
Improved FastMap

by

Reza Mashayekhi

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Reza Mashayekhi, 2022

Abstract

Pathfinding has been an interesting research area throughout the years. Heuris-

tic search algorithms are used to find a path with the minimum length between

a start and a goal in a graph, which has applications in GPS navigation and

video games. There are different ways to create a heuristic for these search

algorithms. Using embeddings is one of the ways to create a heuristic. In this

method, an algorithm builds an embedding space for a given graph. Then, dis-

tances in the embedding space can be used to compute the heuristic between

any two arbitrary vertices in the graph. Embeddings have other applications,

like finding the midpoint between states, but here we focus on their use of

heuristics. Cohen et al. (2017) introduced FastMap embedding, which pro-

vides a consistent heuristic.

This thesis shows that the FastMap heuristic is not as strong as it was

originally shown to be. While the median performance is strong, the average

is not. We then analyze the FastMap approach. We show that FastMap is an

additive heuristic. Also, we generalize the FastMap embedding by generalizing

its embedding function and pivot selection methods. We introduce several

new embedding functions and pivot selection methods. We show that the

new pivot selection methods enable us to use multiple FastMap embeddings

together, which was not effective before. Finally, we evaluate the newly created

heuristics and show that using differential heuristics and the Heuristic Error

pivot selection method improves the FastMap heuristic.

ii

Acknowledgements

Special thanks to my supervisor, professor Nathan Sturtevant who guided and

helped me through this research. I also want to thank:

• The other committee members, Jonathan Schaeffer and Levi Lelis, for

evaluating my thesis and giving suggestions for improving the thesis.

• My family for always supporting me.

• My writing advisor, Antonie Bodley, who helped to improve my writing

for this thesis.

iii

Contents

1 Introduction 1

2 Background 5
2.1 Related Work . 5
2.2 Problem Definition . 6
2.3 Preliminary Background . 7

2.3.1 Heuristic Background 7
2.3.2 Embeddings Background 10
2.3.3 Abstraction Background 15
2.3.4 Search Algorithms Background 18

3 Contribution 21
3.1 FastMap Is an Additive Heuristic 21
3.2 General FastMap Embeddings 25

3.2.1 Conditions of General FastMap Embedding Functions . 25
3.3 New Embedding Functions . 28

3.3.1 FastMap Variants . 28
3.3.2 Proportion Embedding Function 30
3.3.3 Shrinking Function . 31
3.3.4 Differential Heuristic As The Last Dimension 31

3.4 New Pivot Selection Methods 33

4 Experiments and Results 38
4.1 FastMap Paper Results Analysis 38

4.1.1 Validation of FastMap Paper Results 39
4.2 Evaluating Subset Selection Used for Optimizing Pivots Place-

ment . 40
4.3 Comparing Different Heuristics 42
4.4 Captured Heuristic . 46

5 Conclusion and Future Work 49

References 52

iv

List of Tables

3.1 The perfect heuristic, Octile heuristic, and different FastMap
heuristics between (E,F), (C,D), and (A,D). 36

4.1 FastMap paper results [2]. Med is the median of the number of
expansions. MAD is the median absolute deviation. 39

4.2 Results of running A∗ with different heuristics on three maps.
Md and Mn are the median and mean of the number of expansions. 40

4.3 Results of running A∗ with different heuristics on different map
sets. Md, Mn, and c columns are the median, mean, and 95%
confidential interval on the mean of the number of expansions. 42

4.4 Maps stats: the number of problems and maps of each map set. 44
4.5 DAO map set results. Md, Mean, and Conf columns under the

Expansions (or Time) column group are the median, mean, and
95% confidence interval on the mean of the number of expan-
sions (or the mean expansions’ times or speed). PCMean, and
Node/s are the mean of the precomputation times and the num-
ber of nodes expanded per second. All times are in milliseconds. 46

4.6 SC1 map set results. Md, Mean, and Conf columns under the
Expansions (or Time) column group are the median, mean, and
95% confidence interval on the mean of the number of expan-
sions (or the mean expansions’ times or speed). PCMean, and
Node/s are the mean of the precomputation times and the num-
ber of nodes expanded per second. All times are in milliseconds. 47

4.7 Results of running A∗ with different heuristics on different map
sets. Md, Mn, and c columns are the median, mean, and 95%
confidence interval on the mean of the number of expansions. . 47

4.8 Results of running A∗ with different heuristics on 3D graphs
with different edge costs. Md, Mn, and c columns are the me-
dian, mean, and 95% confidence interval on the mean of the
number of expansions. 47

4.9 Results of running A∗ with different heuristics on 4D graphs
with different edge costs. Md, Mn, and c columns are the me-
dian, mean, and 95% confidence interval on the mean of the
number of expansions. 48

v

List of Figures

1.1 This image shows the shortest path length (the length of the
blue path), Euclidean distance (the length of the black line),
and the L1 distance (the length of the red path) between the
two red points. 2

1.2 (a) A sample map and (b) a 2-dimensional re-embedding of the
map. 3

2.1 An edge e = (vi, vj) . 7
2.2 Triangle inequality. 8
2.3 Triangle inequality for an edge. 8
2.4 Embeddings of differential heuristic and FastMap along with

the residual graphs after doing the embeddings. 15
2.5 3*3 Sliding tile puzzle. 18
2.6 2*2 Sliding tile puzzle abstraction. 19

3.1 Differential heuristic as the embedding function. The left graph
is the state space before doing differential heuristic embedding.
The right graph is the state space after doing differential heuris-
tic embedding with A as the pivot. A shortest path from D to
O is shown in green with the cost zero. 32

3.2 A, B, C, D, E, and F are candidate pivots for this map. 36

4.1 The number of expansions on three maps for 1000 random prob-
lems. (a)lak503d (b)brc300d (c)maze512-32-0. 41

4.2 Total captured heuristics in all DAO maps by FM and FMDH. 48

vi

Chapter 1

Introduction

A person can find their way home quickly if they already know a path home.

However, for someone who does not know a path to a destination, it is hard

to find the way. It can get even harder if they do not even know where the

destination is and can only find the place of the destination by arriving there

and checking it. To make this more clear, imagine someone is left in a city,

given only a picture of a house, with the goal of finding the house. Thus, they

have to search the whole city and compare every house to the picture they

have until they find the house. Now, in order to help them, we give them a

tool that beeps more quickly when they move towards the house. This tool

gives them an estimate (or heuristic) of their distance to the house so they can

find the house faster.

If we want to build the beeping tool, we notice that it has to know its

distance to the house in order to beep with respect to the distance. One way to

calculate an estimate of distance is by using GPS coordinates and considering

the Euclidean distance between two points as the measure of distance. The

Euclidean distance between two points in 2D is the length of the straight line

connecting them. The length of the black line between the two red points

in Figure 1.1 is their Euclidean distance. Then, the beeping tool beeps with

respect to its Euclidean distance to the goal house (i.e., it beeps more quickly

if the Euclidean distance to the goal house gets shorter on the map).

Although the Euclidean distance can be used in the beeping tool as the

measure of closeness, it may not be accurate enough in some cases. For ex-

1

Figure 1.1: This image shows the shortest path length (the length of the blue
path), Euclidean distance (the length of the black line), and the L1 distance
(the length of the red path) between the two red points.

ample, the Euclidean distance between the two points in Figure 1.2(a) is not

a good estimate of the shortest path length between them, which in this case

needs to go around the walls. The measure of distance in the beeping tool

needs to be a better estimate of the shortest path length between the two

points so the person can find the goal house sooner. For instance, we can

create a new map like Figure 1.2(b), representing the map 1.2(a), in which

the Euclidean distance between these two points is a better estimate of the

shortest path length between the two points in Figure 1.2(a). Therefore, if we

use Euclidean distance on this new map inside the beeping tool, the person

can likely reach the destination faster.

This real-life problem and its solution are similar to computer science

pathfinding problems. In computer science pathfinding problems, there is

an area to search, a start, and a goal. The problem is to find a path from

the start to the goal. If the computer does not know a path, it can use an

algorithm to find the path. Search areas can be represented as a graph with

vertices connected by edges. There are many different pathfinding algorithms

[6, 11, 18], and in this thesis, our focus is on the class that finds a path with

the minimum length. Dijkstra’s algorithm, one of the early algorithms that

find the shortest path, was published in 1959 [6]. One of the challenges since

then has been finding the shortest paths in a shorter amount of time. In 1968,

2

(a) (b)

Figure 1.2: (a) A sample map and (b) a 2-dimensional re-embedding of the
map.

the A∗ algorithm [11] was introduced, which uses an admissible heuristic to

guide the search for finding the shortest path between the start and goal more

quickly. The heuristic between two vertices is an estimate of the path length

between them. The more accurate the heuristic is, a path will likely be found

sooner. Using an embedding is one way to build a heuristic for a given graph.

Embeddings [21] are built in a preprocessing step on the graph in which all

vertices would be assigned coordinates. Then, during the search, these coor-

dinates assigned in the embedding step can be used for computing a distance

heuristic. For instance, the map in Figure 1.2 (b) is an embedding of the map

in Figure 1.2 (a). Each vertex of the map in Figure 1.2 (a) is assigned new 2d

coordinates, which are used to display the embedding as a 2d graph in Figure

1.2 (b). There are many methods for building embeddings. This example,

Figure 1.2 (b), is built with the FastMap algorithm [2]. FastMap [2] uses a

new way to embed vertices.

In this thesis, we analyze FastMap and improve the embedding it provides.

The main contributions are as follows:

• We show that FastMap is an additive heuristic. While many addi-

tive heuristics statically partition costs, FastMap dynamically partitions

them as each dimension of the embedding is built.

3

• FastMap is generalized, and its different optimizations are explored. We

explored how to optimize using separate FastMap heuristics together or

how to improve the FastMap heuristic itself.

• Among all the explored optimizations, we found that using a differential

heuristic at the last dimension of FastMap and using heuristic error for

pivot selection improves the FastMap heuristic. Heuristic error enabled

the effective use of multiple FastMap embeddings.

• Extensive results on many maps reveal that FastMap is not as strong as

previously discussed. It was shown that FastMap has a strong median

performance; however, we show that it does not have a strong average

performance.

4

Chapter 2

Background

As mentioned in Chapter 1, a class of search algorithms called heuristic search

algorithms, like the A∗ algorithm [11], as their name suggests, use heuristics

to make their search faster.

This chapter describes related work to the FastMap heuristic and gives a

formal definition of the problem addressed in this thesis. Then, it gives pre-

liminary background, including what a heuristic is, and describes the FastMap

heuristic itself.

2.1 Related Work

Heuristics that do not have any preprocessing step are not accurate in many

cases, such as Euclidean distance in Figure 1.2 (a). On the other hand, a large

group of heuristics require a preprocessing step to become more accurate [2,

23, 4]. In the preprocessing step, the state space can be analyzed, and useful

information can be stored in limited memory. Then, the stored information

is used to return a heuristic between any pair of states. In this section, only

heuristics with preprocessing are described.

Two of the domains that heuristics can be applied to are (1) exponential

domains, in which the state space grows exponentially with respect to the

solution cost, and (2) polynomial domains, in which the state space grows

polynomially with respect to the solution cost [8]. Pattern Databases (PDBs)

[4] are a dominant heuristic approach in exponential domains (like the Sliding

Tile puzzle). PDBs, as an abstraction-based approach, create multiple ab-

5

stract spaces from the original state space. Then, in the additive PDBs [7],

the heuristic in each abstract space is added together to compute the heuristic

in the original state space. However, abstraction-based approaches are gen-

erally not effective in polynomial domains [8]. In polynomial domains (like

grid pathfinding), usually, the heuristics that rely on true distances perform

better, like ALT (A∗, Landmarks, and the Triangle Inequality) [9], differential

heuristics [23], and optimal Euclidean embeddings [21].

True-distance based heuristics [9, 23, 21] use embeddings. ALT and differ-

ential heuristics embed the state space into a k-dimensional state space and use

the L∞ norm to compute the heuristic. Optimal Euclidean embeddings embed

the state space into a high dimensional state space, then based on the opti-

mization, they keep only k of the dimensions and use the L2 norm to compute

the heuristic. FastMap [2] is also based on true distances. FastMap embeds

the original state space into a new k-dimensional state space and uses the L1

norm to compute the heuristic. There are two other variants of FastMap [14,

12]. Li et al.’s (2019) work [14] does a euclidean embedding and uses the L2

norm for computing the heuristic, which can also be used in other areas like

block modeling [1]. Nonetheless, since it is useful for suboptimal solutions

in heuristics search, we do not analyze it in this thesis. Another version of

FastMap [12] reduces the preprocessing time of the original FastMap but has

the same runtime performance when it is used as the heuristic of A∗.

There are other approaches that do not use embeddings, like bounding

boxes [19] and reach [10]. They prune unnecessary states during the search.

However, since they need more computational time for the preprocessing, they

are not compared with FastMap. Here in this thesis, consistent heuristics using

embeddings with the same precomputation time as FastMap are compared.

2.2 Problem Definition

The tuple P = {G,C, hin} defines the problem. The state space is represented

as the undirected graph G = {V,E} where V and E are the sets of vertices

and edges, respectively. C : E → R is the edge cost function for the graph

6

G. hin is the given initial heuristic. A heuristic is a function that gives an

estimate of the shortest path length between two states, i.e., h : V × V → R.

The output of the problem is a metric embedding (described in Section

2.3) of the graph g. The heuristic h built by the embedding and hin is used in

the A∗ algorithm (described in Section 2.3) to find the shortest paths between

a set of (start, goal) pairs in the graph G. h should be either better than the

existing heuristics in some applications or different from them. A heuristic is

better than previous ones if it results in finding the shortest paths faster or

with less memory usage.

2.3 Preliminary Background

Here we describe the notations used in this thesis, including the FastMap

heuristic.

2.3.1 Heuristic Background

Each edge e ∈ E that connects two vertices vi, vj ∈ V is shown as e = (vi, vj).

vi vj

Figure 2.1: An edge e = (vi, vj)

Also, the edge cost of e = (u, v) ∈ E is C(e) or C(u, v), where C is the

edge cost function.

The neighbors of a vertex v are the vertices connected by an edge to v.

Definition 2.3.1 (Neighbors of a vertex). The neighbors of a vertex v are the

members of neighbors(v) = {u|(v, u) ∈ E} set.

In search algorithms, we have to find a path from the start to the goal.

Below are the definitions of walk (a more general form of a path), path, and

path length.

Definition 2.3.2 (Walk). A walk from a vertex u1 ∈ V to a vertex uk ∈ V in

graph G is a list of vertices [u1, u2, ..., uk] where ui ∈ V, (ui, ui+1) ∈ E, 1 ≤ i ≤

7

k−1. The walk w can also be represented as a list of edges w = [e1, e2, ..., ek−1]

where ei = (ui, ui+1), 1 ≤ i ≤ k − 1.

Definition 2.3.3 (Path). A walk without repeated vertices is called a path.

Since each edge has a cost, a path, which is a set of edges, can have a cost

too.

Definition 2.3.4 (Cost (length) of a path). The cost of a path p = {e1, e2, ..., ek}

in graph G is computed as C(p) =
∑k

i=1C(ei), where C is the edge cost func-

tion of G.

The shortest path length between two vertices u and v is shown with

C∗(u, v).

A useful property is triangle inequality in a graph, which will be used in

many proofs of this thesis.

Definition 2.3.5 (Triangle inequality). For any three vertices u, v, w ∈ V

C∗(u, v) ≤ C∗(u,w) + C∗(w, v) (2.1)

u v

w

Figure 2.2: Triangle inequality.

Remark. Directly driven from lemma 2.3.5, for any edge e = (u, v) ∈ E with

the cost C(e) and any arbitrary vertex a ∈ V

C∗(a, u) ≤ C∗(a, v) + C(e) (2.2)

a u

v

Figure 2.3: Triangle inequality for an edge.

8

Now that we know what the state space and path cost are, we can define

the heuristic.

Definition 2.3.6 (Heuristic). A heuristic function for the graph G can be

defined as h : V × V → R, where for any two u, v ∈ V , h(u, v) is an estimate

of the length of the path between u and v. Also, h(e), for making notations

shorter, is used to denote the heuristic between two vertices of an edge; i.e.,

h(e) := h(u, v), e = (u, v).

Heuristics can have different properties, which makes them useful for dif-

ferent applications. Two of the most common properties are admissibility and

consistency, each of which can be either global or local.

Definition 2.3.7 (admissible heuristic). A heuristic is globally admissible if

∀u, v ∈ V h(u, v) ≤ C(u, v) (2.3)

Definition 2.3.8 (Locally consistent heuristic). In undirected graphs, a heuris-

tic is locally consistent if

∀g ∈ V, (u, v) ∈ E |h(u, g)− h(v, g)| ≤ C(u, v) (2.4)

Definition 2.3.9 (Globally consistent heuristic). In undirected graphs, a

heuristic is globally consistent if

∀g, u, v ∈ V |h(u, g)− h(v, g)| ≤ C∗(u, v) (2.5)

One application of consistent (or admissible) heuristics is in the A∗ algo-

rithm. If the heuristic is consistent (or admissible), the A∗ algorithm using

that heuristic is guaranteed to find the optimal path between any two vertices

[11].

Assume we have a set of heuristics, and we want to use these heuristics

within the given limited memory to optimize a heuristic for the graph. Subset

selection is one of the methods that can be used for this optimization.

The optimal form of subset selection [20] chooses a subset of heuristics (with

size d) among the n existing heuristics that optimize the total heuristic between

9

all pairs of a sample. The sample can be a random subset of the graph vertices.

For finding the optimal subset of heuristics, all combinations of the existing

heuristics with size d should be checked (min(O(nd), O(nn−d))); therefore, it

will be time-consuming. However, there is an approximate solution [20] that

greedily chooses one heuristic at a time. The chosen heuristic should maximize

the total heuristic between all pairs of the sample vertices compared to the

heuristic captured by the previous steps. This thesis will use subset selection

for optimizing multiple FastMap embeddings in Chapter 3.

Definition 2.3.10 (Greedy subset selection). Assume H is a set of existing

heuristics with size n. P (H)d would be the set of all possible subsets of H

with size d i.e.,

P (H)d = {A|A ⊆ H, |A| = n}

In order to select a member of P (H)d that will likely give us a more accurate

heuristic than other members, we take a sample of vertices in the state space

called S. Then, we find the d heuristics, one at a time, in a way that maximizes

the heuristic between all pairs of the sample. i.e.

subHi+1 = subHi ∪ argmax
h∈H−subHi

(
∑
u,v∈S

max(max
h0∈subHi

h0(u, v), h))

Where 0 ≤ i ≤ d− 1, SubH0 = {} and SubHd would be the selected subset of

heuristics with size d. The heuristic built by subset selection is [20]:

h(v1, v2) = max
hi∈SubHd

(hi(v1, v2))

2.3.2 Embeddings Background

Different distance measures are used in heuristic computations. Here we de-

scribe Lp distances, which are used in this thesis.

Definition 2.3.11 (Lp distance). Lp distance of a vector U = (u1, u2, ..., un)

to a vector V = (v1, v2, ..., vn) is (
n∑

i=1

|vi − ui|p)
1
p [15].

Three common Lp distances are derived below.

10

Definition 2.3.12 (L∞ distance). L∞ distance of a vector U = (u1, u2, ..., un)

to a vector V = (v1, v2, ..., vn) is the maximum element of (|u1 − v1|, |u2 −

v2|, ..., |un − vn|).

Definition 2.3.13 (L1 distance). L1 distance of a vector U = (u1, u2, ..., un)

to a vector V = (v1, v2, ..., vn) is |u1 − v1|+ |u2 − v2|+ ...+ |un − vn|.

Definition 2.3.14 (L2 (Euclidean) distance). L2 distance of a vector U =

(u1, u2, ..., un) to a vector V = (v1, v2, ..., vn) is√
(u1 − v1)2 + (u2 − v2)2 + ...+ (un − vn)2

Since FastMap embedding is a pseudo-metric embedding (as shown in

Lemma 2.3.2), and pseudo-metric embeddings have a pseudo-metric space,

here they are defined.

Definition 2.3.15 (Metric space). A pair (V, d), where V is the set of co-

ordinates (coordinate space) and d is a function d : V V :→ R≥0 is a metric

space if:

• d(u, v) = 0 ⇐⇒ u = v

• d(u, v) = d(v, u)

• d(u, v) + d(v, w) ≥ d(u,w)

where u, v, w ∈ V [3].

Definition 2.3.16 (Pseudo-Metric space). A metric space (V, d) that can have

d(u, v) = 0 where u! = v [3].

Embeddings are a way to build heuristics for a given graph. In the embed-

ding process, each vertex is mapped to a coordinate in coordinate space. Then,

distances in this embedded space (coordinate space) can be used to compute

the heuristic.

Definition 2.3.17 (Metric embedding). In this thesis, an embedding is a 1-1

mapping function that maps a graph G = {V,E} into a metric space (U, d);

i.e.,

f : V → U

11

Two of the heuristics built by using embeddings are the differential heuristic

[9, 16] and FastMap [2], which are further explored in this thesis.

Definition 2.3.18 (differential heuristic (DHP)). For a given subset of ver-

tices P = {p1, p2, ..., pn} ⊆ V , where each member is called a pivot, single

source shortest paths from all pivots are computed separately. The computed

single source shortest paths are stored as a differential embedding. i.e.,

DEP (v) = (C∗(p1, v), C
∗(p2, v), ..., C

∗(pn, v))

Then, the differential heuristic between two vertices in the graph is com-

puted as the l∞ distance in the embedding space (DHP (V)) [9], i.e.,

DHP (v1, v2) = max
pi∈P

|C∗(pi, v1)− (C∗(pi, v2)|

The embedding of the differential heuristic is a pseudo-metric embedding,

as shown in the lemma below.

Lemma 2.3.1. A differential heuristic is a pseudo-metric embedding.

Proof. The differential embedding space (DHP (V)) and the differential heuris-

tic DHP are respectively coordinate space and the distance measure of the

pseudo-metric space. Here we show that the three conditions of a pseudo-

metric embedding are met.

The first condition requires checking that self distances are 0:

DHP (u, u) = |d(p, u)− d(p, u)| = 0 (2.6)

where p ∈ P is the pivot that is furthest from u.

The second condition requires distances to be symmetric:

DHP (u, v) = |d(p, u)− d(p, v)| = |d(p, v)− d(p, u)| = DHP (v, u) (2.7)

where p ∈ P is the pivot that has the maximum DHp(u, v).

The third condition requires the triangle inequality to hold:

DHP (u,w) = |d(p, u)− d(p, w)| (2.8)

12

≤ |d(p, u)− d(p, v)|+ |d(p, v)− d(p, w)| (2.9)

≤ DHP (u, v) +DHP (v, w) (2.10)

A differential heuristic embedding is shown in Figure 2.4.

FastMap embedding, which is also a pseudo-metric embedding, is described

below.

Definition 2.3.19 (FastMapn (FMn)). FMn is an n-dimensional heuristic

created by adding n 1-dimensional FastMap heuristics together [2]. In each

dimension, an embedding is done. Based on that embedding, a 1-dimensional

FastMap heuristic is created. Then, the edge costs will get updated by sub-

tracting the captured heuristic from that edge. Finally, by adding each di-

mension’s FastMap heuristic together, the FMn heuristic is built. Below is

algorithm 1 for doing the embeddings (f1, f2, ..., fn) at each dimension.

In more detail, at each dimension, the two furthest pivots ai, bi ∈ V are

selected. Then, all vertices are embedded with the formula at line 6. FastMap

heuristic of each dimension is FMi(u, v) = |fi(u) − fi(v)| where fi is the

embedding of dimension i (here, the FastMap embedding function is used, but

it can be other functions, which will be discussed in Chapter 3). Edge costs

are changed by deducting the captured heuristic between the edges. The edge

cost function at each dimension is represented as Ri, and R0 is the graph’s

original edge cost.

The graph after doing each dimension’s embedding, which has a new edge

cost function, is called the residual graph of that dimension. Finally, the

FMn heuristic is:

FMn(u, v) =
∑
1≤i≦n

FMi(u, v) (2.11)

To make notations shorter, we show the heuristic between two vertices of

an edge ei = (u, v) in i-th dimension by FMi(e) = |FMi(u)− FMi(v)|.

Lemma 2.3.2 proves that FastMap is a pseudo-metric embedding.

Lemma 2.3.2. The FastMap embedding is a pseudo-metric embedding.

13

Algorithm 1 Embeddings of FMn [2]

1: Input: G = {V,E}, R0, n. R0 is the original edge cost function of the
grapgh G.

2: Output: FMn(V) = (f1(V), f2(V), ..., fn(V)). FMn(V) is the embedded
space and fi is the embedding function at dimension i

3: i = 1;
4: while i ≤ n do
5: Select a random vertex r ∈ V ;
6: Let ai be the furthest pivot from r;
7: Let bi be the furthest pivot from ai;
8: For each v ∈ V fi(v) =

d(ai,v)+d(ai,bi)−d(v,bi)
2

;
9: For each edge (u, v) ∈ E, Ci(u, v) = Ci−1(u, v)− |fi(u)− fi(v)|;
10: i++;
11: end while

Proof. The embedding space of FastMap FMn(V) and the FastMap heuristic

FMn are the coordinate space and the distance measure of the pseudo-metric

space. Here we show that the three conditions of a pseudo-metric embedding

are met.

The first condition requires checking that self distances are 0:

FMn(u, u) = |FMn(u)− FMn(u)| = 0 (2.12)

The second condition requires distances to be symmetric:

FMn(u, v) = |FMn(u)− FMn(v)| = |FMn(v)− FMn(u)| = FMn(v, u)

(2.13)

The third condition requires the triangle inequality to hold:

FMn(u,w) = |FMn(u)− FMn(w)| (2.14)

≤ |FMn(u)− FMn(v)|+ |FMn(v)− FMn(w)| (2.15)

= FMn(u, v) + FMn(v, w) (2.16)

A FastMap embedding is shown in Figure 2.4.

14

a b

g

e

d
c

f

0
1

0
1

1

½½

FM Residual Graph

a b

g

e

d
c

f

0
0 0

0
0

0

1

DH Residual Graph

a b

g

e

d
c

f

1
1 1

1
1

1

1

Input Graph

a b

g

e
d

c
f

FastMap Embedding

a b

g

e

d
c

f

DH Embedding

Figure 2.4: Embeddings of differential heuristic and FastMap along with the
residual graphs after doing the embeddings.

2.3.3 Abstraction Background

A branch of heuristics is built on the abstraction(s) of the state space, like

the Pattern Databases heuristic. First, they abstract the state space into

other state spaces, and then they use the heuristics built on the abstract state

spaces to compute a heuristic for the original state space. Below are definitions

regarding abstraction that are taken from Yang et al. (2008) [24] with minor

changes.

Definition 2.3.20 (Abstract state space). An abstract state space of a graph

G is an undirected graph Ai = (Vi, Ei, Ci, Ri), which is constructed by an

abstraction mapping (Definition 2.3.21) from G to Ai. Vi and Ei are, respec-

tively, the set of abstract vertices and abstract edges. Ai has two edge cost

functions: the primary edge cost function Ci : Ei → R and the residual edge

cost function Ri : Ei → R. Thus, each abstract edge ei ∈ Ei is assigned with

two costs which are a primary cost Ci(ei) and a residual cost Ri(ei) [24].

Definition 2.3.21 (Abstraction mapping). An abstraction mapping from G

to Ai is a function ψi : G → Ai that maps vertices of G to vertices of Ai,

ψi : V → Vi, while satisfying the two following conditions [24]:

1. For each edge in the original graph G, there is an edge in the abstract

graph Ai. Thus connectivity in the original graph G is preserved:

∀(u, v) ∈ E, (ψi(u), ψi(v)) ∈ Ei

or

∀e ∈ E,ψi(e) ∈ Ei

15

2. The cost of an abstract edge must be less than the cost of the edge they

correspond to in the original graph:

∀e ∈ E,Ci(ei) +Ri(ei) ≤ C(e)

To make notations easier, the abstractions of a vertex v ∈ V and an edge

e ∈ E, which are ψi(v) and ψi(e), are represented as vi ∈ Vi and ei ∈ Ei

respectively.

Definition 2.3.22 (Cost of an abstract path). The cost of an abstract path

pi = {e1i , e2i , ..., e
j
i} in space Ai is [24]

Costi(pi) = Ci(e
k
i) +Ri(e

k
i), 1 ≤ k ≤ j

The below definition does not exist separately in Yang et al. (2008) work

[24]. Nonetheless, it can be inferred directly.

Definition 2.3.23 (Primary cost of an abstract path). The primary cost of

an abstract path pi = e1i , e
2
i , ..., e

j
i in space Ai is

Ci(pi) =

j∑
k=1

Ci(e
k
i)

The below definition is different from Yang et al. (2008) work [24].

Definition 2.3.24 (Abstract heuristic). The abstract heuristic hi, in space

Ai, between two vertices ui, vi ∈ Vi is defined as

hi(ui, vi) = min
pi∈Paths(Ai,ui,vi)

Ci(pi)

where Paths(Ai, ui, vi) is the set of all possible paths between ui and vi in

space Ai.

Another notation is:

C∗
i (ui, vi) := min

pi∈Paths(Ai,ui,vi)
Ci(pi)

Definition 2.3.25 (Abstraction). An abstraction of a graph G is a < Ai, ψi >

pair where Ai is the abstract state space of G constructed by the abstraction

mapping ψi from G to Ai [24].

16

Definition 2.3.26 (Abstraction system). An abstraction system is a pair

(G,Ξ), where G is an undirected graph and Ξ is a set of abstractions Ξ = {<

Ai, ψi > |ψi : G→ Ai, 1 ≤ i ≤ n} [24].

Definition 2.3.27 (Additive heuristic). The additive heuristic between u, v ∈

V in an abstraction system (G,Ξ) is

hadd(u, v) =
n∑

i=1

hi(ui, vi)

where hi is the abstract heuristic in space Ai [24].

Definition 2.3.28 (Additive abstraction system). An abstraction system is

additive if [24]

∀e ∈ E,
n∑

i=1

Ci(ei) ≤ Cost(e)

One method for building a heuristic is using additive heuristics. Two kinds

of additive heuristics are static and dynamic ones, as defined below.

Definition 2.3.29 (Static additive heuristic). In a static additive heuristic,

the abstract state spaces are defined before building the heuristic.

A good example of a static additive heuristic can be shown on a Sliding

Tile Puzzle which is one of the famous search problems.

An n × n Sliding Tile Puzzle has an n × n board of tiles where each tile

contains a number from 1 to n × n − 1. Each tile’s number differs from the

others, and one tile is blank. The player can swap the blank tile at each

step with one of its neighbors. The goal is to have an ascending sort of the

numbers in the sliding tile puzzle. The blank tile should be at (1, 1) location of

the board, and the number i should be at location (i/n+1, i%n+1). Location

(i, j) of the board is at the i-th row and the j-th column of the board where

i, j are from 1 to n beginning from the top left of the board as shown in

Figure 2.5(a).

For example, in a 3×3 sliding tile puzzle shown in Figure 2.5(a), the blank

tile can be swapped with one of the 3, 4, 6 tiles (Figure 2.5(b)). By swapping

17

25 7

38 1

4 6

25 7

38 1

4 6

25 7

38 1

64

1 2

43 5

76 8

(a) (b) (c) (d)

1

2

3

1 2 3

Figure 2.5: 3*3 Sliding tile puzzle.

the blank tile with tile 6, the state in Figure 2.5(c) is reached. Then the goal

is to reach the state in Figure 2.5(d).

To show a static additive heuristic, consider a 2 × 2 Sliding Tile Puzzle,

which has the state space as a 2× 2 board Figure 2.6(a). Two abstract state

spaces can be Figure 2.6(b) and Figure 2.6(c). Yellow tile moves have a primary

cost of 0 and a residual cost of 1. Thus, the minimum costs of solving the

puzzles in sub-figures (a), (b), and (c) of Figure 2.6 are respectively 6, 4, and

2. Since the minimum cost of a solution in abstract space is considered as the

abstract heuristic, Figure 2.6(b) and Figure 2.6(c) have abstract heuristics of

4 and 2. Moreover, since this abstraction system is additive (each edge has

cost 1 only in one of the abstractions), the additive heuristic of state A in

Figure 2.6(a) is the sum of the abstract heuristics in Figure 2.6(b) and (c);

i.e., hadd(stateA) = 4 + 2 = 6.

Definition 2.3.30 (Dynamic additive heuristic). In a dynamic additive heuris-

tic, the abstract state spaces are defined while building the heuristic.

2.3.4 Search Algorithms Background

Heuristics are used in search algorithms that use a heuristic during the search.

A∗ is one of the most popular heuristic search algorithms. Before explaining

A∗, we explain the Best First Search algorithm (Algorithm 2)[5], which is a

general form of A∗.

The best first search algorithm is a greedy algorithm in which there is an

open and a closed list. At each step in the algorithm, the first element with

18

23

1

2

1

3

1

32

1

2 3

h = 4 + 2 = 6 4 distinguished moves 2 distinguished moves

(a) State A (b) Abstract state A1 (c) Abstract state A2

(d) Goal state g1 (e) Abstract goal g1 (f) Abstract goal g2

Figure 2.6: 2*2 Sliding tile puzzle abstraction.

the lowest cost in the open list is expanded and is added to the closed list after

expansion. The algorithm is shown below. The cost function of this algorithm

can be various functions. For example, Dijkstra, a simple best first search

algorithm, uses g as the cost function, where g is the path cost.

19

Algorithm 2 Best First Search algorithm [5]

Input: G = {V,E}, C, start, goal. the graph, the edge cost function, the
start, and the goal states
Output: p = {start, u1, u2, ..., un, goal} A path with the minimum cost
from the start to the goal
open = []
closed = []
Add start to open
u = start
while open is not empty and u is not the goal do

u = pop the state with min cost from open
for v in neighbors(u) do

if v is not in closed then
if (v in open and f(v) reached from u ≦ f(v) already in open)

or (v not in open) then
update f(v)
parent(v) = u

end if
add v to the open if it is not already in the open

end if
end for
add u to the closed list

end while
Extract the path and return it

There are several best first search algorithms [6, 18, 13]. In this thesis, we

use the A∗ algorithm. A∗ as a best first search algorithm has the cost function

being f(v) = g(v) + h(v) where for each state v ∈ V , g(v) is the path cost

from start to v and h(v) is the heuristic between v and the goal.

20

Chapter 3

Contribution

This chapter shows that FastMap is an additive heuristic. It generalizes

FastMap embedding. Finally, it provides new embedding functions and pivot

selection methods.

3.1 FastMap Is an Additive Heuristic

Since the publication of the FastMap paper, the connection between FastMap

and additive heuristics has not been made. This section provides lemmas that

prove the heuristic built by FastMap is an additive heuristic.

FastMap embedding builds an n-dimensional embedding space. Each di-

mension of the embedding space can be considered an abstract space of the

original graph. Then, the heuristic in each abstract space is added together

to build the FastMap heuristic. Therefore, FastMap seems to have both ab-

straction and the additive properties of an additive heuristic. In the next

paragraph, in more detail, we describe the abstraction system of FastMap,

which is a required part of defining an additive heuristic [24].

Define the abstraction system of the FMn as (G,Ξ), where G is the state

space and Ξ = {(Ai, ψi)|ψi : G→ Ai, 1 ≤ i ≤ n} is the set of abstractions and

their mapping functions pairs. The mapping functions of FMn are defined

as ψi(v) = v
fi(v)
i , 1 ≤ i ≤ n, v ∈ V and fi is the embedding function of

FastMap’s i-th dimension (fi in Algorithm 1). The i-th abstract state space

of FastMap is Ai = {Vi, Ei, Ci, Ri}; the set of vertices is Vi = ψi(V) and the

set of edges is Ei = {(ui, vi)|ui, vi ∈ Vi} (a complete graph). In the abstract

21

space, each edge has two cost functions: primary and residual cost functions.

The primary edge cost function is Ci(ei) = FMi(ei), ei ∈ Ei. The residual

edge cost function for edges that do not have a corresponding edge in E is

Ri(ei) = 0, ∄ e ∈ E ψi(e) = ei, and the residual edge cost function for edges

that have a corresponding edge in E is Ri(ei) = Ri−1(ei−1)− FMi(ei), ∃ e ∈

E ψi(e) = ei, ψi−1(e) = ei−1. Also, we define R0(e0) = C(e), e0 := e ∈ E.

Mapping functions of the abstraction system have to follow two conditions

(Definition 2.3.21). The first condition of FastMap’s mapping function is sat-

isfied as edges in the abstractions are a superset of the edges in the original

state space. The second condition is also satisfied, as shown in the lemma

below.

Lemma 3.1.1 (FastMap’s mapping function is an abstraction mapping (sec-

ond condition)). ∀e ∈ E,Ci(ei) +Ri(ei) ≤ C(e)

Proof. By the definition of R0

R0(e0) = C(e) (3.1)

By the definition of Ri

∀1 ≤ i ≤ n,Ri(ei) = Ri−1(ei−1)− FMi(ei) (3.2)

=⇒ ∀1 ≤ i ≤ n,Ri(ei) ≤ Ri−1(ei−1) (3.3)

=⇒ ∀1 ≤ i ≤ n,Ri(ei) ≤ R0(e0) = C(e) (3.4)

=⇒ ∀1 ≤ i ≤ n,Ri(ei) ≤ C(e) (3.5)

=⇒ ∀1 ≤ i ≤ n,Ri−1(ei−1) ≤ C(e) (3.6)

=⇒ ∀1 ≤ i ≤ n, (Ri−1(ei−1)− FMi(ei)) + FMi(ei) ≤ C(e) (3.7)

22

By the definition of Ri(ei) and Ci(ei)

=⇒ ∀1 ≤ i ≤ n,Ri(ei) + Ci(ei) ≤ C(e) (3.8)

So far, we have defined an abstraction system for FastMap. In order to

prove FastMap is an additive heuristic, we have to show both that FastMap’s

abstraction system is additive and that FastMap’s abstraction system heuristic

is equal to the FastMap heuristic. Theorem 3.1.2 shows that FastMap has an

additive abstraction system. Theorem 3.1.4 completes the proof that FastMap

is an additive heuristic.

We can show that the FastMap abstraction system is additive, knowing

that FastMap is locally admissible [2].

Theorem 3.1.2. FastMap abstraction system is additive.

Proof. From the definition of FastMap heuristic

h(e) =
n∑

i=1

hi(ei) (3.9)

Also, from the definition of abstraction system primary edge costs, we know

that

∀ei ∈ Ei hi(ei) = Ci(ei) (3.10)

=⇒ h(e) =
n∑

i=1

Ci(ei) (3.11)

Since the FastMap heuristic is locally admissible [2]

∀e ∈ E h(e) ≤ C(e) (3.12)

=⇒
n∑

i=1

Ci(ei) = h(e) ≤ C(e) (3.13)

=⇒
n∑

i=1

Ci(ei) ≤ C(e) (3.14)

Which is the definition of an additive abstraction system.

23

Lemma 3.1.3. The shortest path cost between two vertices (ui, vi) in the de-

fined abstract space of FastMap, Ai, is equal to the FastMap heuristic at di-

mension i (FMi); i.e.,

∀ui, vi ∈ Vi, C
∗
i (u, v) = FMi(u, v) (3.15)

Proof. The edge between ui and vi is a path with cost FMi(u, v), which implies

C∗
i (u, v) ≤ FMi(u, v)

To prove the lemma, we use a proof by contradiction. Assume: C∗
i (u, v) <

FMi(u, v).

Then there would be a shortest path p = {u, u1i , u2i , ..., uki , v} with length

shorter than FMi(u, v).

Each edge cost in the abstract space is the difference between its vertices

embedding coordinates. Therefore, according to the path p, the embedding

ϕi(v) would be at most C∗
i (u, v) apart from ϕi(u). This is a contradiction since

they are, by definition, FMi(u, v) apart.

Theorem 3.1.4. FastMap is an additive heuristic.

Proof. In Theorem 3.1.2, we showed that the FastMap abstraction system is

additive. This abstraction system’s heuristic is

∀u, v ∈ V hadd(u, v) =
n∑

i=1

hi(ui, vi) = C∗
i (ui, vi) (3.16)

Lemma 3.1.3 showed that

∀u, v ∈ V C∗
i (ui, vi) = FMi(u, v) (3.17)

=⇒ ∀u, v ∈ V hadd(u, v) =
n∑

i=1

FMi(u, v) (3.18)

Therefore, the FastMap heuristic is equal to the newly defined additive ab-

stract system’s heuristic, which implies that FastMap is an additive heuris-

tic.

24

Additive PDBs are static and create all abstract spaces simultaneously at

the beginning. However, FastMap creates abstract spaces through the em-

bedding process dynamically. Each abstract space of FastMap is built after

creating its previous abstract space and is dependent on the previous one.

3.2 General FastMap Embeddings

FastMap embedding can be generalized by generalizing its embedding function

and its pivot selection method.

Theorem 3.1.2 relies on the local admissibility of the FastMap heuristic.

Therefore, if we substitute the FastMap original embedding function with a

new embedding function that results in a locally admissible heuristic, FastMap

with the new embedding function will remain an additive heuristic.

Also, pivots other than the furthest pivots can be selected at each dimen-

sion since the proofs are independent of the pivots. Section 3.4 will explain

pivot selection methods.

3.2.1 Conditions of General FastMap Embedding Func-
tions

Assume a and b are the embedding pivots and ϕ is an embedding function. In

order to have a locally admissible heuristic, ϕ has to have Condition 3 below.

1. ϕ(a) = 0

2. ϕ(b) = dab

3. ∀e = (i, j) ∈ E |ϕ(i)− ϕ(j)| ≤ C(e)

The first two conditions are unnecessary; However, they can be used to

normalize the coordinates of the pivots. Condition 3 is the local admissibility

of each dimension’s heuristic. The lemma below shows that if the heuristic of

each dimension is locally admissible, the whole heuristic of general FastMap

will be locally admissible too.

25

Lemma 3.2.1. If each dimension’s heuristic is locally admissible in the resid-

ual graph of that dimension, regardless of the embedding function, FastMapn

will be locally admissible in the original graph.

Proof. From line 8 of the FastMap Algorithm 1

Ri(e) = Ri−1(e)− hi(e) (3.19)

where Ri(e) is the edge cost of the edge e ∈ E at dimension i of the FastMap,

and hi(e) is the captured heuristic of the edge e at dimension i of the FastMap

heuristic.

=⇒ Ri(e) = (Ri−2(e)− hi−1(e))− hi(e) (3.20)

=⇒ Ri(e) = Ri−2(e)− hi−1(e)− hi(e) (3.21)

With proof by induction we have

=⇒ Ri(e) = R0(e)− h1(e)− h2(e)− ...− hi(e) (3.22)

R0(e) is the initial edge cost of e. Therefore, the edge cost of an edge

at a dimension is the initial edge cost subtracted by the sum of all captured

heuristics of the edge in previous dimensions.

Ri(e) = R0(e)− (h1(e)− h2(e)− ...− hi(e)) (3.23)

On the other hand, according to the assumption that the heuristic of each

dimension is locally admissible, we have

∀ 1 ≤ i ≤ n ∀e ∈ E hk(e) ≤ Rk(e) (3.24)

Considering Equation 3.24 for i = n, we have

∀e ∈ E hn(e) ≤ Rn(e) (3.25)

Considering Equation 3.23 for i = n and Equation 3.25, we have

26

hn(e) ≤ R0(e)− (h1(e) + h2(e) + ...+ hn(e)) (3.26)

=⇒ (h1(e) + h2(e) + ...+ hn(e)) + hn(e) ≤ R0(e) (3.27)

=⇒ h1(e) + h2(e) + ...+ hn(e) ≤ R0(e) (3.28)

From FastMap formula Equation 2.11

=⇒ h(e) ≤ R0(e) (3.29)

=⇒ ∀e ∈ E h(e) ≤ R0(e) (3.30)

The A∗ algorithm with a consistent heuristic is guaranteed to find optimal

solutions. Therefore, to use the general FastMap heuristic in the A∗ algorithm,

we have to show that the general FastMap heuristic is consistent. The lemma

below shows the consistency of the general FastMap heuristic since we have

already shown its local admissibility.

Lemma 3.2.2. If the general FastMap heuristic is locally admissible, regard-

less of the embedding function, it will be consistent too.

Proof. Let the general FastMap has n dimensions. For any dimension i and

three vertices u, v, g in the Vi where (u, v) ∈ E, because of triangle inequality,

we have

|C∗
i (u, g)− C∗

i (v, g)| ≤ C∗
i (u, v) (3.31)

We know from Lemma 3.1.3 that for any two vertices in Vi, C
∗
i (u, g) =

FMi(u, g)

=⇒ |FMi(u, g)− FMi(v, g)| ≤ FMi(u, v) (3.32)

Summing both sides for all dimensions, we get

n∑
i=1

|FMi(u, g)− FMi(v, g)| ≤
n∑

i=1

FMi(u, v) (3.33)

27

Since |(a1 − b1) + (a2 − b2)| ≤ |a1 − b1|+ |a2 − b2| we can make the left side of

the equation smaller

|
n∑

i=1

FMi(u, g)−
n∑

i=1

FMi(v, g)| ≤
n∑

i=1

FMi(u, v) (3.34)

From the definition of FastMap, we have

|FM(u, g)− FM(v, g)| ≤ FM(u, v) (3.35)

Since we know the general FastMap is locally admissible, we have

|FM(u, g)− FM(v, g)| ≤ C(u, v) (3.36)

The equation above proves the local consistency of the general FastMap heuris-

tic. Also, we know that local consistency implies global consistency [17].

3.3 New Embedding Functions

Any embedding function following the three mentioned conditions can be used

instead of FastMap’s original embedding function. In this section, we introduce

new embedding functions.

3.3.1 FastMap Variants

Let a and b be the pivots of the embedding. Different variants of FastMap can

be shown as

ϕ(i) = qdai + rdab + sdbi (3.37)

where q, r, and s are the parameters. According to conditions in Section 3.2.1,

f has to meet the conditions below.

1.

ϕ(a) = 0 (3.38)

=⇒ rdab + sdab = 0 (3.39)

=⇒ r = −s (3.40)

28

2.

ϕ(b) = dab (3.41)

=⇒ qdab + rdab = dab (3.42)

=⇒ q + r = 1 (3.43)

3.

∀(i, j) ∈ E |ϕ(i)− ϕ(j)| ≤ e (3.44)

From the embedding function formulas, we have

|ϕ(i)− ϕ(j)| = (3.45)

|(qdai + rdab + sdbi)− (qdaj + rdab + sdbj)| = (3.46)

|(q(dai − daj) + s(dbi − dbj)| ≤ (3.47)

From the remark 2.3.1

|qe+ se| ≤ (3.48)

|q + s|e ≤ e (3.49)

=⇒ |q + s| ≤ 1 (3.50)

The FastMap original embedding has q = r = 1/2 and s = −1/2. There

are other combinations that can be used, like q = 3/4, r = 1/4, and s = −1/4.

However, we have not tested them extensively.

29

3.3.2 Proportion Embedding Function

This new embedding function, in comparison to FastMaps’s original embed-

ding function, has a different combination of the arguments.

ϕp(i) =
dai

dai + dbi
dab

where dai is the shortest path cost from a to i, and a and b are two pivots of

the embedding.

Theorem 3.3.1. The heuristic defined by ϕ is locally admissible

Description:

Assume i and j are neighbors, and e is the edge cost between them. The

proposition is equivalent to:

|ϕp(i)− ϕp(j)| < e

Proof.

|ϕp(i)− ϕp(j)| = (3.51)

From the embedding function’s formula∣∣∣∣ dai
dai + dbi

dab −
daj

daj + dbj
dab

∣∣∣∣ = (3.52)

∣∣∣∣dai(daj + dbj)− daj(dai + dbi)

(dai + dbi)(daj + dbj)
dab

∣∣∣∣ = (3.53)

∣∣∣∣ daidbj − dajdbi
(dai + dbi)(daj + dbj)

dab

∣∣∣∣ ≤ (3.54)

From remark 2.3.1 ∣∣∣∣dai(dbi + e)− (dai − e)dbi
(dai + dbi)(daj + dbj)

dab

∣∣∣∣ = (3.55)

∣∣∣∣ daie+ dbie

(dai + dbi)(daj + dbj)
dab

∣∣∣∣ = (3.56)

∣∣∣∣ (dai + dbi)e

(dai + dbi)(daj + dbj)
dab

∣∣∣∣ = (3.57)

30

∣∣∣∣ dab
daj + dbj

e

∣∣∣∣ ≤ (3.58)

From lemma 2.3

|e| = e (3.59)

=⇒ |ϕp(i)− ϕp(j)| ≤ e (3.60)

3.3.3 Shrinking Function

fs(i) = c.ϕ(i) for 0 ≤ c ≤ 1 (3.61)

Since ∀ ifs(i) ≤ ϕ(i) the heuristic made by this embedding is locally admissible

too. After doing the first dimension of the FastMap embedding, the captured

heuristic at each edge will be deducted from the edge cost. Therefore, edge

weights are reduced (or unchanged) after doing each dimension’s embedding.

Consequently, in the second dimension of the FastMap, these reduced edges

appear in the shortest paths from the pivots. Since the FastMap embedding

function uses the shortest path costs, the range of the embedding values will

become smaller. Therefore, the captured heuristic, which is the difference

between the embedding values, will become less. By shrinking the captured

heuristic in the first dimension, the reduction of edge weights would be less;

hence, the residual would be greater than the original FastMap. This method

can be used in any dimension, and it helps to leave more residual for the

following dimensions. However, using this embedding in the last dimension

will not be useful since it results in capturing less heuristic.

3.3.4 Differential Heuristic As The Last Dimension

By doing DH in one of the embedding steps, the residual graph would have

the shortest paths with cost zero between any two vertices (Figure 3.1).

Lemma 3.3.2. After doing the embedding by DH, the shortest path cost be-

tween any two vertices in the graph would be zero.

31

Proof. First, we prove that after doing the embedding by DH, every edge on

the shortest path from the DH pivot to any vertex in the residual graph would

have the cost of zero, i.e.,

∀e ∈ p, C(e) = 0 (3.62)

where p = {v0, v1, v2, ..., vn} is the shortest path from v0 (the DH pivot) to an

arbitrary vertex vn in the graph before doing the embedding.

From the definition of the shortest path, we know that the shortest path

from v0 to any vertex vi on p is {v0, v1, v2, ..., vi−1, vi}. Therefore, for every

vertex on the shortest path from the pivot, its preceding vertex is also on

the same shortest path except for the last edge connecting them. Thus, the

difference in the differential heuristic embeddings of these two vertices is their

edge cost, which results in a residual of 0 for this edge. As a consequence, all

edges on the shortest paths from the pivot would have a residual of 0 after

doing differential heuristic embedding. Therefore, if we do an embedding after

doing the differential heuristic, we will not capture any new heuristic as the

embedding of all the vertices would be zero.

M

I

E

A

N

J

F

B

O

K

G

C

P

L

H

D
1 1 1

1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1.4
1.4

1.4

1.4
1.4

1.4

1.4
1.4 1.4

1.
4

1.
4

1.
4

1.
4

1.
4

1.
4

1.
4

1.
4

1.
4

M

I

E

A

N

J

F

B

O

K

G

C

P

L

H

D
0 0 0

0.6 0 0

0.6 0.6 0

0.6 0.6 0.6

0 0.6 0.6 0.6

0 0 0.6 0.6

0 0 0 0.6

0 0 0

0 0 0

0 0 0

1.
4

0.
8

0.
8

0.
8

1.
4

0.
8

0.
8

0.
8

1.
4

Figure 3.1: Differential heuristic as the embedding function. The left graph is
the state space before doing differential heuristic embedding. The right graph
is the state space after doing differential heuristic embedding with A as the
pivot. A shortest path from D to O is shown in green with the cost zero.

Capturing the most out of the residual at the last dimension is good since

the less residual remains, the more heuristic is captured, at least between the

32

adjacent vertices. Note that the optimal heuristic has a residual of zero, but

a residual of zero does not imply an optimal heuristic. By using a differen-

tial heuristic for embedding the last dimension, more heuristic is captured in

comparison to FastMap as shown in Figure 4.2.

3.4 New Pivot Selection Methods

Instead of one n-dimensional FastMap heuristic, there can be multiple different

heuristics with fewer dimensions but having n dimensions altogether. For

example, there can be n
2
different 2-dimensional heuristics. Therefore, the

general case of the heuristic is

h(v1, v2) = max
hi∈H

(hi(v1, v2))

where H with |H| = m is the set of the m heuristics with each hi ∈ H having

1 ≤ ni ≤ n dimensions such: ∑
1≤i≤t

ni = n

However, since the original FastMap uses the furthest method for selecting

pivots, it is possible that the first dimensions of two separate FastMap heuris-

tics on a graph become the same. Thus, the challenge is ensuring different

pivots are used in each dimension so that heuristics become different and cap-

ture other parts of the graph too. In order to optimize pivots selection at each

dimension’s embedding, two ways are suggested. Below is the optimization of

pivot placement of the j−th dimension of hk ∈ H by using a baseline heuristic

h0 where 1 ≤ j ≤ nk.

The Baseline Heuristic

The baseline heuristic h0 can be built in different ways.

• h0 = Zero heuristic.

• h0 = The default embedding distance (e.g. Euclidean).

• h0 can be the heuristic of previous dimensions inside the hk

33

• h0 can be the maximum of the heuristic of previous dimensions inside

the hk and h1, h2, ..., hk−1

Using Subset Selection

Here we use the approximate version of subset selection [20] to find pivots

of each dimension while maximizing the captured heuristic at each dimension

approximately. To do this, choose different candidate pivots CP ⊆ V . Embed

the j − th dimension of hk using each of these candidate pivots separately.

Build different heuristics using these different embeddings at j− th dimension

on top of h0. Greedily find the one heuristic that maximizes the sample’s

total heuristic. Use the pivot(s) of the founded heuristic for embedding j− th

dimension. This process can go on for the following dimensions similarly by

choosing candidate pivots for each dimension.

The optimal version of subset selection [20] can be used to find multiple

dimensions pivots. To use subset selection, We have to find a combination

of pivots for these multiple dimensions (among many candidates for each di-

mension) that maximize the sample heuristic. Note the difference with the

approximate version: here, we do not choose candidate pivot at each dimen-

sion greedily; we compare whole dimensions’ heuristics to find the optimal

heuristic and consequently pivots.

Using Heuristic Error (HE)

Instead of selecting pivots that are farthest in distance, pivots with the max-

imum heuristic error can be selected. The heuristic error between two states

means that we have an uncaptured heuristic between them. Therefore, find-

ing the state pair with the maximum heuristic error is good; by placing pivots

there, we can capture more heuristics. To use heuristic error, select a random

vertex v ∈ V , find the vertex that has the maximum α · d(r, v) + β · (d(r, v)−

h0(r, v)) in the original graph G (not the residual) where d is the distance

function, h0 is the baseline heuristic, and α, β are arbitrary constants. Use the

founded vertex as a pivot for j − th dimension of hk.

Figure 3.2 shows candidate pivots for the sample map inside the figure.

34

Table 3.1 shows the perfect heuristic, Octile heuristic, and different FastMap

heuristics between three pairs of (E,F), (C,D), and (A,D). Each row shows

the maximum heuristic of Octile and that row’s heuristic. For example, the

FM(A,D) row shows the maximum of the heuristic of Octile and a FastMap

embedding with pivots being A and D. The Octile heuristic between (A,D)

is perfect. However, there is a heuristic error from the perfect heuristic if

we use Octile between (E,F), or (C,D). Using FM(A,D) captures the

heuristic between (E,F) better. FM(B,C) is similar to FM(A,D) since the

map is symetric. FM(E,F) captures the heuristic between (E,F) perfectly.

FM(C,F) (and FM(D,E)) capture heuristic between (E,F) better than Oc-

tile. FM(C,D) captures the heuristic between (E,F) and (C,D) better than

Octile.

On the map of Figure 3.2, if we use FastMap [2] pivot selection method,

which chooses pivots that are farthest from each other, we get FM(A,D) or

FM(B,C) which only have improvements on h(E,F) over Octile. If we use

heuristic error, with α = 0, β = 1, to find the pivots we get one of FM(A,D),

FM(B,C), FM(E,F), FM(C,F), or FM(E,D) which have better heuristic

in general in comparison to original FastMap embeddings. If we use heuris-

tic error, with α = 1, β = 2, to find the pivots we get one of FM(A,D),

FM(B,C), FM(E,F), FM(C,F), FM(E,D), or FM(C,D) which have bet-

ter heuristic in general in comparison to previous HE formula and the original

FastMap because it has a high possibility to get FM(C,D) as the embedding

which capture heuristics better between (E,F) and (C,D).

By using heuristic error, we put the pivots in places with a higher heuristic

error, which results in capturing the heuristic better, at least between the

pivots. If we use heuristic error with α = 0, β = 1, pivots likely end up

being close to each other, as shown for the map of 3.2. Close pivots result

in having heuristics that are small because the largest possible heuristic to

capture is the distance between the pivots. However, if we use heuristic error

with α = 1, β = 2, we get pivots that are further, and still, there is a heuristic

error between them, which gives us a higher range of possible heuristics.

Since both of these methods find better pivots for a dimension, they can

35

A B

C D
E F

Figure 3.2: A, B, C, D, E, and F are candidate pivots for this map.

Heuristic h(E, F) h(C, D) h(A, D)

h∗ 54.0 118.5 137.2
Octile 2.0 97.0 137.2
FM(A,D) 19.8 97.0 137.2
FM(B,C) 19.8 97.0 137.2
FM(E,F) 54.0 97.0 137.2
FM(C,F) 46.4 97.0 137.2
FM(D,E) 46.4 97.0 137.2
FM(C,D) 38.7 118.5 137.2

Table 3.1: The perfect heuristic, Octile heuristic, and different FastMap heuris-
tics between (E,F), (C,D), and (A,D).

36

either be used to improve the heuristic of a single general FastMap embedding

or the heuristic of multiple general FastMap embeddings used together.

37

Chapter 4

Experiments and Results

This chapter is divided into the four sections below,

• Analyzing the results of the FastMap paper and trying to replicate it.

• Evaluating subset selection method used for optimizing pivots place-

ments.

• Comparing newly introduced heuristics on different sets of maps, includ-

ing Sturtevant (2012) benchmarks [22] and multi-dimensional graphs.

• Calculating the total captured heuristics for FastMap and General FastMap

with differential heuristic as the last dimension.

4.1 FastMap Paper Results Analysis

The FastMap paper ran the A* algorithm with three heuristics on three maps

(lak503d, brc300d, maze512-32-0) for 1000 random search problems. The

heuristics used by the paper are:

FM10: A 10-dimensional FastMap.

DH10: A differential heuristic with ten furthest pivots.

max(FM5, DH5): The maximum heuristic of a 5-dimensional FastMap

and a differential heuristic with five furthest pivots.

They showed the results in 3 ways (one of them is duplicated in Table 4.1)

[2]. However, their ways of comparing heuristics have four main common

38

Map ‘lak503d’ ‘brc300d’ ‘maze512-32-0’
FM-WINS 570 DH-WINS 329 FM+DH-WINS 101 FM-WINS 846 DH-WINS 147 FM+DH-WINS 7 FM-WINS 382 DH-WINS 507 FM+DH-WINS 111
Med MAD Med MAD Med MAD Med MAD Med MAD Med MAD Med MAD Med MAD Med MAD

FM(10) 261 112 465 319 2,222 1,111 205 105 285 149 894 472 1,649 747 11,440 9,861 33,734 13,748
DH(10) 358 215 278 156 885 370 217 119 200 129 277 75 3,107 2,569 2,859 2,194 8,156 4,431

FM(5)+DH(5) 303 160 323 170 610 264 206 105 267 135 249 73 2,685 2,091 3,896 2,992 7,439 4,247

Table 1: Shows the median and MAD numbers of A* node expansions for different maps using three different heuristics with equal memory
resources on 1000 random instances. FM(10) denotes the FastMap heuristic with 10 dimensions, DH(10) denotes the Differential heuristic
with 10 pivots, and FM(5)+DH(5) is a combined heuristic which takes the maximum of a 5-dimensional FastMap heuristic and a 5-pivot
Differential heuristic. The results are split into bins according to winners (along with their number of wins).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Shows empirical results on 3 maps from Bioware’s Dragon Age: Origins. (a) is map ‘lak503d’ containing 17, 953 nodes and
33, 781 edges; (d) is map ‘brc300d’ containing 5, 214 nodes and 9, 687 edges; and (g) is map ‘maze512-32-0’ containing 253, 840 nodes
and 499, 377 edges. In (b), the x-axis shows the number of dimensions for the FastMap heuristic (or the number of pivots for the Differential
heuristic). The y-axis shows the number of instances (out of 1, 000) on which each technique expanded the least number of nodes. Each
instance has randomly chosen start and goal nodes. (c) shows the median number of expanded nodes across all instances. Vertical error bars
indicate the MADs. The figures in the second and third rows follow the same order. In the legends, “FM” denotes the FastMap heuristic,
“DH” denotes the Differential heuristic, and “OCT” denotes the Octile heuristic.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1432

Table 4.1: FastMap paper results [2]. Med is the median of the number of
expansions. MAD is the median absolute deviation.

issues. First, they are showing the results only on three maps, which is inad-

equate for comparing different heuristics. The heuristics should be compared

on more maps with different topologies. Second, the results are created for

random problems, which makes them hard to replicate. Third, random prob-

lems are not a good benchmark since they will not necessarily have a uniform

distribution of the problems according to their hardness. Most random prob-

lems have short path lengths that cannot evaluate the heuristics thoroughly.

Fourth, the median (or the number of wins) is not a good measure for com-

paring the heuristics. There are cases where one heuristic can have a lower

median (or more number of wins) than another heuristic. However, since the

average number of expansions of the former one is higher, it takes more time

to solve all the problems with the former one.

4.1.1 Validation of FastMap Paper Results

Since the FastMap paper has used random problems, the replication of results

is impossible without having the embedding pivots and the random problems.

To replicate their result as much as possible, we ran A∗ with the same heuris-

tics and settings they used (i.e., 1000 random problems on the three maps).

Through the experiments, we found out the pivots have a considerable impact

on the embedding, so our results differ. However, it generally matches their

result where significant differences exist between the heuristics. For example,

in map lak503d, the paper shows in 570 problems, FM performs lower node

expansions, which is observable in Figure 4.1(a), where in around the first 570

problems, FM plot is so close to other heuristics. The closeness shows that

the number of expansions by the heuristics are close to each other. Therefore,

it is possible that with a different set of pivots and random problems, one

39

Heuristics lak503d brc300d maze512-32-0
Md Mn Md Mn Md Mn

FM10 342 704 176 234 9684 17742
DH10 347 506 187 223 7538 11929

max(FM5, DH5) 329 517 174 196 6387 11006

Table 4.2: Results of running A∗ with different heuristics on three maps. Md
and Mn are the median and mean of the number of expansions.

heuristic performs lower node expansions than the other and wins. Also, in

problems where FM5+DH5 (i.e., max(FM5, DH5) in Figure 4.1) wins, there

is a huge gap between FM and FM5+DH5 which is observable in both Table

4.1 and Figure Figure 4.1. In map brc300d, the paper shows in 846 problems,

FM wins, which is observable in Figure 4.1(b), where in around the first 870

problems, FM is so close to other heuristics. In maze512-32-0 map, the paper

shows in 507 problems, DH wins with a considerable difference in the median

compared to FastMap, which is observable in Figure 4.1(c) too. Table 4.2 also

verifies that although FM10 might win in many problems (or have a lower

median), it has a higher mean of the number of expansions in all three maps.

4.2 Evaluating Subset Selection Used for Op-

timizing Pivots Placement

As described in Section 3.4, subset selection can be used to optimize the pivot

placement of embeddings. It can be used either in optimizing one single em-

bedding like FM10 and DH10 or optimizing when multiple embeddings are

being used together, like FM5 and DH5 being used together. Here we show

the results of optimizing the pivots’ placement of DH10 using subset selection.

We take
√
n random samples on each map. Then we find the 20 furthest

pivots on the map. By subset selection, we only choose 10 of them that maxi-

mize the heuristic between all pairs of the samples (i.e., SubDH10(20)). Table

Table 4.3 shows the number of node expansions for these two versions of the

differential heuristic. Subset selection’s preprocessing takes more time than

the default embeddings; therefore, it will not be compared with them. How-

40

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100 200 300 400 500 600 700 800 900 1000

N
u
m
b
e
r
o
f
e
x
p
a
n
s
io
n
s

Problem #

FM10
DH10

max(FM5,DH5)

heuristics

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 100 200 300 400 500 600 700 800 900 1000

N
u
m
b
e
r
o
f
e
x
p
a
n
s
io
n
s

Problem #

FM10
DH10

max(FM5,DH5)

heuristics

(b)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 100 200 300 400 500 600 700 800 900 1000

N
u
m
b
e
r
o
f
e
x
p
a
n
s
io
n
s

Problem #

FM10
DH10

max(FM5,DH5)

heuristics

(c)

Figure 4.1: The number of expansions on three maps for 1000 random prob-
lems. (a)lak503d (b)brc300d (c)maze512-32-0.

41

Heuristics DAO SC1 Random Rooms Mazes
Md Mn C Md Mn C Md Mn C Md Mn C Md Mn C

DH10 502 1338 11 1910 6180 47 3065 5164 28 3785 6868 57 6422 9815 26
SubDH10(20) 488 1244 10 1641 5311 41 2791 4703 27 3470 6331 54 6207 9471 25

Table 4.3: Results of running A∗ with different heuristics on different map
sets. Md, Mn, and c columns are the median, mean, and 95% confidential
interval on the mean of the number of expansions.

ever, we showed that it can improve DH and can be useful in applications

that allow enough preprocessing time.

4.3 Comparing Different Heuristics

In order to evaluate heuristics, the A∗ algorithm with different heuristics is

run on the Sturtevant (2012) benchmarks [22] and multi-dimensional graphs.

The heuristics performances and the map sets (and graphs) used are shown

in Tables 4.7, 4.8, and 4.9. In the three below subsections, we explain (1) the

heuristics, (2) the maps (and their problem instances), then (3) discuss the

obtained results in the last subsection.

Pivot Selection Methods and Heuristics

The column pivot in Table 4.7 represents what distance measure is used

for selecting the pivots. FAR is used for DHn, and it finds n furthest pivots

in the graph. The ED method (the same pivot selection method of FastMap,

lines 5-7 in Algorithm 1) is used to find pivots of one dimension; it can be

any dimension of an n-dimensional embedding. The ED method begins with

choosing a random vertex r and selects a vertex with the maximum C∗(r, u)

in the current dimension embedding (residual), where C∗(r, u) is the short-

est path cost between r and u. Then, it selects the vertex v that has the

maximum C∗(u, v). Therefore, ED selects u and v as the pivots of that di-

mension, or in cases like DH as the last dimension of FMn−1DH, where only

one pivot is needed, u will be selected. Unlike ED, we use the HE method

(Heuristic error method in Section 3.4) only for finding the pivots of the first

dimension of a multi-dimensional embedding; Through a few experiments, we

found out the built heuristic by using HE in all dimensions did not perform

42

as well as when HE is used only for the first dimension’s pivots. HE be-

gins with choosing a random vertex r and selects a vertex with the maximum

C∗(u, v) + 2 ∗ (C∗(u, v) − h0(u, v)) in the original graph, where h0 is the ini-

tial heuristic mentioned in Section 3.4. Here we use the maximum of all the

existing heuristics as h0. For a heuristic that consists of m general FastMap

heuristics, HE is applied on all the first dimensions of the m FastMaps. For

instance, if HE is used to find the first dimension’s pivots of the fifth FM2DH

of 8FM2DH, h0 would be the heuristic of the first four FM2DH.

The heuristics notations in Table 4.7 are already defined in Chapters 2

and 3. All the heuristics in 4.7 use the Euclidean heuristic as their baseline

heuristic. I.e., the maximum of them with Euclidean heuristic is used. Also,

when HE is used, the Euclidean heuristic is used in constructing h0. The

heuristics with respect to n dimensions are briefly explained below.

Three of them are the baseline heuristicsDHn, FMn, andmax(FM
n
2 , DH

n
2)

as used in the Cohen et al. (2017) work [2] (explained in Section 4.1 too).

FMn−1DH-Far: An n-dimensional general FastMap with the last dimen-

sion being a differential heuristic.

max(FM
n
2
−1DH,DH

n
2): The maximum heuristic of an n

2
-dimensional

general FastMap with last dimension being differential heuristic and an n
2
-

dimensional differential heuristic. Note if HE is used, the Euclidean heuristic

would be used as the h0 for selecting the first dimension’s pivots of FM
n
2
−1DH.

max(DH
n
2 , FM

n
2
−1DH): The maximum heuristic of an n

2
-dimensional dif-

ferential and an n
2
-dimensional general FastMap with the last dimension being

differential heuristic. Note if HE is used, the heuristic of DH
n
2 would be used

as the h0 for selecting the first dimension’s pivots of FM
n
2
−1DH.

max(m ∗ FM q−1DH), where m ∗ q = n: The maximum heuristic of m

q-dimensional general FastMap embedding, which is specifically useful when

used with HE pivot selection.

Maps and Their Problem Instances

The Sturtevant (2012) benchmarks [22] consist of different map sets, and

each map in a map set has a set of problem instances. The heuristics perfor-

mances, measured by the number of nodes expanded while solving the problem

43

Map Set maps problems

DAO 150 157,750
SC1 75 198,224
Random 70 146,220
Rooms 40 78,840
Mazes 60 586,370

Total 395 1,161,404

Table 4.4: Maps stats: the number of problems and maps of each map set.

instances, are shown in 4.7. To extend our results, we also provide the heuris-

tic performance results on 3D and 4D graphs with different configurations of

edge costs. Each vertex in the graphs is connected to two other vertices in

each dimension. For instance, 503,RE(1-1.5) represents a 50 × 50 × 50 3D

graph with edges having random edge costs between 1 and 1.5. Graphs with

E(1) in their name have edge costs of 1. Other graphs’ names follow the same

pattern. We used 1000 random problem instances for the graphs since there

is no standard benchmark for them.

The Sturtevant (2012) benchmarks [22] maps stats are shown in Table

4.4. This benchmark has 395 maps from different categories and 1,161,404

problems. However, Cohen et al.’s (2017) [2] paper only represented results

on three maps and for 3000 random problems, which is insufficient for having

a strong conclusion on the performance of the heuristics.

Discussion

Tables 4.5 and 4.6 show the time performance and node expansions on

DAO and SC1 map sets respectively. These tables show that the mean of the

expansions and expansions times are correlated with a correlation of 0.9971.

Therefore, we only show the expansions in the other results.

The A∗ algorithm’s open list has O(logV) time complexity for each time

removing the vertex with minimum f-cost from the open list (and finding the

next min). The Octile heuristic has less precomputation time than the other

heuristics, but it is less accurate than them. Therefore, it (likely) performs

more expansions, which include removing the min from the open list. Since

44

expansions and time are correlated, the Octile heuristic takes more time to

solve the whole benchmark. As shown in the tables 4.5 and 4.6, Octile performs

ten times worse than the other heuristics.

The tables 4.5 and 4.6 precomputation time column helps us understand

when we should use a heuristic. The Octile heuristic performance is ten times

worse than the other heuristics. However, the Octile heuristic does not have

precomputation time. Therefore, it can be useful in applications that need

to solve only a few problem instances. Another example can be DH. DH

precomputation time is nearly half the FM precomputation time. Therefore,

depending on the number of problems we want to solve, it can be useful to

use DH on DAO maps, although it has worse performance in the mean of

expansions (and expansions times).

Table 4.7 shows that Cohen et al. (2017) [2] FastMap is not performing

as well as it seems in their paper. Their paper only showed results for three

maps on random problems, which we discussed in Section 4.1 are not a good

evaluation setting. For instance, although FMn wins most of the problems

in DAO maps, as shown in Section 4.1 (or has a median nearly the same as

DHn, as shown in 4.7), FMn has a higher mean of expansions. This shows

that in the problems that are easier to solve, FMn performs similarly to DHn,

which we also showed in Figure 4.1. However, for the harder problems, DH10

performs better, resulting in a lower mean of expansions (4.7).

As a solid result, it is shown that using differential heuristic as the last di-

mension of general FastMap, improves the heuristic in all the map sets (includ-

ing 3d and 4d graphs) in comparison to the Cohen et al. (2017) [2] FastMap

heuristic. I.e., FMn−1DH and max(DH
n
2 , FM

n
2
−1DH) perform better than

FMn and max(DH
n
2 , FM

n
2). The improvement is significant in all the maps,

especially in the maze map set which the performance is two times better

and is the best among all the heuristics. In other map sets, we have the best

median in DAO, SC1.

HE method also performs better in all cases in comparison to the old ED

pivot selection method. I.e., FMn−1DH and max(DH
n
2 , FM

n
2
−1DH) when

used with HE method, perform better than their ED version in overall among

45

Heuristics Expansions Time

Md Mean Conf PCMean Md Mean Conf Node/ms Conf

Octile 5,750 13,300 ±91 0 8.793 16.759 ±0.113 747.402 ±1.036
DH10 499 1,335 ±11 669.693 0.682 1.688 ±0.015 754.792 ±1.361
FM10 510 2,275 ±23 1576.078 0.741 2.958 ±0.032 730.266 ±1.310
FM9DH 375 1,052 ±12 1385.684 0.539 1.545 ±0.026 706.716 ±1.267

Table 4.5: DAO map set results. Md, Mean, and Conf columns under the Ex-
pansions (or Time) column group are the median, mean, and 95% confidence
interval on the mean of the number of expansions (or the mean expansions’
times or speed). PCMean, and Node/s are the mean of the precomputation
times and the number of nodes expanded per second. All times are in millisec-
onds.

all map sets. HE has made using multiple FastMap together possible, which

was not effective before. HE also shows its strength when used for multiple

FastMaps; 8 ∗ FM2DH performs as the best heuristic in the Rooms map

set, (50 × 50 × 50, E(1)) graph, (19 × 19 × 19 × 19, E(1)) graph, and almost

(19× 19× 19× 19, RE(11.5)) graph. Also, HE performs best in mean in DAO

and Maze maps.

The reason why each heuristic performs better than the others needs a

deeper study. However, Sturtevant’s (2012) work [22] has a measure for the

underlying dimension of the map sets, and it seems like in maps with lower

underlying dimensions like DAO and Mazes [22], general FastMap embeddings

perform better. Also, it seems like in maps with higher underlying dimensions

like SC1, random maps [22], and multi-dimensional graphs DHn performs

better. We also could use multiple FastMap embeddings to perform better on

maps with high dimensions like Rooms and 4D RE (1,1.5).

4.4 Captured Heuristic

As shown in the results of Section 4.3, using differential heuristic as the last

dimension of general FastMap embedding performed better than the FastMap

embedding itself in all maps. The following experiment verifies using differen-

tial heuristic as the last dimension captures more heuristic (although the more

the heuristic is captured, does not mean that it necessarily performs better).

46

Heuristics Expansions Time

Md Mean Conf PCMean Md Mean Conf Node/ms Conf

Octile 26,389 48,538 ±269 0 49.819 83.221 ±0.431 529.964 ±0.653
DH10 1,927 6,176 ±46 11589.274 3.963 9.172 ±0.061 507.759 ±0.987
FM10 4,292 18,997 ±151 24169.420 7.775 29.517 ±0.225 501.973 ±0.985
FM9DH 1,618 15,328 ±139 24143.241 3.911 22.953 ±0.202 494.222 ±1.007

Table 4.6: SC1 map set results. Md, Mean, and Conf columns under the Ex-
pansions (or Time) column group are the median, mean, and 95% confidence
interval on the mean of the number of expansions (or the mean expansions’
times or speed). PCMean, and Node/s are the mean of the precomputation
times and the number of nodes expanded per second. All times are in millisec-
onds.

Heuristics Pivot DAO SC1 Random Rooms Mazes

Md Mean C Md Mean C Md Mean C Md Mean C Md Mean C

DH10 FAR 503 1,343 11 1,911 6,251 48 3,057 5,155 28 3,805 6,927 57 6,422 9,815 26
FM10 ED 513 2,283 23 4,265 19,068 153 5,974 12,472 84 9,656 19,623 169 9,046 15,462 45
FM9DH ED 381 1,095 14 1,639 16,089 144 4,085 11,146 84 6,252 17,504 169 4,695 7,107 19
FM9DH HE 375 1,038 12 1,532 14,507 135 4,107 11,075 83 5,921 16,275 155 4,654 7,042 19
max[DH5, FM5] ED 466 1,322 11 2,273 8,413 69 3,616 6,272 36 4,687 8,962 76 6,742 10,246 27
max[DH5, FM4DH] ED 407 1,038 9 1,600 7,469 65 3,285 5,904 34 3,851 8,207 73 6,357 9,634 25
max[FM4DH, DH5] HE 403 979 8 1,556 7,411 65 3,279 5,899 34 3,667 7,883 69 6,319 9,562 25
max[DH5, FM4DH] HE 405 987 8 1,545 7,385 65 3,135 5,725 34 3,595 7,745 69 6,243 9,452 24

DH24 FAR 382 866 6 987 3,096 23 1,799 2,940 16 2,136 3,729 30 4,592 6,938 18
FM24 ED 398 1,576 18 1,970 16,557 145 5,236 11,877 83 8,197 18,455 165 5,562 10,515 32
FM23DH ED 344 913 11 1,219 15,019 139 3,508 10,803 83 5,916 17,404 170 3,336 4,843 12
max[FM12, DH12] ED 341 693 5 876 3,918 35 2,202 4,067 24 2,453 4,866 42 4,420 6,688 17
max[FM11DH, DH12] ED 320 577 4 755 3,540 34 2,009 3,850 23 2,018 4,466 41 4,230 6,290 16
max[FM11DH, DH12] HE 318 569 4 756 3,406 33 1,993 3,842 23 1,935 4,401 41 4,217 6,264 16
max[8×FM2DH] HE 412 1,185 14 946 3,755 34 2,066 4,073 26 1,590 3,750 39 6,489 10,139 27

Table 4.7: Results of running A∗ with different heuristics on different map sets.
Md, Mn, and c columns are the median, mean, and 95% confidence interval
on the mean of the number of expansions.

Heuristics Pivot 503,E(1) 503,RE(1-1.5) 503,RE(1-10)
Md Mn C Md Mn C Md Mn C

FM24 ED 14593 22380 1395 15074 23324 1419 12989 18267 1111
DH24 FAR 49 61 8 596 1104 87 779 1288 93
max[FM12, DH12] ED 49 109 26 898 1948 203 1261 2110 159
FM23DH ED 13700 22007 1437 14300 23171 1446 11841 18067 1142
max[FM11DH, DH12] ED 49 109 26 876 1921 202 1204 2066 158
max[FM11DH, DH12] HE 50 220 59 870 1859 177 1200 2050 160
max[12× FMDH] HE 49 49 1 982 1722 131 1231 1976 143
max[8× FM2DH] HE 49 49 1 954 1681 129 1282 1960 136

Table 4.8: Results of running A∗ with different heuristics on 3D graphs with
different edge costs. Md, Mn, and c columns are the median, mean, and 95%
confidence interval on the mean of the number of expansions.

47

Heuristics Pivot 194,E(1) 194,RE(1-1.5) 194,RE(1-10)
Md Mn C Md Mn C Md Mn C

FM24 ED 14435 22563 1444 16568 25155 1561 12385 19197 1195
DH24 FAR 27 245 64 381 1020 121 607 1124 526
max[FM12, DH12] ED 127 1235 218 614 1858 225 987 1993 171
FM23DH ED 14006 22732 1453 16332 24097 1519 12424 19200 1216
max[FM11DH, DH12] ED 101 1151 209 616 1822 221 929 1730 144
max[FM11DH, DH12] HE 66 1051 206 554 1673 212 933 1952 172
max[12×FMDH] HE 26 26 1 433 907 79 1017 1829 148
max[8×FM2DH] HE 26 26 1 400 847 75 977 1659 124

Table 4.9: Results of running A∗ with different heuristics on 4D graphs with
different edge costs. Md, Mn, and c columns are the median, mean, and 95%
confidence interval on the mean of the number of expansions.

 2.6x1013

 2.7x1013

 2.8x1013

 2.9x1013

 3x1013

 3.1x1013

 3.2x1013

 3.3x1013

 1 2 3 4 5 6 7 8 9 10

To
ta
l
c
a
p
tu
re
d

 h
e
u
ri
s
tic

number of dimensions

FM
FM+DH

heuristics

Figure 4.2: Total captured heuristics in all DAO maps by FM and FMDH.

For a single map, we calculate the total captured heuristic between all

vertices pairs of the map. Then we sum up all the captured heuristics among

all the DAO maps. This is illustrated in Figure 4.2, where the x-axis is the

number of dimensions, and the y-axis shows the total captured heuristic among

all the maps. For instance, the points with x = 5 show the results for FM4DH

and DH5. As shown in Figure 4.2, the heuristic captured by FM4 + DH is

greater than FM10. This shows usingDH instead of FM as the last dimension

of FM5 captures more heuristics than the last five dimensions of FM10.

48

Chapter 5

Conclusion and Future Work

In this thesis, we have improved the FastMap embedding. Our contribution

can be summarized in the below list:

• “FastMap is an additive heuristic” is proven.

• FastMap embedding is generalized by generalizing its embedding func-

tion and pivot selection method.

• Several new embedding functions and pivot selection methods are intro-

duced.

• The introduced pivot selection methods make using multiple FaastMap

together possible, which was not effective before.

• It is shown that the results of the FastMap paper [2] are not sufficient

and misleading.

• New and old heuristics are compared on a wide range of maps, including

muti-dimensional graphs.

• It is shown using differential heuristic as the last dimension of FastMap

improves its heuristic.

• Both subset selection and HE pivot selection methods improve the heuris-

tics.

49

• Our new heuristics perform best in multiple maps like DAO, Mazes,

Rooms, 3D (503 ,E(1)), 4D (194 ,E(1)), and almost in 4D (194, RE(1,1.5))

graph.

• It is shown that using DH as the last dimension of FM4DH general

FastMap embedding captures more heuristics than the last five dimen-

sions of FM10.

The future work can be summarized in the below items:

• Different Configurations of the Introduced Heuristics: In Chap-

ter 4, we gave our results for selected heuristics. However, we have

introduced several methods, and each can have different configurations.

For instance, the Heuristic Error method for pivot selection uses a for-

mula that has two arbitrary constants. We only provided results for one

configuration, which we thought would be best by testing it through a

few maps. Or, there are embedding functions like the shrinking func-

tion, which we did not provide results for since, in a few maps, it did

not perform well. However, it is possible that different configurations of

it perform better.

• Different Map Sets for the Experiments in Chapter 4: There

are other maps and graphs that can be used for the experiment. For

example, there are City maps in the MovingAI repository which can be

used. Or, graphs with different ranges of edge costs can be used for

testing the heuristics.

• Deeper study: The introduced heuristics and their results can be stud-

ied deeper to gain a better understanding of them. For instance, it needs

to be studied why a heuristic, like DHn, performs better in a particular

type of map, like maps with higher dimensions SC1. Or, it needs to be

studied why using the HE method in all dimensions of an embedding

does not perform well as we tested on a few maps.

50

• New Methods: New embedding functions and pivot selection meth-

ods can be introduced. Even a different admissible FastMap using l2

embedding may possibly be introduced.

• New Experiment: The experiments on the multi-dimensional graphs

in chapter 4 do not have a standard benchmark. Since the graphs are

a good representation of maps with higher dimensions, testing on them

can help with understanding heuristics better. Therefore, creating a

standard benchmark for graphs may be useful.

51

References

[1] S. Koenig A. Li P. Stuckey and S. Kumar. “A FastMap-Based Algorithm
for Block Modeling.” In: In Proceedings of the International Conference
on the Integration of Constraint Programming, Artificial Intelligence,
and Operations Research (CPAIOR). 2022.

[2] Liron Cohen et al. “The FastMap Algorithm for Shortest Path Compu-
tations.” In: Proceedings of the Twenty-Seventh International Joint Con-
ference on Artificial Intelligence, IJCAI-18. International Joint Confer-
ences on Artificial Intelligence Organization, July 2018, pp. 1427–1433.

[3] CSC2414 - Metric Embeddings Lecture 1: A brief introduction to metric
embeddings, examples and motivation. http://www.cs.toronto.edu/
~avner/teaching/S6-2414/LN1.pdf. Accessed: 2022-09-29.

[4] Joseph C Culberson and Jonathan Schaeffer. “Pattern databases.” In:
Computational Intelligence 14.3 (1998), pp. 318–334.

[5] Rina Dechter and Judea Pearl. “Generalized best-first search strategies
and the optimality of A.” In: Journal of the ACM (JACM) 32.3 (1985),
pp. 505–536.

[6] Edsger W Dijkstra et al. “A note on two problems in connexion with
graphs.” In: Numerische mathematik 1.1 (1959), pp. 269–271.

[7] Ariel Felner, Richard E Korf, and Sarit Hanan. “Additive pattern database
heuristics.” In: Journal of Artificial Intelligence Research 22 (2004),
pp. 279–318.

[8] Ariel Felner, Nathan R Sturtevant, and Jonathan Schaeffer. “Abstraction-
Based Heuristics with True Distance Computations.” In: SARA. Cite-
seer. 2009.

[9] Andrew V Goldberg and Chris Harrelson. “Computing the shortest path:
A search meets graph theory.” In: SODA. Vol. 5. Citeseer. 2005, pp. 156–
165.

[10] Andrew V Goldberg, Haim Kaplan, and Renato F Werneck. “Better
landmarks within reach.” In: International Workshop on Experimental
and Efficient Algorithms. Springer. 2007, pp. 38–51.

[11] Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A formal basis for
the heuristic determination of minimum cost paths.” In: IEEE transac-
tions on Systems Science and Cybernetics 4.2 (1968), pp. 100–107.

[12] Cong Hu et al. “Speeding up FastMap for Pathfinding on Grid Maps.” In:
2019 IEEE International Conference on Mechatronics and Automation
(ICMA). IEEE. 2019, pp. 2501–2506.

[13] Richard E. Korf. “Depth-first iterative-deepening: An optimal admissible
tree search.” In: Artificial Intelligence 27.1 (1985), pp. 97–109.

52

http://www.cs.toronto.edu/~avner/teaching/S6-2414/LN1.pdf
http://www.cs.toronto.edu/~avner/teaching/S6-2414/LN1.pdf

[14] Jiaoyang Li et al. “Using fastmap to solve graph problems in a euclidean
space.” In: Proceedings of the international conference on automated
planning and scheduling. Vol. 29. 2019, pp. 273–278.

[15] Jirı Matoušek. Lecture notes on metric embeddings. Tech. rep. Technical
report, ETH Zürich, 2013.

[16] TS Eugene Ng and Hui Zhang. “Predicting Internet network distance
with coordinates-based approaches.” In: Proceedings. Twenty-First An-
nual Joint Conference of the IEEE Computer and Communications So-
cieties. Vol. 1. IEEE. 2002, pp. 170–179.

[17] Judea Pearl. Heuristics: intelligent search strategies for computer prob-
lem solving. Addison-Wesley Longman Publishing Co., Inc., 1984.

[18] Ira Pohl. “Heuristic search viewed as path finding in a graph.” In: Arti-
ficial intelligence 1.3-4 (1970), pp. 193–204.

[19] Steve Rabin and Nathan R Sturtevant. “Combining bounding boxes and
jps to prune grid pathfinding.” In: Thirtieth AAAI Conference on Arti-
ficial Intelligence. 2016.

[20] Chris Rayner, Nathan Sturtevant, and Michael Bowling. “Subset selec-
tion of search heuristics.” In: Twenty-Third International Joint Confer-
ence on Artificial Intelligence. 2013.

[21] D Chris Rayner, Michael Bowling, and Nathan Sturtevant. “Euclidean
heuristic optimization.” In: Proceedings of the AAAI Conference on Ar-
tificial Intelligence. Vol. 25. 1. 2011.

[22] Nathan R Sturtevant. “Benchmarks for grid-based pathfinding.” In: IEEE
Transactions on Computational Intelligence and AI in Games 4.2 (2012),
pp. 144–148.

[23] Nathan R. Sturtevant et al. “Memory-Based Heuristics for Explicit State
Spaces.” In: Proceedings of the 21st International Joint Conference on
Artificial Intelligence. IJCAI’09. Pasadena, California, USA: Morgan
Kaufmann Publishers Inc., 2009, pp. 609–614.

[24] Fan Yang et al. “A general theory of additive state space abstractions.”
In: Journal of Artificial Intelligence Research 32 (2008), pp. 631–662.

53

	Introduction
	Background
	Related Work
	Problem Definition
	Preliminary Background
	Heuristic Background
	Embeddings Background
	Abstraction Background
	Search Algorithms Background

	Contribution
	FastMap Is an Additive Heuristic
	General FastMap Embeddings
	Conditions of General FastMap Embedding Functions

	New Embedding Functions
	FastMap Variants
	Proportion Embedding Function
	Shrinking Function
	Differential Heuristic As The Last Dimension

	New Pivot Selection Methods

	Experiments and Results
	FastMap Paper Results Analysis
	Validation of FastMap Paper Results

	Evaluating Subset Selection Used for Optimizing Pivots Placement
	Comparing Different Heuristics
	Captured Heuristic

	Conclusion and Future Work
	References

