University of Alberta

A Generie Type System for an Object-Oriented Multimedia Database Svstem

by

NMannela Schéne (c)

A thesis submitted to the Faculty of Graduate Studies and Rescarch in partial fullill
ment of the requirements for the degree of Master of Science,

Department of Computing Science

Edmonton. Alberta
Fall 1996

National Lib
Bl e

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
~anada to reproduce, loan,

stribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced withc
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Your hle Votre rélérence

QOur tle Notre rélférence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-18322-X

To My Parents

Abstract

This thesis describes the Jesign of a generic multimedia database system that sup-
ports a wide class of documents. The design is characterized by an object-oriented
approach and a stir 1 adherence to the international standards SGML and HyTime.
In order to support different multimedia applications. a multimedia type svstem must
he flexible and extensible. This is achieved by defining a number of built-in types
that model primitive multimedia objects. the spatial and temporal relationships be-
tween them. and characteristics that are common to all SGML documents and their
components. Whenever support for a new class of documents is added to the mul-
timedia database svstem. types modeling the characteristics specific to this class of
docnments are dynamically created and added to the type systen. These types model

the components and structure of the new document class.

A cknowledgements

[would like to take this opportunity to thank my supervisors, Dr. Ozsu and Dr.
Szafron for their guidance and assistance throughout my thesis research. T would also
like to acknowledge the help of the other examiners of my thesis. Dr. Montgomeric and
Dr. Sorenson. Their constructive criticisms and suggestions have been incorporated
into the final version of my thesis.

Thanks also go to Dr. Elio for chairing my thesis defence and to Panl Tglhne ki,
Sherine El-Medani. and Andreas Junghanns for all sorts of interesting, discussions and
ideas. and for proofreading my thesis.

Finally. I would like to acknowledge the financial support from the Departiment
of Computing Science at the University of Alberta. by way of Graduate Teaching,

Assistantship and the M.Sc. Research Award.

Cont.nts

Introduction

1.1 The CITR Broadband Project . . . 000000000000

1.2 Motivation

1.3 Thesis Overview

SGML/HyTime Standard

2.1 Document Structure and SGMLo
2.2 Document Type Definition

2.3 HyTime Overviewo oo

System Architecture

3.1 Conceptual Multimedia DBMS Architecture
3.2 Architecture for Handling Multiple DTDs

3.3 Architecture for Automatic Document Entry

Dynamic Type Creation

4.1 Varietis - of Schema Evolution

1.2 Strategies for Schema Evolution

4.2.1 Evaluation of the Strategies
4.3 ObjectStore’s Approach to Schema Evolution
4.1 An Approach to Dynamic Type Creation

Design of the Generic Multimedia Type System

17
17
19
21
21
23

25

a0 Design. B oquireme < and Approaches

H.1.1 Variants

502 Generio Dyvpe System Design

5.2 Flat Type System vs. Structured Type System

5.3 The Atomic Type Syvstem

53.1 DataStream

5.3.2 Variant Types

[

5.3.3 Monome-tia Types

3
534 QoS Specification

54 loe beme b e Systemy 0000
P oot Flewent 0 00000 oo oo

Y actured Flen s 00000 o

O Annor cd Ulemiets L0 0L L
b Structurod Annotated Elements o000 00000000000
S000 hivlTime Flemanwss o oo 0000000 oo
S06 NIM Elements 0000 oo
ST Docament Topes L0000 e
TN Helper Tapes oo Lo

5.5 Extending tiic Element Type System00
5.5.1 What Types are Necessary to Support a New DTD7 .00 0 ..

The DTD Parser

6.1 Modifications to the Original Versionof dpp
6.2 Data Structures
6.3 Supported Featureso
6.4 Limitations e

The Type Generator
7.1 Abstraction and Reusability

7.2 Name Conventions o v v v it e e e e e

7.3 Lype Generation for the Hiementsof a DTD 000000000

7.3.1 Modeling of the Element Structare © 00 00 0000

7.3.2 Modeling the Element Behavior © 000000 0000000

7.3.3 Auntomatic ' ‘ection of Superivpes . oo 0oL
7.1 Object Persistence 0L Lo 0
7.5 The Interface with Generic Docu-ent Instantiation .o .0 .0 .. L.

8 The DTD Manager

R The DTD asan Object . . o o 0 0 0 0 o0 000 oo o
S0 Advantages of Storing the DTD as an Object ..o 00 L.
N2 The Type Objects . o000 00000

9 Reclated Work

10 Conclusion and Future Work

A HyTime Attributes

B An Example for the DTD Parser

C A DTD for News-Articles

81

85

87

89

List of Figures

3.1 Conceptual Multimedia DBMS Architecture

3.2 Architecture for Handling Multiple DTDs

3.3 Architecture for Automatic Document Entry

5.1 Variants of Primitive Objects .o 00000000000
5.2 Atomic Type System
5.3 Qualitv-of-Service Types © 00000000 o oo
54 Built-in Element Types . o 00000 000000
5.5 Built-in HyTime Typeso oo
5.6 Built-in MM Variant Types 00000000000 o oo
5.7 Examplefor MM Audio Types oo oo
5.8 Type Document and its Subtypee oo oo
5.9 Type DocumentRoot and its Subtypes ..o 00000000

5.10 Tep-level Hierarchy of the ElementType types o0 00000000

Chapter 1

Introduction

In the last few vears. multimedia systems have gained much popularivy. Mullinedia
refers to the integration of text. images. audio. and video in a varicety of application
environments. Application domains are. among others. education, medicine. telecon-
ferencing. and computer games. Multimedia applications have enormous data man-
agement requirements. since multimedia data is usually very large and compiex. The
size ancl complexity of the data stresses the capabilities of current database systems
and leads to new database research.

The subject of this thesis is the design of a multimedia database sy em that can

manage a wide class of multimedia documents.

1.1 The CITR Broadband Project

Thix thesis is part of a major project funded by the Canadian Institute for Telecom-
munications Rescarcn (CITR). The goal of this project is to research and proto-
type enabling technologies for distributed multimedia applications. The project was
started in 1993 with a six year duration. The multimedia system under de\'e]opmeﬁt
consists of five major components that are developed by research groups at various
(Canadian universities. At the University of Alberta. the focus is on the data man-

agement component of the project. which involves storage. management. access, and

retrieval issues in multimedia databases. The other components are the distedhuted
continuous media file syvstem (CNMES) (University of Brinsh Columbiao the gaalin
of service {QouS) management. negotiation. monitoring and control conmporent 4o
versity: of Montreal). the svnchronization component (Untversity ol Ottanw g and
the scalable video encoding component (INRS). The system avelintectire desipn and
integration work is done at the University of Waterloo,

In the first phase of the project. a multimedia system prototype was developed us
ing news-on-demand as the target application. The design of the multimedia databice
management system (ndtimedia DBMS) for this apphication was done at the Unives
sity of Alberta. Since the relational data modell whiel i oty the mest poputan
data model for a variety of applications. has difficritiies in representing the coraples
data present in multimedia applications. an object-oriented approach was chosen to
model. manage. and store the multimedia data. When designing an object ortented
multimedia DBMS. the design of the tvpe svstem s of fandamental importanee. sinee
the tvpe system design can be viewed as the database schema design. The database
schema. as such. limits which applications ave supported by the system. For the
tvpe system design. three important issues must be considered: first. the moaeling
of the basic media components of the document (e.g. test.image. audio. and videoy:
sccond. the representation of the document structure: and third, the capture and
storage of meta information about the multimedia obicets. such as apatial and temn
poral relationships between the multimedia objects. These issues were incorporated
into the type system design for the news-cn-demand application. The basic media
components are modeled as atomic types in the type system. the representation of the
document structure is done by strictly following the SGMLY standard for document
representation, and the spatial and temporal relationships between the multimedia

objects are modeled in accordance with the HyTime? standar 1.

1Standard Generalized Markup Language.
?Hypermedia/Time-based Docunient Structuring Language Standard.

1.2 Motivation

The initial 1ype system design for the multimedia DBMS was based on the news-on-
denand application. Types that were necessary to model components of multimedia
news-on-demand documents were “hard-coded”™. The whole type svstem was devel-
oped statically to provide support only for news-on-demand documents,

My thesis is that the multimedia type system. developed for the news-on-demand
application. can be generalized to support a wide range of multimedia applications.
Specifically. any applications based on SGML/HyTime documents can be supported.

The news-on-demand type system was used as the basis for the new design. A de-
tailed description of the news-on-demand type system can be found in [Vit93]. Each
class of SGMI, documents needs specific types to model the document components
and relationships between them. since documents belonging to different document
classes may consist of different components and may have a totally different struc-
ture. Making the type system sufficiently general to support all conceivable document
classes is a challenging task. My approach was to design a number of predefined types.
called “built-in™ types. These types model characteristics common to all types that
model document components. Whenever support for a new class of documents is
added to the system. new types must be dynamically added to the type system that
model the characteristics specific to the new class of documents. Thus, the databasc
schema must be dynamice. in contrast to the static news-on-demand type system. Be-
sides the type system design, this thesis introduces a new mechanism to realize the
necessary dynamic type creation.

Currently, a closely related project is under way at the University of Alberta. It
deals with automating the insertion of SGML documents of arbitrary types into the

database. This work is described in [EM96].

1.3 Thesis Overview

This thesis is organized as follows. Chapter 2 gives an overview of the SGML and
HyTime standards. Ch: er 3 describes the overall system architecture. including
the components for extending the type system and the components for automatic
document entry. Chapter - discusses pussible approaches for dynamic type creation.
It looks at schema modification facilities present in different object-oriented database
svstems and suggests an approach for dynamic type creation in our system. Chapter
5 describes the design of the generic multimedia type system. The type systen
has two parts: the Atomic Type System for the modeling of the basic nultimedia
objects. and the Element Type System for the modeling of the document coniponents
and their inter-relationships. Chapter 6. 7. and 8 discuss the three main system
components that support new classes of multimedia applications: the D'TD Parser.
the Type Generator. and the DTD Manager. Furthermore. the interface to the system
components that provide facilities for automatic document entry is deseribed. These
system components have been developed as part of the work described in [FMO6).
(‘hapter 9 reviews related work and compares it with the approach taken in this

thesis. Chapter 10 presents some conclusions and gives a preview of future work.

Chapter 2

SGML/HyTime Standard

In the CITI project, the Standard Generalized Markup Language (SGML) and the
Hupcrmedia/Time-based Document Structuring Language Standard (HyTime) have
been chosen for document representation. Both are 15O standards that have gained
much pepularity in the last couple of years. For example. the Hypertext Markup
Language (HTML), an application of SGML. is the document standard used for the
World Wide Web. Because of the widespread use of these standards. many tools
have already been designed that support authors in creating their documents. One
example is the psgml extension to the Emacs editor that supports the creation of
SGML documents. This tool was used in this project. Designing a multimedia
database system based on these standards makes it possible to use a multitude of
these existing tools and applications together with the multimedia database.

This chapter will give a short overview of SGML/HyTime. For more details see

[Vit9s]. [vH94). and [NKNI1].

2.1 Document Structure and SGML

The logical components of a document (e.g. chapters, sections. and paragraphs of
a book) are hierarchicaily ordered. SGML is a generalized markup meta-language

which can be used to specify this structure for any class of documents. The markups

)

mark the boundaries of the logical components and are of the following torm:

<book>
<title> Introduction to SGML <\title>
<chapter>
This is the introduction to the first chapter.
<section> This is the first section of the first chapter.
<subsection>
This is the first subsection.
<\subsection>
<subsection>
This is the second subsection.
<\subsection>
<\section>
<\chapter>
<\book>

Note that <component> is a start tag indicating the beginning of a logical com-
ponent in the text and < \component> is an «nd tag that specifies the end of this
component. SGML documents have a tree structure that may be analyzed by conr
puters and can easily be understood by humans. The nodes of the tree are the
logicai components of a document. In SGML terminology. they are called clements.
The subelements of an element are its confent. Only the tree nodes that contain
(#PCDATA) in their content declaration hold elementary dala conlcnl. In SGML syn
tax, text strings are called (#PCDATA).

SGML is architecture independent. It has been designed to enable text interchange
and is intended for use in the publishing ficld. However. it can also be applied in other
areas. SGML has no constraints on the data formats used to store the docnment,
and it separates the description of the document’s content and structure from the
presentation layout.

An SGML document has, in addition to its marked-up data, two formal parts
associated with it: the SGML declaration and the document type definition (D'TD).
The SGML declaration specifies which character sets (ASCII or others) and delimiters

should be used to define an SGML document. If no specific SGML declaration is

given by the anthor, the default SGML declaration is used. This default declaration
is predefined and cannot be modified by authors. The document type definition will

be discussed in the following section.

2.2 Document Type Definition

SGML standardizes only the meta-syntax of an SGML document: the syntax is stan-
dardized by the DTD. A DTD defines the rules for marking up a class of documents. It
specifies the logical elements of the documents. their attributes. and the relationships
between the elements,

A DTD is written in SGML by the document designer for each category of docu-
ments being used. For example. all HTML documents are based on the HTML-DTD.
hooks will follow a Book-DTD. and memos will conform to a Memo-DTD. In [Vit93].
4 News-DTD was developed for the news-on-demand application which specifies
the document structure of all news-documents being stored in the multimedia-news
database.

A DTD consists of a number of BNF-like production rules, one for each element
to be defined. Each element definition consists of the element name, a number of
optional or mandatory aftribufcs, and a content model. Attributes do not belong to
the content of an element. Rather. they provide further information about the ele-
ment that defines them. Each attribute has a name, an attribute type {e.g. CDATA
for character data. NUMBER for a number), and a default value (e.g. #REQUIRED for
required attributes, #IMPLIED for optional attributes) associated with it. The content
model specifies which elements are allowed in the element’s content. Elements in the
content model are followed by occurrence indicators and linked together by connec-
tors. SGML defines the three occurrence indicators "?", "+", and "*". and the three
connectors ",", "&", and "|". "?" indicates that the element is optional; "+" means
required and repeatabie; and "+" represents optional and repeatable. If two elements

arc connected using ",", they have to follow each other in the given order. If the

conr -~ tor "&" is used. both operands must appear in the element’s content, but the
rder isarrelevant. | indicates that either operand must oceur, but not both,

te example below illustrates a simple DTD that defines the four elements: book.

¢. ~--. section.and subsection.
<!ELEMENT book - - (title, chapter+)>
<!ELEMENT chapter - - (section|#PCDATA)*>
<'ELEMENT section - - (subsection|#PCDATA)*>
<!ELEMENT subsection - - (#PCDATA)>
<!'ELEMENT title - - (#PCDATA)>

<'ATTLIST book
language CDATA #IMPLIED>

The root element of the DTD-clement-tree is book. Its content model consists ol a
title element followed by at least one chapter element. book has the optional at

tribute language to specify the language in which the book is written. If an element’s
content model is defined as (#PCDATA). as in the case of subsection and title. this
means that the element is a leaf node in the tree. It has no further strocture and

consists of textual data only.

2.3 HyTime Overview

HyTime is an ISO standard for structured representation of hypermedia and time
based information. A document is seen as a set of concurrent time-depencent events,
such as audio and video. HyTime uses SGML syntax for describing these events,
HyTime is defined as a set of rules, called architectural forms, that can be applicd
when designing a DTD. Using these architectural forms, multimedia, hypertext, hy-
permedia, time- and space-based documents can be modeled. A DT'D contains only
those semantics of HyTime that are needed for its specific class of documents. A
DTD element can be defined as a HyTime element by giving it an attribute with the

name HyTime and values that are specified by the HyTime standard.

<!'ELEMENT book - - (title, chapter+)>

7.

<!'ATTLIST book
HyTime NAME $FIXED HyDoc
id ID #REQUIRED>

Among others. there is an architectural form called HyDoc defined which represents
the root element of a HyTime document. The example above shows the use of this
architectural form. The architectural form is specified by the value the HyTime at-
tribute is set 1o, in this case HyDoc. Fach HyDoc element (in this case book) must have

an attribute called id that is used as unique identifier when referencing the element.

HyTime Modules

HyTime consists of several modules. each of which describes a group of concepts
and architectural forms. These modules are: the base module. the loc*'an address
module. the hyperlinks module. the measurement module. the scheduling, ...odule. and
the rendition module. Fach module may use features defined in modules lower in the
hicrarchy. For example. the base module provides facilities for object identification.
Object identification is needed, e.g.. in the hyperlinks module to build links between
objects. Fach DTD that uses HyTime architectural forms must declare the modules

in which they are defined. The example below shows how this is done.

<7HyTime support base>
<?HyTime support hyperlinks>

Here are brief descriptions of the modules that are defined as part of the HyTime

standard:

Base module: This module must always be declared if HyTime is used. It defines
the basic HyTime concepts (such as architectural forms) and terminology. and
includes facilities that are available regardless of which of the other modules are
supported. These include facilities for: hyperdocument management. HyTime
identification, and coordinate addressing. For example, the base module defines
the ID attribute which is the most important HyTime attribute. Any HyTime

element may declare and use this ID attribute. It is required in many cases

9

by the definitions of architectural forms (e.g. by the HyDoc architectural form:

shown in the example above).

Location address module: Using unique identifiers (IDs) and identifier references
(IDREFs) is a simple way to refer to particular elements in the document. How
ever. the usefulness of this addressing method is limited to the elements that
have an ID. The location address module contains architectural forms to locate
objects that do not have unique identifiers in the document’s name space. Fog
example, a coordinate location address deseribes an object by its position along
a list of objects: “the second object in this list™. or a semantic location addres
describes objects by some property they nave: “the first object with an age

attribute whose value i1s 27.7

Hyperlinks module: This module consists of five architectural forms that model the
different hyperlinks: independent links (ilink). property links (plink). contestual
links (clink). aggregate location links (agglink). and span links (spanlink). Ba
sically, these differ in the number of link ends used. the kind of elements linked,
and the purpose of the links. Hyperlinks connect data items known as anchors
(link ends). They record relations between data objects and form the basis of
hypermedia navigation. Cross references which provide an optional path by in-
dicating potentially useful informs on elsewhere are perhaps the most connmon

kind of hyperlink.

Measurement module: This module uses the concept of a finite coordinate space
(FCS) to support the definition and expression of units of measurement i
time, space, and other domains. This is needed to describe the Jocations and
dimensions of HyTime objects. In HyTime, a measu:cment is associated with
an axis. The coordinates along an axis form its addressable range, from a

minimum to a maximum positive integer value.

Scheduling module: This module provides facilities to specify and schedule events

in both space and time. A component of data can be declared as an event and

then placed into space and time (using a FCS) relative to other components.
This can be used to represent the spatial and temporal relationships of data i
multimedia presentations. With the help of the scheduling module. sequences
and combinations of various media such as text. images. audio. and video can

be coordinated.

Rendition module: This module allows one to describe certain presentational aspects
of HyTime documents. It is. for example, possible to specify how extents within
one event schedule can be mapped into another event schedule by defining an

application-specific rule.

1

Chapter 3

System Architecture

3.1 Conceptual Multimedia DBMS Architecture

Our multimedia DBMS is an extension of the commercially available object-oriented
DBMS ObjectStore. Since ObjectStore does not provide native support for multime
dia applications and because of the unavailability of the ObjectStore code. a multi-
media layer was built on top of ObjectStore to support multimedia applications. In
the future, TIGUKAT [OPS*95], an extensible object-oriented DBMS with inherent
multimedia support, currently under development at the Laboratory for Database
Systems Research of the University of Alberta, will replace ObjectStore. That is, the
type system that resulted from this rescarch will be incorporated into the TIGUKAT
type system to directly support multimedia applications.

Figure 3.1 shows the conceptual multimedia DBMS architecture. Users and ap-
plications can access the multimedia database via a visual query interface! and an
application independent API. The generic type system, which provides support for
multimedia applications by defining the basic multimedia types, constitutes the main
part of the multimedia extension. The design of this generic type system is the main

contribution of this thesis. Future work is focussed on the development of a query pro-

!Currently, the visual query interface is implemented based only on the news-on-demand appli-
cation. In the future, it will be generalized.

192

e
! End Users -

) 4(Applications ;

T

Visual Query Interface | Application independent APl

\ A 7
N v S Multimedia DBMS
Query Processor &

Extensions
Optimizer

|- - >

H

. " \Generic Muliinjedia Type Systenf
\ i

ObjectStore

-

=

Figure 3.1: Conceptual Multimedia DBMS Architecture

cessor and optimizer that handle a distributed objectbase and support content-based
queries of images and videos.?

The multimedia system is distributed over a broadband network using a multi-
ple client/ multiple server architecture. In the prototype. IBM RS6000 machines.

interconnected via an ATM network, are functioning as clients and servers.

3.2 Architecture for Handling Multiple DTDs

The main focus of this thesis is to develop a generic type system that is able to
support different niultimedia applications. This means, in the SGML context, that
the database system must be able to reflect multiple DTDs. To add support for a
new DTD to the system, the system analyses the DTD and automatically generates

the types that correspond to the elements it defines.

2The dashed lines in Figure 3.1 indicate that these system components are not yet developed.

13

Figure 3.2 shows the system components that have been developed for handling
multiple DTDs. These are the DTD Parscr. the Type Generator. and the DD
Manager. A short description of the functionality of these system components i

given here. For more details refer 1o Chapters 6. 7. and 8.

DTD Parser

The DTD Parser parses the DTD according to a meta-DTD that is a grammar for
defining DTDs. Parsing the DTD creates an clement list where cach entry represents
an SGML element defined in the DTD. Each entry contains information about the
element. such as its name. its attributes, and its content model. After a suceessful

validlation of the DTD. the DTD Parser calls the Type Generator.

Type Generator

The Type Gene:='r n-2s the element list created during the parsing process to auto
matically geverate I- + code that defines a new ObjectStore type for cach element
in the DTD.? In addition. a meta-type is created for cach new type These meta
types contain information that is used by the Instance Generator (see Figure 3.3) to
automatically insert documents into the database.

After the type generation is done, the generated code is compiled and the database
schema is updated to reflect the new types. Furthermore. type extents are created

and initialized for each new type.

DTD Manager

The DTD Manager takes a DTD file as input and stores the DT as an object in
the database. The DTD object is used for parsing documents and inserting them

into the database. The DTD Manager is invoked after type creation. As soon as a

3The generated code is specific to ObjectStore. It has to be mapped to the TIGUKAT made]
when TIGUKAT is used as the underlying database system.
4This is part of the work done in [EM96). See Section 7.5 for a detailed interface description.

/ oD
<'Plement >

<tAunhoe

S
e .

el e « o
— S .
G-—>. Type | 1 ; 2
, Generator | - Type System : t
e e W :
O i 7 7
DTD ! ‘ e /
: ' ']
" Parser ! DTD (—————tf DTDs tHE Q
- G v - e—l
. ; Manager | - s) z q
‘ ! ’ I EN
R
! 1 SGML Documents 4l \
' i ! "
. e
‘ P —] :
i 1 I
. ‘V/ Multimedia DBMS ' Users

Figure 3.2: Architecture for Handling Multiple DTDs

DTD is stored iu the database. SGMIL documents confirming to that DTD can be
inserted into the database. A DTD object contains the name of the DTD. the DTD
as a character string. and a type object for vach meta-type defined for this particular

DTD.

3.3 Architecture for Automatic Document Entry

Figure 3.3 shows the system components that were developed to support the auto-
matic insertion of documents into the database. These system components are the
SGAIL Parser, and the Instance Genecrator. These components depend heavily on
the success of this thesis research in supporting a general multimedia type system.

They have been developed as part of the project described in [EMY6].

SGML Parser

The SGML Parser parses an SGML document, created by an authoring tool or by
hand, according to the DTD to which it conforms. The parser retrieves the DTD
from the database, where it was placed by the DTD Manager. Thus, if there is no
DTD stored in the database, the document insertion process fails and a missing DTD

is reported. During document validation. the parser bnilds a parse tree. There will

Authoring
Tools !

s

Qm-»ux SGML Dovuimnent

»

Query Interface

U Instance
A !
e — CeTkmene _(____l_ s
SGML ¢ (a—— " ——- N ‘
Parser [Aunbues L DT B
—_— S BY Fa]
- oo |
/‘(\%\\ Paise Tree I !] ; E
! § —— i e Kt H
s ; Cos Types | Type System 1 ‘
& 3 |
- N
Instance L SGML l)m‘umcnl.\‘
Generator * - C+ Olygents P S
. [—
Multimedia DBMS

.’Q
-~

Usens

Figure 3.3: Architecture for Automatic Document Fntry

4

be a tree node for each element defined in the document. containing information

such as element name. defined attributes. parent element. and child clements, This

imformation is necessary to instantiate the elements as objects in the database,

Instance Generator

‘he Instance Generator traverses the parse tree and instantiates the objects in the

database that correspond to the elements in the document. Fach node in the parse

tree becomes a persistent object in the database. To create these ohjects the Instance

Generator uses the meta-type objects. stored in the DTD object. since they contain

ail the information necessary to create an object of a particular type.

1t

Chapter 4

Dynamic Type Creation

As stated in Chapter 3. dynamic schema changes. more specifically dynamic ¢ ddi-
tion of types to the database schema. are necessary to support multiple DTDs
the database. This issue has been studied extensively within the context of schema
change/evolution in object-oriented database systems. In this chapter. various ap-
proaches to schema change/evolution are reviewed. before the approach followed in

this thesis is described.

4.1 Varieties of Schema Evolution

The different kinds of schema modification can be divided into the following broad

categories [POY5):
e adding and dropping types (classes'),
e adding and dropping type properties (type redefinition), and
e adding and dropping sub/supertype relationships.

Schema cvolution refers to changes in the database schema during the existence of

the database. Dynamic schema evolution is the management of schema changes while

The term “type” is used throughout this thesis for consistency. However, the term “class” is
used in [POY5)] and is also used in C++.

17

the database system is in operation [PO9)].

In most cases. schema changes have a large impact on the database systeni, i
particular. when changc propagation is necessary. Change propagation refers to the
need for propagating schema changes to the objects. This is necessary when the
database schema is changed in a way that existing instances are somehow influenced.
Instance transformation. that is the modificanion/migration of the affected instances,
must then be performed to make the object - consistent with the new schema. Which

schema changes require change propagation’

Type creation: Adding a leaf type to the database schema withont changing the
sub/supertype relationships of all existing types does not. by itself, require
change propagation. since the new type cannot have any existing instances and

existing instances of other types are not affected by the change.

Type deletion: When a type is deleted. all instances of that type mnst be deleted too.
In most cases. change propagation is necessary. since all objects in the database

that refer to these instances must be updated (references must be deleted).

Type redefinition: Type redefinition includes changing. adding. and deleting data
meribers (properties) and member functions. In general. type redefinition re-
quires instance transformation of all instances if the type representation in the
database changes. This is alimost always the case. The only exceptions are.
when the implementation of a member function changes®, or non-virtual men-

ber functions are added c: deleted.

Changes in the sub/supertype relationships: Changes in the sub/supertype relation-
ships include, for example, adding types as non-leaf nodes in the inheritance
hierarchy, deleting tvpes that are supertypes of other in the database schema’s

remaining types, or changing type inheritance from virtual to non-virtual and

2Note that, the implementation of a virtual member function can change but not the function
header!

vice versa. In all these cases. the representation of affected instances must be
changed. (For example, when a type is added as a supertype of an existing
type, the definition of the existing type must be changed to specify the new
inheritance relationships. The representation of the instances of that type must
be changed to contain the data members and virtual member functions defined

in the supertype.)

To summarize, the simplest form of schema modification is the creation of a type
that does not change the inheritance relationships of existing types. Other schema

changes are generally more complex and require change propagation.
|]

4.2 Strategies for Schema Evolution

Different commercially available OODBMS or research prototypes can be distin-
guished in the way they handle schema changes and instance transformation. The
four schema evolutions strategics used most are: eager evolution, versioning. screcn-

ing. and lazy cvolution [TK89)].

Eager Evolution

Instance conversion is done immediately after schema evolution. An object of an exist-
ing type can be transformed into a new object of the modified type using a conversion
function. Eager instance conversion has the advantage that it keeps the database in
a consistent state. Instances can be accessed directly once they are converted. How-
ever, instance conversion may take a long time. During this time, these objects are
not accessible. In addition, application programs that use these types must be re-
compiled after the schema change and all applications using the database must be
relinked. Examples of OODBMSs using eager evolution are GemStone [PS87], and
ObjectStore [Obj94].

19

20

Versioning

This strategy uses the concept of versioning for schema evolution. Foeh time a type
is modified. a new version of this type is created. A tyvpe has a version chain and cach
instance of the type is associated with a specific version according to its creation time.
Each type has a general interface (version set interface) which unites the definitions
of all its versions. Application programs are written using this general interface. This
strategy has the advantage that no time consuming instance conversion is necessary.
and the disadvantage that the overhead caused by versioning aud ervor handling
creates performance problems when accessing objects. Versioning is used. for example.

in the Encore system [SZ86].

Screening

Instance conversion is not done physically but logically. After a schema change.
affected instances are not converted. Whenever they are used, they are interpreted in
the new definition. This strategy avoids database reorganization or system shutdown.
but on the other hand, t' 2 object access times are very long. Screening must he done
each time. an object is accessed. One representative system that uses screening is

ORION [BKKKST].

Lazy Evolution

In this schema evolution strategy, instance conversion is done physically but is delayed
until the instances of the changed type are accessed the first time. Thus, there are
performance problems only when accessing an instance the first time after a schema
change. This is in contrast to screening. where the instance must be newly interpreted
each time it is used. In comparison to eager evolution, the availability of instances is
increased, since instances are manipulated only when needed. Instances which have
not been used between consecutive schema changes are not converted at all. Lazy

evolution is used in the object-oriented database system OBJM [TK89].

4.2.1 Evaluation of the Strategies

All strategies have advantages and disadvantages. If direct conversion is used. much
time will be consumed at the time a type is modified. The database becomes es-
sentially inaccessible during schema evolution and while all application programs are
relinked. On the other hand, the database is always in a consistent state and the
instances can be accessed directly once they are transformed. which is not the casc if
we delay instance conversion. If we delay instance conversion or use versions, we can
always access the database. but we pay with slower access times for instances and
management overhead (e.g. for keeping versions or change histories).

It is very difficult to say which of the strategies is the best one. This surely
depends on the applications that use the database and the impact of the change.
If we can live with the inaccessibility of the database from time to time, the direct
conversion sirategies are probably preferable. otherwise one of the other strategies
would be better. In this context. hybr strategies, combining two or more of the
above methods, might be a good idea. For example. direct conversion could be used

if the system is idle, switching to e.g. screening otherwise.

4.3 ObjectStore’s Approach to Schema Evolution

ObjectStore provides the function evolve() to perform schema evolution. This func-
tion is part of the ObjectStore class library. It allows the modification of a database
schema in many different ways, e.g. through type redefinition. Calling the schema
evolution function evolve() triggers the schema modification, and changes the rep-
resentation of all existing instances in the database to conform to the new type defi-
nition.

Without using evolve(), the database schema can only be changed by addiﬁg
new types to it that are leaf-nodes in the inheritance hierarchy or independent of
other types, or by changing the definition of a type already stored in the database

in ways that do not affect the layout (representation) of the type instances [Obj94].

Adding a non-virtual membei function. for example. does not change this lavout,
but adding a new supertype to an existing type does. The addition of new types s
handled automatically when an application using the new type opens the database.

Schema evolution. performed using evolve(). depends on three parame

ters [Obj94]:
¢ the database(s) to evolve,
e the schema modifications, and
e the work database.

By default, the schema modifications are specified by the application calling
evolve().® The database and the work database are hoth specified as arguments
to evolve(). The work database is used internally as a “scratch pad™ to hold the
intermediate results of the evolution process. In case of an crror. this database can
be used to restart the evolution or resume it from the point of interruption.

The modification of existing instances is performed in two phases, instance ini-

tialization, and instance transformation.

Instance initialization: Instance initialization modifies existing instances to make
them conform to the new type definition. This includes, for example, adding or
deleting data members or supertypes, and changing the type of a data member.
If new data members are added or their types have changed, their storage regions

are initialized.

Instance transformation: Most of the time, instance initialization is sufficient to
perform the desired schema changes. Sometimes, other application dependent
modifications are necessary. ObjectStore provides the transformer functions to
perform this task. These functions are designed by the application programmer

who initiates the schema evolution process. For each type to be modified,

3Thus, the schema source file for this application should contain a new type definition for each
type to be modified.

-

23
exactly one transformer function can be defined. For example. changing the
type of a data member from short to long and migrating the instances is done
by the instance initialization phase. since the transformation rules are known

to the system, but changing the type from short to a user defined type must

be done by using a transformer function.

Note that, when modifying an instance, a new object is created as a copy of the
old one. Changes are then performed on this copy. Thus. the address of an instance

usually changes when the instance is modified.

4.4 An Approach to Dynamic Type Creatiun

Tests have shown that the schema evolution facility takes a very long time to run.
Fven for small examples. it took several seconds to modify all instances to make
them conform to a new schema. Whenever evolve() is called on a database. all
applications accessing this databasc. even the ones not using the newly created or
redefined types. must be relinked. So, schema changes are not transparent to the
user.

On the other hand. if the only schema change is to add leaf-node types. then
the ObjectStore schema evolution facility (evolve())is not needed. These types are
added automatically to the database schema. whenever an application using these
new types opens the database. Other applications will be unaffected by schema
change, as long as they do not want to create or access instances of these new types.
Applications that require the new types must be relinked.

For this project, this simple approach to dynamic type creation was chosen. This
approach does not modify the inheritance relationships of the existing types, so
evolve() is not used. The database is always accessible to applications and the
applications are as independent as possible from schema modifications. In practice,
database accessibility and application program independence of schema changes are

very important issues for the acceptance of database systems. Users want to be able

21
to access their data independent of changes by other users. The main disadvantage
of the approach followed in this thesis is that we do not extract all the features that
are common to different types and promote them to supertypes in order to achieve as

much abstraction as possible. Thus, our system suffers from some code rednndaney,

Chapter 5

Design of the Generic Multimedia
Type System

As discussed in the previous chapter. the dynamic changes of the database schema are
an interesting but difficult and complex problem. When we design a geueric database
svstem that supports any number of document types (DTDs). we must address exactly
this problem. Basically, there are two different possibilities for a database system to

support any conceivable document class:

o the use of a database schema based on a universal data model used for all DTDs,

or

e the use of a kernel database schema that can be extenuad to add suppo:t for

any DTD when needed.

Using a universal data model means developing the database schema in sucii 2 generic
way that it can store documents of any document class we can imagine. To desigh such
a database schema is very difficult, if not impossible, since the structure of document..
conforming to different document types can be very difierent. In addition, if we coul:
find a universal data model that allows us to store documents of any kind, it would
probably be too inefficient. (For example, each child element of a DTD clemen:

would have to be modeled using an abstract type (such as type ELEMENT) rather
25

than a more specific type. This results in problems during type checking,) Thus, this

approach was not used for the design of the generic multimedia type syaten.

5.1 Design Requirements and Approaches

The goal of this thesis is to design an extensible database schema to allow for different
document types. Within the SGML context. this means that the database schem
is able to reflect different document types (DTDs). For object-oriented datab.

svstems. the database schema design is closely related to the design of the - pe
system. When designing a database schema for a multimedia database sosie-a some

fundamental issues must be considered [Vit95. OSIT95].

Modeling of the primitive objects: .\ multimedia document consi=i. not only
of text but also of other media components such as images. videos. and audio
tracks. A multimedia database system must be able to model and store these

media.

Modeling of variants of the primitive objects: Primitive objects should he
allowed to have multiple variants. Closely related to this is the modeling of
quality-of-service parameters for these variants. Since the concept of variants
is very important for the design of the multimedia system. it will be discussed

in more detail in Section 5.1.1.

Representation of the document structure: SGML documents are structured.
The database schema should represent the logical document structure for query

and presentational purposes.

Representation of spatial and temporal relationships: Spatial and temporal
relationships between multimedia objects must be captured to enable the display

of multimedia documents.

All these requirements have to be incorporated in the design of the generic multimedia

type system.

26

In the first phase of the CITR broadband project. the news-on-demand type sys-
tem, a specific type system implementation for the news-on-demand application based
on the News-DTD, was developed as a prototype. Some of the requirements men-
tioned above were already incorporated in this design [Vit93]. Therefore. it was used

as the basis of the design described in this thesis.

5.1.1 Variants

Primitive objects are associated with specific quality-of-service parameters that are
needed for presentation purposes. For example. the quality-of-service parameters of
an image can be the image format (FIG, GIF or TIF), the image size. and the imagc
colour (monochrome or 8bit/16bit /32bit colour). For one logical primitiveobject there
can be a number of concrete primitive objects that can be distinguished only in their
guality-of-service parameters. These concrete primitive objects are calied variants of
a logical primitive object. At the time of the quality-of-service negotiation. depending
on the hardware available and the desired quality and cost. different variants of the
same primitive object can be displayed. e.g. a monochrome or colour image.

Figure 5.1 shows a priniitive object with different quality-of-service levels repre-
sented by different variants. Continuous media objects such as audio and video consist
of a number of data streams. In Figure 5.1, Variant 1 consists of Data Stream 1.
Variant 2 shares Data Stream 1 with Variant 1. but also coutains Data Stream
2. In general, the presentation quality is higher if more data streams are used. There-
fore. the quality-of-service level of Variant 2 is higher than of Variant 1. In the
example. Variant 3 and Variant n consist of the same streams but differentiate in

other quality-of-service parameters such as audio/video format.

5.1.2 Generic Type System Design

In the multimedia database system, we store non-continuous media such as images
and text as native objects and use a continuous media file server as the underlying

storage system to store continuous media such as audio and video. This is a hybrid

O]
-1

Primitive
Object

[Data Sream |1 l

Data Sream 2

Variant 2

i

Variant 3 Data Sream 3

Variantn

Figure 5.1: Variants of Primitive Objects

approach hetween non-integrated and integrated multimedia database systems. Non
integrated systems store only meta information about the multimedia objects in the
database but store the multimedia objects themselves in files. This keeps the database
small : 'd easy to manage but it does not allow the use of basic DBNMS services
such as~ transaction management, access control, and concurrency control for the
management of the multimedia objects. On the other hand. integrated database
systems store multimedia objects together with the meta information in the database.
This approach has many advaniages. Besides the advantage of using the DBMS
services, it is possible to develop a uniform interface for accessing information ahout
document content and document structure.

The modeling of the primitive objects (e.g. images) is done as a layer on top

of ObjectStore, the object-oriented database system used for this project. Sinee

ObjectStore does not provide native support for multimedia data other than text!,
the type system defines basic multimedia types and refers to them as alomic types.
These types constitute the atomic type system. In our design, primitive objects
consist of one or more variants that have quality-of-service parameters associated with

them. Section 5.3 describes the design of the atomic type system in detail.

!Text could be stored as character string (char#).

'The modeling of the structure of SGML documents and of the spatial and temporal
rclationships between multimedia objects is done in the element type system.
another part of the generic multimedia type system. The reason for separating the
atomic and the element type systems is discussed in Section 5.4.6. The element type
system is a uniform representation of the elements in the DTD. Each element in the
DTD corresponds to a type in the element type system. The spatial and temporal
relationships between the elements in the DTD are modeled by tvpes representing
the architectural forms defined in the HyTime standard. Section 5.4 describes the
design of the element type svstem in detail.

To achieve our objective. that is a generic and extensible type system. the fol-
lowing design approach is taken. The core of the multimedia type system consists
of the atomic type system and some basic types of the element tvpe system that
n:del characteristies that are common to some or all elements of SGML documents.
Whe s ~r support for a DTD is added to the database system. types modeling the

DTD elements are automatically generated and added to the clement type svsteni.

5.2 Flat Type System vs. Structured Type Sys-
tem

One major decision during the design phase of the generic type system is whether a
flat or a structured type system should be used. Supporting any number of different
DTDs in the multimedia database involves extending the database schema at runtime.
This means that adding support for a DTD involves creating new types that ve: -sent
elements in this DTD. The necessity of dynamic type creation adds a new dimension
to the object-oriented design process and to the search for an “optimal” type system.

We now list the advantages and disadvantages of flat and structured type systems

and give the reasons for choosing a structured tyvpe system.

A0

Flat type system: Using a flat type syvstem basically means creating a forest of
tvpes unrelated by inheritance. There might still be non-inheritance relation

ships between the types. such as containment or aggregation.

Advantages: The implementation of dyvunamic type generation is stratghttor
ward because all types are generated as root types. (Fhey do not have
supertypes.) The lack of a type hicrarchy makes it casy to add and delete
types from the type system. Costly schema evolution and instance conven

sion is not necessary.

Disadrantages: Inheritance is not used to reveal common behavior and reduce
code redundancy. Therefore. we do not take advantage of the full power

of object-oriented systems such as ObjectStore.

Structured type system: A structured type system is characterized by ihe exis

tence of an inheritance type hicrarchy.

Advantages: The type system is logically structured. This allows ns to directly
map the logical document structure to the type svstem in an effective
way taking advantage of inheritance {(e.g. a HyTime element in the D'ED
becomes a HyTime type in the type system). Using a type hierarchy allows
us to reuse common data definitions and behavior for similar types.

Disadrantages: Dynamic type creation is a difficult task. Information (e.p.
characteristics of elements) has to be obtained from the DD to generate

the new types as part of the type hierarchy.

Even though a structured type svstem makes dynamic type creation much more
N) Y1

complex, it is essential when designing the type system for a multimedia database if

the rich inheritance structure is to be exploited. Since the overhead for the dynamie

tvpe creation is still manageable, this approach is followed in this thesis. Overhead
is. for example, the gathering of information about clement characteristics to auto

matically detect the element’s supertypes.

5.3 The Atomic Type System

The atomic type system models primitive objects that are the basic components of
a multimedia document. The primitive objects contain the raw media representation
(e.g. image representation) together with information for synchronization and quality-
of-service negotiation.

The atomic type system described here is based on the design of the atomic type
system developed in [Vit95]. Some new types have been added to the system and the
existing types have been modified to meet the new demands of the synchronization
and the QoS management component of the project. The type hic-archy is shown in
Figure 5.2.°

All atomic types are defined as subtypes of the ahstract supertype Atomic. which
is the root type in the atomic type system. Atomic has one data member. the logical
identifier id. to store the element identifier of an element that is part of an SGML
document. In an SGML document. each element referring to an atomic type must
have an SGML ID associi.ced with it. SGML requires that this ID is unique throughout
the document.®

The three types. DataStream. Monomedia. and Variant. are derived directly from

Atomic. They will be " rnssed in the following sections.

5.3.1 DataStream

DataStream is an atomic type for streams. A stream identifies a particular file on the
continuous media file server. One particu.ar audio or video can consist of a number of
streams. The combination of several streams generates a quality-of-service level. I
addition to the id. inherited from Atomic, DataStream has two other data members,

size and uoi. size specifies the size of the file on the continuous media file server,

? Abstract supertypes are displayed in bold font, whereas concrete types are displayed in a normal
font.

3In general, access functions (such as GetId and SetID for type Atomic) are defined for all atomic
types to access their data members but we do not consider them here in the description of the type
system.

31

32

Atomic
Monomedia DataStream Variant

VAN

AudioMedia STextMedia AtomicVideo| AtomicAudio
VideoMedia | ImageMedia AtomicText AtomicSText
TextMedia Atomiclmage

Pigure 5.2: Atomic Type System

and the uoi (universal object identifier) is a unique identifier to identify the file on the
server. Note the difference between the logical identifier id and the physical identitier

uoi.

5.3.2 Variant Types

Instances of Variant subtypes hold the raw (mono) media representation. the quality-
of-service information and information needed by the synchronization component.
Variant subtypes and DataStreams define the smallest “units™ in the atomic type
system.

Type Variant contains functions to access quality-of-service parameters that are
common to all variants. These are, for example, functions to access the size and the
format of a variant. See Section 5.3.4 for a detailed discussion of QoS spvc'iﬁ('mi(m..s.

There are two abstract subtypes of Variant, NCMType for non-continuous media
such as text and images, and CMType for continuous media such as audio and video.

This distinction has been made since non-continuous and continuous media are han-

dled differently in the system. The difference between the two types is that instances
of type NCMType store the raw media in their objects, whereas instances of type
CMType have only meta-information stored about the continuous media. The actual
data is stored on the continuous media file server.

To store the raw data, NCMType has a data member called content. which ix
an array of bytes, NCMType is subtyped into the concrete types AtomicText and
Atomiclmage. These two types also contain quality-of-service parameters (textQoS
and imageQoS, respectively). as well as functions to access them (see Section 5.3.4).
In addition to the access methods for the QoS information, AtomicText contains the
two methods Match and Substring that are very important for the development of &
query engine for the multimedia databasc. Matchis a pattern matching algorithm that
checks if the given search string is contained in the text content. Substring returns
the part of the text content that is specified by a given start and end position.

CMType, the supertype for continuous media. is subtyped into the three concrete
types AtomicVideo, AtomicAudio. and AtomicSText. As with the non-continuous media
types. AtomicVideo, AtomicAudio. and AtomicSText each contain quality-of-service
parameters and access functions that are associated with them.

Since continuous media are stored on a separate continuous media file server.
CMType does not define a content data member. Instead, it defines attributes that
specify the server on which the continuous media data is stored (site), and the date
streams (DataStream*) that make up the continuous medium. Placing the location
information in CMType assumes that all the streams for a particular variant will be
stored on the same server. If this assumption is not valid, location information should
reside with each data stream.

AtomicSText, the atomic type representing synchronized text, generates some in-
teresting questions. Under HyTime, the synchronization information for any event
is captured by an associated extent list relative to a finite coordinate space. This
information is logically separate from the atomic objects, which do not know when

and where they are displayed. The idea of representing all the synchronized text for

33

BB
a video as a single event with multiple variants having multiple streams is attractive
in terms of aggregating. For example, all the English subtitles could be i one variant
and all the French subtitles could be in another variant. However. this arrangement
is contrary to the HyTime model since it would require data streams themselves to
contain synchronization information. Even if we had only one event with a single
variant, we could not have more than one stream associated with it since we lack the
information about how to synchronize them. Therefore. for the current implementa
tion. an instance of AtomicSText consists of one data «ircam only and can represent
only a single subtitle. To create and synchronize multiple subtitles. multiple events

are necessary. This is not an optimal solution but it conforms to Hy'Time.

5.3.3 Monomedia Types

The concept of Monomedia types has been introduced to allow the primitive objects
to have multiple variants. One logical object (e.g. the “Enterprise™ video), reicrred
to as a nonomedia object. can cou. st of a nunber of variants that have differemt
quality-of-service levels. For example. the video variants might have different frame
rates or bit rates, or they might consist of a different number of streams, which may
be located on different servers.

Type Monomedia contains QoS information (monomediaQoS) that is common to
all of its subtypes. such as the price and the type of a monomedia object. Besides
the access functions for the QoS information, type Monomedia defines functions to
access the variants that make up a monomedia object.

The abstract supertype Monomedia has five concrete types derived from it. Text-
Media, ImageMedia, AudioMedia, VideoMedia, and STextMedia. They correspond to
the Variant tynes AtomicText, Atomiclmage, AtomicAudio, AtomicVideo, and AtomicS-
Text, respectively. Instances of these monomedia types store references to all of their
variants. A monomedia object can have only variants of the same type associated

with it, for example, a VideoMedia object can contain only AtomicVideo ohjects.

5.3.4 QoS Specification

As already mentioned. each tyve derived from Atomic has certain quality-of-service
parameters associated with it that are used for the QoS negotiation. A QoS type
hierarchy has been developed to model these parameters. Each atomic type has only
one data member for the quality-of-service specification which is of the appropriate
QoS type. For example. AtomicAudio has the data member audioQoS which is of type
TQosAudio. Figure 5.3 shows the QoS types. This way, we achieve a clear separation
between information stored about the content of an atomic object on one hand. and
presentation information (synchronization and QoS information) on the other.

TQosVariant is an abstract supertype (root type) that contains the QoS informa-
tion that is common to all variants. It has two data members. format and size.
The format of a variant can be. for example, GIF or TIF for an image. or. MPEG or
MJIPEG for a video. size indicates the size of a variant; for non-continuous media it
is the size of the object in bytes. for continuous media it is calculated as the sum of
the sizes of the data streams belonging to the object.

TQoslmage and TQosText are concrete QoS types directly derived from
TQosVariant. TQosimage. the QoS type for Atomiclmage. has two data members.
colour and spatialResolution. colour specifies the colour of the image such as
monochrome or super-colour, spatialResolution stores the width and the height of
the image. TQosVideo is defined as a subtype of TQosimage. In addition to the inher-
ited attributes colour and spatialResolution, TQosVideo contains the attributes
frameRate, bitRate, and duration. These attributes are used for synchronizati n
purposes. TQosText, the QoS type for AtomicText, has the data member language
which specifies the language in which the text is stored (e.g. English, French, or
German). TQosSyncText and TQosAudio are subtyped from TQosText to inherit
language. Additionally. TQosAudio contains the four data members, sampleRate.
bitsPerSample, audioQuality, and duration. The audio quality specifies, for ex-
ample, CD quality or telephone quality. TQosSyncText does not contain additional

attributes but has been defined to obtain a one-to-one correspondence of variant types

TQosVariant TQosMonomedia
TQosImage TQosText

N

TQosVideo TQosSyncText TQosAudio

Figure 5.3: Quality-of-Service Types

and QoS types.

TQosMonomedia specifies the quality-of-service information for monomedia types.
It has the two data members type and price. price is a static value that is attached
to a monomedia object independently of its variants. It is used to caleulate the total
display cost of a monomedia object. The total display cost consists of a static part
(price) and a dynamic part. which is calculated by the negotiation protocol. type
specifies the type of the monomedia object, for example IMAGE or AUDIO. 5t rictly
speaking, this is redundant since each monomedia object already contains implicit
type information (e.g. an ImageMedia object is of “type™ IMAGE). However, €4+
does not maintain tvpe information at run-time and this feature is required by some

modules of the multimedia system developed at the University of Montreal.

5.4 The Element Type System

The element type system is a uniform representation of elements in a DTD and
their hierarchical relationships. Each logical element in the DTD is represented by a
concrete type in the element type system.

As previously stated, the approach that is followed in designing the type system is

to introduce some built-in types that constitute the core of the type system. The built-
yp ¥i

Document / T \\
Text Image Stream HyElement
VariantElement
Annotatewnt Structured
StructuredAnmé

Figure 5.4: Built-in Element Types

in element types. some of which are adopted from the news-on-demand type system.
model characteristics that are common to (some or) all DTD elements. Figures
5.1, 5.5, and 5.6 show the .ilt-in types of the generic element type system. Whenever
support for a new DTD is added to the system, new element types that model the
characteristics specific to that DTD must be created and dynamically added to the

tvpe system. All element types that are automatically generated will be derived from

one of the predefined abstract element types (built-in types).

5.4.1 The Root Element

Type Element is the supertype of all element types. It contains the data members
document, parent and type, and member functions to access them. document points
to the document the element belongs to. The document object has type Document to
allow for different document types. See Section 5.4.7 for a detailed discussion of type
Document. The attribute document has been introduced in type Element because it
is useful for an element to know its document. For example, the query: “Display the
titles of all documents that have images.” could first retrieve all images stored in the
database and then access the documents from these image elements.

Since SGML documents have a tree structure, each element, except the root ele-

37

AN
ment, has a parent. The data member parent models this structure by pointing to
the element’s parent element.’ The type of parent is Structured (described in the
next section), since all parent elements must be structured elements. that is, they
have child elements.

For application programming. it is very useful for an object to know its type. To
achieve that, the data member type has been introduced. It points to a type object
that specifies the type of the element. Each element type has a type class (meta-
type) associated with it (e.g. type Article has the meta-type ArticleType). Such a
type object contains the name of the element as it appears in the DTD and other
useful information that can be queried. (Refer to Section 7.5 for a discussion of
meta-types.)

Type Element is subtyped into eight more specialized abstract tvpes. Structured,

AnnotatedElement. HyElement. VariantElement. Text, Image. Stream. and Document.

5.4.2 Structured Elements

Type Structured is a supertype for all elements in the DTI that are non-leaf nodes in
the document tree. Such elements have a complex content model. By complex content
model. we mean a content model that is not either EMPTY. or (#PCDATA). Elements
that are defined as EMPTY or (#PCDATA) are always leafl nodes in the document tree,
and therefore unstructured.

Elements with a complex content model always have child elements. That is why
structured elements must maintain references to their child elements. Type Structured
contains a childList that keeps track of these references, and member functions to
access the childList (such as GetNth to retrieve the n** element in the childList).
The childList contains objects of type Element because this is the common supertype

of all possible child elements.

“In the root element, parent will be set to NULL.

5.4.3 Annotated Elements

For efficiency reasons, all textual components of a document are stored toget her as
one text string. Each textual component has an annotation associated with it that
indicates the start and end index of the object’s text in the text string. To keep
annotations is not only useful for elements that contain text (#PCDATA) but also
for other elements that have to be located within the text string to display them
properly. For example, an image should be displayed in the document at the position
where it was defined and not separated from the document. The annotation start
and end index for an image have the same value. the location in the text where the
image should appear. Simila ly, if we define a HyTime link, we want to he able to
display the link in the document. for example by underlining the word or phrase that
corresponds to the link. The annotation defines this text range. The only element
types that do not have annotations are Element. Structured. all the HyTime types
except the types derived from llink-AF, and all MM types except the types derived
from Image and Text. These types do not have annotations hecause this information
is not useful for any purpose.

Besides the data member absoluteAnnotation that stores the element’s annota-
tion. AnnotatedElement has the member functions GetAbsoluteAnnotation .o query
the element’s annotation, and GetString to retrieve the appropriate substring rep-

resentation of the element’s annotation.

5.4.4 Structured Annotated Elements

Elements which are structured and have annotations are derived from the abstract su-

pertype StructuredAnnotated. StructuredAnnotated is a subtype of both Structured and

AnnotatedElement and it inherits childList and absoluteAnnotation. respectively.

It also inherits all of the member functions that are defined in these two types.

39

40

5.4.5 HyTime Elements

Figure 5.5 shows the built-in HyTime types. HyElement is the supertype of all Hy-
Time types in the element type system. Its immediate subtypes correspond to the
archiiectural forms defined in HyTime. These subtypes are only derived from HyEle-
ment. The HyTime types are used to model spatio-temporal relationships between
multimedia objects in order to synchronize their presentation.

Following the HyTime standard. all HyTime elements in the DTD must have
ID and HyTime attributes. The ID is used as a unique identifier to make element
references possible. The HyTime attributes specify th . iitectural form to which
the element belongs as well as spatial. temporal. and 1heatic ninformation. Some of
the HyTime attributes are required. while some are implied.

HyElement contains the id required for each HyTime element as a data member.
The HyTime types representing the HyTime architectural forms contain the static
data member aFormName. set to the appropriate architectural form name. Further
more, they have data members for all attributes that are required or implied by the
HyTime standard for the particular architectural form. Appendix A describes all
attributes that are defined for the built-in HyTime types.

Types Video. SText, and Audio are directly derived froni the Hylime type

Event AF. They use HyTime events for zyachronization purposes.

5.4.6 MM Elements

The MM types (monomedia types) have been introduced to provide a consistent
way of handling DTD elements that refer to atomic objects.”

Each concrete type in the atomic type system has an MM type in the element
type system associated with it.

If there is an element in the DTD that refers to an atomic type, the element

type modeling this element will be subtyped from one of the MM types. Using this

5 Any type derived from an MM type is also considered an MM type.

Axis_AF Fcs_AF
Event_AF Ilink_AF

7

Video SText Audio

/ H Element\
HyDoc_AF/ Evsched_AF
Dimspec AF Extlist_AF

Figure 5.5: Built-in HyTime Types

concepl. we can maintain the one-to-one correspondence between concrete element
types and elements defined in the DTD. This indirection is used so that no element

will be derived directly froms an atomic type. Why is this useful?

o First of all. there is a clear interface between atomic types and element types.
Atomic types model the primitive multimedia objects such as images or videos.
whereas element types model elements in a DTD. Some of these elements just
happen to be atomic, in the sense that they refer to atomic types. This reference

‘s expressed using the MM element types.

e Sccond. this clear separation of atomic and element types simplifies the work
of our project partners who deal, for example, with the quality-of-service ne-
gotiation or the storage of streams on the continuous media file server. Thev
are concerned only with the atomic type system and not with the document
structure. The document structure, on the other hand, is important for the
display of the documents (e.g. links are underlined) and for the query engine

(e.g. “retrieve all authors™).

There is one drawback to this approach. The type system is more complex since the

MM element types mirror the atomic types.

VariantElement

AudioVariant ImageVariant

VideoVariant TextVariant

STextVariant

Figure 5.6: Built-in MM Variant Types

Each MM type contains a pointer to an object of the corresponding atomic type.
For example. MM type ImageVariant maintains the data member image pointing to an
object of type Atomiclmage.

Figure 5.6 shows the predefined M4 variant types. AudioVariant, VideoVariant.
STextVariant. TextVariant, and ImageVariant are the MM types for AtomicAudio, Atom-
icVideo. AtomicSText, AtomicText. and Atomiclmage, respectively. The types Text.
Image. and Stream in Figure 5.4 are the MM types for the atomic types TextMedia.
ImageMedia, and Stream. The attentive reader will notice that there are still three

atomic types missing. AudioMedia, VideoMedia. and STextMedia. The MM types for

these are Audio, Video, and SText. They are displayed as part of the Hy'Time type

hierarchy in Figure 5.5. These three types arc special in the sense that not only are
they MM types modeling the reference to atomic types, but they are also HyTime types
at the same time. The reason why they are defined as HyTime types is that they
have spatial and temporal components that must be modeled using Hy'Time.

Figure 5.7 shows the relationships between the atomic types and the MM clement
types for the example of the Audio types. The relationships of the Text, Image, SText,
and Video types are similar. 11 the example, we assumne MyAudio, MyAudioVariant, and

MyStream are user defined concrete element types and aMyAudio, aMyAudioVariant,

Class Hierarchy of Audio Element Types

Element

—
Strean.
(DataStream *stream)

Varia?tElement
. MyStream
AudioVariant
(Atomic;tudio *audio)
HyElement
My AudioVariant Audio

(AudioMedia *audio)

MyAudio

Instances of Audio Element Types

Class Hierarchy of Audio Atomic Types

Atomic

TN

DataSream
Variant

CMType

(DataStream *streamList)

AtomicAudio Monomedia

AudioMedia

(AtomicAudio *variantspecList)

Instances of Audio Atomic Types

. N
(AudioMedia ﬂll(?lo) -

'
i
*
'
4
3

anAudioMedia

(AtomicAudio *variantspecList)

aMy AudioVarian]

P 1 (AtomicAudio *
ariant

) (AtomicAudio *audio) . . .)
. anAtomicAudio r> anAtomicAudio
" (DataStream
aﬂo) | *streamList)

"
'
*
'
'
[l
]

(DataStream ‘streiam)
= (v

(DataStream *stream)

=

Figure 5.7: Example for MM Audio Types

Document
Article Html Book

Figure 5.8: Tvpe Document and its Subtypes

and aMyStream arc instances of these types. anAudioMedia. anAtomicAudio. and
aDataStream are instances of the atomic types AudioMedia. AtomicAudio. and Data-

Stream. respectively.

5.4.7 Dccument Types

It was mentioned before that an object of type Element knows the document it helones
to. It~ data member document points to an object of type Document. Document i &
general built-in abstract supertype which models document types in the type systen,
Since Element is the supertype of all DTD elements. it nust use types just as general
for its data members.

Specific document types are derived from type Document. Figure 5.8 illustrates

some sample document types. An instance of a concrete element type will alwiayvs

point to an object of a specific document type, such as Article or Html. For exanmple.

all elements which beiong to an “article” document point to an object of 1ype Article.

5.4.8 Helper Types

There are a number of types defined in the genei. type system that are not subtyped

from type Element but logically belong to the element type system.

Type Annotation

As mentioned in Section 5.1.3. the entire text of a document is stored in a single

object. Aunotations are used to indicate where the composit’ il elements start and

end. relative to the beginning of the text string. All eleme. ‘at arc part of the
text string (compositional elements) are annotated elements. e tated element
has an aunotation associated with it. This annotation is of typ ~ avion. Type
Annotation has the two data members startPosition and endPos. ‘ne

the start and end position of the element’s text in the document's te..

Type DocumentRoot

Every document needs a place to store its text string. Thus. type DocumentRoot has
been introduced. DocumentRoot contains a document’s text string as an object of
type AtomicText. Furthermore. it contains lists of all Monomedia ol.;jects {c.g. lsts
for ImageMedia. AudioMedia etc.) and member functions for accessing these lists. The
lists of atomic media instances are stored here to improve access efficiency because
atomic objects are queried quite frequently by other system components. e.g. for the
QoS negotiation.

To achieve fast access to components of the document's text string. it is advanta-
geous to swore a document’s list of annotations together with its text string. When
displaving the document. a browser can scan these lists efficiently to determine the
presentation of the text. Since annotations are specific to the elements defined in a
particular DTD. the annotatior lists cannot be part of the built-in type Document-
Root. To achieve the desired effect, for each DTD supported by the system. a root
type is created as a subtype of DocumentRoot. Figure 5.9 illustrates this idea. These
root types inherit all data members and member functions from DocumentRoot, but

also contain annotation lists for all annotated ¢lements in the DTD.

DocumentRoot
ArticleRoot HtmlRoot oo BookRoot

Figure 5.9: Tyvpe DocumentRoot and its Subtypes
Dtd

The concrete type Dtd has been introduced to store DTD objects in the database. An
instance of Dtd contains the name of the DTD and a character string that represents
the DTD text. The DTD must be kept in the system bhecause it is not possible to
recreate the original DTD from the type information. The functions GetDtdName and
GetDtdString are defined to access the DTD name (document type) and the DTD
string. Additionally. Dtd has an attribute called typesList. which contains a type
object for each element type defined for that particular DTD. These type objects are
needed for automatic insertion of document instances into the databasce,

Type Dtd can be extended at any time. if necessary. to hold more . “mation hy
adding new data members to it. For example. a counter indicating the number of
documents stored in the database that belong to this DTD might he a good idea. or

a document list pointing to all these documents.

ElementType Types

ElementType types are used for the automatic insertion of documents iito the
database. They define functions to instantiate database objects that correspond to
the document instance. They also store some meta-information about the DFD ¢l
ement types such as element names, attributes. and supertypes. ‘This information

is necessary for instantiating the appropriate database objects and setting their at-

17

ElementType

T

AnnotatedType AF_Type

/
MonomediaType DataStreamType

EventType AxisType

VariantType

Figure 5.10: Top-level Hierarchy of the Element Type Types

tributes.

There are a number of built-in ElementTypes defined in our system. Figure 5.10
shows the top-level hierarchy of the ElementTypes. For each logical DTD element.
there is an Element type and an ElementType type associated with it. The design of
the built-in ElementTypes and the automatic generation of the ElementTypes defined

for the specific DTD elements are discussed in detail in [EM96].

5.5 Extending the Element Type System

All the predefined types discussed above are generic types. None is specific to a
particular DTD or application. They model characteristics and behavior that are
common to all DT elements.

In order to support different document types in the multimedia database system.
we must extend the basic database schema with element types that model the specific

characteristics of the elements defined in the particular DTDs to be supported.

47

5.5.1 What Types are Necessary to Support a New DTD?

In the element type system. there will be one element type defined for each element in
the DTD. Following the approach described in Section 4.4, all D'T'D) specitic element
types are added to the element type hierarchy as leaf nodes. They will he subivoes
of one or more of the built-in element types.

For each DTD added to the system. a helper type is created that is a subtype
of DocumentRoot. These subtypes keep track of element annotations and document

text strings.

The element type that represents the root element of a DTD will be a subtype of

type Document. and type StructuredAnnotated."

Element types modeling the HyTime elements defined in the DTD are subtypes
of the built-in HyTime types. In addition, if the HyTime elements have a complex
content model, their element types arc derived from either StructuredAnnotated. 1
case of the architectural forms HyDoc and 1link, or Structured. otherwise.

Types representing the MM elements of a DTD will be subtypes of the predefined
MM types. MM elen.ents always have an EMPTY content model. Hence. these element
types are not derived from the structured types. MM types. except types derived

from Image and Text. will not have annotations associated with them either.

All other element 1vpes to be defined will be derived from StructuredAnnotated, if

they have a complex content model. or from AnnotatedEiement ot herwise.

6This -urr - that the DTD consists of more than one element and that tae root element, in
case it is a . . .1me element, is of the architectural form HyDoc.

Chapter 6

The DTD Parser

To support multiple DTDs in the database system. a tool is needed which analyses
a DTD. Thic tool must perform three tasks: check the DTD for correctness. gather
information that is needed for automatic type creation (e.g. the names of the elements
defined in the DTD. their content model. and attributes). and invoke automatic type
creation.

For the DTD Parser. a decision had to be made between:
e developing a new DTD Parser.

e using an existing DTD parser. or

» using an existing SGML document parser.

Since SGML is complex, it would be very difficult and time consuming to develop a
new DTD Parser. Thus, the possibility of using an exiting DTD parser was explored.
In spring 1995. when this project started, there was only one publicly available DTD
pavser, dpp. This parser was developed by C. M. Sperberg-McQueen at the University

of lllinois. It can be found at the ftp site:
ftp://ftp-tei.uic.edu/pub/tei/grammar/dpp/dpp.1

The parser was written in C and used flex and bison (lex/yacc replacement). It

fulfills the first requirement of our DTD Parser, to check the correctness of the DTD.
49

But the parser. in its original form. provided no facilities for gathering information
about the DTD and for invoking the automatic tvpe creation, our second and third
requirements. Nevertheless, dpp was chosen as the basis for our DTD Parser. since
the availability of the code made extensions and modifications to the parser possible,

Using an SGML document parser for parsing DTDs would have been a valid
approach as well. It has been adopted in some projects reported in the literature, e.g.
in [ABHY94]. and [CACS94]. But. since the SGML syntax for documents and D'TDs
are different. DTDs must be transformed into decument syntax to be parsed hy a
document parser. This approach has extra overhead compared to the approach we
have followed. In the near future, some newer versions of SGAML document parsers
will contain a full-fledged DTD parser. In particular. the new version of the nsgmls
parser, the document parser vsed in our project. is supposed to contain a Tull-fledged
DTD parser. Using this DTD parser instead of dpp would have the advantage of
maintaining a uniform parser for both parsing the DTDs and the documents.

In the following sections. the necessary modifications to the dpp parser are de

scribed. Furthermore. the features of the parser and its limitations are discussed.

6.1 Modifications to the Original Version of dpp
As stated previously, the three important tasks of the DTD Parser are:

e checking the correctness of the DTD,

e gathering information for type generation. and

e invoking type generation.

The original version of dpp checks the correctness of the DTD by checking its con-
formance to a meta-DTD. Thiz meta-DTD describes a grammar for defiing DT'Ds.
flex divides the structureu input, in our case the DTD, into “meaningful” nunits.
called tokens. For example, in the context ~f SGML: CDATA, PCDATA, <!, and ELEMENT

are tokens. flex uses a flex specification, that is a set of descriptions of possible

a0

tokens, to produce the C function yylex(), called a lerical analyzcr or scanner. The
descriptions of the tokens are given in the form of regular expressions.

bison establishes relationships between the input tokens generated by yylex().
This task is known as parsing. The set of rules that define the relationships hetween
the tokens is called a grammar. 1a the DTD Parser. this grammar specifies all defini-
tions the DTD contains. and it can therefore be viewed as a meta-DTD. bison takes
a concise description of this grammar and generates the C function yyparse{}, which is
known as the parscr. The parser automatically detects whenever a sequence of input
tokens matches one of the rules in the grammar. When the parser recognizes a rule.
it executes user (' code associated with the rule that is called the rule’s action.

The original DTD Parser did not build data structures while validating the DTD.
During the parsing of each definition in the DTD. strings were created that indicated
which actions were performed. After a definition was successfully parsed. the striug
was displayed. To generate the information necessary for automatic type creation.
dpp has beeu modified to buld up data structures instead of strings. These data
structures are described in Section 6.2.

Furthermore. changes have been made to the way the parser is called. The original
parser took the DTD from the standard input. This is not sufficient anymore. since
we need information (e.g. the name of the DTD file) for further processing. The

modified parser is called in the following way:
dpy -f<d*d file> -d<database name> [-r<root element>]

where -f 2nd -d are required command line arguments that indicate the filename of
the file containing the DTD, and the database where the new types should be created.
-r is an optional command line argument to indicate the root element of the DTD
The root element is not necessarily the natural root element of the DTD since it cév
be any element in the DTD.!

Other modifications to the parser are:

I'This is valid SGML.

51

h

e Parsing no longer stops when the first error has been found. Rather, eli error

messages are printed affer parsing the entire DTD.

o After successfully parsing the DTD. the Type Generator is invoked with infor

mation gathe:rcd during validation of the DTD.

6.2 Data Structures

dpp was modified to create data structures during DTD validation that store the
information necessary for type generation. Exactly what information is needed? “lo

create a tvpe for an clement defined in the DTD. the following information is required:
e the element’s name. since it is used to name the new type {See Section 7.2.).

e the clement’s content model. since it specifies which data members must be

created for the new type (See Section 7.3.).

o the attributes defined for the element (including attribute name. value type.
and default value). since they will be modeled as data members as well (See

Section 7.3.),

e the inclusions defined for the element, since they specify possible child clements

of the element (See Section 6.3 for a discussion about inclusions.). and

e additional information required by the Type Generator e.g. the element’s su-

pertypes, and predefined attributes.

On the other hand, there is information generated by the parser which is not
relevant for type generation (e.g. information about entity and cominent, declarations,
data tag minimization). Thus, this information does not need to e stored.

Data structures have been developed that are capable of storing all necessary

information based on these requirements. The main data structure is the element

list. Whenever an element definition is found in the DTD, an entry in the element

list is created. Each element list entry has the form:

struct Element {

};

char *name;

struct ContentDecl *content;
struct Attribute *prt_attr_list;
struct Elemert *next_elem;
struct Group *incl;

int reachable;

int visited;

struct Group *mult_elem;

int islList;

int isStructured;

enum SType supertype;

where name is the element name, content is a pointer to the content declaration.

prt_attr_list ix a pointer to the element’s attribute definitions. and next_elem 15 @

pointer to the next element in the element list. incl is a pointer to the element s Jist

of included elements. reachable. visited. mult_elem, isList, isStructured. and

supertype arc initialized by the DTD Parser, but they are set and used only by the

Type Generator (See Chapter 7.).
Y]

Whenever an attribute definition is found in the DTD. an entry is created in the

attribute list of the element that contains the attribute. If the attribute definition

appears in the DTD before its associated element is defined, an entry for the referenced

element is created in the element list. The other element information is filled in later

when the element definition is parsed. Each entry of the attribute list has the following

structure:

struct Attribute {

};

char *name;

char xvaltype;

enum DefType deftype;

char *defvalue;

struct NameGrp *namegrp;
struct Attribute *next_attr;
int predef;

name is the attribute name, valtypeis the attrib” etype (v.g. CDATA,ID, ...). . =ftype

is the default type (e.g. FIXED, REQUIRED. ...), defvalueis the d:1. - * aire, namegrp

is a pointer to the attribute name group. if defined. and next_attr ix a pointer to
the next attribute in the attribute list. predef is initialized by the DTD Parser, but
set and used only by the Type Generator (See Section 7.3.1.). Appendix B contains

an example illustrating how the element list is constructed by the parser.

6.3 Supported Features

The parser can handle all basic concepts of SGML including entities and complex
content models. where a model group is inside of another model group such as
(a, (blc]d)+,e)*. Entity references are resolved automatically by the parser. When-
ever an entity definition is parsed. it is stored in a table. If this entity is referenced
somewhere else, dpp searches the table for the entity definition and replaces the entity
refe;ence with it.

dpp supports inclusions and erclusions which can be summarized as creeplions.
SGML. exceptions are shorthand methods for defining a content model that can avoid
the need for complex model groups throughout an element’s subelements. Elements
named in an inclusion can occur anywherc in the element being defined and anywhere
in its subelements. For example, suppose that a footnote (£n) is allowed anywhere

within an article an unlimited number of times. The definition would be:
<!'ELEMENT article - - (frontmatter, async, sync) +(fn)>

Exclusions (e.g. -(fn)) are defined to exclude elements from showing up in all the
subelements of a given element. This is done to avoid unwanted recursions.

dpp. in its original version, checks only the syntax of element definitions. It is not
capable of propagating the exceptions down to all elements for which they are defined.
Since this feature is necessary for ccrrect type generation, it has been « *“ed to dpp.
The propagation of the exceptions is done after the DTD is successfully parsed by
iterating over the element list and inserting the information in the appropriate element

entries.

6.4 Limitations

A limitation of dpp is that it is only able to detect syntactic errors and not semantic
crrors. For example, if a content model contains an element that is vot defined in the
DTD. this will not cause a problem. Similarly. attribute definitions are allowed even if
the element that contains the attribute is not defined. Such errors must be detected
by the Type Generator because they will cause problems during code generation.
Some of the semantic errors could he detected by a two-phase DTD Parser. but we
do not use this approach here.

dpp does not support short references, DATATAGs, rank groups and other op-
tional features of SGML. It does not check identifier uniqueness. and it fails to allow
parameter entity references in system identifiers and in attribute value literals given
as default values in attribute definitions.

I'he original version of dpp contained a rule to allow an eleinent to have the content

model ANY:
<!{ELEMENT body - - ANY>

If an element’s content is ANY. it can contain #PCDATA or any of the elements defined
in the DTD, in any order. SGML literature suggests that ANY should only be used
for debugging purposes since it leads to unstructured documents. Therefore. the use
of ANY is not allowed in this implementation. Our DTD Parser is not an isolated tool

that checks the correctness of a DTD. It is part of a system and not a debugging tool.

ot

-t

Chapter 7

The Type Generator

The Type Generator is the system component that dyvnamically creates new Objedt
Store types which model the characteristics specifie to a class of docaments. whenever
supvort for that class of documents is added to the system. The Type Generator is
invoked by the DTD Parser after a successful validation of the DTD. 1o element
list. created by the DTD Parser. is used to automatically generate C44 coue that
defines a new ObjectStore type for cach element in the DTD. As mentioned in Section
6.2, this element list contains the information necessary for dynamic type creation.
To perform dynamic type creation in the most efficient way. the following design

questions needed to be answered:

1. How can support for new DTDs be added to the system with as little nnpact

as possible on running applications?
2. Can types be shared between different DTDs?

3. How can the new types be named to achieve type name nniqueness throughaont

the system?
4. How should the DTD components and their inter-relationships be modeled?

5. How can the Type Generator automatically detect where in the type hierarchy
a new type should be introduced (What are its supertypes?)?

56

e

6. How should the interface between other system components (e.g. DTD Manager

and Instance Generator) be designed?

To answer the first question. an analysis of the schiema evolution facilities of Ob-
jectStore is necessary., Basically, ObjectStore provides two techniques for dynamically
adding types to the database schema. First. a type can be added as a leaf node in
the inheritance hierarchy. Second. ObjectStore’s schema evolution function can be
used to add a type anywhere in the type hierarchy. As indicated in Chapter 4. the
second technique is very time consuming and requires relinking all applications that
work with the database after the schema change. Therefore. the approach of creating
new types only as leaf nodes was chosen.

Design questions two. three, and six are discussed in Sections 7.1. 7.2, and 7.5.

respectively. Questions four and five are addressed in Section 7.3.

7.1 Abstraction and Reusability

Sharing common type definitions throughout the system would reduce the complexity

of the type system. In this context. there are two abstraction problems to deal with:

e the abstraction of common element definitions in one DTD. and

e the abstraction of common element definitions across different DT Ds.

If two or more elements in the same DTD share common features such as common
attributes or child elements, then these features could be automatically extracted by
the Type Generator and promoted to an abstract supertype. This is a desired goal
of the research project but it has been left out of the implementation because of time
constraints and the nontriviality of the problem. Some of the problems that mist be

tackled in this context are:

e Naming conventions: Type names must be unique. Section 7.2 discusses the
naming conventions of the system in the conventional sense. If we create ab-

stract supertypes to factor out common characteristics. these types must have

unique and meaningful names. There is no caxy solution to this problem. since
concatenating the names of the types derived from these abstract types will, i
general. result in type names which are too long. Of course. a mumbering svstem
could be introduced (e.g. Book Supertypel. Book Supertype?2 cte.) to sohve
this problem. but the resulting names are not particularly meaningtul. Mean
ingful type names are vsoful especially for application programs that make use

of the new wp-.

e Automatic extractios of ~ommon features: The Type Generator has to iterate
over the element list to ¢erect common features. The question arises whether
or not one common attribute or child element satisfies the overlicad of creating,

a supertype. If not. what is the smallest meaningful unit?

If element definitions across different D'TD- quivalent. they should he repre
sented by a common type in the type system. I this approach sounds reasonable,
it leads to the well-known semantic heterogeneity problem that has heen studied ex:
tensively within the multi-database community [OSIT95]. Briefly. the problem is one
of being able to determine whether two elements are semantically equivalent. Different
definitions for type equivalence need to be introduced. 'T'wo tvpes are name cquivalenl.
if they have the same name. On the other hand, structural cquivalenec indicates than
the tvpe components tecursively have the same names ard types. Both definitions
are not sufficient to ensure semantic tvpe equivalence. For example. a subtitle in
book-DTD may be different than a subtitle in a movie-D'I . Alternately. elements
having the same content definition (c¢.g. #PCDATA) may have different meanings (e.p.
the author of a book and the producer of a movie). Since this problem is very com
plicated, we decided to give up some abstraction iu lavor of a semantically consistent
type system. Future research will address the reuse of element types across differemt
DTDs. For example, it might be possible to introduce the notion of “rensable types”
and let the DTD designer decide which types should be reusable. This wonld require
the extension of SGML in some way, either using an architectural fori or a keyword

to indicate reusable and reused types in DT Ds.

7.2 Name Conventions

In the database schema, type names must be unique. since there is a certain structure
and hehavior associated with each type. Like other object-oriented database systems.
ObjectStore does not allow the definition of two distinct types with the same name.
‘Thus. when new types are automatically added to the database schen . type name
uniqueness must be preserved. How can this be achieved?

Keeping the multimedia databases semantically consistent requires that document
tvpes (DTDs) are unique throughout the system. If the type of a document is book.
the markup is specified by a unique book DTD entered into the system. Lven if we
have classes of documents with very similar structure. we still need to define different
D'IDs for them (c.g. bookl. book2. ...). The DTD uniqueness is achieved in the
following way. All files that are <reated during code generation have the document
type" of the DTD as a prefie in their file names. For example. <doctype>.hh (e.g.
book1.hh) and <doctype>.C (e.g. bookl.C) contain the type definitions (e.g. for
book1). and <doctype>_init.C (e.g. bookl_init.C) defines functions to initialize
the type extents of the new types. If the code for a particular DTD already exists
and the DTD is stored in the database. attempts to insert the DTD again will fail.
In this way. we maintain the uniqueness of DTDs in the system.

A similar approach is used to enforce type name uniqueness. According to SGML.
in a particular DTD. all element names must be unique. This is not true for elements
efined in different DTDs. For example. the two DTDs book1 and book2 might have
an clement defined which is called chapter. Therefore, we need a way to distinguish
between both elements. Since document types are unique throughout the system. a
combination of document type and element name must result in a unique type name.

Thus. type names are built in the following way:

INote that. the document type of a DTD is equal to the DTD name, normally the root element
of the DTD, whereas the DTD filename refers to the file in which the DTD is stored.

e The type name for the root element of a D'TD is the document type of that DTD

with the first letter upper case and all other letters lower case (e.g. Booklh.

o All other type names are a concatenation of the document type and the clement

name capitalized (e.g. BooklChapter. Book2Chapter).

As we have seen, the document type of the DTD must be known to the Type
Generator to name the files which contain the generated code and to name the element
types. In general. there are two ways to obtain this information. First, the nser can
pass the root element name as a parameter when calling the DTD Parser. This
information then gets passed to the Type Generator. Second. if no root element
name is specified by the user, the root element. if unique. is automatically detected
by the Type Generator. In any case. the element list is searched for all elements that
are ceachable from the root element. since code generation needs to be done only for

these elements.

7.3 Type Generation for the Elements of a DTD

DTDs define the logical elements of documents of a particular type. In our system. for
each DTD element a type is created that models the particular element. These types
arc created as part of the element type system. since the element type systenn s a

uniform representation of DTD elements and their Lierarchical relationships. wherei

the atomic type system models primitive objects that are the basic component. of

multimedia documents.

At document insertion time, an instance of the appropriate clement type is creatod

for each element in the document. Hence, with this approach. the decision of how the

documents are stored in the database is partially shifted to the DTD designer. But.

how the translation of an element definition in the DTD to a type in the type system

is done depends on the design of the Type Generator. Elements must be modeled ina

way that expresses their structure and the relationships between them. Furtherinore,

interesting questions arise such as, which behavior should be associated with cach

OO

type (What functions should be defined for each type?) and which characteristics of

already existing types should be inherited.

7.3.1 Modeling of the Element Structure

Strnetured elements. elements with complex content models. are non-leaf nodes in
the ID compusition hierarchy. Their subelements (child elements) can be modcled
as data members in the element type.

A DTD specifies constraints for its structured elements. These are constraiuts on
the type. the number, and the order of an element’s subelements. Modeling these
constraints is difficult. since ObjectStore provides little or no support for such an

activity. In the following section. the specific problems and solutions are discussed.

Number of Subelements

The content model of an element specifies how often a child element can appear in
it. With the =" *+", and *?" occurrence indicators and the possibility of defining

inclusions. a wide variety of constraints on the number of subelements can be specified.
<IELEMENT section - -~ (title, (paragraphllist)*) +(footnote)>

For example. the DTD declaration of the element section given above specifies that
there must be exactly one title element. zero or more paragraph and list ele-
ments. and zero or more footnote elements in the content of a section element. In
('+4/0bjectStore, there is no direct way of supporting some of these constraints. For
example, there is no possibility of specifving that a data member cannot have a NULL
value which is necessary to model the “+” (one or more) occurre ¢ Acator. This
constraint could be enforced by the type’s constructor which we'. iow instance
creation only when at least the reference to one child element is given. Even though
this solution works, it is not very efficient. Thus, the question arises whether the type
svstem should enforce the constraints. Under the circumstances. the responsibility of

maintaining the constraints can be shifted to the SGML document parser. Since the

61

parser checks the document’s conformance to a DTD. it will alwavs enforce the mum
ber constraints. However, it is still the responsibility of the type svstem to provide
enough storage space to keep information about all child clements, no matter how
many there are. How can this be achieved?

The simplest solution would be to always create the data members as lists of
pointers to objects of the appropriate types (element types of the child elements). This
approach creates a large overlicad. Managing lists in ObjectStore is very “expeusive”.
ObjectStore lists are instances of the class oslist or its parameterized subelasses,
classes in the ObjectStore class library. These classes have data members (e.g. fo
storing the cardinality of the list) and member functions (e.g. for inserting, removing,
and retrieving elements). Thus. the storage requirements for a data member of type
os_list are much higher than for a data member containing only information about
oue object. Moreover. the explosion of templates with parameterized classes leads to
very large executables. Therefore. ObjectStore lists should only he used il they are
really needed. To achieve this. the Type Generator must be designed well enough to
automatically detect whether or not a data member should be ercated as a list, The
criterion is whether or not a child element can occur more thau once in an element’s
content model. For the example described ahove. the following code is generated
(assuming the document type is Article):

class ArticleSection : public StructuredAnnotated {

public:
ArticleTitle *title;
os_List<ArticleParagraph*> *paragraphlist;
os_List<Articlelist#*> *listList;
os_List<ArticleFootnotex> *footnotelist;
}

Modeling the chiix elements as data members in the parent element specifies
the hierarclical relationships between these elements. A section conlains i title
element, paragraph elements, 1ist elements. and footnote elements.

As explained in Section 5.5, for cach DTD to be supported by the system. one

helper type will be created by the Type Generator as a subtype of the huilt-in type

DocumentRoot (c.g. ArticleRoot in the above example). Among other things. this type
keeps track of the element’s annotations. It has a data member for each annotated
clement of the DTD. The decision whether or not these data members should be
created as lists is made in a similar way as in the case of element type creation. If
an annotated element can oceur more than once in a document. we need to store
more than one annotation for that element. Thus the Type Generator must create
the annotation data member as a list. To make this decision. the Type Generator
must check the content models of all elements declared in a DTD for an element’s

occurrence.

Order of Subelements

In the DTD. a constraint specifying the order of subelements is introduced by the
« " connector. If two elements are connected by this connector. they must appear
in a document in the same order as they are defined in an element’s content model.
In the example used in the last section. we have this order of child elements for the
section element: title is followed by any number of 1ist and paragraph elements
in any order. footnote elements can appear anvwhere in the content.

To capture this constraint in the type system, a mechanism is needed to order the
child elements. Since this feature is not present in ObjectStore. an implicit ordering
of the child elements is assumed. The abstract supertype Structured. from which all
structured elements are subtyped. contains a childList and the method GetNth to
access the childList. After document instantiation, the childList contains pointers
to all child elements of an element in the order they appeared in the document.
Suppose. method GetNth. which is zero based. is applied to the element with *2" as
a parameter. The element’s “third™ child will be returned. Note that. this method
does not enforce the order constraint. It assumes that the elements that are stored

in the childList are ordered.

63

Modeling Attributes

In general. attributes of an element Lerome data members in the elemeut type. If
the element is a HyTime or a monoi.i. dia element. some of its attributes are already
defined in its abstract supertypes. These are the attributes that are common to all
element types which are derived from these types. For example. all ilink Hy'Fime
elements have a link-end associated with them. Therefore. the attribute linkend has
been defined in the built-in HyTime type llink_AF. Thus. the Type Generator must
know before creating the data members for attributes if the element is a Hy'Time or
monomedia element. In that case. data members should be created only for the user
defined attributes. that are the attributes not already defined in the system.

The type of an attribute data member depends on the value type defined for the
attribute. If the value type is NUMBER/NUMBERS or IDREF/IDREFS. the type of the data
member will be integer or a pointer to Element. respectively. All other attributes
are stored in character strings.

A different solution would be to store all attribute values as character strings.
We did not follow this approach since it makes the access to the attribute valies less
efficient. For example. following an clement reference stored in a string (element ID)
is much harder than following a pointer. Note that the approach used in this thesis
requires the resolution of the ID references at document insertion time.

The number constraints for attributes can be handled in a similar way as for
elements. If an attribute can consist of more than one value. an ObjectStore list is
created for this attribute. This is the case when the value type of the attribute is

either NUMBERS or IDREFS.

7.3.2 Modeling the Element Behavior

As explained in Section 5.4. most of the built-in element types define methods 1o
model the behavior of their elements. When element types are subtyped from these

types. they inherit their behavior. For example. type Element acfines the function

G

GetDocument. since it is very likely that an element will be asked for its document (e.g.
1o obtain the document’s text string or its ID). Similarly. type Structured contains
access funetions to access the element’s child list (e.g. GetNth to retrieve the nth
child element).

In the concrete element types. all data members are made public. thus making
it unnecessary to define access functions for them. This solution has been chosen
since it avoids the creation of huge amounts of code (two functions per data member
(get/set)).

Fach conerete element type has a constructor and a destructor function. Cou-
structors usually involve memory allocation and ivitialization for a new instance of
the type. Destructors involve cleanup and deallocation of memory for that object. If
no constructor or destructor is provided. the compiler uses a default implementation
for them.

Furthermore. the method SetChild is defined for each concrete structured type
to set the element’s child elements. Concrete element types that have attributes
contain the method SetSpecificAttribute to set the element’s attributes. The
method ResolveRef is defined for each concrete element type that has ID references
(IDREF/IDREFS) to resolve these references. These methods are called by the Instance

Generator. They are discussed in detail in [EM96)].

7.3.3 Automatic Detection of Supertypes

Depending on the structure and the semantics of an element in the DTD. the element
tvpe modeling the element will be subtyped from one or more of the built-in types
of the element type system. The rules for when an element type should be subtyped
from a built-in type are defined in Section 5.5. For example. the element type repre-
senting the root element of a DTD will always be subtyped from the built-in abstract
supertypes Document, and StructuredAnnotated. Additionally. if the DTD makes use
of the HyTime architectural forms, the type will be derived from HyDoc_AF. the

built-in abstract supertyvpe modeling HyTime documents.

G5

The Type Generator is responsible for automatically detecting the supertypes of
an element tyvpe to be created. Using the information in the element list, which is

generated by the DTD Parser. the Type Generator finds out:
e what the root element of the DTD 1s.
e if an element is structured or not.

e if an element is a HyTime or MM clement or not. and if so, to which architectural

form it belongs (See Section 7.3.3.). and
e if an element should be annotated or not.

For example, to detect whether or not an element is a Hy'Time element. the
attribute list of that element can be scarched for an attribute named HyTime. 'The
value of this attribute is set to the architectural form used (e.g. to HyDoc). (See
Section 6.2 for details about the element list data structure.)

Depending on the test results, the appropriate supertypes are chosen. Supposing,
an elemen is structured and needs annotations. the element type is then derived from
StructuredAnnotated.

The only difficulty is when monomedia elements are defined in the D'TD. Monome
dia elements. such as images. variants or data streams. make use of the atomic types
defined in the atomic type system. As described in Section 5.4.6. these types should
be subtyped from the appropriate MM types which are built-in abstract supertypes
in the element type system. These MM types contain references to the atomic types

(See Section 5.4.6.).

An Extension to SGML/HyTime

In standard SGML/HyTime there is no way of specifying that an element in the

DTD should be considered a monomedia element. If we are not able to express these

semantics in the DTD, the Type Generator cannot automaticaliy detect whether or

not an element is a monomedia element. To solve this problem. we have extended

00

G7
SGML/Hy'Time with a feature that allows us to specify these semantics. There are

two approaches:

Keywords: SGML can be extended with a keyword for cach monomedia type
defined in the type system. When an element is declared in the DTD. the
keywords can be used to indicate the monomedia type of the element. Suppose.
a DTD contains two monomedia elements, myimage and myaudio. which are
of the MM types Image and Audio. Using the keyword approach, the element

declarations would look as follows:

<'ELEMENT myimage - - IMAGE>
<'ELEMENT myaudio - - AUDIO>

Here, IMAGE and AUDIO are the keywords for the MM types Image and Audio.
respectively. Since monomedia elements always have an empty content model.

the kevwords can be placed in the element’s content declaration.

Architectural forms: Architectural forms have been introduced by the HyTime
standard to specify certain HyTime specific element characteristics. A DTD
clement can be defined as a HyTime element by giving it an attribute with the

name HyTime and a value indicating the HyTime architectural form used.

<YATTLIST link
HyTime NAME #FIXED ilink>

In this example, link is a HyTime element of type ilink.

A similar concept can be applied to specify monomedia elements in a DTD.
Instead of HyTime architectural forms, MM (multimedia) architectural
forms can be used. The element declarations look as fallows (using the same

example as for the keyword approach):

<!ATTLIST myimage

MM NAME #FIXED image>
<!'ATTLIST myaudio

MM NAME #FIXED audio>

The attribute name MM indicates a monomedia element and the value of the MM

attributes specifies the MM type.

In our project. we have adopted the second approach. We believe that this ap
proach has two main advautages over the kevword approach. First. it is very similar
to HyTime, since both use architectural forms to express certain semantics. Second.
only small extensions to SGML/HyTime are necessary (the introduction of the MM key
attribute and its architectural forms, one for cach MM type). The keyword approach,
on the other hand, requires the extension of SGML/HyTime with one keyword for
each MM type defined in the type system.

The concept of MM architectural forms to indicate monomedia elements has been
incorporated in the design of a DTD for multimedia news articles. 'The DTD has
been developed as part of this thesis. It can be found in Appendix €. This DTD
also contains data streams and variants which were introduced to define different

quality-of-service levels for the quality-of-service negotiation.

7.4 Object Persistence

In ObjectStore, any C++ object can be made persistent. These objects can be
handled in the same way as non-persistent objects. Persistent objects can be accessed
if they are directly associated with a database roof, or if they can bhe reached by
navigation from a database root.

ObjectStore does not maintain type extents automatically. Iix " nts are important
far queries that search over instances of a certain type. For example, the following
yuery “Select all documents that have the word politics in their headline” requires
searching the extent defined for the DTD elenient headline.

' 1 this project, type extents are automatically maintained as parameterized Ob-
jectStore sets with the type as parameter. These sets are created as database roots.
This -slation is not optimal, since it creates an explosion of database roots if the

system supports multiple DTDs. (In ObjectStore, the optimal number of database

AN

roots is less than ten. since the search over the database roots is done sequentially.)
Thus. future effort should be put into limiting the number of database roots in the
system. e.g having one database entry point per DTD. This approach has not bera
imulemented yet, since it requires changes in the query engine, a project component
't has been developed at the University of Waterloo.

W en an instance of an element type is created. the type’s constructor updates
the typ ~xtent with a reference to the new object. Similarly. the type’s destructor
deletes the object reference from the type extent.

Before he type extents can be used. they must be created and initialized. This
is done I thie Type Generator. The Type Generator not only generates C4++ code
whicl @ 1nes the new element types. it generates an application program that creates
and 1alizes the type extents in the database as well. After the generated code is
cor piled (new types as well as the initialization program) and the database schema
is updated to reflect the new types. the initialization program is invoked by the Type

Generator.

7.5 The Interface with Generic Document In-
stantiation

The Type Generater does not only create new element tvpes by modeling the elements
defined in a DTD: it also executes certain tasks that are needed for the automatic

document instantiation. These are:

e the creation of some member functions for the element types that are called
during document instantiation. These include the method SetChild, defined
for each structured element (type). to set the element’s child elements, the
method SetSpecificAttribute, defined for each element that has attributes
to set these attributes, and the method ResolveRef, defined for each element

that has ID references (IDREF/IDREFS) to resolve these references.

69

i
e the creation of meta-types for the newly created element types. Fach object in
the database knows its type. Fach concrete element type in the type svstem hias
a "type class™ associ. d with it (e.g. the meta-type of type ArticleSection
is type ArticleSectionType). A meta-type coains meta information about
its correcponding element type {c.g. the name and types of the element’s child
clements and attributes). \iacng others. it defines the function CreateObject

that creates an object of the corresponding clement tyvpe.

The sub-compouents of the Type Generater that fultill these tasks have been
developed as part of the thesis described i [EMY6]. They nse the information stored
in the el ‘ment list. gathered by the DTD Parser and the other components ol the

Type Generator. for code generation.

Chapter %

The DTL Manager

The DTD Manager is invoked by the Type Generator after type generation of both
the clement types and the meta-types. and after the generated code is compiled.
This is when all requirements are met for inserting a decument that conforms to the

particular DTD into the database.

8.1 The DTD as an Object

The DTD Manager stores the DTD as an object of the built-in type Dtd in the
database. As soon as the DTD object is stored, documents conforming to that DTD
can be inserted into the database.

Type Dtd has the data members name, indicating the name of the DTD. and
dtdstring, a character string in which the DTD text is stored. It is necessary to store
the original DTD, since it is not possible to recreate the original DTD from the type
information. For example, the DTD Parser resolves entity references automatically.
making it unnecessary to keep any information about entities in the svstem. The
SGML Parser, on the other hand. needs to work with the original DTD in order to
parse SGML documents correctly.

Both name and dtdstring are parameters in the constuctor function of type Dtd.

They must be known at object creation time. Thus, the DTD Manager has to be

71

provided with the following ‘nformation:

e the name of the DTD. which is equivalent to the document type of the DTD.

e the DTD file name (The content of the DTD ile has to be read into dtdstring.).

and

e the name of the database in which the DTD and the documents conforming
to that particular DTD will be stored. Before objects can he inserted into

database. the database needs to be opened.

From where can this information be obtained? The solution is simple. The D'TD
Parser and the Type Generator gather this information to fullill their tasks. 1In
particular, the DTD file is needed by the D'TD Parser to parse the DTH. the DED
document type and the database name are needed by the Type Generator to name
the new element types and to initialize the type extents. respecetively. Thus, there i
no need for obtaining this information again. It can simply be passed as parameters

by the Tvpe Generator when the DTD Manager is called.

8.1.1 Advantages of Storing the DTD as an Object

Storing the DTD as an object has many advantages:

e Whenever a Dtd object is found for a certain DTD in the database. we know

that the DTD is supported by the system.

¢ The uniqueness of DTDs (document types) can be enforced. Before a Dtd object
is inserted into a database, the database is queried for a Dtd object that has
the same name (document type) as the object to be inserted. If the guery fails!.

the Dtd object is inserted into the database. Otherwise, an error is generated.

IThis is, if no Dtd object with the same name was found.

e Much useful information can be kept about the DTD that can be queried at
anyv time. For example. the DTD object could store references to all documents
conforming 1o that I'TD. That way. access {0 all documents of a particular type

would he very fast.

8.2 The Type Objects

The DTD Manager creates a type object for each meta-type defined for a particular
DTH (See Section 7.5.). These type objects are stored in the Dtd object besides the
DTD name and the DTD string. The creation of the meta-type objects is described
in more detail in [EMY96]. The meta-objects are used by the Instance Generator to
automatically instantiate SGML documents in the database. Each meta-type object
can be asked to ereate an olject of its corresponding element type by calling the

member function CreatelObject.

Chapter 9

Related Work

Since SGML is becoming the de facto standard for structured document handhing,
there is a lot of ongoing research in this arca. In the past. structured documents were
often stored in file systems which do not support document management extensively.
Now. there is a trend to develop database systems. especially object-oriented database
svstems. for storing SGML documents. Many rescarchers behieve that document man
agement can benefit from the use of database management facilities such as recovery.
concurrency control. or query capabilities. In this chapter. some approaches reported
in literature are described and compared to the approach taken in this thesis. Special
attention is paid towards object-oriented database systems that support SGAML and

HyTime.

D-STREAT

In [ABIiY94] a database application for SGML documents. called D-STREAT . is de
scribed that is based on the QODBAMS VODAK. The system aims to be flexible and
generic in order to administer documents « { arbitrary types. [ABH91] points ont
that. for the management of structured document bases, it is very important not to
be restricted to a fixed number of DTDs. it should be possible to insert and modify
DTDs in the database system without affecting running applications.

Since our project group realized the need of supporting arbitrary DTDs as wella

T4

generie type system has heen developed in this thesis that can handle any DTD. New
DI Ds can be inserted in the database at any time without affecting running apphi-
cations. sinee dynamic type ereation is done without using the ObjectStore schema
evolution facility. Contrary to D-STREAT. we did not examine the possibility of
changing a D'TD definition already stored in the database. Compared to the multi-
media database svstem deseribed in this thesis. D-STREAT is clearly the most similar
systen found in the literature,

In D-STREAT. adding support for a new DTD is achieved in the following way:

o First. the DTD is parsed by a parser generator to generate the DTD as a
document instance of a particular DTD. the so-called supcr-DTD. The gener-
ated super-DTD instance differs from the original DTD only syntactically. The

super-DTD deseribes the definition of DTDs as defined by SGML.

o Sccond. the DTD-document created in step once is parsed by a parser for super-
DTD instances. This parser is an extension of the publicly available ASP (~Am-
sterdam Parser™). The transformation in step one has been done in order to
use this parser for both parsing the DTD and the SGML documents. During
parsing. the DTDs conformance to the super-DTD is checked and the DTD
is instantiated in the database. The database schema contains three built-in
classes that represent the components of the DTD. These classes are ELEMENT.
ATTRIBUTE. and ENTITY to store the element, attribute and entity definitions

of the DTD. respectively.

o Third. using the newly created instances of ELEMENT. ATTRIBUTE, and EN-
TITY. new classes are created for the logical elements in the DTD (e.g section.
chapter ete.). This is achieved by using the Meclaclass feature of VODAK. In-
stances of metaclasses are classes themselves. Metaclasses have an instance
creation method. whose invocation leads to the creation of a new class. Thus.
system shutdown is not necessary to extend the database schema with new

clement classes. Note that. there is a differentiation between terminal and non-

terminal elemient types. Terminal element types. such as PCDATA or CDATA. are
part of the SGML definition. Since they are not speciiic toa DTDL the classes
representing them are predefined by the svstem as instances of the metaclass
TERMINAL. On the other hand. nonterminal element types arve element types
that are specific to a DTD. Classes representing them can only he ereated when
the DTD is known to the systen, that is. when the DTD is inserted (see step
one and two). These classes are created as instances of the metaclass NONTER

MINAL.

Once the new classes for the logical elementsin the DT are created. document:
conforming to that DTD can be inserted into the database. As mentioned before. the
parsing of the SGML documents is done with the “Amsterdam Parser™ “The parser
checks the document’s conformance to its D'TD and invokes methods to create the
objects in the database that represent the logical document compenents.

Contrary to D-STREAT. we use a D'TD parser (which understands IYTD syntax
and not a document parser (which understands document syntax) to check the DD
conformanice to the super-DTD. Thus. we do not need a parser generator (as described
in step one for D-STREAT) to create a document instance of a meta-D'TD that can
be parsed using an ordinary SGML document parser.

Adding HyTime support to D-STREAT ix achicved by defining a metaclass for

cach HyTime architectural form. They are called Hy'Time metaclasses. kach Hy'Time

element in the document has two ohjects in the database associated with it an

instance of the element-tyvpe class containing the element-type specific features of

the element, and an iustance of the Hy'Time element-type class storing the Hy'Fime

information. This is necessary, since VODAK does not support nnltiple inheritanee,
In our system, only one object is associated with cach Hy'Time element. This objeet
contains all element-type-specific and all Hy Time-specific information. sinee it inherit
from both an element type. such as StructuredAnnotated. and an Hy'lime type, such

as llink AF.

In [BO). an improvement to the first D-STREAT prototype is deseribed. e

b

systern is now confignrable. The DT can be enriched with semantic information
that helps to handle tne managemem of the DTD and its documents in a more
efficient way. One can choose between physical representations for clements (e.g. flaf
vs. non-flul). several indexing structures. and diverse mechanisms supporting access
to the documents’ secondary structure. This is achieved by extending SGML with
certain attribute definitions. For example. to allow for indexing. the super-DTD must

contain the following definitiou:

<!ELEHENT ELEM celd
<!ATTLIST ELEM ces
INDEX (DIRECTINOT) NOT

where INDEX is the keyvword for indexing. and DIRECT stands for direct indexing. The

DTD would then contain entries similar to these:

<'ATTLIST author
INDEX DIRECT>

In D-STREAT, this “kevword™ approach is used to extend SGML/HyTime to
make the system configurable. Contrary to that. in our system. we use an architec-
tural form extension to SGML/HyTime. which is similar to HyTime. to achiev. the
same system behavior (See Section 7.3.3.). We can define any number of MM architec-
tural forms to configure the system. e.g. an architectural form to allow for indexing.
or to indicate reusable elements. The difference to D-STREAT is that we use only onc
key attribute, the MM attribute. D-STREAT extends SGML with one key attribute
for each configurable characteristic.

It is important to point out the difference between flat and non-flat elements.
In the first D-STREAT prototype, for each element in a DTD an element *ype was
created. The text content of a document was not stored as single text string as in
our system. Rather, each element type instance contained a particular portion of the
text. This approach proved to be rather slow for many access operations. Thus. in

[BOJ a hybrid approach for physical document representation was used. Now, parts of

the document can be left flat. An instance of class FLAT will be ereated for each flat
document portion. That way. the text content of a number of document components
can be stored in one object. This improves the speed for text based search. For non-
flat document components an instaunce of the corresponding element type is created.
as before. The decision as te which element types should be flat is lelt to the DTD
designer.

To summarize. D-STREAT and the system described in this thesis are very sinn
lar. They are both based on SGML/HyTime. they support arbitrary DT Ds. and they
achieve the dynanuic addition of the DTDs to the type system with as little impact
on the existing applications as possible. But, they are different it the underlving
database system used (VODAK for D-STREAT. ObjectStore for our project) and
therefore. in the way they perform the dynamic addition of the element types to the
tvpe svstem. Furthermore, D-STREAT's database schema is essentially a flat class
hierarchy. with depth one. In comparison to that, our system is more structured
having the abstract supertypes Element. Structured, AnnotatedElement, StructuredAn-
notated and so forth. This makes it more complicated to generate new types. since
information must be generated that helps to decide from which of these types to sub-
type. On the other hand, this structured type system is more eflicient in factoring,

out common type characteristics compared to the flat type system of D-STREAT.

VERSO

In the VERSQ project at INRTA. France. an object-oriented database system for the
storage of SGML documents is currently being developed on top of the Oy DBMS. Tn
[CACS94]. two extensions to the O, data model are proposed to facilitate the mapping,
from SGML documents to O, instances. These extensions are union types and ordered
tuples. Union types are used to describe alternative content models of elements (7
connector). and ordered tuples model the *." connector. Like our systemn, the system

described in [CACS94] supports multiple DTDs. Il Ds are mapped into Oy schemas

and documents into corresponding objects and values by using an extended version of

N

the Furoclid SGML parser. The parser generates a BNF grammar. This grammar i
antomatically annotated with the appropriate semantic actions that interact with the
database. [CACSY4] also describes an extension to the Oz query language (O, SQL)
to deal with the Oy data model extensions and with the requirements of documnent
retrieval such as querving data with incomplete structure knowledge. The authors
point out that this language is particularly suited for the current extensions of SGML

to multimedia and hypermedia documents (e.g. using HyTime).

HyOctane

At the University of Massachusetts. a distributed multimedia information system
is being developed which uses HyTime as its data model and interchange format.
The systemr deseribed in [KRRK93) consists of an SGML parser. an ObjectStore
database for storing the IyTime documents. and the HyTime engine HyOctane for
accessing and presenting the document instances. The database schema is based on
one specific DTD. the HDTD -~ a HyTime-conforming document type definition for
interactive multimedia presentations. Contrary to the multimedia system described
in this thesis, the system does not support the automatic addition of DTDs to the
tvp. system. But. the authors claim that their type system can be easily extended
to support other HDTDs.

The design of the system is layered. It has an SGML layer. a HyTime layer. and
an application layer. The SGML laver consists of three types: document. element, and
attribut:. When a document is parsed. an instance of type document is created. This
instance has references to all element instances. For each element in the document, an
instance of type element is created. Each element instance knows its parent element,
its children, and its attributes (instances of type attribute).

After the objects in the SGML layer are instantiated. the HyOctane engine queries
the SGML layer to obtain the data needed to initialize the HyTime layer. LEach
element instance belonging to an architectural form is processed into an instance of

that architectural form. In the HyTime layer, each architectural form has a type

I

Y9

S
associated with it. Each type has a data member for each of its Hy'Time attributes
and for its data conteut. \While the attribute values and the data content are just
character strings at the SGML layer. at the Hy Time layer this information is converted
to the appropriate data types.

Once HyvOctane has finished its processing. the application process is invoked
which instantiates the application laver by querving the SGML and HyTime layers.
The application layer contains a type for cach element defined in the DTD. The
application process works with this layer only. Al changes to the objects ol the

application layer are propagated down to the HyTime and SGMIL layers.

Requirements of Multimedia Applications

[WKL90] and [Thu92] are ground-breaking papers in the arca of multimedia database
systems. They highlight the requirements of multimedia applications and investigate
which database systems are best suited to support these requirements. The require:
ments include a data model that is sufficiently flexible to allow a very natural defi
nition and evolution of the database schema that represents multimedia documents.
The data model must also include presentation information and capture the com-
plex relationships between the document components. Other requirements ave. for
example, support for versioning. management of large data volumes. and access 1o
the stored documents based on document structure, document type, and document
content.

Both papers are very general in their considerations, since they do not adopt
any specific document standard. They conclude that object-oriented database man
agement systerus are most appropriate for fulfilling the requirements imposed by

multimedia applications.

Chapter 10

Conclusion and Future Work

This thesis describes the design of an object-oriented multimedia database system.
The main contribution of this work is the development of a flexible and extensible type
svstem that is general enough to support different classes of multimedia documents.
Hence. this thesis is a generalization of the work described in [Vit95]. where a multi-
media DBMS for a news-on-demand application was developed. The database system
described here, stores multimedia objects as well as meta information about them.
The type system is designed in strict adherence to the SGML/HyTime document
standard.

To summarize, the important features of this work are:

o A generic and structured type system was developed. This type system consists
of two separated parts, the Atomic Type System, modeling the basic multi-
media objects with different variants composed of multiple data streams. and
the Element Type System, modeling the document components and their inter-

relationships.

o An interface between the Atomic and the Element Type System based upon the

MM types was developed.

o Different kinds of multimedia applications are supported by the system. Adding

support for a new class of documents is done by dynamically adding new types

81

7.
te

to the Element Type System. The types are inserted into the database schema

without costly schema evolution.

e Three system components were developed that realize the dyvnamice tvpe cre

ation. These are the DTD Parser. the Type Generator. and the D'TD Manager.
e The DTD was modeled as an object in the database.

o New architectural forms (MM forms). similar to HyTime. were introduced that
refer to built-in element types to make them reusable as supertypes of the types

to he created.

o A new DTD for multimedia news articles, incorporating data streams and van

ants, was developed.

e An interface to the system components (described in [IEMY6]) that provide facil-

ities for the automatic insertion of documents into the database was developed.

In the future. some possible enhancements to the work described in this thesis,

and to the multimedia database system itself are:

o The reuse of types within a single DTD should be supported. I two or more
elements in a DTD share common features, such as conmumon child elements or
attributes, then these features could be automatically extracted and promoted
to an abstract superclass. This was one of the design decisions made in this the-
sis but has been left out in the implementation because of the time constraints

given and the nontriviality of the problen.

e The reuse of types across multiple DTDs should be supported. In general.
common element definitions across different DTD+ should be represented by
common types. This is not done in our system duc to the problem of semantic
heterogeneity. With a better understanding of this problem, it might be possible
to achieve at least paitial reusablility. In that context, it mig*.t be interesting to

investigate the possibility of introducing a new architectural form that identifies

rensable types in a DTD. Alternately, some types that are known to be used
ite frequently (such as Author. Date. and Title) could be defined as built-in
types in the Element Type System and reused using the MM architectural form

(or any other new architectural form).

The system should make use of indexes. In the current systemn. no indexes are
created to improve access efficiency. The main reason is the lack of knowledge
about which elements in a certain document class are accessed quite frequently.
In the news-on-demand database system, the indexes were built using intuition
only. Now, an automatic way must be found to identify the elements in a
D'TD that would benefit most from the use of indexes. This can be achicved.
for example, by introducing an INDEX architectural form. leaving the decision

where to build an index to the DTD developer.

Currently, two different parsers are used in the system: the DTD Parser (bi-
son/flex implementation) for parsing the DTD, and the SGML Parser (C++
implementation) for parsing SGML documents. The new release (fall 1993) of
the SGML Parser is supposed to have all features necessary for parsing a DTD.

If this proves to be true, this parser can replace the DTD Parser currently us~d.

Updates should be supported by the system. The database system. as it is now,
supports only a read only environment for documents. Updates (e.g. adding one
line of text to a paragraph) are not easily achieved, since they involve updating
the annotations of all annotated elements positioned in the document after the

updated element. Currently, there is no automatic way of doing that.

Relative indexing should be used for annotations instead of absolute indexing.
In the database, the content of a document is stored as a single text string.
Annotations are defined for each (annotated) element in the document to in-
dicate the start and end index of that element in the document’s text string.
These indexes are absolute values starting from the begin of the text string. If

we support new document types, such as books, in our database, the content

o

is too large to be effectively stored as a single string in the database. How can
we divide the text string into substrings with as little impact as possible?” One
possible solution might be to annotate the DTD. The DTD object could store
the start and end indexes of the substrings as absolute values, The ennotation:
of the elements in the substrings could be given relative to the beginning of the

substrings.

The visual query interface developed in [EMY3] is specific to the news-on
demand application. This query interface should be generalized to support

different applications.

Future work will focus on the development of a query processor and optinizen
that handle a distributed objectbase and support content-based gueries of i

ages and videos.

ObjectStore, the database system currently used. will be replaced with

TIGUKAT. TIGUKAT is an extensible ODBMS that has inherent support

for multimedia applications. It is currently prototyped at the Laboratory for

Database Systems Research of the University of Alberta,

7

Appendix A

HyTime Attributes

Axis_AF

axismeas
axisdim

axismdulist

Dimspec AF

marki

mark?2

Hink AF

linkendsList

anchrole

SMU (standard measurement unit)
size of the axis in MDUs (measurement domain units)

axis measurement domain unit. SMU to MDU ratio

first marker of the dimension specification

A marker is an integer other than zero that represents
a position within an addressable range of quanta

on coordinate axis.

second marker of the dimension specification

link ends that point to some objects
anchor roles for each link end. an anchor role is a
declared name that can be used to communicate the meaning

or significance of the anchor

Event_AF

pls2granlist

exspeclist

Evsched_AF

axisord

apporder

sorted

basegran

gran2hmulist

pls2granlList

overrun

Fes AF

axisdefs

fcsmdu

pulse to granule ratio. pulses are “meaninglul repetitions”
that can occur along an axis
extent specification. associates scheduled extents with an

event

ordered set of axis names of the finite coordinate space
declares whether the order of the SGNL representation

of the elements in the schedule is significant to the application
and must be preserved

declares whether the order of the SGML representation

of the elements in the schedule is sorted

base measurement granule for cach axis (e.g. ninutes,
seconds)

base grauule to HMU (HyTime measurement granule) ratio
for each axis

pulse to granule ratio

determines outcome if dimensions specify nonexistent offsets

into the axes used. c.g. crror. ignore. truncate

lists the name of the axes that define the finite coordinate
space
finite coordinate space measurement domain nnit, SMU 1o

MDU ratio

Appendix B

A - Example for the DTD Parser

The following example illustrates, how the data structures are built by the DD
Parser while validating the DTD. Supposc. the DD contains the following, element

definition:
<!ELEMENT (loclisourcelsubject) - - (#PCDATA)>
When the DTD Parser parses this definition. it resolves the following rale.':

elementdecl: MDELEMENT elemtype minimiz contentdecl MDC { [13

Insert_NameGrp($2);

Copy.ContentDecl($2, $4);

+

MDELEMENT and MDC are tokens for the expressions <!ELEMENT and >, respectively,
After this rule is resolved. elemtype ($2) contains a NameGrp data structure, which
itself contains a list of element names (loc, source. subject) and the indicator
OR_G indicating that the elements of this NameGrp arc connected by “|7. Similarly.
contentdecl ($4) will hold a data structure that stores all information abont the
content model. minimiz contains no information. As specified in Section 6.2, no
information is needed to be stored about data tag minimization. Therefore, the rules

to resolve minimiz are executed without taking any action.

1To explain the example, the rules have been numbered using {1]. [2], ..., on the right-hana side-
of the rules.

87

After rule [1] is successfully resolved. the user action (enclosed in {1yis performed.
First. the function Insert NameGrp($2) creates an entry in the element list for each
element in NameGrp (if an entry did not already exist). Second. Copy.ContentDecl
copies the information about the content declaration in the element list entries of
all clements in NameGrp. But, how do the data stroctures get created in elemtype
and contentdecl? To resclve rule [1]. the parser tries to match rules for elemtype.
minimiz. and contentdecl. In the following. the data structure creation is shown

on the example of elemtype:

elemtype: namesym {
$$ = Create_NameGrp(NO_G, Add_List_End(NULL, $1));

)

| GRPO namegrp GRPC { [2]
$$ = $2;

}

namegrp: segnames {
$$ = Create_NameGrp(SEQ_G, $1);

}

| ornames { (3]
$$ = Create_NameGrp(OR.G, $1);

}

| andnames
$$ = Create_NameGrp(AND_G, $1);
};

ornames: namesym OR namesym {
$$ = Add_List_End(NULL, $1);
Add_List_End($$, $1);
} [4]
|

ornames OR namesym .
Add List_End($1, $3);
I
When the orname rule is matched ([4]), a list with the three element names, that
are part of the element definition, is created. This list is backed up to the rule for
namegrp ([3]). There a NameGrp structure is created that includes the list of element
names and the group indicator (OR.G). Now, this structure is backed up to the next

higher rule level to resolve rule [2], and from there to rule [1].

SR

Appendix C

AD

TD for News-Articles

<!-- HyTime Modules Used -->

<?HyTime support base>
<?HyTime support measure>
<?HyTime support sched manyaxes=3>
<?HyTime support hyperlinks>
<!-- Non-HyTime Notations used -=>
<!NOTATION virspace PUBLIC -- virtual space unit (vsu)--
"+//ISO/IEC 10744//NOTATION Virtual Measurement Unit//EN">
<!-- Document Structure -->
<!ELEMENT article - - (doc-alts?, frontmatter, async, sync?)>
<VELEMENT doc-alts - - (text, text-variant*)>
<!ELEMENT text - - EMPTY>
<!'ELEMENT text-variant - - EMPTY>
<VELEMENT frontmatter - - (edinfo, hdline, subhdline?, abs-p)>
<!ELEMENT edinfo - - (loc & date & source & author+
& keywords & subject)>
<!ELEMENT (loc|sourcelsubject) - (#PCDATA)>
<!ELEMENT (hdlinelsubhdline) - (#PCDATA)>
<!ELEMENT date - - (#PCDATA)>
<'ELEMENT (author|keywords) - - (#PCDATA)>
<!ELEMENT abs-p - - (paragraph)>
<!ELEMENT async - - ((section|figureltext|link)=,
(image-variant|text-variant)*)>
<!ELEMENT section - - (title?, (paragraphl|list)*)>
<!ELEMENT title - - (#PCDATA) >
<!ELEMENT paragraph - - (emphilemph2|list|figurellink
fquote | #PCDATA) *>
<!ELFMENT (emph1|emph2|quote) - - (#PCDATA) >
<!'ELEMENT list - - (title?, listitem+)>

89

<'ELEMENT
<!ELEMENT
<'ELEMENT
<'ELEMENT
<!ELEMENT
<1ELEMENT
<!ELEMENT

<'ELEMENT
<'ELEMENT
<!ELEMENT
<'ELEMENT
<!ELEMENT
<!'ZLEMENT
<!'ELEMENT

<!'ELEMENT
<'ENTITY

<V'ATTLIST

<YATTLIST

<!'ATTLIST

<VATTLIST

<YATTLIST

listitem
link

figure
figcaption
image

sync
audio-visual

(xlyltime)

av-fcs

av-evsched
(audiolvideo|stext)
av-extlist

(paragraph)*>

(emphl|emph2|quote |figure |#PCDATA) +>

(image, figcaption?) >

(#PCDATA) >

EMPTY>

(audio-visual+)>

(x, y, time, av-fcs, av-extlist+,
(audio-variant|video-variant|
stext-variant)*, stream*)>

EMPTY>

(av-evsched+)>

(audio|videoistext)*>

EMPTY >

(xdimspec, ydimspec,tdimspec)>

(xdimspec|ydimspec|tdimspec)

(#PCDATA)>

(image-variant|audio-variant|video-variant|stext-variant)

stream

% variant-attbs

"id ID
format CDATA
streamspec IDREFS
site CDATA
article

HyTime NAME

id ID
language CDATA
quote

source CDATA
author

bio CDATA #IMPLIED
designation CDATA
affiliation CDATA
text

MM NAME
id ID
price CDATA

variantspec IDREFS
text-variant

MM NAME
id ID
filenzme CDATA
format CDATA
language CDATA
size NUMBER

EMPTY>
- - EMPTY>
#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED">

#FIXED HyDoc
#REQUIRED
#IMPLIED>

#IMPLIED>

#IMPLIED
#IMPLIED>

#FIXED Text
#REQUIRED
#IMPLIED
#REQUIRED>

#FIXED TextVariant
#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRE™
#REQUIRED>

<'ATTLIST image

MM NAME
id ID
price CDATA

variantspec IDREFS

<VATTLIST image-variant
MM NAME
id ID
filename CDATA
format CDATA
size NUMBER
width NUMBER
height NUMBER
color CDATA
<YATTLIST audio-visual
id ID
<VATTLIST x
HyTime NAME
id ID
axismeas CDATA
axismdu CDATA
axisdim CDATA
<'ATTLIST vy
HyTime NAME
id ID
axismeas CDATA
axismdu CDATA
axisdim CDATA
<VATTLIST time
HyTime NAME
id ID
axismeas CDATA
axismdu CDATA
axisdim CDATA
<'ATTLIST link
HyTime NAME
id ID
linkends IDREFS
<TATTLIST av-fcs
HyTime NAME
id ID
axisdefs CDATA
<VATTLIST av-evsched
HyTime NAME
id ID
axisord CDATA

#FIXED image
#REQUIRED
#IMPLIED
#REQUIRED>

#FIXED ImageVariant
#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED>

#REQUIRED>

#FIXED axis
#REQUIRED

#FIXED "virspace"
#FIXED "1 1"
#FIXED "1280">

#FIXED axis
#REQUIRED

#FIXED "virspace"
#FIXED "1 1"
#FIXED "1024">

#FIXED axis
#REQUIRED

#FIXEC "SISECOND"
#FIXED "1 1"
#FIXED "3600">

#FIXED ilink
#REQUIRED
#IMPLIED>

#FIXED fcs
#REQUIRED
$FIXED "x y time">

evsched
#REQUIRED
#FIXED "x y time"

<'ATTLIST

<V'ATTLIST

<'ATTLIST

<VATTLIST

<'ATTLIST

<!'ATTLIST

basegran CDATA
audio

#FIXED '"vsu vsu SISECOND'">

#FTXED event
#FIXED audio
#REQUIRID
#IMPLIED
#REQUIRED
#REQUIRED

1 exspec for each variant, or I for all -->

#FIXED event
#FIXED video
#REQUIRED
#IMPLIED
#REQUIRED
#REQUIRED

1 exspec for each variant, or 1 for all -->

HyTime NAME
MM NAME
id 1D
price L. ATA
variantspec IDREFS
exspec IDREFS
video

HyTime NAME
MM NAME
id ID
price CDATA
variantspec IDREFS
exspec IDREFS
stext

HyTime NAME
MM NAME
id ID
price CDATA
variantspec IDREFS
exspec IDREFS

#FIXED event
#FIXED stext
#REQUIRED
#IMPLIED
#REQUIRED
#REQUIRED

1 exspec for each variant, or 1 for all ~-->

audio-variant

MM NAME
Yvariant-attbs
duration NUMBER
samplerate NUMBER
bps NUMBER
quality CDATA
language CDATA
video-variant

MM NAME
Yvariant-attbs
duration NUMBER
width NUMBER
height NUMBER
framerate NUMBER
bitrate NUMBER

color CDATA
stext-variant
MM NAME

Yvariant-attbs
language CDATA

#FIXED AudioVariant

#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED>

#FIXED VideoVariant

#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED
#REQUIRED>

#FIXED StextVariant

#REQUIRED>

<'ATTLIST

<!'ATTLIST

<YATTLIST

stream

MM NAME #FIXED stream
id ID #REQUIRED

uoi NUMBER #REQUIRED

size NUMBER #REQUIRED>
av-extlist

HyTime NAME #FIXED extlist
id ID #REQUIRED>
(xdimspec|ydimspec|tdimspec)
HyTime NAME #FIXED dimsrec

id ID #REQUIRED>

ui

Bibu ~raphy

ABHO]

[BO]

[BRKKKT]

[CACS94)

[EM95)

(EM96]

[KRRK93]

[NKN91]

k. Aberer, K. Béhm. and C. Hiiser. The prospects of publishing using advanced

database concepts. Eleetronic Publishing. 6(4):469-180. 1994.

K. Bohm. Building a configurable database application for structured docu-

ments. GMD-IPSI Darmstadt. submitted for publication.

J. Banerjee, W. Kim. H.-J. Kini. and H. F. Korth. Semantics and implemen-
tation of schema evolution in object-oriented databases. SIGMOD RECORD.
16(3):311-322, 1987.

V. Christophides, S. Abiteboul. S. Cluet, and M. Scholl. From structured docu-
ments to novel query facilities. In ACM SIGMOD International Conference on
Management of Data, pages 313-324, 1994.

G. El-Medani. A visual query facility for multimedia databases. Master’s thesis.

University of Alberta, Department of Computing Science, 1995.

S. El-Medani. Support for document entry in the multimedia database. Mas-
ter’s thesis, University of Alberta, Department of Computing Science. 1996.

(forthcoming).

J. F. Koege” 1.. W. Rutledge. J. L. Rutledge, and C. Keskin. HyOctane: A
HyTime engine for an MMIS. In Proceedings of the ACM Multimedia Conference
‘93, pages 129-135, 1993.

S. Newcomb, N. Kipp, and V. Newcomb. The HyTime hypermedia/time-based
document structuring language. Communications of the ACM, 34(11):67-83,

1991.
94

CUSERY

[OPS+95)

[0S1+95]

[POY5]

[PS&T

[SZ86

[Thu92)

[TK89]

[vH94]

[Vit95)

O! ‘ectStor Pilease for O8/2 and AINX/xIC Systems, Object Desigu. Ine.

R 1.

M. T. Ozsu. R.). Peters, D, Szafron. B. Trani. A. Lipka. and AL Munos, Tignkat:
A uniform behavioral objectbase management system. The VLDB Journal,

4(3):445-492, 1995,

M.T. Ozsu. D. Szafron. P. Iglinski. G. El-Medani. S, ElL-Medani, M. Schone,
and C. Vittal. Database management support for a news-on-demand applica:
tion. In Proc. First Intcrnational Symposiune on Teehnologics and Systems for
Voice. Video. and Data Communications - Multimedia: Full-Screiee Impaet on

Business, Education, and the Home. volume 2617, October 1995,

R. J. Peter and M. L Ozsu. Axiomatization of dynamic schema evolution
i e a Proccedings of the T1th International Confercnee on Data

e ages 16 164, “larch 1995,

D.J T'comey and . Stem. Cla-s modification in the gemstone object-oriented

bms In QOPSL A 'S7 Proccedings, pages 111-117, Octoher 1987,

A, H.Skarra and >, B. Zdonik. The management of changing tvpes in an object-
orient | datab . In OOPSLA 86 Procecdings. pages 483 195, September
1986.

B. Thuraisinghii. On developing multimedia database management systems

using the object-oriented approach. Multimedia Revicw. 3(2):11 18, 1992.

L. Tan and T. Katayama. Meta operations for type management in object-
oriented databases. In Proceedings of the First International Conference on

Deductive and Object-Oriented Databases, pages 241-258%, 19R4).

Eric van Herwijnen. Practical SGML. Kluwer Academic Publishers, second

edition, 1994.

C. Vittal. An object-oriented multimedia database system for a news-on-

a5

demand application. Master’s thesis, University of Alberta. Department of

Computing Science, 1995.

9G
[WKL90] D. Woelk. W. Kim, and W. Luther. A' bject-oriented approach to multimedia

databases. Comrnunications of the AC .4, 35 9):90-103. 1990.

