

To test the project targets, I checked and made sure that in the first step I can ping my default 

gateway, while I am connected wirelessly from a laptop to the router. I needed to also check to 

see if the VPN server is pingable, considering that I do not have any PAT setup over the VPN 

tunnel, and IP addresses shows the same on the other end of the tunnel. 



Page | 35  

 

 

 

 

As is shown, ping to the router was successful but ping to the OCserver was not, and by checking 

the routing table, I noticed that the VPN connection did not take the default route of the system. 

There is an option on the OpenConnect connection to set as default gateway, but that did not 

solve the issue. If  I enable that function, and establish the tunnel, the tunnel destination would 

take the gateway and internet service for the tunnel itself would get lost. This means it would 

redirect all the traffic to the tunnel, but the correct route is to keep the tunnel traffic the same way 

towards the internet. 

 

Technical challenges 

The first challenge I faced was to fix the connectivity issue. Network script was needed to be 

adjusted in such a way that OCclient takes over the role of the default gateway. 

root@OpenWrt:/lib/netifd# pwd 

/lib/netifd 

root@OpenWrt:/lib/netifd# ls 

dhcp.script         hostapd.sh          netifd-wireless.sh  ppp-up              

proto               vpnc-script         wireless 

dhcpv6.script       netifd-proto.sh     ppp-down            ppp6-up             

utils.sh            vpnc-script.back 

root@OpenWrt:/lib/netifd# 

  

The file which controls the VPN connections is vpnc-script. In the following, I show the change I 

made on the code to make it work. (Pierre-Francois, n.d.) 

DEFAULT_ROUTE_FILE=/var/etc/openconnect-defaultroute 

  

get_default_gw() { 

    netstat -r -n | awk '/:/ { next; } /^(default|0\.0\.0\.0)/ { print $2; }' 



Page | 36  

 

} 

  

set_vpngateway_route() { 

    route del -host "$VPNGATEWAY" 

    route add -host "$VPNGATEWAY" gw "`get_default_gw`" 

    echo "`get_default_gw`" > "$DEFAULT_ROUTE_FILE" 

} 

  

del_vpngateway_route() { 

    route del -host "$VPNGATEWAY" 

    if [ -s "$DEFAULT_ROUTE_FILE" ]; then 

        route add default gw `cat "$DEFAULT_ROUTE_FILE"` 

        rm -f -- "$DEFAULT_ROUTE_FILE" 

    fi 

} 

. 

. 

. 

set_vpngateway_route 

. 

. 

. 

del_vpngateway_route 

  

The whole technicality behind this code is to save the system default gateway (WAN Internet) on 

a file and only use it for VPN Server packets, and then all other packets will forward to the 

tunnel end (OCserv). Furthermore, in reverse, all those added routes will be removed and the 

system default gateway will read from that file and replace.  

That issue was fixed, but still the VPN server remains not pingable. That was because of the 

return route that I needed to add to the OCserv. OCserv needs to know where to look for 

192.168.248.x, and the simple fix was adding a route to the OCserv. Nevertheless, the route gets 

added only if the spoke router makes a successful VPN connection. I automatized this job with 

Linux crontab and a bash script file. 

Crontab will check the reachability of the site (172.16.17.2) and right after the site becomes 

reachable, it will add the return route to the table. If the spoke loses its connection to the OCserv, 

the route will delete automatically, because the VPN’s interface will go away. 

[root@oc ocserv]# cat /script/addroute.sh 

#!/bin/bash 

/bin/ping -c 1 172.16.17.2 >> /dev/null 

if [ $? -eq 0 ] ; then  

/usr/sbin/ip route add  192.168.248.0/24 via 172.16.17.2 

fi 

[root@oc ocserv]# 

[root@oc ocserv]# crontab -l   

* * * * * /script/addroute.sh 

[root@oc ocserv]# 



Page | 37  

 

  

After that change the ping works fine, with no issues. 

 

The other aspect that remains to be mentioned is the secret behind reserving an IP address for a 

site, because as I setup, the return route is based on the IP address of a site, and that should 

define and stay unchanged.  

To accomplish that task and have better manageability over the credentials, a centralized Radius 

server was established to manage credentials, and also dictate the VPN peer IP address. 

Also need to be mentioned, is that OpenConnect server setup needs to be adjusted to accept 

Radius, and changes need to be applied on the Radius server side. (Gaspari, n.d.) 

[root@oc ~]# vi /etc/ocserv/ocserv.conf 

auth = "radius [config=/etc/radcli/radiusclient.conf,groupconfig=true]" 

  

[root@oc ~]# vi /etc/radcli/radiusclient.conf 

nas-identifier MikroUser 

authserver 192.168.254.2 

acctserver 192.168.254.2 

servers         /etc/radcli/servers 

dictionary      /etc/radcli/dictionary 

default_realm 

radius_timeout  10 

radius_retries  3 

bindaddr * 

 

[root@oc ~]# cat /etc/radcli/servers 

## Server Name or Client/Server pair            Key 

## ----------------                             --------------- 

# 

#portmaster.elemental.net                       hardlyasecret 

#portmaster2.elemental.net                      donttellanyone 

# 

## uncomment the following line for simple testing of radlogin 



Page | 38  

 

## with freeradius-server 

# 

#localhost/localhost                            testing123 

192.168.254.2 asd2345 

You have mail in /var/spool/mail/root 

[root@oc ~]# 

  

 

 

PERFORMANCE TESTS 

A well-known tool to run performance tests in the network is Iperf. The Spoke gateway was 

moved to the other location and test results were collected as below.  

Iperf results show a slow but stable connection over the internet, which is enough to satisfy many 

cases of need for corporate resource use in remote locations. 



Page | 39  

 

 

CONCLUSION 

This type of experiment creates an excellent opportunity for network engineers to consider all 

challenges of building a solution for a certain need, rather than purchasing a ready to run product 

from a provider, with instructions for implementation and troubleshooting. This project also 

breaks the preconceived notion which implies that the only way of running a stable system is to 

follow the market-leading solution providers. Additionally, the experiment helps to form a self-

awareness and confidence that making an extensive system is always possible if one has a good 

understanding of the technologies. All factors considered, this research helped me understand the 

limitless power of GNU Open-source Hardware and Software and their applications. 

Michael Wise 

Graduate student in Computing Science 

University of Alberta MINT program. 



Page | 40  

 

BIBLIOGRAPHY 

AR8327. (n.d.). Retrieved from lafibre: https://lafibre.info/images/doc/201106_spec_AR8327.pdf 

archer-c7-1750. (n.d.). Retrieved from openwrt: https://openwrt.org/toh/tp-link/archer-c7-1750 

BISCHOFF, P. (n.d.). ipsec-vs-ssl-vpn. Retrieved from comparitech: 

https://www.comparitech.com/blog/vpn-privacy/ipsec-vs-ssl-vpn/ 

centos. (n.d.). centos install-guide. Retrieved from centos: https://docs.centos.org/en-

US/centos/install-guide/ 

digikey. (n.d.). Retrieved from https://www.digikey.ca/product-detail/en/winbond-

electronics/W25Q128FVSIG/W25Q128FVSIG-ND/3008697 

fedoraproject. (n.d.). EPEL. Retrieved from wiki: https://fedoraproject.org/wiki/EPEL 

Gaspari, M. (n.d.). authentication-radius-radcli. Retrieved from ocserv: 

https://ocserv.gitlab.io/www/recipes-ocserv-authentication-radius-radcli.html 

gitlab. (n.d.). ocserv-installation-generic. Retrieved from ocserv: 

https://ocserv.gitlab.io/www/recipes-ocserv-installation-generic.html 

Guoan, X. (n.d.). Retrieved from linuxbabe: https://www.linuxbabe.com/ubuntu/certificate-

authentication-openconnect-vpn-server-ocserv 

kvasirsg. (n.d.). ip-forwarding. Retrieved from kvasirsg: https://docs.kvasirsg.com/centos-

7/prefilight-configuration/how-to-enable-ip-forwarding 

Linode. (n.d.). firewalld-on-centos. Retrieved from linode: 

https://www.linode.com/docs/security/firewalls/introduction-to-firewalld-on-centos/ 

mips. (n.d.). Retrieved from https://s3-eu-west-1.amazonaws.com/downloads-

mips/documents/MD00346-2B-24K-DTS-04.00.pdf 

openconnect. (n.d.). Retrieved from openwrt: https://openwrt.org/docs/guide-

user/services/vpn/openconnect 

opkg. (n.d.). Retrieved from openwrt: https://openwrt.org/docs/guide-user/additional-

software/opkg 

Pierre-Francois. (n.d.). issues. Retrieved from github: 

https://github.com/openwrt/packages/issues/2548 



Page | 41  

 

qca9880-br4a. (n.d.). Retrieved from arrow: https://www.arrow.com/en/products/qca9880-

br4a/qualcomm 

Red_Hat_Enterprise_Linux. (n.d.). Networking_Config_Using_nmtui. Retrieved from 

Networking_Guide: https://access.redhat.com/documentation/en-

US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-

Networking_Config_Using_nmtui.html 

Singer, D. (n.d.). Retrieved from https://www.liquidweb.com/kb/enable-epel-repository/ 

TableOfHardware. (n.d.). Retrieved from openwrt: https://openwrt.org/toh/start 

Transport_Layer_Security. (n.d.). Retrieved from wikipedia: 

https://en.wikipedia.org/wiki/Transport_Layer_Security 

VMware. (n.d.). installation-setup-guide. Retrieved from vsphere-esxi-vcenter: 

https://docs.vmware.com/en/VMware-vSphere/5.5/vsphere-esxi-vcenter-server-552-

installation-setup-guide.pdf 

wikipedia. (n.d.). List_of_MIPS_architecture_processors. Retrieved from 

https://en.wikipedia.org/wiki/List_of_MIPS_architecture_processors 

winbond. (n.d.). Retrieved from https://www.winbond.com/resource-files/da00-

w9751g6kbg1.pdf 

 


