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ABSTRACT

An algorithm to numerical.y integrate differential equations derivable from a sepa-
rable Hamiltonian function is developed. This symplectic algorithm is accurate to
for--th order in the time step, and preserves exactly the Poincaré-Cartan integral
invariants associated with the topology of the phase flow. We use this algorithm to
study the motion of an ion in a spectrum of lower hybrid waves propagating across a
constant magnetic field. In particular, we examine to what extent a turbulent spec-
trum of these electrostatic waves may accelerate thermal ions (T < 1leV). Finally,
Lie transform perturbation theory is applied to the Hamiltonian which describes a
linear oscillator perturbed by a plane wave. For rational wave frequencies of the
form v = r /s, where r and s are relatively prime integers, it is shown that sth order

perturbation theory predicts the occurrence of intrinsic resonances.
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CHAPTER ONE
INTRODUCTION

Let us begin by considering a simple dynamical system; namely, a particle with mass
m and charge e gyrating in a uniform magnetic field BZ and interacting with an
electrostatic wave. The magnetic field in this case may be derived from the vector
potential A = Bz§. Then, if the wave has amplitude E and temporal frequency w,

the Hamiltonian of the particle can be written as
H= I [(mQa:) + ps +pz] + - cos(kzz + k,z — wt), (1.1)

where = eB/m is the cyclotron frequency. Note that we have chosen the wavevec-
tor k = k.% + k.2 to lie in the z-z plane. That this results in no loss of generality
should be clear.

The Hamiltonian (1.1) has been studied in some detail by Smith and Kauf-
man [34], [35]. By considering the overlap of adjacent resonances, these authors
obtained a crude estimate of the onset of global stochasticity according to the well-

known Chirikov criterion [8].

More detailed studies, however, have involved a simplified version of (1.1).
If one considers the wave to propagate transversely (k; = 0), then the previous

Hamiltonian function reduces to
= é%n- -[(mQ:z:)2 + p",’] + Ekg cos(kz — wt) .. (1.2)

This Hamiltonian has been examined in the context of particle heating by a lower
hybrid wave - the propagation of which is characterized by k. >> k, and w > .

Fukuyama et al. [14] have analysed (1.2) in the case where w is an integer multiple
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of 2, while Karney [19] has considered the more general case of arbitrary wave
frequency. Futhermore, Karney has also extended some of the interesting results
obtained for (1.2) to the more general Hamiltonian (1.1). Malkov {23] and Zaslavsky
et al. [37], finally, have studied the equations of motion which result from (1.2) in
the presence of an arbitrarily weak magnetic field.

More recently, much attention has been given to the interesting dynamics
which occur when the resonance condition w/Q € Z is satisfied. In this case, a
web-like separatrix covers the (z,p:) surface of section in system’s phase space.
Because of its peculiar structure, this separatrix is referred to as a stochastic web.
Some interesting properties of the web were shown by Chernikov et al. [5] for one
wave, and numerically by Murakami ¢t al. [26] for up to 20 waves. In addition,
Karimabadi and Angelopoulos [18] — using first order perturbation theory - have
studied invariant curves in phase space for the interaction of a relativistic particle
with an obliquely propagating wave packet of arbitrary polarization. They point
out certain limitations and weaknesses associated with the usual nonrelativistic

treatment.

Finally, by considering a wave packet composed of an infinite number of
modes uniformly spaced in frequency, Zaslavsky et al. [38] were able to construct
an exact set of symplectic difference equations (i.e., an explicit symplectic map)
from the continuous Hamiltonian. The iterates of this map generate a web with
remarkable symmetry properties and fractal-like structure. In fact, the geometry
of the separatrix mesh in phase space is reminiscent of a Penrose tiling (see [12],
[22]). An interesting summary of stochastic webs in general may be found in [7].
Unfortunately, the structure of the electric fields which give rise to such interesting

dynamics are often difficult to justify from a physical standpoint.
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This main results of this thesis are divided into three distinct and relatively
independent chapters. In Chapter 2, we derive a fourth order accurate symplectic
integration algorithm for separable Hamiltonian functions. In Chapter 3 this algo-
rithm is applied to a class of Hamiltonians similar in form to (1.2) in order to study
a wave-particle interaction model of lower hybrid turbulence. Finally, in Chapter 4,
canonical perturbation theory is used to construct resonant invariant functions for

(1.2) in the case where w/{Q is rational.



CHAPTER TWO
SYMPLECTIC INTEGRATION

2.1 The Symplectic Structure

The study of Hamiltonian dynamical systems leads quite often to differential equa-
tions which are not solvable analytically. Increasingly, numerical integration is being
used to gain insight into the complicated behavior of such systems. Unfortunately,
popular integration schemes — including the Runge-Kutta class of algorithms — do
not take into account the Hamiltonian nature of the equations and, consequently,

do not preserve the hierarchy of global invariants known to exist in these systems.

Consider, for example, a Hamiltonian system with N degrees of freedom and
an N-dimensional configuration manifold M. Let q be the local coordinates on M.
It can be shown that the cotangent bundle of M, written T* M, has the structure of
a 2N-dimensional differentiable manifold with local coordinates (q, p), where p is
the usual canonical momentum vector (see [1] for details). On the cotangent bundle

T*M there exists the natural symplectic structure
w? =dp Adq,

which is a closed, non-degenerate, differential two-form. We call the pair (T M, w?)
a symplectic manifold. The forms w?, (w?)?,..., (w’)N are preserved under both the
phase flow of the system and under canonical transformations. Collectively, these
forms are referred to as the integral invariants of Poincaré. In fact, when integrated

over an arbitrary region of dimension 2k (1 < k < N), the 2k-form w?* will produce
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the following invariant quantity
2k
// Y. dpi,---dpidg;, --- dgi,
i1 <o i
which is proportional to the sum of the oriented volumes of projections onto the
coordinate spaces (Diys- -+ s Pixs Tis -+ -2 Bin)s where 1 < t,, < N. When k = N, we

recover Liouville’s Theorem.

A brief summary of existing symplectic integration algorithms (SIAs) is pro-
vided by Channell and Scovel [4! In addition to the methods discussed there, Itoh
and Abe [17] have recently developed a (nonsymplectic) method of integration based
on discrete mechanics which exactly preserves the Hamiltonian. Their algorithms,
however, are accurate only up to second order in the time step and, like the schemes
proposed by Channell and Scovel, require the solution of implicit equations. Ruth
[28], however, has devised an explicit method of symplectic integration whicﬂ is
structurally quite similar to the classical Runge-Kutta algorithms (RKIs). In what
follows, we generalize his approach, and extend the accuracy of the method to 4**

order in the time step.

The resulting explicit SIA is superior in both computational efficiency and
global stability to the most popular 4*h order RKI [25], [27].

1A manuscript containing the results of this chapter was submitted to J. Comp. Phys. in July
1989, and was subsequently accepted for publication. However, the 4** order symplectic algorithm
- the main result of this paper — has been derived independently by Etienne Forest and Ron Ruth
[13].
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2.2 A Class of Canonical Transformations

Let us begin by considering a Hamiltonian H : RV ~ R — R which is separable

with respect to the local coordinates q and momenta p,

H(q,p) =T(p) +V(q) (21)

where q = {¢a}, P = {Pa}, @ = 1,...,N. It is our goal to produce a series of
difference equations which preserve the symplectic two-form w? = dp A dq, and

approximate the exact phase flow generated by H:

(q0, Po) at time ¢ — (q,p) at time &. (2.2)

The accuracy of the approximation resulting from replacing Hamilton’s equations
by such a series of difference equations will be measured in terms of the time step
8t = t — to. More specifically, if a difference approximation agrees with Hamilton’s
equations up to O(6t"), then we will call that approximation an n** order SIA. In
what follows, let us consider (qo,Po) to be initial conditions, and (q, p) to be the
local coordinates and momenta after a time §t. Now, finding an n*® order SIA is -

equivalent to finding a canonical transformation C which generates the map

C:(a,P) — (o, Po) =(q0,Po) +0O(6t™), (2.3)

where the tildes indicate approximate initial conditions. In particular, if we can
find a series of transformations which leave the Hamiltonian with the final form
H(Go,Po) = Z hi(Go, Po) 6t° (2.4)
such that o — qo and o — Po as 6t — 0, then one can prove that the equality in
(2.3) is satisfied. Indeed, if we expand (o, Po) and h;(Go, i) about ¢ = to in the
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following way, |

o0
(80, P0) = (dosPo) +Z(q(’),P(J))5t’

=1

hi(80, o) = hi(q0,Po) +O(6%)

then Hamilton’s equations imply

do Ao\ _ &[0\ o
(Et'qo ) Epo ) = Z_; (5130' —aﬁo) hi(Go, Po) 6t
= 5t"[(5(2—, —5?—) hn] +O(6t™")
Po o Go =90 ;Do =Po

= G(qo,po) 6t" + O(6t"*"),

where G is some vector function of the initial conditions. Upon integration of the
above results, we obtain the relationship between the exact and approximate initial

conditions.

G

(@oBo) = (G0,Po) +oegbt™ +0(5E™) (25)
= (qo,Po) + O(8t"*) (2.6)

One may conclude, then, that if a canonical transformation C (or a series of such
transformations) transforms the Hamiltonian (2.1) into the form of (2.4), then the

resulting algebraic equations of transformation constitute an n'* order SIA.
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2.3 Development of Explicit Algorithms

We are now faced with the question: How does one transform a Hamiltonian (2.1)
into the form (2.4) ? Fortunately, this question has been answered by Ruth [28],
who has obtained explicit algorithms accurate to 3" order. This is in contrast to
the recently developed implicit methods of Channell and Scovel {4], and of Itoh and

Abe [17], which are somewhat less convenient for practical use in most cases.

2.3a The Generating Functions

To obtain an integration algorithm accurate to order n, we meke the following series

of | canonical transformations,

Kie
(a1, Pr) &, (Qe1, P1=1) =3 -+ £ (qo, Po)- 2.7

When n < 4, one can always set [ = n. However, it may be necessary to use [ > n
transformations when n > 4. This necessity is a result of the rapid accumulation
with increasing n of independent conditions which must be satisfied to put H into
the form (2.4). The reader familiar with classical Runge-Kutta formulae will recall
a similar rise in the number of coefficients required to derive an algorithm of order

greater than four. In any case, the above variables have the interpretation
(qo, o) — initial conditions at time ¢ =0

(a1,P1) — intermediate point

(qi-1,pP1-1) — intermediate point

(ai,p1) — integrated variables at time ¢ = t, + 6¢.
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and _
Ki(Qi-1, Pir t) = —qi-1 - Pi — [aiT(p:) + bi V(qi-1)] 6t (2.8)

are type 3 generating functions fori = 1,..., 1. This choice of K; yields the following

equations of transformation

QG = —Vp.-K,' = ¢i-1 -+ JtG.Vp'T(p.) (2.9)
Pi-1 = —Vq.-_l K;=pi+ 6'tb.'Vq.-_l V(q.-_l) (210)

and,
Hi-1(Qi-1,Pi1) = H; + 8K = H; — [aiT(pi) + bV (qi-1)], (2.11)

again, for ¢ = 1,..., . The gradient operators we use here are defined according to

_(a )
Va = (aql’“"aqn)
: a o
v, (5;,...,5;;),

Upon applying all ! transformations, it is clear that the Hamiltonian for the initial

conditions, Hp, will have the form

1
Ho(qo,po) = Hi(anpr)+ Y 3K

i=1

{
= T(p) + V(a) — Y laT(p:) + bV (qi-1)). (2.12)

i=1
Where in the above we must consider q; = qi{qo, Po) and pi = Pi(do, Po). At the
moment, however, the relationships between variables are implicit, the exact form

of which follows at once from the cquations of transformation (2.9) and (2.10):

g = qo+6tY anP(Pm) (2.13)
m=1
Pi = Pot &t 2 bmF(qm—l)’ (2.14)

m=1
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true for i = 1,...,l. Note that we have introduced the generalized force F(q) =
~-VqV(q), as well as the gradient of kinetic energy P(p) = VpT(p). Now, if
one can determine the coefficients {a;, b;} such that the Hamiltonian has the form
Hy = Q[6¢"), then (2.9) and (2.10) describe an I-step process for the integration
(a0, Po) — (au, Pi) which is exactly symplectic (since it is always a canonical trans-
formation). In praciie, to determine the coefficients {a;, b;}, one must expand q;

and p;, and all assceiated iractions of in powers of 6t so that Hy may take the form

n-1

Hy(qo,Po) = Y hm({ai, b}, qo, Po)8t™ + O(6t™), (2.15)

m=0
in which case {a;,b;} are found, not necessarily uniquely, by setting hn = 0 for

m=0,...,n—1.

2.3b Series Expansions for n < 4

Let us now perform the required algebra to find a 4** order algorithm. Since methods
of order 1,2 and 3 are simpler cases of the order 4 method, we shall not yet specify

the number ! = n < 4 of transformations. First, we expand q; and p; in powers of
at,

q = qo+6tTi+ 82 A; + 68 F; + O(ét) (2.16)
Pi = Po+ 6O+ 582 +6t°I1; + O(6t") (2.17)

with the coefficients given by

I, =P Za,,.
m=1
Ai = (F-Vp)P Y and b
m=1 r=1

r=1

[ m 2 i m
v = EVlpy, 58] +U(@- VP -VolP S an T T,
r=1 r=3

m=1 m=2 s=1
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®; = F Z b
m=]}
[ m-1
3 = P-VF Y bn 3 a
m=2 r=1

m-1 r

m - EFUr ST a| +(F-VoR)- VP 3 b 3 or S

m=2 r=1 m=2 r=1 =1

The coefficients above are evaluated, after application of the gradient operators, at
q = qo and p = po. Tht is, they are explicit functions of the initial conditions
only. Further, they are valid fori=1,...,n. Ina similar manner, we can expand
V(q;) and T(p:):

Via) = Viao)+r- Vv + 6 [ Ve r EFl v

A R O

+0(6t4) (2.18)
and

T(p:) = T(po)+6tl®; - Vp|T(p) + bt* [«p.--vp+ (-9-";22‘1)—] T(p)

68 [n.. DANCILDSVER AT R vp)} T(p)

+O(6t%). (2.19)

Again, after the derivatives are taken, these expressions are evaluated at the initial
conditions (qo, Po). Upon substitution of the above expressions into (2.12), we arrive

at a Hamiltonian with the form (2.15)
Ho((lo, po) = ho + h15t + h26t2 + h36t3 + O(6t“, (2.20)

where the zero-order term is

ho = T(po) [1 - ia.-] + V(qo) [l - zﬁ: b.-] .

i=1 =1
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= P(po). This
|

F(qo) and Py

T aveid possible confusion, we will abbreviate Fy

aliows 1.5 to write

i-1

me—Za;me—"éam+Eb;Eam

m=1

n
=2

m=1 i=1 m=1

hy = (Fo - Po) [

and

r=1

[ m-1

meZa,—;Eza;meZa,

m=2

m=2

r=1

m-1

(Po- V)(F - Po) [

h,

i-1

Zamzb,—gb;ZamZb,

m

m
r=1 m=1 r=1

n
m=1

n
> a
i=1

_(Fo- Vp)(P - Fy) [

2]

It can be shown, finally, that ks has the following lengthy expansion,

2 .
1

(5

) -3

L
2

m—1
>
r=1

hy = (Po-Vq)*(F-Po) [

J

-1
2
m=1

b

41
6

i

)
)

n
2
ms=sl

> a3 bn
—(Fo - V5)*(P - Fo) [

1=2

m=2

n

1

T2

S
r=1

-

n
2
m=1

L
2

|

Zb,,. Za,Zb,— Zamz:b,z:a,

;

n
P
i=1

1

*3

-y

+(Po- Vo)(Fo- Vp)(P - F) [

m
2
r=1

(

n
2

i-1
2 b 2 am
m=1

1

T2

r=1
=1

m

r=2

m=3

r
=1

r==1
i-1 m-1

=3 ai Y b S e Y b+ b Y am Sb6.Y a

m~1

2

m

r~1
=1

r=2

=3 m=2

n

r
a=1

i m-~1
r=1

m=2

n
1=2

m-—1
r=1
m

m=2

m=1

r=1

m-1

+§;5mzbmza,_§a.-zbmzbmza,

n
=2

m

n
m=%

|

i-i

i-1

m

Y o Y b+ h Y an Y an b,

n

m=1 r=1 =32 m=1 m=1 r=1

m=1
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As before, each of the expressions ho,... ,h3 is to be evaluated at the initial con-
ditions (qo, Po)- Using the results we have derived so far, it is possible to construct
algorithms of orders 1,2,3 and 4 by making the choices shown in Table F.1. The
coefficients which result from these choices are listed in Table F.2. Once the coef-
ficients {a;, b;} are known, we have the prescription shown in Table F.3 for an nth
order integrator. Of course, algorithms of order < 3 have been derived by Ruth
(28], but we will include a general treatment of them for completeness. The case

n = 1 is trivial, but for n = 2, one obtains the so-called leapfrog method which we

will derive in the next section.

2.3c A 2" Order SIA

According to Table 1, if we set ho and h; equal to zero, and choose n = 2, 3

equations in 4 variables result.

a+a=1 (2.21)
by +b,=1 (2.22)
a1 by + az = by (2.23)

Two particularly interesting solutions are the leapfrog method
11
(ah az, bl’ b?) = (5’ 5’0, 1)3

and the pseudo-leapfrog method

11
(alsah bla b2) = (1’ 0’ §a 5)’

These coefficients are implemented into a numerical integration scheme according

to Table F.3.
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2.3d A 3™ Order SIA

In this case n = 3 and hg, hy, ko must be set equal to zero. One is then left with §

equations in 6 variables.

ai+ar+a3=1 (2.24)
htb+b=1 (2.25)
baas + bo(ar +a7) = 5 (2.26)
mﬁr@m+hf+%=% (2.27)
hﬁ+um+@f=% (2.28)
A solution found originally by Ruth [28] is
2. 73 1

2
(a1, 82,03, b1, b2, b0} = (3, =3, L 370 11— 5

Again, these coefficients are implemented according to the procedure in Table F.3.

2.3¢ A 4 Order SIA

One of the most popular methods used for numerical integration of differential
equations is the 4"* order RKI shown in Appendix A. However, this RKI is not
symplectic, and requires 4 evaluations of the force F per time step. The SIA that we
will now present requires only 3 evaluations of the force per time step, and, because
of its canonical nature, preserves more accurately global phase space structures.

Setting ho, h1, h2 and hj equal to zero yields 8 equations in 8 variables.
a; +az+a; +aq= 1 (2.29)

by+by+b3+bi=1 (2.30)
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by + bo(as + aa) + (1 = @) = 3 (2.31)
axb? + ay(by + b2)? +as(1 = be)? + ag = % (2.32)
ba? + bs(as +a2)’ + ba(1 - as)? = % (2.33)
a1b? + az(by + b2)° +aa(1 — ba)* + as = -:: (2.34)
boa? + ba(ay + az)’ + ba(1 - a,)’ = ;1;' (2.35)
byay + bs(ay + az)[arby + ag(by + B2)] + ba(1 - 04)[% — ay]
= aalty + b)) s = by ~ bl = a4 5o (230

It can be shown that the following is an analytic solution of the equations

1
a,=aq4 = 6(2 + 1/3 + 2-1/3)

ap=az = %(1 — 213 _ 971/3)

bl = 0
1
bz=b4 = 5—_—2175
1
b = oo

A similar solution exists for which only 3 evaluations of P are necessary.
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2.4 Time Dependent Potentials

The case where the potential V' is an exrlicit function of time is easily accounted

for. Let us begin by assuming we have a Hamiltonian # : R¥ x R¥ x R — R,

H(q,p,t) = T(p) + V(a, ). (2.37)

If we define the type 1 generating function F = p,t, then time can be eliminated by

introducing the canonically conjugate pair (¢, p,). The equations of transformation

are
oF
= — =1 2.38
. (2.38)

Note that ¢ is numerically equal to ¢, and that p, = —H(q, p,t) + constant. Upon
substitution, we find

Huew(q,0,P,00) = [T(P) + g} + V(a, ), (2.40)

which is equivalent to (2.1), but extended t= N + 1 degrees of freedom. Table F.4 .
shows the prescription for integrating the equations of motion corresponding to the

Hamiltonian (2.37), with the generalized force defined by F(q,t) = =VqV(q,?).
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2.5 Numerical Examples

All numerical calculations quoted in this paper were done using a version of VAX
FORTRAN which was compiled and run on 2 DEC MicroVAX II computer. The
double-precision (REAL*8) format was used for all floating point numbers since
the accuracy of single-precision (REAL*4) variables is insufficient for long-time

numerical integration.

2.5a The Nonlinear Pendulum

Our first example is the nonlinear pendulum, which is described by the following
Hamiltonian
2
H(g,p) = % — cosq. (2.41)

The solutions for ¢(t) and p(t) are well-known, and can be expressed in terms of
Jacobian elliptic functions [30]. If we impose the initial conditions ¢(0) = 0 and
p(0) = po, then

of) = 2am(z,k)

p(t)

2 t
tda(7, k)

where k* = 4/p?. Using these analytical results, we were able to monitor exactly
the errors in p and ¢, as well as the error in energy. The RKIs which we shall use
for comparitive purposes are listed in Appendix A. For the sake of brevity, the 2™
order Runge-Kutta method shall be called RKI2, and the 4% order method RKI4.
Similarly, the leapfrog method of Section 2.3c will hereby be referred to as SIA2,
and the method of Section 2.3e will be called SIA4. Figures E.1 and Figures E.2
compare the accuracy of SIA2 and RKI2, while Figures E.3 and E.4 compare the
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accuracy of SIA4 and RKI4. In both cases, we see that the energy error for the
SIAs is very small, and tends to oscillate about some small central value, while
the energy error for the RKIs increases monotonically. This characteristic has been

noted by previous authors, most notably in [4].

The SIAs also reproduce the coordinate ¢ more accurately than the RKls.
However, the symplectic methods show a higher rate of growth of coordinate error
than of energy error. This phenomena is appropriately described as the propogation
of a phase error [17] in the SIA.

2.5b Particle in a Standing Wave Field

The equation of motion
m§ = —eE [sin(kq — wt) + sin(kq + wt)] (2.42)

describes the motion of a particle of mass m, charge —e, in the field of a standing

wave. Choosing units such that w = k =m = 1, we find that the above reduces to
g+ esingcost =0

where € = 2¢E/m. This equation is derivable from the time-dependent Hamiltonian

function
2

H(g,p,t) = % —ecosqcost (2.43)

A crude estimate of the stochasticity threshold can be obtained by the resonance
overlap criteria of Chirikov [8]. When e > 1/2, separatrices corresponding to each
wave in (2.42) overlap, indicating that stochastic regions must be present in the
phase space. Further, Schmidt [31] has shown that the ponderomotive potential
well (see Figure E.5) destabilizes at ¢ ~ 0.454. While we are not interested in



2.5 Numerical Examples 19

numerically testing these estimates of the onset of stochasticity, our examples show
that chaotic regions do indeed exist locally for values of ¢ much smaller than these

estimates.

We begin the comparison by integrating the Hamiltonian (2.43) inside the
ponderomotive potential well, and displaying the results at the times ¢, = 27m,
m = 0,1,2,...,n; where n is the total number of plotted points. This procedure
defines our Poincaré return map. Comparing Figure E.6 and Figure E.7, we notice
that SIA4 yields trajectories which lie on a well-defined submanifold while RKI4
seems to exhibit chaos. Actually, the unstable behavior of RKI4 in Figure E.7 is
a result of its inability to accurately preserve the local constant of motion which
defines the one-dimensional trajectory seen in Figure E.6. This numerical dissipa-
tion, which is also evident in Figure E.3, causes RKI4 to be weakly attracted to the
elliptic fixed point at (g,p) = (7,0). In addition, we have included in Figure E.8
the trajectories calculated using a 4t* order algorithm generated by the prescription
in [4] (see Appendix B), which we shall call ISIA4. As in the case of SIA4, ISIA4

shows a stable, regular trajectory.

An added consideration in the comparison of various methods is computa-
tional efficiency. Using the initial conditions (go,po,to) = (7,0.5,0), and pertur-
bation strength € = 1/4r =~ 0.080, we integrated the system corresponding to the
Hamiltonian (2.43) forward in time n = 10000 time-steps. The results, using three
different values of the time-step 6t, are shown in Table F.5. The FORTRAN source
code for ISIA4 solved the implicit equation for the ir;tegrated coordinate according
to a simple fixed point iteration scheme with numerical accuracy 0(107'¢). Other
than this crude method of solution, the computer code was carefully optimized. As
can be seen, ISIA4 benefits from having a small time-step. In the next section, we

will encounter a situation where the iteration scheme used in ISIA4 fails to converge.
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A further example of the stability of SIA4 can be seer in Figure E.9, where
the Poincaré map reveals the existence of a local constant of motion. In Figure E.10,
however, we see that the equivalent trajectory calculated by RKI4 experiences nu-
merical dissipation which eventually overwhelms the calculation. Interestingly, the
difference between integrators is most easily noticed for regular trajectories of this
sort. In the case when the motion is chactic, the violation of topological invariants
in phase space by Runge-Kutta methods is not so easily identified. Figures E.11
and E.12, which show the development of a stochastic layer in the vicinity of the

ponderomotive potential well separatrix, illustrate this difficulty.

2%.5¢ Linear Oscillator Perturbed by a Plane Wave

The motion of a charged particle in a constant magnetic field (directed along the
z-axis) perturbed by a plane electrostatic wave (propogating along the x-axis) is

described by the equation
% + Qz = esin(kz — wt). (2.44)

In this equation, £ is the cyclotron frequency, and w is the temporal frequency of the
electrostatic wave. In the case of exact resonance w = nf, equation (2.44) generates
a stochastic web in phase space. Choosing units where = k =1, and calling ¢ = z,
p = &, equation (2.44) is easily seen to be derivable from the Hamiltonian

¢

5 Te cos(g — wt). (2.45)

p2
H(q’pvt) = "2" +

where we shall assume w is an integer, so that the resonance condition holds. This
system has been studied by Chernikov, et. al. [5]. A slightly more general Hamil-

tonian . .
+ gé- + ¢ cos(q — wit), (2.46)

i=1

4

H(q7p1 t) = 2
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describes the situation when there exist s perturbing electrostatic waves, each with
the same wavenumber and amplitude, but with differing temporal frequencies w;.

This more general system has been examined nwaerically by Murakami, et. al. {26).

First, we integrated the system corresponding to (2.45) for relatively small
values of the parameter ¢, and w = 7. The Poincaré mappings were generated by
plotting points at discrete times t,, = 2xm/7. Initial conditions were chosen with
the particle on the separatrix net, with the results for SIA4 and ZXI4 shown in
Figures E.14 and E.15 respectively. These can be compared with the shape of the
separatrix mesh (accurate to O(¢)) in Figure E.13, which can be obtained through
averaging or perturbation methods (see Chapter 4). This net is formed as a result of
the intersection of resonant tori, and can be shown to decrease in thickness rapidly
with increasing particle velocity. Figure E.14 shows the separatrix mesh traced by
SIA4 to indeed be quite thin, even though the dynamics within the mesh is chaotic.
Figure E.15, on the other hand, shows RKI4 slowly spiralling into stable fixed points.
Of physical interest for the Hamiltonian (2.45) is to what extent the particle can
absorb energy from the electrostatic wave and be accelerated to high velocities.
Determination of the possibility of such particle diffusion requires very-long-time, '
high accuracy integrations. Any tendency of the integrator to become attracted
to or repelled from stable equilibrium points will eventually manifest itself in the
production of completely unphysical behavior. In this sense, the global stability

properties of the SIAs make them well-suited to such numerical experiments.

The lower order Runge-Kutta algorithm (RKI2) often tended to becorne
wildly unstable even after a relatively small number of integration steps. To illus-
trate this tendency, we have included a comparison of SIA2 (Figure F.1) and RKI2
(Figure F.2). Much of the of unstable behavior which we have noticed in the RXIs

can be remedied by decreasing the size of 6t. However, this only increases the kagth
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of the time-scale of valid behavior, and ultimately comes at the expense of increased

computational cost.

As a final example of the web equation, we solve numerically the systen:
described by (2.46), with s = 3. The separatrix net of the averaged Hamiltonian
is shown in Figure F.3, while the results obtained by SIA4 and RKI4 are shown
in Figures F.4 and F.5 respectively. Once again, the structure of the intersection
of resonant tori is defined more sharply by SIA4 than by RKI4. An attempt to
apply the implicit method of Channell and Scovel [4], in a manner similar to that of
Section 2.5b, resulted in divergence of the fixed-point iteration method used to solve
for the integrated coordinate. However, in cases where this iteration did converge,

the implicit method (ISIA4) showed the same stability properties as SIA4.

It has been mentioned by previous authors [4], [28]; that an SIA gives the
exact evolution of a Hamiltonian system which is geometrically very similar to the
true system. The degree of similarity is, of course, determined by the order and
time step of the algorithm. Methods which are non-symplectic, however, replace
the Hamiltonian system by one which is no longer Hamiltonian in nature. Conse-
quently, after sufficiently long integration times, the numerical excitation or damp-
ing induced by such non-symplectic methods produces results which are completely

uncharacteristic of the exact Hamiltonian system.
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3.1 A Model of Lower Hybrid Turbulence

Particle heating in the earth’s ionosphere is believed to result from the interaction of
ions with lower hybrid waves. (see [9] and [3]). In particular, precipitating electron
beams in this region of the ionosphere might constitute a natural free energy source
for the generation of lower hybrid waves. Unfortunately, the general problem of
particle heating is enormously complicated, and it is no surprise that many aspects
of these processes are still poorly understood. In what follows, we will investigate a
single particle model of heating which is sirnilar in form to, but slightly more general
than the system (1.2). Further, we will examine the behavior of our model using
physical parameters which are believed to be characteristic of a plasma containing

such lower hybrid waves.

3.1a The Model Hamiltonian

To begin with, we consider a spectrum of N transversely propagating electrostatic
waves. This case is a simple generalization of (1.2), with the electric field now
described by the wave packet
N
E(z,t) =) E;sin(kiz - wit + ¢;) . (3.1)

i=1
The Hamiltonian for a particle subject to this more general electric field can be

written

N _.
H= %(z2 +p)) + Z il cos(kiz — ;T + i) . (3.2)
=1 "

Note that we have introduced the dimensionless time T' = 2t and the canonical
momentum p = dz/dT = p./mQ, so that H has dimensions of (length)?. The pa-

rameter v; is related to the temporal frequency w; of the i** wave by the relationship

i)
V= —.

Q
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Furthermore, for a plasma composed of singly icnized hydrogen, the nonlinearity

parameter €: ‘3 defined in terms of the mode amplitude E; according to

eE,-
el' : p92 . (3-3)
Also, in each - «ave included an arbitrary phase factor ¢; which can be set

to any value in the ronge 0 < ¢; < 27. In principle, all that remains is to choose
reasonable values for the parameters ¢;, k;, v; and  so that the equations of motion

corresponding to (3.2) may be solved numerically.

3.1b Limiting the Parameter Space

At altitudes between 500 km and 2500 km the background magnetic field varies
from about 4 x 10~° Tesla to 2 x 105 Tesla. In general, we will assume that .B

assumes a constant value of 4 X 10~% Tesla, so that
2 =23.8318x 10°s™!,

corresponding to a lower altitude field strength. Typical measured electric field
amplitudes are on the order of 0.01 V/m [20]. Significantly higher amplitudes are
indeed possible, snd we consider (arguably high) maximum values on the order of
1 V/m for E(z,t). This implies that the normalized maximum value of the field

(see (3.3)) is
eE(z,t) N
mp22

(Actually, we will consider this to be an upper bound on the RMS value of the
normalized field. This is discussed at length in Section 3.3). Such a restriction

10m

.~ovides a rough guideline for choosing the set of nonlinearity parameters ¢;.

Next, to decide upon a reasonable value for each v; we must make use of the
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dispersion relation for LH waves:

2\ -1/2 1/2
w m /
4 .
W = Wpi (1 + —g—) (1 + -gsmze) , (3.4)
wi, m.
where
2 _ g€’ W2 = nge? o2 B%e?
i y = ’ = )
P gomy, P gom, € m?

and tan§ = k,/k,. These expressions show the explicit dependence of w on the

local density ny.

The dispersion relation (3.4) is valid for small 6 (i.e., k; < k;). Also, it is true
that the Hamiltonian (3.2) - to a good approximation — describes the ion motion in
the z-y plane even for small but nonzero k;. Of course, the price of this simplification
is to forego any detailed knowledge of the parallel motion. Fortunately, our concern
here is with perpendicular acceleration only, so that this loss of information is of
little concern. As a result, (3.2) affords us a valid picture of the perpendicular

motion even beyond the k, =0 approximation.

Upon dividing (3.4) by § and squaring the result, one obtains
-1

(;—‘%)2 = m,(gl—fz + m,) | (1 + -Z—fsin’G) . (3.5) '
In the region of the ionosphere we are interested in, realistic densities range from 108
m™3 to 10! m~3. Then, according to (3.5), the interval 0 < < 7/60 corresponds
to the following ranges in w/$:

w
wQ
26.8 < a <658 for ng=10""m™3.

34<=<84 for np=10"m>3,

Using these limits as rough guidelines, we assume that »; may lie anywhere in the
range

4<vy; £30.
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It remains to find a physically reasonable value for each wavenumber k;.
Unfortunately, no physical measurements of the wavevectors of ionospheric lower
hybrid waves have been obtained. It seems the best we can do is to consider pos-
sible driving sources of the waves, and derive a theoretical estimate. According to
Koskinen [20], values of k; on the order of 1 m™! may be obtained by assuming that
the LH waves are excited by a parallel beam of 4-keV electrons. Hence, we assume

each k; is restricted to the interval

0.lm?'<k<1.0m™.

3.1c Initial Conditions of Source Ions

Using the canonical variables we defined earlier, the ion gyroradius p, defined by
1 [(de\? | (dy\’
2 = em— ———— ———
= [(dt) + (dt) ] :

p=\p*+2%. - (39)

To see this, one must realize that in the derivation of (1.1), p, was chosen to have

takes on the simple form

a constant initial value of zero, thus implying

dy
p,,=m§t-+mﬂz=0.

The perpendicular kinetic energy (or temperature) T of a test ion is, of course,

related to the square of the gyroradius by

=Teqo? G
T= %6 (Q0)° [ineV].

Typical ionospheric source ions have kinetic energies on the order of a frac-

tion of an eV [9). Let us assume that the ions we are considering have, in their



3.1 A Model of Lower Hybrid Turbulence 28

perpendicular degrees of freedom, kinetic energies between 0.25 eV and 1 eV. This

range in energy corresponds corresponds to gyroradii in the interval

18m<p<3Obm.

3.1d Method of Integration

To study the time evolution of p and z, we can generate a symplectic integration
algorithm using the Hamiltonian function (3.2). Specifically, we will use the SIA4
algorithm derived in Chapter 2. With (3.2) written in the form H = H;(p) +
Hz(z, T), the SIA uses the functions
N
F(z,T) = —0:Ha(z,T) = Y _ sin(kiz —viT + ;) — =
i=1

and
P(p) = G,Ha(p) =p
to construct an explicit, analytic sy:aplectic map. This symplectic map approx-

imates the exact phase flow induced by H, accurate to fourth order in the time

step.

Using the SIA4 algorithm, we studied the time development of our model
system for a variety of parameter values. A discussion of the results of this study
appears below, with a separate section devoted to each particular simulation. Fur-
thermore, a collection of figures which summarize the respective simulations appears
in Appendices G and H, supplemented by captions which describe in full the asso-

ciated parameter spaces.

The time steps 6T used in SIA4 had the form

6T = éJ—T- , where AT = 2—;[ (3.7
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In the above,

7 = {the integer nearest to max(v1,...,vn)},

and j is an arbitrary integer characterizing the smallness of the time step — and
hence the accuracy of the symplectic integrator. Generally, j was chosen to lie
between about 20 and 25; a size at which, loosely speaking, it is probably valid to
forget about the original Hamiltonian and consider the system as described exactly

by the symplectic map SIA4.

3.2 Heating with One Mode
3.2a Surfaces of Section

We begin by studying the time evolution of a system corresponding to the Hamil-
tonian (3.2) for the simplest case of N = 1. Figures G.1 and G.2 illustrate the
structure of phase space for this case, with all parameters equal except for 1. In
particular, the first figure has v, = 5, while the second has 1, = 5.16. In both
cases, the wave amplitudes are relatively small, leaving much of the phase space
covered by invariant tori. However, the two cases have clearly distinct topologies.
In the first case, there exists a narrow channel of interconnected separatrices which
form a web that spans the entire phase plane. This is in contrast to the picture in
Figure G.2, which displays a series of nested tori as predicted by the KAM theorem.
Interestingly, the violation of the KAM theorem in the first case, as a consequence
of vy being an integer, allows a theoretical diffusion along the stochastic network to
arbitrarily large energies. However, the thickness of the web decreases rapidly with

increasing velocity, so that diffusion is quite limited in practice.

Next, Figures G.3 and G.4 illustrate the effect of increasing the strength of
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the electrostatic wave. By comparing Figure G.3 to Figure G.1, it becomes clear
that the increase in wave amplitude produces a widening of the stochastic network,
while in Figure G.4, one can see that it leads to a breakup of invariaat tori. Finally,
a characteristic common to all of these first four figures is the existence of a sequence
of little tori enclosing the origin which effectively trap low energy particles. We will

comment on the significance of such barriers in inhibiting particle acceleration later.

3.2b Ensemble Averaging

Next, we wish to examine the average phase space population N(p) which results
from accelerating an ensembie of low energy particles using the Hamiltonian (3.2).

The steps taken to determine this quantity are described below:

e Assign 10 ions random positions in the phase space annulus 1.8 m < p £ 3.6 m

at T =0.
e Integrate each particle in this ensemble forward in time to T' = 200x.

e From T = 200x to T = 20007, record the position of each particle at successive
time intervals AT = 27 /v (see (3.7)).

Figures G.4 through G.9 illustrate this averaging procedure for fixed values
of 11, ki and ¢, but with successively increasing wave amplitude ¢;. In the figures,
N(p) is expressed in arbitrary units. The local depletion of particles in each cese
corresponds to the presence of large first-order islands such as those in Figure G.1.
In the limit of small wave amplitude, the elliptic fixed points exist at gyroradii p
which satisfy

I3, (k1p) =0.
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As the wave amplitude grows to its maximum value, successive elliptic points are
encircled, while the distributions around previous fixed points become smeared as

invariant curves are destroyed.

The same simulation, with 1; = 5.16, exhibits essentially no growth in energy.
This can be seen in Figures G.10 and G.11, and results from the entire ensemble

remaining trapped by invariant tori.

However, the situation changes if we double the wavevector k; to unity. Fig-
ure G.12 (; = 5) and Figure G.13 (13 = 5.16) illustrate the results of 2 simulation
which considered only one ion averaged over the period T' = 200« to T' = 6000w,
with AT defined as before. These results show comparable heating profiles for both
values of v;. The increased magnitude of k, effectively reduces the phase velocity
of each wave and, in the case of noninteger v, destroys tori closer to the origin and

allows stochastic diffusion of the test ion.

3.3 Amplitudes of Ordered and Turbulent Wave
Spectra

We claimed in Section 3.1b that the normalized maximum value of the electric field
should not exceed roughly 10 m. We did not, however, put particular restrictions
on the normalized mode amplitudes ¢;. Clearly, the maximum possible amplitude
of a wave packet composed of N sinusoidal modes, each with amplitude ¢;, is simply
N
Ylal. (3.8)
i=1
However, in reality, one would expect that such an amplitude would rarely be at-

tained ~ especially in the case where N is large.
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Consider, first, the normalized electric field seen by the particle at time T':
E(z(T),T) & .
E(z(T),T) = 3——(7—2—(-5%——) =Y &sin(kiz(T) — viT + ;). (3.9)
P

=1

The RMS value of this field, taken over time interval [0, 7], is defined as

Evma(T) = [} /0 i 82(z(T),T)dT]l/2. (3.10)

In the limit k; — 0, and 7 — oo, it is simple to calculate £,,,, analytically.
Calling this limiting value of the RMS field Eoms, it is easy to show that

1 N 1/2
526?] . (3.11)

i=1

érm.s = [
The validity of this result also requires that all ; are distinct.

We numerically computed &,,(107/Vmin) for two different wave packets,
each with N = 10, and compared the results with t}e approximate value & me- The
first case, shown in Figure G.14, consists of waves eveniy spaced in frequency with
constant wavenumber and amplitude. The reader should recognize this spectrum
as one which will give rise to a stochastic web. It happens that &,,, for this ordered
packet is 2.2 m - in close agreement with Eme = V5 m =~ 2.236 m. It is interesting
to note that as N — oo in such a packet, the electric field seen by the particle
approaches a periodic comb of delta functions, and is then described by the mapping
of Zaslavsky, et al. [38]. In fact, such periodic impulses, or “kicks”, seem to be a
generic aspect of chaos in Hamiltonian systems. Potential fields of this type give rise
to many popular 2-D symplectic maps of the plane which are known to be chaotic
— the Standard and Fermi Maps, for example. Furthermore, various approximate
analyses of (1.2) ([23], for example) have concentrated on constructing a perturbed
twist map of the plane which replaces the exact motion by: (i) a kick at £ = w/k,
and (i) unperturbed linear oscillation everywhere else, as shown in Figure H.16. In
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a qualitative sense, it can be claimed that if the kick is strong enough, the particle
will undergo a substantial phase change which will lead to stochastic motion. For
this reason, it seems that the study of finite and infinite mode stochastic webs may
be useful from the point of view of understanding the generic aspects of particle

heating in the ionosphere.

In any case, we also calculated Erms(107/Vpmin) for the turbulent spectrum
shown in Figure G.15. While the structure of the field is much more erratic in this

case than in the last, the value &, = 2.3 m is quite comparable.

These calculations provides us with a rough estimate of the relationship
between (3.8) and &rm,, and serve to justify the values of ¢ used in the multiple

mode simulations which follow.

3.4 Multiple Mode Stochastic Webs

As we mentioned in the last section, the study of finite mode stochastic webs may
contribute to a better understanding of certain general properties of ionospheric
particle heating. With this in mind, we choose to examine three particular cases,
each for realistic values of the various wave parameters. Before doing so, we remind

the reader of some fundamental ideas in nonlinear dynamics.

First, it has been shown that when the number of degrees of freedom satisfies
n > 3, a separatrix net may arise which extends throughout phase space. This net,
which was predicted by Arnold, forms a stochastic web along which particles may
wander chaotically. The name given to this motion is Arnold diffusion, and results
from the intersection of invariant tori which do not divide phase space (since n 2 3).

However, the Hamiltonian (3.2) represents only n = 3/2 degrees of freedom, thus
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showing (see Figures H.1 to H.3) that an Arnold-type diffusion may occur even in

the case of minimal dimension for nonintegrability.

3.4a Four Modes

Shown in Figure H.1 is the stochastic web which results from a wave packet com-
posed of four modes. The frequencies are spaced according toy; =5ifori =1,...,4;
while the amplitudes and wavevectors are constant. Interestingly, the particle spent
most of its time sticking nearby the tori centered at p ~ 38-m, and consequently

the iterates were distributed very nonuniformly in phase space.

3.4b Five Modes

Next, we consider five modes with equal amplitude, and frequencies which are mul-
tiples of 5 — but not spaced as in the last example. In this case, we vary the
wavenumber so that waves with equal values of v; will have different phase veloci-
ties. The effect of this modification is shown in Figure H.2. We see quite dramatic
heating effects, with gyroradii approaching 110 m (or energies approaching 0.93
keV). This is achieved, however, with relatively low amplitude RMS fields (less
than 0.5 V/m), and in the absence of what is normally considered to be global

stochasticity (i.e., destruction of nearly all invariant tori).

3.4c Six Modes

As a final example of stochastic web heating, we add a sixth mode to the previous
system. This has the effect, surprisingly, of limiting the maximum energy gain to

only about 0.62 keV (see Figure 18). Unfortunately, the tendency of the iterates on
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the surface of section to explore some areas of the separatrix mesh and not others
is marked by a sensitive dependance on both initial conditions and the maximum
integration time T,z. In instances of very large Tinaz, the areas of the web which
are explored also depend on the time step used in SIA4 and on the precision of all

floating point operations.

3.5 Healing by a Turbulent Spectrum

This final series of simulations is aimed at modeling particle heating in a “realistic”
spectrum of waves. We consider N = 10 waves, each with normalized frequency
v;, wavenumber k; and phase p; chosen at random inside the intervals described
in Section 3.1b. Then, we calculate the average population N(p) according to the
prescription in Section 3.2b for various cases characterized by different values -of
the ¢;. We performed 12 separate runs, which had the collective structure shown in

Table H.1. For the 6 runs labeled by “A”, we chose the wave parameters
{419,160 1)

which remained constant for all values of the mode amplitudes. Then, for each

10
’

i=1

A run, we chose a set of mode amplitudes (composed of 10 ¢;) at random in the
interval [€min,€maz]- For the runs labeled “B”, we generated new values for the
wave parameters and the initial ion distribution, then performed the simulations
with the same mode amplitudes as in the A runs. The maximum gyroradius pmas
and corresponding temperature T, to which the ions were accelerated also appear

in Table H.1. The distributions N(p) appear in Figures H.4 to H.15.

Each of these simulations was performed on a CRAY X-MP supercomputer,
using single precision real variables (14 digit accuracy). The integrator time step

was chosen with j = 25 (see (3.8)).



3.5 Heating by a Turbulent Spectrum 36

Perhaps the first difference which one notices in the heating profiles is the
value of pymgaz in runs 1B, 2B and 3B; it is significantly lower than iu :he correspond-
ing A runs. This can be explained, however, in terms of the minimum modal phase
velocities. The slowest modes in the A and B runs respectively had normalized

phase velocities of

V§A) u.(B)
-I-cm ~ 557 m and 'l'cm 2~ 7.56 m.
i min ' min

Now, for a particle to be effectively accelerated by a wave, it must be moving with
a velocity not substantially less than the phase velocity of that wave. Otherwise,
as seen in Figure H.16, no resonant interaction will occur. This effect is manifested
in our simulation, where the faster moving B wave is less effective at providing the
first jolts of acceleration than the slower A wave. This is one aspect of particle
acceleration, however, that is greatly enhanced by the ;resence of 2 «*ochastic web.
Because of the large first-order islands created by resc:..r:: »+z!l:leg which are
initially located close to the origin in phase space (T < 1 eV} may L2 swept out to
substantially higher energies than would be possible otherwise. This is seen clearly
in Figure G.1, where the éepa.ra.trix mesh which surrounds the first-order islands
reaches very close to the origin. This effect is not observed in Figure G.2, where

the invariant tori divide the phase space into successive annulus-like regions.

Next, it happens that the maximum velocity to which a particle may be
accelerated is also dependent upon the values of the modal phase velocities. To see
this, note that in the A and B runs respectively, the maximum normalized phase

velocities were
(B)

0 /
-kg—A-)- ~922m and ZT.ET ~ 67.2 m.

The larger phase velocity in case A allows stochastic diffusion to occur at corre-

spondingly larger gyroradii. As a result, for the maximum electric field amplitudes



3.6 The Disappearance of Landau Damping 37
in run: A and 6B, case A exhibits superior particle heating characteristics.

If lower hybrid waves are indeed responsible for the bulk heating of ious in the
jonosphere, we hope that the simulations described herein might help elucidate some
of details of the wave-particle interactions involved. Indeed, by studying this simpie
single particle model, we can gain a better understanding of the characteristics and

limitations of LH heating.

Unfortunately, as was mentioned earlier on, the processes which we have
tried to model in this chapter are still quite poorly understood. Further, lower
hybrid heating is by no means the only possible mechanism for ion acceleration in
the suprauroral region. While the upper limit of Traz ~ 1 keV (at RMS fields of
roughly 1.2 V/m) is of the same order of magnitude as temperatures of observed
hot ions populations, more experimental duta is needed before researchers are able

to construct a truly reliable picture of these ionospheric processes.

3.6 The Disappearance of Landau Damping

Recall that one may define the dielectric response function e(k,w) of a plasma in

terms of the dielectric tensor e(k,w) according to
k-ek,w) -k
k3 ’

For a plasma in a uniform, external magnetic field such as that pertaining to (2.1),

e(k,w) = (3.12)

we can write this response as a sum over all ion species o according to [16]

ekw)=1-Y f: / dv Fonlv) (3.13)

= s nQy + kv, —w —in’

The explicit form of F, »(v), which is not important for our purposes, is determined

by the single-particle velocity distribution function f,(v). When the wave prop-

agates obliquely to the magnetic field, the contributions to the response occur at
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values of v, where the denominator in the integral vanishes. These resonances, of
course, are the sources of linear Landau damping of the plasma wave. However, if
we let the wave propagate transversely to the magnetic field as in (1.2), then the
new set of resonances w = n{l, are independent of v — and the Landau damping
vanishes. This phenomenon has been examined closely in [23] and [37], where it
is shown that the paradoxical disappearance of Landau damping is accompanied
by the emergence of a particular form of nonlinear damping. This new damping is
related to the stochastic instability of particle motion. In particular, stochastic web

formation is one example of this phenomenon.



CHAPTER FOUR
PERTURBATIVE ANALYSIS

4.1 The Wave Driven Linear Oscillator

The Hamiltonian for a linear oscillator perturbed by a plane wave,
lra, 2
H(z,p,t) = 3 (:z: +p ) + ecos(z — vt), (4.1)

has been seriously studied by a number of authors. In particular, the recent works
of Chernikov, et. al. [5,6] have examined the development of Stochastic Webs in
phase space for the Hamiltonian (4.1). These interesting structures occur when the
system is strongly degenerate ~ that is, when v € Z . In an earlier paper by Karney
[19], a theoretical estimate of the global stochasticity threshold was established for
arbitrary v. It is the intent of this chapter! to study the hierarchy of resonances
which occur in the system described by (4.1) when v = r/s, such that r and s are

relatively prime positive integers [33].

Our perturbative approach will be facilitated by the introduction of the un-

perturbed action and angle variables ( Py, ¢) according to
z = psing,
p = pcosd,

where p = /2P;. This canonical change of variables, along with a Fourier decom-

position of the perturbation, transforms the Hamiltonian (4.1) into the standard

1This chapter has been submitted for publication in manuscript form to Physica D.

39
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form

H($,Pot) =Pote 3o Tn(p)cos(ms - i), (42)

m==-00

where J.(p) is a Bessel function of order m.

4.2 Deprit Perturbation Series

The formalism which we use to obtain perturbative solutions to (4.2) is based on
the construction of a Lie transform ordered in the parameter e. This method was
developed by Deprit [10], and is summarized clearly in a report by Cary [2]. As noted
in [2], the explicit nature of this transformation theory makes it much more efficient
than the traditional Poincaré-Von Zeipel perturbation theory. A brief summary of

the general Lie method is presented below.

First, let us restrict our attention to the class of Hamiltonian functions which
can be expanded as a power series in some small parameter according to

H(z,t,e) = fj € Ha(z,1), (4.3)

n=0

such that the zero order function Hp(z,t) is exactly solvable. As usual, we define
z = (21,+..,2ZN; P1y---,08) € RY x RY to be the usual composite vector of co-
ordinates and momenta. The theory then gives us a prescription for calculating

a new Hamiltonian H(z,t,¢), and a transformation operator T'(t,e) with similar

expansions:
E(Z’t$ €) = ien —n(z)t) ’ (44)
T(te) = i e To(t). (4.5)
n=0

Operationally, the variables z are dummy variables; for example, the new Hamil-

tonian H is properly a function of some new set of variables Z(z,t) which directly
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replace the dummy variables z. Moreover, the transformation operator T and its

inverse act on functions according to

fZ(zte) = Tf(2), (4.5)
fz(z,te) = T7f(2), 4.7)

thus revealing the explicit relationship between old and new variables. The overator

T is defined using the components wy(z,t) of the Lie generating function

w(z,t,€) = i €wni(z,t), (4.8)

n=0
according to the recursive formula
1 n~-1

To=1I and T,.:—;ZT,,,:wn_m:. (4.9)

m=0

Similarly, the inverse transformation operator T-1 satisfies

n-1
To'=1 and T,,'1=lzozw,._m:T,;‘. (4.10)
m=

Throughout this paper, we shall use : f(z,t) : to denote the Lie operator associated
with the function f(z,t). This notation is due to Dragt [11], and is defined in terms

of Poisson brackets according to

3 {af 9 _9f ﬁ} . (4.11)

-f-9=[f,y]=§ 2, 9p; ~ Op; O
As expected, the transformation operators reduce to the identity when ¢ = 0. For

this reason, we also require that Hy = Hy. As can be inferred from (4.9) and (4.10),

the first order components of the transformation operators are
Ti=-:w: and T{'=1w:,

and the second order components are

foo Wt cwy 24wy
= et B

and Tj'= >
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Finally, to obtain each component w, of the gunerator w, we must solve the differ-

ential equation

aw"+:w,,:Ho=n(ﬁ,.-H,.)—'§“l( Wnom : Ho + mT He)  (412)

ot n—m
at m=1

by choosing H,, at each order to remove any secularity or intrinsic resonance. The

rules for choosing H,, at each order will be made clear later.

4.3 Calculation of w,

The general form of equation (4.12) when n =1 is

%"" wy Ho = IZ-I1 - H1 . (4.13)

Substituting H, from (4.2) into (4.13) yields

s + D6 = H, - ZJ,,.(p) cos(m¢ — vt). (4.1%)

Case 1: s> 1

If s > 1, so that the wave frequency v = r/s is not an integer, it happens that the
time average of the sum in (4.14) is zero. Accordingly, we may choose H; to be zero

as well. This choice leads to the solution

sin (m¢ ut)

w = Z Jm( ) (4‘15)

To first order, the new Hamiltonian is simply the zero-order component of the old

Hamiltonian, now properly expressed in terms of the new action:

- —

=5. (4.16)
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Then, by acting on Py with the operator T, we see that the new action can be

written as
cos (m¢ vt)
—-m

P¢- 4,-—62me( )

(equation (11) of reference [26], which is analogous to the above equation (4.17),

(4.17)

erroneously shows the addition of the sum to the momentum Fy).

An expression for ¢ may be obtained in an analogous fashion. It is worth
mentioning that one may also find the inverse transformation (i.e., the old variables

as functions of the new ones) by applying the operator -1,

Case 2: s=1

When s = 1, so that v is an integer, we must choose H,; to remove the resonant
term m = v from the sum in (4.14). Doing so yields the solution
sin(m vt
= Y Jupi2ime =), (418)
m#v
where it should be understood that the sum is over all m not equal to v. Thus, we

are left with the new Hamiltonian
H = Py + J,(p) cos(vé — vt), (4.19)

where p = \/2_5; At this point we mention that the singularity which would have
occurred in (4.15) for m = v represents an intrinsic [22] resonance in the system.
By this, we mean that th_ resonant denominator (v — m) does not depend on the
action. Cases for which the singularity depends on the action represent an accidental

resonance, and are discussed in detail by McNamara [24].

The Hamiltonian (4.19) can be used to construct an invariant function S,

on the surface of section t = 0 (mod 2x/v). Using the type 2 generating function



4.3 Calculation of uy 44

F; = Py($ — t), we transform to the new variables

a~ —

P,
$ = d-t.

I
oY

Changing to these new variables leaves us with the time-independent Hamiltonian

H= eJ,,(\/ZE) cos(vg),

which has been identified in [5] as the stationary (or averaged) part of the Hamil-
tonian (4.2). Thus, to zeroth order in ¢, the function

S = F,(p) cos(ve) (4.20)

is invariant on the surface of section. In obtaining this result, we have made use
of the near-identity relationship between the old and new variables. The invariant
(4.20) is independent of the perturbation strength ¢ (taken to be non-zero). This
is in contrast to the e-dependent form of the invariant action (4.17) whick is valid
if v # Z. Figure 1.1 shows some arbitrary level contours of the invariant (4.20) in
the (z, p) phase plane for v = 3.

Also, we numerically integrated (4.1) using the fourth-order symplectic inte-
gration algorithm as described in Chapter 2. This algorithm simply replaces exact
Hamiltonian system with an explicit symplectic map which is topologically close to
the original system. The results are shown in Figure 1.2, and compare well with
invariant surfaces predicted by (4.20) (Figure I.1).

In the sectio. s th~* follow, we restrict our interest to situations for which

s > 1 (so that w, is cocrectly given by (4.15)).
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4.4 Calculation of ws

When n = 2, equation (4.12) can be written

%E-I- we: Hp = Zﬁg— Twy (I?l + H1) . (4.21)
Upon substitution of (4.15) into (4.21) (with H, =0), the equation determining w,
becomes
2t + G =2y~ T T X
where

sin(m¢ — vt)sin(ng — vt) | cos(m¢ — vt)cos(né — vt)
v—n + v—m )

Fon = Jn(0)5a(0){
Note that a dot is used here to denote a derivative with respect to Ps. An expansion

of the trigonometric products in I'mn yields

_ mJn(e)u(p) ([ _mtn

Lo = o miw - ) 2

] cos{(n — m)¢] + 2—2:-2 cos[(m + n)¢ — 2ut]} .

Case 1: s> 2

If s > 2, we need only remove the secularity which would arise from the I'y,, terms

ia (4.22). This can be accomplished by choosing

2 =Y Tom =3 -"i—J"'}f—)g;l(-’-’-)- : (4.23)

in which case (4.22) becomes

ow,
8t + ""_‘ = - EZ Pmn (4'24)

m#n
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Hence, the second order component of the Lie generating function is

wr= 3.3 Ju(p)Jn(p) {Amnsin[(m — n)p] + Bmnsin[(m +n)é — 2vt]} , (4.25)

m#n

where the coefficients A,,, and B,;, have the form

m[2v — (m + n)]

= m(m — n)
2(n ~ m)(v — m)(v — n)

22v — (m +n)|(v —m)(v ~n)’

Amn and By, =

So, correct to O(€?), the new Hamiltonian is

& _ 5, & 4 ~min)
H-P¢+4d15¢; — (4.26)

As a point of interest, we note that the corresponding equations of motion are

dP,

at 0,

dé ¢ & —mJi(p)
dat — 1+4d}5¢2; v-m '

the latter of which is a result previously obtained by Karney [19]. |

Case 2: s=2

Now, when s = 2, there are additional terms in (4.22) which must be removed to
avoid a divergence in the solution for w;. Indeed, all terms ['my for which m+n = 2v
must be cancelled by the component Hj of the new Hamiltonian. This consideratior.
leads to

28, = LREELE 3y PR i i -

m4n=2

(4.27)
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Upon simplification of this expression, we can write the new Hamiltonian as

BE=P+5 {E Tl'zi?;_m(.?l +aos2@ -] T m""‘(f )J’"‘"‘(’;)} . (4.28)

2 |5 v -m
By making the same canonical transformation as in Case 2 of Section 4.3, it follows

that when v = r/2, the function
5@ = F,(p) + cos(2v¢)G.(p) , (4.29)

where

Flo)=Y mJm(p)Im(p) )TJ;:"(” ) and Gp)=Y mIn(p)Fae-ni) ,

. V= - v—-m

is invariant on the surface of section ¢ = 0 (mod 27/v). Notice that the resonant
invariant S(, like S{!), is independent of the perturbation strength. This interesting
property, though, exists only for s < 2, as a result of the secular term (4.23). In

Appendices C and D, the series defining F, and G, are summed analytically.

Level contours of the invariant (4.29) are shown in Figure 1.3, and agree
well with the numericaily calculated trajectories which appear in: Figure L.4. These
figures show that even for arbitrarily small values of ¢, the & = 2 resonant tori
occupy most all of the pbase volume. However, as one can see from Figure 1.3, the
phase space topology which occurs in the s = 2 case is fundamentally different from
that which is associated with the stochastic web (s = 1). When s = 2, the resonant
tori are divided into annular groups by larger nonresonant lori - thus allowing
stochastic diffusion to occur only within localized regions along a separatrix layer
(see Figure 1.5). Of course, for large values of ¢, a complete breakdown of these
structures will occur, followed by the onset of global stochasticity. This effect is
illustrated in Figure 1.6.
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4.5 Higher-Order Invariants

The analysis of the previous sections may be extended, in principle, to any order.
However, the amount of algebra needed to calculate w, explicitly as n increases
beyond 2 or 3 becomes prohibitively large. Furthermore, the usefulness of these
results for higher orders is questionable. In any case, we are still able to comment

on the general form which the transformed Hamiltonian takes in the higher orders.

Secularity

At each even order, terms must be removed from the right hand side of (4.12)
to avoid secularity. This implies that the transformed (averaged) Hamiltonian for
irrational ¥ must reduce to
in/3]

H=F + :‘; €™ Ham(Py) (4.30)
where n is the order to which the perturbation theory is computed (and [n/2]
is the greatest integer less than or equal to n/2). As ¢ — 0, the behavior of
this general Hamiltonian uniformly approaches that of its unperturbed counterpart.
That is to say, for arbitrarily small e and irrational v, the structure of phase space

is topologically the same as in the unperturbed case.

Resonance

It can be shown inductively that for even n, the equation for w, contains angle

dependent functions of the form

cos(mg), cos(mé — 2ut), ..., cos(m¢é —nvt),
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where m is an arbitrary integer. The first term in this sequence (for m = 0) is
the secular term mentioned in the previous discussion. Similarly, for odd n, the

equation for w, contains
cos(mé — vt), cos(m¢ — 3vt), ..., cos(m¢ — nvt).
Clearly, if v = r/n, an angle dependent resonance of the form
f.(Ps)cos[nv(é — t)] (4.31)

must be added to the Hamiltonian (4.39). It appears, however, that as n increases,
the size of the resonant islands rapidly decreases. This leads to the resonant tori
becoming strongly “sandwiched” between the larger nonresonant tori, as illustiated

in the numerically computed Poincaré maps shown in Figures 1.7 and 1.8.
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4.6 Implications

In recent years, several authors [38] have studied the stochastic dynamics of a linear
oscillator forced by a tempora.lly periodic sequence of delta-functions (or, equiva-
lently, by an infinite number of electrostatic waves evenly spaced in frequency). The
Hamiltonian difference equations describing this system lead to the tiling of phase
space by a globai web structure with complex symmetry properties. However, as
this is often not a physically viable wave-particle interaction model, the motion of
particles in the field of a finite number of electrostatic waves has also been investi-
gated in [26] and [32]. It has been shown in these cases that a web-like separatrix
mesh does exist, but with a thickness that rapidly decreases with increasing distance
from the origin in phase space. Similarly, a single electrostatic wave with frequency
v € Z (cf. Figures I.1 and 1.2) also leads to the development of a stochastic web.
In all these situations, the topology of phase space is drastically different than tha
found in weakly perturbed linear oscillations. Furthermore, the shape of the sep-
aratrix mesh is, to lowest order, independent of the wave amplitude. The global
character of such a web, however, may have little practical importance for particle
heating and diffusion in the limit of small wave amplitudes ~ since the stochastic
mesh narrows very rapidly. Consequently, in our examples (Figure 1.2), particles

will experience only a local diffusion, remaining close to the origin in phase space.

Generally speaking, the Hamiltonian function (4.1) is a dynamical model of
a particle moving in the field of an electrostatic wave which propagates perpendic-
ularly to a constant magnetic field. Of course, such a model has many applications
in plasma physics. It is also related to the well-known paradox of the disappearance
of Landau damping [29], [37]. For perpendicular wave propagation, the respnance
§(w — kv) responsible for linear Iandau damping is replaced by the set of discrete
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resonances §(w — nwy), where wy is the particle gyrofrequency. This paradox has
been resolved in the aforementioned references by introducing particle trapping ef-
fects. Studies of resonant cases, for which w = nwy (or ¥ = n in our normalized
variables), have indicated fundamental problems with linear theory based on regu-
lar particle trajectozies. One of the results of this worl is to show that the web-like
structures which arise for w/wy = r/2 (and persist in the limit of vanishingly small

wave amplitude) may lead to similar problems in the linearized Vlasov theory.



CHAPTER FIVE
CONCLUSION

In Chapter 2, we generalized the method of Ruth [28] to obtain an SIA accurate to
4th order in the time-step (SIA4). This algorithm was tested using several numerical
examples, including the nonlinear pendulum, the motion of a charged particle in a
standing wave, and a harmonic oscillator perturbed by a plane wave. This testing
indicated that SIA4 is computationally more efficient than both the classical Runge-
Kutta method of order 4 (RKI4) and the implicit method given in [4]. Also, SIA4

was found to be inherently more stable than RKI4 during long-time integrations.

Using the algorithm derived in Chapter 2, we turned in Chapter 3 to the
study of lower hybrid heating. If lower hybrid waves are indeed responsible for the
bulk heating of ions in the ionosphere, we hope that the simulations which were
performed might help elucidate some of details of the wave-particle interactions
involved. Indeed, by studying this simple single particle model, we can gain a

better understanding of the characteristics and limitations of LH heating.

Unfortunately, as was mentioned earlier on, the processes which we have
trled to model in Chapter 3 are still quite poorly understood. Further, lower hybrid
.reating i3 by no means the only possible mechanism for ion acceleration in the
suprauroral region. While the upper limit of Tpmer ~ 1 keV (at RMS fields of
roughly 1.2 V/m) is of the same order of magnitude as temperatures of observed
hot ions pepulations, more experimental data is needed before researchers are able

to construct a truly reliable picture of these ionospheric processes.

Finz '* a perturbative analysis of the single wave model studied in Chapter 3
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indicated that rational wave frequencies v = r/s give rise to intrinsic resonances.

Furthermore, it was found that the prominence of these resonances diminishes as s

increases.
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APPENDIX A
RKI2 AND RKI4 ALGORITHMS

The two Runge-Kutta methods which are used £ numerically integrate the vector
differential equation
dx

X = f(x,t)

from the initial conditions xq at time ¢ = ¢y to the coordinates x at time ¢ = ¢y + 6t
are RKI2:

&t ot
x=x+f (xo + —2"f(x0sto).to + —2-) 6t

and RKI4:

1
X = ‘é(kx + 2kq + 2k3 + ky)
kl = f(XQ, to)&t

k &t

ky = f(Xo+ —to+ 50t
k ot

ks = f(xo+ ‘2'2',*0 + ‘2-)5t

ki = f(XQ + ks, to + 6t)5t.
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APPENDIX B
ISIA4 ALGORITHM

The ISIA4 algorithm, shown below, for the Hamiltonian (43) is derived acccording
to the procedure in [4]. It is accurate to 4** order in the time step. Here, (go, po)
are the initial conditions at time ¢t = ¢, and (g, p) are the integrated variables at

time t = to + 6t. Note that the first equation,
62 . 6t .
g = qo+ pobt~— T(esancost) + -3—(epocosqcost — esingsint)
4
+§2tz [Gepo cosgsint + 3¢(pa + 1)singcost — 5¢? sin g cos qcos’t] ,
is implicit for q, while the second,
. 6t? .
p = po— 6t(esingcost) + T(epocosqcost — esingsint)
3
+%— [2epo cosgsint + e(pt + 1)singcost — 2¢* sin g cos qcos"‘t]

4
+-§—t4- [5€2PoCOS2t(0082q — sin%q) + ¢(3p3 + 1)singsint
—epo(pj + 3) cosgcost — 10€? sinq cos g sin t cos t)]

is explicit for p.
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APPENDIX C
THE FUNCTION F,

The function F,, which appears as the first term on the right hand side of the

invariant (29), can be expressed completely as a function of p according to

_1d & mli(e)
B0 =554, & Yom (C.1)

Rewriting this as a sum over positive integers gives

RO)= 51 {J:<p)+zu= S _‘1’&2-} .

32 _m2
m=ly m

Then, using the Bessel function identity [36]

7o) = = [ Jo2psiny) cos(zmy) d (C.2)

together with the result [15] (valid for ¥ € [0, 7])

Xcos(2myp) 1 7
2_;:1 i = o + 5 sin(2vy) , (C.3)

shows that F, may be expressed in terms of a derivative of an integral:
v d . .
F,(p) = 3dp { /o. Jo(2p sin ) sin(2vy) dv,b} .
Referring to [15], we see that this integral may be reduced to the simple form
[ Jo(2psin ) sin(2v) dip = w(~1)*J_.(p)](p) , (C.4)

where k is the integer part of v. Since v is a half au odd integer, the final result is
most naturally expressed in terms of the spherical Bessel functions jx(p) and yi(p).

After some algebra, one can indeed show

Fi(p) = 2 7a(p) [jm(p} - g-;-k(p)] -Z. (C5)

59



Appendix C 60

Furthermoie, the Taylor series representation

F(p)=v i m(-1)™(2m) Hm=1)

m=1 4m(y)m+l(1 - V)m(m!)2

confirms our intuition that F, should be analytic everywhere.

(C.6)



APPENDIX D
THE FUNCTION G,

The function G,, which appears as the second term on the right hand side of the

invariant (29), satisfies

o0

pGu(p) = Z v

m=-00

,'_nm Jm(p)‘,‘:‘u—m (P) ’ (D.l)

where the prime denotes a derivative with respect to p. If we replace m by the
expression v — (v — m) in the numerator, and apply Neumann’s addition theorem

[36], (38) becomes

00 = gy 2

Next, the recurrence relation J'(p) = [Jaz1(p) — Jn41(p)], together with the integral
formula [36]

Jm(P)J'y_m(P) (D‘z)

In()ule) = 2 [ Tnn(2p 08 ) conl(m — n)ldy (D.3)

give rise to the identity

Jm(p)'];v-m(p) = %Aﬂ’lz {J2v—l(") COS[('Y - 1)¢] - J2v+l(n) 008{(7 + 1)¢]} d¢ ’

where n = 2pcost and v = 2(v — m). By introducing this identity into the sum in
(39), and then shifting summation indices, it can be shown that

o0

, 2u (=12 Jp,(2p cos ) cos(2my)
...;m — —Jm(P)V2-m(P) = / B m_Z_:“ ey dy .
Finally, when ¢ € [0, 7], the Fourier series
1 & cos(2my) _
m;m —cY) siny (D4)
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reduces the expression for G, to

pG.(p) = —é%f)p) + % _[) v ﬁ;fl) du, (D.5)

which can be expressed in terms of tabulated functions as

ld-]2u(2p) + l{
p d20) P?

where k is the integer part of ». The Taylor series

v

2p k
i Jo(u)du-.r,(zp)} = 2 mlu(2e), (D)

0

Gu(p) =-

G.(p) = p* i o) 00
wWp)=p ml(2v+m)(v+m+1) .

shows that G, is analytic for all positive v.
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Figure E.1: Comparison of the relative error in energy when using SIA2 and RKI2
to integrate (2.41), with initial conditions (go,po,%0) = (0,1.4,0), and time step
ét = 0.01.
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Figure E.2: Comparison of the absolute error in position when using SIA2 and

RKI2 to integrate (2.41), with initial conditions (go,po,0) = (0,1.4,0), and time

step 6t = 0.01.
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2
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Figure E.3: Comparison of the relative error in energy when using SIA2 and RKI2

to integrate (2.41), with initial conditions (go,p0,%) = (0,1.4,0), and time step
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RKI2 to integrate (2.41), with initial conditions (go,pPo,to) = (0,1.4,0), and time
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2
H = p°/2 - ecos(q)cos(t)
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Figure E.5: Phase space of (2.43) for ¢ = 1/8. The large separatrices at tor and

bottom correspond to resonance with the travelling waves in (2.42). The small,

middle separatrix corresponds to the ponderomotive potential well.
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H = p°/2 — ecos(q)cos(t)
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Figure E.6: Poincaré map of a single trajectory of (2.43) using SIA4. The initial
conditions are (g, po, to) = (7,0.188,0), e = 0.73/m ~ 0.23, 6t = 27 /25 =« 0.25, with
30 000 plotted points.
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Figure E.7: Same as in Figure E.6, except using RKI4.
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H = p%/2 — ecos(q)cos(t)

. T =T T T I T T " T T T T I T T T T
-
: u
6.2 — - -
P ~ .. -
r - T~
! e \'
- td ‘\ =
'0’ \'q -
- * -
! 7’ ~
. .7 \\ ~
P ~
01 — s S
. : , \\ -
- , N
7 ‘c -
e s \,
r / \, b
4 .
1 ’ \, =
— . K .
- . ’ )
= 0.0 =~ { ) -
~ . H "\ ’
— t s -
- N S
| ., ’ .
[ \ 4
: \ /
= ‘\ " -
N .
7 —
-0.1 +— N ~ 4
-~ Ple e
- o ¢
b= \\ ” -l
~ Cd
~ L4
~\ 'd’ -
~ L4
~ ld -
o hl R
-0.2 — -
! -
-
1
k | | | .
L s 1 5 L e 1 1 1 1 ! : i 1 1

c
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H = p*/2 - ecos(q)cos(t)
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Figure E.9: Poincaré map of a single trajectory of (2.43) using SIA4. The initial
conditions are (go,po,%0) = (0,0.31255,0), € = 1/27r =~ 0.16, 6t = 2x/30 = 0.21,
with 30 000 plotted points.
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H = p%/2 ~ ecos(q)cos(t)
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Figure E.10: Same as in Figure E.9, except using RKI4.
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Figure E.11: Poincaré map of a single trajectory of (2.43) using SIA4. The initial
conditions are (- .« i} = (7,0.255,0), e = 0.73/7 =~ 0.23, 6t = 27 /30 ~ 0.21, with
25 000 plotted po' .
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Figure E.12: Same as in Figure E.11, except using RKI4.

73



Appendix E 76

H « J,(r)cos(78)
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Figure £.13: Separatrix mesh of (2.45) after averaging, for w = 7 and € « 1. The

variables are defined by ¢ = rsinf and p = r cosé.
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H = p%/2 + q°/2 + ecos(q—wt)

20 i i T M , 1 1 T T l 1 L § 1 1 I 1 ] 1] T |
;— -
10 — ——_j
~ - 4
= 0 r— —
F 1.
i A
i
—10%—— ]
i' -
r i
_20‘[ 1 A ! ] l -t 1 1 1 l { 1 i R l H ] L 4
-20 -10 0 10 20

Figure E.14: Poincaré map of a single trajectory of (2.45) using SIA4. The initial
conditions are (go, po, to) = (0,10.5939,0), e = 0.8, w =7, 6t = #7/63 0.:‘1, with
35 000 plotted points.



Appendix E 78

H = p%/2 + ¢°/2 + ecos(q—wi)
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Figure E.15: Same as in Figure E.14, except using RKI4.
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H = p°/2 + q°/2 + ecos(q-wt)
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Figure F.1: Poincaré map of a single trajectory of (2.45) using SIA2. The initial

conditions are (go, po,to) = (0,4.5,0), € = 1.2, w = 7, §t = 27 /210 ~ 0.03, with 20
000 plotted pcints.
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H = p°/2 + q°/2 + ecos(q—wt)
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Figure F.2: Same as in Figure F.1, except using RKI4.
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H = J,(r)cos(76) + J,,(r)cos(148) + Jp (r)cos(216)
40.00

20.00 -

Figure F.3: Separatrix mesh of (2.46) after averaging, for s = 3, w; = 7, wp = 14,
w3 = 21 and € < 1. The variables are defined by ¢ = rsiné and p = r cosé.
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H = p%/2 + q°/2 + eZ,cos(gq—w;t)
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Figure F.4: Poincaré map of a single trajectory of (2.46) using SIA4. The initial
conditions are (go, Ps, to) = (0,11.2075,0), e = 1, s = 3, w; = 7, wy = 14, w3 = 21,
6t = 2r /105 ~ 0.06, with 38 000 plotted points.
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H = p°/2 =« q°/2 + eX,cos(q-w;t)
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Figure F.5: Same as in Figure F.4, except using RKI4.
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Table F.1: Summary of different choices of algorithms.

order | equate to zero | n | equations | variables
1 ho 1 2 2
2 ho, k1 2 3 4
3 ko, h1, ka2 3 5 6
4 ho, h1, he,hs | 4 8 8

Table F.2: Summrary of coefficients for various algorithms.

Gy =QA3 = %(1 fd 21/3 - 2-1/3)

b1=0

by = by = (2 - 2/3)

by = (1-2%%)"

order (n ) coeflicients
1 (a1,b) =(1,1)
2 (a1, a2, b, b2) = (3,3,0,1)
3 (a1,az,a3,b1,b3,b3) = (3,-3,1, %, 3, -3)
4 o = ag = 2+ 218 + 2711%)
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Table F.3: General scheme for a §t time-step integration.

Eamiltonian: H(q,p) = T(p) + V(q)

Initial Conditions: (qo,Po) at t =to

Dofori =1 ton:

Pi = Pi-1 + biF(gi-1)6? Qi = i1 + a;P(p;)6t

Integrated Variables: (qn,pn) at t = tp + 6t
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Table F.4: General scheme for a 6t time-step integration.

Hamiltonian: H{q,p,t) = T(p) + V(q,t)

Initial Conditions: (qo,Po) at t = g

Dofor:=1ton:
Pi = Pi-1 + biF(qi_y,t;1)6t q; = (-1 + a;P(p;)ét

t = tiy + a6t

Integrated Variables: (qn,pn) at t = to + 6t




Table F.5: Execution time (in sec.) for various iantegration methods.

§t=0.5|6t=0.1 |6t =0.01
SIA4 22..‘."»1 22.25 21.59
RKI4 | 31.79 31.74 | 30.88
ISIA4 | 42.64 32.77 26.69

Anpendix F
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Surface of Section
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Figure G.1: Surface of section of the Hamiltonian (3.2) for N = 1. The wave
parameters are ¢ = 0.7 m, v; = 5, k; = 1 m™! and ¢, = 0. Points are plotted at
the times T}, = 27p/v;. Trajectories corresponding to various initial conditions are

plotted, and the integration parameter j is 20.



p(t)

15

Surface of Section

Appendix G

10 -

-10¢

———yr— 1 M |

-15
-15

-10

Figure G.2:

Same as Figure G.1, except », = 5.16.
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Surface of Seciion
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Figure G.3: Surface = sion of the Hamiltonian (3.2) for N = 1. The wave
parameters are €; = m, 13 = 5, k; =1 m™! and ¢; = 0. Points are plotted at
the times T, = 2mp/v;. Trajectories corresponding to various initial conditions are

plotted, and the integration parameter j is 20.
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Surface of Section
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Figure G.4: Same as Figure G.3, except v, = 5.16.
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Time—Averaged Ion Distribution
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Figure G.5: Time-averaged ion distribution N(p) versus gyroradius p for the Hamil-
tonian (3.2). Ten ions in the field of a single (N = 1) wave are averaged over the in-
terval 2007 < T' < 20007. The wave parameters are ¢ =1m, v; =5, ky = 0.5 m™!

and ; = 0, and the integration parameter j is 25.
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Figure G.6: Same as Figure G.5, except ¢, = 1.5 m.
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Time—Averaged lon Distribution
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Figure G.7: Same as Figure G.5, except &; =2 m.
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Time—Averaged Ion Distribution
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Figure G.8: Same as Figure G.5, except ¢; =2 5 m.

97



Appendix G 98

Time—Averaged lon Distribution
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Figure G.9: Same as Figure G.5, except ¢, =3 m.
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Time—Averaged Ion Distribution
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Figure G.10: Time-averaged ion distribution N(p) versus gyroradius p for the
Hamiltonian (3.2). Ten ions in the field of a single (N = 1) wave are averaged
over the interval 2007 < T < 20007. The wave parameters are ; = 1 m, »; = .16,

k1 = 0.5 m~! and ¢; =0, and the integration parameter j is 25.
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Time—Averaged Ion Distribution
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Figure G.11: Same as Figure G.10, except &, = 3 m.

30



Appendix G 101

Time—Averaged lon Distribution
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Figure G.12: Time-averaged ion distribution N{(p) versus gyroradius p for the
Hamiltonian (3.2). One ion in the field of a single (N = 1) wave is averaged
over the interval 2007 < T < 60007. The wave parameters are ¢, = 3 m, ¥; = 5,

k; = 1 m™! and ¢; =0, and the integration parameter j is 20.
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Time—Averaged Ion Distribution
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Figure G.13: Same as Figure G.12, except v; = 5.16 m.
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Electric Field Amplitude
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Figure G.14: The normalized electric field £(z(T),T) as seen by a particle in the
field of 10 waves. The wave parametersare¢; = 1m,v; =3i,k;=1m " and p; =0
for ¢ = 1,...,10. The horizontal axis shows the number of spatial periods of the

slowest wave, and integration parameter j is 20.
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Electric Field Amplitude

1 M LB t 1

10 | .
o~

= s} -
~~
£~
N
w
Su”
=

6‘\ o =

c
<Y
g
N

S sl 4

10 -

| i, 1 l 1
0 1 2 3 4 5
VpinT/2T

Figure G.15: The normalized electric field £(z(T),T) as seen by a particle in the
field of 10 waves. The wave parameters are ¢; = 1 m, with v;, k; and ¢; chosen at
random for i = 1,...,10. The horizontal axis shows the number of spatial periods

of the slowest wave, and integration parameter j is 20.
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Surface of Section

Figure H.1: Surface of section of the Hamiltonian (3.2) for N = 4. The wave
parameters are ¢ = 1.75 m, »; = 5i, k; = 0.7m™ and p; = 0 for i = 1,...,4.
Points are plotted at the times T, = 27p/u;, for p = 1,...,15000. The initial
gyroradius is 2.5 m, and the integration parameter j = 17.5 is not an integer in this

special case.
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Surface of Section
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Figure H.2: Surface of section of the Hamiltonian (3.2) for N = 5. Wave parameters
are & = 1.8 m, (v1,...,vs) = (5,10,10,15,15), (ky,..., ks) = (0.7,0.75,0.55,0.7,
0.35) m~! and ¢; = 0 for i = 1,...,5. Points are plotted at the times T}, = 2rp/wn,
for p=1,...,15000. The initial gyroradius is 2.6 m, and the integration parameter
is j = 22.
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Surface of Section
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Figure H.3: Surface of section of the Hamiltonian (3.2) for N = 6. Wave parameters
are g, = 1.8m, (n,...,u) = (5,10,10,15,15,20), (ki,...,ks) = (0.7,0.75,0.55,
0.7,0.35,0.7) m~! and ¢; = 0 for ¢ = 1,...,6. Points are plotted at the times
T, = 2np/wn, for p = 1,...,15000. The initial gyroradius is 2.6 m, and the integra-

tion parameter 7 = 17.5 is not an integer in this special case.
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Time—Averaged Ion Distribution
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Gyroradius p (m)

Figure H.4: Time-averaged ion distribution N(p) versus gyroradius p for the Hamil-
tonian (3.2). Ten ions in the field of ten waves are averaged over the interval
200r < T < 20007. The wave parameters are chosen at random according to the
prescriptions in the text (case A), with the mode amplitude range [emin, €maz] = [0, 1]

rm. The irtegrai:on parameter j is 25.
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Time—Averaged Ion Distribution
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Appendix H
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Figure H.9: Same as Figure H.4, except [emin, €maz] = [3, 3.5] m.
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Time—Averaged Ilon Distribution
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Figure H.10: Time-averaged ion distribution N(p) versus gyroradius p for the
Hamiltonian (3.2). Ten ions in the field of ten waves are averaged over the interval
2007 < T < 2000w. The wave parameters are chosen at random according to the
prescriptions in the text (case B), with the mode amplitude range [€min, €maz] = [0, 1)

m. The integration parameter j is 25.
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Time—Averaged lon Distribution
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Figure H.11: Same as Figure H.10, except [€min» €maz} = [0.5,1.5] m.
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Time—Averaged lon Distribution
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Figure H.12: Same as Figure H.10, except [emin, €maz] = [1,2] m. -
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Time—Averaged lon Distribution
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Time—Averaged lon Distribution
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Figure H.15: Same as Figure H.10, except [€min, €maz] = [3,3.5] m.
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dy/dt

w/k

= dx/dt

Figure H.16: Qualitative particle trajectory in the (&, y) phase plane for the Hamil-
tonian (1.2). In the oval regions, a resonant interaction occurs which may lead to
a substantial phase change and thus to stochastic particle dynamics. This effect

weakens as the gyroradius of a particular trajectory increases.
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Summary of Turbulent Spectrum Heating Simulations.

f_u_n_l ,"%igye P;aia;ix__—e_ters e,,..-,,;— e,,mt. _(f)_ Pmaz (M) | Traz (V)
1A | {s, K9, W}° 0-1 14 | 1.5 x10!
2A 0.5-15 29 6.4 x 101
3A 1-2 51 2.0 x10?
4A | 1.5-25 80 4.9 x10°
5A 2-25 83 5.3 x10?

; _ 3-3.5 133 | 1.4 x10?
1B | {®,k®,6B}° 0-1 4 1.2 x10°
2B 0.5-1.5 5 1.9 x10°
3B | 1-2 6 2.8 x10°
4B 1.5-25 60 2.8 x10?
5B 2-25 84 5.4 x10?
6B 3-35 108 | 8.9 x10?
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Invariant Sf,l) for v=3

Figure I.1: Contour map of the invariant function S for v = 3. The zeroes of this

function correspond to the separatrix of the Hamiltonian (4.19).
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Surface of Section (v=3, €=0.6)
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Figure 1.2: Surface of section plot of the Hamiltonian (4.1) for 6 different initial

conditions. The wave frequency is ¥ = 3 and the perturbation strength is ¢ = 0.6.
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Appendix |
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Invariant Sf,z) for v
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Figure 1.3: Contour map of the invariant function 5@ for v
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Surface of Section (v=5/2, €=0.6)
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Figure 1.4: Surface of section plot of the Hamiltonian (4.1) for 9 different initial

conditions. The wave frequency is v = 5/2 and the perturbation strength is ¢ = 0.6.
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Surface of Section (v=5/2, €=0.9)
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Figure 1.5: Surface of section plot of the Hamiltonian (4.1) for 1 initial condition.
The wave frequency is v = 5/2 and the perturbation strength is ¢ = 0.9. Note the

smaller plot dimensions as compared with Figure
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Surface of Section (v=5/2, €=1.8)
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Figure 1.6: Same as Figure 1.5, except ¢ = 1.6.



Appendix | 130

Surface of Section (v=7/3, €=0.8)
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Figure L.7: Surface of section plot of the Hamiltonian (4.1) for 14 different initial

conditions. The wave frequency is v = 7/3 and the perturbation strength is ¢ = 0.6.



Appendix | 131

Surface of Section (v=9/4, €=0.6)
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Figure 1.8: Surface of section plot of the Hamiltonian (4.1) for 11 different initial

conditions. The wave frequency is v = 9/4 and the perturbation strength is ¢ = 0.6.



