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Abstract

Medical image segmentation is a sufficiently complex problem that no single strategy 

has proven to be completely effective. Historically, region growing, clustering, and edge 

tracing have been used and while significant steps have been made in the first two, 

research into automatic, recursive, edge following has not kept pace. In this thesis, a new, 

advanced, edge tracing strategy based on recursive, target tracking algorithms and 

suitable for use in segmenting magnetic resonance (MR) and computed tomography (CT) 

medical images is presented.

This work represents the first application of recursive, target-tracking-based, edge 

tracing to the segmentation of MR and CT images of the head. Three algorithms 

representing three stages of development are described. In the third stage, pixel 

classification data are combined with edge information to guide the formation of the 

object boundary, and smooth, subpixel-resolution contours are obtained. Results from 

tests in images containing noise, intensity nonuniformity, and partial volume averaging 

indicate that the edge tracing algorithm can produce segmentation quality comparable to 

that from methods based on clustering and active contours, when closed contours can be 

formed. In addition, low-contrast boundaries can be identified in cases where the other 

methods may fail, indicating that the information extracted by the edge tracing algorithm 

is not a subset of that from the other approaches. Additional investigation may allow: 

1) the use of knowledge to further guide the segmentation process; and, 2) the formation 

of multiple segmentation interpretations to be provided as output to the operator or as 

input to higher-level, automatic processing.
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A literature review describing the most common medical image segmentation 

algorithms is also provided. Three generations of development are defined as a 

framework for classifying these algorithms.
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Chapter 1 

Introduction

1.1 Motivation

1.1.1 EEG Source Localization

Epilepsy is a neurological disorder that affects 0.5% to 2% of the North American 

population [1], [2]. New cases are found most frequently in individuals under the age of 

10 and those over the age of 60 [1], [2]. The disease is characterized by seizures, sudden 

episodes of uncontrolled, neural activity that may vary in severity and frequency from 

patient to patient.

An electroencephalogram (EEG) is a recording of voltage versus time from a set of 

electrodes placed on the scalp. It is known that these voltage measurements reflect 

underlying activity in the brain [3]. In epilepsy, abnormal neural activity occurs which is 

often manifested in the EEG. This information is used clinically for determining

1
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diagnosis and treatment but its impact is usually limited to a qualitative interpretation by 

a neurologist.

Mathematical techniques can be used to analyze the EEG [4] with the goal of 

accurately locating the source of abnormal activity within the brain. This is most effective 

when the patient’s seizures are of a type classified as partial, meaning that they arise from 

a focal point within the brain, including those with secondary generalization. 

Approximately 60% of adult epilepsy patients experience partial seizures [1]. Accuracy 

of source localization is very important when surgery is a treatment option but knowledge 

of the source location can also aid in the selection of medication.

1.1.2 Realistic Head Models

Mathematical EEG analysis requires a model describing the spatial distribution of 

electrical conductivity within the head. This permits seizure information in the EEG 

voltage measurements to be projected back inside the head, in the model, to identify 

possible source locations. A model using a spherical head approximation has often been 

used but it has been recognized that models based on the patient’s own anatomy improve 

the accuracy of the localization [5]-[7].

Three-dimensional (3D) anatomical information can be obtained from medical 

imaging techniques that provide information on tissue structure, namely, magnetic 

resonance (MR) imaging and X-ray computed tomography (CT). The X-ray CT images 

show bone very well and MR images are very good for soft tissue discrimination. 

Segmentation of these images into component tissue volumes provides a basis for 

obtaining realistically-shaped, patient-specific, electrical, head models [6], [8], [9].

2
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Other medical imaging techniques such as positron emission tomography (PET), 

single photon emission computed tomography (SPECT), and functional magnetic 

resonance imaging (fMRI) provide information regarding tissue function. These are less 

useful than structural information for the development of electrical head models and are 

not typically used for that purpose.

In cases where MR and CT images are not available, realistic head models have been 

formed from a generic surface model containing scalp, skull, and brain surfaces, 

deformed to match a set of points measured on the patient’s scalp. It is recognized, 

though, that this is less accurate than forming the head model from segmented images 

[10].

1.2 Medical Image Segmentation

Medical images are typically held as two-dimensional (2D) arrays of picture elements 

(pixels) or three-dimensional (3D) arrays of volume elements (voxels, also called pixels). 

Segmentation is the process of separating these images into component parts. 

Specifically, scalp, skull, gray matter, white matter, and cerebrospinal fluid are important 

tissue classes for the formation of electrical head models. Segmentation can be performed 

by the identification of a surface for each tissue class, or by the classification of each 

pixel in the image volume.

Manual segmentation of CT and MR images is possible but it is a time consuming task 

and is subject to operator variability. Therefore, reproducing a manual segmentation 

result is difficult and the level of confidence ascribed to it may suffer accordingly. For 

these reasons, automatic methods are considered to be preferable [11]; however,

3
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significant problems must be overcome to perform segmentation by automatic means and 

it remains an active research area.

1.2.1 Segmentation Problems

Segmentation of medical images involves three main image related problems. The 

images may contain noise that can alter the intensity of a pixel such that its classification 

becomes uncertain. Also, the images can contain intensity nonuniformity where the 

average intensity level of a single tissue class varies over the extent of the image. Third, 

the images have finite pixel size and are subject to partial volume averaging where 

individual pixels contain a mixture of tissue classes and the intensity of a pixel may not 

be consistent with any single tissue class.

These image-related problems and the variability in tissue distribution among 

individuals in the human population leaves some degree of uncertainty attached to all 

segmentation results. This includes segmentations performed by medical experts where 

variability occurs between experts (inter-expert variability) as well as for a given expert 

performing the same segmentation on multiple occasions (intra-expert variability). 

Despite this variability, image interpretation by medical experts must still be considered 

to be the only available truth for in vivo imaging [11],

Medical image segmentation must, therefore, be classed as an underdetermined 

problem where the known information is not sufficient to allow the identification of a 

unique solution. The challenge in developing automatic segmentation methods is in the 

selection of mathematical models, algorithms, and related parameter values to 

compensate for the missing information and produce a solution that falls within a set of

4
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acceptable solutions, that is, within the spatial limits of the inter- and intra-expert 

variability. So far, this has not been achieved in a way that permits general application.

The use of automatic methods requires evaluation against a truth model to obtain a 

quantitative measurement of the efficacy of a given algorithm. Evaluation of results from 

automatic segmentation of in vivo images is usually accomplished by comparison with 

segmentations made by experts. Additional evaluation of an algorithm is possible by the 

analysis of synthetic images or images of physical phantoms [12].

A final problem occurs when an automatic method is employed for a segmentation 

task and the result is deemed to be unacceptable by the operator. This problem is not 

often considered by those interested solely in algorithmic detail; however, faulty 

segmentations must be corrected to have clinical usefulness. Modifying unacceptable, 

automatically-generated results is a process that may require hours of tedious manual 

effort.

1.3 Research Direction

Despite much effort by researchers in many countries, automatic medical image 

segmentation remains an unsolved problem, making the development of new algorithms 

important. The underdetermined nature of the problem and the experience of past 

research suggest that the use of uncertainty models, optimization methods, and the ability 

to combine information from diverse sources are important characteristics.

An examination of algorithms that existed at the beginning of this research program 

suggested that those which used boundary information were unable to use image region 

information well and those that used region information did not use boundary information 

very well. Acquiring both boundary and region information appeared to be important for

5
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producing suitable segmentations, a conclusion that has also been drawn by others [13],

[14].

An important conceptual generalization suggests that algorithms that use primarily 

local information are not able to incorporate global information easily and those that use 

global information well have difficulty incorporating local information. For example, the 

pixel classification methods, such as clustering, classify pixels drawn from across the 

entire image but completely lose the local context of a given pixel unless special attention 

is applied. On the other hand, the deformable models produce object boundaries by many 

local deformations but may not find the desired boundary at all points.

It was also recognized that an analogy exists between edge tracing, the propagation of 

a contour along an edge, and target tracking algorithms used in the military/aerospace 

industry for tracking maneuvering targets, often in adverse conditions where 

measurement information may be corrupted by noise and nearby objects. Target tracking 

algorithms [15]-[17] utilize uncertainty models, optimization methods and are capable of 

combining diverse pieces of information, precisely the characteristics needed for image 

segmentation. Given this apparent match of capability to requirement, the hypothesis was 

formed that target tracking algorithms could be used for the foundation of a new image 

segmentation strategy capable of combining local and global information to form 

contours automatically around objects in medical images.

The resulting investigation produced the concept of dynamic edge tracing, a new 

approach to image segmentation suitable for MR and CT images where a dynamic system 

model is used to interpret edge information and statistically-based, target tracking 

algorithms automatically associate edge points into object boundaries.

6
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Edge tracing may initially be viewed as an unlikely candidate for a successful 

segmentation strategy. Although it is one of the earliest segmentation methods [18] and 

is conceptually similar to segmentation operations performed by human experts, it is 

among the least researched at present and is not highly regarded in the image analysis 

community where poor robustness has led researchers to disregard it in favour of other 

methods [11], [13]. In fact, research into automatic, recursive, edge-based methods has 

largely been lost during the development of segmentation algorithms over the past two 

decades and presently little or no representation is found in major review articles [11],

[12]-

The criticism that has been leveled at edge tracing algorithms includes: i) sensitivity to 

noise; ii) the potential for gaps in the boundaries that are formed; and iii) the potential for 

false edges to be included in the boundary [13], These have the combined effect of 

producing low robustness in the segmentation process.

What appears to go unrecognized is that the identification of a coherent boundary by 

linking neighbouring edge points provides useful information for the purpose of 

segmentation, information not obtained by other methods. This is particularly evident 

along low-contrast boundaries. Furthermore, edge tracing based on target tracking has the 

ability to combine, or fuse, a wide variety of information including results from other 

algorithms.

Related, previous work [19], [20], has not exploited the potential of this technique, 

focusing on tracking in a single spatial dimension, and would not be applicable to the 

segmentation of MR and CT head images where the identification of convoluted, 

nonconvex contours is required.

7
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Dynamic edge tracing is capable of incorporating both local and global information by 

combining edge, intensity and pixel classification data, to identify object boundaries in 

medical images. Unlike other edge tracing methods, this approach has no restrictions 

related to object smoothness or convexity and appears to be the first target-tracking- 

based, edge tracing algorithm to be applied to the segmentation of MR and CT head 

images. When closed contours can be formed, it can produce segmentations comparable 

to those from other algorithms over a range of conditions involving noise, intensity 

nonuniformity, and partial volume averaging.

Dynamic edge tracing is also easily modified or expanded to include additional 

information. This flexibility facilitates further development and is important because the 

potential of target tracking algorithms for image segmentation has not yet been fully 

explored. For example, due to the existence of an array of possible neighbour points that 

are identified at each step of the tracing process, multiple sets of segmentation 

interpretations, multiple hypotheses, can be identified. This could produce a much richer 

set of candidate segmentations than is possible with methods that attempt to find a single 

solution. These, or a select subset, could then be presented to the operator for evaluation 

or to higher levels of processing. Algorithms that generate and process multiple 

hypotheses exist in the target tracking literature [15] but adaptation is required to apply 

them to the problem of automatic image segmentation. In addition to this, there are ways 

to utilize domain knowledge to improve the tracing result, for example, in the analysis 

and selection of neighbour points.

8
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1.4 Thesis Organization

The remainder of this thesis has the following components. Chapter 2 is a brief 

overview of past and present medical image segmentation research. The emphasis is on 

providing a representative summary of major segmentation methods with an adequate 

supply of references for further investigation. Three generations of development are 

defined as a framework for classifying the many segmentation methods that have been 

developed. Chapters 3, 4, and 5 contain studies on the proposed dynamic edge tracing 

algorithm and represent a progression in its development. Chapter 3, published as [21], is 

the earliest study and probes the feasibility of dynamic edge tracing using synthetic 

images containing intensity nonuniformity. Chapter 4 describes a substantially modified 

algorithm operating on synthetic and real images and with comparison to the classical 

snakes algorithm, one of the earliest of the now very popular deformable models. Chapter 

5 [22] presents further developments of the dynamic edge tracing algorithm with 

improvements in contour smoothness and incorporation of global image information. 

Images from a synthetic image database as well as real images with manually determined 

contours are used for evaluation. Comparison is made with a well known statistical 

classification method and a region competition, level set method. Chapter 6 provides 

discussion, conclusions, and ideas for future work. Finally, a description of the software 

developed to support these investigations is provided in an appendix.
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Chapter 2 

Literature Review

2.1 Segmentation Methods

Automatic segmentation methods have been classified as either supervised or 

unsupervised [1], Supervised segmentation requires operator interaction throughout the 

segmentation process whereas unsupervised methods generally require operator 

involvement only after the segmentation is complete. Unsupervised methods are 

preferred to ensure a reproducible result [2]; however, operator interaction is still 

required for error correction in the event of an inadequate result [3].

Objects within 2D or 3D images can be identified either by labeling all pixels in the 

object volume, or by identifying boundaries of the objects. Some segmentation methods 

may also be categorized in this manner, as volume identification methods or as boundary 

identification methods. In the volume identification type, each pixel is assigned a label 

from which object boundaries may subsequently be derived. The complement, boundary
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identification, consists of techniques that initially identify object boundaries, from which 

the labeling of pixels within the boundaries may follow.

When considering the image segmentation literature it should be noted that there are 

subtle distinctions in application that may not be discernible from the title of a particular 

publication. For example, “segmentation of the brain” may refer to the extraction of the 

whole brain volume, which is a somewhat different problem than that of attempting to 

differentiate between tissue regions within the brain. Also, some segmentation methods 

are only intended to operate on the brain image after the skull and scalp have been 

removed. Automatic segmentation of full head images, those including brain and scalp, is 

more complicated because intensity levels from the scalp often overlap those from the 

brain.

Most publications concern segmentation of MR images as opposed to CT images. This 

is probably because more soft tissue detail is possible with MR. In addition, more data 

are available from MR imaging since multispectral images with different relative tissue 

intensity levels can be obtained in a single acquisition session. Multispectral images are 

often used in segmentation methods based on clustering or other pattern recognition 

techniques, for example.

It is convenient to classify the image segmentation literature into three generations, 

each representing a new level of algorithmic development. The earliest and lowest level 

processing methods occupy the first generation. The second is composed of algorithms 

using image models, optimization methods, and uncertainty models, and the third is 

characterized by algorithms that are capable of incorporating knowledge. The second 

generation followed the first chronologically as computing power increased, whereas the
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third has begun in parallel with the second, often utilizing methods from the first and 

second generations.

The number of publications regarding medical image segmentation is quite large and 

as a result the following information is intended to be representative rather than 

exhaustive. Review articles [1]-[12] and references cited in the text are sources for related 

articles and additional details.

2.1.1 First Generation

First-generation techniques can be utilized in supervised or unsupervised segmentation 

systems but should be considered as low-level techniques since little, if any, prior 

information is included. They are usually described at a conceptual level leaving the 

details (e.g. threshold levels, homogeneity criterion) to be determined by the user, often 

resulting in ad hoc implementations. Relatively simple methods like these are subject to 

all three of the main image segmentation problems. Further description can be found in 

textbooks on image processing, for example, [13]-[16].

2.1.1.1 Thresholds

In the simplest case, a threshold can be applied to an image to distinguish regions of 

different intensity and thus differentiate between classes of objects within the image. 

Thresholds may also be applied in a higher-dimensional, feature space where better 

separation of classes may be possible.

Thresholds can be operator-selected or automatically-determined, for example, using 

information from image gray level histograms. In images where intensity nonuniformity 

and noise are present it may be difficult or impossible to find one or more thresholds 

which separate the image objects without misclassification. Still, the application of
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thresholds is extremely simple and they continue to be used when the nature of the 

problem permits or when augmented by additional processing steps [17], [18].

2.1.1.2 Region Growing

Starting at a seed location in the image, adjacent pixels are checked against a 

predefined homogeneity criterion. Pixels that meet the criterion are included in the 

region. Continuous application of this rule allows the region to grow, defining the volume 

of an object in the image by identification of similar, connected pixels.

Region growing continues to be used where the nature of the problem permits [14] and 

developments continue to be reported [19]-[21],

2.1.1.3 Region Split/Merge

The region split/merge segmentation algorithm [14] operates on an image in a 

recursive fashion. Beginning with the entire image, a check is performed for homogeneity 

of pixel intensities. If it is determined that the pixels are not all of similar intensity then 

the region is split into equal-sized subsections. For 3D images, the volume is split into 

octants (quadrants for 2D images) and the algorithm is repeated on each of the 

subsections down to the individual pixel level. This usually results in over-segmentation 

where homogeneous regions in the original image are represented by a large number of 

smaller subregions of varying size. A merge step is then performed to aggregate adjacent 

subregions that have similar intensity levels.

2.1.1.4 Edge Detection

Edge-based methods attempt to describe an object in terms of its bounding contour or 

surface rather than by the volume that it occupies. Many edge detection operators exist, 

such as, Sobel, Prewitt, Canny, and wavelet [6] as well as Marr-Hildreth [14]. Some, such
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as Sobel and Prewitt, are quite simple and can be implemented by n-linear convolution 

operations for n-dimensional images. Often this is followed by a computation of the 

magnitude of the gradient at each pixel position.

Edge detection is typically not suitable for image segmentation on its own since the 

edges found by application of low-level operators are based on local intensity variations 

and are not necessarily well connected to form closed boundaries [6], [14], Therefore, 

edge detection is often used to supplement other segmentation techniques.

2.1.1.5 Edge Tracing

Edge tracing is a boundary identification method where edge detection is performed to 

form an edge image after which edge pixels with adjacent neighbour connectivity are 

followed sequentially and collected into a list to represent an object boundary [13], [22],

[23]. Evaluation of a cost function involving a variety of local and global image features 

is performed in a heuristic search for neighbouring pixels. Unfortunately, these 

algorithms tend to be very sensitive to noise that creates gaps or diversions in the object 

boundary. Methods for extracting 3D surfaces, by stacking 2D contours [24] and by a 3D 

edge following procedure [25], have also been developed.

2.1.2 Second Generation

Research in automatic image segmentation diverges from the first-generation 

algorithms with the introduction of uncertainty models and optimization methods as well 

as a general avoidance of heuristics. Segmentation methods can often still be identified as 

being primarily one of either volume identification or boundary identification and as 

either supervised or unsupervised.
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2.1.2.1 Statistical Pattern Recognition

Statistical pattern recognition [1], [7] has been applied extensively in medical image 

segmentation. A mixture model is used where each of the pixels in an image is modeled 

as belonging to one of a known set of classes. For head images, these will be tissue 

classes such as gray matter, white matter, and cerebrospinal fluid. A set of features, often 

involving pixel intensity, is evaluated for each pixel. This forms a set of patterns, one for 

each pixel, and the classification of these patterns assigns probability measures for the 

inclusion of each pixel in each class.

As part of the process, class conditional probability distributions describing the 

variation of each pixel feature are often required for each class. These are generally not 

known and can be determined manually or automatically. For example, in supervised, 

statistical classification these distributions can be calculated from operator-selected 

regions acquired from each tissue class in the image. Alternatively, in unsupervised, 

statistical clustering, the distributions are automatically estimated from the image data, 

usually requiring an iterative procedure. Not all statistical pattern recognition methods 

estimate class conditional distributions. Some perform the segmentation directly by cost- 

fimction optimization.

Parametric approaches in statistical pattern recognition are those where the forms of 

the class conditional distributions are known, as, for example, when Gaussian 

distributions are assumed. Alternatively, nonparametric approaches are those where the 

forms of the class conditional distributions are not known.

The total number of classes present in the image and the a priori probability of 

occurrence of each class within the image are assumed to be known prior to the
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segmentation operation. For each pixel in the input image, the a posteriori probability that 

the pixel belongs to each tissue class is generally computed using Bayes’ rule [1] and a 

maximum a posteriori (MAP) rule is applied, where the pixel is assigned to the class in 

which its a posteriori probability is greatest, to complete the segmentation.

Bayesian classifiers, discriminant analysis, and k-Nearest Neighbour classification are 

examples of supervised methods that have been applied [26].

Recent research has been performed in the area of unsupervised, volume identification 

using parametric, statistical clustering implemented with expectation maximization (EM), 

a two-step, iterative procedure, and where a mixture of Gaussians is assumed for the pixel 

intensity data. This has allowed segmentation and nonuniformity gain field estimation to 

occur simultaneously [27]-[29], addressing the intensity nonuniformity problem. The 

application of a Markov random field (MRF) [30] to introduce contextual information by 

allowing neighbour pixels to influence classification and by modeling a priori 

information regarding the possible neighbours for each tissue class, has helped to reduce 

misclassification errors arising from noise and partial volume averaging [28], [29], An 

extension to further address the partial volume problem is found in [31] and a 

generalization of the EM-MRF approach which uses a hidden Markov random field and 

EM is reported in [32]. A segmentation method using a variant of the EM algorithm and 

which estimates a separate bias field for each tissue class is described in [33], The 

relatively high computational cost of the EM approach, though, has spurred the search for 

speed enhancements [34] and alternatives [35].
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Statistical models to describe partial volume averaging have been developed, for 

example [36] and also [37] where a statistical representation for the volume of the 

segmented object is also computed.

2.1.2.2 C-means Clustering

C-means cluster analysis [1] permits image pixels to be grouped together based on a 

set of descriptive features. For example, pixel intensity could be used as a feature, 

causing pixels to be grouped according to intensity levels. Other features which describe 

individual pixels (e.g. the texture of the local neighbourhood) can also be used to improve 

cluster separation. The numerical value of each feature is generally normalized to 

between 0 and 1.

C-means cluster analysis operates in the p-dimensional feature space, where p is the 

number of features used. Each pixel produces one point in the feature space and a cluster 

is a region in the feature space having a high density of such points. For each cluster, a 

cluster centre, or prototype, can be defined. The membership of a pixel in a particular 

cluster depends on the distance between its feature-space representation and the cluster 

prototypes.

The number of clusters (c) is assumed to be known. Equations for iterative 

computation of the positions of the cluster prototypes and the memberships of each pixel 

in a cluster are determined by minimizing an objective function based on the sum of the 

distances (i.e. some measure of similarity) between the cluster prototypes and each of the 

p-dimensional data points. During algorithm operation, there is no guarantee that a global 

minimum will be attained. The algorithm execution is terminated when the first local 

minimum is reached.
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Hard c-means algorithms assign to each pixel absolute membership in one of the 

clusters whereas fuzzy c-means algorithms assign to each pixel a degree of membership 

within each of the clusters. Hardening of the fuzzy result is often done by assigning each 

pixel to the cluster in which it has highest membership.

Recent research has been performed using adaptive methods based on fuzzy c-means 

clustering (FCM) for unsupervised, volume identification [38], The adaptive technique is 

implemented by modifying the FCM objective function and provides compensation for 

the intensity nonuniformity problem. Alternatives that reduce computational complexity 

and add spatial constraints, for reduction of errors due to noise, have also been reported

[39]-[41],

2.1.2.3 Fuzzy Connectedness

Fuzzy representations of connectedness between the pixels comprising an object in an 

image, drawn from early work on fuzzy image analysis by Rosenfeld [42], [43], have 

been developed for use in medical image segmentation [44], [45], Udupa and Saha [45] 

describe several algorithms. Given a seed pixel within an object in an image, the object 

containing the seed is determined by computing a connectedness measure for all pixels in 

the image relative to the seed pixel. Final object selection is performed using a threshold 

on the resulting fuzzy connectedness map. When multiple objects are considered, a seed 

pixel is required for each object and the fuzzy connectedness of all image pixels to each 

seed are computed. Pixels are then assigned to the object of highest connectedness. 

Intensive computation may be required because connectedness is defined based on an 

optimal path to the seed pixel. Dynamic programming is used to determine optimal paths. 

Fuzzy connectedness has been used in intra-operative tumour segmentation where a
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rectangular, operator-selected region of interest surrounding the tumour has also been 

applied to reduce computation time [46].

2.1.2.4 Deformable Models

Deformable models, including active contours (2D) and active surfaces (3D), are 

artificial, closed contours/surfaces able to expand or contract over time, within an image, 

and conform to specific image features.

One of the earliest active contours is the snake [47], used for supervised, boundary 

identification in 2D images. The snake is endowed with physical elasticity and rigidity 

features and intensity gradients in the image are used to derive external forces acting on 

the snake. During iterative update of an energy-minimization evolution equation, the 

snake moves to the nearest edge and is able to conform to it, identifying the boundary of 

an object within the image.

In the early stages of development, the snake needed to be initialized very near to the 

boundary of interest, had difficulty entering narrow concavities, and had problems 

discriminating between closely spaced objects. Attempts to overcome these problems 

resulted in many modifications [9]. Extensions to allow 3D volume segmentation were 

also developed as was the ability to change topology to handle objects with bifurcations 

or internal holes [9], [48]. New snake models continue to be developed [49]-[51],

Level set methods were introduced to deformable models by casting the curve 

evolution problem in terms of front propagation rather than energy minimization [52]- 

[55]. With level sets, the contour or surface moves in the direction of its normal vectors. 

The speed of the contour is an important component for maintaining consistent contour 

propagation and for halting at regions of high gradient. Local contour curvature, intensity
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gradient, shape, and contour position can be used in the speed term although the selection 

need not be limited to these [55], The development of the level set approach simplified 

topology adaptation so that a contour or surface could split and merge as it evolved, 

allowing it to identify boundaries of complex objects. Efforts have also been made to 

reduce the computational burden [56].

Mumford-Shah segmentation techniques [57], rather than intensity gradient, have been 

used to form the stopping condition [58] producing a region-based, active contour and 

this has been further developed to produce a deformable model that finds multiple object 

boundaries with simultaneous image smoothing [59]. Mumford-Shah segmentation 

assumes a piecewise smooth image representation and defines a problem in variational 

calculus where the solution produces simultaneous smoothing and boundary 

identification in an image [57].

Most deformable models propagate toward a local optimum. A recent, related method 

for finding globally optimal surfaces by simulating an ideal fluid flow under image- 

derived, velocity constraints is described in [60].

2.1.2.5 Watershed Algorithm

The watershed algorithm is a boundary identification method in which gray level 

images are modeled as topographic reliefs where the intensity of a pixel is analogous to 

the elevation at that point [61]. In a real landscape, catchment basins, e.g. lakes and 

oceans, are regions each associated with a local minimum. In a similar way, a gray level 

image has local minima. The watershed concept can be understood by imagining that a 

hole is cut at each local minimum in the relief and then the relief is immersed, minima 

first, into water. As the relief is immersed, water rises from the holes in the local minima.
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At each point where water would flow from one catchment basin to another, a “dam” is 

constructed by marking those points. When the entire relief has been immersed in water, 

the “dams” ring each catchment basin in the image, identifying the boundaries of the 

local minima. The tendency is to oversegment the image since every local minimum will 

be identified including those resulting from noise. Thresholds are generally used to 

suppress shallow minima.

Often edge detection is used to produce a gradient magnitude image for input to the 

watershed algorithm since the catchment basins will then be the objects of interest, that 

is, regions not associated with edges in the image.

The watershed algorithm has been used to segment the cerebellum from 3D MR 

images of the mouse head [62], for example.

2.1.2.6 Neural Networks

Artificial neural networks have been used in medical image segmentation [1], typically 

in unsupervised, volume identification but also in boundary identification [63]. The 

network must first be trained with suitable image data, after which it can be used to 

segment other images. For volume identification, the neural network acts as a classifier 

where a set of features is determined for each image pixel and presented as input to the 

neural network. The network uses this input to select the pixel classification from a 

predefined set of possible classes, based on its training data. The classification operation 

is like that performed in statistical pattern recognition and it has been noted that many 

neural network models have an implicit equivalence to a corresponding statistical pattern 

recognition method [7].
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Recent investigations considering biological neurons in animal models have shown 

that neurons of the visual cortex produce stimulus-dependent synchronization [64], This 

has led to the suggestion that the synchronous activity is part of the scene segmentation 

process. Neural networks have been formed using artificial neurons derived, with 

significant simplification, from the physiological models and used for unsupervised, 

volume identification. Examples are pulse coupled neural networks (PCNNs) [65] and the 

locally excitatory globally inhibitory oscillator network (LEGION) [66]. Neurons are 

usually arranged in a one-to-one correspondence to the image pixels and have linkages to 

a neighbourhood of surrounding neurons. Each neuron produces a temporal pulse pattern 

that depends on the pixel intensity at its input and also on the local coupling. The 

linkages between neurons permit firing synchrony and the time signal from a group of 

neurons driven by the same object in an image is specific to that object. The local 

coupling helps to overcome intensity nonuniformity and noise. Implementations of 

PCNNs as hardware arrays are being explored with the intent of producing real-time, 

image-processing systems [65].

Unsupervised, volume identification has also been performed by a method utilizing 

vector quantization and a deformable feature map where training required one manually 

segmented dataset [67],

Neural networks have also been used as an autoassociative memory to identify lesions 

in MR, head images [68]. The network is trained using images from normal subjects. 

When an image containing an abnormality is presented to the network, the abnormality is 

recognized as different from the training images.
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Neuro-fuzzy systems, combinations of neural networks and fuzzy systems, have also 

been used in image segmentation. Boskovitz and Guterman [69] provide a brief survey 

and propose a system which performs image segmentation by neural-network-controlled, 

adaptive thresholds applied to a “fuzzified” version of the input image obtained by fuzzy 

clustering.

2.1.2.7 Multiresolution Methods

Multiresolution, multiscale, and pyramid analysis are terms referring to the use of 

scale reduction to group pixels into image objects. These methods are typically used for 

unsupervised, volume identification but have also been used in unsupervised, boundary 

identification. The segmentation is performed by first forming a set, or stack, of images 

by recursively reducing the scale of the original image by blurring followed by down 

sampling. The result is a sequence of images that if stacked one above the other from 

highest resolution to lowest resolution would form a pyramid of images, each determined 

from the one below. The lowest resolution image (apex of the pyramid) may be as small 

as 2x2x2 pixels, for 3D images, and the highest resolution image (base of the pyramid) is 

the original. The pixels are then linked from one layer to the next by comparing similarity 

attributes, such as intensity features. Pixels that have similar features and location are 

labeled as belonging to the same object, completing the segmentation.

Simple edge tracing methods have been augmented by further processing using 

multiresolution pyramids to connect edge discontinuities [70] and boundaries have been 

refined using a multiscale approach [71]. Examples of volume identification using 

multiresolution pyramids can be found in [72], [73].
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2.1.2.8 Edge Tracing

Optimization methods have been applied to edge following in 2D images using graph 

search methods [74], [75] for supervised, boundary identification. An initial seed pixel 

and a destination pixel are specified and the cost for transfer between pixels in the 

intervening trellis is computed based on a given cost function. The minimum cost path 

between the initial pixel and the destination pixel can then be computed and the pixel 

sequence collected into a list. Repetition of this procedure where each destination pixel is 

used as the initial pixel in a subsequent operation allows the user to guide the formation 

of an object boundary. Dynamic programming is used for determining the minimum-cost 

path [75]. An extension to permit user-guided, 3D boundary formation has also been 

developed [76],

User-guided edge following in 2D images has also been performed by computing 

geodesic contours [77], as used in deformable models based on the methods of level sets. 

A geodesic contour is defined as the shortest line on a surface between two points on the 

surface. Paths between a series of user-defined, boundary points are determined by 

minimizing a weighted distance measure that is lowest along high-intensity gradients in 

the image. Computation involves the numerical solution of partial differential equations.

2.1.3 Third Generation

It is important to recognize that medical image segmentation is a challenge even for 

human experts who have knowledge, training, and awareness at a level that has not been 

replicated in computer programs. Furthermore, trained experts may disagree on details 

regarding a particular segmentation [2], This suggests very strongly that the problem of 

fully-automatic image segmentation will not be solved by a second-generation algorithm
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and that while optimization methods and uncertainty models are important and should be 

used, they are not sufficient in themselves to produce accurate, automatic segmentations, 

in the general case. Recent work has led to the development of techniques that combine 

multiple methods and also to the development of methods that incorporate higher-level 

knowledge such as a priori information, expert-defined rules, or models (e.g. shape) of 

the desired object. These constitute the third generation of medical image segmentation 

methods.

2.1.3.1 Method Combinations

Examples of combining second-generation, volume identification with second- 

generation, boundary identification are: multiresolution concepts with watershed 

algorithm [78], neural network classification and active contours [79], fuzzy clustering 

and an active contour method [80], statistical methods and active contours [81]-[83].

An approach based on information theory was used to combine pixel classification, 

edge detection, and shape constraints in [84],

The FreeSurfer software [85] performs cortical surface reconstruction from Tl- 

weighted, MR, head images using a multistep procedure that includes the use of 

deformable models, watershed algorithm, and a variety of signal processing techniques 

(e.g. smoothing, histogram analysis) [86]-[89], Another approach for identification of the 

cerebral cortex utilizes the adaptive fuzzy clustering of [38], deformable models, region 

growing, and additional signal processing [90], A third approach to cortical surface 

formation uses a nonparametric classifier, a deformable model, intensity nonuniformity 

correction, and includes a statistical model for partial volume averaging [91]. Each of 

these approaches takes specific steps to ensure a topologically correct reconstruction so
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that closed, nonintersecting surfaces with spherical topology (i.e. can be inflated to form 

a sphere) are formed. Manual interaction may be required in some cases to ensure 

accurate surface formation. A representation of the cerebral cortex has also been 

extracted using two level-set surfaces that have been coupled and simultaneously 

deformed [92].

2.1.3.2 Knowledge-based Segmentation

Knowledge can include anatomical knowledge, knowledge of image features, for 

example, the intensity or texture of objects in the image, or knowledge of the image 

formation process. This information can be included in several ways, such as with a full 

anatomical atlas that is warped to match the specific case under investigation, a shape 

description of a desired image object, or a set of rules defined by an expert and 

implemented in a rule-based algorithm.

2.1.3.2.1 Atlas-based Segmentation

An atlas is a composite head image formed from segmented, co-registered head 

images of several subjects. These have been used for segmentation by registration where 

a 3D mapping is determined between the atlas and the anatomy appearing in the image of 

interest and the labeling found in the atlas is used to identify the labeling applied to 

complete the segmentation [93], [94].

Atlases have been used to improve the selection of a priori probabilities for statistical 

pattern recognition [29], [33], [95]. In a further development, the required registration 

step has been incorporated into a statistical clustering framework that also performs 

simultaneous intensity nonuniformity correction where the expectation maximization 

method is used for parameter estimation and the model assumes that the pixel intensities
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are drawn from a mixture of Gaussians [96], Nonparametric classifiers, where no 

assumptions are made regarding the pixel intensity distributions, have also been used 

with atlases [91], [97], [98].

Atlas-based segmentation using statistical pattern recognition has been enhanced to 

include a model of the MR image formation process in order to reduce sensitivity to the 

image acquisition parameters. The integration of image acquisition into the process also 

facilitates the derivation of MR imaging sequences that are optimal for the purposes of 

segmentation [99].

A method that automatically matches cortical regions between an atlas and the image 

of interest and then performs a corresponding atlas-warping step to improve segmentation 

labeling is described in [100].

Although fully-automatic registration is desirable, semiautomatic registration is also 

used where manually-defined, landmark points constrain the deformation and improve 

segmentation accuracy especially in cortical regions where substantial inter-subject 

variability exists [101].

In a manner analogous to probabilistic atlases, fuzzy templates have been formed and 

used for segmentation of subcortical brain structures [102].

Atlases have also been used to provide anatomical knowledge without undergoing 

deformation [103].

2.1.3.2.2 Rule-based Segmentation

Automatic, rule-based guidance of unsupervised image segmentation has been 

explored in an attempt to improve the results from unsupervised segmentation methods 

and yet maintain an automated approach to the segmentation task. Image primitives are
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usually derived from first-generation and second-generation algorithms and then 

interpreted using anatomical and image knowledge applied as a set of rules. The wide 

variety of methods that have been developed can usually be categorized by the types of 

image information that are extracted, by the types of knowledge that are introduced, and 

by the method used for implementation of that knowledge.

First-generation methods were often used in early, rule-based systems for image data 

extraction [104]-[108] and although these are relatively simple, low-level processing 

methods, the methods used for interpretation are not necessarily so. An oversegmented 

image and a rule-based merging algorithm is used in [105] to segment the lateral 

ventricles and left caudate nucleus in CT images of the brain. The process incorporated 

high-level domain knowledge, including an anatomical model.

A brain model describing the structures and features in each 2D slice of a 3D image 

for object recognition in CT images is described in [106]. This system is significant 

because of the use of a blackboard, a temporary database containing prior and current 

information, updated as the segmentation proceeds, and data fusion, combination of 

multiple data sources to improve decision confidence.

Second-generation methods have also been used to extract image primitives for rule- 

based systems [109]-[114], An automatic system for segmentation and labeling of 

glioblastoma-multiforme tumours in MR images where gadolinium had been used as a 

contrast agent is described in [111] with further evaluation in [115]. Adaptive thresholds, 

fuzzy c-means clustering, and a rule-base built from a set of training images were key 

components of the multistage system. Of particular note is that all steps in the system 

were performed automatically.
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Knowledge of anatomical shapes and relative object locations along with a 

hypothesize-and-verify approach driven by a genetic algorithm has been used to identify 

basal nuclei, ventricles, and other substructures in 2D, MR, brain images [110].

Possibilistic clustering, a generalization of fuzzy c-means clustering, and fuzzy logic 

have been used to segment the thalamus, putamen, and the head of the caudate nucleus 

from brain images of healthy volunteers [112]. The features used in the clustering process 

consist of a set of 3D wavelet coefficients extracted from the MR image at each pixel. 

The clustering is followed by a fuzzy logic step to refine the segmentation by 

incorporating linguistic descriptions, obtained from a human expert, describing object 

position and features.

A set of deformable mesh surfaces are simultaneously deformed, guided by a series of 

rules based on the dynamics of the evolving surfaces and medical knowledge of the shape 

and texture of the objects of interest, in [116]. The rules are implemented as constraints 

on the surface deformation.

2.1.3.2.3 Model-based Segmentation

Statistical model-based segmentation with nondeformable, shape models was explored 

as a guide to segmentation by region growing [117]; however, the popularity of statistical 

shape models has soared since the development of the active shape model (ASM) [118]. 

The ASM was inspired by active contours but with the added intention of limiting the 

extent of the model deformation to within reasonable limits for a given class of object, 

thus increasing the specificity of the model. Since objects of a given class display shape 

variability, a point distribution model (PDM) is formed using points attached to specific 

landmarks on a particular object. In the PDM, each landmark point has a statistical
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distribution determined from a set of N  co-registered, example objects, ideally 

describing the full range of shape variability. Assuming 2D coordinates and n landmark 

points in the PDM, the ASM can be viewed as a point cloud of N  points in a 2n -  

dimensional space. A mean contour is determined and the deviation from the mean is 

computed for each of the N  contours and a 2 n x 2 n  covariance matrix is formed. 

Principal components analysis is then used to identify the modes of greatest variability in 

this high-dimensional space.

The ASM, thus trained, is then used to identify objects of the same class within other 

images. The process is initialized by identifying an orientation and scale for the mean 

contour and then permitting it to deform within the image in a manner analogous to that 

of active contours. In this case, the movement of each landmark point is to the nearest 

intensity gradient in a direction normal to the contour. Deformation is restricted to within 

the bounds of the statistical model, usually held to within three standard deviations from 

the mean.

Related, shape-based approaches to image segmentation have also been developed 

[119]-[123] and other shape representations, spherical harmonics [124], wavelet [125], 

shape-variant Hough transform [126], and medial (skeleton) representation [127], have 

also been used. A level set shape representation that does not require explicitly defined 

PDMs, and that also permits surface topology modification as the model deforms, has 

been introduced [128], [129], This has been further extended to permit simultaneous, 

coupled deformation of multiple shape models [130]. Other deformable, statistical shape 

models called strings and necklaces have been used for segmentation of spinal images 

[131].
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An active appearance model (AAM) is a further development of ASMs where shape 

plus intensity of an object, referred to as an image patch, and corresponding variability 

are integrated into a statistical model [132]. A hybrid combination of ASMs and AAMs 

was used to develop an automated segmentation method for MR, cardiac images [133]. A 

level set implementation of a shape-plus-intensity model in 3D is described in [134].

Artificial organisms have also been applied to segmentation of MR images [135], 

These represent further developments of deformable models. They include a body 

capable of taking the shape of the desired image object and having distributed sensors 

and rudimentary brains with centres for perception, cognition, and motor control. They 

are capable of voluntary movement and alteration of body shape based on sensory input 

from the image and anatomical knowledge. As such, the artificial organism released into 

the image environment will seek out and conform to the object of interest.

2.2 Segmentation Software

Medical image segmentation software is available commercially from a number of 

sources, typically as a subset of a larger software package intended for general, 

interactive, image processing. Also, over the past few years, the amount of free software 

that has become available has grown rapidly. Supported by government, academic 

institutions, or individuals, this software often includes source-level program code (high- 

level computer programming language implementation), referred to as open source. A 

sampling of the available software is given in the following sections. Additionally, the 

Neuro Image Analysis group at the University of North Carolina at Chapel Hill maintains 

a webpage with links to a number of related sites where free software can be downloaded

[136],
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2.2.1 BIC Software Toolbox

The McConnell Brain Imaging Centre (BIC) of the Montreal Neurological Institute 

(MNI) at McGill University freely offers a variety of software for medical image analysis

[137]. Included are tools for automatic registration (ANIMAL), segmentation (INSECT), 

intensity nonuniformity correction (N3), sulcus extraction and labeling (SEAL), and 

cortex extraction. Tools for PET and fMRI analysis are also available as are a number of 

display and manual, image-editing functions. A description of some of the software 

modules and a technique for application to the analysis of large image databases is 

described in [138]

Source code is available. All image data are stored in Medical Image NetCDF (MINC) 

file format. An interface to Matlab® (EMMA) is also available.

2.2.2 SPM

Statistical Parametric Mapping (SPM) developed at the Wellcome Department of 

Cognitive Neurology, University College of London, England, is freely available 

software intended for analysis of brain imaging data sequences [139]. Supported 

modalities include fMRI, PET, and SPECT with analysis of EEG and 

Magnetoencephalogram (MEG) expected in future releases. Segmentation in SPM is 

performed using unsupervised, statistical clustering.

2.2.3 FSL

The FMRIB Software Library (FSL) was developed by the Oxford Center for 

Functional Magnetic Resonance Imaging of the Brain (FMRIB) at the University of 

Oxford, England. The software is a library of statistical and image analysis tools for
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fMRI, structural MRI, and Diffusion Tensor Imaging (DTI) data. Segmentation is 

performed by application of an automated, brain extraction tool (BET) based on a 

deformable model. This is followed by automatic segmentation of gray matter, white 

matter, and cerebrospinal fluid using the hidden Markov random field and expectation- 

maximization, statistical clustering approach of [32], The FSL software is freely available 

for noncommercial use [140].

2.2.4 MEDx

MEDx is a commercial software package developed by Sensor Systems Medical 

Products Division [141] located in Sterling, Virginia, USA. It is intended for 

multimodality, multidimensional, image analysis. Both SPM and FSL are used in MEDx.

2.2.5 EIKONA3D

Eikona3D is a commercial software package developed by Alpha Tec, Ltd. [142], 

located in Thessaloniki, Greece. The software contains a core set of image processing and 

visualization tools. Interactive image segmentation can be performed by threshold and by 

region-based methods such as region growing and region split-merge. Basic edge 

detection and edge-following features are also available.

2.2.6 FreeSurfer

FreeSurfer [85] is a software package developed by CorTechs Labs [143] and the 

Athinoula A. Martinos Center for Biomedical Imaging at the Massachusetts General 

Hospital, an affiliate of Harvard University [144], The software employs automatic and 

manual segmentation methods for semiautomatic reconstruction of the cerebral cortex
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from structural, MR images and also allows overlay of fMRI and EEG data onto the 

reconstructed surface.

2.2.7 Insight Segmentation and Registration Toolkit

The insight segmentation and registration toolkit (ITK) [145] and its companion the 

visualization toolkit (VTK) [146] have been developed by the United States National 

Library of Medicine in support of the Visible Human Project. Development began in 

1999 and is ongoing. The toolkits are open-source, freely available, software modules 

written in the C++ computer language and supported by Kitware [147], a professional 

software development corporation, and also by qualified volunteers. The software 

modules are intended for use in image segmentation and registration, computer-software 

applications but are not full-fledged applications, themselves.

The segmentation modules include a variety of low-level methods such as thresholds 

and region growing as well as higher-level segmentation using the watershed algorithm 

and deformable models including those based on the level set approach.

A stand-alone, segmentation software application called SNAP, for Snake Automated 

Partitioning, was developed using level set algorithms in ITK and is freely distributed as 

open-source software [148].

2.2.8 Analyze

Analyze is a commercial, image analysis, software package developed by the 

Biomedical Imaging Resource at the Mayo Foundation [149] based in Rochester, 

Minnesota, USA. It may be “the most comprehensive, robust and productive software 

package available for 3D biomedical image visualization and analysis” as their website
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suggests. Certainly it appears to have the longest history, beginning in the early 1970’s, 

and has impressive capabilities for volume and surface visualization, including the ability 

to generate cine fly-through image sequences for virtual endoscopy. These visualization 

steps would typically be performed after extraction of objects from an image by 

segmentation.

The software permits automatic segmentation using modules from ITK, including 

segmentation based on level sets, fuzzy connectedness, and the watershed algorithm. 

Interactive, manual segmentation and region growing can also be performed and a 

number of lower-level filtering functions are available.

2.2.9 3D Slicer

The 3D Slicer software [150] is developed by the MIT Artificial Intelligence Lab and 

the Surgical Planning Lab at Brigham and Women’s Hospital, an affiliate of Harvard 

Medical School. It is open-source, freely-available software based on VTK. It contains 

functions for 3D image registration, as well as formation, visualization, and 

quantification of 3D surfaces and volumes. Segmentation is performed via manual and 

semiautomatic means, including thresholds, binary morphology (erosion and dilation), 

and manual and semiautomatic line drawing. A module that performs automatic statistical 

clustering using the expectation-maximization algorithm is also included.
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Chapter 3 

Dynamic Edge Tracing for 2D Image 
Segmentation

3.1 Introduction

Magnetic Resonance (MR) images are excellent sources of patient-specific, 

anatomical information. Automatic segmentation of these images into component tissue 

classes provides a method for reproducible extraction of this information. One problem 

that complicates this process, however, is intensity nonuniformity, an artifact in MR 

images which is evident as a gradual variation in intensity over otherwise identical tissue 

classes. Intensity nonuniformity has several causes, notably, inhomogeneity in radio 

frequency (RF) transmitter and receiver coils during image acquisition [1],

MR images provide excellent soft tissue contrast so that intensity-related features are 

natural choices for use with automatic segmentation methods. However, compensation 

for intensity nonuniformity must be included for such methods to be effective.

1 A version of this chapter has been published. Withey et al. 2001. 23rd Int. Conf. IEEE EMBS 3:2657- 
2660.
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Although it is possible to perform some compensation during image acquisition, 

equipment or protocol modifications are typically required. Furthermore, retrospective 

application of these corrective measures is not possible. Therefore, compensation applied 

as a post-processing step is considered to be desirable [2].

Adaptive, fuzzy c-means [2], [3], and statistically-based methods [4], [5] are examples 

of techniques which have been developed to perform automatic image segmentation in 

the presence of MR intensity nonuniformity. Other methods, such as nonlinear filtering

[6], are intended to address the nonuniformity independently, permitting subsequent 

segmentation of the intensity corrected image.

Image segmentation can be performed by voxel labeling, involving classification of 

each image voxel or by identification of the bounding surfaces of objects in the image. 

The adaptive, fuzzy c-means methods [2], [3] and the statistical methods [4], [5] are 

examples of techniques which perform voxel labeling.

Determining the object boundaries in two-dimensional images can be done by 

application of active contours [10] or by edge tracing [11], Here, a technique for edge 

tracing which includes a Kalman filter and a dynamic, target tracking algorithm to 

associate edge pixels into object boundaries is described.
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3.2 Methodology

3.2.1 Synthetic Images

c

Figure 3-1. Synthetic Test Images.
(a) Unbiased image; (b) gain field; (c) biased image.

Figure 3-1 panels (a), and (c) show two synthetic test images. The shapes of the 

objects in the images have been chosen to resemble cortical gray matter and white matter 

in MR images of the brain. Each image has a size of 200x200 pixels with 256 gray levels. 

The unbiased image was formed by interpolating a small set of points with cubic splines 

to form boundaries of closed regions. These boundaries were then converted to discrete 

pixels and the enclosed regions were filled with a selected gray level value. The unbiased
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test image has three gray levels with a difference of fifty gray levels between the 

brightest region and the intermediate intensity level.

In MR images, intensity nonuniformity has been approximated by exponential 

functions [1], For the test images, the gain field (g) ,  which simulates the intensity 

nonuniformity, was formed using a two-dimensional exponential function:

where (X ,Y ) are pixel coordinates and (XC,YC) are the coordinates of the image centre. 

Parameters k { and k2 were chosen to provide a fifty percent intensity reduction at the 

image edges along the principal axes.

The biased image was formed by multiplying the unbiased image by the gain field, 

simulating an image with intensity nonuniformity.

3.2.2 Fuzzy c-Means Clustering

Fuzzy c-means clustering is a pattern recognition technique which is used in image 

segmentation [7]. Each pixel is evaluated according to a selected feature set, forming a 

set of vectors, or a set of points, in the feature space. Clusters are regions in the feature 

space with a high density of such points. A prototype vector, or cluster centre for each 

cluster is found by an iterative computation that minimizes the objective function

k=1 /=!

where c is the number of clusters to form, N  is the number of pixels in the image, m is 

the fuzzification factor (typically chosen to be 2), uik is the membership of pixel k  in

g  = exp(-^ ( X  - X cf -  k2 (Y - Y cf ) (3-1)

(3-2)

cluster i , Dik =|| f k — vf || is the distance between the k  th feature vector ( f k ) and the
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i th prototype vector (v; ) . Once the prototype vectors and membership values have been

found, each pixel can be assigned to the class of maximum membership to complete the 

segmentation.

Fuzzy c-means clustering is used here to demonstrate the problem that can occur when 

image segmentation is performed without attention to the effect of nonuniform intensity. 

The features selected for each pixel are the pixel intensity and the intensity of the four 

nearest neighbours. The number of clusters is three (i.e. c = 3) and the fuzzification 

factor is 2.

3.2.3 Dynamic Edge Tracing

Segmentation by edge tracing involves edge detection followed by association of edge 

pixels into object boundaries. In the case of the edge tracing method described here, edge 

detection is performed on the input image followed by a line-by-line scan of the edge 

image. On each line scan, the edge pixel positions and image intensity at the edge pixel 

are used as input to a multiple-target, dynamic, tracking algorithm. The scanning 

procedure introduces a history, allowing edges in the image to be followed along what 

amounts to a time dimension. Each new line brings a set of updated edge positions which 

are then associated with existing edge data from the previous lines. Edge positions that 

cannot be associated with an existing track are used to start two new tracks, one to the left 

and one to the right of the scan direction. Tracks which follow the same edge but in 

different directions will terminate on each other. These occurrences and the common start 

points are used to assemble the edges at the end of the scan.

The effective “movement” of the edge from one line to the next during the image scan 

simulates a dynamic system. Dynamic systems, linear or nonlinear, are described by state
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and state transitions. State is a quantitative description of past and present behaviour, 

sufficient information to predict future behaviour. State transition is the description of 

how one state is transformed into another. For example, in aircraft tracking, state would 

include the position and velocity of the aircraft. The aircraft position could be predicted 

at a future time based on its current position and current velocity.

Automatic tracking algorithms are normally used to monitor the movement of aircraft 

or other targets of interest [8]. In the classical target tracking application, sensors provide 

measurements of the target state (e.g. position and velocity) to the tracking system at 

equal time intervals. The measured target data are compared to predicted target data and 

if sufficient correlation exists, the measured data are incorporated into the target history 

and a new prediction is formed for the next input sample. In this way, observations taken 

at different times can be associated together and the path taken by the target can be 

followed.

The functions of the tracking system are data association and state estimation. Data 

association is the process by which new data are correlated with existing data and the 

path of a target is updated. State estimation is the process whereby a target state estimate 

is computed using a priori noise statistics and past samples and whereby a predicted 

target state is determined. The target state estimate and next sample prediction are 

produced by a tracking filter with the prediction presented to the data association process 

at the next time interval. A block diagram of such a tracking system is shown in figure 3- 

2 .
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Figure 3-2. Tracking System Block Diagram.

In the edge tracing method described here, the tracking filter used for state estimation 

is a Kalman filter [9], the recursive solution to the discrete-time, linear, minimum 

variance estimation problem and the statistical estimator most often used in dynamic 

tracking [8]. For a given track, the Kalman filter is used to predict the edge position on 

the next line, facilitating the association of the next set of edge positions into the existing 

edge tracks.

The Kalman filter is defined with the assumptions of a linear, dynamic system and 

zero-mean, Gaussian noise. Gaussian distributions and linear dynamics are natural 

assumptions especially if statistical data is not largely available [9],

The Kalman filter can be used to estimate the state of a discrete process that is 

governed by the linear, stochastic difference equation

x k+i=A kx k + ^ k  (3-3)
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where k  is the step counter, x*. is the state vector at step k , A*. is the state transition 

matrix, and w k is the process noise vector. The process noise is assumed to be zero

mean with Gaussian statistics. Measurements related to the target are also assumed to 

contain zero-mean, Gaussian noise:

Z* = H *X* + V* (3-4)

where z k is the measurement vector at step k , Wk is the measurement matrix, and \ k is

the measurement noise vector.

The actual state of the target is not known and the Kalman filter is used to estimate it 

from the measurement and a previously determined state prediction. The estimate is taken 

to be a linear combination of the prediction and the difference between the measurement 

and the predicted measurement.

Xk=Xk+Kk(zk - Kk *k )  (3-5)

where x k is the state estimate at step k , xk is the state prediction at step k , and is 

the Kalman filter gain. Also, the error covariance matrices are given by:

? k  =  E i ( x k -xjfc)(x* - * k f )  (3-6)

h  =E{{^k - k k ){xh - x k f }  (3-7)

where is the a posteriori error covariance matrix, is the a priori error covariance 

matrix, and E {•} represents mathematical expectation. The Kalman filter gain (K^)  is 

determined by minimization of the trace of the error covariance matrix ( ¥k ) [9], [12].

At each measurement interval, the Kalman filter gain matrix, state estimate vector, and 

error covariance matrix are updated,

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Kt =Pt H [(H i Pi H [ + R t ) 1 (3-8)

(3-9)

Vk = ( l - K k11k )Vk (3-10)

Twhere K k = E { \ k\ k } is the measurement noise covariance matrix and I is the identity

matrix.

Prediction of the next state is also done at each time interval

(3-11)

Pjfc+1 -  AArP£Aifc +Q* (3-12)

Twhere Q k = E{wkw k } is the process noise covariance matrix.

The data association process will utilize the predicted error covariance matrix to form 

a bounding window around the predicted measurement. Any measurement that appears 

within this window is a candidate for association.

A simple two state filter is used where target state consists of position and velocity and 

the measurement is of position only. Under these conditions, A k and H k can easily be 

defined. That is, for

where (X , Y) represents the target position in two dimensions and (X,  Y) represents the 

target velocity in two dimensions and assuming a unit time step, the state transition and 

measurement matrices become:

x k = [ X , Y , X j f (3-13)
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Au

1 0 1 0 
0 1 0  1 

0 0 1 0  
0 0 0 1

H * =
1 0  0 0 
0 1 0  0

(3-14)

(3-15)

which is to say that the next target state will be estimated from the current position and 

current velocity, that only position is measured, and that no particular measurement 

correction is required. Furthermore, these two matrices will remain constant for all k .

Our calculations are done in this manner with the exception that three dimensions are 

used, these being the two coordinates of the edge pixel and the image intensity at the 

edge pixel location.

3.3 Results

Fig. 3-3 shows the results from segmentation of the unbiased and biased test images by 

the edge tracing technique and by the fuzzy clustering approach. Panels (b) and (d) show 

that clustering works well when the intensity is uniform (b) but that given sufficient 

intensity nonuniformity, errors occur in the pixel assignments. In Panel (d), peripheral 

portions of the high intensity region are classed with lower intensity pixels and the central 

portion of the high intensity region is expanded, exhibiting a circularly-shaped artifact 

due to the exponentially-shaped intensity variation.
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I

Figure 3-3. Segmentation Results.
(a) Edge tracing -  unbiased image; (b) fuzzy clustering -  unbiased image; (c) edge 
tracing -  biased image; (d) fuzzy clustering -  biased image.

The results from the dynamic edge tracing algorithm are shown in (a) and (c). In each 

case, the high intensity region is outlined with a black contour and the medium intensity 

region is outlined with a white contour. These lines coincide with the edge pixels very 

well.

The fit was evaluated by reconstructing the test image using each of the two sets of 

edge contours. Upon comparison with the original, unbiased test image, it was found that 

the reconstruction using contours from the unbiased image segmentation contained one 

pixel classified incorrectly. The reconstruction using contours from the biased image
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segmentation contained ten misclassified pixels, amounting to 0.025 percent of all image 

pixels.

3.4 Discussion

Quantitative comparison of the fuzzy clustering result with the edge tracing result is 

not intended; however, having the two side by side gives an opportunity to consider the 

advantages of each. Although fuzzy clustering requires that the number of classes be 

known a priori, it can be extended to perform segmentation of three-dimensional (3D) 

images relatively easily. The edge tracing method does not require the number of tissue 

classes to be known a priori but is not as easily extended to 3D.

When 2D images are considered, operation without a priori knowledge of the number 

of tissue classes is a big advantage especially if the goal is automatic analysis of images 

where pathology may be involved. Fuzzy clustering may not position a cluster prototype 

so as to identify a relatively small region of distinct intensity in an image when there are 

much larger numbers of pixels in other intensity groups. Consideration of the objective 

function in (3-2) will confirm this. Since the objective function is based on minimizing 

the sum of all distances, a small but distinct group in the feature space may not have 

enough accumulated distance to attract a cluster centre. The edge tracing technique, 

however, would find all regions where there is an identifiable edge.

Edge tracing methods require some degree of edge continuity to be successful [11]. 

The edge tracing technique described here does not require adjacent pixel connectivity. 

Since the edge position is permitted to have a “velocity”, the current velocity for that 

edge will determine where the algorithm searches for the next edge pixel.
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3.5 Conclusions

Edge detection followed by a line-by-line scan of the edge image simulates a dynamic 

system where the edge position “moves” as the scan proceeds. The application of a 

dynamic tracking algorithm allows the edge to be followed, permitting edge pixels to be 

associated into object boundaries. Edge tracing performed in this manner and using three 

dimensions (the two edge pixel position coordinates and the image intensity at the edge 

pixel position) appears to be a viable method for 2D image segmentation in the presence 

of image intensity nonuniformity.
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Chapter 4 

Comparison of Dynamic Edge Tracing 
and Classical Snakes

4.1 Introduction

Medical images such as magnetic resonance (MR) images and X-ray computed 

tomography (CT) images are typically held as two-dimensional (2D) arrays of picture 

elements (pixels) or three-dimensional (3D) arrays of volume elements (voxels, also 

called pixels). Segmentation of medical images, to identify specific objects or regions, 

can provide valuable information for diagnosis and treatment of disease. Manual 

segmentation of these images is possible but is a time consuming task subject to inter- 

and intra-operator variability so that automatic methods are preferable [1], Automatic 

segmentation is an active research area and involves three main problems. First, the 

images contain noise that can alter the intensity of a pixel such that its classification 

becomes uncertain. Secondly, the images contain intensity nonuniformity where the 

average intensity level of pixels within a single tissue class varies over the extent of the 

image. And third, the images have finite pixel size and thus are subject to partial volume
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averaging where individual pixels contain a mixture of tissue classes and the intensity of 

a pixel may not be consistent with any single tissue class.

There are two main approaches to automatic image segmentation. Pixel classification 

seeks to assign to each pixel in an image full or partial inclusion in a class or set of 

classes. This includes low-level techniques such as thresholds and region growing [2], [3] 

as well as the more sophisticated clustering methods based on concepts from pattern 

analysis [4]—[6]. Boundary identification, the subject of this study, seeks to identify the 

boundaries of objects or regions in an image and includes methods such as edge tracing

[2], [3] as well as the more recently introduced active contours and active surfaces [4],

[7], [8].

Simple edge tracing methods for 2D image segmentation are documented in textbooks 

on image processing [2], [3]. These algorithms typically involve edge detection and/or 

threshold operations to form a binary edge image followed by a tracing operation where 

pixels with adjacent neighbour connectivity are followed and collected into a list to 

represent the object boundary. Unfortunately, these algorithms can be very sensitive to 

noise and intensity nonuniformity that can cause gaps in the object boundary when a 

threshold is applied or can cause diversion away from the desired boundary during the 

tracing process. Despite these drawbacks, simple edge tracing continues to be applied 

when the nature of the problem permits or when augmented by further processing [9]-

[11]. More advanced algorithms have also appeared [12]—[15], although these require 

substantial user input or else have limitations that restrict their ability to acquire contours 

in detailed, medical images, such as MR and CT head images.
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A new edge tracing method where statistically-based, automatic target tracking 

algorithms are used in the edge tracing process to link edge pixels into object boundaries 

has been described in [16]. This approach has advantages over simple edge tracing since 

complete edge continuity is not required and since multiple edge features can be tracked 

simultaneously, permitting a higher level of discrimination in the tracing process without 

invoking complicated heuristics. In [16], a method using an automatic, line-by-line image 

scan was presented and applied to synthetic images. In the present work, edges are traced 

beginning at an operator-defined starting point to simplify the data processing and to 

focus on user-selected object boundaries. Intensity features obtained from regions 

adjacent to an edge are combined with edge location information to form the boundaries.

The purpose of this study is to evaluate this new algorithm in the context of the 

segmentation of MR and CT head images using the well known classical snakes 

algorithm for comparison. Both of these methods are 2D in nature, both are edge-based, 

both use primarily local information for determining an object boundary, and both are 

examples of image segmentation concepts in early stages of development.

The classical snake [7] is one of the first active contour algorithms and is intended for 

operation in 2D images. It is an artificial, closed contour modeled as a physical object 

with elasticity and rigidity parameters and is introduced into an image by a human 

operator. Edges (intensity gradients) within the image are modeled as external forces 

acting on the snake. During iterative update of an evolution equation, the snake moves to 

the nearest edge and conforms to it, identifying the boundary of an object within the 

image. The snake is affected very little by gaps in image edges since it is closed by 

definition; however, noise or spurious edges can interfere with its evolution and these
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may be encountered at points relatively distant from the boundary of interest. Such 

occurrences are usually overcome by manual operator interaction. Other problems that 

have been identified include the need for the human operator to locate the initial contour 

very close to the desired edge, the difficulty of automatically expanding into narrow 

concavities, and the lack of edge selectivity for discrimination of closely spaced edges.

Despite these significant problems, development of snake-like algorithms has been 

undertaken with vigour and has produced a number of significant improvements [4], [8]. 

It is shown here that the dynamic edge tracing algorithm has advantages over the classical 

snakes algorithm in edge selectivity, entry into narrow concavities, execution time, and 

also can provide a mechanism for extracting multiple segmentation interpretations based 

on parameter selection. These advantages as well as parallels in the challenges faced by 

both methods suggest that further development of the dynamic edge tracing algorithm is 

possible and may produce a segmentation algorithm with unique capabilities.

In the following, section 4.2 provides the methods in two subsections, a review of 

classical snakes and a description of the new dynamic edge tracing algorithm. Section 4.3 

contains results from the application of these methods to 2D MR and CT head images in 

situations that pose problems for classical snakes. Section 4.4 provides further discussion 

and section 4.5, the conclusions.

4.2 Methodology

4.2.1 Classical Snakes

The classical snakes algorithm is described in several publications, such as [7] and [8], 

The snake is a thin, flexible, closed, 2D contour defined in a plane, (x ,y) e 912, 91 the
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set of real numbers, and within a potential field, also defined on iK2, which can exert a 

force on the snake and deform it. The energy of the snake,

E { v ) = S ( v ) + P ( v )  (4-1)

is the sum of its internal energy, S(v), and the energy supplied by the external field,

P ( v ) ,  where v  = [x(s),y(s)]r  are the parametric coordinates of the snake and S e [0.1] is 

the parametric domain. The internal energy is given by

S ( v ) = f o(s) d v

d s
+ /?(s) d 2v

d s ‘
ds

where a(s) is the snake elasticity and /?(s), the rigidity. The external energy is

P{v) = Jp(v) ds
o

where p(v)  is the potential field in the vicinity of the snake.

The calculus of variations is used to determine that a minimum in E (v ) occurs when

a2 (

d s
a{s)

d v

d s
+  ■

d s ‘ d s ‘
P{s)u- ^  + Vp(v)=0 . (4-2)

Equation (4-2) can be interpreted as a force balance. The first two terms correspond to 

internal stretching and bending forces, respectively, and the third term corresponds to the 

external force.

Local minima of E(v)  are found by formulating a dynamic system based on 

Lagrangian mechanics, allowing the snake to move, expand, or contract within the 

potential field as a function of time. The Lagrange equations of motion are
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where v  =  v { s , t ) is also a function of time and y  is a step size constant. When the local 

minimum is reached, the time derivative will vanish and v ( s )  will be a solution to (4-2).

Application to a 2D image, f ( x , y ) ,  can be done by determining the potential field, 

p(x,y),  from the gradient of the image data so that the snake will be attracted to image 

edges,

P { x , y ) = ~ |v [G ff * f ( x , y ) ]  | 2

where Ga is a Gaussian filter with characteristic width, a , that provides smoothing to

limit the effect of noise and spurious edges. Implementation of (4-3) is by numerical 

methods, as detailed in [7],

4.2.2 Dynamic Edge Tracing

4.2.2.1 Dynamic Systems and Target Tracking

Dynamic systems are described by state and state transitions. State is a quantitative 

description of past and present behavior sufficient to predict future behavior [17]. State 

transition is the description of how one state is transformed into another. For example, in 

aircraft tracking, state would include the position and velocity of the aircraft. The aircraft 

state at future times could be predicted given knowledge of these variables and of the 

associated kinematics.
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Figure 4-1. Tracking System Block Diagram

Automatic tracking algorithms are normally used to monitor the movement of targets 

of interest in 3D space [18]. In the classical target tracking application, sensors provide 

measurements of the target state to the tracking system at equal time intervals. The 

measured target data are compared to predicted target data and if sufficient correlation 

exists, the measured data are incorporated into the target history and a new prediction is 

formed for the next input sample. In this way, observations taken at different times can be 

associated together and the path taken by the target can be followed.

The block diagram of a tracking system is shown in figure 4-1. The true target state, 

x k , shown as an input to the system, cannot be measured directly. Instead, measurement

of some of the target state variables can be made through the measurement matrix, H k .
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These also include noise. The output of the system is a filtered estimate, x k , of the target 

state.

The main functions of the tracking system are data association and state estimation. 

Data association correlates new data with existing track data to identify a new 

measurement. State estimation computes the target state estimate using the new 

measurement, a priori noise statistics, and past information and also determines a target 

state prediction. The target state estimate and state prediction are produced by a statistical 

estimator, or tracking filter, with the prediction presented to the data association process 

at the next time step.

The Kalman filter [17], is the recursive solution to the discrete-time, linear, minimum 

mean square error estimation problem and is the statistical estimator most often used in 

dynamic tracking [18]. It is defined with the assumptions of a linear, dynamic system and 

zero-mean, Gaussian noise.

The Kalman filter can be used to estimate the state of a discrete process that is 

governed by the linear, stochastic difference equation,

Xfc+i = A k * k  + ™ k  (4-4)

where k  is the step counter, x k is the true state vector at step k ,  A k is the state

transition matrix, and is the process noise vector. The process noise is assumed to

have zero mean and Gaussian distribution. Measurements related to the target of interest 

are also assumed to contain zero-mean, Gaussian noise,

z* = H jtXjt + v* (4-5)
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where z k is the measurement vector at step k , is the measurement matrix, and is 

the measurement noise vector.

The true target state, x k , is not known and the Kalman filter is used to estimate it from

z k and a previously determined state prediction,

i i = i lt + K *:(zjfc-Hjfcijfc) (4-6)

where is the state estimate at step k ,  xk is the state prediction for step k , and is 

the Kalman filter gain. The error covariance matrices are given by,

p k =  E i ( x k ~  * k ) ( * k  -  * k f }  (4-7)

p k = E { ( * k - * k ) ( * k - h ) T ) (4-8)

where J*k is the a posteriori error covariance matrix, is the a priori, or prediction, 

error covariance matrix, and E{-\ represents mathematical expectation. The Kalman filter 

gain (K j.) is determined by minimization of the trace of [17], [19].

At each measurement interval the Kalman filter gain matrix, state estimate vector, and

error covariance matrix are updated,

K t = P t H [(H t Pt H ^ + R t r '  (4-9)

i k = i k +  K k ( z k ~  HjfcX*) (4-10)

Pk = ( l - K kK k )Pk (4-11)

Twhere R k = E { \ k\ k } is the measurement noise covariance matrix and I is the identity 

matrix.

Prediction of the next state is also done at each time interval,
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Xk+i=A k*k (4-12)

Pt+l= A t Pt A [+ Q t  (4-13)

where Q k =E{ w^w^} is the process noise covariance matrix.

Other items of note are the innovation, y k , defined as the difference between the 

measurement and the predicted measurement,

y k = H ~ ' a k h  (4-i4)

and its covariance matrix, which appears in (4-9),

St = H t Pt Hj[+R* (4-15)

1

2

3

4

Ker,
5

* previous points 
° new observation
* prediction

 filtered track
—  association gate

6

7

8 2
° S y

Figure 4-2. Example of Data Association.
Previous track measurements are shown as the predicted point is shown as ‘x ’ and the 
next observation as ‘o’. The solid line is the filtered track. The association gate is shown 
as a dashed rectangle centered on the predicted point.
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A set of measured data is obtained at each time interval. The data may include a 

measurement of the target location but may also include clutter, spurious measurements 

due to noise or other objects in the same vicinity. The data association process determines 

which, if any, new measurement can be associated with previous measurements to 

propagate the track and follow the target. This is done by placing an association gate 

around the prediction in the measurement space. The gate is sized using information from 

the elements of the innovation covariance matrix, S k . Figure 4-2 shows an example of a

rectangular association gate in two dimensions. Other gate shapes, (e.g. circular or 

elliptical) are also possible. Parameter K  is a constant used to set the number of standard 

deviations to be included in sizing the gate, with K = 3 a typical choice.

2D Input Image, f ( x , y )

thresh, t,

Edge
Image

Edge
Features

R ,Q

Start point, z0

Edge Detection and 
Feature Extraction

Tracking Algorithm

2D Object Boundary

Figure 4-3. Processing Steps
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4.2.2.2 Application to 2D Edge Tracing

Figure 4-3 shows a block diagram of the major processing steps in this approach to 

edge tracing. The raw data for the tracking algorithm is derived from the input image by 

edge detection and edge feature extraction. The edge information is used to model 

multidimensional measurements of the position of a hypothetical target obtained at 

regular time intervals as the target moved along the edge. The edge information includes 

data from the desired edge as well as nontarget data analogous to clutter in a typical 

target tracking scenario.

Beginning at an operator-defined starting pixel, the tracking algorithm follows a single 

edge until the starting point is revisited (i.e., a closed boundary is formed) or until no 

further pixels can be assigned to the track. In the event that the track terminates before 

locating the starting point, a second track is propagated beginning at the starting point 

and progressing in a direction opposite to that of the first track.

4.2.2.2.1 Edge Detection and Feature Extraction

A Canny edge operator [20] is used to produce a binary edge image. Canny operators 

are directional and combine low error rate with very good localization. Operators useful 

for step edges can be applied by computing directional derivatives of a Gaussian filtered 

image.

For (x, y )e  912, the image plane, and f (x ,y) ,  the image, a Gaussian filtered image can 

be formed

foc (x,y)=Goc * f(x,y)
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where Gac is a 2D, Gaussian filter with characteristic width, ac . Edge points are

identified as zero crossings in the second derivative. These are further validated by the 

application of a threshold, tc , to the first derivative to remove edges due to noise. The

operator direction, 9 , takes on six values, 9 j , with equal, 30 degree intervals. A binary

edge image can be formed for each,

0, otherwise

where variable rij is a unit vector in the operator direction, 9j . In the discrete domain,

edge pixels are those pixels that contain such validated edge points. The final edge image 

is the union of edge pixels determined for each operator direction.

Features related to the edge pixels can also be extracted during the edge detection 

process. Features of interest include the intensity of fffc(x,y) on each side of the edge,

corresponding to intensities at the top and bottom of the intensity slope for a given edge 

pixel, referred to as the top and bottom intensities. This feature extraction is performed 

for each edge pixel and in each operator direction. Thus, each edge pixel has a two- 

element intensity feature vector associated with it. Edge pixels with zero crossings at 

more than one value of 9 generate multiple instances of that edge pixel, each with a 

uniquely determined set of edge features.

4.2.2.2.2 Tracking Algorithm

Although there is no explicit time dimension, the time, A , between successive edge 

position measurements must be assigned. This is defined to be unity (A = l). In cases 

where the distances between edge pixels are not equal, the velocity of the hypothetical
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target will change to compensate, resulting in target acceleration. Acceleration from pixel 

to pixel along an edge is modeled as white noise, reflected in the selection of the process 

noise covariance matrix, Q .

A relatively simple Kalman filter is used where \ k consists of components for 

position and velocity and z k is a measurement of position only. Then,

P k
AP k.

(4-16)

where p k is a vector of position and Ap^ is a vector of velocity, or position change, with 

element order corresponding to that in p ^ . With spatial and intensity features included,

PA:=[Pxk PYk PTk PBk] > where, the variables pM , p K represent the spatial 

dimensions and p Tk, pBk, the intensity dimensions. Vector Apfc contains the velocity 

estimate for each of these dimensions. Measurement z k is in the same space as p i5

H = [ x k Yk Tk Bk f , with Tk >Bk ,

Matrices, A k = A and Hj. = H , will remain constant for all k . In two dimensions,

A =

1 0  1 0  
0 1 0  1 
0 0 1 0  
0 0 0 1

(4-17), H =
1 0  0 0 
0 1 0  0

(4-18)

which is to say that the state transition will be determined from the current position and 

current velocity (from the definition of A ) and that only position is measured (from H). 

The patterns in each of these matrices will be retained when extended to four dimensions.
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For proper initialization, R , Q , i j , and Pj must be defined. The noise is assumed to

have zero mean and constant variance so = R and Q k = Q are constant for all k .

Matrix, R , is used to specify the amount of measurement noise in the image. It is 

assumed that noise in each measurement dimension is independent of the others, 

producing a diagonal matrix,

R

< r \ 0 0 0

0 a \ 0 0

0 0
_ 2  

(7  t 0

0 0 0 < ?B

(4-19)

The value of the noise variance in the spatial dimensions reflects the ability of the edge 

detector to locate edge pixels on the true edge in the image.

Use of the Kalman filter permits the target state to have a random component that can 

be used to model target maneuvers. A target dynamic model that assumes constant 

velocity with white noise acceleration is used. The process noise covariance matrix 

matching this target dynamic model is given by Blackman and Popoli [21] for the one

dimensional, two-state (position and velocity) case,

Q = <7
3 2

*  A
2

(4-20)

where q is a constant related to the acceleration statistics, and is determined by a tuning 

procedure in a typical tracking system. Expanding (4-20) to four dimensions, with A 

defined to be unity,
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Q =

q» Q 0 0 0 "

3 2 0 q 0 0

%L ft 0 0 qT 0
_ 2 4m

_0 0 0 <IB_

(4-21)

Constant, q,  applies to the spatial variables and qT and qB to the top and bottom 

intensity variables, respectively.

The position and velocity components of Xj are determined from two edge pixel 

position measurements, z0 and Measurement z0 is the operator-defined starting 

point and z t is determined as the closest edge pixel to z0 within a default association 

gate centered on z0 . State estimate, , is then initialized with,

(4-22)

The spatial dimensions are initialized as for a moving target whereas the intensity 

dimensions, which are not expected to be in transition at the point of track initialization 

and which typically have much higher noise variance values, are initialized as static. 

Parameter Pj is determined following from [22],

X \ 11

> APl =

1

| 
o 

o

1

Pi = (7b+7i)/2

(S0 + S i)/2

P, =
R R 
R 2R

(4-23)

In a typical tracking application, the measurements are taken at regular time intervals 

and, as a result, arrive in sequence. Edge pixels are not obtained in this way and 

sequencing must be performed. As shown in figure 4-4, this is done during data
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association using distance measures within an elongated association gate. All pixels, o; , 

within the association gate at step k  are examined according to the distance measures:

^ = u f G ^ u z (4-24)

(4-25)

d, — dj + dj (4-26)

Twith tz = oj -  Hx^, uz = oz -  Hx£_] , and G^ = H P ^ H  + R .

'k ~

Figure 4-4. Distance Measure.
An elongated association gate with predicted position, Hx^., last filtered position, 
Hx£_j , observations, Oj, o2 , and distances to Oj, u, and t j . A distance measure using 
the sum of Uj and tj forms an ellipse upon which points with equal distance lie. Point 
sequencing is performed using a two step process: 1) find minimum distance; 2) of the 
points with the minimum distance, select the one closest to Hx^.j.
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For pixels that correspond to the minimum value of di , the pixel for which dt is

minimum is taken as the next pixel in the track. This amounts to the selection of the 

closest pixel in the direction of the line between the state estimate and the prediction. 

Those pixels within the gate that are not selected by this process remain available for 

subsequent inclusion.

Two verification steps are also performed before a pixel is accepted for extension of 

the track. The first occurs because there are two possible directions for a track to proceed 

along an edge and because a reversal of direction is not desirable. Thus, the new data 

point must produce a track velocity vector that is consistent with the track direction. The 

second is needed to validate any jumps made by a track. A gap between pixels on an edge 

may be due to a minor intensity variation along the edge, or may separate two different, 

but possibly similar, edges. Since it is not desirable to have the track jump from one edge 

to another, interpolation of intensity data is performed across the gap, along the presumed 

top and bottom of the edge intensity slope. To be considered acceptable, the magnitude of 

the intensity change must not exceed the height of the edge, {Tk_{ -  Bk_i), along either of 

these paths.

Figure 4-5 shows an example image fragment and the edges that can be formed using 

edge detection with threshold, as described. Edge pixels are shown in gray in figure 4-5b. 

Figure 4-5c has two example tracks showing boundary selection: 1) when edge pixels are 

few so that gaps exist; and, 2) when thick edges occur due to multiple gradient directions.
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Figure 4-5. Edge Examples.
(a) 2D MR image fragment; (b) edge image with tc = 0.05; (c) two example tracks
showing gap jumping and operation in thick edges. Dark arrows show starting point 
locations for each track. White pixels are those chosen by the track. The black line in 
each case is the state estimate.

4.3 Results

Examples from a synthetic MR image, a real MR image, and a real CT image are 

described and the dynamic edge tracing results are compared to those for the classical 

snake. For edge tracing, the boundary identified by the edge tracing method is taken as

the Kalman filter state estimate, x k , k = \ . .n , for a track consisting of n edge pixels. In 

each case, parameters K  = 3.38 and crc =1 were used. Low values of crc give better 

edge pixel localization but are more likely to produce multiple responses to a single edge. 

Threshold parameter, tc , is given as a fraction of the maximum gradient magnitude.

For the snake, a value of a  = 1 was also used. Other snake parameters held constant 

were /?(s) = /? = 0 to allow the snake to form discontinuities and y = 1 for unit time step 

in the equations of motion, (4-3). Parameter, a(s) = a , was set to a relatively low value in 

each example to promote the entry of the snake into boundary concavities, yet high
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enough to maintain a smooth contour. Snakes were initialized very close to the edge of 

interest to avoid spurious edges and were interpolated to half pixel resolution. The snake 

deformation was limited to a fixed number of iterations and terminated once the contour 

had stabilized.

4.3.1 Synthetic MR Image

Slice number 79 from the brainweb synthetic MR image database [23]-[25] (normal, 

T1 weighted, 1mm thickness, 3% noise, and 20% intensity nonuniformity) is shown in 

figure 4-6a with area of interest identified. The four significant dark-colored regions 

within the area of interest are classed as containing mostly cerebrospinal fluid (CSF). 

Boundaries of these four regions were determined using the classical snake and using the 

edge tracing method.

Figures 4-6c and 4-6d show the snake and edge tracing results, respectively, overlaid 

on the relevant ground tmth information from the synthetic image database with the dark 

pixels representing those where CSF was the dominant tissue class (CSF pixels). Two 

pixels of mostly gray matter at the lower extremity of region 3 and surrounded by CSF 

pixels were reclassified to CSF to facilitate the comparison.

The contours were evaluated based on the areas of CSF and non-CSF included in each 

region. Non-CSF pixels were defined as those in the synthetic image database having no 

CSF content. A third category, pixels with minor CSF content, was not evaluated. Ideally, 

all CSF pixels should fall within the boundaries and the non-CSF area should be zero. For 

comparison, the contours were discretized and CSF pixels on the discretized boundary 

were included in the region. Table 4-1 shows the evaluation data from the aggregate of 

the four regions. Although the differences are numerically small, they arise because the
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edge tracing method is better able to adhere to the edge around sharp comers in the 

boundary.

Parameter selections for the edge tracing method are shown in Table 4-2 with tc = 0.1. 

The value of the image noise variance after Gaussian filtering was approximately

9 9crT =<7b = 2 ; however, the partial volume effect produced pixel-to-pixel intensity 

variations similar to random noise. This was modeled as higher measurement noise in the 

intensity dimensions.

Other parameters were selected for each region based on local considerations. A value 

of qB = 0.01 in region 1 allowed the track to adhere to the edge along the lower extent of 

the region rather than crossing a thin projection, as does the snake. In region 3, the 

variations in intensity on the brighter side of the edge are less, and on the darker side 

greater, than those in the other regions, resulting in modified parameter selections. Snake 

parameter, a  = 0.01, was used, with 400 iterations permitted.

Table 4-1. Synthetic MR Image Comparison Data
Total CSF area = 1158 pixels.

Category Snake Edge Tracing

CSF pixels inside/on boundary 1131 (97.7%) 1145 (98.9%)

Non-CSF pixels inside/on 
boundary

100 95

Non-CSF pixels inside 
boundary

5 2
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Figure 4-6. Synthetic MR Image.
(a) 2D MR slice image with area of interest identified; (b) area of interest. Four regions 
from the brain ventricles (CSF) were selected; (c) snake result (white line) overlaid on the 
known data. Black pixels are those where CSF is the dominant tissue type; (d) edge 
tracing result also overlaid on the known data. The tracing algorithm is able to adhere to 
the edge even around sharp curves in the boundary.
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Table 4-2. Edge Tracing Parameters (Figure 4-6)
Region Measurement Noise Process Noise

< 4 <4 cr| 4 9 qT 9b

1 0.2 0.2 8 8 0.2 20 0.01

2 0.2 0.2 8 8 0.2 20 0.1

3 0.2 0.2 8 8 1 2 2

4 0.2 0.2 8 8 0.2 20 0.1

Figure 4-7. Real MR Image.
(a) 2D MR slice image with area of interest identified; (b) zoomed area with four regions 
identified; (c) initial snake contours; (d) final snake contours. Snake does not retain a 
small partial volume area at the lower tip of region 2 although it is included in the initial 
contour; (e) edge tracing result. White arrows show starting point locations for each 
region. The contour of region 2 absorbs the small partial volume area at the lower tip; 
(f) edge tracing result after parameter modification showing modified contour in region 2 
(white arrow).
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4.3.2 Real MR Image

Figure 4-7a shows a real MR image from which a fragment has been extracted and 

displayed in figure 4-7b. Four regions from the lateral ventricles were selected and the 

boundaries of each were identified using both methods. Figure 4-7c shows the initial 

contours for the classical snake. The final contours for each method are shown overlaid 

on the image in figures 4-7d and 4-7e. The edge tracing method appears to permit a 

greater level of detail in the resulting boundaries.

In region 2, the snake retracted from a small partial-volume extension although 

initialized to include it. The edge tracing algorithm is able to include or exclude this 

feature based on parameter selections. To capture it, qB = 2 was used since a higher 

value of the dynamics parameter allows the track greater maneuverability in that 

dimension. Alternatively, as shown in figure 4-7f, setting qB =0.01 restricts the track in 

the B dimension and the partial volume extension can be avoided.

Other parameter selections for the edge tracing method are shown in Table 4-3 with 

tc = 0.05. Regions 3 and 4 of figure 4-7b show lower contrast than regions 1 and 2 due to

substantial partial volume effect. A variety of possible boundary interpretations exist. 

Higher noise variance in the intensity dimensions was chosen for these regions to model 

more of the data variation as measurement noise. This allows lower dynamics parameters 

to be used and can lead to a more stable track. Snake elasticity was a  = 0.01 and 400 

iterations were permitted.
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Table 4-3. Edge Tracing Parameters (Figure 4-7e)
Region Measurement Noise Process Noise

<*x <4
_2  (JJ- <rl q qT 9b

1 0.2 0.2 10 10 0.2 2 0.01

2 0.2 0.2 10 10 0.2 2 2

3 0.2 0.2 20 20 0.2 0.2 0.2

4 0.2 0.2 20 20 0.05 0.2 0.2

As shown in figure 4-8, the selection of parameter, q , in the spatial dimensions can 

also allow multiple boundary interpretations to be realized. In figure 4-8b, with q = 0.05, 

the track descends along the left side of the dark colored area and then ascends along the 

right side but traces a wider boundary than is found in figure 4-8c, for which q = 0.08. 

This is consistent with the function of q where higher values suggest a higher probability 

of a maneuver in the spatial dimensions and cause a tighter adherence to the 

measurements. In this case, the parameter modification changes the velocity vector 

sufficiently at the critical point that a different path is taken. The sequence of pixels 

chosen by the track, however, also depends on the other parameters so that the choice of 

q influences the path selection but does not independently determine it.
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Figure 4-8. Effect of Spatial Dynamics Parameter.
(a) Area of interest; (b) q=0.05; (c) q=0.08.

Figure 4-9. CT Image - Soft Tissue Boundary.
(a) 2D CT slice image. The edge of interest is the inner-skull/soft-tissue boundary;
(b) snake result; (c) edge tracing result. Black arrow shows location of initial starting 
point; (d) zoomed snake result with snake shown in white for better contrast. The dotted 
line is the initial snake location. The snake is attracted to the higher gradient through thin 
sections of the bone region; (e) zoomed edge tracing result. The track remains on the soft 
tissue side of the boundary.
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4.3.3 Real CT Image

Figure 4-9a shows CT image c_vml072 from the United States National Library of 

Medicine Visible Human Project, cropped to 241x186 pixels and scaled to 256 gray 

levels. In figure 4-9b, the black line is the contour produced by the application of a 

classical snake to identify the soft tissue boundary inside the skull. This appears to be 

acceptable except along a very thin bone region next to the dark-colored, frontal sinuses 

at the top of the image. At the thinnest points along this feature, the snake was able to 

pass through the bone region and adhere to the higher-gradient, frontal sinus boundary. 

The remainder of the snake was then pulled beyond the desired edge by the higher force, 

aided by its own internal elasticity. A zoomed view is shown in figure 4-9d with the 

snake contour displayed in white for better contrast in the zoomed image. The dashed 

white line is the initial location of the snake. Many snake parameter selections were tried 

but no combination was found that could resolve this problem.

As shown in figure 4-9c, the edge tracing method is able to distinguish the desired 

edge and is not influenced by the stronger, nearby edge that captures the snake. However, 

there is one section at the left side of figure 4-9e where the track is slightly distanced 

from the true edge. This appears to be due in part to path selection in low-contrast 

conditions where the number of possible paths has increased and to poorer edge 

localization as can occur when the image edge does not form a good approximation to a 

step edge.

Edge tracing parameters for the images in figure 4-9 are given in Table 4-4 with 

tc -  0.01. For the snake, a  = 0.1 with 800 iterations permitted.
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Table 4-4. Edge Tracing Parameters (Figure 4-9)
Measurement Noise Process Noise

a \ _2 <7y °B q qT <1b

0.1 0.1 100 5 0.2 1 0.1
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Figure 4-10. Intensity Features.

Intensity features for the edge tracing result of figure 4-9. In each plot, the crosses mark 
the measurements and the solid line is the Kalman filter state estimate. Significant 
variation, as much as 50% reduction at places relative to the peak, occurs in T with the 
lowest values found along the edge next to the frontal sinuses. Variation in B is 
considerably less, roughly 10%, and gradual intensity nonuniformity is clearly visible 
along the length of the track.
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Figure 4-10 shows the intensity features, Tk and Bk , for the edge track of figure 4-9c,

beginning at the starting point and for the full extent of the track. In each plot, the crosses 

mark the measurements and the solid line is the Kalman filter state estimate in the 

corresponding dimension. The top intensity, Tk , shows very significant variation, up to 

approximately 50% reduction relative to the peak, with the lowest values found along the 

edge next to the frontal sinuses. The variation of Bk is considerably less, roughly 10%. 

Gradual intensity nonuniformity is clearly visible in this track dimension.

4.3.4 Execution Time

These tests were conducted using MATLAB® [26] version 6.0 on a 250 MHz SUN 

Sparc Ultra 30 workstation. Average execution time for the edge tracing method was 

approximately 70 milliseconds per track sample. This time is dependent on the density of 

measurements in the association gate, affected by edge thickness and noise edge pixels, 

and the number of gaps encountered, where interpolation is required. The extraction of 

intensity features required about 1 millisecond per edge pixel.

Average execution time for the snake was 540 milliseconds per contour point, 

considerably longer than for the edge tracing method; however, 400 or more iterations 

were allowed to ensure convergence. In some cases the snake may have reached a shape 

reasonably close to the final contour in a shorter time although it was often difficult to 

determine whether convergence had occurred because the snake typically remained active 

throughout the test. Snake execution time depends on the initial contour placement and 

the number of points in the contour. On each iteration, an NxN pentadiagonal matrix 

must be inverted where N is the number of samples in the contour.
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4.4 Discussion

A comparison with classical snakes may initially appear to be inconsequential because 

many improvements to the snakes algorithm have been developed since its introduction

[8]. However, this comparison allows a perspective to be gained regarding the potential 

of the dynamic edge tracing algorithm since both algorithms represent an early stage in 

their respective development. In fact, many of the problems that affect classical snakes 

are problems also faced by dynamic edge tracing. These include limitation to 2D images, 

sensitivity to noise, sensitivity to starting configuration, possibility of self intersection, 

the selection of appropriate parameter values, and the requirement for operator 

intervention when a valid segmentation result is not formed. In the case of active 

contours, all but the last two of these have been resolved after more than a decade of 

subsequent research effort. This suggests that similar developments could be possible for 

dynamic edge tracing, given further research.

The advantages of the edge tracing algorithm in this comparison are edge selectivity, 

the ability to enter narrow concavities, a greater set of possible segmentation 

interpretations based on parameter selection, and lower execution time. The main 

advantage of the classical snakes algorithm is that closed contours are guaranteed, 

although this is a true advantage only in cases where a satisfactory segmentation is 

produced without the need for significant operator intervention.

For the edge tracer, there is no certainty that a closed contour will be formed in all 

cases and operator interaction may be required to adjust parameter values, to prune 

wayward tracks, or to initiate additional tracks so that the object of interest is completely 

enclosed. In the examples presented, operator actions were limited to parameter selection,

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



setting the starting contour for the snake, and selection of the starting point for edge 

tracing.

The edge tracing initialization requires selection of a single point on the desired 

boundary and thus contains no information about the final shape of the contour. Tracking 

success is improved when a starting point that is representative of others on the boundary, 

and that has similar neighbours, is chosen so that valid track initialization occurs.

For edge tracing parameter selection, rapid, sample-to-sample variations in target 

position are usually best modeled as measurement noise whereas multisample trends, 

such as contour curvature and intensity nonuniformity, are best modeled using the 

process noise dynamics parameters. Lower values of the dynamics parameters tend to 

produce tracks with greater stability.

The parameters for the edge tracing method are all related to the image statistics. 

Although promising, this does not necessarily relieve the problem of parameter selection 

and repeated trials with alternate parameter values, since local variations in image 

features may still require adjustment from the nominal values. The selection of the 

dynamics parameters, q , qT , qB, involves the acceleration statistics of the hypothetical 

target. These are not readily available a priori and the parameter values may need to be 

revised based on the results from a few initial trials.

The classical snake contour is much smoother than that produced by the edge tracing 

method. It may be possible to improve contour smoothness in the edge tracing result by 

applying a Kalman smoother [19] as a post-processing step.

In cases of very low contrast, the distance measure used by the edge tracing method 

for recursive pixel selection may not always select the path that best represents the
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desired edge. Using gradient magnitude information in the pixel selection process may be 

one way to improve this.

The localization of the edge pixels is dependent on the edge detection operator. The 

Canny edge operator used here was originally developed for step edges and localization 

may suffer when the edge does not approximate a step.

Advanced tracking algorithms exist which evaluate multiple hypotheses and thus defer 

the selection of next measurement until after further track development [21]. Use of these 

may provide increased robustness in the selection and sequencing of pixels and may also 

permit the automatic formation of multiple segmentation interpretations, which could 

then be evaluated by higher-level processing. These benefits would be especially 

valuable in the context of unsupervised operation.

The Kalman filter is capable of operating with many more dimensions than shown 

here. This capability may also permit the use of multichannel data in the edge tracing 

process. The use of this data in edge-based segmentation has previously been identified 

as being a difficulty [27] although such data are available from multiecho MR imaging 

scans, for example, and are often used by the clustering methods in the segmentation of 

MR images.

Noise in both MR and CT images is often modeled using Gaussian distributions. In 

MR images the noise distribution is more accurately described as Rician. This is 

approximately Gaussian for signal to noise ratio (SNR)  greater than 3 [28], where 

SNR = A /ctn  is the ratio of the signal amplitude in the absence of noise to the noise

standard deviation. In the image background, where there is no MR signal, the noise 

follows a Rayleigh distribution. MR images from clinical scanners very often exhibit
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SNR well above 3 so the assumption of Gaussian noise distributions in these images is 

often valid. As an example of SNR value, although darkly colored, the CSF regions in 

the synthetic MR image of figures 4-6a and 4-6b have SNR of approximately 10.

4.5 Conclusion

An advanced edge tracing algorithm based on dynamic target tracking is capable of 

identifying boundaries in medical images in circumstances that pose difficulty for 

classical snakes. Specifically, entry into narrow concavities and in cases where edge 

specificity is required such as along relatively weak edges and along very thin image 

features that bound high gradients. These are cases where the physical model of the 

snake, the internal energy and the external forces, can adversely affect its ability to 

conform to the desired boundary. Also, this edge tracing algorithm exhibits relatively 

efficient execution times and multiple segmentation interpretations can be formed based 

simply on parameter selection.

The edge tracing algorithm is not dependent on adjacent pixel connectivity for 

continuation of the tracing process. A threshold is used to separate noise edges from 

object edges but relatively low thresholds are possible and thick edges can be 

accommodated. The Kalman filter, which forms the core of the tracking algorithm, can 

operate in multiple dimensions, permitting the seamless use of multiple features to 

improve discrimination of object boundaries.

Results from MR and CT images show that this edge tracing method is able to 

delineate boundaries in image regions containing noise, intensity nonuniformity, and 

partial volume effects. Its statistical foundation allows modeling of image noise and its 

recursive nature and process model allow it to follow edges through intensity
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nonuniformity consisting of smoothly varying image acquisition artifact as well as more 

abrupt variations that can occur in cases of partial volume averaging.

These are valuable capabilities; however, some problems remain. As with other edge 

tracing algorithms, there is no certainty that closed contours will be formed. In addition, a 

number of parameters must be defined. Though related to image statistics, these 

parameters may need to be tuned to the local environment for successful application. 

Further work may allow these problems to be overcome.
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Chapter 5

Dynamic Edge Tracing for Identification 
of Boundaries in Medical Images

5.1 Introduction

In medical images, the identification of object boundaries or regions of interest can 

provide valuable information for diagnosis and treatment of disease. Such segmentation 

operations can be performed manually but are very time consuming and subject to inter- 

and intra-operator variability so that automatic methods are preferable [1].

Segmentation of medical images involves three main problems. The images contain 

noise that can alter the intensity of a pixel such that its classification becomes uncertain. 

The images contain intensity nonuniformity where the average intensity level of a single 

tissue class varies over the extent of the image. And, the images have finite pixel size and 

thus are subject to partial volume averaging where individual pixels contain a mixture of 

tissue classes and the intensity of a pixel may not be consistent with any one class.

2 A version of this chapter has been submitted for publication. Withey et al 2005. Computer Vision and 
Image Understanding.
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Automatic image segmentation is an area of active research that has produced a variety 

of methods. Historically, these could be divided into three main approaches: region-based 

methods, pixel classification, and edge detection, including edge tracing [2], The same 

imprint can be seen today especially when the methods of active surfaces [3], [4] are 

viewed as advances in region growing [5], Likewise, advances in pixel classification 

have produced sophisticated clustering algorithms [3], [6] but similar advances in 

automatic edge tracing have not been so apparent.

Automatic and semiautomatic edge tracing are distinguished by the level of 

involvement required by the operator. Graph search methods [7], [8], for example, are 

semiautomatic methods that require continuous input from the operator during the tracing 

process. Automatic edge tracing methods require operator initialization, which may 

include the identification of a seed point, but subsequent operator involvement is not 

required until after the tracing operation is complete.

The main criticism that has been directed toward automatic edge tracing as an 

approach to image segmentation has been poor robustness. However, the identification of 

a coherent boundary by linking neighbouring edge points provides useful information for 

the purpose of segmentation and is information not obtained by other methods.

The earliest edge tracing algorithms required 8-neighbour connectivity for successive 

edge pixels, and propagation from one pixel to the next was often performed solely on the 

basis of local gradient information [7]. These methods were very sensitive to noise and 

intensity nonuniformity that can cause discontinuities in the object boundary or induce 

deviation from the boundary during the tracing process. Efforts have been made to 

improve robustness by providing a means for crossing discontinuities and by
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incorporating local intensity information for better edge selectivity [9]-[12]. However, 

local image information alone does not, in general, permit the production of high quality 

boundaries.

Algorithms that integrate local and global image information have also appeared. A 

Hopfield neural network was used to combine information from spatially-separated edge 

segments to form contours in a 2D color image [13]. This was tested on a limited dataset 

so it is not clear how performance would vary in cases of significant intensity noise or of 

irregularly-shaped contours. Multiresolution pyramids were used to connect 

discontinuities in traced edges for extraction of the inner and outer skull contours and the 

skin contour in medical head images [14] but a binary, intensity threshold was used 

which can cause problems in cases of intensity nonuniformity. A global saliency relation 

was developed by modeling the paths of hypothetical, constant-speed particles 

undergoing Brownian motion to link edge segments into object boundaries [15]; 

however, this method has been explicitly directed toward images with very smooth object 

contours. Size constraints and a centrally-located, seed pixel were used to obtain 

boundaries from ultrasound and computed tomography (CT) images [16], although 

certain contour convexity requirements exist for this method.

As with [16], although developed independently, the potential for automatic target 

tracking algorithms to serve as advanced edge tracers has been recognized in the 

development of Dynamic Edge Tracing, proposed as a new approach for medical image 

segmentation where edge tracing is guided by a dynamic system model [17]. Edge 

information in an image is modeled as position information obtained at regular time 

intervals from a hypothetical target moving along the edge. These position measurements
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may also contain noise. The edge is traced, identifying an object boundary, by following 

the path of the target using a statistically-based target tracking algorithm with a Kalman 

filter. Multiple edge features, including position and intensity information, can be tracked 

simultaneously, permitting a high level of discrimination in the tracing process without 

invoking complicated heuristics.

In [17], a line-by-line image scan was used and intensity nonuniformity was the 

problem of interest. In the present study, a new algorithm is described and all three of the 

main segmentation problems are considered. Edges are traced beginning at an operator- 

defined starting point to simplify the data processing and focus on user-selected object 

boundaries. Intensity features obtained from regions on both sides of an edge can be 

combined with spatial edge coordinates in the tracking process. Global information in the 

form of pixel classification data and prior knowledge in the form of model parameter 

selection are used to influence the track direction. Spatial edge coordinates are 

interpolated to subpixel resolution for smooth contours while sharp transitions are also 

permitted by modeling target acceleration. This new algorithm is referred to as DTC, 

Dynamic Edge Tracing with classification. The objective of this study is to investigate its 

suitability as a tool for the segmentation of magnetic resonance (MR) head images.

The dynamic edge tracing algorithms represent the first application of target-tracking- 

based edge tracing to the segmentation of MR, head images. Early work on the use of 

target tracking for the purpose of edge tracing can be found in [18], although the 

algorithm described therein does not permit the formation of closed contours. Closed 

contours are formed in [16] but the object boundaries must be approximately convex such 

that line of sight to a central seed pixel is retained for all edge points. This may be
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suitable, as intended, for certain tasks in ultrasound image analysis but the boundaries to 

be extracted from MR, head images are generally not convex. In DTC, nonconvex 

contours are readily accommodated.

The DTC algorithm will not always find closed contours and thus, must be considered 

as a work in progress. However, it is shown that when closed contours are formed, DTC 

can produce segmentation results comparable to methods based on clustering and on level 

sets. An example is also shown to illustrate the point that the information extracted by 

edge tracing is not encapsulated in either of the other two methods, and an example of 

how DTC can be used to add edge information to pixel classifications obtained from the 

FMRIB Automated Segmentation Tool (FAST). These results permit the statement that 

automatic edge tracing has value for medical image segmentation and also suggest that 

further research could improve the level of automation and the level of integration with 

other methods.

In the following, section 5.2 details the methods in four subsections. The first three 

describe the algorithms used in this investigation and the fourth gives the methods used 

for evaluation. Results from the application of these segmentation methods to MR, head 

images that include noise, intensity nonuniformity, and partial volume averaging are 

presented in section 5.3. Sections 5.4 and 5.5 provide further discussion and conclusions.

5.2 Methodology

5.2.1 Snake Automated Partitioning (SNAP)

The SNAP software application [19] was developed using level set algorithms in the 

Insight Segmentation and Registration Toolkit (ITK) [20] and is freely distributed as
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open-source software. Version 1.0 has been used in this study. The SNAP tool 

implements two different types of level set algorithms, geodesic active contours [21] and 

a version of the region competition snakes algorithm based on [5] with minor 

modifications. The region competition method was used in this study since it was found 

to be less likely to overflow weak edges.

The SNAP tool provides three methods for implementing the level set curve evolution 

in discrete time and space: dense, narrow band, and sparse field. These are further 

described in [22], The narrow band method, in which the level set function is updated at 

pixels near to the vicinity of the zero level set, has been used in this study. This is 

computationally more efficient than the dense method and the implementation permits 

operation on a single slice, if desired.

5.2.2 FMRIB Automated Segmentation Tool (FAST)

The FAST algorithm uses statistical clustering and a hidden Markov random field to 

perform unsupervised segmentation [6]. It was developed by the Oxford Centre for 

Functional Magnetic Resonance Imaging of the Brain (FMRIB) at Oxford University, 

U.K., and is part of the FMRIB Software Library (FSL) [23],

To perform a segmentation operation, the brain extraction tool (BET) [24] in the 

library is first applied to the 3D, MR image to isolate the brain region from the 

surrounding tissue regions. Subsequently, the FAST algorithm is applied to classify the 

pixels in the brain region into three classes, cerebrospinal fluid (CSF), white matter 

(WM), and gray matter (GM). The current versions of BET (1.2) and FAST (3.5) were 

used.
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The FAST algorithm produces a hard segmentation, where after clustering each image 

pixel is assigned to the class of highest probability, as well as a normalized partial 

volume effect (PVE) estimate, which, for each pixel, consists of a value between zero and 

unity for each of the three classes. The hard segmentation was used in this evaluation 

since it produced the higher scores.

2D Input Image, f (x ,y )

Edge
points

Gradient

R,  Q

Start point, z0

Edge Detection and 
Feature Extraction

Tracking Algorithm

2D Object Boundary

Figure 5-1. Processing Steps.

5.2.3 Dynamic Edge Tracing (DTC)

Figure 5-1 shows a block diagram of the major processing steps. Edge detection and 

edge feature extraction are performed on the input image and the results are used to drive 

a target tracking algorithm. Beginning at an operator-defined starting location, the 

tracking algorithm follows the path of a hypothetical target along an edge until the
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starting point is revisited (a closed boundary is formed) or until no further edge data can 

be assigned to the track. In the event that the track terminates before revisiting the 

starting point, a second track is automatically propagated beginning at the starting 

location and progressing in a direction opposite to that of the first.

5.2.3.1 Edge Detection

Spatial edge coordinates are identified as zero crossings in the second derivative of a 

Gaussian filtered image [25],

where f ( x , y ) is the image data, fa (x , y ) is the Gaussian filtered image, Ga  ̂ is a 2D,

Gaussian filter with characteristic width, oc , and fly is a unit vector in the operator

direction. Directional operators are used and the operator direction takes on six values 

with equal, 30-degree intervals. Zero crossings are linearly interpolated in the operator 

direction to obtain subpixel resolution. The final set of spatial edge coordinates is the 

union of those identified in all operator directions and includes noise edges, analogous to 

clutter during the target tracking phase. In most approaches to edge detection, gradient 

thresholds are used to attempt separation of noise edges from true edges; however, no 

gradient threshold is used here. This avoids one of the difficulties with edge detection 

where the threshold may eliminate valid edge points in the image at places of relatively 

lower gradient, producing gaps in the desired boundary.

fac (x>y) = G*c * f (x’Y) (5-1)

(5-2)
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T E B

Intensity

1st Derivative

2n Derivative

Figure 5-2. Edge Features.
The image fragment at left contains a line segment in the direction of the edge detection 
operator. Intensity, 1st and 2nd derivative waveforms for the line segment are plotted on 
the right. Three main points are identified. Edge coordinates (x E , y E ) correspond to the 
zero crossing in the 2nd derivative. Point (x T , y T ) is the location of the top of the 
intensity slope with intensity value, T . Point (xB , y B) is the location of the bottom of 
the intensity slope with intensity, B .

Features of interest are also extracted during the edge detection process, as shown in 

figure 5-2. For edge coordinates ( x E , y E ) ,  a line is extended on each side in the operator

direction. Examination of the 1st and 2nd derivatives of the intensity along this line allows 

the locations of the top and bottom of the edge slope to be determined, corresponding to 

points on either side of the zero crossing at E where the 2nd derivative curve flattens out, 

or creates a notch, after peaking. Zero crossings in the 1st or 2nd derivative curves limit 

the distance from E for placement of these points. The intensity on each side of the edge 

can then be determined, T  =  f  ( x T , y T ) ,  B  =  f  ( x B , y B ) . This information is combined
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with the subpixel spatial coordinates to form an edge point, a point in a four-dimensional 

space,

z = [x£ y E T B f .  (5-3)

5.2.3.2 Target Tracking

To begin, it is assumed that a hypothetical, maneuvering target has followed the 

boundary of an object of interest in f ( x , y ) and that measurements of its position have

been captured as four-dimensional edge points, in the form of (5-3). The position and 

velocity, or state, of the target at discrete time steps is modeled by a linear relationship 

with white, additive process noise,

xk+l=Axk + ^ k  (5‘4)

where k  is the step counter, \ k is the state vector at step k , A is the state transition

matrix, and w k is the process noise vector. Measurements of the target position, z k , at 

each step are also assumed to contain noise,

Z£ = H x£ +VA: (5-5)

where H is the measurement matrix, and v k is the measurement noise vector. Elements 

of w k and \ k are assumed to have zero-mean, Gaussian distributions and the elements

of \ k are assumed to be independent. Measurement z k = \_xEk y Ek Tk f?^] is an 

edge point (5-3).
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Target State 
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Measurement 
Matrix, H

State Estimation
Tracking Filter.

Data Association
Correlation of 
observations 
with prediction.

Figure 5-3. Tracking System Block Diagram

A target tracking algorithm is applied to find an estimate, xk , o f the target state at

each step, k , along the edge. Finding these estimates will allow the path o f the target to 

be drawn, an operation which is equivalent to that of finding the boundary of an object in

the image. After tracking, the spatial dimensions of x^, k  = 1 ..n for a track consisting of

n edge points, are used to form the object boundary.

Figure 5-3 shows the block diagram of the target tracking system. A noisy 

measurement of target position along with nontarget clutter produce a population of 

candidate points, or observations, at each time step. The tracking system uses a data 

association process to select z k from these observations. A state estimation process is 

then used to estimate the target state using the new measurement, and to form a state 

prediction which will be used by the data association process at the next step. This is
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repeated for each step, k . Detailed descriptions of target tracking algorithms can be 

found in [26].

State estimation is performed using the Kalman filter [26], [27] followed by back- 

filtering using the Rauch-Tung-Striebel smoother [28]. The Kalman filter is the recursive 

solution to the discrete-time, linear, minimum mean square error estimation problem and 

the statistical estimator commonly used in dynamic tracking. It is defined with the 

assumptions of a linear, dynamic system and zero-mean, Gaussian noise. The well known 

Kalman filter equations for state estimation (5-6), (5-7), (5-8) and state prediction (5-9), 

(5-10) are

covariance matrix, is the state prediction for step A;, I is the identity matrix,

expectation. The innovation sequence is defined as y k = z k -tlTLk with covariance

(5-6)

x k = X k + K k ( z k - m k ) (5-7)

r k = ( i - K kH ) f k (5-8)

(5-9)

P£+l ~ APfc A7* + Q (5-10)

where K k is the Kalman filter gain, is the a posteriori error covariance matrix, Pk is

Tthe a priori, or prediction error covariance, R = E {\k\ k } is the measurement noise

TQ = E{wkw k } is the process noise covariance matrix, and E{-\ represents mathematical

matrix, = HP^hF  + R .
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In the case of DTC, x^., consists of components for position and velocity in four 

r j  t ~iT
dimensions, x^ = Ap^ , where is the estimate of position and Ap^ is the

estimate of velocity. The position estimate, p ^ , exists in the same space as .

For edge tracing there is no explicit time dimension so the time, A, between 

successive tracking steps, k , is defined to be unity ( A = 1). With this definition, position 

change between successive tracking steps is equivalent to target velocity. Unequal 

changes in position from one step to another represent target acceleration.

The motion of the hypothetical target is modeled with a target dynamic model that 

assumes white noise acceleration with otherwise constant velocity. The acceleration is

modeled as zero-mean, Gaussian noise with variance, om. The one-dimensional, two-

state (position and velocity) case for this model in discrete time is [26],

A3 A2

Q =  q

*  A
. 2

(5-11)

2
where q  is the dynamics parameter and q  <x crm. Equation (5-11) can be directly

extended from its one-dimensional representation to the four-dimensional case under 

consideration, producing a dynamics parameter for each dimension. A common 

parameter, q  =  q x =<l y > i s  used for the two spatial dimensions and q T, qB are used for

the respective intensity dimensions. These parameters describe the likelihood of a target 

maneuver in the corresponding dimension and can be used to influence track direction.
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Figure 5-4. Intensity Dynamics Example.
Three different contours from the same starting point, (a) MNI PD slice 95 with 1% noise 
and 20% nonuniformity and region of interest identified; (b) region of interest with 
starting point identified (black arrow); (c) contour formed with qT = 50, qB =0.0001;
(d) contour formed with qT = 50, qB = 0.05; (e) contour formed with qT = 0.01, 
qB =50.  Track intensity variables are shown to the right of each with the position 
estimate in each dimension shown as a solid line and measurements marked as individual 
points. Tracks proceed from the starting point in a counterclockwise direction.
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Figure 5-4 shows an example where selection of parameters, qT and qB, permits three

different object boundaries to be found beginning from a single starting point. Selecting a 

low value for either qT or qB causes the tracking system to avoid transitions in the

corresponding dimension whereas high values indicate that sharp transitions in the 

corresponding dimension are likely.

The transition from one state to another is modeled by simple kinematics and 

measurement is of four-dimensional target position only. Matrices, A and H , therefore 

remain constant for all k ,

A =
I I 
0 I

H = [I 0]

(5-12)

(5-13)

where 0 is a 4 x 4 zero matrix. The structure of H indicates position-only measurement.

Initial values, and Pj, are determined using two edge points, z0 and Zj. 

Measurement, z0 , is the edge point at the operator-defined starting point and Zj is the 

first automatically-selected point. Following from [29],

P =
R R 
R 2R

(5-14)

Estimate, x ,, is chosen so that initial target motion is restricted to the spatial dimensions,

Pi =

x E l

Yei
(7b+Ji)/2
( Bo+B^ /2

(5-15a)
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A p i =

XE \ ~  XE0

Ye i - Y eo
0
0

(5-15b)

Hx

'k ~

2 Ka.

Figure 5-5. Data Association.
Association gate (outer, solid line, hexagonal shape) in the two spatial dimensions with 
predicted position, Hx^, previous position estimate, H x ^ . Two observations, o1 and 
o2 are shown with tj and u , , distances to o , .
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The data association process determines using an association gate in the

measurement space, evaluation of an objective function, and verification. The association 

gate in two spatial dimensions is shown in figure 5-5. The gate size characteristic in each 

dimension is determined by the standard deviation of the innovation, obtained from 

diagonal, covariance matrix, S^, and a constant multiplier, 2K ,  with K  = 3. In the

spatial dimensions the gate includes the predicted position, H x^, and the most recent 

position estimate, H x ^ .  This facilitates the sequencing of valid edge points and 

recognition of sharp transitions. In the intensity dimensions, the gate is rectangular and 

centered on H x^.

t /3tfl

Image
Intensity

Figure 5-6. Threshold Classification.
Two thresholds, Zy and r2 are selected by the operator. Linear scaling is applied for
intensity values between the two thresholds. The pixels in the classification image range 
from zero to unity.
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Edge points within the gate that have not been previously included in the track are 

classed as observations. All observations, oz, at step k  are examined according to the 

Mahalanobis distance measures (see also figure 5-5)

where dmnk and dmxk are the minimum and maximum limits of di . Distance dmxk 

occurs at the extremity of the association gate and dmnk occurs along the line between

Hx*_t and H x^.

A normalized, gradient strength measure, M t , is computed as,

where gt is the gradient strength of ot , and gmx is the peak gradient in the image.

Pixel classification is also utilized in the data association process. A normalized, 

classification image, fc ( x , y ) , is formed by applying the mapping shown in figure 5-6 to

f<7c {x>y)- Upper threshold, Zj, and lower threshold, r2 , form saturation limits and the

intensity values between these thresholds are linearly scaled to within the range, zero to 

unity. A binary threshold is produced for the case where r t = r2 . The thresholds are

(5-16)

(5-17)

d= = d; + d; (5-18)

T
where t ; = o( -  H x^, u; = oi -  Hx^_j, and = H P ^ j H  + R . A normalized distance

measure, Dt , is then computed as,

Di = 1 -  (di -  dmnk ) j(dm xk -  dmnk ) (5-19)

M i = \ g i / g m x \ (5-20)
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selected by the operator to produce high contrast between the object of interest and its 

surroundings.

Figure 5-7. Use of the Classification Image.
(a) f (x ,y) ,  slice 80 from IBSR 01; (b) classification image, fc (x , y ) , is shown as light-

gray pixels overlaid on White box identifies the zoom region; (c) Zoom region
with partial track (black line). The observation with sample points Ai, and Bi is preferred 
over the one with sample points A2, and B2 since segment A 1B 1 spans the classification 
boundary whereas A2B2 does not.
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A classification measure, Ci , evaluates the extent to which oi resides on the object 

boundary, the transition zones in fc ( x , y ) ,

Ci =CBr CTl (5-21)

where CTi = fc (x Ti’YTi) ' s the classification value sampled at the top of the edge slope 

for o; and CBi = [ f  - fc ( x Bi , y Bi )] is the complement of the value at bottom of slope. An 

example is shown in figure 5-7. The image f ( x , y ) is shown in panel (a) and fc (x,y), 

identified as light-gray pixels, is overlaid on f ( x , y ) in panel (b). Panel (c) shows a 

zoomed region containing a partial track that is propagating toward the right. 

Observations, Oj and o2 , are among those within the association gate. Sample points

marked Ai and Bi, corresponding to ( x T , y T ) and ( x B , y B ) ,  respectively, for o1; are

used to sample fc ( x , y )  and produce the classification measure, C\. Similarly, points A2

and B2 are used to produce C2. Observation, Oj, is preferred over o2  (i.e. Q  > C2) since

segment A1B 1 spans the classification boundary whereas A2 B2 does not. Thus, fc ( x , y )

guides the edge tracer, allowing the classification result to assist in forming the boundary. 

The edge tracer retains some freedom relative to the classification, though, as edge points 

are still used to form the boundary. This allows the boundary to deviate from the 

classification to a limited extent as is visible in figure 5-7c where the black-line boundary 

can encroach upon the classification or, alternatively, pull away from it. This can also be 

viewed as a mechanism for using edge information to refine the classification result.

The objective function, 'P , is the product of these three normalized measures. For o; ,

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



x¥ i = Dr M r Ci . (5-22)

Observations are ranked according to this score which will be highest for those with 

relatively high gradient, lying in the current direction of travel, and which classify well as 

boundary points of the object of interest. When multiple observations have equal value, 

the observation with minimum d j, that is, producing lower velocity, is ranked higher. 

Measurement, z k , is taken as the highest-ranked observation that passes verification

of track direction and step size. There are two possible directions for a track to proceed 

along an edge and a reversal of direction is not desirable. The track direction is 

determined by translating the velocity vector (spatial dimensions) to (xEk,y Ek) an<̂

examining the locations of ( x ^ . y j i )  and (xBk,y Bk) (one right and one left) relative to 

its orientation. The direction produced by z k must be consistent with the existing track 

direction.

A gap of greater than one pixel width between edge points may be due to a minor 

intensity variation or may separate two different edges that have similar intensity 

features. Interpolation of intensity data in (x,y) is performed from [xTk_ i,yTk_i) to

(xTk<Yrk) and from {xBk_ \,yBk_\) to (xBk,y Bk). To be acceptable, accumulated

intensity variation along either path must be less than the previous edge height. That is, 

for interpolated intensity values, I j , j  = 1 ..N , along either path, verification requires,

(  N  > $1l-T1

\J=2 )
<(4rc ( x Tk—l ’ y  Tk -1 ) ~  { x B k - l > y B k - \ j )  • (5‘23)
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This step ensures, for example, that the track will not jump across a narrow projection 

of the object of interest when both sides of the projection fall within the association gate.

5.2.4 Evaluation

The Tanimoto similarity measure [30], T S , is defined as the ratio of the number of 

elements in the intersection of two sets to the number of elements in their union. For two 

sets, A , B ,

TS = r j(A n B )/T j(A [jB ). (5-24)

where 77 stands for the cardinality of a set. This is used to evaluate segmented regions, 

binary images consisting of all pixels within the boundary of interest.

The Hausdorff distance [31] is defined as the maximum of the closest-point distances 

between two contours. For contours, A = {al,a2,...,am] , B = {b\,b2,...,bn\ , where

each element in each contour is an ordered pair of spatial coordinates, (x,y) , the closest- 

point distance for point ai to contour B is,

h(ai,B) = min bj -  ai (5-25)
j

and the Hausdorff distance for the two contours is,

f  \
HD (A , B} = max max j/z ( ,  ̂ )} ,m ax|/z^y,>4^| . (5-26)

V * J

This is used to evaluate boundary shape and supplements TS by detecting contour 

discrepancies in the form of narrow projections where the error area is small. Good 

contour similarity is indicated when HD is low and TS is near unity.
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5.3 Results

Synthetic and real MR images were used to examine the DTC, FAST, and SNAP 

segmentation algorithms under conditions of noise, intensity nonuniformity, and partial 

volume averaging. Brain WM regions were selected for segmentation because of their 

relatively large size and their detailed, convoluted, and often low-contrast boundaries. 

Algorithm performance in noise and intensity nonuniformity was evaluated using 

synthetic images from the Montreal Neurological Institute (MNI) database, normal brain, 

1 mm spacing, proton density (PD), and scaled, raw-byte data format [32]. These data 

contain some partial volume effects but further partial volume tests were performed in a 

corpus callosum study using real MR images from the Internet Brain Segmentation 

Repository (IBSR) V2.0 database [33], Known and manual segmentations, respectively, 

are available as part of these databases and were used to form a reference region, the 

expected segmentation, and a reference contour, the outer object boundary.

The parameters for each segmentation method were adjusted to achieve maximum TS 

when compared with the reference region. This was done to have a point of comparison 

for the three relatively diverse segmentation algorithms. The parameter selection was 

performed by an experienced operator with full knowledge of the expected segmentation, 

allowing an optimal, or nearly optimal, result to be determined in each case. The HD 

between the reference contour and the outer contour in each segmentation result was also 

computed.

The resulting segmentations were validated visually and accepted only if they were 

found to be representative of the underlying anatomy. Candidate segmentations that 

included large portions of neighbouring tissue regions, for example, were excluded.
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5.3.1 Parameter Settings

For DTC, parameters K , q , qT , qB , R,  ac , , r 2  affect system operation and of

these, R , K , and q were preselected. Matrix R is a 4x4 diagonal matrix selected to

2  2have elements a x = cry = 0 .2 , suggesting typical spatial edge placement errors of less

2  9than 0.5 pixels with worst case approximately 2 pixels, and <rT = o B defined by an

estimate of the image noise variance, crN . Image noise variance estimation was 

performed using the Average method, highest ranked in the evaluation of [34], and 

rounded to the nearest 5 squared gray levels. A value of <j n  = 3 was used for synthetic 

images without noise. Also, K  = 3.3 was selected to set a gate size covering 99.9% of the 

related Gaussian distributions, and q = 0.2 was found experimentally to be useful for 

contours with significant spatial variation. Parameters oc , qT , qB , z j, r 2  remained to 

be selected by the operator. Parameters oc , , r 2  were set once for each 2D image,

leaving two parameters, qT and qB , to be selected for each track. Multiple parameter

sets sometimes produced similar results and there were conditions where only one, or 

neither, intensity dimension was needed in the tracking operation.

Since the WM region to be extracted included smaller, internal or external, subregions, 

several contours were used to complete the segmentation; however, only one contour was 

allowed for each region or subregion and only one starting point was permitted for each 

contour. Track propagation was halted if one track encountered another. In cases where a 

closed contour was not formed, the contour was accepted only if a valid segmentation 

could be produced by linking the two end points with a small straight line.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For SNAP, the operator initially defined a 3D, rectangular region bounding the 

segmentation. For images where the pixels were not cubes, such as with the IBSR data, 

the region was resampled to form cuboid pixels. Three preprocessing parameters, an 

upper threshold, <j\ , a lower threshold, ^ , and a smoothness parameter, g , were

required to form an operator-defined probability distribution over pixel intensities for the 

desired object. Two snake parameters were also required, a balloon force, a , and a 

curvature force, /?. All of these parameters were set on a per image basis. It was found, 

though, that a balloon force of a  = 1.0 was suitable for all of the images. The SNAP 

application also contains an option for gray level scaling, although this was not used.

Typically, four seed bubbles were used to initialize the SNAP segmentation and these 

were placed in regions corresponding to high WM content. The number of seed bubbles 

was determined arbitrarily and was made greater than unity simply to reduce the 

processing time. The level set algorithm was permitted to find the extremities of the WM 

without being influenced by targeted seed placement on the part of the operator.

Segmentation in FSL using BET and FAST is fully automatic. It is possible to set 

threshold parameters to affect the point where BET defines the brain boundary but only 

the default parameters were used in this study. It is also possible to post-process the 

segmentation, for example using morphological operations to remove obvious 

misclassifications visible as small, off-brain outliers but no post-processing steps were 

taken. These choices preserve the fully-automatic nature of this algorithm.

5.3.2 Noise and Intensity Nonuniformity

Noise and intensity nonuniformity were examined using slice 95 of the MNI PD 

synthetic image dataset. Results from DTC, FAST, and SNAP, were compared with
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expected results after segmentation of cerebral WM. The synthetic image database 

contains a fuzzy classification for each image pixel. Crisp WM pixels, those for which 

WM is the class of highest membership, were used in the comparison. No penalty was 

assessed for inclusion or exclusion of pixels exhibiting minor WM content. The outer 

boundary of the crisp WM region was used as the reference contour for HD calculations.

The FAST result was determined by processing the entire 3D image whereas SNAP 

and DTC only processed slice 95. For SNAP, this arrangement was selected to reduce 

processing time.

Figure 5-8a-c shows TS versus noise level for each method at 0%, 20%, and 40% 

nonuniformity and table 5-1 gives the HD values. The FAST result shows a dip in TS at 

low noise levels in each of the three cases. This was found to be due to misclassification 

along the GM-WM interface, with a nonuniform distribution of errors.

Since DTC can be guided by pixel classification other than that formed by rj and r 2 , 

a test was run with

fc {x ,y ) = l - f FwM{x,y)  

where fpwM (x ,y) is the FAST WM segmentation. The complement operation employed

simply matches high classification value with high intensity, as required in DTC. Table 

5-2 contains the results for each of the three cases. In each case, the DTC-FAST 

combination improves on the result from FAST alone, and in two of the three, the HD of 

the combination is better than that produced by either method.
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Similarity measure results (a)-(c) vs. noise level for MNI PD Slice 95 (a) 0% 
nonuniformity; (b) 20% nonuniformity; (c) 40% nonuniformity; (d) dataset IBSR_01 
slices 78 to 92.
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Table 5-1 -  Hausdorff Distance (pixels) for MNI Slice 95.
Percent Noise

0 1 3 5 7 9
0% Nonuniformity

2
<JN 0 5 30 70 105 175 avg

DTC 8.1 6.1 7.1 8.2 10.1 10.1 8.3
FAST 10.0 5.0 6.0 4.1 10.0 10.0 7.5
SNAP 7.2 5.0 7.1 5.8 8.2 8.6 7.0

20% Nonuniformity

_2crN 0 5 25 65 105 145 avg

DTC 6.1 7.4 8.0 11.1 9.7 - 8.5
FAST 5.0 10.0 5.8 9.2 9.2 8.9 8.0
SNAP 5.8 5.8 8.5 10.3 8.9 12.1 8.6

i 0% Nonuniformity

_2
a N

0 5 20 55 95 135 avg

DTC 5.8 6.2 9.5 - - - 7.2
FAST 11.4 10.0 5.0 10.4 17.3 10.8 10.8
SNAP 13.9 16.6 19.2 19.2 20.2 20.6 18.3

Table 5-2 -  Metric Comparison for DTC-FAST Combination.
0% Noise, 
0% NonU

1% IS 
20%

loise,
SfonU

1% b 
40%

Joise,
\TonU

TS HD TS HD TS HD
DTC 0.96 8.1 0.96 7.4 0.96 6.2
FAST 0.87 10.0 0.90 10.0 0.91 10.0
DTC-FAST 0.95 8.5 0.96 6.0 0.96 5.9

Table 5-3 -  Hausdorff Distance (pixels) - IBSR 01 Slices
Slice Number

78 79 80 81 82 83 84 85
DTC 8.3 8.5 4.0 12.1 11.5 9.3 5.3 2.7
FAST 6.7 6.7 14.9 12.1 5.7 4.2 4.1 2.2
SNAP 7.2 7.3 10.2 4.0 2.2 2.0 1.4 2.0

Slice Number
avg86 87 88 89 90 91 92

DTC 2.3 2.9 6.5 3.3 3.5 6.7 5.5 6.2
FAST 5.4 3.6 6.7 7.2 7.1 5.7 6.0 6.6
SNAP 1.4 1.4 6.3 2.8 3.2 2.2 7.3 4.1
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5.3.3 Partial Volume Averaging

Partial volume averaging was further examined using real images and manual 

segmentations from dataset IBSR 01 [33], a set of consecutive 2D, coronal, Tl- 

weighted, MR images with 1.5 mm slice thickness. These images have low noise and 

have been preprocessed by an intensity correction algorithm so that partial volume 

averaging is the main segmentation difficulty.

The test included fifteen consecutive images (slices 78 to 92) containing the genu of 

the corpus callosum, a WM region. The higher numbered slices are the most anterior and 

the simplest. In slices 91 and 92 the WM region is largely uninterrupted whereas from 

slice 90 and proceeding to lower numbers, the WM region increasingly surrounds other 

structures, first the lateral ventricles and then relatively low-contrast basal nuclei. The 

FAST method used the entire 3D image as input, SNAP was provided with a bounding 

box encompassing the desired WM region, and DTC operated on each 2D image 

individually. Figure 5-8d shows TS versus slice number and table 5-3 gives HD values.

Figure 5-9 shows images for slice 80. Significant partial volume effect occurs at the 

extremities of the WM region and all methods were affected by it. The DTC algorithm 

appears to be better able to avoid the GM, basal nuclei which both of the other methods 

classify largely as WM.
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Figure 5-9. IBSR_01 Slice 80.
Contours, false positives and false negatives (respectively). For the false positives and 
false negatives, gray represents manual segmentation and error pixels are shown in white,
(a), (b), (c) for DTC; (d), (e), (f) FAST; (g), (h), (i) SNAP.
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5.3.4 Execution Time

All tests were performed on a 3.2 GHz PC. The DTC algorithm runs under Matlab®

[35] whereas the SNAP and FAST programs are compiled software executables.

For DTC, execution time was approximately 5 milliseconds per contour point. The 

average outer contour in the MNI images, for example, contained 2056 points.

The SNAP algorithm operated at approximately 12.5 iterations per second with the 

MNI images. The number of iterations required to reach a stable solution increased with 

the level of difficulty of the image. Between 600 and 1200 iterations were typically 

required.

The BET and FAST algorithms operated on full 3D images in all cases. The brain 

region for each was extracted by BET in less than 10 seconds and the FAST 

segmentation required approximately 600 seconds for each of the MNI image volumes. 

Each MNI image volume contains 181x217x181 pixels.

5.4 Discussion

The results demonstrate that there is no one algorithm that is uniformly superior to the 

others. The SNAP method is best at low levels of nonuniformity but its performance 

degrades as nonuniformity is increased. This is reasonable to expect since the object 

intensity distribution is defined using globally applied thresholds. The FAST algorithm is 

best at the higher levels of noise but unusually high numbers of pixel misclassifications 

occur at the GM-WM boundary in some cases. The DTC algorithm is competitive with 

the others in all cases where a closed boundary could be formed. However, the 

combination of high noise and high intensity nonuniformity appears to be a greater
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problem for DTC than for either FAST or SNAP. This is shown in figure 5-8a-c where 

DTC is unable to form a closed contour in four of the eighteen synthetic image test cases, 

particularly toward the limits of the noise and nonuniformity ranges.

As shown in figure 5-9, both FAST and SNAP misclassify the GM of the basal nuclei 

as WM even though a visible boundary exists. By comparison, the DTC method is able to 

follow the boundary, producing fewer errors. This example shows that the edge tracing 

result is not a subset of that produced by the other methods and this fact indicates the 

importance of continued research into recursive edge following methods.

In addition, DTC can combine edge information with pixel classification results from 

other methods. An example of this is shown in table 5-2 where the FAST WM 

classification was used to guide DTC as a replacement for the operator-defined threshold 

classification, fc ( x ,y ) . This produced an improvement over the FAST result in cases of

high misclassification at the GM-WM interface as the edge tracer was able to refine the 

FAST result. The benefit of this approach, for DTC, is that the operator is relieved of the 

task of choosing appropriate thresholds to form fc (x, y ) , although it is an advantage only

when the misclassifications occur along the boundary. As an extension, one could 

imagine the use of an inference engine in the data association process to permit additional 

information, including knowledge, to be used to guide the edge tracer.

The contours generated by DTC are very smooth due to the subpixel-resolution edge 

points and the statistical position estimate. The ability to form sharp comers is also 

retained, as is visible in figure 5-9. Also, the DTC algorithm can be easily expanded or 

adjusted. Properties of the edge that can be described by Gaussian distributions may be
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tracked explicitly while other parameters can be included by modifying the objective 

function in the data association process.

Some problems remain, however, and further development will be required to solve 

them. Self intersection has not been addressed in the DTC algorithm although careful 

parameter selection often will permit a nonintersecting contour to be formed, as in the 

results presented here. Also, starting point and direction of travel can affect the resulting 

contour, especially in cases of partial volume averaging. Contour formation is sensitive to 

the sequence of edge points because the next-point selection in the data association 

process currently uses a nearest-neighbour criterion. Evaluation of multiple paths may 

produce better contours.

The parameters q , qT , and qB were determined experimentally. In a typical target

tracking system, variables of this type would be determined by a tuning process, often 

involving simulation of anticipated tracking scenarios. In a similar manner, further 

studies could be done to develop a set of typical parameter settings for a range of tissue 

interfaces and image classes. Alternatively, it may be possible to automatically determine 

some of these parameters using an adaptive filter [36].

Although only a single set of parameters was used for each contour in these tests, it is 

clear that there are situations where a single set is not sufficient to form a closed 

boundary. In these scenarios, segmentation may be performed by a procedure in which 

the operator initiates several automatic tracks and then manually prunes and links the 

tracks together to form a closed boundary. Semiautomatic operation like this should still 

be valuable in relieving operator tedium when compared with manual tracing.
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Finally, a note concerning the use of Gaussian noise models. In cases where the 

process noise or the measurement noise in the spatial dimensions of zk is not Gaussian, 

the Kalman filter is still the best linear, minimum mean square error estimator. For the 

intensity dimensions, intensity noise is often modeled as Gaussian in MR images 

although the distribution is more accurately described as Rician. This is, however, 

approximately Gaussian for signal to noise ratio (SNR) greater than 3 [37], where 

SNR = A/crN is the ratio of the signal amplitude in the absence of noise to the noise

standard deviation. In the image background, where there is no MR signal, the noise 

follows a Rayleigh distribution. MR images from clinical scanners very often exhibit 

SNR well above 3 so the assumption of Gaussian noise distributions in these images is 

often valid.

5.5 Conclusion

An advanced edge tracing algorithm based on dynamic target tracking is capable of 

identifying object boundaries in complex, MR, medical images. The tracking algorithm 

operates in multiple dimensions, permitting the seamless use of multiple features to help 

discriminate object boundaries. Candidate edge points are ranked by evaluation of an 

objective function wherein local and global image information are combined. The 

algorithm is able to utilize pixel classification results from other methods and improve 

upon them in cases where misclassifications exist along the boundary of interest.

Comparison with results from FAST and SNAP demonstrates that the edge tracing 

algorithm can produce comparable results in images with realistic levels of noise, 

intensity nonuniformity and partial volume averaging. Furthermore, object information
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extracted by edge tracing is not a subset of that extracted by the other methods, as was 

shown along low-contrast boundaries. These are important results for edge tracing 

algorithms, in general. Further research may permit improvements in the level of 

automation and in the level of integration with other methods.
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Chapter 6 

Discussion and Conclusions

6.1 Progression of Development

Chapters 3 to 5, containing descriptions of the dynamic edge tracing concepts, also 

identify a progression of development. To facilitate a comparison, the method of chapter 

3 will be referred to as DTA, the method of chapter 4 as DTB, and the methods of chapter 

5 by the symbol used there, DTC.

In chapter 3, DTA utilizes a line-by-line scan of the image to simulate the time 

dimension as well as an algorithm for tracking multiple targets where new tracks are 

started for any edge pixels that cannot be associated with an existing track as the line-by- 

line scan progresses. Although developed independently, this is similar to the method of 

Basseville, et al. [1] who also used a line-by-line scan and a multiple target tracking 

approach. Two notable exceptions, however, are that the method of [1] did not attempt to 

form closed contours, whereas DTA contains a track linking strategy for that purpose, 

and that DTA integrates intensity information as an additional state dimension in a
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multidimensional tracking approach whereas [1] used only a single spatial dimension for 

tracking.

DTA is fully automatic and capable of forming closed contours, even for nonconvex 

shapes, given the condition where the endpoints of the tracks to be joined each fall within 

the association gate of the other. This approach is reasonable for synthetic images with 

consistent edges but in real images, where edge structure is much more complex, DTA 

forms many contour fragments whose endpoints may not be adequately aligned for the 

track-linking step to be successful. Another problem of the line-by-line scan is the time 

analogy since a track can conceivably progress horizontally along an image line, that is, 

perpendicular to the time step, requiring the acquisition of multiple data points within a 

single time unit. This time-dimension problem increases when the propagation of two 

tracks toward each other along a single line is considered.

These problems are sufficiently large that the fully-automatic DTA method was 

abandoned in favour of a semiautomatic approach where contours are formed beginning 

from a user-defined starting point. The time dimension is defined to be independent of 

the spatial dimensions by assuming a unit time interval between all successive edge 

pixels identified by the tracing process. This approach attempts to form the boundary of a 

single object and thus allows for easier examination of results and facilitates algorithm 

refinement.

Method DTB represents this phase of development. Intensity information is obtained 

by sampling the intensity on each side of the edge rather than at the edge pixel, as was the 

case for DTA, producing intensity measurements with better stability in real images. 

Local information, in the form of the distances of candidate pixels to the predicted
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position and to the previous position estimate, is used to select the edge pixels for track 

propagation. However, the use of only local information produces a lack of robustness 

where a track can easily depart from the desired edge when affected by noise and nearby 

edges.

Still, the DTB method shows advantages when compared to classical snakes and this is 

significant. Both methods are 2D in nature, both are edge-based, and both depend 

primarily on local information for boundary formation. Therefore, both appear to be in a 

comparable stage of development. After initial publication, the classical snakes and 

related algorithms enjoyed over a decade of intense research by many groups worldwide, 

including the identification of major problems, the development of strategies to overcome 

those problems, and the development of 3D models. At about the same time, edge tracing 

was receiving less and less attention as an approach to segmentation; however, this 

appears to be a loss given the advantages in edge selectivity, entry into narrow 

concavities, execution efficiency, and the influence of parameter selection on final 

contour shape, shown by the DTB algorithm.

The next step in development, DTC, incorporates several modifications. Spatial edge 

points found by edge detection are interpolated to obtain subpixel resolution. This, along 

with the implementation of a Kalman smoother, as suggested in chapter 4, produces 

contours that are smooth and also capable of forming sharp transitions, highly desirable 

properties. The most important change, however, is the recognition that the next-point 

selection in the data association process is actually an optimization problem and that 

global image information can be introduced within this context. The distance measure is 

modified, normalized, and combined with the normalized local gradient strength and with
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a threshold-based, operator-selected, pixel classification, also normalized to values 

between 0 and 1. The product of these three elements forms the objective function with 

which candidate data points are evaluated. This arrangement vastly improves the 

robustness, permitting the results visible in chapter 5.

In addition, the gradient threshold that was employed in DTB is removed in DTC. 

Gradient thresholds are typically used in edge-based methods as a way to separate noise 

edges from valid edges. They can cause difficulties, however, for low-contrast edges in 

cases where the gradient of the desired edge fluctuates, causing gaps to occur between 

edge points when the threshold is applied. With DTB, the gradient threshold is required 

to limit the likelihood of the track being diverted from the desired edge due to the noise. 

Chapter 4, figure 4-5 shows an example where DTB has been able to jump across a 

threshold-induced gap; however, the threshold setting is a sensitive parameter with 

significant influence on the result since points on both sides of the gap must fall within 

the association gate or the jump cannot be completed. The DTC algorithm is able to 

operate without any requirement for the user to set a gradient threshold due to the 

inclusion of gradient intensity and pixel classification in the data association objective 

function. These significantly reduce the likelihood of track diversion due to noise and, 

since no threshold is applied, all edge information is retained and is available for use by 

the track.

The DTC pixel classification can be formed independently of the edge information. 

This can be accomplished, for example, by applying thresholds to a smoothed version of 

the image, or by using the classification output from another algorithm. The
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independently-determined edge and classification features are then combined by the 

tracking process.

The DTC methods are flexible and adaptable. Statistically-based features can be 

tracked as state variables and the data association objective function can be modified to 

include the effect of other elements, especially those which may not have a statistical 

foundation. This flexibility encourages further advancement.

Within the framework suggested in chapter 2, DTC can be classed as a second- 

generation edge tracing algorithm due to the use of the statistically-based Kalman filter. 

When knowledge, possibly in the form of a fuzzy rule base, is included in the data 

association process, a third-generation edge tracer would result.

The DTC method can be used to processes 3D images as sets of 2D slices. A 3D 

extension to the algorithm is highly desirable; however, it remains possible to stack 2D 

contours to form 3D surfaces, as is done with manually defined contours and as has been 

done with other algorithms [2].

Remaining problems include dependence on track direction, dependence on starting 

point, the possibility of self intersection, the possibility that a closed contour is not 

formed in all cases, and the selection of appropriate parameter values, where several trial 

runs may be required. Because of these, the DTC method is presently best applied within 

the context of a user interface that permits the operator to perform automatic tracking and 

to manually cut and link tracks to form the desired contours. This, however, can still 

remove some of the tedium of manual tracing while allowing a high-quality result to be 

achieved. Further research may allow the remaining problems to be overcome.
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6.2 Head Model Formation

During the course of the development of these studies, a set of surfaces were extracted 

from a 3D, MR image of an epilepsy patient. This was done with the DTC algorithm 

although prior to the integration of the pixel classification feature. The surface extraction 

required approximately three weeks of effort on the part of an operator who was trained 

for the task but not a medical expert. The operator expressed the opinion that despite the 

considerable amount of manual interaction required to start, trim, and link tracks to form 

contours, use of the edge tracing algorithm reduced operator tedium when compared to 

manual contour formation, alone.

Figure 6-1 shows a cut-away view of the skin surface, the outer skull surface, and the 

brain surface after the segmentation of multiple consecutive, transverse, image slices was 

rendered by the amira™ [3] software visualization tool. The 3D surfaces were obtained 

by stacking sets of 2D contours. Excellent detail is evident in these surfaces, suggesting 

that this method will be suitable for use in the formation of electrical head models for 

epilepsy research. Although the brain surface does show topological inconsistencies in a 

few locations, particularly gyri that are bridged across intervening sulci, these can be 

corrected with further manual editing.

In other tests where the pixel classification feature of DTC was included, track lengths 

improved and the number of tracks required to form complex, convoluted contours was 

reduced. This suggests that less operator involvement is required when the full DTC 

algorithm is applied and this should reduce the overall time required to form the 

segmentation.
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Figure 6-1. MR Segmentation Surfaces

6.3 The Medical Image Segmentation Problem

Given the number of algorithms that have been developed and the fact that automatic 

medical image segmentation remains an unsolved problem, one may wonder if a fully- 

automatic solution with accuracy matching a human expert will ever be found. It is clear 

that first-generation methods were not successful and it becomes more and more evident 

that second-generation methods, despite obvious improvements and mathematical 

superiority, will likewise prove to be insufficient. The second-generation methods have
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produced fully-automatic segmentation systems, such as the BET/FAST combination 

used in chapter 5; however, obvious misclassification may still occur.

Among the third-generation algorithms, certain atlas-based methods have been shown 

to produce automatic segmentations that are competitive with manual segmentations [4]-

[6], when an overlap metric (e.g. the ratio of the intersection of two segmentations to 

their union) is used for the comparison. There is indication, though, that such favourable 

comparison may only occur under certain conditions [6], Factors that can affect algorithm 

performance include: 1) the image acquisition parameters; 2) the method for registering 

the atlas with the test image where registration methods capable of greater deformation 

produce better comparison results; 3) the manual tracing protocol used by the 

investigator, which, when identifying normal brain structures, must match that used in the 

atlas formation, for best comparison; 4) demographics and disease where differences in 

brain structure between the test subjects and the subjects included in atlas formation may 

cause significant errors.

In addition, the overlap metric may not adequately identify errors in cases where 

discrepancies between the two segmentations under examination have relatively small 

volume. These errors could still be spatially significant, for example, in the case of a 

narrow projection occurring in only one of the segmentations. The overlap metric will not 

detect when the automatic segmentation has moved beyond the spatial limits of the inter- 

and intra-expert variability and, therefore, outside the set of acceptable segmentations, as 

it has been defined here. Thus, it is not possible to conclude that automatic methods have 

attained equivalence with human experts.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.3.1 Knowledge

Production of segmentations that consistently fall within the spatial limits of the inter- 

and intra-expert variability may require that automatic methods incorporate input from all 

of the sources that are used by human experts. The nature of those sources may be 

somewhat difficult to assess since human experts typically require between two and three 

decades of diverse training, from childhood, before several years of specific training can 

be applied and the necessary level of expertise achieved. It may be suggested, though, 

that the knowledge used by an expert incorporates a model of the expected result, 

including approximate spatial distribution of tissue classes. In addition, explicit 

recognition of all tissue classes contained within the image appears to occur. The 

boundary that a human expert would draw, therefore, is influenced by the local intensity 

variation, the proximity to other tissue classes, the expected spatial relationships between 

tissue classes, the location within the image, the imaging modality, as well as, possibly, 

some unknown processing layers. This clearly involves the integration of knowledge 

from several sources and is well beyond the second-generation algorithms which are 

typically implementations of optimization methods applied to image data without 

consideration for the specific content of the image. Results from second-generation 

methods may, however, prove to be useful precursors.

6.3.2 The Segmentation Standard

The standard for in vivo image segmentation is the human medical expert and since 

variability occurs among experts [7], the standard is not unique. It has been argued that 

inter-expert variability may improve with standardized training programs [8] but, even if
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successful, this would not remove the intra-expert variability. For a given image, the true 

segmentation is therefore not a single result but is better described as a random quantity 

with a distribution derived from the aggregate of all expert segmentations of the image. 

This distribution may well be multimodal, for example, in cases where the expert 

segmentations follow spatially distinct paths for portions of the object boundary, 

producing multiple segmentation interpretations.

6.3.3 Operator Interaction

Automatic segmentation methods have been pursued to overcome the operator tedium 

that occurs when manual segmentation of large datasets is considered and also to 

overcome the operator variability that produces poor reproducibility and thus low 

confidence in manual segmentation results [7], Partial success can be claimed because 

automatic segmentation algorithms can often reduce the need for manual intervention. 

However, automatic results are not always consistent with anatomical realities and in 

cases where an automatic segmentation result is deemed to be inadequate, a tedious, 

manual correction may be required. The problem of operator variability also remains 

since the standard for validating segmentation results is, itself, variable. It is unlikely that 

automatically generated segmentations will meet with acceptance by all medical experts, 

on all occasions. A more effective means for reducing operator variability may involve 

the development of segmentation guidelines and the implementation of standardized 

training within the medical community, as is being suggested, for example, in the context 

of radiation therapy [9].

Continued development and refinement of automatic segmentation algorithms should 

permit further reduction of operator interaction by providing improved solutions. The
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development of algorithms that provide multiple segmentation interpretations may also 

produce a benefit, allowing the operator to choose the interpretation that best matches the 

desired result, reducing the amount of manual modification required.

6.4 The Role of Edge Tracing in Segmentation

Automatic, recursive edge tracing appears to have been largely abandoned, as a 

segmentation method, by the medical image analysis community sometime in the early 

1990’s. The main complaint was poor robustness due to noise sensitivity. The studies 

presented here identify related problems, including dependence on track direction, 

dependence on starting point, the possibility of self intersection, and the possibility that a 

closed contour will not be formed. However, it is also shown that: i) when closed 

contours can be formed, edge tracing can produce comparable segmentations when 

compared to other methods over a range of noise, intensity nonuniformity, and partial 

volume averaging; ii) that edge tracing extracts information not acquired by other 

methods; and iii) that edge tracing based on target tracking algorithms can combine 

features from many sources with potential yet to be explored, for example, the inclusion 

of domain knowledge to guide the tracking process.

The problem of sensitivity to noise indicates that edge tracing should not be applied 

using local information only. When properly guided by global information, the same 

sensitivity property gives an edge tracing method the capability of capturing local detail. 

Acquiring local detail and combining global information are the main advantages of 

target-tracking-based, edge tracing algorithms. These are significant advantages that may 

ultimately allow edge tracing algorithms to find greater application in the context of 

medical image segmentation.
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Given that a particular object in an image can be represented by its volume or its 

surface, either may be used to form the segmentation. By far, the most common approach 

has been to define the object volume. Even some boundary-forming methods, such as 

active surfaces, propagate through the object volume rather than along its surface. The 

processing time for methods that examine the volume data will be much higher than for 

those that process data near the object surface, assuming similar computational 

complexity. Therefore, methods that propagate along the object surface, as do edge 

tracing algorithms, should have an advantage in speed.

Assuming that the segmentation standard is best described by a statistical distribution 

formed from human expert segmentation results, as has been suggested here, then 

algorithms capable of estimating a distribution, as are Kalman filters, are capable of a 

greater degree of information extraction. Furthermore, algorithms exist within the target 

tracking literature that generate and process multiple hypotheses. Thus, the use of target 

tracking algorithms in edge tracing may permit the development of automatically- 

identified, multiple segmentation interpretations. These two items, a statistically-based 

boundary and multiple interpretations, may ultimately prove to be important components 

of a segmentation result.

6.5 Conclusions

Presently, automatic medical image segmentation remains an unsolved problem. A 

great variety of methods have been applied, several of which have had international 

attention with ongoing development for over a decade. Still, automatic segmentation 

equivalent to that from a medical expert has not been achieved to a level that permits 

general application.
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It was hypothesized that the data fusion capability of statistically-based, automatic 

target tracking algorithms may have advantages that would be useful for edge tracing in 

medical images, for the purposes of segmentation. This appears to be true. When closed 

contours can be formed, edge tracing based on target tracking algorithms can produce 

segmentations comparable to those from other methods over a range of noise, intensity 

nonuniformity, and partial volume averaging. As well, this approach extracts information 

not acquired by other methods, particularly visible along low-contrast boundaries. 

Finally, edge tracing based on target tracking algorithms can utilize features from many 

sources allowing local and global information, including edge, region intensity, and pixel 

classification information, to be combined to produce the segmentation.

The potential of target tracking algorithms for image segmentation has not yet been 

fully explored. Algorithms that generate and process multiple hypotheses exist in the 

target tracking literature but methods for adapting these algorithms for the purposes of 

image segmentation remain to be developed. In addition, it may be possible to utilize 

domain knowledge to improve the tracing result, for example, in the analysis and 

selection of neighbour points.

Target-tracking-based edge tracing can be used to extract surfaces suitable for head 

model formation for the purposes of EEG source localization; however, these surfaces are 

currently formed from a series of 2D contours. A fully-3D, surface-tracking 

implementation remains to be developed and would be an important step. Other 

remaining problems include dependence on track direction, dependence on starting point, 

the possibility of self intersection, the possibility that a closed contour is not formed in all
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cases, and the selection of appropriate parameters. Further research may allow these 

problems to be overcome.

The results from the evaluation of the dynamic edge tracing algorithms support an 

additional, broader conclusion that suitable edge tracing algorithms can provide value for 

the purpose of medical image segmentation. Edge tracing algorithms receive very little 

attention as tools for segmentation but research into these algorithms is important and 

should continue.

6.6 Future Work

To tackle the remaining problems in the DTC algorithm and to reduce the amount of 

operator interaction, three ideas stand out as immediate directions for future work. The 

first would be an investigation into the use of adaptive Kalman filters to automatically 

identify the noise variance parameters that must currently be set by the operator. This 

would reduce the required level of operator training and the initialization effort since the 

noise variances are the parameters in the algorithm whose selection is least intuitive. 

Adaptive Kalman filters for automatic parameter identification have been studied 

extensively, e.g. [10]—[12].

To address the problems of sensitivity to initial starting point and to track direction, 

the edge tracing could be modified to involve multiple starting points with independent 

track formation beginning from each. All edge points selected by these tracks would 

initially be considered as candidates for the contour. It may then be possible to determine 

a final set of points by utilizing dynamic programming [13] within a trellis formed from 

the candidate edge points. The normalized frequency of selection could be used as the 

transition probabilities between neighbour points. Dynamic programming would then be
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used to select the path of highest probability, forming the object boundary. If successful, 

this would increase the probability of forming a closed contour, should allow for 

automatically identifying the case of an unclosed contour, and may also prove to be a 

mechanism for developing multiple segmentation interpretations, by identifying more 

than one contour representation from the edge point trellis, for example, the set of “n” 

best paths through the trellis.

The third idea would be to develop an adaptive thresholding strategy with the intent of 

removing the user interaction currently required for setting the DTC classification 

thresholds.
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Appendix A 

mtrack Software Utility

A .l Introduction

A software utility known as, mtrack, was developed and maintained during the course 

of this research program and forms the functional interface between an operator and a 3D 

image to be segmented. This software was written in MATLAB® [1] and consists of 

several menus to permit selection of a 2D slice, extraction of edge points, initialization of 

track parameters, track initiation, and results display. A database is formed to store 

contour and surface results for future access. Interfaces to permit manual line drawing as 

well as the pruning and linking of contour fragments are also included. This provides a 

combination of automatic and manual features that allows an operator to perform a 

complete, semiautomatic segmentation from a given 3D MR or CT image. The utility 

presently consists of over 5000 lines of Matlab code held within 190 files.
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The following sections further describe the menu interfaces that were developed for 

this utility. Note that the terms track and contour are used interchangeably although a 

contour is generally taken to be a closed curve whereas a track may not be closed.

A.2 Main Panel

The utility is invoked from the Matlab command window as:

»  mtrack(M)

where M is a 3D image stored in a Matlab variable. After this command is executed, the 

main panel, figure A-l, is displayed allowing the operator access to a number of built-in 

functions. A selected slice from the image, M, is also displayed in the Image Display 

window.

A typical usage sequence would be to start the utility, load data from a previous 

session, if any, select the desired slice, perform edge detection on the selected slice, select 

one or more starting points, and initiate the tracking operation via the large Track button 

at the bottom of the panel. A track will be formed for each starting point that has been set.

Subsequently, manual editing of the tracks can be performed where tracks can be 

pruned, linked, or deleted, and manually drawn contours or contour fragments can be 

inserted, as desired. Contours can then be assigned labels to group them into surfaces and 

the surfaces can then be displayed or extracted into a separate data file. Editing is 

generally performed on a designated, primary track. Any existing track or contour can be 

selected to be the primary.
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A.2.1 Slice

One 2D image slice can be displayed. The slice number can be selected by entering the 

number in the upper right hand comer of the main panel either directly into the display 

box or using the +/- buttons for unit increment and decrement within the 3D image data.

A.2.2 Data File

The Data File feature in the main panel can be used to load, save, or merge contour 

data. To activate this feature, the filename is entered, the Load, Save, or Merge mode is 

selected and the Apply button is pressed. A confirmation dialog box is then employed for 

action verification. Load will overwrite any existing data, Merge will combine data from 

the specified file with any existing data, and Save will write existing data to the specified 

file as a Matlab workspace, suitable for loading through the Load mode at a later time. If 

the full pathname is not specified in the file name, paths are interpreted relative to the 

existing Matlab directory setting.

A.2.3 Edit Mode

These selections control the interpretation of mouse activations within the Image 

Display. There are five primary options in the left column and a set of secondary options 

to the right. When a primary option is selected, the secondary options will change to 

match. Each primary option is described below.

A.2.3.1 Edges

The Edges option allows the user to manually remove and restore edge pixels within 

the edge data. The corresponding secondary options are Delete and Add. Edge detection 

must first be performed and then the edge pixels can be viewed by selecting View-Edges.
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When the Delete secondary option is selected, the left mouse button can be used in the 

Image Display to delete edge pixels. When the Add secondary option is set, the same 

mouse activation is used to restore edge pixels. Note that it is not possible to add edge 

pixels where none exist, the operations are limited to removal and restoration. Locations 

of deleted edge points can be seen by activating the View-Edge Edits option.

A.2.3.2 Start Points

The Start Points option allows the user to manually add or delete a starting point in 

preparation for an automatic tracking operation. To add a starting point, the Add 

secondary option is selected, the cursor is moved to the desired point in the Image 

Display, and the left mouse button is activated. The strongest edge point within the 

nearest edge pixel will then be marked as a starting point. To remove a starting point, the 

Delete secondary option is selected, the cursor is moved to the pixel containing the 

starting point and the left mouse button is activated. The corresponding starting point will 

be removed. Note that edge detection must precede start-point selection.

The button labeled All that appears along with the secondary options can be used to set 

starting points for all visible edge pixels. This option is not typically used, however. 

A.2.3.3 Tracks

The Tracks option can be used to manually split, prune, and link tracks into contours. 

The secondary options are Select, Delete, Split, and Link. These operations can only be 

performed on existing tracks. A track can be selected as the primary track to highlight it 

for a subsequent operation by setting the Select option and then left clicking within one 

of the pixels corresponding to the desired track. Track pixels are made visible by the 

View-Track Pixels option. The colour of the track pixels will be updated to indicate that

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the selected track has become the primary track. Deletion of any track can be performed 

by selecting the Delete option and then left clicking within one of the track pixels. A 

track can be split at a desired point by setting the Split option and left clicking within the 

track pixel closest to the desired point. Also, two tracks can be linked by first selecting 

one of the two using the Select option, then setting the Link option and clicking within 

any one of the track pixels of the second track. The closest end points will be joined. The 

UN button can be used to undo track links and will unlink all components of the primary 

track.

A.2.3.4 Zoom

The Zoom option can be used to zoom the Image Display. The secondary options are 

In and Out and control the direction of the zoom. Zooming in is accomplished by setting 

the In option and left clicking within the Image Display. The image will be zoomed in 

and the cursor point will be made the centre of the display. Zooming out is accomplished 

by first setting the Out option and then left clicking within the Image Display.

A.2.3.5 Manual

The Manual option allows the formation and editing of manually defined tracks. A 

fully-manual segmentation can be performed using this option or, alternatively, manual 

tracks can be inserted to link two automatic tracks in order to produce closed contours. 

The secondary options are New and Edit, although New is assumed if no manual tracks 

currently exist. The New option is used to start a new track and the Edit option is used to 

begin editing of the primary track. Once one of these options has been chosen, the 

secondary options become Add, Delete, and End. Selecting the End option will terminate 

the editing phase. A manual track can be added by selecting the Add option and setting
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the cursor at the desired starting point for the track within the Image Display. Pressing 

and holding the left mouse button followed by movement of the mouse will initiate 

automatic collection of data points representing a line. Releasing the mouse button stops 

the automatic collection of data points for the manual track. A single additional point can 

be added by pressing and releasing the mouse button once or, alternatively, press and 

hold with subsequent mouse movement for multiple points. The points will be added to 

the nearest end of the primary track. Individual points can be removed by selecting the 

Delete option and left clicking on the track pixel to be removed. Note that, if desired, the 

entire manual track can be removed using the Tracks-Delete option.

A.2.4 Pan

After the zoom feature has been activated, the display window can be adjusted up (U), 

down (D), left (L), or right (R) through the Pan facility. The slider located directly under 

these buttons controls the pan step size.

A.2.5 View

The View selections control the display of graphical components in the Image Display. 

The Image option can be used to display the image, Edges controls display of the edge 

pixels determined by the edge detection operation, Start Points controls the display of the 

starting points that have been set, Tracks controls the display of the filtered track, shown 

as a solid line linking the edge points that are part of the track, Track Pixels controls the 

display of the pixels containing the edge points for a track, Track Dots controls the 

display of the subpixel edge points that define a track, Edge Edits controls the display of 

edge pixels that were removed using Edit Mode-Edges, Top/Bottom controls the display
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of a short line between the top-of-slope and bottom-of-slope coordinates on each side of 

the edge for edge points within the primary track, and Intensity controls the display of the 

intensity variables, if  any, of the primary track on a graph within a separate window.

A.2.6 Threshold Control

Thresholds can be applied to the raw image intensity, or to the edge image. Simple 

saturation thresholds are used. For the intensity thresholds, image intensity values below 

the lower threshold are shown as black and intensity values above the upper threshold are 

shown as white. Intensity values between these limits are scaled for display. If the upper 

threshold is made less than or equal to the lower threshold, a binary image results. The 

threshold values displayed in the edit boxes below the sliders are fractions of the 

maximum intensity level in the selected 2D image.

For the edge thresholds, edge points with gradient levels below the lower threshold or 

above the upper threshold are removed from consideration. All other edge points are 

available for use by the tracking system. The threshold values displayed in the edit boxes 

below the sliders are fractions of the maximum gradient intensity in the selected image.

A.2.7 Edge Detection

Edge detection is performed on the image produced after application of the intensity 

thresholds of the Threshold Control feature. If no thresholds have been set then the edge 

detection is performed on the raw image. There are two parameters. Parameter Sigma sets 

the size of a Gaussian filter used to smooth the image prior to gradient extraction, and 

Directions sets the number of directions at which the gradient is measured for each pixel. 

Once these parameters have been selected, edge detection can be initiated by selecting the
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Detect pushbutton. The edge data often requires substantial memory resources and this 

data can be discarded by selecting the Clear pushbutton. This will clear the edge data for 

the slice that is currently displayed.

A.2.8 Colours

This feature allows the user to set the colours of graphical components of the Image 

Display as combinations of red, green, and blue levels, each ranging from 0 to 1, as 

shown in figure A-2. Two predefined colour schemes are available from the Colour 

Scheme drop-down menu for quickly reverting to default colours.
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Figure A-2. Colours Menu
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Figure A-3. Tracking Parameters

A.2.9 Track Parameters 

A.2.9.1 Set

The measurement noise variances, dynamics parameters, and association gate size 

constants can be set in this menu, shown in figure A-3, which is displayed when the 

Track Parameters-Set pushbutton is activated from the Main Panel. The Position 

Variables correspond to spatial dimensions and Intensity Variables to intensity 

dimensions in the tracking process. The Top and Bottom intensity variables can be 

included or excluded by appropriately setting the corresponding checkbox. Track 

parameters are set and stored on a per track basis. The parameters displayed in the menu 

are those of the primary track. Parameter settings are captured when the track is formed

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



so settings can be modified just prior to a tracking operation and these settings will then 

be applied to the new track.
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Figure A-4. Threshold Classification Menu

A.2.9.2 Classify

Classification parameters can be set by activating the Track Parameters-Classify 

pushbutton on the Main Panel which will display the classification menu. Classification 

can be performed using thresholds, or using a predetermined classification stored in a set 

of images in files having Analyze 7.5 format. Switching from one to the other can be 

performed by selecting the appropriate Method option and then specifying the 

appropriate parameters in the resulting menu. Alternatively, the classification feature can 

be turned off by selecting the Method-None option. Classification is set on a per track

Thresholds 

min -rise

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



basis. The menu for Threshold classification is shown in figure A-4 and that for 

classification data stored in Analyze format files is shown in figure A-5.

Threshold classification is performed by applying two thresholds, an upper threshold 

and a lower threshold. All pixel intensities below the lower threshold are displayed as 

dark and all those above the upper threshold are displayed as white. A linear stretch 

between 0 and 1 is performed for pixel intensities between the two thresholds. This forms 

a classification image. The numerical threshold values in the edit boxes below the sliders 

are fractions of the maximum intensity in the image. The source image for the 

classification can be the raw image or the image filtered by a Gaussian filter with 

characteristic width specified in pixels.

Classifications from sources like the FAST algorithm used in chapter 5 can be utilized 

in place of the threshold classification when the classification data are stored in Analyze 

7.5 formatted files. These classifications typically correspond to three classes, Gray 

matter, White matter, and Cerebrospinal fluid. Three filenames can be specified and these 

are entered without file extensions. Each classification can be used for the Top or the 

Bottom intensity feature, both, or neither (unused). Thresholds can be applied to further 

refine the classification images. It is also possible to invert the classification images since 

the high intensity side of the edge (Top) must be matched with high intensity in the 

classification image for proper operation.
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Figure A-5. Analyze Format Classification Data

A.2.10 Surfaces

The surfaces display can be enabled or disabled using the checkbox under the Surfaces 

section on the main panel. Contours from multiple slices can be organized into surfaces 

by applying a text label to each contour in the surface. This is done using the Label 

feature in the Surfaces section of the main panel. The label can be defined as any set of 

characters and, once used, is available from a drop-down list for easy access. The label 

can be applied to the primary track in the Image Display by setting the Single Track 

checkbox prior to activating the Apply pushbutton. Alternatively, an entire surface can be 

relabeled by selecting the Surface checkbox prior to applying the label change, in which
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case the labels of all contours having the same label as that of the primary track will be 

modified. The surfaces displayed can be exported to a Matlab workspace for off-line 

processing using the Export feature by specifying a filename and selecting the Save 

pushbutton.
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Figure A-6. Surface Parameters

Selecting the Set pushbutton next to the Display checkbox will produce the menu 

shown in figure A-6. This menu allows the user to set a number of parameters to control 

the surfaces display. At the top, the voxel size in the image can be set along with the 

voxel size in the surface display. Adjusting the surface voxel size allows the use of a 

coarser or finer grid for surface formation, as compared with the image resolution. The 

voxel dimension orthogonal to the plane of the MR slices cannot be changed.
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The surface display is formed by first discretizing all 2D contours in the surface and 

then displaying these contours as a discretized surface. Two surface interpolation 

methods are available, Matlab’s isosurface produces a smoother display than the Discrete 

Voxels selection in which the surface is drawn as a set of binary voxels. Alternatively, 

the contours can be displayed without surface interpolation by unselecting both of these 

interpolation methods.

Selecting Open in the Surface Z-Limits section of the menu causes the surface to be 

displayed such that the contours in the slices at the extremes of the Z dimension are not 

filled. This gives the effect of an open surface and in some cases may allow visualization 

of the inside of the surface. Setting the Flip option reverses the order of the slices in the 

image slice dimension (Z), permitting the surface to be displayed from the opposing 

viewpoint although it should be recognized that this action also reverses left and right in 

the displayed surfaces. Example surfaces are shown in figure A-7. The surface can also 

be zoomed and rotated using the appropriate features in the Matlab toolbar at the top of 

the display.

Surfaces to be displayed must be selected in the Select Surfaces drop-down menu. 

This drop-down menu gives a list of all surface labels. Only those surfaces whose labels 

have been selected are displayed and only those surfaces selected for display will be 

exported when the Export feature is invoked.
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Figure A-7. Surface Display Examples.
Corpus callosum example from chapter 5. (a) contours only; (b) isosurface display; 
(c) isosurface display with z-axis reversal.

A.3 References
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