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ABSTRACT
. ‘u

The aim of this thesis is to have a closer look at =
classical numerical aéalysis as a tool for solving tﬁe
elastic wave equation in its general case.

After topological considerations of the parameter
distributions at the boundary, and their relationship to
the grid and the operator domains, we develop numerical

.

schemes by the direct method of the numerical analysis
{i.e. the differential equation and the external conditions).
We also examine the variational or energy method where the
boundary conditions are naturally introduced by Gauss'
Theorem in the potential energy equation. For this
purpose we will develop élso a method of discretisation
of the Dirichlet integral, and its bilinear form. Compa-

risons between those schemes show the uniqueness of the

.development. . A finite difference example illustrates the

-

P - S8V conversions.

iv
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8 CHAPTER 1
Introduction

The properties of body and surface waves have ‘been
investigated by many researchers. More recently,
numerical analjsis has been a powerfgl tool. IA their
celebrated paper, Courant, Friedrichs and Lewy (1928)
analysed the finite difference method but it is only
after numerical techniques have been used for some time
for differential eqguations of physics and engineering
that they have been applied‘to hyperbolic and transient
elastic wave problems (Altermagyet’al, 1968). Alterman
and coworkers studied the wave propagation in a fluid
sphere (1968);’in a layered elastic media (1968), in an
elastic sphere (1970), and in a quarter and three quarter
plane (1970). )

Boore (1970) investigated the SH and Love wave pro-
pagétions in the transition region from ocean to continent.
Landers and Clderbout (1972) investigated the direct éroplem
of the potenéial wave equation in elastic media. Claerbout
developed the parabolic approximation of the scalar wave
equation for dgréct ana migrdtion probiems, Finite dif-
ference methods using ﬁinite integral t;ansformations of

one or more variables have been widely used (Soltz, 1978).

Boore (1972) studied SH wave propagation in hetero-



geneoﬁs media and used:rsuccessfully an equation with
variable parameters. This method had an instant success
since cumbersome boundary conditions are no longer needed
and arbitrary bournaries could be considered without
adding any complexity to the problem. This method,
called "heterogeneous media", was soon extended to the
klastic wave equation (Kelly et al, 197;). Finite
element ﬁethods (Zienkiewicz, 1971) have been inves-
tigated by Lysemer and Drake (1972) for the d:rect
problem and by Marfurt (1977) for the elastic wave.
equation migration problem.

Re¢ently the necessity of obt%ining the maximum
information from the data in seismic exploration has
given renewed interest in P-SV and SH waves and
consequently to the elastic wave equation. The first
aim of a researcher is therefore to deveiop a more
efficient and optimized algorithm. Among thé methods,
of course, the "heterogeneous media" is the most
attractive. The in?onsistency in the results and the
disparity with the "homogeneous media" method (Kelly
et al, 1976)‘has brought some doubt on this technical
legacy. Then, considering the "experimental” aspect
of the so-called "homogeneous media" method (Chapter II)
one wonders if it is not’necessary to solve the problem
before computation, rather than to input the equation
with external conditions in the machine and carry on

2ndless trials and comparisons.



The pbjective is therefore to find a scheme where
the boundary conditions are well defined in any point
of a considered region for any boundary shape, provided
of course that those bounda?ies pass by the grid knots.
For this purpose the classical numerical analysis offers
the choice between the direct method and the method
based on energy or variational principles (Chapter II).

§s’in any discrete problems we shall consider an
elementary domain and iterate the solution in all the
considered regions. The direct approach will be
obtained through a Taylor series development, the
boundary conditions being introduced in the eqguations:
(mgthod developed in Chapter III).

It will then be interesting to find a solution
by the finite variational method, since the boundary
conditions are naturally igcluded in the integral
equation (Chaptgr IV). A comparison with the direct
approach can give us a new insight into the problem
as well as on the validity of the solutions obtained.

Since the source of P-SV conversion is an”impor-
tant guestion which can be more clearly analysed
through the divergence and the curl of the displacement
vector (Cgapter IV) we will investigate those equations
under two aspects:

- Compatibility of the equations with the dis-

placement solution will give a greater insight:

IS



4 -
into different aspects of the problem.

- Comparison with previous work.

The results of this research have been presented
by the author at the 50th Society of Exploration Geo-

physicists Convention (Houston, 1980).



CHAPTER 11

NUMERICAL FORMULATION

2.1 EgQuations of Motion

The equations of motion can be deduced from the.

principle. of minimum potential energy in elasticity.

Let u, be the components of the displacement vector U

Oij the stresses components

Ki the body forces components per unit volume
eij the strain components~

p the density.

The deformation components are related to the displacement

vector by

1 Bui du .
€15 ° _2_[3xj + axi] (2.1.1)

The medium is elastic when there exist a linear relationship
‘between stresses and strain (Generalised Hooke's law,

Love, 1927} R

“

o (i,j,%,2 = 1,2,3) (2.1.2)

i3 - ijxe ®x¢
being the elastic constants with:

ijke ,

ij ji



so that

i3kl T “ktij

This follows from .the existence of ah elastic potential

oy

2W = cijkz eij ekf. (2.1. 3)
such that
g, = ¥ (2.1.4)
ij de . . -
1)

From (2.1.2) and (2.1.3) we obtain
- -~

= + + + ]
ZW = €11001 * 80, t €330;35 e ,0,, + e 30,5 + e,,0,,
c..(2.1.8)

We shall represent the elastic potential by W(U). The
relation (2.1.3) shows that W is a quadratic form in the
strain compoﬁents. In elasticity theory it is proved
that this form is positive bounded below (Miklin, 1967) .
If the elastic medium is isbtropic then the Hooke';

law reduces to the Lamé equations

= A05t «
(o] 6]

i3 {(2.1t6)

e
LT
with 6 = div @&, S; the Krokener delta. A, U are the

Lamé constants)



Then, the equilibrium equations can be written in the form

-D.O, = F, ” (2.1.7)

. 9
. where Dj ij

F = -pD u, + g,

i tt i i

Ki being the body forces per unit volume.

And from (2.1.7) we have
AU = F (2.1.8)
where the bperatqr A, in the case of an isotropic medium, is:
A S (X + 2uW)V(V.) - MUx(Vx) (2.1.9)
When the parameters are variables, (2:1.8) can be written

pD Di[xnjuj + 2uoiui]

u,
tt i

- p,{wp.u, + D,u,] - X, =0 (2.1.10)
J J i i3 1 )

or in vectorial form (Karal and Keller, 1959)

>

pi - V[(A + 2w v.0u] + ux[ vxu] - ¥ = 0 (2.1.11)



Those equations are expressed in a variable parameter form,
since this form is more general and coincides with equation
(2.1.7).

If the propagation occurs in the (x,z) plane the com-

N .
ponents of u are u,w and the P-SV equations of motion are:

pD  u = Dx[A[qu + DZW] + 2UDxu]
g +ﬁDz[uIwa + Dzu]] ‘ (2.1.;2)a
PD, W = bz[;EDzw + Dxu]] + 2uDzw]

+

: + UD Vv 1.
thtv - Dx(UDxV) Dz( Dz ) (2 13)
where the vibration is perpendicular to (x,z).
The systems (2.1.12) and (2.1.13) are independent of
each other. P, A, U can be constant in a region (f2) or

2} .. »
represented by\a continuous differentiable function. In

~ | 1
both cases we haveérp, A, U, € (@C ). Besides these systems

are submitted to auxiliary conditions which are:

- The displacement and velocity fields at the initial

instant.._

, = The continuity of displacement and stresses at the

re
boundary (T') (i.e. when p, A, U ¢ G:l) (fig. 1, page 14).

" We are therefore led to the following definitions.



A homogeneous mediumis a region R (R C mnf where the
parameters (or the physical properties of the media) are
constants.

When the medium admits continuous derivatives at each
point P € R, (A, U, £) € © !, then we will consider the /
medium as a transition zone. (Example: variation of velocity
with depth, etc.).

A heterogeneous medium is a region R where the physical

properties do not admit smooth variations in at least one

—~——

4 ™

of its points P. (i)s. 3 a point P € R such that p, X or

N

V4 GZl). Consequently this point is an element of the

boundary T.
Very often heterogeneous media are assimilated to

transition zones by simple reason of convenience. B

N
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2.2 BASIC CONSIDERATIONS

2.2.a Physical laws governing the system
Freset

In this secfion as well as in section 2.3, we will
try to state in the most concise terms the broad lines
of any éorrect numerical solution. Although it may seem
too general, it will constitute the base on which our .

problems will be solved.

. , . . n
Let us consider an n dimensional Euclidean space IR

.

and a real time interval [0,T].

. . ) n
If  is a region of R with boundary I', we have
Q=0 +7T

U is the displacement vector defined in the space of

scalar or vector functions, respectively defined in the

set of points

Q x [o,T])

.

or Q@ x [o,7] and T x [0,T]



The equations of motion (2.1.8) can bt written in the more

concise form:

AU(P) + F

(]
(e

PpeQx [o,7]

2
u,au/axi € L () (2.2.1)a
where A is the elasticity operator

and F = thtU - K(P) ’ (2.2.1)Db

K(P) representing the body forcesper unit volume at P.
The subsidiary conditiens being:
- The initial conditions

U(x,0) = £(x,0)

U(x,0) = g(x,0) (2.2.2)

(The initial conditions being homogeneous if the "source"
is introduced in (2.1.1) as Body force ).

- The boundary coné}tions
Generally they are classed as the following:

(a) The boundary I is fixed

4] =0 (2.2.3)a
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4

(b) T is free from external forces

g, .*n = 0 C (2.2.3)b

(c) A part of the boundary jis fixed,

and the other is "free".

In the wave propa.ation problem we will be mainly concerned

with the congitions (b) at the surface and with the continuity

conditions at the boundary

ul _=uU + (displacement continuity) (2.2.3)
r r
n (st tinuity) (2.2
O,.*n = 0, .*n stress continuity 2.
i3 |p- ij o ‘ 4)
- + ’ ’ .
where ' , T represents the interior or exterior part o4 the

~_boundary.
' -+ ' « 4

Jf n is the outward normal to the boundary the stress
continywity {2.2.4)b can have the general form (Mikhlin, 1964)

L

'Z"\ai. D, U cos(n,xi) . = z a,. D, chos(n,xi) _ \
i, J J T i, 1] J r .
... (2.2.5)
er ‘ ] a,.pu|l =9 (2.2.6)
. . ij "+ )
i.J n |T
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U . o '.”
where D*U - %; is the normal derivative to the surface bound-

n ;
ary I', the sign (+) being attributed to the exterior region

-~
i

of the boundary and the sign (-)-to the interier. The

condition (2.2.6) can be considered as a generalized Neumann

-

condition.'\

2.2.b The energy method

If we construct the inner product

(AU,U) = [ U.AUA&Q (2.2.7)
Q

we have (Betti formula) ‘

(AU,U) = 2 [ w(ua® - [ urMar (2.2.8)"
Q r
where T(n) is the stress vector acting on the surface of ‘the
bcundary. . i
Since

(n) | .,
[ ut "7ar = 0 (under the boundary conditions 2.2.4)
r . ; .

then,

(au,u) = 2 [ w(u)aR > o (2.2.9)
oo Q

“

@l
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Fig. 2.1. Representation of an elementary region
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1
Thus the operator A is positive definite( ). The problem

enumerated can be shown to be equivalent to finding the

minimum of the potential energy

[ (w(u) - ur)aQ (2.2.10)
0
i.e. min [ (9%9 - UF)dQ C(2.2.11)
a .

which can be expressed as minimizing the functional

I = 2 (AU,U) - (U,F) (2.2.12)

which is the Dirichelet principle (Lions 1970)

which states that

Inf I(v) = I(U) U e H' () (2.2.13

: 14

The solution v £ H' () being unique, and

where H'({}) is the space of finite energy (Sobolev space, w2

Sobolev, 1953) which is Hilbert space with norm equ-’' to

(1) Note: this property is obvious in the case of SH wave

2
where A = -V

‘then -/ vv?vaq = [ (vuylaq - f %% dB = 0

. Q 1Y) r

and (AU,U) = (U,AU) > 0

)

1

.
’
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2
L2 (Q)

v ]5 (2.2.14)

n
22 + z gv
(2) i=1 *y

Ml ” |

We note that (2.2.13) is the extension of the Dirichlet

principle to a more genefal class of operators and boundary

conditions.

2.3 PRINCIPLE OF NUMERICAL SOLUTION

2.3. Generalities

i

The general principle is of course to operate in a

finite dimensional space.

~

Let us consider the open region { C R of boundary T

and a'basiswl, . e Wm in H'(f2) such that

- W wmnare linearly independent Vm

ll LR

- The linear finite combination

are dense in Hé(Q).
The problem has three equivalent solutions (Lions,1970)
(i) the usual formulation given by (2.2.1), (2.2.4).
(ii) a Dirichlet principle formu;ation; the solution

0

U being given by.

Inf I(V) = I(U) , U € W_ . (2.3.1)
vgwm m m . N

which is the Ritz method.

el
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Y

(£i4) or by the equivalent form

(a U W)

it
)
=
<
£
™
%
3

(2.3.2)

‘which is the Galerkin method.
We note that the advantage of form (2.1.1) and (2.41.2)
is that the boundary conditions are included in- the equation
to solvé (see note p. 30).
Then, the main questioﬂs.raised are:
(i) the convergence and stability
(ii) the choice of the base (wq, .oy wm)

The second question being subject to the matrix

IIA(wi,wj)Tl being sparse which implies that
{support wi} N {support wj} = ¢

where-{wl, .oy Wm} are functions characteristic of Separable

sets such that {wq, .o, wm} are dense in H' ()

and Y W, e B (Q) ¢ Lz(Q) ’ ‘ N

.

We will use those Properties in Chapter III to develop

\

finite difference schemes in which boundary conditions are implied.
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2.3.b Well posed problem

-

From the above section we can say the problem consists
in the happing of the 1initial datato the space of admitted
solution U.

»

Referring to Hadamard (1953) the problem is well posed
if
(i) to every set of initial data corresponds one and only one

admitted solution U. (i.e. A has a unique inverse A-l).

(ii) the solution U depends continuocusly on the initial data
which implies
- If Uo is an initial state which is not element of the analytical

solution, there exists an element Uo of the solution such that ‘Cb-Uo‘<E
[y .

.

- The stability (as a consequence of the continuity).
Besides, the geophysical reguirements are:

- To handie arbitrary admitted data

- The solution Has to satisfy external constraints,

N

i.e..initial conditions and arbitrary boundaries.
. N /

- The error truncation has to be well defined.

2.4 FINITE DIFFERENCE SCHEME

2.4.1.a
The finite difference schemes are given by the

discretization of the operators A and Dtt'
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We.first note that the decomposition of A has the form
A= ] a, . D,, (2.4.1)
where D.. =D D (2.4.2)

Let us consider in the plane (x,z) a grid of period
(hl’hz) and a point P(x,z,t) such that at a given instant
t = £At. We have (fig. 2)

£

£a nh_) =P ’ (2.4.3)
2 m,n

P(x,z,t) =P t(mhl

N

By a simplé Taylor expansion we obtain the spatial

. discretization (i.e. semi discretization)

1l - 4 4

. . ,
D U = 2 [Um—l,n - 2Um’n + Um+l'n - 13 (hl D_ U)](2.4.4)
1= '
n
or D U=D U - —Lb— (h4 D4 u) (2.4.5)
XX XX 2 1l x :
- 12h
1 ’ I3
ith B..u =u 2 + U (2.4.6)
wi XX m,n m-1,n m,n m+l,n T
or with the notation in figure 2.2, page 24
Vv 1
= = -2 . .4,
DxxUO (U Uu. + U.) (2.4.7)

2 3 0 1l
l .
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By the same way

f
D =L—[U - 20U ]_ 1 h4VD4U
zz m,n 2 m,n-1 m,n m,n+1 2 2 z
h 12h
2 2
. N »
D U=D U - [h4 p? u] (2.4.8)
2z zz m,n 2 z
12h
2
with
U - 2U + U .
N
3 u = -2 0 2 (2.4.9)
zz h2
2
and

n,
Xz 4hlh2 m+l,n+1l m-1,n-1 m+l,n-1 m-1,n+1l
1 2 .2 2.2 ,
- s [b] B3 D D, U] - (2.4.10)
172 »
i
N 1 2 2 2 '
= DU ihn [h n p_ D, u] | (2.4.11)
with
. .
B U= ——l——.tu + U, - u_. - U>] (2.4/12)
Txzo 4hlh2 6 8 5 7 -

‘We note thht»the second order finite digferencg operators

o n ' : :
Dxx' Dzz are cpnvolutibn operators of the form (1, -2,

1)
which lead to the well known Crahk-Nicoléon\tridiagqna

form (Mitchel, 1978; Richtmeyer and Mortan,, 1967).



21

By the same way we have for the time variable

.

D, U = w1 - et 4wt ——1~2— - ——i—7 [at? D: ul (2.4.16)
At 12At
D, U = Bttu - —~1—3 [At4 D: o (2.4.17)
12At )

with ;7

+
n, -
B L 20 + U (2.4.18)

2.4.1.b Consistancy of the operator form

From (2.4.1) we can write

a
r

a, .
a=%+ ) 2 52 w2 p? p? (2.4.19)
h_hj i 3 i 73
1

2 s C o '
since the operator Dj 1s positive definite (2.2.Db)

a, ., : .
21 [p2 p? p? p2 u] » 0 (2.4.20)
hih i3 i 73 - .

. n

‘Then A is a lower bound of A when hl, h2 + 0. Consequently

" .
if A is a closed positive definite bounded below operator

so is A, To check the symmetry 4in it suffices to write

{2.1,.11) in the form



22

n o "
[y + 2u)D_ + pijDzz)] (A + U)sz

-+
- . u(p)

"\ : AY) A"
(A + u)sz (A + 2u)Dzz + qu%/

= -p D, , 0 (p) (2.4.21)

where P (mn mn2) £ Qh c Q (fig. 2)

l ’
where Qh is the sgpace spanned“by Pm n and its neighborhood.

[4

We see that the discretization from A =+ A conserve the
symmetry property of A VY Ui(P), P € (Qh) whe " is a point
of coordinate mlhl' ey m;hi and Qh is the zubd -ain defined
+ .
by P __hi.

(2.1.1) yields

AU + D = xf ' (2.4.22)

we are then led to the following methods

2+1 B - 1.
auvd*l, oy 4 h - 2Uh + o u (xf*1 ) (2.4.23)
i N 2 — Un r Up? 12-4-

: At .
ox
£ £
ug*l - 20, + u:’l ¢ :
(AhUh, vh) + Atz , vh = (K , vh) (2.4.24)

L. » | _ . \
where U " and Uf+l represent the displacement U(P) P & @

at the instant £At and (£+1) At or more succintly

P e Q@ c rR® x [om
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The scheme (2.4.23) is an implicit scheme, the scheme
{2.4.24) being explicit.
The implicit scjeme is unconditionally stable (Mitchell,

1978) (see Section 3-10) .



5

U(m;l)n'_l )

> X

7
U

(rn-|}n-'.l)

My
N =— O

frg. 2.2

Lattice used in finite difference representation e

24



25

2.5 UsSUAL FINITE DIFFERENCE APPROACH

The usual finite difference methods are mostly evalu-
ated by numerical experiments. Kelly et al. (1976) investi-

gated the two main computational schemes.

i) The “homogeneous formulation" where the standard
boundaries conditions have to be satisfied between the
two media being considered.

ii) The "heterogeneous media" formulation where the
equation with variable parameters is used and where the

only boundary prescribed are at the surface.

2.5.a The "homogeneous approach"

Equations (2.1.12) are written in the foilowing

form:

°

N
e

[N
e
N}
[N

U .
Dtt xx zz CZX

ttW zz (2.5.1)

Qe
it
124
=
+
w
N
O¢
»
Gw
b
+
R
N
i
pos]
v
(@

(Displacement continuity)
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Bos

+ N n 4 -
v (0] = g ; o = C
2 zz Xz Xz
(Stress continuity)
. : N n X
with lof = 0 : o] = 0 at the surface. (2.5.2)
zz X2

\

\
The " represents the finite difference expansion, and

Then the systemé (2.5.1), (2.5.2) are applied to each
interface, using as expansion of media approach the
fictitious lines (fig. 2.3). For deﬁails of the method,

see Alterman and Karal (1968).

-

2.5.b The "heterogeneous media appfoach"

The equation (2.1.12) are written taking into account

that the coefficient are variable, We then obtain

3
N
oe
[(X)
4

D ) v
tt XX X X - 2Z

a™
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t z X z2z

2
+ BxDzU )
f

surface conditions being expressed by

27

N 27 2 2n T2 2 v
W = D' W + B + W o+ D W + - U
D ¢ aD o, zw B Dz B (a" -28 )sz

(2.5.3)

(2.5.4)

with the same procedure of fictitious line than the above-

-.mentioned.

We see that the tentative solution consists in

ignoring the boundary conditions by assimilating the

boundaries to a limit of transition zone.

~
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V Iy o f[ 25 <
5 g
ni—i . A/\r\( u—
.‘! ! . )\) /UJ/F )‘ -
1] 7,///%//Irf/////,,//'/ TG N X n =y
g e U (& - f‘T NTER F‘AC_E
N+i |\ l FILTicIoo8 Lime n=z
1 | , ) _ =3
o()\) }U)F )7—
& .
frg 2.3-b
L - ’
__llf%f_ l 1 N T T =
- A | (4t |
IR P ' FieTTiCiouvs Z1ng n = )

0. — .I,fblL“. . —— —» X N=a

(/\»/"’)r)z ' ne®

Z fitg2-3.C
Fig. 2.3. The,"homogeneous media" method
- " 2.3.a Extension of the media by fictitious-
line at the surface

2.3.b The upper medium is extended at the interface
2.3.c Extension of the lower medium at the interface
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2.6 PROBLEMS RELATED TO USUAL FINITE DIFFERENCE APPROACH

Since the usual finite difference approcach has mainly an
empirical basi a plethora of "numerical experiments"
have been published. The main problems are well defined by
Kelly et al (1976):

1) The "homogeneous media" method, although taking
explicitly into account the boundary conditions, giveg
undue instabi%ity at the interfaée. Numerous experiments
and tests ﬁéve been done’én this effect (Ilian, 1975).
This is generally due to a poor method of ;atisfying the
conditions at the boundary. Besides the method is cumber-
some and can oniy be applied to simple cases.

ii) The so called "heterogeneous media".approach,
although more versatiled has the same problem as the above
for the free interface aﬁd has poor reco;d of stability at
any boundary. Besides.th%se major problems the question of
satisfying the equation boundary conditions has been
avoided and the approximations and errors areiignored.

iii) - The two above methods give discrepan; results
(see Kelly et al, 1976).

iv) The connection between those developmeﬁts and the
other numerical method§ based on other pripciples has not

.been established.
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\

v) The treatment of the source is cumbersome and its

numerical evaluation can be simplified.

Note: Génerally‘the validity of variation#&l principle
or eneréy methods are established in the static case.

Since there is no restriction on the forces we can
treat the mass X acceleration term of the equations of
motion as an additional body férce (or nodal force).

In this case, the problem is equivalent to.consider—
ing the displacement continuous and linear between two
time saméles. If F is such a force the work during an
intérval of time t-tA/2 and t+At/2 .

t+At/2
F-(U%-U-%) dt

]

mean

t-At/2 -
’ F-;U%—U %)

\

This work being equal to the variation of kinetic energy,

we'haver
(F, (ui-u™ % ) =3 ((n‘f?)2 - (6572
ice. mi-(Ui-u"7) = (av, (0i-u7%))
which implies .



CHAPTER III

THE PROPOSED NUMERICAL SOLUTION

The aim of this chapter is to develop a second order
finite difference scheme valid in anisotropic media and
complicated structure.

To do so, we will have first to consider a basic
topological question: The parameter di;tributions at
the boundary and their specifitity with regard to a
given operator.

3.1.a sSpakial Discretization and Operator Decomposition

N

Let us consider at a given instant T = £At a point

P (x r X

n
c .
1 x3) £ Q R with

2’

x1 = mhl
x2 = rh2
x3 = nhé

An elementary region such that P ¢ Qh can be defined as

+ . + + i :
P (x1 t hl' x, * hz, x, % h3) and since we operate in a

discrete, finite space the point P will have a finite

number of points in its neighborhood. i.e. if the number

of spatial dimensions is 2 we have:

31 o _\
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nbh(Po)= {p , ..., P} c p(a) = Q

where|D (A) represeﬁts the elementary domain of the operator

A (fig. 3.1).

ID can also be decomposed into elemental subdomains

DI such that

where I = I, II, III, IV if n =.2
I =1, ..., VIII if n = 3

spatial dimensions

Since the operator A can be decomposed in differential

: I
operators:of the form .{a..D.D.}I where {a.,.}  is the
e i37i7; i .

. ' : . I
parameter corresponding to the elemental subdomain D

we can write

.78

Consequently, in a discrete space the ﬁhomogenébus media”
and "heterogeneous media" formulations should be numeri-
cally and algorithmically identical. We will come back

L

later to this problem.
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3.1.b Specific Distribution of the Parameters
‘ "
Let us consider the application of a differential

,qperator}Dx for instance}onto the previously defined domain.
If)D(Dx) is the domain of the operator Dx' we can

write:

I ; I
D(DxU)‘= {u<p1) U(;o)} C ID | (3.1.1)

I, . o ' "
and m(DxU) is the restriction of the operator domain.

The property (3.1.1) remains valid if we multiply

U by a coefficient A, then

P(D Au) = D(D (1)) < (3.1.2)

&

which implies that

oL

iD(Di(u)) CIbI (3.1.3)

Hence) the parameter value can be 4estricted to the

i

differential operator domain.

Since we have'by definition

. ¥ :
= |U - U
Measure (hl) | (Pl)‘> (Po)l
with h, = (P,, P,)

{Courant and Hilbert, 1961)
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Y
{
N hl bein§ a Lebesgue Measure if U(Po) = m hl = x and
UPl = (m + 1)hli
Hence, we can write
I At
DxAU = — Measure (Po, Pl) ' (3.1.4)

/ : & \
Then, the relative change of the grid size has the same
.effect as a variation of parameters.
h These reﬁarks are co;sistent with the fact that in
elasticit& the factors XAtz/phz, uAtz/ph2 aré dimensionless:".
Consequéntly, the values of the parameters do not have t;
~be unigque in Each’elemeﬁt svbspace DI, and can have
~différent values corresp.ading té the Qperator domain
restriction.
. Hence, the boundaries are not limited to the basic
rectangular grid shape and can be diaéoqal, which allows
more precise contéu;} .
| So, eight parameter values can be allowed in the
neighborhood of P (f£ig.3.1).

If we call

A = (A; + x;)/é
. A, = (3] + X)) /2 | (\
A, = A ; \) /2 | |
A, = A+ A;f/z _ | | (3.1.5)
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The coefficients relevant to the operator Dx' for instance,
will be Al and A3 and Az, A4 will concern the operator Dz
In the ;age of mixed Aerivatives, DxDz' for instance, we
remark that the system can always be written in a conser-

-

vation law form (Lax and Wendroff, 1960)

pt(Dg) = Dx(oxx) + Dz(cxz)
or : Dt(Dg) = Dz(ozz) + Dx(O‘zx) (3.1.6)

_Consequehtly, the parameters are relevant to the domain
of the seéond derivative.

These remarks are particularly important since they
eétablish the relationship between

- Parameters and Grid

- Parameters and Operator.

. . . I .
We note considering the domain D~ for instance

DI(DxxU) = u €0 x)ﬂiDI é {uo,-ul}
. -
DI(D U) = u €[0 2N mI = {u u_}
Tzz ] o' "2
D' (0 U) = u e ([0x) x [0z)) nipt ‘ s
e
= {uo, u, ., u2,'u6} (3.1.%)

.

SR
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Fig. 3:1. Distribution of the parameters at the boundary




3.2 TAYLOR DEVELOPMENT OF THE DERIVATIVES

37

Instead of developing the di¥ferential operators

independeqtly of the parameters we shall develop the

terms a._DiD.U in each subdomainlDIClD.

Let us suppose for convenience a

11

A/P which is

the case of the equation of motion (displacement) in a

liquid.

We have,

I

1
D = 1D

according to fig.

with D(A/pnxx) cp

3,2in the subspace

at a given instant t = PAt
u, - u_.]
1 A 2 + [ 1 0
2 p P1P1Pel = A h, A1DU
+, 2 3
_ Alhl D3 v -at El p?
6 XXX 1l 2 XX XX

(3.2.1)

(3.2.2)



. 3g

After obtaining similar developments in the subspace DIII

andlblv, we obtain after summation (3.2.2)

o>
o
]
i
o

xx' ~ hyp, * Dylog = ugdsmy + Aoy - UoJ/h3

2 2
+ [ABDXU"— AID*U] + [A3h3 - Alhl]Dxxxu

e (3.2.3)

‘ +
4 11 xxxxU ;

N

1 3 3
- 37 [A;p] + A n3dp

wlth;D(A/prx) C D

| ) i . _
and A= AT +A0)/2 = (p] 4 p])/2
A= ot a2 = (pT + 0Ty /2

5 = (A5 3 » Py = (py + p)/2

by the same method, we obtain inlD(A/pDzz) C ID:

5 D,,U = — ,/h, [u, - UOJ + >\4/h4[u4 - u,]

;z péhz + p2 4 v2

Y

2 2
+ [Apu = A0 0] + [Ah, - Ahi)D v

- D

24

3 3 ‘
2h1 + A4h3]D U+ ... . , (3.2.4)

‘ Q

' + - : + -
where Az = (Az + XZ)/2 P (02 + pz)/z
A, = (AT + 2T)/2 et e 2
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The expressions (3.2.3) and (3.2.4) yield, At being the

+

time increment:

2
A 2 2At
5 At D U = P, * AP {[Al/hl[ul - u,l + X3/h3[u3 - Ugl]
3P3
+ [)\\D - A.D ]}+é—'i—2—(x QA)O(h3D )
3 xU 1l xU -h2 3 1 xxxU
2 .
- ~§— o (An%p u) (3.2.5)
XXXX .
h
A 2 2At2 :
5 bt°p_.u = hp, + i, {[Az/hz[uz - UO] + >\4/h2[u4 - UQ]]
+ [A.D V-AD]}+A—‘?-30[<A‘A)h3D‘]
42! 272V 2 4 1 zz2zY
2 . -
+ A~}- o (xnip u) (3.2.6)
" h , 2222 . .

. i 2 ) : ,
Since AAt"/p has in elasticity the dimensions of a
(length)2 the discretisation error of the above expressions

will be of order

O(ha)r if P is a boundary point

el
,»"L\

4 . :
.0{(h') if P is an inner point
(or if the boundary is parallel to the

domain of differentiation)
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v b

. i - A.D : -
The e:gre551ons [AanU Al xU] and [A4DZU Azpzu] are

boundary values'naturally introduced in the equations;

o we will keep them in theff“classical differential form,
and tédke iqto account the boundary conditions only_gfter
replacement of the second‘order differential tergs of the

équations of motion by the above de?élopments.

. S ' We note that for SH waves or a liguid medihm the\t
abovementioned boundary terms cancel. This shows that
the "heterogeneous media" development giQen by Boore (1972)

in the SH wave case, is correct, but this is not the ‘case

for the elastic motion as,we shall see later.

3.2.b Development of Expressions oﬁefhe Form A/p DiDjU

\ L
By Taylor Series we have for DI(DXZ) c DI
\ u = U +hD’U'+ih2/2 D20+h’h*D U
-7 G't o] 1 x 1 xX 1l 2 x2
(eD) _— O
v . . ) 3
= "2 1 ‘ (3)
+ = +
h2/2 DZDZU + 31 (DxU DzU)
1 -, (4) - :
-— ( + .. ) . 2.
+ (DxU DzU) + (3.2.7)
) . Replacing in the apove expression Ul' U2 by their

[ ]
developments.we obtain:
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O, “a
Ug = Uy + U, - Uy + P
1 2 2 ' L4
+ g [BhthszzU + 3h1h2Dxsz] + h) (3.2.8)

v

which leads to

+
, )
2 + 2 1
AT X/p h,p,;D, U = At - {[(06 - U o= (u, - UO)]
» v )
+ 0(h3)r5+ okh4)}(u £ DI) (3.2.9)
- 8t% A/p h.pTD U-Atzﬁ{[( S U - (U - U]
O MPiPY T y h, t'%1 7 Us) - (U - Uy
+ 0(h3)r + 0(h4)}(u € DIV).' (3.2.10)
' )
. . )\+ )
2t A/p n.ootp =at? 2 (Lo, - v - (u, - v )]
P h3P3D, LU h, U; = Uy 2 ~ Y
- o(h3)r + oYy (v e pTIy (3.2.11)
t
Aéz A/p h_pip u = at? i; {[(u, - U ; - (u, - u )j
P R3P3D, h 0 4 3 8
) o
- 0(h3)r + 0(h4)(U € DIII) o (3.2.12)

Summation of equations (3.279) to (3.2.12) ydeld: .
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5
2 A At +
At 2 p U = (A /n (o, - vy) - (u, - v
p zx 2(hlp1 + h1p3) 1772 6 1 2 0
+ [A/m, (v, - ug) - (uy - uy)]
+ A /n Lo - ) - | - )]
3/B LUy, = U, Uz - Uy
+ >‘3/h4[(uo - U,) - (uy - Ua)]}
+ 0(h3)r + o(nY) ©(3.2.13)
3 A, - A 2 3
The term O0(h”) is of the form ————3——1— At O0(h”). ‘his-
' h
term '(:ancels if Uy is an " inner point. In this case
the development is of order 0(h4).
By the same way a
I A D = - ae” (xr/n [(U_ - U) - (U, -U )]
o “xz2Y 2(hp, * hyp, 1271 e 2 1~ Yo

[w}
+ Az/h3[(u2 - 073 - (Uo - 03)]

N

+ A /b l(uy = u) - (U, - Ug)]

4

+ .
A4/hl[(ul - Ug) (ug - 04)]} . f3.2.14)
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If U, is an inner point (3.2.13) and (3.2.14) reduced to

At At

Xz Xz

e A
R l }*

N

O >
o
c
It

N)

O |>
v}
c

with

= A

bt Xz p(h

¥ h4)[(U6 * Ug)

O |>
o
o]
]

2

4
- (v, + U7)]/(hl *hy) 4 0(hT)  (3.2.15)

To underline. the boundary conditions k3.2.13), (3.2.14)

~

s,

can be written:

2
2 A At +
At” = D : {A ¢y - uy.)/n
p zx 2(hlpl + h3p3) 1'%e 1 2 .
+AJ(W, -u)/h, - AT w. - uv)y/n
171 5 4 3°77 3 2
& . - _ eatpt L - -
A (03 U8)/h (AIDz AlDz)U
+ + - - ’
+(A302 + A3Dz)u}
+ A%— (A, = A0h%d_ _u) + on®y (- 2.16)
h 1 3 z2
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At?

U =
Xz Z(th2 + h4p4)3

+
At {A2(06 - U2)/h1

O >
=)

+A2(Uz - U7)/h3 - A4(U4 - UB)/h3
+_+ - -
-A4(U5 - U4)/hl - AZDXU - Aznx

(A, = X )o(hzo u) + on? (3.2.17)
2° . XX : ‘

the expressions (3.2.16), (3.2.17) being equivalent to

(3.2.16), (3.2.17):

For convenience if FD(.) represents the terms of the
finite difference development independent of the deriva—
tives; the equations (3.2.5), (3.2.6), (3.2.13) and

~

(3.2.14) yield

A At2D U = F.D(A At2D2 u)
P b &4 P XX
2At - . +
+ '[A3DxU - AleUI )

hyp; *+ hypy

+

0(h3)r + o(m? - ' (3.2.18)
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At2D U= F.D(A AtzD U)
ZZ p zz

2

2At
+ [A
haPp * hypy 4

+ O(ha)r + 0(h4)

L)

At?D U's F.D(l At2D U)
Xz P Xz

>

At2

- v [A D - A4DX]U

thz + h4p4 2

+ o(hz) + 0(h4)

r

2 _ w A 2 )
At szu‘— F.D(p At pzxu)

O[>

. 2
At
- [AD -
hlpl + h3p3 l z

+ O(hz)r + O(h4)
since consequently to section 3.1

D )/2

N+

+
z

A

+ ASDZ)/Z'etc.

3

- +
D - A.D
zU 2 2U]

D Ju
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(3.2.19)

(3.2.20)

(3.2.21)
'Y

(3.2.22)
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3.3 FINITE DIFFERENCE DEVELOPMENT OF THE EQUATIONS OF

MOTION (DISPLACEMENT VECTOR) WITH ARBITRARY BOUNDARIES

From (2.1.12) we have in the (x,z) plane:

| A TR
(A +.2u)/prxU + 5 szw + 0 (szw + DzzU) (3.3.1)

v}
[
]

tt

o
]
i

3 \
»(A + 2u)/pDzzW + 5 Dx

E .
et ‘ U + o (Dz U+ D W) (3.3.2)

¥4 X XX

The auxilliary conditions being given by

vt = o

R _ | .

W =W (3.3.3)
+

[(x + 2u)D_U + Anzw] [(x + 2u)D_U + Anzw] (3.3.4)

(vertical boundary)

.-{- T -
[(x + 2u)D W + ADxu] [(x + 2u)p W + ADxU] (3.3.5)

(horizontal boundary)

. + . . - '
(gnxw + unzu) =A(“wa + pDzu) . (3.3.6)

where the sign + designs the exterior part bf the boundary.
We note that conéition (3.3.3{ expresses the displace-

ment continuity, the normai and tangentiallstresé continuity °

being respectively expressed by conditions‘(3.3.4), (3.3.5)'

and (3.3.6). We note: ‘

Vertical bounaary conditiéns are expressed by (3.3.4); (3.3.6)

Horizontal bounda;y.condifions are expressed by (3.3.5), (3.3.6).
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. <
The free boundary case (i.e. surface condition) is

expressed by

ZX

XX

° |

} (vertical free boundary)

0

o g
y (horizontal free bounda;y)
. (with,0__ = g_ ) 4

0 zZX Xz

[(x + 2u)D_U + Aozw]-= 0 (3.3.7)
..

[x + 2u)D_W + Anxu] = 0 (3.3.8)

quw + uDzU =0 . (3.3.9)

The initial conditions and the source problem will be

considered in.the next section.

Replacing relations (3.2.18) to (3.2.21) into

equations (3.3.1) and.(3.3.2) yield for the general case:

4



F.D(DttU)

F.D(Dttw)

+

+

+

+

+

+

: A
F.D{(A + ?“)/prxU-+ 5 bW

g[nxzw + DzzU]}

24t 2
h.py + hjpy

2At2
hoPy, *+ hyp,

, - +
[U4Dzw - UZsz]

At 2

hipy + hypg

[A3Dzw - Alnzw]

Ae?
hopy + hypy

[u4nxw - u2DXWJ

'O(hz)r + o(h?)

F.D{(} + 2u)/pD, W + xz

u[szU + Dx*W]}

2A¢2
2P2 * hyp,

h

2At2
hip; + hipy

Co- +
[“3wa‘- ulnxw]

2
At ' :
“[A,p U - A_D_u]
th2 + h4p4 4 x 2 x

At?
h)py + hjp,

[u3ozu - H,D_v]

0(h2)r + 0(h4)

o |>
o
[«
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[(x + 2p)30;u'- [x + 2u]1D:U]

(3.3.10)

- +
[(x + 2u)4?zw - (A + 2u) D W]

e

(3.3.11)
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0
o]
o
—~—

=
o
<

+

=
o
<
et

F.D(D_ V
(D)

2
. 2At - : +
+ — [u,p Vv - u.D V]
hlpl + h3p3 37 x 1l x

+ O(h3)11 + 0(h4) (3.3.12)

Substituting the boundary ‘conditions (3.3.4), (3.3.5) and
ﬁ

(3.3.6) into (3.3.10), (3.3.11) and'(3.3.12) yield

_ oy
U) = U, A
F.p(p .U F.p{ (X + 2u) /pp U + o> Dax¥
U
+ u[sz +0D ]}
2
At
+ [A\,Dw - A_D W]
hlpl + hap3 1l 2z 3z
4 2
- At
+ [u4wa - “2wa]

hop, *+ hyp,

+

O(hz)r-+ o(nt : | (3.3.13)
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F.D{ (A + 2u)/pDzzw + <z

° >
o

JF.D (D W)

+ U[sz + Dxxw]}

+

At : )
— [A,p U - A, D U]

+ [u.D_ U - p_D U]
1P1 1l z 37z

+ O(hz)r + ot ‘ (3.3.14)

. .
F D(D_ V) F.D{p (p,,V + Dxxv)}

»

O(h3)r_+ o(n) . (3.3.15)

+

¥ .
+ 3.4 EXPLICIT SCHEME
After substituting the F D{*} values given by relations
(3.2.18) to (3.2.20) into equations (3.3.13) to "(3.3.15),
aﬁd\replacing'ﬁhe first derivatives by their second order

development we .obtain:

)

. "2 (A +2u ) ‘ (A +2u.)
1 -1 2At 1 3 3
UT = 2U-U © + _ [U u.] + (u_-~u )}
hiPy*h3Py Ay Yo - hy 370
+ : -
2 A : ‘ A
At 1 : M
+ {— [(W_~w.) + (W_-W_)1+ ~=[(W.-W
Z(h p,*h p,) 'm, 6~ W1 g~¥3)] h4[ 17 %5
- + (W-W )] + 3 [(W -w_) + (W -W_)]
iuf , o "4 h, 3.7 0 2
.A3

™ [[Wg-w,) + (w4—wo)]}
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2 H
20t {___2

e — [u-u_ ] + — [u,~u_]}
hyp,+hp, 'h, 2 0 h, 4”70
+
2 u
At 2
{[== [(W_-W_) + (W, -w_ )]
2(h2p2+h4p4) hl 6 2 1 0
u, "y
g; [(wy-w) + (Wo=W )] + H; [(wg-w,)
+
My _ y
(wg-wo)] + HI [(w4-w5) + (w0~wl)]
2 4 :
O(h™)p + @(h™) (3.4.1)
28t 2 {(A2+2u2) H-W )
h2p2+h4p4 , h2 2 0
(A4+2p4) S )j . At2
h4 4 0 2(h2pz+h4p4)
{EI [(u,-u,) + (v -u )]
A, ‘ _
F; [(v,-uy) + (uy-up ]
2
Ry [(ug-u,) + (vy-u)]
e
;I_[(U4—US) + (Uo—Ul)]
2 | H \ U
24t 1 : 3
—— {—= (W,-W.) + —> (W_-W_)}
hyp,+h,p, "hy 10 hy 370
. ’ +
2 u o
At 1
= [we-v + (uz-uo)l

2(h1p1+h3p3) h,
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My M3
+ E: [(ul-us) + (uq~u4)] + E: [(ua~u3)
+
W3 . .
+ (U4-Uo)] + E; [(U3~U7) + (UO—U2)]}
+ 0(h2)r + 0(h4) . (3.4.2)

(3.4.3)

where . U = Uo Ul --=.U1
m,n m,n
“ -
Uy m+l,n U, = m, n+d.
Us = Yua,n Us = Yy n-1
U = Unii,mer Y6 = Ynel,m+1
U7 = m-1,n+1 US = m-1,n-1
et - -
.= T+
Xl (Al Ai)/Z
M, = (u, + ui)/2 i=1, 2



53

We remarkr
i) The boundary conditions have been incorporated’/
to the equations with a well defined second order accuracy
at the boundary.
-4 .
ii) The parameter distributions are governed by rules
seen in section 3.2 and lead to a unique develépment for
a given accuracy.
iii) The system satisfies arbitrary boundarjies including
diagonal boundarigs, as'far as those boundaries-pass.by
.the grid points, and also take into consiéeration velocity
and grid anisotropy. |
iy) No need for cumbersome "fictitioué lines" such
as defined‘by the "homogeneous media" method (Altefman-
et al (1968, 1970); Boore (1970); Kelly et al (1976);

even in the case of free boundary conditions.

3.5 STRESS FREE BOUNDARY CASE

i

The equations are governed by reIatiohs<(G.3f7) to k3.3.9).
To‘satisfy those conditions as well as the equations of
'mbtion, it is sufficient to set the relevant param;ters to
zero in equations (3.4:1) to (3.4.3). Although the problem
is automatically solved by equations (3.4.1) to (3.4.3), we
will still write the developments relevant to different

cases. , o N

PIPONE SRCANT W Shvohh . - ey g -



54

’
)

This problem has been the source of numerous papers
since it concerns Ra?leigﬁ waves. ‘The_equations are less
complicated, but we /are in the, case where there is maximum
error at the bounda y (consequently maximum instability
for inadequate sysgems).

' Two cases have to be considered; thg'gengfal case
where the medium is non-~homogeneous on F+, and the mos<t

%

: : . +

common case when the medium is homogeneous on [ .
. . +

3.5.a The Medium is Non-Homogeneous on T

3.5.a.1 Horizontal stress free surface -~

The boundary conditions are expressed by equations

}3.3.8) and (3.3.9).

For a pointAPm 0 at the surface the wvalues of S
’
(A} u,'p) relevant to thebélosed domain EIII U BIV
are
. +
i.e. (A, u, p)4 =0
(A, w, Py =0
(A, w, Py =0 | (3.5.1)

8]

where (A, .J, p); meansTA; =70,’u; =0 ...

Equations (3.4.1) to (3.4.3) become

il

.- . .
~ ORI . :
RN 5 e
4 . "

Rad
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2
1 -1 2At :
U = - _—-h______. . -
‘ 2U-U + 1pl+h 5, {(A1+2§g)/hl[ul UO]
At
o+ (x3+2u3)/h3(03—00)} + S
1P R 3P
1 |
{F; [(ws—wl) + (wz—wo)]
A; :
+ —;— [(w3-w7) + (wo-wz)]}
2
2At
S+ 2 uz(Uz—Uo)
' 2P2
. 2yt
+ 533—— {—3{[(w ~W,) 4 (w ~w )]
P
2P2
1
Y o
+ E; [(wsz7) + (wo-;w3)}- .
v e,
L2
+ 0(h®) . (3.5.2)
1 1. 282 [ A,t2u)
Bo= 2W-ws g R (Wy-W)}
o + )
P .
At 2
+ {—= [(u -u ) + (v, ~u )]
2h,p, 'h, "6 2 71 0
A; :
+ ;;:[(uz—u7> + (U -v ]}
2At 1 -4 3
+ { (W, =W, ) ;; LICLINN

h,Py*hip3 “hy

>

+ ]
E At]!ii ! ‘ ‘U ey )]
+ { [(uv_-u.) + (U_~U )]
2(h1p1+5’p ) 'h, e "2

+ .

]J
* 5 =2 [(U -U,) o+ (U, ~u )%} + 0(n%) (3 5.3)

2 ) .
N



e e

1 2At2 Mo

(3.5.4)

1 - 3
Vi o= oavevTT o4 e V_-v.) + o(nh”)
2P> h2 2 0
N 1 +
where (A, u, 0)3 =3 (A, u, 0)3
P
. i 1, +
(A' u, O)l - '2_ (Al U, D)l
since Al = (AI + XI)/2 et?.
‘ -
and A,w, 3= O, w, ) = (w0,

('v

if the medium is homogeneous on rt.

If we ‘'set in (3.4.1) to (3.4.3) the conditions at

tbe surface

t 3
<
(p, A, u)1 =
as well as
(w4' U4) =

-

(p, ~, W)

{p, A, )

(media

(image

£

v

e

e

o

exteﬂgfogf

condition)

’we obtain identical results than (3.5.2)% to &3.5.4).i;u

-
#
A
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®
3.5.a.72 Vertical stress free surface

3

The boundary conditions are expressed by equations

(3.3.7) and (3.3.9).

The parameter values relevant to the closed domain

—I1 —III
D Ui are nulls.

N
4
¥
- ¥
o

(3.5.5)

—
>
=
©
~—
N
|
o

l% ‘
'4Eq§@fions (3.4.1) to (3.4.3) become

&

vl = 2y-y~t 4 28t (A

+2ul)/hl [Ul—UO]
"""‘[_“'e’wl" + (Wy-W) ]

E

h

p [(wI—ws) ; (wo—w4)]}

h =

Y '
24t 2 4
+—————————{—[U-U]+—[U-U]}
. h,p,+h 0, h;% 2 0% " h, ‘T4 0
T

= ((W_-W_ ) + (W,-W_)
2(h2p2+h4p4) hl 6 2 1.0

S

+

Y

4 -
P
&+

+
51 =

. | 2
éws)wf (wo-wl)] 4 0(h") (3.5.6)

-

! (v}

[

B
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2 (A_+2p.)
wl = ow-wl s - 2A:h { 2h 2 [w,-w,]
2P27N 4Py 2
! (A4+2u4)
+ h [w,-%,1} ,
4 .
At? A,

+ - {[ =& [(u_-u_) + (U -U,})]

-{L_p,*+h p,) 1 6 2 1‘{%*W

Coa e
v+ ~,<£.{H?
- - A/ U
TN {Ug705) + (U vl % h

2y
2At 1
+ — [w_ -w_] _
hpPp By ~1 00 | e
At? { “I [ | ] ' .??»;‘
+ — [(u_-u.) + (u_-Uu.] - ~ SR
2h p;  h, 6 1 2 0’ -2
+ Ei [(v,-U_) +'(U -u,)]} + 6(h2) (3 7)
h, 17 0 Va4 . -9-7)
o ) a’) (
&
)
2 u ! 4 ?
1 -1 2At 2
Vi =T 2vev T o e [ £ [v,-V_] :
hopoth, 0, ~ B, "~ 2 0
u 2.2 M
4 2At 1
+ — [v, -v_ 1] + — (V.-V) “(3.5.8)
h, 4 0 p, by 1770
With (A y. = X (1 y o
1 ] ) . ’ u'-p 2 = 2 ’ H‘_p-zf A
Ny .

1 +
(Ar U, 0)4 =&3‘(Ar u,'D)4

and ’ - (A: H, P); = (A( U, D); = (k( u., Q):

"if the media is homogeneous- on rt.

19
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3.5.a.3 Quarter plane -
The parameter values relevant to the closed domain
IEII U 6III U)EIV are null .
.e. T =0
i.e (A, u p?l
(A, u, ), =0
-
(A, ws p)g =0 , ’ v,
F : - .
(A, n, P, 0 ,
B
"‘Z“&.",
. . AR
Equations (3.4.1) to (3.4.3) become R
4 » '
1 -1 28t2 :
U = 2U-U + .plhl (A1+2u1)/hl [Ul—UO]

A2 ¢ A [ 3 |
s { == [(W_-W.) + (W -
2,_hlpl h, "6 1 2 ‘L

2

2At : 2
{ = {uv_-u_]}
h2p2 h2 2 0
. ,
+

2 U ,
At 2 2
Zh, 0} {hl [‘“s'"z’ + (wl-yo)]} + 0(h7).

...(3.5.9)



2 (A +2u.)
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wl = 2w-w"t 4 iizz 2h2 2 (W,-W )
) + 5%?;; [;%’[(uo-uz) + (U -0)]
LEE e
+ ﬁzzl :—: [(u -U) o+ ‘%‘%’”* o<h2)l,

B
1 -1 2Ae” 28¢2 M

1
V' = 2V-V + (v,-v_ ) + —= (Vv -~V )
th2 2 2 0 plh1 #1 l1 0
+ 0(h3)r-
. ) _ 1 +
with (Ar ., p)l = 2 (Al H, O)l '
. l '. +
(A, u, P, = 3 (A WP,
A :
+ ’ L+ :
and (A, ., Q)l = (Al Ng p)z » : Q-
) "
if the'mediumis homogeneous on T
3.5.a.4 Diagonal stress free boundary
iy .
. © ff © A, u, Py =0
R .
!’. . . Lo . .
, " : f*- : ’ ‘
AR A u, P, =0
u y 7; ‘,. .
.t& "' '\ - . v g C. . .
the equatﬂnns (1 4;1) to (3.4.3) become:
_ , 3 LA '
T ._ T "!?“

fav.

(3.5.10)
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2W-W

4+

FU
bypy by i °
+
2 A
At 1
(= [w_-w) + (Ww_-w)]
2hlp; h, 6 1 2-70
\"
1
= [ -]
4
28t 2 ) TR
h,p, h, "2 "0
2 U
At 2
- [-w) + wo-w )]
2hypy By 1 7o
My
o (W,-w )] + O(h )
h r
3
2
2At ' . g
n20 [Ap+2u,]0wW,-w,] A
2p2 ’ \
+
2 A \
5%3—— gg [(ug-uo) + (u.-u,
2P2. M &
A- Qg i \ ,'"a
KE (U -y )} + 2At p
3 hpy
2
At -
s (v, [u ] +‘u v, 1}
2h,h.p, T2 1 6\
L |
At +
T hlp (v [Uz'Uo]] + o) (3.5.11)
2 .
2At°
hz . [ul v[Ul-‘UO]
M1Pi
Yy L
3At2 3
, My [Uy-0,] + 0(n™) | (3.5.12)

‘e
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2t 2 A +2u1

7 ¥
hg, .

E 2

&



3.5.b Stress free boundaries when the medium is homogeneous

+
on T

>

®

The' expansicn consists in a simplification
of the previous one. We will consider only the Qﬁ;izontal
case since it is the most common and it will be possible

to compare the results to our work.
With hl = h3 ’ bz = h4

(A, u,p) = (A,u.pil = (A,u,o)3'= (A.u.b)4

A

The schemes (3.5.2), (3.5.3) yields

4" L]
i -

DTS N

3

”‘L,\/l N |
7 U- = 2U - U + =5 (O +¢2u%[ul - 2u, + U3]

hlp

at? -
+_5KIF; A[(WG - Wl) f (W3 - W7)]

2At

+ 531323[u2[(we - W)+ Wy - w3)1> s

o(n?) | . . (3.5.13)
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. 2
wl = 2W - W 1 + 28t
h

(A + 2u][w2-§ﬁw0]

2
2P (

2
At© -
+ Az[(u6 -u7) + (U

2h h_p 1

2

. +L_U[(U6“U

) + (U, - u.)]
o Mﬁ ‘ 2h1h2p 3 7

1

+ 0(n?) (3.5.14)
3.5.¢ Comparison with "numerical experiment‘methods"

- Ilian et al (1975), Ilian and Lowenthal (1976), Ilian

(1978) studied experimentally, the stability of different
: ' -

combination of schemes in simple cases. ‘;aw
The finding is that the two classical approximations

; using fictitioué-lipgs are unstable for B/a > .5.

-

The range- of stability corresponding to different
o

combinations of derivatives lead to the following table

(rlian, 1978). - ‘x\\



Centered approximation; Range of stability
‘One sided
Composed

New composed

B/a
B/a

B/a

B/a

64

> .3

> .350
> .375
> .000

The last results are normal since the stability is independent

©
of B/a ratio.

We can state that equations (3.5.13), (3.5.14) corres-

pond to the most stable scheme.
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N
3.6 COMPARISON WITH THE CASE WHERE THE BOUNDARIES ARE

ASSIMILATED TO THE LIMIT OF THE TRANSITION ZONE

'

("HETEROGENEOUS MEDIA" FORM)

In the displacement vector case, simple calculus
shows that the terms independent of éerivatiQes given by a
Taylor development of second derivatives (equations'
(3.2.3), (3.2.4), (3.2.13), (3.2.14)) ‘are identical tdj»

the case of a transition zone when its thickness tends

to zero. As in previous chapters if we call these develop-
o ) ‘
ments F.D(.),‘equations (3.3.10), (3.3.11) and (3.3.12)

C

. can be written:

(A+2u)30xu - (A+2u)1Dxu

FD(D, . u) = FD(.) + : v
tt LT (thl+h3p3) .
+ [u4Dzu - uZDzu]/(}’xzp2 *+ hypy) _ (3.6,1)'r.
) (A+2u)4Dzw - (A+2u)2uzw
FD(D, _w) = FD(.) + _ =
tt . (h202+h4p4)
oy N
+ [u3D¥u = u,D ul/(h o, + h,0,) (3.6.2)

F D(Dttv) = F D{(.) +,(U4D2v - uzDzv)

+ (ngxv - WD) (3.6.3)

The bbundary conditions (3.3,4)‘;ol(3.3.6) vyield



okl

—

(A+2“h§Dx“ - (A+2u)l

(A+2u)4Dzw_ (A+2u)2

Replacing (3.6.4) to (3.6.

(3.6.2) yield

F D
(Dttu)

= D - A
Dxu A1~zw 3Dzw

= A_D - D
Dzw 2 xu Ad xu

uIDzu - U Dzu

3

uszw'- u4wa

6) in equations (3.6.1),

F D(D w)='F4D(,)v+

2

SX&Px“ - A4Dxu)

24t2

hopy, *+ 0,0,

D u - U_D u)
2 3 2

N T+ 20t =

F,D(Dttv)
* (since for SH waves n4bzv

1P1 th3Py)

= Fp(.) | 5

=0 Vv P& @)

66

(3.6.4)

(3.6.5)

(3.6.6)

(3.6.7)
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Equations (3.6.7) to (3.6.9) show that
i) if P(x,z) is an inner point the‘developments are
of course identical since the boundary terms cancel.

ii) For SH waves the two methgas are identical sihcg
the differeptial terms at the boundary cancel ' (egn.
3.6.9). This lets us forecast different vesults for P.SV
waves' potential eéuatidns. Although they have the same
form, the boundary terms will not vanish.

iii) For the displatement vector equations\the error
is considerable and equal to

L2
At (Al - )\3)Dzw/(hlp1 + 0 .pl)

2
+ At (u2 - U4)wa/(h202 + h p,)
forlthe hdrizontal componenf u.
and Atz(x - A )D_u/(h_p, + h p
. 2 4 x 272
+ 8% (u = WD u/(h o, + h_p.)
1 3"z 171 3

"for the verticéi component w.

. Therefore we can see that assimilation of the boundary
éonditions to the 1limit of a transition zone, although correct

in the case of SH waves (Boore 1972), is not acceptable

\ ]

N
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.
in the case of a displacement vector P-SV..ghs in Kell® et al

"heterogeneous media" equations (1976) We shall consider

-

later the case of P-SV potential equations since this

cagse'has been studied analytically by Gupta (1966). N
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3.7 INITIAL CONDITIONS AND SOURCE REPRESENTATION

Alterman and Karal (1968) solved the difficulties
encountered in thé neighborhood of the source “+ ..b-
tracting the displacement due to the source frou the
total displacement field in a rectanéhiar region surround-
ing the source. The dire.t source contributions béinﬂ
given from the known analytical solution for the source
in an infinite region, and displacement continuity

conditions being applied at the boundary of the rectangular

.regidn, This method is also applied by Kelly et &l (1976).

Alterman and Aboudi (1970), Aboudi (1971) give a

numerical treatment of seismic sources in elastic .

media which are equivalent to body foréés.
We remark that although the problems can.be super-

posed, we shall distinguish two dlfferent problems

A -
[ . -.‘q

1. a) |

.

The initial displacement ani reloeiny field are

o, T
’
. < «

prescribed in the considered zgglpn Q 5 . ' . \‘

UO(P) = g(x Q) .‘" .‘f..u,v.,-.
B

Uy (P) = £(x,0)
VP € Q
oqxjen () (3.7.1)
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« ”

where Uo is solution ©f the honogeq,ous eqdation of mifioq

2 -
AU + 3__% = 0
at’
In this case, no speciul treltment is necessary (sééf%gore ek
T 1970, - L s

3.7.6) . o f%?
2 ‘ | ' i
The displacemént is due to a source S(x,t) defined

in a regton ﬁs € Q of duration [0,T] such that
. X .

R A .
§(P) =0
. ‘. R L VP(x,t) € § x [0,1)(3.7%2) -
e . - -8 e -
’ . e Q - L TR NP . 3
which is the K common oaaé‘ofvdéismic‘gxpl' tion. .

. . . . . . . . & ‘.. - ] ; ‘.\ . )

“ . 5 . . .“) . Y o . " " .04
w:. . If sb(x,tk\rgpresentp.the'digplgceﬂ@ k‘potential the -
* equations of mot{®n ‘yiela - ° . C T \

& N ) . o T .8 . . o . ~
; . '-'.%ﬁ s 2E L .
- Au + 5D dm¢f§b> Jgrad ; (x,t:')]"-i o 7
sptt Tott 8 P 3 :
- . » ; ) ‘ . e
' R, % [o, e : (3.7.3)
s - ¢ . ) .
v i N . ‘ -
i N ' .
’ 4 )
and ‘the source will act as a body force since it is"a
\_ = body force. - '
_PFor Sd(x,t)’répresgnting the’disylagement source we - . -

shall have e



W& note epat equations (3.9.3) and (3.7.4)

v . .lps'
LAY
<&
AU + tht -
-3
v
o ow
»
=
)
o ®

oy 5:3; 'Xu + pB

S

T : fit of n
he devg}qpmglt o)

N ' : vo

L s

P
N

B

*

-

In this case, no reé%r~#w
»’

A ‘,) hd

Au\ -

Ky
thZSd(x,t)

ay

it

k] § 

% for simple reason of causal&_y .

% source fudbtion, except

A

in

N
PPy eSa

v

tt

Sd(x,t)

£ x [o

(x,t)

s (x, tr%hpxng
o

r

= 0

,T)

becomes

= 0

a gt T

O

(3.7.4)

express very

ey
) cleawe Yecipro®ity between source 'and receiver. :
o he discrete domain (3.7.4) :

(3.7.5)

v

(iaﬁsxlo&ﬁ;,,qi, (3.7.6)

L .
2

o -~

P

>

or a numerzcal treatmegt ]

e I R4

.

'onihas toAbe'Empdséd on the

d

has to be band limited, that 1s its ampléfude speetrum

has to be non zerxro
va:iablé;vto'avoid
Simulation‘bf

. Archambeau (1968),

\/

over a finit@ range of the transform .

aliasing efiors (Bee'next chapter).

forces such as defined by Aboudi (1971),

-

Burz’idge and. Knopoff (1964) ’ Burrzdgg, e

Lapwood and Kqﬂpoff (1964) can bg applied without compllca-g

tions.

o

e

’

W



P L
e \ : . -
N
Wesnote that for second order source development
R T '
v:w\i I‘l;‘ :be . . . A\ &
w v F . : o .
’ : 1 *'_0 :
s 5, - .8 S
' v e d T d d
, ¢ v N —_— - a—
gt PD S (x,t) v 2p] NEAR i)
t
R >

‘where "S’d(P),'Sd(P) J‘ 0 for P ¢ ﬁé x [0,};@%
v B 4"
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(3.7.6)
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ftg 32

. Reprpsebtation of a séurce with a Gaussian
..’ dist‘tib’ution.. .

L

]

K :5(11DSK) \ B

&~

~



b
I_‘-l
gl oK
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_ ‘|¥
?ﬁ’l‘”’ / . I, .
\ .. V\, ) .
: ; ‘ fig 3.3.b
L 4 J

: 3 3.. ' !‘orces tepresentlng a source
“%*ffi“ﬂ«" :

ek s
» : :’.i ’.4 3. 3‘*ﬁ

P . e

EL‘ tion source (superpos:.t:.on of
dipoles); :

R ' . 3.3,b Shear source (superpositlon of couples)

,.




e

|
3 3 GRID EDGE BOUNDARIES
i

\
-
LIS

To limit the area of coﬁputatlon it is essential
to introduce artificial boundaries.

Those cohstraints

\
are of Neumann type and the grfﬁ sides behave as perfect
reflectors." 1ge problem can, Qf course, be overcome

expen51ve1y by widening the grid 1n such a way\

a\
that- the undesired reflectlohs do not disturdb the
\ L
requlred solutions. _ “ﬁ

If there is at present nd perfect way, to simulate o~
an absorbing boundary,

. " ‘ogv..ﬂ
a number of methods have been L 5
” .
. ) 1Y
develgéad to cancel the unwanted reflectlons by 1ntro- " o
3 ) .
duc1ng some const:élnts at the boundarles. Lysemer and I e
< . f?‘ ? .
Kuhlemeyer (1959) achleved<attenua§10n at the boundarles
v oo . ) e e
by applylng sous tract;qns such_;hat <. . L ad .
| BRIV AR g e .
. _ o . § , i
, . ) e e S e
L o 03l normal stresses = apv_w -
bl " 1.§
. ' : |
. shear stresses =fbpvsﬁ «(3.8.1)
\ ’ L ' . . - %’
where u, w are as usual_the time derivatives of the
. displacement vector components, vp-and v - the compr s=- s’
szonal ‘and shear velocitiesﬂ and a,b ‘are dlmen51onlese
» (4 B
coefficients. Cartellan1 (1974) used a 51m11ar approabh
oo s "
X .-where the viecous forces are represented by ' ~
p .AJ"K:“..-'VJ :" 4'j A e Y c -
bl L T
n _ o R
e

4

“ N
.
_Mﬂgﬂc”“



B Op = ~VGPU < [

> 2 i .
1 - X.
T = -V_pU (3.8.2)
. . \ oo .
vwhege o 'and'f are”rebpectiVely normal and tangent stresses;
. U is the velo ity vector, .

n and t are the unit normal and

{

l&

The quality of
L) 4 -
4, 'the attenuation

4%

8. z:funcﬁion of. the frequency and* :ngle
Lo . b . DU N A
o ‘of incidence of t*e incident'yave (Lysmer and xuh eyer
(X9g9) c‘agﬂtelugl\(lgn), Robinson (19;%) o
_ fvi?§~-?‘o' SQtth (1?&5)ttook advantage of the phase dxfference
G Qb:tween free-(Neuman and clamped (Dirichlet). bo@ndarxes . @
L. ; e >

. T
gg atténu&te thg refl_ctions by adJ&ng them A closer look

sﬂ%ws that the&p@thod i ~insufficient for elastlc waves

R
-

since Rayhugh wa&ﬁs do n\t exxst for'the clamped boundarles.

. mhe pnoposed ‘pproac

v,

is ﬂﬁ*camn%ate jﬂ%reas;ng

J’ T

1ntetna1 friction in a buffer zone. (Roigt‘solld, Ewlng

__gtﬁal, l957).Then&;kgvstress

4

can ha;e the form




o

. . ”.."V\‘,-
“» c
“ . . :'!ﬁnf"
)if we simplify bydgriting;a = b, wa& ob¥ain
I . " '
. 1 | Y ¢
"‘ Ogx = (1 + a 2t xx
1 S L
Oz = (I ¥azoo . . (3.8.3)
q‘k .
Then, the equations of motion become N
- '-'-;,\(1 +';".-"-§-) [bo.. +bDo__] - (3.8 4)53' .
. tt ' ot X XX 2 Xz U -
wWa ¥ h . .
werke ¢
Vv , a v . » ’ ‘ ‘_ '
wep = (1 + @ 3t)[az°zz + axozx] (3.8'.5)
when the equa ons (3.8.4), (3.8.5) are a simpllfled 17
ke " W
‘form of Vo ,s*ilatlon. For further snnpllflcatlon
we admit, tha \ - '
! : o
, S
L '-'v« ‘ l | - B e 7
c(Ul-le)/zAt'= -ezu. .
ERT .
'.'~/*P’_’ '
| uf, - (3.8.6) \
w,, = (3.8.7)

'lizé this model it suffices to multlply the equation

“

by a coefficient equcﬁ at k2 - (1 - g_) <. 1 this coefficient

. By
‘

decreasingﬁprogresslvely to avoid reflectlons ;n the

huffer zone.. Tbe effect 15 th°*SAMe as 1ncreasing

~
.l-.\‘ .
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. ¥
the grid size by S S— > 1'or decrease progressively
2.4 : .

R (1"5) ’
the velocities. Generally 8 to 12 spatial steps are

sufficient as a buffer zone.
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N

e 3.4. Absorblng boundary ?onﬁi@;%ns (c“tell“anl metﬁod)

3.4.a

"3.4.b

3 3
&,
o ‘
-~ -
:. . ’ ’

Ratio of reflected -and J.ncuient energy
for compressional waves as functJ.Q,ns of -
angle of 1ncidence R

Energy ratio for. shear anes

. . g . A/
“(agrer CoteRRaw: ‘f &7‘* )

[ . P .
« . .
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3.9 . ACCURACY B
S -

The,accuracly is determined by the sum of the rounding
error and the truncation error. Let U(P) be the analyti-
cal solution and U(P) be the numerical solution at a point

Sy

P.

P(x,z,t) cifl ¢ r? x [o,T]
L. ‘_‘_\",q,.A N

-~

U

v N

'I‘he roundlng errxor’ 1s,agonsequence of the computa-,

3.9.a Rounding error , ...

u

tional procedure. _gWe hav’:*.p’the 'inltlal moment "(Smith,
&ut

: ‘Wo

P
N (p) (3.92.1) -

@

14

toe

. o ,
where r is the initial vector of roundlng error atnd

U0 the initial numerical valﬁe (U? EFC U(P))
&P

If we consider the t%vo time ds numerlcal re&usive

3 . .
I - . . y
. . R .
B X N . N

L] 3

solution of ‘the form

- S ; , g a2 v : ‘:.v | 'f -
-, | .,..’.'U-J'::&J-" - S (3.9.2)




ol
ra r\J ‘
Nl = ANO - rl
4 ) vy 0 - i .
* : NJ = AjU - Ajr ~ AJ 1rl - .. - rj (3.9.3)
and . .
i n, Ve i
vl - N3 = R3O RIS L T (3.9.4)

This,ahdws that the rounding error vector r p;opagatgs
the same way as the numerical solution Yector U.
'If'Ai are the eigenvalues of Ai i =‘1(111N - 1) oo
f)
: K .
then equation . (3 9 4) conyerges 1f : -
F - O ’ . . -
max|n | @a. : o,
N S o ] .
3.9.b Truncation errotr - : EE
- , : - R N ,-‘i,
] . : o @ & v { St
. Let . "FP D(U(P)) =0 # i (3.9.5) ey
B Lo ‘ 4v , - ..
represent the finite difi’érenée ;‘q’uation at P(x,z,t). ' &
If v represents the exact solution of the dlfferenkial !
'equabion then the truncation error A8 defined as
S _’ .o' , : ; C L . e . s 'U). l
TR A “x . L. 4 - ""’-’-'f:‘:"tvt ﬁ
. €® = F.p(u(e)) T
’ . o : . .,,\‘/ i R S
‘ ~ N \3{., =12 n ek .
: . s with'P ¢ Q cr™ % [o,7] <319 6) AL
. ) N - . . \,,_’; - .j v Lo =
as, Coed » : s T - . .'V a,}‘f ‘
Connaquently € i8. derived from the Taylor dévelopment
- Y .
residual terms. » ‘ o | I'-
DR . Ca o S ’

. . ~‘. . . . . . N e . N B ; . . ‘ » .
. . E . ) e . - o e
0 ’ L - g - - . L -
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3.9.b.1 cCase of P.SV waves.From (3.9.6), (3.3.10) and

(3.3.11) we .have thaf

t
~
. Al

§

€ ="—%~ (A, 0(hs)| .+ —%— uwomdy + 0ae?)y  (3.9.7)
h’p r h“p ' .

where L (A,u)O(hz) = 0 if P is an inney point.

4 2
hp — \ﬁr
w .
¢ "‘ /
- . .‘ . * . . ) X —
. “Then - -« -’ 7 e = 0(h2),+ O(Atz) . if P CQ
Qg'»‘ : . B . } .
K . . - . ~ % . ‘ . - .
. - . .. . . ‘ B .
" 349.b.7 Cabg of SH-waves- -
< % 1;. SR S
N Y - : ' ¥ 4

Frqm equation (3.3.12) we J!gain;

4 -

) V Jél’ -‘ . ‘ v.' " i ‘ .4 . ' ’» ! “ .69,
- - gr= A%T 01h3) + —%— oY)y + oae?) (3.9.8)
h'p r h'p -

[ : U ¥ . 3
i v . . PR
. OA-EL': 3 =..l_. i - Y 2l n
: but "hzb“QLh )r 31 (ul., u3) h2 Dxxxv )
&. . / ” " ’ ‘ 3
s \ , | | 3 | :
g ' =, -uy B v (3.9.9)
. 2 ) . 31 2 4 2 zzz cT
' . . . \ : h .
' TN e S ' . S F N
4 EE <. - . *’jo- : -, :
since the boundary conditions can be written - *
 ' . ¥ . . . . . : !
, I
. coMPT T HSS
; u,D U Mg U, B .. R
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]
2 y
we have
- } »n Ag_ 0(h3) - o.
h p
Then
e = o(n?,at?) ¢
4 ; ' ;

since (3.9.10) can. be written

. [ ’ "t
Q‘ . 4

v vs%w o
. " (2n+1)+ - u_pl20+D)¥ e
: T 1 x . 3 x )
. . ’ . B N
‘ (2n+1) + ' (2n+1)- -
2023, 3 u4Dz ~ »(}k?.ll)

[y

This result shows thats £or the SH wvave equation, and .-
e

@ o
connequently for liquid media,

B o

0 .
is independont .ofj the boundagiqs (in ‘the case of stress

2

t LT 3. . a2
and displacementf%qntiqﬁity). Then, more generally,

- v"
o v, ’ N"‘ ~ ‘ . ' -
. ce = ] om0 BT (3.9.12)
" n=1 ‘ ;? N —
- From a Taylor series (3.9.12) can be wrjtten {
. ’ : ‘ ‘b‘ ~
¥ . 2(n 1) T 2(n-1)
€ = ) [D Pvat - = [n s A D V]h 1
Ch=2 R 4
, - .2n’ 2n. . .. > o i :
+o@e Yy . (3.9.13) .

B B f - :
the ‘error truréation order..
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3.10 CONSISTENCY, STABILITY AND CONVERGENCE
N

When approximating the analytical problem to a discrete
problem one main requirement is when hi, At - 0; XJ + AU
i.e. the discrete problem becomes equivalent to the con-
tinuous one, and the numerical problem is said to be

"nsist@nt to the analytic problem.

However, the consistency does not necessarily
imply that the numerical solution approximate the analyti-
cal solution and convergeSto it.

Although theoretically, consistency and convergence
are sufficient conditions, Van Howen (1968), rounding
errors give rise to a computational solution instead of

the time difference solution. This leads to the stabil:

of a difference scheme.
3.10.a Consistency

The consistqpcy is measured by the truncation error.

N
Since F.Db(U) = 0 (by definition (3.3.6))

e = |F.p(u) - FD (V)| " (3.10.1)

The equations (3.9.7), (3.9.8) shows that if h,

At » 0o £ =+ 0
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But from the equation of motion

! 4
, ) . .
p?"v = [piv 4 plv) (M) (yn
t X 2 dl
then
Yo un-1, 2 2 1(n), 2(n-1)
t'=ZL(“) [D°v + D V] At
) N p X 4
n=1

2 2 2(n-

- [Dx“v + DznV]h (n=1), (3.9.14)

which lead for an undirectional wave

N .
2n~ - 2(n- 2
e = 7 Epfnclpgyn l(ﬁ—t) (n=1) _ 11p%7y (3.9.15)
n=1 " ’ z
Then, in the case of an undirectional wave € = 0
for any order of development, if
uo bt 2
o (h ) = 1 (3.9.16)

This relation 1is imporﬁant? since it forecasts the
identity between the analytical solution and_the numerical
solution for synthetic seismograms. This fact can be

easily verified.



The: in the case - of

>
[ad
N

13
5 (

7]

we have not only consistency, we have an identity between

unidirectional SH waves and their analytical solution.
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V)
then F D(U) + FD(U)
i.e. F D(U) =+ O
and F D(U) +' (A + P, )U =0 (3.10.2)

Hence, the finite difference development of the
equations of motion in elastic media trend to the

differential equation when h, ** -+ 0.

3.10.b Stability

Thare are two methods ofvinvestigating the stability
criteria. One uses a finite Fourier series (method of
Von Neumann); the other expresses the equ;tions in matrix
form and examines the eigenvalues of an associated matrix.
We shall use the last method since it takes into‘accdunt

the boundary conditions but first we shall examine the

simplest problem.
3.10.b.1 stability of two time level equations

We have

\

ot - aut (3.10.3)
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0
U being the initial condition

I 4 2+
U +1 A *lUO

= (3.10.4)
The system is stable if
Al <1
3.10.b.2
The system can be written on the form:
+1 v L% - .
UZ = AUz + BU£ 1 (3.10.5)

. v
(since A = F D(A)).
By analogy with (3.10.3) we consider a vector V

such. that

(3.10.6)

Then (3.10.3) can be wriften
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\Y (3.10.7)

where I is the unitary matrix and the amplification

matrix is

. A B _
(C) = . (3.10.8)
I ©
By analogy with (3.10.4), (3.10.7) yield
£+1
A B
+1 0

pt*l . v (3.10.9)

1 ©

where Vo = U0 (initial conditions).

T@e boundedness of (3.10.9) implies (see Booré 1970) -
Iell <1
i.e. , . fa]l <1 _ (3.10.10)
where A represents the eigenvalues of (C), i.e.
A‘is golution of
det]|(c) - A1] = 0O © (3.10.11)

From Smith (1978) we introduce the matrix .
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I 0
(D) = (3.10.12)
I
)
Since det ’(D)I ¥ 0, we write
det] ((Cc) - A1) * (D)]| = 0 (3.10.13)
which lead to.
det|AI -, (A) - (B)/A| =0 (3.10.14)

o

From the explicit form of the equation of motion we have

(B) = -1I

-
then (3.10.14) yield

' 1

det|(A) - A7| =0 (3.10.15)

. 1

with AT = A +°1/A
then if A is an eigenvalue of (C) so is 1/A. Consequently

[A] = 1 ' (3.10.16)

‘s
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and the stability condition (3.10.10) can be writ:'en

-

'All < 2 (3.10.17)

1 .
The eigenvalues of A~ are given by the Gershgorin and
Brauer theorem which states that if the radius Oj is

as follows:

k ) :
Iajkl(l - 6j) (3.10.18)

3 k=1

Sl

then the eigenvalues of (A) lie in at least one of thecircles

z - a,.| < p, (3.10.19)
330 =73

in the complex z plane. The operator AU is equal to

n n :
(A + 2I)U where A is the F.D. of the elasticity operator.

Then
2V " 20
Atz(a D + 82D ) + 2 (A + py)At™D
X X zz Xz
~ -»
AU = U
(A + u)AtZS 2 + Atz(azn + 82D )
Xz ZzZ XX
...(3.10.20)
where



R
]

(A + /L
8 = u, L
wikh'the Gershgorin theorem we obtain
2 - 4 8 (a2+82)]£ l/\ll < 2

Then the stability condition is given by

At? . 1
ht = max (a‘ + 82)
or
aﬁt < 1 .
(1 + %)]’
a

(3.10.21)

(3.10.22)

(3.10.23)

We note that in .the case of SH wave the stability condition

becomes

1

I
h —_—

N

B

(3.10.24)

o

wher¢ n is the number of spatial dimensions n = 1, 2, 3
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3.10.c Convergence

There is c?nvergence if the solutién of the finrite
development tends to the gsolution of the differential

equation when At, h = 03 ' i lhon

{~

7

)
T

; T ;-‘ )
e ) .\\‘;“
§ = IU - Yy["+ 0 whendt, h + 0

For the wave equation case the discretization error is

given by

2
At e

On
i

where € is the truncation error.

We note that the finite development of the eiasticity
equation is convergent since stability and consistency
implies convergence (L&x Equivalence Theorem; Richtﬁeyer

and Morton (1967)).
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3.11 ALTASING AND GRID DISPERSION

3.11.a Discretization of the spatial waveform implies

an "effective" sampling at the mode. The condition is

therefore that the frequency domain where the amplitude

srectrum of a function F is non zero is finite (i.é. F .

has t¢ be band limited). |
. S

The relationship bAet;Jeen the temporal or spatial grid and

the frequency or wave number is given by the sampling

theorem (Bracewell, 1965; Kanasewich, 1975) which étates -

that
1 ‘
<
hi & 2
[of
where Fin. > x.} =0 if |k,| > x (3.11.1)
. a4 1 1 C

It is therefore recommended when we have a source with a

-broad spectrum, to reduce the effective frequency domain by
i ; in x i 2
convolving by a function of the form E—;—— or (Eig_i)'

the amplitude spectra of these functions being tBy well
/
e
Sin :, .+ seismic prospecting the incidence angle is

known box car or triangle (Bracewell, 1965l;
;

close to the vertical, the apparent wave number along the

X axis is equal to
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which implies a wide grid spacing in the x direction if
the economic consideration (computer time) surpasres
the interest in surface waves.

Generally, as a guie of thumb, eight to ten samples

per wave length are considered minimum to approximate

the wave field (Boore, 1972; Claerbout, 1976) .

3.11.b Disperéion

The dispefsion appears as a variation of phase
velocity and group velocity as function of the frequency.
Conseguently, while the low frequency part of the

signal will travel with the velocity vO = Vg = V, the
undersampling will affect the high frequency part of é
signal whose group And phase velocity will be Vg < v <
Vo. Then an apparent attenuation will be introduced

as well as a delay in pﬂase resulting in a tailing
effect.

To investigate these effects we will follow

Brillouin (1953) and Alford et al (1974) in the case

for SH waves.

‘3.1l.b.l SH wave dispersion

Let us consider a harmonic plane wave of the form
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)

U = uozi (Wt-kyx-k,z) ' (3.11.2)

where : K2 = K cos 6
! in 4 ) (3.11.3
. / Kl K s;n ‘ 3. . 3)

Ty o= V2U : (3.11.4)

Second order finite difference development of the above

.t

equations lead to

UZ—l - U U£+1 _‘Um-l - 2U + U i1

2 T .2
t

VOA h

U - 2U + U
4+ —n-1 . _n+l (3.11.5y
h
where U(x,z,t) = U(mn, nh, £At)

L 4

To simplify the notation U(m,n,2£) is gepfesentad'by

TN
U,?nd U(m-l,n,() = Um-l' etc.
v _At Tl _ L
If P = h wé-ébtain, with P < v2/2 (stability con-

~dition), after substituting (3.11.2) into (3.11.5): :



K_h
20 . 1 :
P [31n —=— + s1in

2wt
n UJ—

S1 2

a

K
2h
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(3.11.6)

If G is the number of samples per wavé length V and V
g

the phase and group velocities,

Kh/2 = /G

Then

- & sin—l{P[sin_
0 KV P

and the group velocity will be obtaingd by differentiating

(3.11.6) with respect to K.

-

<|é
o &

[

-

( Mcos 6)

G

= [sin(g cos G)COS(E cos B)cos 6

+ sin(g sin e)cos(g—sin B8)sin 8]/

4

2 2
11 - ®7sin (% cos 8) -

-

2 .,
P sin

[s;n2f: cos 0) + Sinz(g'Sin 6)]H}

(&)

If the propagation is parallel to the grid 8

(3.11.7), (3.11.8) yield:

we can write

+

2(LT sin
G

2
n

9) ]

G

... (3.12.7)

(3.11.8)

0 and

k4
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G -1 . T
AVA N o sin [P sin G] (3.11.9)
T
cos =
vV . /V_ . = - = (3.11.10)
G 0 2 -2
(1 - P sin H)H

3.7.b.2 P.SV Dispersion

In the absence of body forces (2.1.1) yield:

RU+pD, U = 0 (3.11.11)
AU+D tt = . 3. .
with
N
/o n a N, \
“(A+2u)D +uD (A+u)D
/ x X zz Xz
n f
A = | (3.11.12)
(A )B (A+2 )B +uD
+
H xZ HIP g 7H XX
N N N
D s, D , D being the fini;i difference operator of the
XX zz X2z i

corresponding derivatives.

As in section 2.7.b.1 we can write for a harmonic

plane wave with Ax = Az = h constant
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1

5 U {v 20 ]
X X 2 1 v+ L3]
h
n, 2
= 211 -
D o« [ cos th]/h
2
=-i-sin K h (3.11.13)
2 1 2
h
5
N 2
D = -—— gin K h (3.11.14)
zz 2 2 2
h
n . 2 wAt 2
Dtt = 4 sin 5 /At (3.11.15)
i 1 [k.h + h] [k.h h]]
sz 2_cos 1 K2 - Ccos 1 - K2
2h
Y sin .
D = - (K.h)sin(K_h) (3.11.16)
Xz 2 1 2 :
h
for convenience we write (3.11.12)
N n
%11 %12
N
A = (3.11.17)
N n
821 422
n N
a = a (3.11.18)

2l 12
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(3.11.11) has the form

4

AV >
AU - AU = 0 (3.11.19)
or
Aman 412
1
(3.11.19)
A -
921 822
$
which has a characteristic equation ’
S S A S 32 -9 (3.11.20
T T 8y, #11%22 7 21, T -11.20)
The roots being 4iven by
N ~
(a,, + a,,) + Vo
A= — : (3.11.21)
a
A = (11 * %) - 78 (3.11.22)
2 2 ' . :
where the discriminant
2 " n 2 o\ 2
A= (X + w) [(p - D_ )" + 4(D_ 7] (3.11.23)

XX zZz Xz
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if we write

(3.11.23) yield

2
_ O+ 2 2.2 2 2.2 2 2
A 5 [(4s1 452) + 4(5152) [1 + s1S5 (sl + sz)]

h
or
2 O+, 2 : 2., 2.2 2 2
A = 4 2 [(s1 - 837+ 4(s s, [1 + s1S, - (s8] + Sz)]
then
2
2 .
A 4 iliJ’-'l—-[(s?' + 8- ¢ 25252)]2
2 1 172
h .
and Vb = *4 iﬁiﬁl[sz + 52 25252]2 ' (3.11.24)
: 52 1 2 ’172 v
then
2 2 2 2 2.2 2
Ay = {2(x + 3u) (8] + s0) + 2(X 4 “)[51 + s, - 25182]}/h
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2 2 2
A= (4(A 2u)(s1 + s2) - 4(A + “)5152)/h (3.11.25)a

1
' 2 2 2
/\2 = (4u(sl + Sz) + 4(X + “)5152)/h (3.11.25)b
But B v 5 W i 1 d
u p etV P £t are eigenvalues an
E U = 4 i 2(u) At/2)
PD U = 2 P sin 1
At
N 4 . 2 '
PD. W = —— sin” (W._. At/2), (3.11.26)
tt 2 2
At
then (3.11.25) and (3.11.26) yield
2 2 2 2
sin (uﬁ At/2) = (X+2u)At~/ph [si + 52] - [A+p]At2/ph25152
‘ ... (3.11.27)
.2 2 2 N 2 2
sin (W, At/2) = uAt/ph” + (A%u)At /Ph S.S_. (3.11.28)

2 172

Recall that

K. h/2 = § Jin o , (3.11.29)
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As usual, we set . e,

a2 = (A + 2u)/p

2
B = u/p

Then the ratio between the numerical phase velocity and

the media velocities are:

GP/QO = -l'—}-(—’a—o . (3.11.30)

BP/BO = TETEE (3.11.31)

wr

This choice is a consequence of the fact that

2
/\l‘— A2 = 4() + u)(sl - 52)

Taking into account (3.11.29) the expressions (3.11.30),

(3.11.31) can be written:

"

a/a wth/2m!0 : (3.11.32)

B,/8, = w,hG/2IMB (3.11.33)



- 104

" v
Since, as mentioned above,DttU and Dttw are eigenvalue

‘ i a At
equation (3.11.25) yields, after setting P = Oh ,
Yy = B/a
, 2 2 2 2 2 2
sin” (W, At/2) P [s1 + 52] - [1 - y7]p 5,8, (3.

. 2 L2 2,2 2 U2y 2
sin (m2 At/2) = y'p [sl + 52] + [21 Yy lp Slsz' (3:

Then
2 -1 2 2 L
w, iv sin pl(sT + S,) = (1 -y )5182] (3.
2 . =1 2 2.2 L2 Y
012 = 47 sin p[(sl + Sy + (1 Y )5152] (3.

The dimensionless phase velocity ratio is then given

-

\
2

_ G . -1 2 ' 2 L
aP/ao = ;p Sin P{(sl + 52) - (1 - vy )8152] (3.
. G Lo=1 2 2 2 2 1k
B?/BO pry sin _P[Y (S; +83) + (1 - y9)s s, ]
. (3.
and the group velocity ratio is given by
a/a =_];_8—L‘)i' (3
G~70 a. 9K )

0

11.34)

11.35)

11.36)

11.37)

by

11.38)

11. 39)

11.40)
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B /B =%———3 (¥.11.41)

We note that for Yy = 1 or 8 = 0 the results are the same
as for the SH wave or the scalar wave equation given by
Alford et al, the dispersion being minimal for values of

P chosen at the stability limit.
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2 5 1/6
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Fig. 3.5 Dispersion curves

3.5.a Normalised phase and group velocity for
a propagation parallel to the grid 6 = 0
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3.5.b Normalised phase and group velocity at
different angle of incidence
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CHAPTER 1V

Comparison with Recursive Developments Derived
from Variational Methods ~ Case of

Potential Equations of Motion

We have mentioned in Chapter I1, three main methods
of numericail analysis:
-~ The 1lirect expansion by a Taylor series ,
- The Rayleigh -Ritz method (application of Dirichlet principle).
- The Galerkin method (usually called the variational method)
After showing the egquivalence of the two last methods
we shall develop in this chapter a finite development derived
from variational principles. We will then compare it
with the finite difference scheme of Chépter II obtained
by direct application of Taylor expansion on the.usual
formulation.
Friedrich (1962), Friedrich and Keller (1966)
considered the problem for the operator,~V2, and pro ' ~ded
by numerical integration in triangular elements.
The approach used in these pPages will be more
operational, in such a way that we take full advantage
of the bilinear forms obtained by use of the z transform
and its conjugate!
Use of Sobolev space: w; will give great.advantage

for the device of a trial function.

lo8
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numerical analysis: ; i
-~ The 1lirect expansion by a Taylor series ,
- The Rayleigh -Ritz method (application of Dirichlet principle). :
- The Galerkin method (usually called the variational method)
After showing the egquivalence of the two last methods
shall develop in this chapter a finite development derived
m variational principles. We will then compare it
th the finite difference scheme of Chépter II obtained
direct application of Taylor expansion on the.usual
‘mulation.
Friedrich (1962), Friedrich and Keller (1966)
sidered the problem for the operator,~V2, and pro  n~ded
numerical integration in triangular elements.
The approach used in these pPages will be more
rational, in such a way that we take full advantage
the bilinear forms obtained by use of the z transform
its conjugate!

Use of Sobolev space, wl

> will give great advantage

the device of a trial function.
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1(u) = min[(AU,U) - 2(u,F)], (4.1.3)

U is the solution of 4.1.1.

Then, the problem (4.1.2) can be written:
(AU,U) ~ (F,U) = 0O * (4:174)

which is the Galerkin form.

4.1 FINITE DEVELOPMENT OF THE EQUATIONS OF MOTION '

DISPLACEMENT BY VARIATIONAL PRINCIPLE
4.1.a Dirichlet Integral Form

After substituting the elasticity operator by its
value, (4.1.4) vyields:

-é {Dx[[A+2u]DxU + Ap_wlu + Dz[”DzU + up_wlu}dQ

-/ F.uan = o (4.1.5)

Q

LY

. 3 N
-é {Dz[[A+2u]Dzw + Anxp]u + Dx[quw + up.ujulaq

—_——_—

(4.1.6)\

-[ F.waq = o
Q

N
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By Gauss Theorem (4.1.5) and (4.1.6) yields

.
(&S

/

/ AAs2m) (.12 + AD WD U + u(o_u)? + uD_WD U}udQ
X z X z X z

Q

[ [(A+2um)D_U + Ap wlu.dT
T X Z

- J ulp u+ p wlu.daT - F.udaR = 0 (4.1.7)
r z x Q

M o

[ {(A+2u) (D W)% + AD UD W + u(D W)% + uD UD W}WdQ
Q X X z x z X .

J [(A+2u)p w + ADp ulw.arl
T Z X

[ w(p.w + D ulw.pT - [ F.WaR = 0 (4.1.8)
T X, z b

_If we express the éontinuity of‘dispLacemenf and

stresses at the boundary (Boundary conditions) the

integrants of f (.)dT becomes
r - :

f (har=o . (4.1.9)

¥ >

-

and (4.1.7) and (4.1.8) yieldsk
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{(x+21) (D U)2 + AD WD U + u(D U)2 + uUD WD U}udqn
X z X Z X z

OB N

- [ F.udQ = o (4.1.10)
Q
[ {tx+21) (D w2 4+ Ap UD W + u(D W) ? + UD WD U}ludQ
Q z X Z X - z X
- [ F.uaq = o (4.1.11)
5 A

4.1.b Discretization and Choice of a Trial Furction

Since the objective is the comparison with the
finite difference development, it is normal that we o
WA

choose a trial function from the same field of definition

Then we have

U e w; (Sobolev space) (4.1.12)

E

which implies the conservation of .norm

n 2
2 U L
| lu]] = |]ul] + Y HE=11.2,,0 (4.1.13)
W A T A

2

Then (4.1.12) implies that the function and its first
derivative has to have respectively the same expression

as the finite difference expression.
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As in Chapter III, we consider an elementary

region

such that

Then, for instance,

]

1
D U = [UO—U

x hl 3
I I
for U e D 1 Ump i etc. (4.1.14)
If we consider U such that
i(we - Kllhhl - Kznhz)
U = er

we can use the z transform

-iK_h
with zZ = e 22
’ N
s =<iK_h .
x = e ..1 1
i@
. At
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then . Uﬂ = Uz
m,n-1
£
U = UX
m-1,n
+
U£1=UT
m,n

Then (4.1.14) can be written

. L |
DU = 2 (1 - 2) for U e It U ptt! (4.1.15)
X h
1
and
vz} I IV '
D U = (1 - 2) for u e D U p etc. (4.1.16)
b4 h .
1
For more simplicity we will have h1 = h3, h2 = h4,

without loosing the generalitwa our problem.

v

4.1.c Biiinear form of the expre;sion (DxU)Z, (DzU)zc...

D WD U, D WD U
x z zZ x

Using the z transform, we can 'write

c
oN
[}
!

(DxU)2 = —= ] X][1-- x]*

-
Lol S ]

U €D (4.1.17)

then



115

lo°

, .
(D_U) [ (1 x]U0 x*[1 - x]uo] (f.l.le)

=
- N

II,, III I
eD T UD aDI“UD

and according to section (3.2) if we consider the

parameter y for instance

U
2 _ 0 - - * -
B (D U) 2 [u3[1 x]uo Mo X [1 x]UO] (4.1.19)
1
h = ot s w2
when vy ¥y =Y
+ -
= + 2
L (u3 u3)/
then N
‘.
u(Dp U)2.= - fu. [u. - ﬁ ],J u_[u, - u_]] (4.1.20)
x 2 1°71 o~ "3'73 0
h . .
1 \
By the same way
2 Yo ‘
(DZU) = = [ - 2z][1 - 2]~ (4.1.21)
, h,
and
= - — - -zt - U 4.1.22
M(D_U) 2 [(1 Z)u,U, - 2*[1 z]u4 0] - (4.1 )
2
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then
Y2 Yo
DU = - — u_ - - - .1.
U ( LU 3 [“2[ ) UO] u4[u4 uo]] (4.1.23)
2

To calculate the expression DxUDzU'we have to note that

b _vp ' = (x,2) n bt
X V4
which implies .
ID(DxU)I c (x,z) N bt
and :D(DZU) C (X,2) N DI
then
Yo
DU = 7= [(1 - x) + z[1 = x]] (4.1.24)
. o ,
DU == [[1-2) + x(1 - 2]] (4.1.25)
z -
then
UOWO SN
D WD U = i, h [l - x1 + 21 - x110@2 - 2) + x(1 - 2)3»

...(4.1.26)

EN
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4]

D WD U —~°———[(1-x]+z<1-x]][(1+x—l]-z*[1‘+ x'l
X z 4h_h :
12 : .
... (4.1.27)
and referriﬁg to section 3.2:
"o -1
w = ——_—_—m—— - - - *
MD_WD U Thoh [(1 X] + 2(1 x][[1 + x J‘u4 z+*[1 £ X
... (4.1.28)
By expliciting (4.1.28) we obtain-
UO +
WD = - e - + -
HD WD, U 4hlh2 {[[ws w3] [wl WO]]u2
+ - W_) 4+ (W_ - W -
[(WZ 7) ( 0 3{]U2
[(w, - W) + (W W) lut
¥y o T s 4’ Mg
- - + - - .1.
[(w0 W) (W, ws)]u4} (4.1.29)
"In the same way we have
oW,
WD U = —mm - : - ( - - *
D_WD_U 4h1h2 [(1 Z) + X(1 | z)] . ¢1 x] + ;[; x]]

(4.1.‘3‘0)‘ :

and

1]

“1y



118

UwW
- 90 - - -1
HD_ WD U = ————— [ (1 - zZ) 4 x[1 z]“1 + 2 ]u3
12
-1 \"‘
- X*[1 + 2z ]pl] : (4.1.31)
Explicitly (4.1.31) yields
U ' +
WD WD U = - 4h h_ {[(We T W vy - Uo]]“1
+ [(w, - w) + (W, - w)lu'
2 o) 7 37 M3
4
- [wy - w4 (Wy = W) ]u,
- [(wO - w4) + (w3 - ws)]“3}' B (4.1.32)

As an abbreviation we will call U.FV(*) the
development obtained by finite variational method, in '

this chapter.

We remark from equation(4.1.28) and (4.1.32) that
= s W
Fv[uozwnxu] F.Vv(uD_ DZU]

VP £ Q

"but P g T



Comparing with the results obtained in Chapter

have
urF D{fp U} = -uFv{ED U}
XX XX
UF D{ED U} = -UuFrv{éD U}
zZ zZZ
YP € 0 = (0 + T)
UFD{ED W} = -UFV{ED WD U}
Xz X 7
VP £
+ >
and P £ T.(n.o0z)
UFD{ED W} # -UFV{ED WD U}
XZ X 4
+ >
if P e Tl'.(n.0z)
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III, we

(4.1.33)

(4.1.34)

(4.1.35)

. 5> >
when n.0z design the projection of the normal of the

" boundary to the 0z axis.

R .
In this case if h Ll 0z thén P can be considered as

an inner point.

Equations (4.1.33),(4.1.34),(4.1.35) can ‘be

Qritten:



“w

2
) FD{EDxxu} = -UF v{E(DxU) }
_ 2
U FD{EDZZU} = ~UF V{E(DZU) }
VP € Q = (Q + T)
U FD{Eszw} = »—gp v{gn)-(wmzu).
v W
YP € Q (P innex point)
and P gT
‘U Fp{gmxzw} # -UF.V{EDXWDZU}
~ ‘ VP € T (P Boundary point)

since we have 2 c r? x [oT]

in the absence of body forces on¢can write:

120

(4.1.36)

(4.1.37)

(4.1.38)

(4.1.39)
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2
- [ Faq = [ p(p u)%an,
2

- 2U + U'l]{Mass}Q (4.1.40)

-—+—U_[U
At To h

4.1.d - Recursive Developments

Replacing in equations (4.1.10), (4.1.11) the
respective eXpressions by their Fv{.} developments and

taking into account (4.1.10), we obtain
-

2
1 -1 240t . _
20 - U T+ —S———[[u, - u ] (X+2um),

2
hile,+p,]

c
]

- (U, - Uy (A+2u) ]
20¢2 ]
* [ N .][(Uz - Uduy, - oy - o e
2P27P,
yy hAfE " ) F v{ip woxu}
hify(P3*Py z
At? ' .&
"+ F.y{up wWp u} . (4.1.41)
4hlh2(02+p4) X 2z - ]



- [ Fa@ = [ p(p _u)“an,
Q Q ¢
h h
= _—El—t—— O[U1 - 2U + U—l] {Mass}Q (4.1.40)
h

- Recursive Developments

Replacing in equations (4.1.10), (4.1.11) the
ctive eXpressions by their Fv{.} developments and

g into account (4.1.10), we obtain
-

2
-1 2At : _
20 - U + ———~———————[[Ul - UO](A+2u)1

2
hile,+p,]

]

- (U, - Uy (A+2u) ]
20¢2
+ 5w, - Uo]u2 - [u U )]u43 °
nZlo,+0,] ° 4 ‘
2P27 P,
yy hAfE " ) F v{ip woxu}
hify(P3*Py z
At? ' \
F.V{quWDzU} . (4.&.41)

4hlh2(02+p4)
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4.2/ CASE OF EQUATIONS OF COMPRESSIONAL AND ROTATIONAL

DEFORMATIONS

Let us write the equations of motion for a homogeneous,

isotropic elastic media

(X + 2u)VVU - pVAVAU = pl - pk (4.2.1)

If we take successively the divergence and the curl of

equation (4.2.1), the dilatation

div U ‘ (4.2.2)b

o)
1

and the vector rotation

J

S = curl U (4.2.2)c
satisfy the respective eguations
2 -
(A + 21)V'p = pB -~ pV.K (4.2.2)
2 . . . ' I
uv®s = p8 - pvaxk (4.2.3)

where K represents the body forces.

g
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‘
bThe aim of this section is to give a finite develop-
ment for those eguations by the two methods aeveloped in
these pages. i.e. Thg finite development by variational
principle, and the'generaiised solutioﬁ of the direct

Taylor'development.

‘

4.2.a Development by Variational Method

If we consider the usual elementary domain D = Qh'
the respective scalar product of (4.2.2), (4.2.3) with p

and S yields in the absence of body forces

i}

) uQ(Vp)Zth - | ofvpar / (ﬁ)quh (4.2 4)

[ 8*ws)fan - [ gPvsar = [ (§) %aq

Qh Th Qh

)

S,P ¢ wo CL(Q)

€
[
ot
=3
Lol
]
0
+
=3
2l
<
[N

< R” x [or] - (4.2.5)

u/p

i

where ; S

Q
L]

(A + 2u)/2 .

-,
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(4.2.4), (4.2.5) yield from section 4.1

[ pF via?(vp)?} - / pa’vear [ PpF v[D r]%aq (4.2.6)
h _ t < h

Qh -rh Qh

il

SF V{Bz(VS)z} - SBZVSdF sF v[D s]de
. h t h
Q. I Q

in 8, < R® x [or] (4.2.7)

N o h

The boundary conditions of (4.2.6) tan be written

<

2 2 2 2 2
'I[‘ a“veal = Athz[oulPx - ap ]+ hl{azpz - a,P_]At (4.2.8)

2 2 '
where al, a2 represents the values of the parameters in the

. . I v
usual domains, i.e. D U D™, etc.

Since
’ P=1U + W ) (4.2.9)

- | S=U -W (4.2.10)
z X o

.

&
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(azp - 282w ), = (azp - 2B2w ) T (4.2.11)
z 1 z 3

2 2 2 2 '
(o' P - 28 Ux)2— (a"P - 28 Ux)4 (4.2.12)
[8B(s - 201, = [B(s - 2u )], (4.2.13)
[B(s - 2"’x’]1 = [B(s - 2w )1, (4.2.14)

The expressions (4.2.13) and (4.2.14) being identical.

After differentiating (4.2.11) and (4.2.14) respectively
. 1
with regard to the variable x and z, we obtain

e’p - op = pis - pis . (4.2.15)

o?p - a?p = g’s - g2g . (4.2.16)

the boundaries concerning equation (4.2.7) yields

>

A :
2 2 1 3
o - —_— .2.17
154 354 o Pz 5 Pz (4.2.17)

>

. A .
st - st = 53 p - =2 P . (4.2.18)

X
°l
N
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with A a” ~ 28
p
After inserting the boundary conditionssgg the equations
(4.2.6), (4.2.7) and replacing the values of Fy{-} by their

developments (section 4.1) we obtain

1 -1 1 : 2 2
P = 2P - P + = [(Pl - P)al - (P, - P3)a3]
h
1
At? 2 ' 2.
+ =5, - Pylo, - (B - Pla]
hj
2
At _2 2
+'h ["lsz - B3sz]
PR |
At2 2 2 :
T, (845 = B2S,] - (4.2.29)
1 -1 At? ) 2
S = 28 - 8 + = [(s1 - S,)B] - (s, - s3)83]
h
1
Até 2 2
+ = [(s, - 508, - (s, - s8]
h
2.
- At ) 1
o q [Xsz - A‘4lpx] + E: [)\31:2 - Ale](4.‘2.20)
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We note that the boundary terms

1 2 2 1 2 2
h. (Blsz - BBSZ)' h. (B4Sx - BZSx)'

1 2
1 (AP - ) P’)‘ i (AP - X_P ) (4.2.21)
h2 2" x 4 x"’ h1 3z 1" =z ) Ter

represent the conversion terms SV to P and P to SV.

The finite development of those terms have the form

1 2 2 L1 2 2

e (Blsz - B3sz) * 2T T (B1 - 83)(52 - s4) (4.2.22)
1 12

1 2 2 1 2 2

g; (B4Sx - stx) ~ 2h1hz (84 - 82)(51 - 53) (4.2.23)

4.2.b Development by Taylor Expansion

Equation (4.2.2) and (4.2.3) yield

2.2 ' 2 2.0
F.D.[a"VP] - [a1 - a3]DxP
- (a2 - aZ)B P = FD(P) : (4.2.24)
2 4" "z
2.2 2 2.
FD[B"V's] - (B1 - BB)DxS
- (Bg - Bi)% s = F.D(Y) (4.2.25)
z



129

Since the conversion terms are identical to expressions

(4.2.15) to (4.2.18) the development leads to:
F D{Vz} = FV{(V)?}

The development of ,equations (4.2.25) and (4.2.26) is idén;
tical to equations (4.2.19) and (4.2.20) obtained by varia-
tional principle. i.e. After taking into account the
boundary conditions (4.2.11) to (4.2.14), (4.2.25) and

(4.2.26) yield

FD(B) = F p[a’v?p] + 82§ - g2% . (4.2.26)
X ZzZ Z X

Fp(¥) = F p[B2v%s] + A B - A B . (4.2.27)
%’z X ?x YA

which is identical to (4.2.19) and (4.2.20) or in the form

Y n n n .
B = a2V2p + a2P + azp + st - st (4.2.28)
X X Zz z . X z Tz X
M 22 2 27 n n .
§ = B°Vos + 7% + 8% + A% -xF W (4.2.29)
zZ Zz E;'zx.ﬁ—x-z .

where represents the homogeneous development of section
2.4. We have expressed the form (4.2.28) and (4.2.29) not

in a computational form but for qualitative purposes.
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4.2.c Reflection and Conversion Terms Considered as Source -

We notice that in equation (4.2.28) for instance

2 . . .
aiPx, asz represents the reflection and refraction terms.
2 2 .
(Bxsz - Bsz) represents the syv+p conversion term
n N .
(A P - A P ) represents the P+SV conversion terms.

E’ZX Exz

From (4.2.28) and (4.2.29) -2 note the symmetry of

reflection terms and con.:.rsion terms.

Besides, equation (4.2.29) 1o0ws that even in a .

homogeneous fluid SV may be generated but does not

propagate; since (4.2.27) can be written

§ = curl K
with curl X = A P - XA P
z ' x X z

But S(M) =0 V F(M) =0

VM e Q cir® x [oT]

(4.2.30)

(4.2.31)

"In (4.2.30) we have considered the transformation'of a

source, i.e. as a body force. Then in equations (4.2.26),

(4.2.27), the reflection and transmission terms can be

considered as sourceés (or .body forces) due‘*to a discontinuity

(parameter discontinuity), those body forces, satisfy’
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N

) 4 .
of course the B.C. Then from (4.2.26) and (4.2.27% we can

write the reflection and conversion terms considered as

body forces

V.K = a’p_ + o?p + B?s - g?s (4.2.32)
X X z 2z X 2 Z X

VAk = B%s + B%s + AP - AP (4.2.33)
z Zz ez X é_x z

By analogy with the equation of displacement motion we

can write Kx, Kz as the components of the reflection

and conversion coefficients

Kx = a2U + W+ Bzu + 82w (4.2.33)
X X Ta Z z Zz zZ X
8 2 2 2 . ] ‘
Kz = a"W + A U + B°W + B°U (4.2.34)
zZ Z (z X X x X 2 o
But - curl K = Kx - Kz !
S . z x

'\Expreséing curl K with the help of (4.2.33) and (4.2.34),

and taking into account that



132

as well as the B.C

we obtain

which is the relation (4.2.33), which can be considered

as a verification of the assertions given in this section.
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COMPRESSIONAL AND ROTATIONAL DEFORMATION
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4.3.a Development of the so0 called "heterogeneous media

solution”

Following Landers and Claerbout (1972), Grant and

West (1965), we consider the law of motion for the dis-

placement vector U, i.e.

pli = A+ W)V(V.U) '+ VAV.U
- -
- HUVAV U + Vua(VAU)
>
+ 2(VuV) U

(Karal and Keller, 1959)
-
Letting V.U =P

' -
VAU = s

We obtain after taking the div. and curl of (4;3.1)

(4.\/3.1)
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B = a2[P + P ) + 2a%p + 24°%p
X X zz X X z z
2 2 : ,
+ 2[8xsz - Zstx] ) (4.3.2)
§ = 82[5 + S )+ 2825 + 2825
XX zZZ X X z 2
2 2 '
- .3.3
+ [2szsx 2Bxsz] (4.3.3)

(Landers and Claerbout, 1972)

4.3.b Remarks
We see that if the "heterogeneous media" method is
correct we shall have two important pProperties
i) From (4.3.2) and (4.3.3) the conversion terms are
independent of A, i.e. waves can be converted only if there
is é_discontinuity in shear velocity.
ii) If we -onsider a fluid'éq'ation (4.3.2) beconmes

F = az[p + P ]+ 2[a2P + a2P ]
xX zz X X z z

instead of

. 2
b = az[p + P ]+ azp + a’p
. XX zZ X X z
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i.e., the reflection coefficients will be twice the reflec-
tion coefficients of a scalar wave equation or a sound wave.
Therefore the svstem (4.3.2), (4.3.3.) is obviously not

correct.

4.4 General of P+SV, SV+P converted waves

Elastic wave motion 1is govern;d by equatioms (4.2.29),

(4.2.3), i.e.

- variation in ) generate P7SV

©~ variation in‘p generate SV-+P.

Figures (4.la) to (4.1d) represent snap shots of P+SV
converfed wave (P source) for a simple model, (Fig. 4.1);
the source having a Gaussian depeqdence in a domain of
definition QS = P * 2h c R2 x [0,t) aﬁd where the spaiial
dependence S(X) of the source trends smoothly to zero
at the boundary of its domain of definition.

The model consists of two layers of 7000'/sec and
10,000'/sec. The wave fiéld computed with a coérse grid

is represented for qualitative purpose and shows the

relative importance of converted shear .wave.

Fig. 4.lc represents the shear wave field, and
comparison with the P+SV reflection woefficient curve as
a function of the angle of incidence shows the corre-

lation between the theoretical curve and the synthetid

wave field.
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CHAPTER V
Conclusion

The main points of this research which are original

can be summarized as follows:

i} The distribution of the parameters at the boundary.

Since we can consider a measure as the inverse of a partial

differential (Dj-l), it is normal to consider the parameters

as specific to the operator domain (in this case the domain
of the second derivative). An import;nt consequenc;'being
that the parameters can vary with the direction and diagonal
boundary ¢an be &sed. &
ii) The Qifficulty of introduciﬁg the boundary condi-
tions insidg th:Vdifferéntiél equagion for the dirﬁftNmethod
hgs Been solved S£TB}¥ by adapting.thé Taylor éxpansiop to
the specificity of the pérameters. We ngté“thaf if the
bbundary conditions do not vanish Qhen introduced in the
dlfferentlal equation, the so called "héterogeneous medla"
method (Kelly et-al, 1976) cannot be used, whlch is the ’
‘.

case of most problems except 1n the SE or the scalar wave

equation. The,direct scheme is wvalid for any case of

" boundary conditions and can be considered as a direct

.

!

generalised:scheme fbr'hgtefogengous media.

é
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iil) The Dirichlet integral and the energy me;hod give
us a classical way of introduclng the boundary condiéions.
The z transform and the choice of a trial function which
has the same norm as for the direct method (in‘Sobplev w;
space wnich'is_a Hilbert spacef\:llon us to obtain a
finite development'which'is comparable to the direct form.
The ldentity of the schemes and their uniqueness in‘the
two methods developed shows the pfoblen is well posed.

"iv) The P SV, and SV P transformatlons have been
studled through the dlvergence and rotation or curl of the
displacement vector equation. Tne direct and the finite
yarlational develcpments have been successivelylgpplied
‘andvlead.to idenfical schemes. Those sclutions correlate
with the dlsplacement vector solutlons seen above. The‘
parameter discontinuity is con51dered as a source of the
scattered and converted flelds in the displacement vector

equation. The divergence and curl of those fcrces give the’

N

scattered and converted field in terms of the_divergence and

curl of the vector displacement equatlons. In this case alQL
the comparison with the so called ”heterogeneous media"
method, glves the same conc1u51on as before.‘ Althoéyh the

results are not concordant to the one obtalned by Landers et

al (1972), and Grant and West (1965),-the.evidence led'us‘
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to believe that the SV+P and P+SV conversions are given
\respebtively by discontinuity of the Parameters U and A
(and not only y as Stated). This result is important:

-’aé an interpretative tool ‘in seismic exﬁloration.

- to investigate the bright spot problem (Stoffa et
al, 1976). &

v) The secondary results of ;his research are:

- the representations of the sourcé as ‘the gausal
part of the development of a fofce. This underlines the
reciprocal properties of the wave equation and‘is very
usgfhl in the numerical solution.

- The finite differénqe'development of the SH or

scalar wave equations at normal incidence for Vt=1

. : h
is an exact solution. That is, the simple finite difference

development is identical to the analytical Plane wave solu-

tion or the matrix method.
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