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ABSTRACT

Theoretical estimates are given of the propagation
losses of infrared radiation in micron-sized hollow
cylindrical waveguices by analyzing the characteristic
(determinantal) equation of two-medium wave quiding systems
of circular cross-section. The gold-coated wall of the quide
is the exterior medium and the hollow region within the
guide is the interior medium.

Projagation characteristics of the three types of modes
existing in such waveguides are described. These modes are
the TE, T™M and hybrid modes. The TEo1 mode is shown to have
the most loss-free propagation due to the small tangential
components of electric fields at the gold-coated surface.

Numerical solutions of the determinantal equation have
been obtained, which confirm the theoretical predictions.

Both theoretical and numerical results suggest that
wave transmission is possible over a significant number of
wavelengths.

For the most loss~-free cases, the losses are expected

to be of the order of 0.1dB/cm.
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1 INTRODUCTION

In recent years, silicon micromachining technology has
become capable of producing a variety of mechanical
microstructures for sensor and actuator applications{1]-[6].
These microstructures actually enable relatively accurate
measurements cf force, vibration, acceleration, resistance,
displacement, and vapor concentration. Another application
of these structures is in the production of
dielectric-filled channel optical waveguides, as proposed by
Miller[7] in 1969, as basic components in integrated optics.

Since then much research [8]-[14] has been done in the
area of channel optical waveguides utilizing micromachining.
There are two basic channel waveguide structures, the ridge
structure and the imbedded strueture. Those devices are
micrometer-sized, but are dielectric waveguides with no
hollow regions. Recently a new technique of fabricating
vacuum microelectronic devices by microstructural technology
has been introduced{15], [16].

In this thesis we consider hollow waveguides with
gold-coated surfaces. Few investigations have been done on
the field propagation in microstructural hollow metal
waveguides, probably due to the expected large losses
originating from the large circumference of such waveguides
in relation to the cross sectional area. In this thesis, the

hollow cylindrical waveguides will be shown to be attractive



as an optical transmission medium. We will show that the
propagation distances of infrared radiation in these hollow
microstructures are significant in relation to distances
measured on a die, although not in relation to distances
that are of interest in optical fiber transmission.

The hollow metallic microstructural waveguides are
expected to have potential applications in such areas as
sensors, opto-electronic components and optical computers.
An important aspect of hollow optical guides is the empty
region. This region is indispensable for the Wwave-beam
interaction devices which may now be possible using the
newly fabricated vacuum microelectronic devices. Such
miniature vacuumn tubes are vacuum-switching and
power-control devices which are completely analogous to
existing microwave vacuum tubes. What makes them different is
that they are micrometer-sized devices and they are
fabricated on a silicon wafer using integrated-circuit
fabrication techniques.

The existing techniques make it possible to fabricate
such micro-guides with triangular, rectangular or
trapezoidal cross-sections. We can control the waveguide
profile and reproduce it with great accuracy. The
dimensional precision and structural smoothness can be
satisfactorily obtained by etching along crystal planes.
" Even though it is not practical at this time to fabricate a

microstructural waveguide with circular cross-section, the



analysis of circular guides is still very important. Only
parallel-plate guides of infinite extent, i.e. " open
system" waveguides, have been investigated to date[22].
There is no published inve§tigation about the "closed system"
waveguides in which the cr;ss-secgﬁonal areas are completely
enclosed by the waveguide wails. The analysis of
microstructural waveguides of triangular, rectangular or
trapezoidal cross sections will be extremely difficult. But
it is expected that cylindrical waveguides will be
theoretically less difficult to analyze and these waveguides
can still yield very important information about the
propagation characteristics of "closed system" waveguides.
The objective of this thesis is to present an analysis
of the propagation characteristics of some cylindrically
symmetric TM and TE modes and a hybrid mode in hollow
gold-coated cylindrical microstructural waveguides for
infrared wavelengths of 1-10um. Gold is chosen as a coating
material because it has high reflectance for infrared
radiation. The analysis is carried out by approximate
analytical methods and precise numerical methods. It will
be shown that infrared radiation can propagate along such
wavequides for a significant number of wavelengths for some
modes, but not for others. In general the losses are larger

than those of ridge and imbedded dielectric waveguides.



2 BOWIEW

Nearly 60 years ago Carson et al.[17] proposed circular
cross-section waveguides for microwave (wavelength range of
1 millimeter to 1 meter) transmission. They proved that for
such a waveguide where the bounding surface is perfectly
conducting, there are two types of modes of waves. For waves
that contain only an electric field but no magnetic field in
the direction of propagation, the magnetic field lies
entirely in the transverse plane; they are known as
transverse magnetic(TM) waves. They have also been referred
to in the literature as E-waves, or waves of the electric
type. On the other hand, waves that contain a magnetic field
but no electric field in the direction of propagation are
known as transverse electric(TE) waves, and have been also
referred to as H-waves or waves of the magnetic type.

For microwave cylindrical waveguides, only TM or TE
modes of waves exist, due to the boundary condition that the
tangential components of the electric field at the
guide-walls are close to zero. A material is called a good
conductor if such a boundary condition is valid. At
microwave frequencies, metals can be viewed as perfect
conductors in any practical sensa.

Attenuation constants were derived in [17] by
calculating the ratio of the average power transmitted by

the guide and the average power loss in the walls per unit



length of guide. From this ratio, the attenuation can be
readily obtained.

Another method was pointed out in [17]; a waveguide
can be considered as a two medium system, with the air
inside the guide as one medium, and the guide walls as the
other. The electric fields and the magnetic fields in both
media can be obtained. By matching these fields on the
boundary, an equation can be derived. The equation, referred
to as the determinantal equation or the characteristic
equation, contains the information necessary to calculate
wave propagation and characteristics.

The work of these authors, however, was restricted to
propagation of radio-frequency waves.

The work on optical waveguides received much impetus
from the advent of lasers in the early 1960s. Marcatilli and
Schmeltzer[18], were the first to investigate large optical
waveguides of circular cross-section in 1964. The field
configurations and propagation constants of the normal modes
were determined for a hollow circular waveguide made of
dielectric or metal. For a wavelength 2Ao=lum and a radius
a=0.25mm, the attenuation for the minimum loss TEo modes in
an aluminum waveguide was calculated to be only 1.8 db/km.

About 10 years later, other researchers[19]-[21],
obtained propagation characteristics of large optical
waveguides of parallel plates and rectangular

cross-sections. In such waveguides, the dimensions of the



waveguides are much larger than the free space wavelengths.

The only investigation on the hollow microstructural
waveguides fabricated on silicon by micromachining
techniques was published by Vermeulen, et al.[22]. They
investigated micron-sized parallel plate waveguides. 1In
[22], theoretical results are presented on the propagation
of infrared radiation in micronsized parallel plane
waveguides whose walls are gold-coated and separated by
empty space. Propagation characteristics of the TMio, TEio,
and TEM modes are described. The results, when extrapolated
to propagation in hollow micron-sized waveguides of
rectangular cross section, suggest that propagation is
possible over a significant number of wavelengths in spite
of the large circumference of such guides in relation to
their cross sectional area. Theoretical indications are that
the most loss-free structures have losses of the order of
0.1db/cm.

In this thesis, we will use an approach similar to

that used in [22], adapted for cylindrical waveguides.



3 MATHEMATICAL PREPARATION

3.1 Complex Refractive Index

Maxwell's equations are a comprehensive summary of the
laws of electromagnetism. They convey to us all the
classical information about electromagnetic phenomena and
should, in principle, be taken as a starting point for
solutions of any problems in classical electromagnetic
theory. In practice, however, this is often not done for
various reasons. The geometry of the material bodies present
may not be easily expressed in any co-ordinate systenm,
making the complete solution extremely difficult; or one may
only be interested in investigating a single mode, e.g. the
transmission-line mode which can be treated by network
theory. However, whenever it is possible it is desirable to
use the approach from Maxwell's equations since in this way
a complete set of solutions can be obtained. Even though
only one mode may be used in practice, it is often helpful
to know how the other modes behave, if only for the purpose
of avoiding thenm.

Maxwell's equations in MKS units are , in their most

general form,

VD =p

V-B=20



aD

VxH = ¢E + Fa
UxE = 3t

Here p is the charge density and o is the conductivity of
the medium at the roint. Here and in all work that follows,
the MKS system of units is employed. We have further

relations, for all media,

D = ¢cE

B = uH

where € and u are the permittivity and permeability of the
material, respectively. In general u is a real constant for
non-magnetic materials as is the case in this thesis, and ¢
may be a complex scalar. They are denoted as e€o and o in

vacuum.

If the time variation can be represented in the form

Jjut

e’ ~, wvhere w = radian frequency and t = time, then 3/8tsjuw,

and, VxH = jw(e-j%)n .

The term in the bracket of the right hand side can be
considered as a complex dielectric constant, which we denote

as &c¢, and thus
Cc & £ = j—:- .

It is customary to express ec as

€c= g'-je"

where e'= ¢, e"= —g— .



Assuming the axis of the cylindrical waveguide is in the z

direction, we have
Ez =f(r,¢)e e

where f(r,¢) is a function of radius r and azimuthal angle ¢
only, and 7 is called the propagation constant. It is a
complex number, so ¥ = « + jB. The electric field becomes

smaller with z by the factor e , Wwhere a is called the
attenuation constant, B8 the phase constant, which is a
meagure of the phase shift with z.

If we use light-wave terminology, the complex

refractive index of a medium can be expressed as
N=n-jk

where n= index of refraction, k = extinction eoefficient.

The electric field intensity, E, of a plane wave
propagating in the direction of the z-axis in this medium
can be described in terms of the complex refractive index
N=n-jk as[24],

E=Eoe) (Vt+9) -3 (w/C)Nz
=goe] (0t+#) =] (w/c)nz -(w/c)kz

=Eoed (WE+9) =3Bz ~az (3 4.1

where Eo= wave amplitude
¢= phase angle



c= velocity of light in free space.
Using the terminology of microwave engineering, the

same wave may be expressed as,
E=poed (Wt+9) =72 eees(3.1.2)
Thus, from (3.1.1) and (3.1.2), we have,

-j-—‘(‘:’— N z = -yz = -jweec 2z .

By knowing viec = vVjieo vec/€o, and c=1/viueo which is the
speed of light in free space, for non-magnetic material,

where u=po, we obtain,
N=n-jk=vec/€o

where €0 is the permittivity of free space.

From the above it may be shown that

In order to discuss the attenuation characteristics of
metallic microstructural waveguides, we will need to have
some quantitative information about the behavior of metals
at optical frequencies.

Because we are investigating propagation of infrared
radiation in microstructural waveguides, we are only

interested in wavelengths from lum to 10um.

10



Values of the complex refractive index of gold can be
converted to complex permittivity for a range of free space
wavelengths Ao between 1um and 10um from published values of
n and k for evaporated gold films{25]. Some values are
tabulated in TABLE I.

From the TABLE I we can see that, for the wavelengths
of interest in this thesis,

|-§-:-|=|N2|=| (n-jk)2|> 1.

This is the fact which we will use frequently in the later
part of this thesis.

Since

|E|= e-u.»/c:)kd

it can be shown that a plane wave propagating in gold will
decay to 1l/e of its initial wvalue in a distance of
approximately d=0.025um. Therefore a gold film of thickness
equal to a small fraction of a micron is adequate for

coatina the walls of a microstructural wavegquide.

3.2 Determinantal Equation

We derive here the determinantal equation; the
procedure that is followed is outlined in the paragraphs
that follow.

11



Maxwell's equations are taken as a starting point. From
these, a pair of wave equations are derivgd, containing E:z
and Hz, where 2z is the direction of wave propagation.
Solution of the wave equations gives E: and Hz in terms of
certain arbitrary constants and the propagation constant 7.
The other field components are obtained from Maxwell's
equations in terms of E: and Hz. By applying boundary
conditions, a number of equations containing the arbitrary
constants are obtained. If the same number of boundary
conditions are taken as there are constants, these constants
can be eliminated to give an equation involving the
propagation constant y as the only unknown.

In the analysis of the propagation characteristics in
the micron-sized waveguides, the gold and free space regions
are initially treated as two general dielectric media with
complex permeability = and 4, and complex
permittivity es and ed¢, respectively. The geometry of the
waveguide is shown in Fig.1.

We will describe the waves propagating along the
waveguide in terms of a propagation factor itz

The wave equations in the two media can be written

as(23]

VE+k’E=0
VH+k H=0

where kz-wzuee, which depends upon the medium.

12



The z-components of those equations in a cylindrical

coordinate system are:

2
1 4 , 8Bz 1l 8"Ez , dEz
Y ar' 3r 2 3% o7
2
1 3 GHz 1 8"Hz _ 8Hz -
—i,—s-f(ré-r—)‘l' + 2+kzﬂz—0.

r’ a¢® oz
Because we are looking for the solutions of this

equation with a propagation constant described by the factor

e 72, we obtain:
2

(r”") +aE’+r(1+k)Ez=o
ar(an') +u’+r(1+k)nz=o .
8¢

Letting 7%+ K=K and solving the equation by the
method of separation of variables, we get([23],

]—» = PFe 72
where P = SJa(Kr)+TYa(Kr)

F = Vcosm¢) + Vainm¢ .

Here, S, T, V and W are undetermined constants, Ja is the

Bessel function of the first kind, and Ya is the Bessel

13



function of the second kind[23]. This is the solution of the

most general form for both rza and rs=a.

In the free space region (letting Ka2=12+wzp.dcd and we
would like to remind the readers here that in this region
Ha=plo, €d=co) VYa(Kar) is excluded as a solution, because
the fields must be finite on the axis of the waveguide , and
Ya(0)=w. Consequently the wave functions within the hollow
region should be constructed from the Bessel function of the

first kind. Thus we have,

Ezd=Aa J=(Kdr) (C1cosm¢)+Czsinm¢))e'7z ceses(3.2.1)

Hzd=Ba Ja(Kar) (Cscosmp+Cisinmpr)e 2. .....(3.2.2)

In Fig.2, Je{Xear) and Ji1(Kir) are plotted for
reference.

In the metal region (letting Ka=y°+w’uscs), we should
mention here that the function P = SJa(Kr)+TY¥a(Kr) can
represent any cylindrical functions including Hankel
functions. P must be chosen to ensure the proper pehavior of
the solution at infinity. The electromagnetic fields should
behave as a wave propagating in the positive r direction in
the limit as r —— o.

We choose the Hankel function of the second kind as the
solution in the metal because for large values of |Ker|,

the Hankel functions can be replaced by their asymptotic

14



forms. Neglecting constant multiplying factors, we have,

Ha' (Kor) « exp(jKer)/VFar

Ha'? (Kor) « exp(-jKar) VT .

Because exp(-jKer) represent a wave going out from the
axis in the radial direction, Hm(Z)(Kmr) gives the proper
dependence and so is chosen as the radial dependence
function. As mentioned above the wave propagating in the
positive z-direction has the factor exp(-yz) and both real
and imaginary parts of ¥ are positive. Therefore because of
the factor exp(-¥z), we select the square root of K3 so that
Kn lies in the 4th quadrant. This will ensure the wave
decays exponentially with distance r.

Thus in the metal region we have,

Ezn=Cn B2 (Knx) (Cscosmé) + Ccssin(mda))e-"z ceees(3.2.3)

Hzm=Do Ha'> (Kor) (C7cOos(m¢) + CBsin(mcp))e-n. eeee(3.2.4)

We plot |H2) (Kkwr) | and |H{2)

(ker)| in Fig.3 for
reference.

For a boundary surface between two media of finite
conductivity ef-any kind, the component of field intensity

(electric or magnetic) parallel to the surface is continuous

15



at the surface; i.e. when the surface is approached from
either side, the values of the components of the fields at

the surface are the same.

The boundary conditions which will be satisfied are:
E2d=Ezm |r=a sz=Hm|r=a
E¢d=E¢m | r=a H¢da=H¢m | r=a

As evident from (3.2.6), (3.2.8) below, if E¢da=E¢n|r=a
and Hg¢a=H¢n|r=a are to be satisfied, every pairs of the
above boundary conditions must have the same ¢-dependence.
Thus if the longitudinal electric field in (3.2.1) and
(3.2.35 varies with ¢ as cosm¢), then the longitudinal
magnetic field in (3.2.2) and (3.2.4) has sinm¢$p for its
¢-dependence. We <could also let Ez have a sinm¢
¢-dependence and choose cosm¢) for Hz. Because of the axial
symmetry of the waveguide, the solution resulting from the
latter ¢-dependence would differ from the first only by a
rotation of the fields with ¢=2m/m.

Thus, we choose

Ezé=An Jn(Kdr) cosm¢) e 2 ceeea(3.2.2)%

Hzd=Ba Jm(Kdr) sinme¢) e 72 eeees(3.2.2) *

Ezm=Ca Ha'” 72

(Kor) cosm¢) e -.....(3.2.3)*

16



(2)

N - *
Hzm=Dn Ha'? (Kar) sinme¢) e °2. ceeee(3.2.4)

From Maxwell's eguations, the other field components
can be obtained by substituting the above into the

following[23]:

Er=- Kz(-;gff + 3‘;’“ a¢) ceees(3.2.5)
E¢= —;—2(-%—%%+jwug%3 ) veeee(3.2.6)
u.-=—;2- (1;3 g%ﬁ -1 59 enee(3.2.7)
Ho=- —;2- (Jue 2= + X gg‘) ceeee(3.2.8)

which are obtained directly from Maxwell's equations by

assuming the field components have the form
£(r,¢)e 72 .

To satisfy these boundary conditions, we need to know,
in addition to Ez and Hz, both E¢ and H¢.
The azimuthal electric field intensity in the

dielectric is,

E¢a = —11(—%(- -% [~ mAxTn(Ker)sinme]

+jwHt KaBaJn' (Kir) sinm¢)e 72
or
E¢a = —;_ﬁ- 20 AnTa (Kdr) +jWwudKdBaJn' (Kir)) sinmg¢) e vz,

17



The azimuthal electric field intensity in the metal is

Edn = —=(= L [~ mCoHi?

(Kor) ] sinmé)
+jwiaKaDn HA? ' (Kar) sinm¢y) e 72

or

1
K

To calculate the magnetic field intensity in dielectric

E¢n

(-{-,E CaHs? (Kur) +jwitsKoDe HSZ ' (Kar) sinmér)e V2

and metal, substitute Ez and Hza into (3.2.8) to get H¢a.
In the same way, H¢a can be easily obtained from Em, Ha
and (3.2.8).

Thus in the dielectric,

H¢a = - —I];—ﬁ-(jwedeAan' (Kar) cos(m¢)
+ —%mBan(Kdr) cosm¢)) e V2
or
Hpa = - —> (jwedKaAnTn' (Kar)+ -%mB-Jm(Kdr)) cosm¢) e 72

K4

In the nmetal,

2

H¢mn = = -—llé(jweml(ncnl-ﬂ "(Knr) cosm¢)

+ —L mDaHs?

r

(Kar) cosm¢)) e

or
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{?) (Ker) ) cos M) € .

Heu=- -llé(jwe.x.c.néz’ ' (Ker)+ —LmDeHa

So far, by solving Maxwell's equations, the field
components Ezd, Hza, E¢d, H¢a in the dielectric and E=,
Hzm, E¢n, H¢n in the metal are obtained. In the next step,
the determinantal equation is derived from the matching of
the electric and magnetic fields at the dielectric-metal

interface .

At r=a Ez¢=Em yields
AnTn (Kda) =CaHi’ (Kaa) ceess(3.2.9)
Hzd=Hz yields

BaJa (Kda) =DaHS° (Ksa) ceses(3.2.10)

E¢a=E¢n yields

L

Ki

(L2 AnJa(Kea) +jwiKiBaTa' (Kaa) )

- —:E( CaHs? (Kaat) +jwiiaKaDaHA™ ' (Kna) ) .
ceees(3.2.11)

Finally, H¢e=H¢a yields

- -—:'-'lé(jwedl(dw-' (Kaa) + % mBaJa (Kea) )

—:E-(jwenl(-cnﬂ-(-z" (Kea) + % mDaHs>’ (Ka2)) .
seees(3.2.12)
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We will construct the determinantal equation from
(3.2.9-12).
First, solving for Aa, Ba, from (3.2.9) and (3.2.10)

and substituting As and Ba into (3.2.11), we get the

following:
(2. Chﬂlz’(xna)
<a Ta(Kaa) — Jn(Ka)
Wd thH£2)(K-a)
+ ’% Ta(Kea) — o' (Kaa)
= I cii? (Kea) + -L— DaHi? ! (Ka) .
K-a

ceees(3.2.13)

A similar substitution of (3.2.9) and (3.2.10) into

(3.2.12) obtains:

_i%id CnHu Kna) Ja' (Kea)

a(Kda)
ym  DeHi?’ (Kma)
* . da(Kda) Ju(Kaa)
wel 2).(&a) + L mz)(x.a) - 00000(302014)
Kia

Rearranging (3.2.13), we obtain:

(2)
Ca

¥m [ He>! (Rea) (K-a)
a K3 K2

(2)
+jw[— -Ta-((%?—r.'(ma) - %—ué”-(x.a)]n.-o .

sess0e(3.2.15)
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Also, (3.2.14) can be written as :

-jw( 2w (Kea) ——(——-l—";:(g:) - Hﬁz"(x.a)]c.
yn { B8 (Kea)  _Ha>) (Kma))p
d [ — = ]n.-o. ..... (3.2.16)

For the 1last two equations to have non-trivial
solutions for Ca and De , the determinant must be zero.

Setting the determinant to zero gives :

(R (w8 e )7 - )"

i2)
- wz[—%— l’i‘f{%}—w(ma) - & n.‘.z"(x.a)]x

ed (2) Ja' (Kaa tn (2)
[ w2 Ty - £ ')

cesee(3.2.17)

The equation can be rewritten as:

4 Ju'(Kda) _ U= Hla"(xna)
“Ka _'('(_T"J. Kaa - X

Ka *a H:z, (Kea)
cda Ja' (Kaa €n ng), (Ks2)
“Ka ﬁ"_y)"a- Kaa T K 52 (Kaa) ]
2 2
- (TR Y 4 S
(m ) { ﬁ ﬁ] L4 00000(302018)
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Equation (3.2.18) is called the determinantal equation
or characteristic equation, which must be solved for the
propagation constant 7. The analysis of this thesis
will be centered about this eqguation.

It should also be pointed out that this determinantal
equation is valid for any two-medium cylindrical waveguides.

The characteristic equation gives the propagation
characieristics of wavequides and this is very important in
understanding the behavior of the fields. In the
investigation of waveguides, one must solve or obtain an
approximate solution of the determinantal equation to
understand the field behavior.

3.3 Analysis of Perfect Conductor Waveguides

In order to have a greater understanding of the field
problems we are dealing with, it is instructive to review
the microwave case in which the metallic waveguide wall can
be treated as a perfect conductor. Such a waveguide serves
as a preliminary model for microstructural waveguides.

An important characteristic of good conductors is that
the tangential components of the electric fields are close
to zero at the surface of the conductor.

Eza, Hza, and E¢ are rewritten here for reference:
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Ezd=As Ja(Kdr) cosmeé) e ' 2 ceeee (3.2.1)*

HaoeBa Ja(Ker) sinmé) e 7% < .....(3.2.2)"

_ 1 ,_ v 08E . 8Hz
E¢— —iz( i_- W +qu ar ) - 00000(30206)

Suppose now that neither As nor Ba are zero. Let us
apply the boundary conditions. There are two arbitrary

constants, so we use two conditions.

First, at r=a, Ez must vanish, since it is parallel to

a perfect conductor. Thus from (3.2.1) *,
Jﬂ(ma) "0 °

Secondly, at r=a, E¢ must vanish for the same reason. From

(3.2.6) this requires,

-L ) =0

Since E: and consequently %% vanishe at r=a, this reduces
to :

8Hz _

- 0

and so fronm (3.2.2)*:
Ja' (Ksa)=0 .
Because Ja'(Ksa)=0 and Ja(Ksa)=0 can not be satisfied
at the same time, we have to choose one of As, Bs to be zero
at a time.

If we select As= 0, then from the above argument
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Ja' (Kda)=0 .

In this case the electric fields are on the transverse plane
only, and we have a TE mode.

If we select Ba = 0, then
Ja(Kaa)=0 .

In this case the magnetic fields lie in the transverse
plane only, and we have a TM mode.

It follows that we have only two kinds of modes, TE
modes and TM modes.

For a waveguide wall consisting of a good but not
perfect conductor, we have that:

Ja(Kaa) —> O for TM modes
and Ja'(Ki@) —— O for TE modes .

In this case the determinantal equation can be v:,ived
by perturbing Ja(Rda) or J='(Ksa) respectively about their
zeros, that is, expanding Jea(Kia) or Je'(Kea) in a Taylor
series expansion about values of their arguments which are
roots of these functions. We will discuss this in detail
later.

It should be mentioned here that, ¢£oi circular
cross-section waveguides, Ja(Ksa) = O or Jo'{Kaa) = 0
holds only for perfect conductor waveguidez. No great
significance should be attached to this fact. It Hould not
be allowed to color our ideas about waveguides in gensral.

We will come back to this point in Chapter 4.
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4 AMALYTICAL RESULTS FOR CYLINDRICAL MICROSTRUCTURR.

WAVEGUIDES

4.1 General Comments

Although the transmission characteristics of
cylindrical metallic waveguides are well-known at microwave
frequencies, the theory is invalidated and therefore must be
altered for operation at optical wavelengths in a
micron-sized waveguide of circular cross section. For the
latter, the metal no longer acts as a good conductor, but
rather as a dielectric having a complex dielectric constant.
In the subsequent analysis, therefore, we consider a hollow
circular waveguide having an external medium made of an
evaporated gold film whose optical properties are
characterized by a finite complex refractive index.

To solve the radiation transmission problem in hollow
gold-coated waveguides of circular cross section, we have
several alternatives: first, because the reflectance of a
gold film is very high for infrared radiation, it seems to
be possible to perturb the perfect conductor boundary
conditions. i.e. to perturb Ja(Kda) or Ja'(Kaa),
respectively, in the determinantal equation(3.2.18).

However, we will show that in cylindrical
microstructural waveguides, the assumptions that the
tangential E-field at the boundary is small and consequently

that Ja(Ksa)—>0 oOr Ja'(Ksa)— 0 could lead us to
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contradictions in some cases. In those cases, perturbation of
Ja(Kda) or Ja'(Ksa) is physically unrealistic and does not
provide solutions to the characteristic equation.

The essence of the perturbation calculation is to
determine a small change in the propagation constant of the
electromagnetic field in a loss-free waveguide, due to a
small departure of the ruysical system from the loss-free
model used. Thus the perturbation method depends on the
unperturbed model. This is the limitation of the method.

The second alternative is that we may use the power
flow method, which is explained below in more detail.

Because of the imperfectly conducting waveguide walls,
the electric and magnetic fields propagating along the

-02

waveguide will posses an attenuation factor e ~. The field

magnitudes can be written as

|E| = |Eoje 2

|B| = |Ho|e™

where Ho and Eo are the intensities at z=0.
Thus the time-average power transmitted through the
waveguide is expressed by

Wr = Wo e %% |

where Wo= J“%- Re(toxno*) -da; the integration is over the
cross section of the waveguide.

The power loss per unit length of waveguide is the
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spatial rate of decrease of power transmitted, i.e.

awT

32 = 2aWr .

W= -

Hence, we obtain the desired relationship for the attenuation
constant:

_ W
@ = 2w °

The problem is that in many cases of interest it may be
difficult to calculate W. and Wr. To calculate these
quantities, we have to know the electric and magnetic field
distributions. However, the electric fields and magnetic
fields are determined by the unknown attenuation constant a.

If we assume the guide walls are perfectly conducting
or that at least we can apply the boundary condition that
the tangential component of electric field is close to zero,
then the distributions of electric and magnetic field
intensities in the interior of the guide or on the guide
walls are, except for attenuation in <the direction of
propagation, essentially those that exist in a loss-free
guide. Therefore, from Poynting's theorem and the tangential
magnetic field intensity, the power flowing into the gquide
walls may be calculated. Since we can also calculate Wr, it
is possible to calculate the attenuation constant.

However, this method is only valid for those perfect
conductor waveguides or waveguides with modes whose boundary
conditions are such that the tangential components of

electric fields are close to =zero. The method is not

27



universally applicable.

From the above discussion it is clear that it might be
possible to use the perturbation method and the power flow
method to derive the propagation characteristics of
circular microstructural guides, but we have to use these
methods with some discretion. As a matter of fact, these
methods should not be applied without analyzing the
determinantal (characteristic) equation first. Because the
determinantal equation contains all the information about
the characteristics of wave propagation in waveguides, we
can not set aside the determinantal equation and make our
own assumptions about the fields within the guide or at the
guide boundaries.

The assumptions Ja(Ksa)——0 or Ja'(Ksa)-——0 can not
be made a priori. However the determinantal equation itself
can tell us if these assumptions are really correct. By use
of the determinantal equation we will show that for TE modes
in microstructural cylindrical waveguides, Js'{Ksa)——0,
which implies also that E¢ = 0. Hence for TE modes, the
perturbation and power flow methods may be used to calculate
the attenuation constant a«. Calculation of the attenuation
constant « for TM modes and hybrid modes is more difficult
and will be investigated later in this thesis.
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4.2 Designation of Modes

Because hollow microstructural waveguides are completely
new devices to be analyzed for the first time for cylindrical
systems in this thesis, any ideas and techniques from the
microwave frequency waveguides or optical waveguides of
large dimensions should not be accepted without questioning.
As it will be shown later some ideas are still applicable
to our microstructural guides, but we have to prove this by
analyzing the determinantal equation, which, as mentioned
above, contains all the information about the electromagnetic
fields in the waveguides. We can not even take the existence
of TE modes or TM modes for granted. Fortunately they do
exist in our case, under some special circumstances.

As a matter of fact, in a cylindrical guiding structure,
it turns out that a TE or TM mode is possible only if
either:

(1) the outer surface is a perfect conductor;

(2) the field solution has no ¢ dependence, i.e it
has cylindrical symmetry.

For all other cases, in particular for our gold-coated
microstructural waveguides, both an axial E and H must be
present so that it is possible to satisfy all boundary
conditions. The field solutjons in those cases consist of a
superposition of TM and TE’ modes in both the loss~-free
dielectric region and the metal region.

From the determinantal equation (3.2.18)

29



[udJm' (Kea) _ usHao ' (Kma)] [Mda) EnHao ' (Km al]

KaJnm(Kda) KmHIf.Z)(K a) KaJm (Kaa) Kmﬂéz’(l( a)
a
_-( ) [ Kz Kﬁ *
We have, if m=0,
uaJo' (Kaa) _ _uaH$® ' (Rma) _
f&r_o?éaa) o p— =0 ceeoo(4.2.1)
or
edJo' (Kaa) _ smﬂéa"(K a) _ 0 (4.2.2)
KaJo (Kda) KaH'? (Kna) ceees (4.2,

We will now prove that (4.2.1) implies Ez=0.

We rewrite (3.2.11), (3.2.9), (3.2.10)

L (2B pAnTn(Kea) +JwpdKaBaTa' (Kea))
K3
= —Ilé(— Culis? (Kna) +jwptaKaDaHs * (Kaa) )
eeee(3.2.11)
AnJn (Kda) =CaHi> (Kna) ceree(3.2.9)
BoJn (Koa) =DzHS2) (Kaa) ceee.(3.2.10)

Equation (3.2.11) can be changed to,

L

K

( I8 AnJn(Kda) +3wWHdKdBaTn' (Kea) )

I AnTa(Kda) +jwinKaDuHa~ ' (Kna) )

—;‘E(:
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Dividing both sides by Ba,

Ly B2 o (Kea) +jwnekada’ (Kea) )

K4

= 1 (3 g_.gg.,(xda)+jwuml<m2‘5}!§2)' (Kna) )

K a Ba

From (3.2.10), we obtain,

E___ Jnnga)
Ba  pl?) (Rna)

Hence we have ,

—1% —%E An e(Kea)+jwpdKeTn' (Ksa))
= L (2 2oy (Raa) +wpn Jo(X42) 121 (Raa))
Ka Ha"" (Kna)
Dividing both sides by Ja(Ksa),
1l 7m An _Jan' (Kda)
—( +jwude Fa(Kaa) )
ey
=2 -5 0 Aa =t o ! (Kna)
= — J WitnKm
e e (Kna) )
Therefore,
M Am, 1 ) jo( Md Jn'(Kda) _ um Hn‘-Z)'gK nd)
a Ba KE K Ka ~Jn(Kaa) Kn e (Kaa)
It follows that,
_Q-;_a ( ) jw(yﬂ Jm'gxda) o HUn H.‘F"gx na)
Ba Iﬁ B Kda Jm(Kda) Kn e (Kna)
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From (3.2.18),
(ud Ja' (Kaa) _ _Ho H:ﬁz"gxnaz]x

Kd Jn(Kda) Kn H.ﬁa) (Kna)
€d Jun'(Kda) _ _é&nm Hao ! (Kma)
Ka Jn(Kda) Kn (2)

Hat) (Kna)

=-(Z§)[;-%]

We can express m as,

m-=
j.‘*&[ ud Jn' (Kaa) _ _H= Hf)'gxna)];’z
' Kd Jm(Kda) Ko Hn(‘a) (Kna)
€d  Jn'(Kaa) _ _€m Hao ! gha)]“z [_1_ - _;__]
Ka Jm(Kda) Ka B2 (Kna) K K2

Then we have,

[ud Jn' (Kda) _ _Wno Ha? "J!(-a)]llz
An Kd Jn(Kda) Kan Hn‘lZ)(Kma)

Bo [ed Ju' (Kaa) _ _€m Ha(:z"(l(na)]uz ceees(4.2.3)
Ka Jn(Kda) Km N (Kna)

When (4.2.1) is applied for m=0, the numerator in the
right hand side of (4.2.3) becomes zero, and therefore we

have,
An = 0

From (3.2.1), this implies Ez=0. Thus the electric
field is transverse to the axial direction. We call this a

TE mode.
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Equation (4.2.3) can be written as,

[ €4 Ju'(Kea) _ _€= (2)'(1( al]“2

Ba _ Kd Ja (Kda) Kn (a) (Kaa)

An [ pe Ja'(Kad) _ U= Ha?' ' (Kn Q]llz
Kd Ja (Kda Ka (z) (Kna)

ceoee(d4.2.4)

When (4.2.2) is used for m=0, we have Ba=0 which, from
(3.2.2), in turn means Hz=0. That is, the magnetic field is
fransverse to the axial direction; it is a TM moce.

Therefore, (4.2.1) is the determinantal equation for TE
modes and (4.2.2) is the determinantal equation for TM
modes.

If m=0, neither Az nor Bs=0, so that both Hz and Ez
have non-zero values. These modes are called hybrid modes.

Note that (4.2.1) and (4.2.2) can not hold at the same

time by solving (4.2.1) and (4.2.2) respectively for

Jo'! (Kda) , Jo! (Kaa
J'—'K—TL.,(K“ : since ems/ed»l, the two expressions for .':r—é('dﬁ)'

can never have the same value.

4.3 Simplification of Determinantal Equation

The attenuation constant for cylindrical waveguides
will be derived by a direct solution of the determinantal
equation.

Equation (3.2.18) is the determinantal equation for
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cylindrical microstructural waveguides, where
Ki =w2uae¢+12, K = wlusenty?, r=a+j8
and the complex permittivity is ea=e'-je". Hence, for

non-magnetic materials, us=md=po, and so we have:
K= ety = -g—: W pnedty= '2‘3 wpacat+y’

From [22], inside the gold film:
K2 & wjsca

This approximation is proved as follows.

For a moderately lossy waveguide, the real part of 7
(attenuation constant) is much smaller than the its
imaginary part (phase constant). Also when losses are
small,the phase constant of a lossy guide is approximately
the same as that of loss-free counterpart.

For the loss-free guide,
172
7% (dzuoeo (1- (%2) z)

where f is the frequency at which the waveguide is operated
and fc is the cutoff frequency. The cutoff frequency is
discussed in more detail in Section 4.4.

/

172
Since K = 7%+ W’umen # wioco(1- (%5) 3+ wnea

and for typical operation of a guide f is generally larger
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than 2fc, then K& & wieco + & uaca.
Comparing the two terms in the approximate expression of
Rf, we find that wimen > wzuoeo, because €&a » €4, as

mentioned in Section 3.1.

Hence, KE o wzu-c-

or Ka & W/iata

Ka % wVlloEo VEa/Eo

Since

WVilo€o = -i—:!

and vEa/co = N = n-jk .

We have that
Koas- 52 (n-3kK) .

In this thesis we examine microstructural waveguides
for which the ratio a/Ao ranges from 1 to 20. Cases for
which a/ao > 20 are excluded from this study. On the other
hand if a/ae < 1, the losses become prohibitively large and
will also not be considered. .

The approximate size of Kea is easily evaluated. At
1.033um when n-jk=0.272-j7.07(TABLE I) and for a/A.=1, |Kea|

is about 42. This corresponds to the smallest value of Kea
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encountered in the present research(see values of n and k
in TABLE I used to calculate |Ksaa|).

It follows therefore that: |Kea| » 1

Thus the magnitude of the argument of the Hankel
function of the second kind is much larger than one, and we
can apply to the determinantal equation the asymptotic
behavior of the Hankel function for large arguments, namely

Hi- ! (Kaa) y =
B2 (Keaa)

This result follows from the identity({27], [28]:

x B v (x) = mEs® (%) - (x)B (%)

which leads to

H-‘-a"(xz - R B (x)
N (x) X 72 (x)
From (23], for sufficiently large x,

H‘Z) (X) o s’z7n_x e-jlx-mc-n/zl

H‘Ei (x) = m e—nx-tm-(-mnlzl

Thus
(2) Jtas1)TI72
Hs "' (Xx) n__e - B _ _me
B (%) & X oPN/2 x
Therefore,
BOX) LBy
H:z) (x) X
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Thus for Kea sufficiently large in relation to m,

I‘!;2) ' (K-a) «
a2 (K=a)

vValidity of this approximation for our research will be

-j.

discussed in Chapter 5.

Hence the determinantal equation(3.2.18) then simplifies

to :
(4 o) [ S + &3]
- )

o0 000 (4.3.1)
Similarly, from (4.2.1) the simplified determinantal

equation for TE modes is

maJo! (Kdaa

‘h ==
Kle(kaa) T ®d =0 cesee(4.3.2)

and from (4.2.2), the determinantal equation for TM modes
simplifies to

%J:_'(_é%)_ + -—;:—j =0 .e0..(4.3.3)

We will discuss the asymptotic behavior of Hankel
functions in more detail in Chapter 5.
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4.4 Characteristics of TE Modes

We shall derive here an approximate expression for the
attenuation constant a of TE modes for which m=0, and which
are therefore cylindrically symmetric. The approximate
expression for « is obtained from the determinantal
equation. Having done this, we shall then take the limiting
case of the expression that has been obtained for a as n and
k are selected to be representative of a perfect conductor.
This limiting value of a will then be shown to be identical
to that of a metallic waveguide at microwave frequencies.

Having done this, we then evaluate the approximate
attenuation constant a for a gold-coated microstructural
waveguide a second way, using the power flow method.

From (4.3.2), the determinantal equation for TE modes

for a non-magnetic material is:

JO' Kda = -jﬁ
Joina; Kn
Because of the relation derived in Section 4.3, namely,
Keas-—"2- (n-jk)

the determinantal equation becomes:

Jo ! (Kda - Ao 1
(Kaa)Jo (Kdaa) iz n- ceeee(4.4.1)
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We can see that if a/Ao=1 and Ae¢=1,033um the value of
the magnitude of the right hand side of (4.4.1) is roughly
1/42, which is much smaller than 1. As 2. is in the range
1um-10um and a/Ac is from 1 to 20 for this research,
1/42 is the largest value for the magnitude of the right hand
side of (4.4.1). Thus the determinantal equation itself
shows us that the left hand side of (4.4.1) will be very
small, which means that Jo"(Kda) is very small. 1In
other words, it is consistent with the determinantal
equation that Jo'{Ksa)——0. Physically this means that the
tangential electric field E¢ of TE modes at the boundary is
close to zero.

Since Jo!(Kda)———0, We have Kia = pién, where pén is
the n-th root of Jo'(x)=0. Therefore by analogy with the
lcssless waveguides, the TE modes can be denoted as TEon
modes.

From the identity, Jo! (x)==J1(xX), we can rewrite the
determinantal equation (4.4.1) as:

- _J1(Kaa
Jo (Kea

-j(ma);‘:—;— ni ao.oo(4o402)

We will find an approximate solution to this equation
for TE modes.

As mentioned above, for TE modes, E¢ goes to zero at

r=a. This follows since Jo'(Ksa)—0, or equivalently

J1(Keaa)——0. Thus Ji(Kia) on the left-hand side of (4.4.2)
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can be expanded around the point pin, where pin is the nth
root of Ji1(x)=0.

Performing a Taylor series expansion and retaining only

the first two terms,

J1(Kea)® J1(pin)+(Kea-pin)J1* (x) | o

Taking into consideration the identities

J1? (X)8Jo(X) - —L-J1(x) J1(x)8-Jo' (X)
Pin

we obtain Ji1(Kaa)s(Kda=pin)Jo(pin). Now take this together
with Jo(Kaa)aJo(pin), and (4.4.2) becomes

1
n-JjkK)

Kda-pinatj (Kea) 217:; 7

Hence Ka H—P%"— (1/(1-j7‘° 1 ))

2na n-jk
Since |j217:; —n!_'-j-k—k 1 and ﬁ # 1+x for |x|¢ 1,

therefore, Ki = (%)2(1"'3!;,% ni ))2

Now (1+x)% 1+2x  for |x|«c 1

Thus,
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Ki o (E}_’i) (1+2jma —n-_—i-k—)

Since 7= K+ K8 and K’= (—-;"z’ol-)z

hence =i+ KR (142322 mgmy) (o)
s v (1B (23 )
or ,

723 _kz[ (1_(22;10) ) (plnlo 2;-:2:; 1,,1'5;:)

Therefore, taking the square root of both sides of the above

equation it can be seen that:

172

1-31:[(1-(9;—;-}"—)’) (Bizde)2 53 Re L)oo (4.4.3)

In a perfect-gdonductor waveguide, there is a cut-off
frequency. Below that frequency, the waves interfere
destructively and vanish after a very short distance. Above
that frequency, the waves are transmitted without any
losses.

It is quite different for a non-perfect-conducting
waveguide. In such a waveguide, there are losses at all
frequencies. Thus, a distinct cutoff does not occur. But the

concept of the cutoff frequency is still useful for
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non-perfect-conductor waveguides. For the latter the cutoff
frequency is the frequency below which losses are very large
and akove which they are relatively small.

For TE modes in a 1loss-free perfectly conducting
waveguide, the cutoff wavelength[23] is ae=%'-:%. The
corresponding cutoff frequency is fc=1/AeviioEo.

Hence, when £ z 1.5fc, which defines the typical

operating range for £ in a waveguide systen,

Aczl.520 and we can obtain the following:

1ndo < 2
2na 3

From the above inequality, it follows that

|1-Baa2ey2| > |- (Bidey? 232e 22

ama (n-jk)

xl/Z

and since (x-y)'%& x'3- %x"’zy, for |x| » |y|,

(4.4.3) can be written as :
v o k[ (2-BRRR %) -

% (1- (p_;;:o) 2) m172 ( (L';;:o) 2 ij’:; (nijﬁ) ) ]

The attenuation constant a for TE modes with m=0 in gold-coated

microstructural waveguides is obtained from the above by

equating real and imaginary parts in y=a+jg

n 1ndo, 2
a = % n2+ ka ( (%) // 1_(2;;:0)2 ) ..... (4.4.4)
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We can now show that this result agrees in the
limiting case with the attenuation constant a for TE modes
in a metallic waveguide in the microwave region. In this

region(23],

Rs f%( £5, "2
= e e 1/(1" o ] ooo-o(4c405)

where the intrinsic impedance is %= —) 2 = and the

nfuo) 172

14

surface resistivity is Rs = (—%—
as mentioned in Chapter

Since e"/go = 2nk, and o=we",
()

3, it follows that 2nk = 500 '

For a good conductor, since 0 — » we have,
lk e'- e" & 1/2
N=n-jk= Ven/€o= (———J——) = eo -3eow

/
n-jk ('Jeow Ve = ('i?:'oﬁ)uz( =3)

_ 2_ O
It follows that n=k and n'=ge—>s
n - _n _ 1 _(Eon1r2

Therefore — = 55 (—---2 0')

n+ ka 2n2

But (eow) 172 _ e;nf)xxz = _:i_:)uz(nguor/z: %s_
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also, since aAc = 2na , £c = 1/AcVloEo .
Pin

and hence in (4.4.4) (E;—;‘%ﬂ) 2=(%°:-) 2=(.f_°:)2

It can be easily seen that in the limi{ as the walls
of the guide become perfectly conducting, *he approximate
attenuation constant (4.4.4) has exactly the same form as
the attenuation constant at microwave frecquencies, given in

(4.4.5).

We will now use the power flow method to derive the
attenuation constant. While this approach for finding a is
conceptually different from the approach using the
determinantal equation, the end result is shown to be the
same. As shown in Section 4.1,

WL
2Wt

a =
To evaluate the losses due to the imperfect waveguide
walls, we at first try to obtain the electric fields and
magnetic fields in a perfectly conducting guide. As
mentioned above the circumferential electric field intensity
E¢ at the boundary is very close to zero. However there
will be a tangential axial magnetic field intensity on the
boundary of the waveguides. Therefore, we may evaluate the
power dissipated per unit length of surface in the waveguide

walls by using Poynting's theorem. The power loss per unit

length of guide is obtained by integrating the power density
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over the surface of the boundary corresponding to unit

length of waveguide.
&*
Thus W=f, (Re(ExH ))-dS

where §’ds denotes the integration over the surface of the
waveguide of one meter length in the z-direction.

For TE modes we express the above as:

W= L §Re(E$ x Hz')-dS

but since Mm = %‘% and VxE = -jwuH
= B -5 jwv/iacn
™= g = jop/vm , here ¥m=JjWVunEn
MNm = Vun78n

*
then WL = %é‘sRe('nn Hz-Hz)dS = %Re(‘nm)fslﬂzlads

For non-magnetic materials,

M= Vin/€a = Vilo/€o-VEo/En = Mo -(H%?]ET
and hence, Re(mm) = 'nc-—al-—2
: n+ kK

Because Hz= HoJo(Kda), for TE modes,

from [23], the integral .stHzlzdS =2anH5J5 (Ka)

zn > 2anHaJs (Kda)

n“+ K
Next, the power transferred is,

and hence WL = -;- To

W'r=.l"% Re (ExH") -da,

where J‘Ada is the integration over the cross section of
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the waveguide. Since the fields we are using are those for
loss~-free propagation, this integral is identical to the
usual integral for power flow at microwave frequencies in a

perfectly conducting waveguide. It is given by [23].

Wr

2 172
na Acy 2 Aoy 2 2
= m(3) (1— =) ] H3J5 (Kda)
If we substitute Wr and W. into a = W./2Wr, then we
obtain an expression for a which is exactly the same as the

formula for a obtained earlier in (4.4.4), using the

determinantal equation as a starting point.

4,5 Characteristics of TM Modes

In this section, we wish to show that for TM modes of
microstructural <cylindrical wavegquides, unlike their
microwave counterparts, Jo(Ksa) can not be close to zero in
general.

From (4.3.3), the determinantal equation for TM modes,

when using the large argument approximation, is

Jo'(Kda) _ _: Kd €a_
T,Té?a_)l- J Kﬂed o-oaa(4u5.1)
where Ka can be expressed in terms of 2, n, k as in

Section 4.3

Kea & 27;3 (n-jk)

Under the condition that eda=eo, the determinantal

equation can be expressed as:
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Jo'(Kdaa) _ _; K@ €a . _
Fe(Kaa) ~ = ) FKea €0 ~pa—(n-3K)°

= =jKaa—r (n-Jk)

Rearranging the above ,

1’ﬁJQ;L'_L—J§?;da) = ~I5m 2,‘;a n-3k) (4.5.2)

If Jo(Kea) could be zero, the right hand side of
(4.5.2) would have to be jnfinite. However it will be shown
here that the magnitude of the right hand side of (4.5.2)
can be even smaller than 1.

For example, at Ao=1.033um, n-jk = 0. 272-37.07 and for
a/Ao=20, the magnitude of the right hand side of (4.5.1) is
about 1/20.

Now since the right hand side of (4.5.2) is small and
Kia has approximately the value of its louss-free
counterpart, which is not a large number (this will be
confirmed by numerical methods in Chapter 5), Jo(Kea) can
not be close %o =zero, otherwise it would lead to
contradiction in (4.5.2). This implies that Ez« at the
boundary can not be close to zero.

We conclude that such TM modes which can be deemed as
the perturbed counterpart of TM modes in loss-free waveguides

can not exist in microstructural guides at the wavelengths
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of interest in this thesis. The T™ modes which do exist will

be configured very differently from those existing in

lossfree guides

4.6 Characteristics of The Hybrid Modes

In the determinantal equation, if m#0 both Ez and Hz
exist. These are called hybrid modes.

It will be proved that for hybrid modes of reasonably
small m, Ju(Kda)——> 0 and Ju'(Kda)—> O can not be true.
This implies that neither E¢a nor Ezd can be zero at the
microstructural walls. We show this by assuming that E¢a and
Ezd are zero at the walls and then show that this assumption
leads to a contradicticn.

The simplified determinantal equation (4.3.1), when

Ud=um, can be written as:

[Ja' (Kaa)+j—ll§-:—a.(xaa) 1[(Ja" (Kaa)+j%§:—J-(Kda) ]
- _¢ym 2 1 1l 1l
= Cw ) e g T g ) KiTa (Kaa) ceree(4.6.1)

Taking into consideration that k2=w2uded, the right hand

side of (4.6.1) becomes

2.2
Tn Ki 2 1 *
2121 - ) JE(Kda) .<ev..(4.6.1)
x? KB (Kea)®
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We will numerically verify in Chapter 5 that the value
of Kdia is approximately equal to its counterpart in a
lossless waveguide. This means that for the mode of the
lowest order, Ksa will not have a value larger than 4. aAs we
stated in Section 4.3, the smallest value of Kea is larger

than 42. Hence we have,

Ki
K

<1

Thus by neglecting this term in (4.6.1)* and using
Kﬁ=12+kz, the right-hand side of (4.6.1) becomes:

2.2 2 2
-2 1 si(Rea)= (- Kn® __1 -T2 (Ksa)
X (Kaa) ' (Kaa)
=n?(1- Kz) L __Ji(Raa)
| 4 (Kaa)

So (4.6.1) is transformed into the following:

2
Ju'? (Raa) +3Foc0n" (Raa}Ja(Kea) +335Tn" (Kaa) Jn (Kea) -(3) S0 (Raa)

=m2(1- g)—l__i_‘ﬁ(x“) | ceees(4.6.2)
k® (Kaa)

In the left-hand side of (4.6.2), the third term is
much smaller than the second term by a factor of ew/cd,
(which we showed previously to be much larger than 1) and is,
therefore, neglected

Thus (4.6.2) simplifies to:
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2
Ja'? (Raa) +3acaTn (Kea) Jn (Kea) - () 308 (Kea)

Ki 1

=m°(1 )
k2 (K:sa)2

At this point, we suppose that:

T2 (Kea) ceeee(4.6.3)

Ja(Kda)—— O

Neglecting the terms which have Jﬁ(l(da) , (4.6.3) becomes:

Ju' (Kda) _ -3 Kdaen
Ja(Kaa Katd

This equation has the same form as the determinantal

equation (4.5.1) for TM modes. Therefore by the same
reasoning as that used in Section 4.5, we know that J=(Kda)

can not be close to zero.

As the next step we suppose that
Ja' (Kaa)——— 0

Neglecting the term which has [J-'(Kaa)]zin (4.6.3), we
obtain:

Ja' (K Ka 1
'7"(_)')‘3. ook = -ig - o1~ ‘l‘c‘) —

(Kda)

Thus we obtain

Jn' (Kdaz 2 Katd 1 2 Kacd 1
e+ 10 ——
Ja(Kda an j “Kaem (Kaa)z j Kica (ka)z

ceeees(4.6.4)
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Applying Kea @ —z:—:-(n-jk) and €d/em = Eoftm = 1/ (n-jk)2
the three terms on the right-hand side of (4.6.4) can be

written as:

first term : -} (Kea) s =L
mz 2na 1
(Raa)® Ao (B-3R)

w2 A0 1

TKaa) zma (n-3k)
If Ja'(Kesa) could be close to 0, then the right hand

second term : -j

third term : +j

side of (4.6.4) would have to be close to zero. However we
will show here that the right hand side of (4.6.4) can be a
number much larger than zero.

Estimating the values of the above three terms in a
similar fashion as in Section 4.4 and 4.5, we can see that
the first and the third tesias are close to zero. But if a/a.
is 20, and say Ac=1.033um, where n-jk=0.272+j7.07, then the
second term is roughly about 1. Therefore, the right-hand
side of (4.6.4) is not very small and Ja'(Kea) can pot be close
enough to zero that perturbation methods can be applied.

Thus a hybrid mode will have significant tangential
fields E: and E¢ at the waveguide walls.

Since for hybrid modes both Ez and H: exist we will
next define a quantity which by its magnitude measures the
dominance of the longitudinal electric field Ez over the
longitudinal magnetic field H.

Equation (4.2.3) gives the ratio of the amplitudes of
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both these field components at their respective maxima in
their dependence on ¢. The ratio has the dimension of an
impedance. In a homogenecus medium, a plane wave has the
wave impedance (intrinsic impedance) (23]

me = 3
where po is the permittivity of free space.

Let us now define a factor,

R = 7e¢

113

Taking into consideration that

Eza=Aa Ja(Kar)cosm¢) e ¥2

Hzd=Ba Ja(Kdr)sinm¢) e ?2

R tells us to what extent the ratio % differs from the
plane wave impedance in a medium. For |R|<1l, Ez dominates
over Hz compared to the ratio of Ez to Hz in a uniform plane
wave. It is an E-like mode.

|R|>1 means that the magnetic fleld disainates over *he
electric field. It is an H-like mode.

From (4.2.4) we have,

[ed Ju' (Kda) _ _¢&nw H:z)'(K-a) 1/2

Ba - Kd Jda(l.ca Kn 332) (Kna)
As [ pge  Jn'(Kda) _ _us H-“Z)'(K-a)]"a
Kd Ja(Kea Kn H:z) (Kna)



Therefore R can be written as

€d_ Ja'(Kaa) _ _€n ‘2"(K :-.1)]“2
Kd Jn(Kaa) Ka (2)(K a)
[ _Ja'(Rda) _ _us _Ha' '(Kaa) ]"2
Ji(Kda) Ka HéZ)(K-a)

R = j2F

It is readily seen from (4.2.1) and (4.2.2) that for

TE modes R=x, and for TM modes R=0.
R will be used in Chapter 5 as a criterion to decide

what kind of mode a specific numerical value of 7 represents.
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5 NUMERICAL RESULTS FOR CYLINDRICAL MICROSTRUCTURAL
WAVEGUIDES

5.1 Numerical Methodology

In Chapter 4 we discovered that for T and hybrid
modes, because the real physical system differs
significantly from the ideal microwave model, the
perturbation method can not be applied. Consequently, in a
nicrostructural guide, the TM and hybrid modes will be
configured very differently from their counterparts in a
wicrowave waveguide. The field configurations of TM and
hybrid modes are not readily known. Thus it makes the
field analysis prohibitively difficult. As a preliminary
attempt to solve this difficult problem, however, we will use
a numerical method to calculate the propagation constants of
the TMo: mode and one hybrid mode.

For our numerical work of solving the determinantal
equation for the root 7, weuse a software package named
Mulrun-General. Its numerical analysis is based on Muller's
method, which is an algofithm for finding the complex roots
of equations. We now explain it in some detail.

If all the terms of the determinantal equation are
taken to one side, then the equation of which the solution
is to be found is of the form

£(x) = f1(x)-f2(x) = 0 ceeea(5.1.1)
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Suppose we know the values of £(x) for three distinct values
a, b, ¢. They are f(a), f(b), f(c). We call a,b and c¢
initial values.

We can construct a second degree polynomial P(x) such
that

P(a)=f(a), P(b)=£f(b), P(c)=£f(c)
We find the zeros of P(x) and select one of them, d, to be a
new initial value which is better than the former ones a,b,
and ¢ in the sense that it is closer to the solution. We
repeat the process again by using b, ¢ and d as a new set of
initial values to find a better new initial value and so on.
An illustration of this process is shown in Fig.4.

The advantage of Muller's method is that it can be
carried out using only the values of the function £(x)
itself. As for our software package Mulrun-General, we will
need only one approximate value of 7, which we call the
initial estinmate. The other two values will be chosen
automatically by the program.

Muller's method has two disadvantages and they are:

(1) This algorithm will give several solutions for one
equation. We have to decide which one is the right one. For
evary zero q, the algorithm will evaluate (5.1.1) at gq,
namely, £(q)=fi(q)-f2(q).

Because q is the zero of f£(q), theoretically f£(q)

should be zero. However for a computer algorithm, £(q)
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generally is not exactly equal to zero even though it is a
very small number.

The problem is how to decide if f£(q) is small enough so
that we can accept q as the numerical root.

Here we choose the zero q so that f£(q) is smaller than

fi(q) or f2(q) by at least a factor of the order of 1079,
We may obtain more than one q satisfying this criterion. In
this case we choose the q which yields the smallest value of
£f(q) and at the same time is physically meaningful.
(2) The numerical roots obtained depend on the initial
values, especially if the eguation has several roots. If we
select the initial values far from the desired root, the
root obtained may not be the correct one. Thus the
precondition for obtaining a correct numerical root is
that we have initial values close to the desired root.

This may cause a serious problem in trying to solve a
determinantal equation, because it will have many roots with
each one representing a different mode. Thus if for a
specific mode we choose initial estimates which are too far
from the correct value of the root, we can end up with a
root from another mode.

It should be pointed out here that even though the
propagation constant ¥ of TM or hybrid modes is not the
perturbed one of its microwave counterpart, the 7 obtained
from the latter (microwave counterpart) is still useful as

an initial value. This is due to the fact that the imaginary
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part of 7 is approximately the same for both the actual
lossy physical system and the microwave counterpart as
mentioned in Section 4.3. We derive an expression for 7 in
the Appendix.

In Section 5.2, the Hankel function approximation used
in our analytical analysis in Chapter 4 is numerically
justified.

In Section 5.3, we compute the numerical solutions of
the determinantal equation for the TEn mode, using the
analytical results as initial values.

In Section 5.4, we use the results from the Appendix as
the initial values to obtain numerical attenuation constants
for the TMo: mode for a/Ae from 1 to 20. As mentioned above,
the formula for the propagation constants of the TMo1 mode
from the Appendix does not represent the true physical
propagation constants in general, which means the initial
values for Muller's algorithm may not be very close to the
true physical values of the TMo mode. Thus we have to
confirm that the attenuation constant for every value of
a/Aec is indeed from the TMo: mode. We do this by examining
the radial variation of Eza, to determine which zero of the
Bessel function Jo(Kar) or Ji(Kdr) lies near the waveguide
wall.

In Section 5.5, we analyze a hybrid mode of lowest
order, which means it is the counterpart of the TEu mode of

a microwave waveguide. In other words, Wwe begin by
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propagating a TEi1 mode in a loss-free microwave waveguide,
and then gradually change the guide wall to a material which
assumes the refractive index of a gold film fbr infrared
radiation, as listed in TABLE I. We call this wave the
lowest order hybrid mode. The numerical attenuation
constants are obtained for this mode for a/ao from 1 to 20
using values from the formula for the TEn mode in the
Appendix as the initial values. We show that these
attenuation constants for a/A. in a range 1 to 20 do not
specifically represent an E-like wave or an H-like wave.
This means that for some values of a/Ao the attenuation
constants represent aa E-like wave but for other values they
represent an H-like wave.

We are obliged to remind the reader that the numerical
analysis here is preliminary in the perspective of future
work. We are tackling here a problem as large, complicated
and original as the development of optical fibers. We are
developing hollow micrometer-sized metal-coated optical
waveguide theory!

one of the important achievements in this research is
that we prove that for waveguides of circular-cross section,
the microwave waveguide is not universally applicable as an
model for a microstructural guide. For the latter, the
propagation characteristics are in general not perturbed
cases of the former, although it is true for TE modes. Thus

the field distributions of the other modes can not be
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obtained by perturbing their microwave counterparts.

Unfortunately, a full understanding of the propagation
characteristics for TM and hybrid modes of microstructural
cylindrical waveguides depends on the knowledge of field
distributions of these modes. The field distributions appear
to be so complex that a detailed study is simply beyond

the scope of this investigation.
5.2 Asymptotic Behavior of Hankel Functions
In Section 4.3, we mentioned that :

}éa) ' (Klal N _j
He? (Kna)

In this work the magnitude of Kea is always larger than
or equal to about 40. We can not, a priori, decide if this
value is large enough so that the above V_approximation is
adequate to permit accurate determination of the propagation
constant y from the determinantal equation (3.2.18).

For the purpose of obtaining more precise numerical
results, and verifying that the simplified form of the
determinantal equation is accurate enough for theoretical
analysis, we have to use the asymptotic series expression

for Hankel functions. From [27], ([28] :*
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r (m+s+%)

Q
(2) 2 \1/2_-)[X-alt/2-11/4] 1l
B (x) = ()% )

=0 (2j%)°  T(s+1)T(m-s+3)
+ of x'°)
Similarly, we have
N el Q T (m+s+>)
Hu(:ﬂ (x) = (%E)Uze—][x MN/2-31/4) 1 2

s=o (2jX) ° I'(s+2)T(m-s+3)
+o( x9

Here O is the Bachman-Landau symbol which denotes a function
of the order of magnitude of x °.
In Section 4.3, we mentioned that

B v(x) o om _ Hedl(x)
H||(|2)(X) X H:z)(x)

(2)

]
We <can calculate a more accurate value of li‘-—-(l‘l-

Hﬁz’ (x)

than that of section 4.3, numerically.

For x=Kea oOf interest in this research, if o=50
Q

, the

=50

term (Kea) & 42 which is small compared to the explicit

summation of the asymptotic series for the Hankel functions.

By numerical calculation, we find that the approximation
{

H® ' (Kea) _ _y
Hi2 (Kna)
is generally accurate to within 0.5% . This value justifies

the use of the approximation in our analytical analysis in

Chapter 4.
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For more precise numerical solutions of the
determinantal equation, we use in our numerical calculations

the series representation of the Hankel function given above.

5.3 Numerical Results for TEo1 Mode

As we stated in Section 4.4, the perturbation method
and power flow method can be applied to TE modes. Using both
methods, we have obtained analytical formulas for the
attenuation constant. The formulas obtained by the two
different approaches agree with each other. We are going to
further verify this agreement using numerical calculations.
The numerical analysis method will be explain here in some
detail.

The determinantal equation for TE modes can be

expressed as (4.2.1)

uaJo' (Kaa)  _ _psHa® ! (Kma)
KaJo (Kda) Knﬂc(,z’ (Kaa)

=0 .....(4.2.1)

In this equation, pa and u= are known constants of the
materials. The unknown variables are K¢ and Ka. which are
related to 7 by,

Kd2=12+w2u.d€d ' Rzpwz-l-wau-e-
Hence the only unknown is the parameter 7¥; i.e. 7 is

the root of (4.2.1). The values of 7 obtained in Section 4.4

by analytical methods will be used here as initial estimate
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for Muller's algorithm.
More specifically, we use pairs of a and 8 as initial
estimates. a is derived in Section 4.4. We rewrite it here

as

a‘l'Eon=-;. Zn k 1“;\°) /V 1- ( lnho )
ceces(4.4.4)

We will calculate g8 from the expression for 7y derived in

section 4.4, namely

. jk[ (1- (E;nt:o)z) 12 _

1 Pindo, 2y-1/2¢ Pindo, 2
3 (1-GGE)) T (D) Jzna n-jﬁ))]

since g = Im(7), we obtain,

nAo, 2 nAo, 2 n lo Ao k
5 = (k)i o i) Ry 2

2n

Keeping in mind k = o

, we have,

g= A_n(l (Etnho) )1/z+(1_(E;;Ao) )-1/2(panlo 2 ; nz}:kz

Then we calculate the pairs of « and B as initial
estimates of 7y for a/Ao in the range 0.5-20.
By using those initial estimates we finally obtain the

numerical solutions of the determinantal equation. The
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results are virtually the same as theoretical ones for
a/Ao>1l. Therefore our analytical formulas for TE modes
would seem to be accurate for all practical purposes.

The attenuation constants of the TEo: mode obtained by
both numerical and analytical methods for Ao.=1.033um and
Ac=9.919um are given in TABLE II and TABLE III respectively.

The deviation of analytical results from numerical
results is less than 12% for the worst case.

Another important concept for waveguides is propagation
distance, which is defined as the number of free space
wavelengths that the wave will propagate before its
intensity is reduced to 1/e of its initial value. The
propagation distance is given by 1/ad..

We show the propagation distances of the TE mode at
1.033um and 9.919um respectively in Fig.5 and Fig.6.

From Fig.5 and Fig.6, it is evident that the
propagation distances are of the order of several
centimeters for TEo: modes.

The deviation of the approximate analytical results from
accurate numerical results is just as it is expected to be.
That is, as a/Aoc becomes smaller, the deviation becomes
larger. The reason for this can be seen by considering the
following:

From the determinantal equation (4.4.1)

Jo' (Kaa) Ao 1
(Kda JO Kda = -j-zi'; (n_ ) oooo-(4o4.1)
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we see that as a/A. becomes smaller, the right hand side of
the equation becomes larger. Therefore for some sufficiently
small values of a/Ao the precondition for perturbation,
which requires a small departure of the physical system from
the loss-free model, is no longer satisfied. Therefore the
theoretical results obtained by the perturbation method
become invalid for very small a/A..

As we will see later the TEn mode is the most
loss-free mode in a microstructural cylindrical wavequide,
while the most 1loss-free mode for a microstructural
parallel-plate waveguide is the TEi0 mode[22].

Comparing the expression of the attenuation constant
for the TEn mode of cylindrical microstructural waveguides
with that for TEi0 mode of parallel-plate microstructural
wavequides[22] by taking radius of cylindrical guide and
plate-spacing of parallel-plate guide as comparable
counterparts, we see the cylindrical one is roughly 1/2 of

the parallel-plate one.

5.4 Numerical Results for TMo1 Mode

We have pointed out already in Section 4.5 that the
perturbation and power flow methods can not be used to
derive the propagation constants for TM modes. Because the

actual physical system differs significantly from the ideal
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model we are not able to obtain an analytical solution of
the determinantal equation in this case.

According to the analysis of Sections 4.4 and 4.5, TE
modes do not differ very much from the ideal lossless TE
modes, but TM modes deviate greatly from the ideal lossless
TM modes. It implies that for cylindrical microstructural
waveguides TM modes are much more heavily attenuated than TE
modes. This means that the differences in the attenuation
constants of TE modes and TM modes of micron-sized
waveguides are much larger than for microwave waveguides.

Because we can not obtain a formula for 7y for TM modes
of microstructural wavequides by analytical methods, we are
going to use the formulas obtained in the Appendix as
initial estimates for Muller's method. For convenience, we

present the determinantal equation (4.2.2) for TM modes

here:
£aJo' (Kaa) _ eaHs> ' (Kma) _
KaJo (Kaa) (2) (Kaa)
The initial estimate for ¥ from (A.2.1) in the Appendix
is

172 /2
v k(- By’ 0 - Emlyy ke Ay ]

Since a = Re(7r), 8 = Im(7), we can write
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1 n
o= a (1// 1_(22;;:0)2 )

n2+ k?'

/72 K

n+i°

172 -1
fe B - EE) @ an

We use the same numerical analysis method as in Section
5.2. The attenuation constants for 210=1.033um and 9.919%um
can be obtained, as shown in Fig.7 and Fig.9. The
propagation distances for A.=1.033um and 210=9.919um are
shown in Fig 8 and Fig.l10 respectively. They are in the
range of several millimeters.

When we are using the numerical method, we actually
calculate 7 for different discrete values of a/ao (0.7, 1,
2, 3,---- 20).

This means we have 21 sample points. It is possible
that for a value of a/io, the numerical root 7y may not
represent the TMo: mode (the meaning of TMon modes for
microstructural wavegquides is explained later in this
section) due to the fact that the initial estimates a and g8
are only valid fe¢r vee/eda » a/Aoc which no longer holds for
microstructural waveguides. 7 obtained numerically from
(4.2.2) using the initial estimates which are not very close
to the actual roots of TMo: may be the roots of TMoz,
TMos... etc.

Fortunately our numerical values do correspond to the

roots of the TMo1 mode as a/Ao varies from 1 to 20. We can
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see this by analogy with the ideal perfect conductor case.

For a lossless waveguide, we can plot the radial
variation of Ex by fixing ¢ to an arbitrary value. This
plot is shown in Fig.l1l. Ex varies as Jo(Kar) in its radial
variation. Fig.1l1 represents a normalized plot of Ez, as
given by (3.2.1)* .

For ideal lossfree waveguides, if Ksa=po1 we call it
a TMo: mode; if Kda=poz we call it a TMoz mode and so on.

In micrestructural waveguides, because the TMa modes
are heavily perturbed compared with those of 1lossfree
wavequides, we can not expect Ksa=po1. But if for a
particular a/ao the radial value of Ez does not go through
the first zero of Jo(Kar) in the interior of the guide, we
designate the mode as the TMo: mode.

The radial variation of Eza for the TMoi mode at the
free space wavelength 1.033um for both a/A.=1 and 20 are
depicted in Fig.12 and Fig.13, respectively. The values of
Kas used to plot these figures is obtained from the
numerically obtained values of 7 and Ki=y’+w’paca.

Similarly in Fig.14 and Fig.15, we show the radial
variation of Ezd at 9.919um for a/A.=1 and 20, respectively.

Comparing Figs.12-15 with Fig.11, we can see that the
radial values of Eza for Ao and a/Ao of interest in this
work do not go through the first zero of Jo(Kar) ‘in the
interior of the guide. |

Therefore we conclude that attenuation constants
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obtained by the numerical method for different a/A. are
indeed of the same mode, i.e. the TMo1 mode.

It should be reiterated here that the electric field
intensitty of the TMo: mode at the guide walls of
microgructural cylindrical waveguides is significant and

tigrefore the losses are quite large.

5.5 Numerical Results for a Hybrid Mode

From (3.2.18), the determinantal equation for hybrid

modes can be written as,

2

Md Ju'(Kda) _ _u= Hﬁ"gK-a)]x
Ka Ja(Kda) Ka H-(-Z)(K.a)

(- Srden - - £ )
+( Z’:‘ )2[ ltﬁ - :é]i- 0

We use formula (A.1.2) in the appendix for m=1 to

calculate the values of initial estimates, because we hope
to find the hybrid mode which is degenerate from TEu.

For m=1 n=1, (A.1l.2) becomes

v=-3x[1-(BL22) %425 (B2 (1/ak) Ly

.1 1 12
+23—_(1/ak)__57§-
pif -1 n ]

We have
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2 1_n pit1do,2 1 f1%0. 21 12
tTAEE ( G pif - 1 )/( 1-(B’)

2n plido,2 12 plido 2 12 plide,2 1 1 Kk
B'i':[]"( zma ) ] +[1'( Za ) ] ()™ pif - 1 NI

Therefore by applying Muller's method, we can obtain
the numerical solution of the determinantal equation,
namely, the attenuation constants, which are shown in Fig.16
and Fig.18 for 1.033um and 9.919um respectively. The
corresponding propagation distances are plotted in Fig.17"
and Fig.19.

As a next step, we will check if the numerical
results for different a/A. are of an H-like wave.

Similar to Section 5.4, as a reference we plot Ji'(Kar)
for an ideal lossless waveguide in Fig.20.

In order to see if the curve of the magnitude of
J1' (Kar) of our microstructural waveguides goes through its
first zero, we plot the magnitude of Ji'(Kdarj versus the
magnitude of Kar, as shown in Figs.21 and 22 for 1.033um and
Figs.23 and 24 for 9.919um. For Kdi we use again a value
obtained from the numerically calculated value of 7 and
Ki=vr*+w’naca.

Comparing Fig.21 with Fig.22, we see that the
curvature for the magnitude of Ji1'(Kdar) at a/Ar.=2(Fig.21)
is very different from its counterpart at a/a.=3(Fig.22).

The same phenomenon can be observed for a/A.=18, 19 when we
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compare Fig.23 with Fig.24.

We now give the explanation for this surprising

phenomenon:

We defined R in Chapter 4 as,

€d  Ju'(Kda) _ _&a Hi2 (K-a)] 172

R = j% Kd Ju(Kda) Kn H.‘.z’ (Kma)
7 e Jn'(Kda) _ _us _H&'® (K-a)]"a
Kd Ja(Kda Ka g2 (Kna)

In the expression for R, constants of the materials pua,
U=, €4 and ea are known; K4, Ka can be obtained from 7.
Hence if we know 7, R can be determined.

Therefore we can calculate |R| for different a/i. from
1 to 20 for 1.033um and 9.919um respectively, as shown in
Fig.25 and Fig.26.

If we study Figs.20-22 carefully, we observe that for
1.033um:
If a/Ac=2, where |R|<1l, the curve of the magnitude of
J1' (Kar) (Fig.21) is of a form similar to that of Fig.20.
If a/Ao=3, where |R|>1, the curve of the magnitude of
J1' (Kar) (Fig.22) is of a form completely different to that
of Fig.20.

Similarly, from Figs.20, 23, and 24, we observe the
same phenomenon for 9.9219um.

This is not a mere coincidence. When the magnitude of R

is larger than 1 the axial magnetic field intensity is
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weighted more than the axial electric field intensity. To
put it another way we have an H-like mode. When the
magnitude of R is smaller than 1 the axial electric field
intensity dominates over the magnetic field intensity, and we
have an E-like mode. Therefore the nature of the mode
changes here.

1f we observe Kar as the change from an H-like mode to
an E-like mode occurs, we discover the real part of Kar
changes from being larger than the imaginary part to it

being smaller than the imaginary part.
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6 CONCLUSIONS

An investigation has been done to evaluate the
propagation losses for infrared radiation in empty,
gold-coated microstructural waveguides of circular cross
section as a first step in understanding propagation in a
closed hollow microstructural waveguide.

In spite of the complexity of propagation
characteristics of microstructural cylindrical waveguides, we
have been able to identify several important features about
wave propagation. These are:

(I) Three kinds of modes exist. They are TE modes, TM modes
and Hybrid modes.

(II) By analyzing the determinantal equation, we have shown
that for TE modes the tangential components of the electric
fields at the guide walls, much like the electric fields in
a microwave waveguide at microwave frequencies, are very
small. Thus we expect low losses for TE modes. This result
is also verified numerically.

(III) The formulas for attenuation constants of TE modes are
obtained by analytical methods. The formulas are checked
against the results obtained by the power flow method and by
numerical methods. Furthermore, the formula agrees with
that for the attenuation constant in a microwave guide in
the limit as the conductivity of the waveguide walls is

assumed to be very large.
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(IV) Propagation distances to 1/e attenuation of many
centimeters are theoretically possible for TE modes, when
the ratio of waveguide radius to free space wavelength is
larger than 1.

(V) By analyzing the determinantal equation we have found
that for TM modes or hybrid modes the tangential electric
fields at the guide walls usually can not be close to zero.
This means that the propagation losses are relatively large.
This result is verified by numerically-calculated
attenuation constants for these modes.

In this respect, wave propagation in a microstructural
circular waveguide differs markedly from wave propagation
in a normal microwave waveguide, in which propagation losses
are relatively low. This is believed to be a new result
which has not previously been reported.

(VI) For TM and hybrid modes, the propagation distances are
of the order of éeveral millimeters, when a/aozl.

(VII) For the hybrid mode, the mode undergoes changes at
some specific a/A., where it changes from an H-like mode to
an E-like mode. This is an inherent feature of cylindrical
microstructural waveguides.

(VIII) The attenuation constants for cylindrical
microstructural waveguides are approximately one half those
of the parallel plate counterparts{22] for the same value of

plate-spacing and guide radius.
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Our results for microstructural waveguides of circular
cross-section provide valuable physical insight into wave
propagation at infrared wavelengths in micrometer-sized
waveguides. The results obtained are also of practical value
in potential application of closed microstructural gquides.

It is suggested that future investigations examine wave
propagation in closed microstructural guides of those
non-circular cross-sections that can readily be fabricated,
such as those of triangular, rectangular and trapezoidal
cross-sections and that the theoretical results obtained be

compared to experimentally obtained results.
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TABLE I [25]

The Complex Refractive Index for Evaporated Gold Film

Ao (um) n k e'/eo e"/eo
©.919 12.24 54.7 -2842 1339
4.959 3.748 30.5 -916.2 228.6
2.000 0.856 12.6 -158.0 21.42
1.033 0.272 7.07 -49.91 3.846
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TABLE II

Attenuation Constant (1/meter) of TEo1 Mode at 1.033um

a/Ao ANALYTICAL NUMERICAL
0.7 11625 9208

1l 2469 2175

2 257 238

3 74 70

4 31 30

5 15.8 15.5
15 0.6 0.6
20 0.2 0.2

TABLE III

Attenuation Constant (1/meter) of TEo:1 Mode at 9.919um

a/Ao ANALYTICAL NUMERICAL

0.7 848 843

1 184 182

2 19.17 19.15

3 5.52 5.51

4 2.21 2.31

5 1.17 1.17
15 0.04 0.04
20 0.018 0.018
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APPENDIX
FURZHER ANALYSIS OF SOME SPECIAL CASES

In Chapter 4, the following inequality was used,
VeEweo » a/Ao

When this inequality holds, both the perturbation and power
flow methods can be used to obtain the propagation
characteristics.

For a microwave wavequide, since the refractive index is
infinite for metal at microwave frequencies, VeEa/€o » a/ro
naturally holds.

For a microstructural waveguide, this relationship does
not hold £or Ao of interast in this thesis. But it can hold
if we choose Ao 80 that a/io is much less than 1.

According to the analysis in Chapter 4, if Ves to »
a/Ae holds there exist TM modes and TE modes only.

The purpose of analysis of sach special case are: I.
These results can be used as initial estimates for finding
the propagation constant 7 using Muller's method, which we
discussed in detail in Chapter 5.

II. We can have a deeper understanding of special features

of microstructural waveguides.

A.1 Analysis of TE Modes
We know that(23]:
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2
Ju't (phn)= Z=BER gu(pin) ..... (A.1.1)

In the determinantal equation (4.3.2), making a Taylor
series expansion of Ja'(Ksa) around pén, and substituting Ka

= phn/a into all the terms other than Ja'(Ksa), we have
Jn' (Ksa) & (Ksa = phn)JIa" (pén)
Hence, from (A.1.1), the determirantal equatiocn kacomes

2 2
(Kea = phn) “——P—p‘g"‘ - B 2o

ka 2/, _ (Phn,2y 1 1
= (1 - @)=z 53w

pén

+ ]

Therefore,

(K4a - phn) = j—P—— (pﬁn/ka)——ﬂ;

m-pa

+3

((ka/pin) (phn/ka) )'TR

m-pn

llz pn

= =j (phn/ka) ,,-jk +]

5 (ka/pén) z13p

io'eo

m
n’- p‘n

Ra = (pho/a) =3 (pho/ka’ yp +3—T— k/phn) 2oy

Thus, we have:

m
m’- p‘n

< =((pbo/a) -3 (pho/ka®) i3y 43— O/piny i)

which can be written as,
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2 2

m 1
(1/phn) =% ]

n’- p&ﬁ n-3k

& = kz[(px{m/ak) -3 (phn/k%a?) nfjk +§

Pl

Keeping in mind that k = %%, the above can be substituted

into the following,

12 - _k2+K§'

Hence it is straightforward to obtain

. ph
7 = X (RE2R) - (B2R0) ® (1/pin) 52g

2 2

i+ M 1

+3 (1/phn) 3% ]
n’- péﬁ n-Jk

k21— (RARR0) 2 (55 (Bhodoy (1 gy L
n-jk

2ma 2ma

n’ 2 1)
+j > (21ta/p6nho) n_-i—k.] ]

m- p&ﬁ

We only consider one term of the right-hand side
of the abcve. We can show that

2 2
Phodoy (3 /phn)ire + (2na/p6:2xko)—r-n}_3k]

1-3¢( ==
[ 2na n-jk n- p&ﬁ
= /a_s (Phndo . 1 2
= 1 J(Egia-)(llpﬁn)ﬁziﬁ)
0 E&ni\o 1 N mz 2 1
+2 (1-3( 27a ) (1/p‘m) n"jk) (J 2 2(2na/pﬁna.0)-5:-j—}-{-)
m°~ pén
2
s m 2 2 2, 1 2
(I &nA
G o) /e (agm)
Further, the right-hand side of the above can be
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written as,

. Elﬁnlo fndo, 2 2
1-2) (5, )(l/PﬁnY-—*- + 73 (Egﬁg-) (1/phn) (3:3;)
(52 ) 2o .
+2 j-——————(2na/p£nho) - 2j (1/pﬁn) =
m- pﬁm k 2. phn ( J )
+(§—2—) % (2na/pharo) 2
( mz_ p‘m) (n ]k)
Since (nljk)a is very small and we know n-jk » a/ao,

neglecting terms of the order of (n Jk)2, the above can be
further simplified to
n2
6nho 0
1-2j (P?ﬁ) (1/phn) 525 Jk + 2(];—p—(2na/p6nho) k)
Hence, we obtain,

veui [ 1- (BLake) 2423 (R22e) * (1/ak) oy

. ma 2
+2];E—:;(l/ak)n Jk]
Thus,
v=-3k[1- (Bhade) 425 (BER2) * (1/ak) gy
2 / k) 1 ]1/2
+2j-—-—-—(1 aK) 23
pha -

cee.(A.1.2)

For reasonably small m, and since n-jk » a/Ao
2

|1- (E%%%g) | » IZJ(E%%gg) (1/ak) & +23 ‘;m ~(1/ak) ===
pn-m

n-Jkl
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Then, since a = Re(7), we obtain,

2

1 n phndo,2 m 172
a4 == ( L / Phnle
alnz+k2( ema pluz:-ma) (1(zna))

A.2 Analysis of TM Modes

In the determinantal equation (4.3.3), we make a Taylor
series expansion around the root of Jm(x)=0, Pumn
Substituting K« = pen/a into all terms in the equation

except Ju(Ksa), we obtain,
Ju(Kda) = Ju(pmn) + (Kea = pun)Jdn'(Kaa) ,
Therefore, the determinantal equation becomes

< = 1% (nik)

Then, we have

- pon k 1l
Ka a | Jpun n-JK

Thus,
mn 1 2
< = (B3 + 35 7% )
Since k=2m/Ao,
2 _ 12 = <k Prndo,2 2ma 1 2
= -k’+ Ki k[l (B2 (1+ =5 n_jk)]

JpmnAo

2 ndo,2 1
= =K [( - p:na) )- ]na n-jk - (1/3pia) (-5_—3'7;)2]
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Because ¢the term with the factor (n_j'k')z is much

smaller than the other terms present we obtain

2 , 2 _ (Pmndos2y Ao 1
v e k[(l (zna)) jna n-ik]

Thus, we can get

I ndo, 2 Ao 1 172
v e [0 - B0~ o iy |

For reasonably small pmn

Pmndo Ao 1
12 - 3 )1 > | jma n-jEI
Thus,
nAo 172 4 nAo -1/210 1
v = k(1 - B2 - 10 - B2 e ok

again since a = Re(7)

« =& <P (1) 1By )

nz-l- kz 2na

A.3 Comments On The Results
The methods used here are of interest in the analysis
of wéveguides, even though this derivation is not the main

purpose of this thesis.
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In summary the relation between refractive

index veweo and a/iec is,

for a radio or microwave waveguide,
VEweEs » a/Ao
for an optical waveguides of large dimensions,
VEw/Eo € a/do
for a microstructural waveguide,
VEas€o ® a/do
This latter relationship means that terms are of the same
order of magnitude
It is readily seen that we have studied the case of
wave propagation which is mathematically the most difficult.
The microwave case and the large optical case are special

limits of the case investigated in this thesis.

102



o
o),

i

-

JRes 4

2
O
©
1

'
i

[T SN A A S SCY

T e










