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Abstract

With the rapid development of mobile robots in practical applications, single robots

are generally unable to carry out complex tasks in a large-scale dynamic environ-

ment. Therefore, cooperative robotics have grown in recent years as a new research

branch that focuses on the problem of coordinating mobile robot teams, such as

exploration of multi-robots and coordination of robotic networks. In multi-robot

system, the accurate localization of each robot in the team is essential for a success-

ful operation. Existing cooperative localization approaches neglect some realistic

limitations of mobile robots, such as battery capacity and communication band-

width. Especially, this issue is important when the number of sensors, actuators,

and robots in the team increases. To this end, event-triggered sampling, as an al-

ternative to time-triggered mechanism, has been employed. Using this framework,

the energy consumption of sensors can be reduced and the average updating period

of the actuators will be larger. In this aperiodic paradigm, the fundamental idea

is that data is sent through the channel only when needed. Mathematically speak-

ing, the system components do not exchange information unless a pre-set triggering

condition is satisfied.

The first part was motivated by these realistic limitations of mobile robots and

it suggests a new approach for cooperative localization based on event-triggered

mechanism. Motivated by the aforementioned discussion, our objective is to design

and implement the event-triggered cooperative localization for a group of e-puck2

robots. Our theoretical analysis and experimental results show that we achieve a

tradeoff between localization accuracy and communication resources. The second

part addresses the problem of decentralized event-triggered cooperative localization
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(DECL) for a group of mobile robots in the presence of time delays. We introduce

a DECL algorithm for multi-robot systems under time delays. We consider two

different scenarios (i) time-stamped (ii) non time-stamped that leads to different

DECL algorithms. Then, we provide the stochastic boundedness of filtering error

considering bounded random delays. We show that if the delay due to multi-robot

communication is sufficiently small, then by choosing proper event-triggering param-

eters, the filtering error and covariance remain bounded while reducing the transfer

of information. In third part of thesis, we study the problem of a secure decentral-

ized event-triggered cooperative localization (SDECL) for a team of mobile robots

in an adversarial environment, where the objective is to perform localization in the

presence of a malicious attacker. We consider a scenario in which the attacker is

able to attack the communication channels between the exteroceptive sensors and

filter of the robot and between two robots independently. In forth part of thesis, we

investigate the problem of event-triggered consensus control for a group of mobile

robots based on cooperative localization (CL). In our framework, each robot employs

the position estimates from CL to jointly achieve consensus. An event-triggered

mechanism based on a mixed-type condition is adopted in order to reduce the fre-

quency of control updates and unnecessary transmission of information between

system components. Our goal is to design an event-triggered consensus controller

based on CL such that the closed-loop system achieves the prescribed consensus

in spite of inaccurate sensor measurements. We provide sufficient conditions that

guarantee the desired consensus using eigenvalues and eigenvectors of the Laplacian

matrix. In last part of thesis, we investigate the secure consensus control problem

for multi-robot systems with event-triggered communication strategy under aperi-

odic energy-limited denial of-service (DoS) attacks, where DoS attacks prevent the

transmission of information between robots. Based on above discussion, our goal

is to design a secure control scheme based on cooperative localization (CL) with

event-triggered mechanism and investigate under what conditions the N robots can

move cooperatively to the desired consensus position despite the presence of DoS

attacks.
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Chapter 1

Introduction

I Background

In recent years, multi-robot systems (MRSs) have received growing attention due to

their significant advantages in accomplishing complex tasks compared with single

robots, especially in hazardous and unknown environments and applications such as

surveillance, monitoring, search, location, etc [111]-[112]. Critical to the proper op-

eration of a multi-robot team is the reliable localization of each robot in the group,

including both its position and orientation. Since these variables are very difficult

or impossible to measure in any practical application, the position and orientation

of each robot need to be estimated using cooperative localization (CL), a problem

that presents significant challenges [62]. Cooperative localization requires informa-

tion exchange between robots in the team. As the number of sensors, actuators, and

robots in the team increases, the amount of information that needs to be transferred

in real-time increases exponentially [62]. Two problems associated with this increase

are (i) energy consumption, and (ii) bandwidth use. Energy consumption is always

important when using battery-operated mobile devices and can be critical when

operating small robots with limited energy resources [62]. Similarly, bandwidth

constraints may impose an upper limit on communication rates thus compromising

system performance. An increase in communication exchange between agents may

result in packet losses if the number of packets in the transmission is greater than the

available bandwidth. Thus, the the frequency at which sensors operate needs to be

adjusted to not exceed the available bandwidth [62]. This inspires us to consider in-

termittent communication between neighboring robots. To this end, event-triggered

sampling, as an alternative to the time-triggered mechanism, has been employed.

Using this framework, the energy consumption of sensors can be reduced and the
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average updating period of the actuators will be larger. In this aperiodic paradigm,

the fundamental idea is that data is sent through the channel only when needed.

Mathematically speaking, the system components do not exchange information un-

less a pre-set triggering condition is satisfied. The main problem is then to design the

event-triggered cooperative localization in a way that the desired stability and/or

performance is achieved, a problem that is nontrivial and more difficult compared

with the periodic counterpart. This is also more challenging when practical issues

such as packet dropouts and communication delays happen during data transmis-

sion through the communication channel. Cyber attacks are an increasing threat

to the security of networked multi-robot systems. More specifically, communication

between different robots can be affected by injecting malicious packets and block-

ing messages through communication channels, which creates another challenge for

multi-robot cooperative localization. Therefore, this problem requires designing co-

operative localization algorithms that can recover the states of multi-robot system

from corrupted measurements.

One of the fundamental problems studied in the control of MRSs is the so-called

consensus problem. The consensus problem refers to the development of control pro-

tocols for a group of robots equipped with onboard sensors to reach an agreement

on a task of interest, such as following a trajectory of reaching a position, using only

local interactions. In recent years, the consensus control problem of multi-agent

systems (MASs) has been the subject of much research [64]-[75]. Consensus control

protocols require reliable localization of each robot in the team. In most MRSs

applications, each robot typically employs its own proprioceptive sensors to per-

form self-localization. These sensors, however, rely on physical measurements such

as wheel dimensions, etc, and therefore accumulate error over time, and therefore

are not sufficiently accurate to achieve precise consensus. The Global Positioning

System (GPS) and simultaneous localization and mapping (SLAM) can provide

significantly better localization. However, the use of GPS can be challenging in

cluttered urban environments, open areas, and an indoor applications [33]. Coop-

erative localization (CL) can provide a good alternative solution. In CL, a team of

robots improves localization using relative observations between robots and the flow

of positioning information. In this approach, each robot equipped with exterocep-

tive sensors can local positioning with other robots in order to improve localization.

Different estimation approaches for the CL problem have been presented in [1]-[35].
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CL methods have been also applied to the consensus control problem, showing much

improved results [96]. While the use of cooperative localization can improve the lo-

calization of robots, the use of CL does bring some additional complexity into the

system and consequent problems. Two of those problems worthy of mention are

additional communication between robots, which may lead to excessive energy con-

sumption, and the potential of cyber attacks interrupting the flow of communication

and thus the ability to benefit from cooperative localization. The first problem can

be critical in battery-operated robots with limited power range, while the second is

common to all applications that work using a communications network.

II Literature review

II.1 Cooperative Localization

Precise localization is one of the key criteria for mobile robot autonomy [1]. Indoors

and outdoors, mobile robots need to know their exact position and orientation (pose)

in order to accomplish their required tasks. There have been several approaches to

the localization problem utilizing different types of sensors [2] and a variety of tech-

niques (e.g., [3]–[5]). The idea of exploiting relative robot-to-robot measurements

for localization can be traced back to [6], where members of a mobile robotic team

were divided into two groups, which alternated remaining stationery as landmarks

for the others. Later, [7] removed the necessity of some robots to be stationary and

also introduced the term CL to refer to this localization technique.

CL technique has attracted much attention among researchers because of its

performance to improve localization accuracy in multi-robot Systems. Most of the

studies found in the literature address one or more of the following issues:

• Multi-robot cooperative localization. Multiple approaches have been pro-

posed, including dead reckoning (DR), extended Kalman filter (EKF), max-

imum a posteriori (MAP) estimator, simultaneous localization and mapping

(SLAM), simultaneous localization and object tracking based on particle fil-

ters, split covariance intersection filter, robust extended H∞ filtering (REHF)

and Unscented Kalman filter.

• Relative measurement mechanism: including how the number of robots affects

localization accuracy.

• Finite-range sensing and communication problems.
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Roumeliotis et al. [8] presented a distributed multi-robot localization prob-

lem in which they decompose the extended Kalman filter (EKF) into a number of

filters such that each robot can perform the prediction step of the EKF locally.

They showed how the propagation of the covariance matrix can be factored using

singular-value decomposition such that each robot individually can compute the

factored terms using their own odometry data. The factored terms only require

to be combined before a measurement update, which then requires full network

connectivity. Nerurkar et al. [9] performed cooperative localization using a dis-

tributed maximum a posteriori (MAP) estimator. Kia et al. [10] proposed a novel

distributed CL algorithm in which each robot localizes itself by local dead reckon-

ing, and corrects its pose (position and orientation) estimate whenever it receives a

relative measurement update message from a server. The server only needs to com-

pute and transmit update messages when an inter-robot measurement is received.

Madhavan et al. [11] propose a framework for localization and terrain mapping for

a team of robots operating in uneven and unstructured environments. For cases

where all robots of the team may not have absolute positioning capabilities, they

showed how cooperative localization and mapping can be performed using robots

with heterogeneous sets of sensors. Howard et al. [12] investigated the performance

of multi-robot simultaneous localization and mapping (SLAM), where each robot

is unaware of the other’s initial pose and begins state estimation in a decentralized

manner. When robots detect each other for the first time, their individual maps are

merged into a common map. The mapping process then continues as robots trans-

mit new observations to each other. Ahmad et al. [13] present a unified framework

for multi-robot cooperative simultaneous localization and object tracking based on

particle filters. This approach is scalable with respect to the number of robots in the

team. Li et al. [14] propose a new cooperative multi-vehicle localization approach

using split covariance intersection filter. The basic idea of the proposed method is

that each vehicle keeps an estimate of a decomposed group state and this estimate

is shared with neighboring vehicles; the estimated state of the decomposed group is

updated with both the sensor data of the ego-vehicle and the estimates sent from

other vehicles. A split covariance intersection filter is used for data fusion purposes.

Kim et al. [15] propose cooperative localization and sea currents estimation using

multiple Autonomous Underwater Vehicles (AUVs). The authors acknowledge that

dead reckoning (DR) is not reliable for localization due to error accumulation. To
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reduce error accumulation, they propose a navigation algorithm that allows multiple

AUVs to simultaneously estimate their navigation states and unknown sea currents.

They propose the combination of an Unscented Kalman filter and a linear Kalman

filter for joint estimation of the navigation states and unknown sea currents. Zhuang

et al. [16] proposed a robust approach for multi-robot cooperative localization based

on the Metric-based The iterative Closest Point (MbICP) algorithm could provide

relative observations more accurately and conveniently, even in a dynamic or semi-

structured indoor environment. To deal with the inherent non-linearities in the

multi-robot kinematic models and the relative observations, the authors have de-

veloped a robust extended H∞ filtering (REHF) approach, which could handle the

non-Gaussian process and measurement noises with respect to robot navigation in

unknown dynamic scenes.

Rekleitis et al. [17] investigated how sensing mechanisms and the number of

robots influence localization performance with multiple robots. The sensing mech-

anism included range only, bearing only, range and bearing, and full pose sensing

(range, bearing, and relative orientation). The results showed that the full pose

measurement mechanism gives slightly better results than the range and bearing

measurement mechanism, as well as the range-only measurement mechanism. In-

creasing the number of robots also indicated better localization results. However,

bearing-only measurement mechanisms performed poorly, regardless of the number

of robots used. Roumeliotis et al. [18] analytically quantified the benefit of coop-

erative localization. They showed how the number of robots can affect localization

performance. Furthermore, they discovered that increasing the number of robots

reduced the uncertainty of localization. Safavi et al. [19] provide a linear distributed

algorithm to localize an arbitrary number of mobile robots moving in a bounded

region. They assume that each robot can measure a noisy version of its motion as

well as its distance to the neighboring nodes.

To process every inter-agent relative measurement, the robots need to commu-

nicate with each other. The objective of a decentralized algorithm is to eliminate

the need for all-to-all communication in order to reduce the communication bur-

den. The communication cost however can still be high if the robots take mea-

surements from every robot in their measurement zone. The problem of compu-

tation/communication cost reduction via smart management of inter-robot relative

measurements has been studied in [20]–[21]. One of the approaches used is to de-
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termine the optimal measurement frequency given resource constraints [20], [21].

Wanasinghe et al. [22] present a framework to address the finite-range sensing prob-

lem of leader-assistive localization. The proposed framework consists of a method

to virtually enhance the leader robots’ sensing range, and a novel graph search al-

gorithm to avoid possible double counting of the same information when multiple

leader robots attempt to provide the localization data to a given child robot. It was

shown in [5] that given a limited set of relative measurements from a network of

robots in a formation, localizing the robots (and determining the correct formation)

is an NP-hard problem. The methods employed in [20] and [21] assume a fixed sens-

ing topology and utilize covariance upper bound analysis to determine the relative

measurement frequency in the team. In these methods, the steady-state covariance

upper bound obtained by the Discrete-time Algebraic Riccati Equation (DARE) and

the corresponding Continuous Algebraic Riccati Equation (CARE). The observabil-

ity of the system is necessary for the convergence of the Riccati recursion [20], [21],

which means there must be at least one robot accessing absolute positioning infor-

mation such as GPS signals or known landmarks [23]. The methods employed in

[24]-[26] consider the cost management in CL via measurement scheduling, in which

robots get restricted to take only a certain number of relative measurements but

they have to choose their landmark robots in a way that the positioning uncertainty

is minimized. It is known in the literature that the optimal measurement scheduling

for CL is an NP-hard problem [26], [27]. Therefore, the main effort is on proposing

sub-optimal solutions with reasonable computational complexity. The studies in

[24], and [25] use some form of greedy algorithms to perform the landmark robot

selections. Sullivan et al. [28] investigate the CL algorithm under varying sensor

qualities (position accuracy, yaw accuracy, sample rate), communication rates, and

a number of robots for both homogeneous and heterogeneous multi-robot systems.

Zhu et al. [29] proposed two decentralized multi-agent CL algorithms to guarantee

filter consistency and reduce communication costs. In the first algorithm, they con-

sider unknown inter-agent correlations via an upper bound on the joint covariance

matrix of the agents. In the second method, they employ an optimization frame-

work to estimate the unknown inter-agent cross-covariance matrix. Trawny et al.

[30] proposed quantizing measurement mechanism to reduce the communication cost

of CL algorithm. By quantizing measurements to 4 bits, results were practically the

same compared to using actual measurements in a MAP estimator. Leung et al. [31]
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present a decentralized state-estimation algorithm guaranteed to work in dynamic

robot networks without connectivity requirements. They confirm that a robot only

requires to consider its own knowledge of network topology to produce an estimate

equivalent to the centralized state estimate whenever possible while ensuring that

the same can be carried out by all other robots in the network.

Recent research in networked controls and cyber-physical systems has shown

that event-triggered algorithms are an attractive tool capable of significantly re-

ducing communication overhead in the area of distributed control and estimation

problems. The main idea is that, unlike typical periodic (time-triggered) control

and estimation algorithms that require transmission at regular time intervals, event-

triggered algorithms require the transmission of information whenever certain events

happen, usually if some signal related to states of interest fall outside a certain

threshold. Therefore, information is only communicated when it is required and

control/estimation routines can still be performed in the absence of explicit infor-

mation being sent/received by processors in the network [32]. Yan et al. [33], work-

ing with robots with limited battery life and communication bandwidth, presented

a novel method based on relative measurement scheduling that allows each robot

to choose its landmark robots locally in polynomial time. The authors claim their

method does not assume full-observability of the CL algorithm, nor does require

inter-robot communication at the scheduling stage. Zhang et al. [34] address the

problem of distributed event-triggered state estimation in sensor networks with the

send-on-delta scheme on both the sensor-to-estimator and estimator-to-estimator

channels. Liu et al. [35] investigate a distributed event-triggered filtering prob-

lem using the send-on-delta protocol in which the sensor node transmits the data

to its neighbors only when the local innovation violates the triggering condition.

Recently, Ouimet et al. [32] presented a Covariance Intersection (CI)-based cooper-

ative localization algorithm for a team of unmanned robotic vehicles in which agents

only send measurements to their neighboring agents when the expected innovation

for state estimation is higher than a certain threshold. The authors consider an

”Innovation-Level-Based” event-trigger condition, based on the difference between

the current measurement and the predicted measurement. The limitation of this

triggering condition, however, is that requires feedback communication from the lo-

cal filter to the sensor in order to obtain the predicted measurements. A consequence

of this approach is that it suffers from network-induced imperfections such as delays
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and packet dropouts. We consider a different approach and employ a mixed-type

event-triggering condition in which feedback communication from the estimator is

not needed.

II.2 Cooperative localization under time delays

Time delays are inherent in multi-robot systems, arising from multiple factors, in-

cluding communication delays [36]-[38], event-detecting delays, [39], and camera

latency and image processing delays in vision-based systems [36]. Since CL re-

lies on communication with agents via a network, communication delays have a

significant effect on time delays [40]. Therefore in this work, we mainly focus on

communication delays that occur due to limited bandwidth in the network. Also,

communication delays are most likely to happen randomly due to the unpredictable

nature of stochastic factors such as latency, percentage of out-of-ordered packets

in the communication channel, and re-transmitted packets [40]. The majority of

the literature on cooperative localization to date considers ideal communication net-

works, where the inter-agent packet data is transmitted instantly, and only a few

scattered results consider networked-induced time delays. Fu et al. [41] consider

the problem of communication delays and packet loss for Unmanned Aerial Vehicle

(UAV) and propose two separate CL algorithms assuming a one-step random delay.

Zhang et al. [42] investigate CL for a leader–follower problem under time delays.

The authors compensate the effect of communication delays to improve localization

accuracy. Phung et al. [43] consider the localization problem of mobile robots in

the presence of communication delays and packet losses. Shan et al. [44] propose

a particle filter to track multiple agents cooperatively considering time-delayed ob-

servations. Yao et al. [45] investigate the problem of CL for Multiple Autonomous

Underwater Vehicles (MAUVs) in the presence of communication delays. Zhang et

al. [46] investigate the problem of distributed Kalman filtering for a consensus of

leader-following in the presence of communication delays. Most of the aforemen-

tioned works assume that the local filter in each robot receives sensor measurements

periodically to update the pose estimate. However, periodic sampling may result

in unnecessary data transmission with corresponding network congestion, especially

when the robots have limited communication resources. To overcome this limitation,

event-triggered sampling has emerged as an alternative to time-triggered or periodic

sampling.
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II.3 Related works on secure state estimation against cyber attacks

Most of the literature on the subject considers the problem of secure state estimation

against cyber-attacks for single-agent systems. Mo et al. [47] consider the problem

of secure state estimation against integrity attacks (or FDI attacks) where the at-

tacker intentionally manipulates the sensor measurements. Fawzi et al. [48] study

the problem of secure estimation and control for linear systems where the attacker

hijacks the sensor measurements and actuators. The authors design a resilient state

estimator and a state-feedback controller such that the state of a system is recovered

accurately and improves the system’s resilience against deception attacks. Shoukry

et al. [49] consider a state reconstruction for discrete-time linear systems under

sparse sensor attacks/noise. Li et al. [50] study the problem of remote state estima-

tion where a malicious attacker launches a jamming signal on the communication

channel between the sensor and remote estimator. Zhang et al. [51] propose an

optimal DoS attack scheduling strategy where the attacker decides when or where

to attack the communication channel in order to degrade the performance of the

remote estimator. Su et al. [52] investigates malicious attack detection and secure

state estimation for CPSs with sensor attacks. Lin et al. [53] derive an optimal

estimator for CPSs whose communication channels are subject to mixed DoS and

FDI attacks.

Unlike [47]-[53] which focus on single agent systems, some related works consider

secure state estimation for MASs. Liu et al. [54] studies event-triggered distributed

state estimation for discrete-time linear systems with multiple communication chan-

nels under DoS attacks. Using the covariance intersection fusion framework, the

authors designed distributed Kalman filters resilient against DoS attacks. Liu et

al. [55] further extend the results for nonlinear systems and design resilient event-

triggered distributed state estimation filters against DoS attacks where the attack

duration is bounded. Chen et al. [56] address the distributed resilient filtering prob-

lem for power systems against DoS attacks. Chen et al. [57] consider a saturated

innovation update mechanism for resilient distributed state estimators against sen-

sor attacks. An et al. [58] study the problem of distributed secure state estimation

for discrete-time linear systems under sparse sensor attacks. The authors also imple-

ment the proposed algorithm over a multi-agent network. Lu et al. [59] investigate

secure state estimation of MASs with both faulty and malicious agents.
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Different from [54]-[59] where each agent reconstructs the states without coop-

eration in the presence of attacks, few works consider the secure cooperative state

estimation under malicious attackers. Su et al. [60] consider resilient cooperative

state estimation in unreliable multi-agent networks. A gradient descent scheme is

adopted for each agent based on local measurements. In this approach, each agent

transmits its updates to the other agents in the neighborhood. Lu et al. [61] address

distributed secure state estimation where a group of agents estimates the states co-

operatively under malicious attacks. A distributed switched gradient descent scheme

is adopted to reconstruct the states in the presence of malicious nodes.

II.4 Related works on decentralized event-triggered cooperative lo-
calization in multi-robot systems

The event-triggered cooperative localization problem for multi-robot systems has

received some attention. Ouimet et al. [32] propose a decentralized cooperative lo-

calization algorithm using ETM to reduce unnecessary packets exchanged between

agents. Tasooji and Marquez [62] propose a new decentralized event-triggered coop-

erative localization (DECL) algorithm for a group of mobile robots where the objec-

tive is to perform localization with limited communication resources and study the

effect. Reference [63] extends the results and considers the effect of random delays

in the event-triggered cooperative localization.

II.5 Consensus control in multi-agent systems

Some recent research has focussed on the effect of noise affecting consensus con-

trol protocols. Cheng et al. [64] propose an average consensus control for double-

integrator multi-agent systems (MASs) with measurement noises. Li et al. [65]

consider the problem of distributed consensus control affected by relative state-

dependent measurement noises. Chen et al. [66] investigate robust consensus of

MASs in the presence of transmission nonlinearity and noises by using a nonsmooth

Lyapunov function. Wang and Zhang [67] design a new consensus protocol using

Kalman filtering and information fusion to handle the system and measurement

noises. Wang et al. [68] investigate the problem of bounded consensus control for

linear MASs with both additive system and communication noises. The authors

make use of Kalman filters to estimate the state of neighbor agents. Ma et al. [69]

design an output-feedback controller for a class of nonlinear discrete time-varying
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stochastic MASs. The authors establish a framework based on recursive linear ma-

trix inequalities to achieve the desired consensus performance satisfying both H∞

and mean-square consensus. Wang et al. [70] focus on stochastic consensus con-

trol and performance improvement of a group of agents with linear or linearized

dynamics over Markovian randomly switching topologies. Li et al. [71] investi-

gate the problem of bounded consensus using event-triggered control for stochastic

MASs with communication delay, as well as process and measurement noise. Cao

et al. [72] address the event-triggered consensus of stochastic MASs. The authors

develop a stochastic convergence analysis technique to achieve the desired consen-

sus. Zou et al. [73] investigate the problem of event-triggered consensus tracking

for a class of stochastic nonlinear MASs, where the agents’ dynamics are subject to

arbitrary and asynchronous switchings. Ding et al. [74] consider the problem of the

event-triggered consensus control for a class of discrete-time stochastic MASs with

state-dependent noises. The authors consider an absolute triggering condition and

propose a simultaneous design of the consensus control gain and threshold of the

triggering condition by solving a set of parameter-dependent matrix inequalities. Ma

et al. [75] consider an event-triggered mean-square consensus control problem based

on the triggering threshold matrix for a class of discrete time-varying stochastic

MASs under sensor saturation. Ge et al. [76] investigate the problem of leader-

following consensus for networked MASs in the presence of limited communication

resources and unknown-but-bounded process and measurement noise. The authors

develop a new event-triggered scheme based on a time-varying threshold parameter

to schedule the transmission of sensor measurements through the communication

network.

II.6 Secure consensus control in multi-agent systems under DoS
attacks

Although most of the existing results on the subject consider the problem of design-

ing secure control in the presence of DoS attacks for single-agent systems [85]-[88],

some related works studied secure consensus control for MASs against DoS attacks.

Feng et al. [76] introduce an event-based secure control framework for linear MASs

under DoS attacks to achieve secure consensus under certain conditions for the du-

ration and frequency of attacks. Xu et al. [77] adopt an input-based triggering

approach to investigate the secure consensus problem in MASs under DoS attacks.
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The authors propose an event-triggered control scheme based on the estimated rel-

ative state for a secure consensus problem. Yang et al. [78] study the problem of

distributed secure consensus control for linear leader-following MASs with an event-

triggered mechanism under DoS attacks. The authors consider an observer-based

controller during the DoS attack instead of setting a control signal of either zero or

constant. Xu et. al [79] investigate the problem of event-triggered secure consensus

for MASs subject to periodic energy-limited DoS attacks. The authors develop the

event-triggering condition based on two different combination measurements corre-

sponding to leader–followers, and follower–followers. Xu et. al [82] develop a fully

distributed framework to investigate the cooperative behavior of MASs under DoS

attacks launched by multiple adversaries. The authors considered two types of com-

munication mechanisms, that is, time-triggered and event-triggered communication

mechanisms. Zhang and Ye [81] consider the event-triggered consensus problem for

MASs under intermittently random DoS attacks. Xu et. al [83] investigate the

leader-follower consensus problem with event/self-triggered mechanisms under DoS

attacks. The authors construct synchronous and asynchronous updated strategies of

control protocols to achieve leader-follower consensus under DoS attacks. Dong et.

al [80] investigate the event-triggered leader-follower secure consensus for second-

order MASs with nonlinear dynamics in the presence of DoS attacks. The authors

obtain an upper bound for the duration and frequency of DoS attacks and design

a controller to ensure that the tracking error between the leader and followers con-

verges to zero. Liu et al. [84] focus on event-based secure leader-follower consensus

control for MASs with multiple cyber attacks, which include replay attacks and DoS

attacks. The authors model replay attacks and DoS attacks as Bernoulli processes.

III Statement of contribution

Most of the literature on event-triggered systems deals with the control problem,

including closed-loop stability and various forms of systems performance for both

linear and nonlinear systems. Central to the design problem and the properties of

the final design is the type of triggering condition used in the implementation. Most

event-triggered mechanisms (ETMs) proposed in the literature can be classified as

(i) absolute (also called send-on-delta [89] ), (ii) relative [90], or (iii) mixed [91].

Both absolute and relative ETMs are simple to use and although they have been

successfully applied in multiple applications, they can result in excessive triggering
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events in the presence of noise and/or disturbances. Mixed-type ETM, on the other

hand, is more challenging to design but can eliminate the shortcomings of simpler

ETMs and can perform better in the presence of noise or disturbances. An event-

based estimation has also received attention, including event-triggering versions of

the Kalman filter, and various extensions. Relevant to this work, however, the

problem of event-triggering cooperative localization of multi-robot networks has not

yet received much attention, perhaps due to the challenges involved in some of the

practical aspects of the event-triggered mechanism. Our main contribution can be

summarized as follows:

In chapter 3, we present a complete, novel solution to the event-triggered coop-

erative localization problem for multi-robot systems. Our work involves both the

theoretical development of the solution and the practical implementation of a team

of robots. The main challenges involved in the event-triggered formulation of our

DECL algorithm include: (i) designing an event-triggering mechanism that guaran-

tees satisfactory performance of the DECL algorithm while reducing communication

rate; and (ii) application of the proposed algorithm to a practical system of multi-

robots. Our solution employs a mixed-type event-triggered mechanism which can

significantly reduce the communication rate between sensor and filter while main-

taining the estimation error bounded. The use of a mixed-type event-triggering

mechanism implies that our solution includes both the send-on-delta and relative-

type triggering mechanisms of previous references as special cases. Also, we address

the tradeoff between the quality of estimation and communication rate between

components by posing the design of the triggering rule as an optimization problem

that minimizes the communication rate subject to an upper bound on the error

covariance. We also provide a mathematical relationship between energy consump-

tion and event-triggered parameters to prove our claim. We show that by tuning the

event-triggered parameters, we can reduce the amount of information transmitted

in the network in order to minimize the energy consumption of each robot. Un-

like current literature which validates the results by simulations, we endeavor on

the practical application and validation of the results using a team of four e-puck2

robots. Comparative experiments are carried out for different choices of triggering

parameters. The results illustrate that satisfactory localization performance can

be achieved at a reduced average sampling rate. We emphasize that the practical

application of the results is nontrivial and brings up a multiplicity of challenges,
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including limited communication bandwidth, power constraints, synchronizing the

timestamps of messages, and time delays in multi-robot systems.

In chapter 4, our main interest is the problem of designing a DECL algorithm

that can deliver reliable performance in the presence of time delays. Our study

is based on the DECL architecture proposed in our previous work [62], but our

main results and approach are valid in any other architecture. Our main focus is

in the effect of time delays, including the design of the event-triggered mechanism

(ETM) and Kalman gain in the presence of time delays. Second, we consider the

implementation of the proposed algorithm to a practical system of multi-robots con-

sidering the challenges of limited communication bandwidth, power constraints, and

synchronizing timestamps. we investigate the effect of time delays in designing the

DECL algorithm and propose a solution that guarantees satisfactory performance

in the presence of time delays while reducing the communication rate. Considering

time delays leads to a different set of assumptions and a different structure of the

DECL design with respect to our previous work [62] and current literature [1]-[35].

Our solution allows multiple-step random delays in the DECL algorithm design, un-

like [41]-[44], which are limited to a one-step delay. Furthermore, different from our

previous work [62] where the higher order terms in the Taylor series expansion were

ignored during the filter design, in this work we explicitly account for the higher

order terms as a norm-bounded uncertain term, which improves the robustness of

the design. Second, our solution considers two separate scenarios, thus leading to

two separate DECL algorithms assuming (i) time-stamped and (ii) no time-stamped

information. In the first case, the local filter does not have information pertinent

to the time delays affecting the signals received. Thus, our solution relies on prob-

abilistic models. We then consider the case where information data packets are

time-stamped and propose a DECL algorithm that takes advantage of the informa-

tion available. Time-stamped technology offers a convenient way to reorder delayed

measurements [92]. However, non-time-stamped technology is simpler to use and

can be an appropriate way to reduce communication costs in the case of limited com-

munication bandwidth compared to time-stamped technology [92]. Third, different

from our previous work [62], which is limited to designing the DECL algorithm, we

prove the efficiency of the proposed DECL algorithm by computing the stochastic

boundedness of the filter error under random delays. We obtain sufficient conditions

that ensure convergence and stochastic stability of the proposed DECL algorithm.
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We show that if the maximum delay due to agent-agent interaction is sufficiently

small, then choosing proper event-triggering parameters the filtering error and its

covariance remains bounded while reducing the average transmission rate of infor-

mation between the sensor and filter. In other words, this work deals with the

convergence analysis and design of the event-triggering mechanism under random

delays and system nonlinearities, which extends our previous work [62] in a non-

trivial manner. Finally, in addition to the theoretical developments, we tackle the

practical implementation of our results using a fleet of e-puck2 mobile robots with in-

herent time delay. This time delay is the effect of camera latency, image processing,

event-detector, and communication network delays. In our experiments, we employ

time-stamped technology to transmit packets including sensor measurements and

communication between multiple robots.

In chapter 5, we investigate the problem of event-triggered cooperative localiza-

tion for multi-robot systems in the presence of cyber attacks. Departing from our

previous work in references [62]-[63], we modify our DECL algorithm to account for

the effect of cyber attacks. Our work involves both the theoretical development of

the solution and practical implementation using a fleet of e-puck2 robots. The ex-

perimental results are expected to provide a preliminary effort toward bridging the

gap between theoretical analysis and experimental validation. The main challenges

involved in this work include (1) designing a secure CL algorithm against cyber

attacks that guarantees satisfactory localization performance while maintaining a

low communication volume between system components, and (2) implementing the

solution using a multi-robot hardware platform and verifying the effectiveness of

the algorithm. Compared with the existing literature on cooperative localization [1]-

[35] and our previous works on decentralized event-triggered cooperative localization

[62]-[63], this work investigates secure decentralized event-triggered cooperative lo-

calization for multi-robot systems operating with an unreliable communication net-

work subject to DoS and FDI attacks. Also, we consider a scenario in which each

robot can sense and communicate with other robots simultaneously within a certain

range, extending the results of our previous works [62]-[63]. Contrary to the case

of secure state estimation against a single type of attack (either DoS or FDI) for a

single agent system as in references [47]-[52], we consider secure state estimation for

MASs in the presence of mixed DoS and FDI attacks. Different from [54]-[59] where

agents reconstruct states without cooperation, we design a resilient state estimation
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scheme in which agents reconstruct the states cooperatively in the presence of mixed

attacks. In contrast to [56]-[61] that employ periodic sampling, our solution relies

on a mixed-type event-triggered mechanism which significantly reduces the average

transmission of information through the network. Moreover, our approach to secure

communication is different from [54], [56], [58], [59]. In our approach, we consider

a detector for each robot based on received innovations to decide whether the mea-

surements received have been attacked or not. Also, the majority of the literature

on secure state estimation uses simulations to justify the proposed solution. In this

work, we tackle the actual implementation of our solution using a group of mobile

robots. The implementation is not trivial and brings up multiple challenges. First,

we introduce an SDECL algorithm for a group of mobile robots explicitly focusing

on the problem of cyber attacks. We consider a scenario in which the adversary is

able to attack the communication channels between the exteroceptive sensors and

the robot’s filter and between two robots independently. Second, we prove the effec-

tiveness of the proposed algorithm by computing the stochastic boundedness of the

estimation error in the mean square for the SDECL algorithm under cyber attacks.

We provide sufficient conditions that ensure the resiliency and convergence of the

proposed algorithm when the attacker signal is bounded. We show that by choos-

ing a proper event-triggered condition, the estimation error and covariance of the

state estimator remain bounded while reducing the data transmission between the

sensor and the filter. Third, when the attack signals are unbounded we introduce

an attack detection mechanism capable of detecting the presence of an attack. Fi-

nally, comparative experiments are carried out using a team of four e-puck2 robots

to validate the corresponding theoretical results. The experimental results show

the effectiveness and robustness of the SDECL algorithm in the presence of cyber

attacks.

In chapter 6, we consider the problem of event-triggered consensus control for

multi-robot systems in the presence of sensor noise. Different from [93]-[95] where

the impact of sensor measurement noise is ignored, our consensus control protocol

employs a CL algorithm in which each mobile robot estimates its state cooperatively

using onboard sensors and relative measurements. Unlike [64]-[70] which consider

a time-triggered scheme in consensus control problems, our solution employs an

event-triggering mechanism to reduce the amount of transmitted information by

each agent. Also, our proposed event-triggering scheme depends only on the state

16



estimate of each robot, but the neighboring state estimates are not required to check

the event-triggering condition which reduces the communication and computational

cost in each robot. This formulation is therefore simpler and different from previous

works in references [93]-[95], [74]. In addition, we consider a scenario in which each

robot can take relative measurements and can communicate with multiple robots si-

multaneously within a certain communication range, thus improving the estimation

performance compared with our own previous work [62]. Different from [93]-[95],

[64]-[65], [67]-[69], [71], [72], [74], [75] which assume a fixed communication topol-

ogy, we consider a realistic scenario in multi-robot systems in which communication

between robots can be switched randomly over the time due to random link fail-

ures, or limited communication range. Also, our work relaxes the assumption in

references [93]-[95], [64]-[69], [71]-[75] where they assume that all communication

graphs are connected. Removing this assumption is important because, due to the

limited communication range, agents may fail to maintain a connected communica-

tion topology. Finally, much of the existing works reported in the MASs literature,

including references [64]-[69], [71]-[75], illustrate their findings using computer sim-

ulations. While computer simulations are unquestionably important, there are a

number of issues very difficult to capture in computer simulations. In this work,

we explicitly tackle the practical implementation of the consensus results using a

group of e-puck2 mobile robots. Much of our work is, in fact, motivated by the chal-

lenges encountered in this application, including communication bandwidth, power

constraints, wheel velocity constraints, time delays in the communication of multi-

robot systems and packet losses. Our experimental results show the effectiveness

and robustness of the proposed consensus algorithm in the presence of these chal-

lenges. The main challenges encountered in this work include (i) the development

of the event-triggered consensus control for multi-robot systems capable of coping

with sensor noise while reducing computation burden as well as the average com-

munication rate, and (ii) establishing a framework to design the consensus control

gain, filter gain and parameters of event-triggered mechanism simultaneously. Moti-

vated by the above challenges, our main contribution can be summarized as follows:

First, we develop a novel event-triggered consensus protocol for a team of mobile

robots based on cooperative localization (CL). Our solution employs a mixed-type

triggering condition to reduce the frequency of control updates and significantly re-

duce the transmission of information between robots. Second, we provide sufficient
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conditions to ensure bounded consensus in mean square sense and compute the con-

sensus bound of multi-robot systems. Third, we propose a simultaneous design of

the consensus control gain, the filter gain and the parameters of the event-triggered

mechanism, that reflects the desired consensus performance. Our solution is cast

using linear matrix inequalities (LMI) which can be solved using efficient numerical

tools. Finally, we implement the proposed method experimentally on group of four

e-puck2 robots to validate our theoretical results.

In chapter 7, In this work, our interest is in the study of resilient consensus

control of MRSs under DoS attacks with an event-triggered communication strat-

egy. More specifically, we consider a scenario in which each robot equipped with

proprioceptive and exteroceptive sensors estimates its states cooperatively by tak-

ing relative measurements and exchanging local positioning information with other

robots using an unreliable communication network that is susceptible to DoS at-

tacks. Position estimates from cooperative localization (CL) are also collected from

neighbouring robots through the unreliable network to update the control signal

and achieve consensus. Different from [93]-[95], [76]-[80], [82]-[83] where the effect

of noise in sensor measurements and controller design is neglected, we consider a

scenario in which each robot can estimate its own state using the CL algorithm and

jointly perform consensus. Unlike some existing references that either take a zero

control signal or set the control signal as a constant value [76], [82], [85], [88] during

the DoS attack intervals, our control strategy employs the predicted state of its

neighbouring robots to improve resiliency and secure consensus during DoS attack

intervals. Different from [76]-[79] where it is assumed that the adversary launch the

attacks to all communication links simultaneously, we consider a scenario where the

adversary has limited energy resources and may attack some partial communication

links during the attack interval. Compared to the periodic DoS attacks investigated

in [79], we consider a case where DoS attacks occur aperiodically. Different from

the event-triggered communication strategy proposed in [76], [78], [83], [84], where

continuous communication is required in order to check the triggering condition and

update the control signal, our proposed event-triggered mechanism relies only on

state estimates of the agent itself and other agents state estimates are not required.

Also, our triggering condition is structurally different from [76], [78], [83], [84]. In

addition, the CL algorithm proposed here extends the previous works [1]-[35], where

each agent is able to take relative measurements and communicate with multiple
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neighbouring agents simultaneously and reconstruct its current state in the presence

of DoS attacks to improve localization performance. To the best of our knowledge,

the problem of event-triggered consensus control with cooperative localization has

not been investigated for multi-robot systems in the presence of DoS attacks. In this

work, we extend the result of our prior work in [93] to account for the effect of DoS

attacks in the communication network. We deal with the following challenges in this

work (1) How to develop a framework to solve a consensus problem of multi-robot

systems by simultaneously considering the limited communication resources and un-

reliable communication network? (2) how to design the gain of the consensus control

protocol and filter gain as well as the parameters of the event-triggered scheme si-

multaneously to ensure a secure consensus in the presence of DoS attacks. (3) how

to establish an optimization framework to maximize the attack duration that the

multi-robot system can tolerate without losing consensus performance? Inspired by

the aforementioned challenges, the main contribution of our work is summarized as

follows: First, we develop a secure consensus control for multi-robot systems where

each robot localizes itself cooperatively and reaches consensus in the presence of

DoS attacks. An event-based protocol based on mixed-type triggering conditions is

employed to reduce data transmission between agents and the frequency of control

updates. Second, we obtain sufficient conditions to guarantee secure consensus of

MRSs in exponentially mean square sense. Third, we provide an optimization frame-

work to maximize the attack duration such that MRSs reach secure consensus by

designing the control and filter gains as well as the parameters of the event-triggered

scheme simultaneously. Finally, we implement the designed event-based secure con-

sensus control experimentally on a team of four e-puck2 mobile robots and validate

the effectiveness of the proposed controller in the presence of DoS attacks.
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Chapter 2

Preliminaries

I Graph Theory

Graph theory is used in the multi-robot localization and control for the information

exchange among group of mobile robots. The topology is modeled as a graph in

which robots can be considered as nodes and links such as communication and

sensing can be considered as edges [97]. Graph theory is the mathematical structure

utilized in order to model pairwise relations between objects. A graph consists of

nodes that are connected by edges. There are different types of graphs including

undirected and directed graphs, [98]. An illustration of these directed and undirected

graphs are represented in Figure 2.1. An undirected graph is a graph in which edges

do not have orientations. Mathematically, an undirected graph is an ordered pair

G = (V,E) comprising:

1. V , a set of nodes (also called points).

2. E ⊆ {{x, y} | x, y ∈ V and x ̸= y}, a set of edges (also called links) which are

unordered pairs of nodes.

A directed graph or digraph is a graph in which edges have orientations. Math-

ematically, directed graph is an ordered pair G = (V,E) comprising:

1. V , a set of nodes (also called points).

2. E ⊆ {(x, y) | (x, y) ∈ V 2 and x ̸= y}, a set of edges (also called directed links

or directed edges) which are ordered pairs of nodes.
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Figure 2.1: Directed graph vs Undirected graph

II Lyapunov stability

In this section, we provide an outline of the Lyapunov stability theorem that will

be needed in later sections. First, we introduce time-dependent positive definite

functions. We consider a scalar functionW : Rn×R→ R with variables x ∈ Rn and

time t. Assuming this function is continuous and has continuous partial derivatives

with respect to its arguments, then the function W (x, t) is said to be positive semi-

definite if it satisfies the following conditions [99]:

1. W (0, t) = 0, ∀t ∈ R+

2. W (x, t) ≥ 0, ∀x ̸= 0, x ∈ Rn

W (x, t) is said to be positive definite if conditions (1)-(3) above are satisfied,

and there exists a time-invariant positive definite function V1(x) such that:

V1(x) ≤W (x, t), ∀x ∈ Rn

Similarly, W (x, t) is said to be negative definite (semi-definite) if −W (x, t) is

positive definite (semi-definite).

W (x, t) is said to be decrescent if there exists a positive definite function V2(x)
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such that: | W (x, t) | ≤ V2(x), ∀x ∈ Rn. W (x, t) is said to be radially unbounded

if W (x, t)→∞ as x→∞ uniformly on t.

Now, consider the system ẋ = f(x, t), f : Rn × R+ → Rn and assume that the

origin is an equilibrium state: f(0, t) = 0, ∀t ∈ R. Then if in a neighborhood D of

the equilibrium state x = 0 there exist a differentiable function W (., .) : D× [0,∞)×

R such that:

1. W (x, t) is positive definite.

2. The derivative of W (., .) along any solution of ẋ = f(x, t) is negative semi

definite in D.

then, the equilibrium state is stable. Moreover, if W (x, t) is also decrescent then

the origin is uniformly stable. The equilibrium state is uniformly asymptotically

stable if

1. W (x, t) is positive definite and decrescent.

2. The derivative of Ẇ (x, t) is negative definite in D

If there exists a differentiable function W (., .) : Rn × [0,∞)→ R such that:

1. W (x, t) is positive definite, decrescent, and radially unbounded ∀x ∈ Rn and

that

2. The derivative of Ẇ (x, t) is negative definite in ∀x ∈ Rn, then

the equilibrium state at x = 0 is globally uniformly asymptotically stable. Suppose

that the equilibrium state x = 0 is uniformly asymptotically stable, and in addition

assume that there exist positive constants K1,K2 and K3 such that:

1. K1∥x∥p ≤W (x, t) ≤ K2∥x∥p.

2. Ẇ (x, t) ≤ –K3∥x∥p

Then the origin is exponentially stable. When the above conditions hold globally,

then the equilibrium state x = 0 is globally exponentially stable.
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III Linear Matrix Inequality (LMI)

The history of LMIs in the analysis of dynamic systems goes back more than 100

years, when Lyapunov published his seminal work introducing what we now call

Lyapunov theory. He showed that the differential equation

d
dtx(t) = Ax(t) (2.1)

is stable (i.e., all trajectories converge to zero) if and only if there exists a positive-

definite matrix P such that

ATP + PA < 0 (2.2)

The requirement P > 0, ATP +PA < 0 is what we now call a Lyapunov inequality

on P , which is a special form of an LMI. Lyapunov also showed that this first LMI

could be explicitly solved. Indeed, we can pick any Q(x) = QT (x) and then solve

the linear equation ATP + PA = −Q(x) for the matrix P , which is guaranteed to

be positive-definite if the system (2.1) is stable. In summary, the first LMI used

to analyze the stability of a dynamical system was the Lyapunov inequality (2.2),

which can be solved analytically (by solving a set of linear equations) [138].

A linear matrix inequality (LMI) has the form

F (x) = F0 +

m∑
i=1

xiFi > 0 (2.3)

where x ∈ Rm is the variable and the symmetric matrices Fi = F T
i ∈ Rn×n, i =

0, ...,m, are given. The inequality symbol in (2.3) means that F (x) is positive-

definite, i.e., uTF (x)u > 0 for all nonzero u ∈ Rn. Of course, the LMI (2.3)

is equivalent to a set of n polynomial inequalities in x, i.e., the leading principal

minors of F (x) must be positive.

We will also encounter nonstrict LMIs, which have the form

F (x) ≥ 0 (2.4)

The strict LMI (2.3) and the nonstrict LMI (2.4) are closely related, but here we

consider strict LMIs.

The LMI (2.3) is a convex constraint on x, i.e., the set {x|F (x) > 0} is convex.

Although the LMI (2.3) may seem to have a specialized form, it can represent a

wide variety of convex constraints on x. In particular, linear inequalities, (convex)

quadratic inequalities, matrix norm inequalities, and constraints that arise in control

23



theory, such as Lyapunov and convex quadratic matrix inequalities, can all be cast

in the form of an LMI.

Multiple LMIs F (1)(x) > 0, ..., F (p)(x) > 0 can be expressed as the single LMI

diag(F (1)(x), ..., F (p)(x)) > 0. Therefore we will make no distinction between a set

of LMIs and a single LMI, i.e., ”the LMI F (1)(x) > 0, ..., F (p)(x) > 0” will mean ”

the LMI diag(F (1)(x), ..., F (p)(x)) > 0”.

When the matrices Fi are diagonal, the LMI F (x) > 0 is just a set of linear

inequalities. Nonlinear (convex) inequalities are converted to LMI form using Schur

complements [100]. The basic idea is as follows: the LMI[
Q(x) S(x)
ST (x) R(x)

]
> 0 (2.5)

where Q(x) = QT (x) , R(x) = RT (x) , and S(x) depend on x, is equivalent to

R(x) > 0, Q(x)− S(x)R(x)−1S(x)T > 0 (2.6)

In other words, the set of nonlinear inequalities (2.6) can be represented as the LMI

(2.5).

IV EKF Algorithm

Time Update

1. Initialization of the filter at k = 0:

{
x̂+0 = E(x0)
P+
0 = E[(x0 − x̂+0 )(x0 − x̂

+
0 )

T ]
(2.7)

where represents the expected value and the + in superscript implies an a

posteriori estimate.

2. Computation of the partial-derivation matrices for k = 1, 2, . . . : Fk−1 =
∂fk−1

∂x |x̂+
k−1

Lk−1 =
∂fk−1

∂w |x̂+
k−1

(2.8)
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3. Computation of the time update of the state estimate and estimation-error

covariance (k = 1, 2, . . . ):

{
P−
k−1 = Fk−1Pk−1F

T
k−1 + Lk−1Qk−1L

T
k−1

x̂−k = f(x̂k−1, uk−1, 0)
(2.9)

Measurement Update

1. Computation of the partial-derivation matrices for k = 1, 2, . . . :

{
Hk−1 =

∂hk
∂x |x̂−

k

Mk−1 =
∂hk−1

∂v |x̂−
k

(2.10)

2. Computation of the measurement update of the state estimate and estimation-

error covariance (k = 1, 2, . . . ):


Kk = P−

k H
T
k (HkP

−
k H

T
k +MkRkM

T
k )

−1

x̂+k = x̂−k +Kk[yk − hk(x̂−k , 0)]
P+
k = (I −KkHk)P

−
k

(2.11)

V The e-Puck2 System

The e-puck2 is a small (7cm in diameter) differential drive robot developed at the

Swiss Federal Institute of Technology in Lausanne (EPFL) in collaboration with

GCtronic. The hardware and software of e-puck2 are fully open source, providing

low-level access to every electronic device and offering unlimited extension possibil-

ities. The e-puck2 is powered by an STM32F4 microcontroller and features a large

number of sensors: IR proximity, sound I/O, 9×IMU, ToF distance sensor, camera,

and uSD storage. The robot is a full system with a USB hub, debugger/programmer,

and Wi-Fi module [101]. Figure 2.2 shows what the e-puck2 robot is made up of,

featuring sensors, actuators, a microcontroller, and a few other components. Due to

its elegant design, flexibility, user friendly, and low cost, a lot of research work has

been implemented using this robot, especially in the area of multi-agent systems.

Eight infrared sensors placed around the e-puck2 measure closeness of obstacles in a

6 cm range and front real distance sensor, the Time of flight (ToF), measure up to 2

meters, and the camera in front of the e-puck2 measure up to 1m. The robot has two
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lateral wheels which can rotate in both directions. The internal computer is able to

count the number of pulses generated by encoders which are installed on each wheel

for estimating the distance traversed by each wheel. An inertial measurement unit

(imu) consists of a gyroscope (3DOF) and an accelerometer (3DOF) and can have

a magnetometer (3DOF) as well [101], [102]. The system is integrated with the We-

bots simulation software for programming, simulation, and control of the robot. An

early implementation can be found in [103] where a swarm of e-pucks is remotely

controlled by external users over the internet using Web Services communication

protocol. Each e-puck2 runs a modular piece of software built using a Robot Op-

erating System (ROS) framework. ROS is an open-source system that provides a

message-passing structure between different processes (or nodes) across a network

(inter-process communication). The available support for ROS makes it even more

suitable for robotics research in multi-agent systems as it provides easy access to

the robot’s sensors and actuators, as well as easy communication via Bluetooth or

Wi-Fi among robots.

Figure 2.2: The main components offered by the e-puck2 robot

VI ZED Stereo camera

In multi-robot applications such as locomotion, and path planning, where the accu-

rate posture of robots is essential, localization can be challenging especially when

using small-sized low-cost robots such as the e-puck2. One of the common strate-

gies to localize these robots is the use of an overhead camera with some detecting
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algorithms that can detect markers mounted on the robots. An example is in [104]

where an effective vision-based system is proposed to accurately track mobile robots’

true pose using multiple overhead cameras. Their system can localize multiple mo-

bile robots simultaneously in a 3m ×6m arena with each robot assigned a symbol

marker for identification. In [106], an overhead camera is used to localize a group

of e-puck2 robots to address the formation control problem using Model Predictive

Control. During the experiment, pose estimates of the robots are sent to the PC in

real time via the video camera attached for the computer to calculate optimal inputs

to the robots. Due to hardware limitations and real-time image processing, the posi-

tion and orientation of each robot estimated by the camera are subject to delays. In

this work, we employ the proposed EKF to fuse the information obtained from the

odometry sensors (filter propagation) along with the information from the overhead

camera (filter updating) to improve localization accuracy. The combination of both

odometry and camera sensors combines the advantages of each type of sensor. ZED

is a a passive stereo camera that reproduces the way human vision works. Using its

two “eyes” and through triangulation, the ZED creates a three-dimensional model

of the scene it observes, introducing for the first time indoor and outdoor long-range

depth perception and positional tracking [105]. Figure 2.3 shows the ZED stereo

camera, it has an integrated 2.0m USB3.0 cable, with minimum system require-

ments of USB3.0 port, CUDA 6.5, NVIDIA GPU with compute capability greater

than 2.0, 4GB RAM, Dual-core 2,3GHz, and windows 7 or Ubuntu 14.04 or later

to run the system development toolkit provided by StereoLabs. The camera can be

interfaced with multiple third-party libraries and environments such as OpenCV,

ROS, PyTorch, TensorFlow, and MATLAB, just to name a few. We chose ZED

camera as a measurement update in our localization algorithm because it can be

interfaced with ROS, which makes it easy to communicate pose estimates to our

localization algorithm (in the host computer).

Figure 2.3: ZED Stereo camera
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VII The Robot Operating System (ROS)

Robots need to communicate with the localization algorithm (in the host computer)

to get their respective pose estimate messages and communicate with other robots

in the group to achieve consensus. Therefore, a reliable system is required for robots

to interact with the camera and other robots, and one of such system is the Robot

Operating System (ROS). ROS is a modular open-source framework for writing

robot software. ROS is a collection of tools, libraries, and conventions that aim

to simplify the task of creating complex and robust robot behavior across a wide

variety of robotics platforms [107]. It provides functionality for hardware abstrac-

tion, communication between processes over multiple machines, and great tools for

visualization. It also provides the flexibility to work with heterogeneous devices

in a shared environment. Control of individual robots and communication between

robots and other devices is realized using some software processes called “nodes” that

can register with the ROS master node. Nodes can execute tasks independently or

by communicating with other nodes within the system. The communication mech-

anism used by ROS is through sending and receiving messages grouped into specific

categories called topics. A message is defined by the type of message and data for-

mat, a node can send data by publishing it on a defined topic and receive data by

subscribing to the topic of interest. Also, Fig. 2.4 shows a general schematic of a

ROS-based robotics system in which all the sensors are exposed to ROS and can be

also sent commands back to the robot through ROS. The benefits of ROS include

being an ecosystem that allows to introduce of a new sensor (or a node) easily and

having simultaneous data from different sensors.

Figure 2.4: A general schematic of a ROS-based robotics system
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VIII Markers

An important step in implementing our work is finding a way to estimate the pose of

robots through the camera and transmit it to our localization algorithm. With the

ZED camera, we use visual localization to estimate the pose of each robot within

the field of view of the camera. Visual localization involves the problem of deter-

mining the camera pose of one or multiple query images in a database scene. This

problem is highly relevant for a wide range of applications, including autonomous

robots, augmented reality (AR), loop closure detection re-localization, SLAM, and

Structure-from-Motion (SFM) systems [108]. The complexities associated with de-

tecting our robots can be avoided using patterns designed to be reliably detected by

computer vision, such patterns are termed “fiducial markers” (see Figure 2.5). A

lot of research papers have employed the use of fiducial markers to localize robots,

or to improve localization accuracy. An example is in [109] where AR Tag markers

are used for robot localization with an overhead camera viewing the robots from

above with a unique marker mounted on each robot. To solve a formation control

problem, [110] uses the overhead camera to determine the pose estimates of a group

of e-puck2 robots by mounting patterns on each of the robots. In our work, we

employ the use of AR Tag markers, a square pattern of size 5 by 5 printed on a flat

surface with black and white patches, and a relatively thick solid outer boundary.

These tags are provided by the ar track Alvar package, which is a ROS wrapper for

Alvar, an open-source AR tag-tracking library.

Figure 2.5: AR tags
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Chapter 3

Cooperative Localization in
Mobile Robots Using
Event-Triggered Mechanism:
Theory and Experiments

I Introduction

In this chapter, we address a new cooperative localization problem for a team of

mobile robots subject to limited communication resources. First, we develop a de-

centralized event-triggered cooperative localization (DECL) algorithm for the multi-

robot system such that each robot localizes itself with minimum communication

exchange between robots. Then, using an event-triggered mechanism we propose

an optimization framework to achieve the balance between estimation performance

and communication rate. Simulation results show the main benefits of the event-

triggered mechanism. Also, experimental results using four e-puck2 mobile robots

demonstrate the effectiveness of the proposed method.

The rest of this chapter is as follows. In Section II, we describe the problem state-

ment and introduce the dynamics of the multi-robot system and the architecture

of the event-triggering data-transferring mechanism. In section III we discuss the

proposed event-based cooperative localization method. In section IV, we discuss the

performance of the proposed localization algorithm. In Section V, we present the

relationship between the event-triggered data-transferring mechanism and energy

consumption. In Section VI, we present our simulation and experimental results.

Finally, in Section VII we provide some final conclusions.

Notation: Rni
and Sni

represent the set of ni-dimensional real vectors and ni×ni
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real matrices, respectively. Matrix I is the identity matrix of the appropriate size.

For a matrix A, AT represents its transpose. diag{A1, A2, ..., AN} refers to the

block diagonal matrix where A1, A2, ..., AN are the main diagonal matrix blocks.

The subscript m ∈ {1, 2, ...,M} is the mth dimension of sensor measurement which

will be dropped. The subscript i and j are used to represent robot i and robot j.

Also, i−, j− and ij− denote the time prediction of the corresponding filter and i+,

j+ and ij+ represent the measurement update. E[x] represents the expectation of

random variable x.

II Problem statement and Preliminaries

II.1 Dynamic of multi-robot systems

Figure 3.1: Block diagram of decentralized event-triggered cooperative localization (DECL) algorithm in
two dimensions

We consider a group of N robots ϑ = {1, 2, ..., N}, each capable of sensing and

communicating with the rest of the group. We assume a general nonlinear system

model for the motion of robots ([29])

xi(k) = f i(xi(k − 1),ui
c(k − 1)), (3.1)

where the state vector xi(k) = [xi(k), yi(k), ϕi(k)]T represents the pose of robot i

consist of the Cartesian coordinates (xi(k), yi(k)) and orientation ϕi(k), and ui
c is the

control input. We will assume throughout that ui
c = ui+ηi, is the measured velocity
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of robot i obtained from the odometry and inertial sensors, where ui represents the

actual velocity and ηi is contaminating noise. Each robot uniquely detects the other

robots in the team use exteroceptive sensors (overhead camera in this work) and take

relative measurements, e.g., range or bearing or both. The relative measurement

taken by robot i from robot j at time k is described by the following equation ([29])

zm
i,j(k) = hm

i,j(x
i(k),xj(k)) + νi

m(k), (3.2)

where hm
i,j(.) is the measurement model and νi

m is measurement noise. The noises

ηi and νi, i ∈ ϑ are independent zero-mean white Gaussian processes with known

positive definite variances Qi(k) = E[ηi(k)ηi(k)T ] and Ri(k) = E[νi(k)νi(k)T ]. All

noises are assumed to be mutually uncorrelated.

II.2 Problem Statement

The block diagram of the proposed decentralized event-triggered cooperative local-

ization (DECL) algorithm is shown in Fig. 3.1. Here, the exteroceptive sensors

(overhead camera) provide relative measurements, zi,j(k) (range and bearing) in

a periodic manner. Sensor outputs are sent to the event detector which decides

whether or not the current measurement is to be transmitted through the commu-

nication channel to the estimator, based on a triggering rule. All robots exchange

information regarding their propagated estimates (namely; state and covariance)

across the communication network in order to update the filters. Note that the

communication graph of robots changes randomly over time. We assume through-

out that the communication network is reliable, therefore, new packets will be stored

in the buffers with no packet losses.

II.3 Event-Triggered Data Transferring Mechanism

We consider a scenario in which, due to limited onboard resources, only a limited

number of relative measurements per robot are allowed during the update stage. The

event-detector works as follow: let zi,j(k) represent the current sensor measurement

and z̄i,j(k) the last measurement transmitted through the channel. The triggering

rule works as follows. Define the binary decision variable γi
m(k):

γi
m(k) =


1, if ∥emi (k)∥ ≥ δim(k)

∥∥∥zm
i,j(k)

∥∥∥+ ξim(k)

0, otherwise.

(3.3)
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where emi (k) = zm
i,j(k) − z̄m

i,j(k − 1) is the error between the last transmitted mea-

surement and the current measurement at time k. δim(k), ξim(k) > 0 are design

parameters in the event-triggered mechanism. The smaller the event-triggering pa-

rameters δim(k), ξim(k) are chosen, the more the events will be triggered. When

the parameters δim(k), ξim(k) are sufficiently approaching zero, the event-triggered

mechanism performs as a time-triggered one. This triggering rule is a discrete-time a

version of the so-called mixed triggering mechanism introduced in [91]. Note that we

can obtain send-on-delta and relative type triggering conditions as special cases of

(3.3). Indeed, setting δim(k) = 0 we obtain a send-on-delta type condition, whereas

setting ξim(k) = 0 we obtain a relative-type condition. From Eq. (3.3), we see that

the measurement zm
i,j(k) will be sent to the estimator when γi

m(k) = 1; otherwise

no signal is transmitted. Then the measurement used to update the state at time

instant k can be written as follows:

z̄m
i,j(k) = γi

m(k)zm
i,j(k) + (I − γi

m(k))z̄m
i,j(k − 1). (3.4)

Thus, if γi
m(k) = 1, then zm

i,j(k) will is used to update the state. If γi
m(k) = 0,

only the old measurement is used.

III Design decentralized event-triggered cooperative lo-
calization

In this section, we design a cooperative localization algorithm for multi-robot sys-

tems with event-triggered data transmission. We consider the mixed-type triggering

condition (3.3) in our solution. Our proof makes use of the following lemma and

assumptions:

Lemma III.1. For any two vectors u, v ∈ Rn, there exists a scalar ε ∈ R such that

the following inequality holds [113]:

uvT + vuT ≤ εuuT + ε−1vvT . (3.5)

Assumption 1. All robots in the team are identical with the same motion and

measurement models.

Assumption 2. The robots move in a limited area and thus they move in the sensing

and communication range from each other.
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Theorem III.2. Consider the nonlinear discrete-time system (3.1) and (3.2) with

the event-triggered communication scheme (3.3), the CL algorithm via the EKF for

robot i can be recursively executed as follows:

Time update:

x̂i−(k) = f i(x̂i+(k − 1),ui+
c (k − 1)) (3.6)

P i−(k) = Ai(k − 1)P i+(k − 1)Ai(k − 1)T

+Gi(k − 1)Qi(k − 1)Gi(k − 1)T
(3.7)

where x̂i−(k) and P i−(k) are the predicted state and error covariance for each robot.

Measurement update:

x̂i+(k) = x̂i−(k) +Ki(k)(zi,j(k)− (I − γi(k))ei(k)
−ẑi,j(k))

(3.8)

P̄
i+
(k) = (1 + ε1)(I −Ki(k)H

i
i(k))P

i−(k)(I −Ki(k)

×H i
i(k))

T − (I −Ki(k)H
i
i(k))P

ij−(k)H i
j(k)

T

×Ki(k)
T −Ki(k)H

i
j(k)P

ij−(k)(I −Ki(k)H
i
i(k))

T

+Ki(k)H
i
j(k)P

j−H i
j(k)

TKi(k)
T

+(1− ε2)Ki(k)R
i(k)Ki(k)

T

+(1 + ε−1
1 − ε

−1
2 )Ki(k)(I − γi(k))δi(k)I

×(I − γi(k))TKi(k)
T

(3.9)

where x̂i+(k) and P̄
i+
(k) are the estimated state and upper bound of the error

covariance for each robot.

Kalman gain:

Ki(k) = [(1 + ε1)P
i−(k)H i

i(k)
T + P ij−(k)H i

j(k)
T )]

×[(1 + ε1)H
i
i(k)P

i−(k)H i
i(k)

T

+H i
i(k)P

ij−(k)H i
j(k)

T +H i
j(k)P

ij−(k)H i
i(k)

T

+H i
j(k)P

j−(k)H i
j(k)

T + (1− ε2)Ri(k)

+(1 + ε−1
1 − ε

−1
2 )(I − γi(k))δi(k)I(I − γi(k))T ]−1

(3.10)

Proof. The CL algorithm via the EKF is obtained by applying the EKF over the joint

system motion model xi(k+1) = (f1(x1,u1), ..., fN (xN ,uN ))+diag{g1(x1), ..., gN (xN )}η(k)

and the relative measurement model (3.2). Let xi+(0) ∈ Rni
, P i+ ∈ Sni

, P+
i,j =

0ni×nj , i ∈ ϑ and j ∈ ϑ\{i}.

The prediction error for robot i at time instant k can be defined as follows:

x̃i−(k) = xi(k)− x̂i−(k) (3.11)

where the predicted state x̂i−(k) is given by:

x̂i−(k) = f i(x̂i+(k − 1),ui+
c (k − 1)) (3.12)
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Expanding f i(xi(k − 1),ui
c(k − 1)) from (3.1) in Taylor Series around x̂i+(k − 1)

we get:
f i(xi(k − 1),ui

c(k − 1)) ≈ f i(x̂i+(k − 1),ui
c(k − 1))

+Ai(k − 1)(xi(k − 1)− x̂i+(k − 1))
(3.13)

where Ai = ∂f i(x̂i+,ui
c)

∂xi . Using (3.11)-(3.13) the predicted error for robots i and j

can be computed as follows:

x̃i−(k) = Ai(k − 1)x̃i−(k − 1) +Gi(k − 1)ηi(k − 1) (3.14)

x̃j−(k) = Aj(k − 1)x̃j−(k − 1) +Gj(k − 1)ηj(k − 1) (3.15)

where Gi = ∂f i(x̂i+,ui
c)

∂ηi , Gj = ∂f i(x̂j+,uj
c)

∂ηj and Aj = ∂f i(x̂j+,uj
c)

∂xj .

Using (3.14)-(3.15), the predicted error covariance for robot i and cross covari-

ance between two robots (i and j) are given by:

P i−(k) = E[(xi(k)− x̂i−(k))(xi(k)− x̂i−(k))T ]

= Ai(k − 1)P i+(k − 1)Ai(k − 1)T

+Gi(k − 1)Qi(k − 1)Gi(k − 1)T
(3.16)

P ij−(k) = E[(xi(k)− x̂i−(k))(xj(k)− x̂j−(k))T ]

= Ai(k − 1)P+
i,j(k − 1)Ai(k − 1)T

(3.17)

The state estimates for robot i are corrected according to

x̂i+(k) = x̂i−(k) +Ki(k)(zi,j(k)− ẑi,j(k)) (3.18)

where ẑi,j = hi,j(x̂
i−, x̂j−) is the estimated measurement. Let the first-order ex-

pansion of hi,j(x
i,xj) around (x̂i−, x̂j−) be

hi,j(x
i,xj) ≈ hi,j(x

i−,xj−) +H i
i(x

i − x̂i−) +H i
j(x

j − x̂j−) (3.19)

where H i
i =

∂hi,j(x̂
i−,x̂j−)

∂xi and H i
j =

∂hi,j(x̂
i−,x̂j−)

∂xj . Considering the event-triggered

mechanism, the state estimates can be modified as follows:

x̂i+(k) = x̂i−(k) +Ki(k)(z̄i,j(k)− ẑi,j(k)) = x̂i−(k)
+Ki(k)(zi,j(k)− (I − γi(k))ei(k)− ẑi,j(k))

(3.20)

Using (3.11), (3.19) and (3.20), the estimation error for robot i is given by:

x̃i+(k) = xi(k)− x̂i+(k) = (I −Ki(k)H
i
i(k))x̃

i−(k)

−Ki(k)H
i
j(k)x̃

j−(k)−Ki(k)ν
i(k)

+Ki(k)(I − γi(k))ei(k).

(3.21)

We now look for an upper bound for the error covariance matrix. Defining constants

ε1 > 0 and ε2 > 0 and applying Lemma III.1 we obtain:

(I −Ki(k)H
i
i(k))E[x̃i−(k)ei(k)

T ](I − γi(k))TKi(k)
T

+Ki(k)(I − γi(k))E[ei(k)x̃
i−(k)T ](I −Ki(k)H

i
i(k))

T ≤
ε1(I −Ki(k)H

i
i(k))E[x̃i−(k)x̃i−(k)T ](I −Ki(k)H

i
i(k))

T

+ε−1
1 Ki(k)(I − γi(k))E[ei(k)ei(k)

T ](I − γi(k))TKi(k)
T

(3.22)
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Ki(k)E[νi(k)ei(k)
T ](I − γi(k))TKi(k)

T

+Ki(k)(I − γi(k))E[ei(k)ν
i(k)T ]Ki(k)

T

≤ ε2Ki(k)E[νi(k)νi(k)T ]Ki(k)
T

+ε−1
2 Ki(k)(I − γi(k))E[ei(k)ei(k)

T ](I − γi(k))TKi(k)
T

(3.23)

Using (3.21)-(3.23), we compute the upper bound error covariance matrix (P̄
i+
(k))

for robot i as a follows:

P̄
i+
(k) = E[(xi(k)− x̂i+(k))(xi(k)− x̂i+(k))T ]

= (1 + ε1)(I −Ki(k)H
i
i(k))P

i−(k)(I −Ki(k)H
i
i(k))

T

−(I −Ki(k)H
i
i(k))P

ij−(k)H i
j(k)

TKi(k)
T

−Ki(k)H
i
j(k)P

ij−(k)(I −Ki(k)H
i
i(k))

T

+Ki(k)H
i
j(k)P

j−H i
j(k)

TKi(k)
T

+(1− ε2)Ki(k)R
i(k)Ki(k)

T

+(1 + ε−1
1 − ε

−1
2 )Ki(k)(I − γi(k))δi(k)(I − γi(k))TKi(k)

T

(3.24)

□

Remark 1. Compared to the classical CL, the event-triggered mechanism brings

additional terms affecting the upper and the lower bounds of the estimation error and

the estimation error covariance, respectively. The Kalman gain (3.10) is obtained

by minimizing the upper bound of the error covariance with respect to the Kalman

gain, i.e., ∂P̄
i+

(k)
∂Ki(k)

= 0.

Remark 2. In a cooperative localization algorithm, a set of sensors needs to be

fused in order to improve localization performance. Therefore, each sensor might

capture its data at different rates when compared to the other sensors available on

the robot itself or available from other robots within the swarm. The event-triggered

mechanism proposed in this work is employed to deal with synchronization problems

(handling different rates) within different sensors in the robot itself or other robots.

Remark 3. Compared with other localization methods such as Iterated Closets Point

Scan and Pose Graph Optimization, our approach based on an extended Kalman

filter (EKF) has computational advantages. Also, our approach does not need any

external landmark to estimate the pose of robots. However, Pose Graph Optimization

is able to better represent large, nonlinear errors in odometry estimates and needs

an external landmark to localize the robots. Note that the solution proposed in this

work is used to localize robots in the dynamic environment since all the robots in the

team are moving and performing the localization task. In other words, localization

in a static environment is a special case where neighboring robots perform as a static

landmark with a known initial position.
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Algorithm 1 Decentralized Event-Triggered Cooperative Localization Algorithm.

1: Initialize state estimation and error covariance matrix as Robots i ∈ ϑ and
j ∈ ϑ\{i}: x̂i+(0) ∈ Rni

, Pi+(0) ∈ Sni
, Pij+(0) = 0ni×nj

2: repeat
3: Propagation: Compute the predicted state and error covariance for each

robot:

x̂i−(k) = f i(x̂i+(k − 1),ui+
c (k − 1))

Pi−(k) = Ai(k − 1)Pi+(k − 1)Ai(k − 1)T

+Gi(k − 1)Qi(k − 1)Gi(k − 1)T

4: Update:
5: if robot i ∈ ϑ receive the relative measurement zi,j(k), then each robot
i ∈ ϑ exchange relative pose information with the other robot j ∈ ϑ\{i}. The
measurement residual and its covariance are as follows:

• if the event-detector transmit the current measurement, then γi(k) = 1

ri(k) = zi,j(k)− hi,j(x̂
i−(k), x̂j−(k))

• otherwise γi(k) = 0, then the last transmitted measurement will be used
in the update step.

ri(k) = z̄i,j(k)− hi,j(x̂
i−(k), x̂j−(k))

Si,j(k) = (1 + ε1)H
i
i(k)P

i−(k)Hi
i(k)

T + (1− ε2)Ri(k)

+Hi
i(k)P

ij−(k)Hi
j(k)

T +Hi
j(k)P

ji−(k)Hi
i(k)

T

+(1 + ε−1
1 − ε

−1
2 )(I− γi(k))δi(k)I(I− γi(k))T

+Hi
j(k)P

j−(k)Hi
j(k)

T

6: Compute optimal Kalman gain:

Ki(k) = ((1 + ε1)P
i−(k)Hi

i(k)
T

+Pij−(k)Hi
j(k)

T ))S−1
i,j (k)

7: If there is no relative measurement, the Kalman gain:

Ki(k) = 0

8: Update state estimation with the current relative measurement:

x̂i+(k) = x̂i−(k) +Ki(k)ri(k)

9: Update the error covariance:

Pi+(k) = Pi−(k)−Ki(k)Si,j(k)Ki(k)
T

Pij+(k) = Pij−(k)−Ki(k)Si,j(k)Kj(k)
T

10: k ← k + 1 37



IV Performance Analysis

In proposing an event-based trigger formulation our goal is to address the trade-

off between estimation performance and communication savings. First, we define

communication rate as the average number of transmitted sensor measurements

when the triggering condition (γi
m) is satisfied [114]:

Γi
m = limT→∞

1
T+1

T∑
k=0

γi
m(k) (3.25)

Note that this measure (Γi) is a number between zero and one, with one rep-

resenting the periodic case (i.e. γi = 1, ∀i). The smaller the communication rate,

the greater the communication savings with respect to the periodic case. Knowl-

edge of the communication rate Γi of each sensor is necessary to determine the

required system bandwidth and the lifetime of each sensor. Our next Theorem

provides a mechanism to compute the Kalman gain. Unlike previous references

in event-triggered state estimation, we pose the design of the event-triggered rule

and Kalman gains simultaneously as an optimization problem, trading off between

estimation performance and communication rate.

Theorem IV.1. The Kalman gain can be found by solving the following optimiza-

tion problem:

Y i = min
m=1,...,M

M∑
m=0

Γi
m

P̄
i ≤ ∆i, P̄

j ≤ ∆i, P̄
ij ≤ ∆ij , Y i ≥ 0,

Inequality (3.29)

(3.26)

Where

Ω1 = P̄
i − (1 + ε1)((AiP̄

i
AT

i +Qi)−KiH
i
i(AiP̄

i
AT

i

+Qi)− (AiP̄
i
AT

i +Qi)H iT
i KT

i )+AiP̄
ij
AT

i H
iT
j ΓT

i K
T
i

+KiλiH
i
jAiP̄

ij
AT

i

Ω2 = (1 + ε1)
−1(AiP̄

i
AT

i +Qi)−1

Ω3 = (AjP̄
j
AT

j +Qj)−1

Ω4 = (1− ε2)−1R−T
i

Ω5 = (1 + ε−1
1 − ε

−1
2 )(δiI)

−1

(3.27)

Proof. We first assert the following statements:

1. P̄
i ≤ ∆i
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2. There exists 0 ≤ P̄
i ≤ ∆i such that:

P̄
i ≤ (1 + ε1)(I −KiH

i
i)(AiP̄

i
AT

i +Qi)

×(I −KiH
i
i)
T − (I −KiH

i
i)(AiP̄

ij
AT

i )(KiH
i
j)

T

+KiR
iKT

i − (KiH
i
j)(AiP̄

ij
AT

i )(I −KiH
i
i)
T

+(1− ε2)(KiH
i
j)(AjP̄

j
AT

j +Qj)(KiH
i
j)

T

+(1 + ε−1
1 − ε

−1
2 )Ki(I − γi)δiI(I − γi)TKT

i

(3.28)

where inequality (3.28) is the form of developed steady-state Kalman filter.

3. P̄
j ≤ ∆j

4. P̄
ij ≤ ∆ij

Thus, using Schur complement, inequality (3.28) is equivalent to the linear matrix

inequality (LMI) in Eq. (3.29).

Remark 4. The result of Theorem IV.1 allows designers to reduce the overall com-

munication rate in the system subject to some upper bound on the worst case error

covariance.



Ω1 KiH
i
i KiH

i
j KiH

i
i KiH

i
j Ki Ki(I − Γi)

H iT
i KT

i Ω2 0 0 0 0 0

H iT
j KT

i 0 Ω3 0 0 0 0

H iT
j KT

i 0 0 (AiP̄
ij
AT

i )
−1 0 0 0

H iT
i KT

i 0 0 0 (AiP̄
ij
AT

i )
−1 0 0

KT
i 0 0 0 0 Ω4 0

(I − Γi)TKT
i 0 0 0 0 0 Ω5


≤ 0

(3.29)

V Relationship between energy consumption and event
triggering mechanism

In this section, we analyze the relationship between energy consumption and com-

munication rate with our proposed event-triggered transmission mechanism. To this

end, we focus on the average number of transmitted sensor measurements and en-

ergy consumption in each mobile robot. We first model the received signal strength

indicator (RSSI) considering the position of the transmitter (xit) and receiver (xir)

for each mobile robot i. The RSSI is affected by three factors: 1) path loss due to

the distance between the transmitter and the receiver, 2) shadowing due to physical
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obstacles that block the transmitted signals, and 3) multipath fading due to reflec-

tions and refractions of the transmitted signal. We define L0 as a received power in

1 m. The RSSI, measured in dBm, is given by (see [115]):

P (xis, x
i
r) = L0 − 10n log10(

∥∥xit − xir∥∥)︸ ︷︷ ︸
Path loss

+W (xit, x
i
r)︸ ︷︷ ︸

Shadowing

+ F︸︷︷︸
Fading

(3.30)

Since the fading term in the above formulation is a random variable, we consider

the average RSSI in order to compute the energy consumed during communication.

The average communication energy consumed due to data transmission is given

by:

Ēc
i (k) =

T∑
k=0

γi(k)P̄ (xis, x
i
r) (3.31)

where γi(k) is the triggering condition (3.3). Our framework is as follows: whenever

robot i receives relative measurement from the camera (event-triggered generator),

then robot i computes the updated state estimate and transmits it through the net-

work. Thus, the goal is to reduce the amount of information transmitted by each

robot. Since energy consumption is directly proportional to the transmission of in-

formation, energy can be saved by reducing the amount of transmitted information.

The smaller the event-triggering parameters, the more events are triggered thus

leading to higher energy communication consumption. Therefore, it is important to

design the event-triggering parameters such that we reduce the communication rate

and energy consumption with acceptable localization accuracy.

VI Applications

VI.1 Simulation Results

In this section, the effectiveness of the proposed method is illustrated using computer

simulation. Consider four mobile robots whose equations of motion are described

by [116]: 
xi(t+ 1) = xi(t) + ∆t(vim(t) cos(ϕi(t) + ∆ϕi(t))
yi(t+ 1) = yi(t) + ∆t(vim(t) sin(ϕi(t) + ∆ϕi(t))
ϕi(t+ 1) = ϕi(t) + ∆tωi(t) i ∈ {1, 2, 3, 4},

(3.32)

where vi(t) and ωi(t) represent the linear and angular velocity, respectively.

Also, we define ∆tvim(t) = ∆Ri+∆Li

2 and ∆ϕi(t) = ∆Ri−∆Li

2b , where ∆Li, ∆Ri, b

and ∆ϕi(t) are the distance moved by the left wheel, the distance moved by the

40



right wheel, the distance between the wheels and uncertainty of the orientation,

respectively. The control input for each robot i is given by:

ui(t) =

[
∆Li

∆Ri

]
(3.33)

Where the control input ui(t) is obtained from odometry sensor. The relation-

ship between observation measurements, such as range and bearing, of a robot

i ∈ {1, 2, 3, 4} relative to robot j ∈ {1, 2, 3, 4} \{i} is given by:

zij(t) =

[
ρij(t)
θij(t)

]
=

[√
(xi(t)− xj(t))2 + (yi(t)− yj(t))2

arctan( y
i(t)−yj(t)

xi(t)−xj(t)
)

]
(3.34)

where:

ρij(t) is the relative distance between the mobile robot i and the observed robot j.

θij(t) is the bearing of robot j relative to the robot i.

Where range-bearing measurements zij(t) are corresponding to overhead camera.

Table 3.1: Average transmission rate for different triggering conditions considering the range of robot i
relative to robot j (simulation)

Type of robot Robot 1 Robot 2 Robot 3 Robot 4

Time-triggered 1 1 1 1

Event-triggered 0.17 0.12 0.14 0.15
(δi, ξi)=(0.1,0.1)

Event-triggered 0.10 0.09 0.14 0.11
(δi, ξi)=(0.2,0.2)

Table 3.2: Average transmission rate for different triggering conditions considering the bearing of robot i
relative to robot j (simulation)

Type of robot Robot 1 Robot 2 Robot 3 Robot 4

Time-triggered 1 1 1 1

Event-triggered 0.65 0.42 0.55 0.53
(δi, ξi)=(0.3,0.3)

Event-triggered 0.47 0.42 0.44 0.46
(δi, ξi)=(0.5,0.5)

We consider additive white noise affecting both control input ui(t) and relative

measurements zij(t) in order to reflect actual uncertainties associated with the wheel
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Figure 3.2: Simulation testing results: localization of four robots by DECL algorithm under time-triggered
mechanism (a) ground truth, dead-reckoning and DECL trajectories of four robots on the xy-plane (b),(c)
ground truth, dead-reckoning and DECL trajectories of four robots respect to time (d), (e) the relationship
between the triggered times and time axis for range and bearing of four robots
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Figure 3.3: Simulation testing results: localization of four robots by DECL algorithm under event-triggered
mechanism (δi = 0.1 and ξi = 0.1 for the range and δi = 0.3 and ξi = 0.3 for the bearings) (a) ground truth,
dead-reckoning and DECL trajectories of four robots on the xy-plane (b),(c) ground truth, dead-reckoning
and DECL trajectories of four robots respect to time (d), (e) the relationship between the triggered times
and time axis for range and bearing of four robots
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Figure 3.4: Simulation testing results: localization of four robots by DECL algorithm under event-triggered
mechanism (δi = 0.2 and ξi = 0.2 for the range and δi = 0.5 and ξi = 0.5 for the bearings) (a) ground truth,
dead-reckoning and DECL trajectories of four robots on the xy-plane (b),(c) ground truth, dead-reckoning
and DECL trajectories of four robots respect to time (d), (e) the relationship between the triggered times
and time axis for range and bearing of four robots
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Figure 3.5: Simulation testing results: the estimated position error of each robot for different triggering
conditions; the blue curve shows the time-triggered mechanism, the red and green curves represent event-
triggered mechanism with different triggering conditions

encoders and overhead camera. To proceed with our simulation, we assume that the

distance between wheels is b = 0.4m. The control input ui(t), covariance matrix of

the control input, Ri, and covariance matrix for the relative measurements, Qij are

given by:

ui(t) = [∆Li; ∆Ri] = [0.25m; 0.25m],

Ri = diag{(0.05∆Li)2; (0.05∆Ri)2},

Qij = diag{0.1m2; 0.1rad2}.

In our simulations, we consider the following pose estimates:

1. Actual position of each robot,

2. pose estimate obtained using filter propagation,

3. pose estimate obtained using the DECL algorithm 1.
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We assume that as robots i ∈ {1, 2, 3, 4} are in motion, at least one of them rests

and performs as a stationary robot. Robots then use their exteroceptive sensors

to update their localization through relative observations of stationary robots. The

moving robots receive the predicted position and associated error covariance of each

observed stationary robot over a communication network.

Fig. 3.2, Fig. 3.3, and Fig. 3.4 show the results of our simulations. We first

examine localization performance using dead-reckoning where each robot uses the

wheel encoders to estimate pose independently without the exchange of information

between robots. The results show that without relative measurements the position

estimator cannot accurately track trajectories.

In Fig. 3.2 we consider a time-triggered scenario in which each robot continu-

ously receives relative measurement and corrects its pose estimation. Fig. 3.2(a)

shows the localization of four robots using DECL on the xy plane, Fig. 3.2(b) and

Fig. 3.2(c) show the localization of four robots using DECL with respect to time.

Figs. 3.2(d)-(e) display the triggering instants times for range and bearing of the

four robots. Note that in the case of the time-triggered mechanism, the absence of

triggering instances in Fig. 3.2(d) and Fig. 3.2(e), means that robot i is performing

as a stationary robot. As seen in Fig. 3.2, the pose estimation from the DECL

algorithm closely tracks the reference trajectory.

In Fig. 3.3 and Fig. 3.4 we study the effect of the event-triggered solution

proposed here for different values of the triggering parameters δ and ξ. In Fig.

3.3 we set δi = 0.1 and ξi = 0.1 for the range of each robot and δi = 0.3 and

ξi = 0.3 for the bearings. In Fig. 3.4 we choose δi = 0.2 and ξi = 0.2 for range and

δi = 0.5 and ξi = 0.5 for bearings of each robot. Figs. 3.3(a)-(c) and Figs. 3.4(a)-(c)

show how the pose obtained from the filter using the DECL algorithm change in

relation to the actual position and the xy plane and also for different event-triggered

parameters. Also, in Figs. 3.3(d)-(e) and Figs. 3.4(d)-(e) we display the triggering

times for different event-triggered parameters. As in the previous case, the absence

of triggering instances in Fig. 3.3(d)-(e) and Fig. 3.4(d)-(e), indicates that the

amount of transmitted sensor measurements are reduced due to the event-triggering

mechanism and just a few intervals represent robot i performing as a stationary

robot.

To compare the filter performance for the different triggering conditions we use

position error for each robot. The norm of position error for each robot at time k
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is given by SEi(k) =
√
(xi(k)− x̂i+(k))2 + (yi(t)− ŷi+(k))2 where xi(k) and x̂i+(k)

are the actual and estimated position in the x direction, respectively, and yi(k)

and ŷi+(k) are the actual and estimated position in the y direction, respectively.

Fig. 3.5 shows the estimated position error of each robot for different triggering

conditions. As expected, large parameters of event-triggering conditions reduce

the transfer of information with an increase in the estimated position error. Table

3.1 and Table 3.2 show the comparison between the value of the event-triggered

mechanism parameters and the average communication rate of the range-bearing

sensor measurements. Smaller values of the average communication rate result in

reduced transmission with respect to the periodic case. Comparing tracking results

and average communication rate (Table 3.1 and Table 3.2), we can summarize the

results as follows:

1. Increasing the parameters of the event-triggering mechanism can reduce the

average transmission rate of relative measurements significantly while sacrific-

ing slightly the localization quality.

2. By tuning properly the parameters of the event-triggered mechanism, the de-

sired localization quality can be achieved while drastically reducing the com-

munication rate.

VI.2 Experimental Validation

In this section, we implement and test the performance of our algorithm experi-

mentally. Our testbed consists of a set of one overhead ZED camera, a host com-

puter (Ubuntu 18.04.5 LTS, Intel Core i7-10750H CPU @ 2.60GHz × 12 processors,

GeForce RTX 2070 with Max-Q Design/PCIe/SSE2 graphics), and four e-puck2

robots (see Fig. 3.6). This testbed is equipped with Melodic Robot Operating Sys-

tem (ROS). Our computer vision system uses the ArUco image processing library

[117] to track the pose (position and orientation) of the four e-puck2 robots. The

host computer is employed as the server running as ROS node with the central part

of the DECL algorithm. Each robot has some ROS nodes that include programs to

propagate the filter using wheel-encoder measurements and update the filter using

the relative-pose measurements obtained from the computer vision system. These

ROS nodes communicate through a TCP protocol. The accuracy of the relative

pose measurements based on computer vision is set to 0.03 m for position and 5 de-
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grees for orientation. The e-puck2 robots communicate with the host computer via

Bluetooth. Since the sampling rate of the e-puck2 sensors is 10Hz, we synchronize

the sampling rate of the robots and ZED camera to the same frequency. Note that

the communication graph between robots changes randomly over time.

(a) (b)

(c) (d)

Figure 3.6: Experimental setup including (a) e-puck2 robot, (b) workspace, (c) gaming laptop (equipped
with Nvidia GPU), (d) overhead ZED camera

(a) (b)

(c) (d)

Figure 3.7: Each e-puck2 robot moves simultaneously along a circular trajectory. Also, Every robot is
equipped with an ArUco tag that enables the overhead ZED camera to take a relative measurement.

The robots move counter-clockwise along a circular path with a radius of 0.13m

(see Fig. 3.7). The system has an inherent time delay of between 0.15 and 0.195 s in

the relative measurement due to camera latency, image processing, decision-making
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process (event-triggered condition), and Bluetooth communication [36]. Our work

ignores the effect of this delay in the estimation. This problem will be the scope of

our future work. To evaluate the performance of our DECL algorithm, we use our

experimental setup and consider the following methods:

1. Pose estimates obtained using odometry sensors: In this case, we con-

sider the simple case in which the only information available to the robots

to estimate pose is based on odometers. In this model, each robot estimates

its own pose by integrating its measured velocity obtained from odometers

and then propagates its estimates to its neighbors. This form of estimation

is affected by the odometers’ precision and suffers from wheel slippage. As

a consequence, the estimation error tends to accumulate over time and pose

estimates tend to deviate from actual values. Therefore, odometry sensors

alone do not provide reliable estimates of the robot’s position.

2. Pose estimates using an overhead camera: In this case, we use an over-

head camera. In this model each robot is equipped with an Augmented Reality

(AR) tag, thus allowing the overhead camera to obtain range and bearing rel-

ative measurements that are provided to the filters. This technique is based

on computer vision and can provide more accurate pose estimates than wheel

odometry. However, due to hardware limitations and real-time image process-

ing, the position and orientation of each robot estimated by the camera are

subject to delays [36].

3. Pose estimates obtained using the proposed DECL algorithm 1: In

this case, we employ the proposed EKF to fuse the information obtained from

the odometry sensors (filter propagation) along with the information from

the overhead camera (filter updating) to improve localization accuracy. The

combination of both odometry and camera sensors combines the advantages of

each type of sensor. Indeed, although less precise than the overhead camera,

odometry sensors have the benefit of being relatively unaffected by delay, thus

the combination produces better results than either sensor type working alone.

We compare the performance of the proposed EKF and communication rates

of exteroceptive sensors (overhead camera) under time-triggered and event-

triggered mechanisms.
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Figure 3.8: (a)Trajectories of the e-puck2 robots under an experimental test generated by four simultaneously
running ROS packages, one for the overhead camera location tracking (the curve indicated in green), one
for the odometry estimate (the red curve), and the other one (the blue curve) to obtain location estimates
by the DECL algorithm (Algorithm 1) under the time-triggered mechanism.; (b) camera, odometry and
DECL trajectories of four robots respect to time in time-triggered mechanism; (c)-(d) the triggering times
for range and bearing of the four robots in time-triggered mechanism
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Figure 3.9: (a)Trajectories of the e-puck2 robots under an experimental test generated by four simultaneously
running ROS packages, one for the overhead camera location tracking (the curve indicated by green), one
for the odometry estimate (the red curve), and the other one (the blue curve) to obtain location estimates
by DECL algorithm (Algorithm 1) under event-triggered mechanism; (b)camera, odometry and DECL
trajectories of four robots respect to time in event-triggered mechanism; (c)-(d) the triggering times for
range and bearing of the four robots in event-triggered mechanism
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Figure 3.10: Experimental testing results: the estimated position error of each robot for time-triggered and
event-triggered mechanism

Figs. 3.8 and Figs. 3.9 show the results of our experiments. In Fig. 3.8 we

consider a time-triggered scenario in which each e-puck2 robot continuously receives

relative measurements and estimates its pose. Fig. 3.8(a) shows the localization

of four e-puck2 robots moving in a circular trajectory using the DECL algorithm,

Fig. 3.8(b) indicates the localization of four e-puck2 robots using the DECL al-

gorithm with respect to time, and Figs. 3.8(c) and Figs. 3.8(d) represents the

triggering times for the range and bearing of four robots. Note that in the case of

the time-triggered mechanism, the absence of triggering events in Fig. 3.8(c)-(d),

indicates that the robot i performs as a stationary robot for the rest of the robots.

As seen in Fig. 3.8, the pose estimation using DECL algorithm 1 (EKF) performs

better since information is transferred at a regular rate with no losses. As Table

3.3 and Table 3.4 shows, the communication rate in the time-triggered mechanism

is 1 for both range and bearing. Our main interest, however, is to obtain compa-

rable results while reducing communication using the event-triggered mechanism.

Thus, we study the effect of the triggering parameters on the overall DECL perfor-

mance. In Fig. 3.9, we set δi = 0.05 and ξi = 0.05 for range and δi = 0.01 and
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ξi = 0.01 for bearing of each robot. Notice that, in the case of the event-triggered

mechanism, the absence of triggering instances in Figs. 3.9(c)-(d), indicates that

the amount of transmitted exteroceptive sensor measurements is reduced due to an

event-triggering mechanism and just a few intervals represent e-puck2 robot i per-

forming as a stationary robot. As a result, the pose estimate from DECL algorithm

1 (EKF) provides acceptable localization quality with the reduced transmission of

relative measurements (according to Table 3.3 and Table 3.4).

Fig. 3.10 shows the estimated position error of the four robots in the time-

triggered and event-triggered cases. Comparing the estimated position error and

average communication rate (Table 3.3 and Table 3.4) we conclude that the proposed

event-triggered cooperative localization approach provides a sound tradeoff between

communication resource savings and good localization performance.

Table 3.3: Average transmission rate for different triggering conditions considering the range of robot i
relative to robot j (experiment)

Type of robot e-puck0 e-puck1 e-puck2 e-puck3

Time-triggered 1 1 1 1

Event-triggered 0.6 0.47 0.53 0.65
(δi, ξi)=(0.05,0.05)

Table 3.4: Average transmission rate for different triggering conditions considering the bearing of robot i
relative to robot j (experiment)

Type of robot e-puck0 e-puck1 e-puck2 e-puck3

Time-triggered 1 1 1 1

Event-triggered 0.97 0.81 0.93 0.98
(δi, ξi)=(0.01,0.01)
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Chapter 4

Decentralized Event-Triggered
Cooperative Localization In
Multi-Robot Systems Under
Random Delays: With/Without
Time Stamps Mechanism

I Introduction

In this chapter, we address the problem of decentralized event-triggered cooperative

localization (DECL) for a group of mobile robots in the presence of time delays.

First, we introduce a DECL algorithm for multi-robot systems under time delays.

We consider two different scenarios (i) time-stamped (ii) non-time-stamped which

leads to different DECL algorithms. Then, we provide the stochastic boundedness

of filtering error considering bounded random delays. We show that if the delay

due to multi-robot communication is sufficiently small, then by choosing proper

event-triggering parameters, the filtering error and covariance remain bounded while

reducing the transfer of information. Finally, simulation and experimental results

using a team of four e-puck2 mobile robots demonstrate the effectiveness of the

proposed algorithm.

The rest of this work is given as follows. In Section II, we describe the dynamics

of the multi-robot system, define the problem statement, and introduce the event-

triggering data-transferring mechanism. In section III we design the DECL for multi-

robot systems with random delays considering the non-time-stamped mechanism.

In section IV we consider the same problem solved in Section III but assuming a
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time-stamped mechanism. In Section V, we present our simulation and experimental

results. Finally, in Section VI we provide some final conclusions.

II Problem statement and Preliminaries

II.1 Notations

Given a matrix X, XT , X−1 represent the transpose, and the inverse of X. E{X} or

E[X] is the expectation of the random variable X. I represents the identity matrix

with proper dimensions. The superscripts i and j are the identities of agent i and

agent j. Superscripts i− , j− and ij− represent the propagation step of the filter.

Superscripts i+ , j+ and ij+ denote the updated step of the filter.

II.2 Dynamics of the multi-robot system

We consider a team of N mobile robots moving in a flat area and capable of sensing

and communicating with the rest of the team. The general nonlinear system model

for the motion of each robot i ∈ ϑ = {1, 2, ..., N} is described by [29]

xi
k = f i(xi

k−1,u
i
k−1), (4.1)

where the state vector xi
k = [xi(k), yi(k), ϕi(k)]T represents the global pose (position

and orientation) of robot i and ui is the control input. We assume throughout

that ui = ui
a + ηi, is the velocity command of robot i measured from odometry

or inertial sensors, where ui
a represents the actual velocity and ηi is corresponding

white-Gaussian process noise. The relative measurement is taken by robot i from

robot j at a time k is described by the following equation [29]

zij
k = hij(x

i
k,x

j
k) + νij

k , (4.2)

where hij(x
i, xj) is the measurement model and νij is measurement noise. The rela-

tive position measurements (range and bearing) are obtained via an overhead camera

and augmented reality (AR) tags. The noises ηi and νij are independent zero-mean

white Gaussian processes with known positive definite variances Qi
k = E[ηi

k(η
i
k)

T ]

and Rij
k = E[νij

k (ν
ij
k )

T ]. All noises are assumed to be mutually uncorrelated.

II.3 Problem Formulation

Fig. 4.1 shows the block diagram of DECL proposed in this work. This scheme is

based on our previous work [62], but has been modified to include random delays.

We consider a decentralized strategy in which robots work in a cooperative fashion;

55



Figure 4.1: Block diagram of DECL algorithm under time delays

however, we do not assume all-to-all communication, thus significantly reducing the

communications cost. We assume that each robot can share information with other

robots only within a certain communication range. In this scenario, each robot i can

detect a neighbor robot j only when they are within the reach of their exteroceptive

sensors. When this is the case, we assume that robot i can share information with

robot j. Consequently, the computation of the localization task is performed by one

or more pairs of robots in the group. Here, the range-bearing measurements zij
k are

sent to the event detector in a periodic manner and the event detector then decides

whether or not the current sensor measurement is to be transmitted to the estimator

over the unreliable communication network, based on a triggering rule. The range-

bearing measurements z̄ij
k transmitted by the event detector to the corresponding

filter is affected by time delays. This the time delay may represent the effect of

the communication network, camera latency, image processing, and event-detector

delays for the packets arriving at each robot. Since CL depends on agent-agent

interaction via a network, communication delays have a significant impact on time

delays [92]. Therefore in this work, we mainly focus on communication delays that

occur due to limited bandwidth in the network. We assume that time delays occur

randomly due to the unpredictable nature of stochastic factors such as latency, per-

centage of out-of-ordered packets in the communication channel, and re-transmitted

packets. Considering the fact that packet z̄ij
k may be unavailable to the correspond-
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ing filter in time, a D-length buffer is used to store delayed packets. Because of the

limited buffer length, packet z̄ij
k−D will be discarded when the maximum number

of random delays is more than D. The random delay occurring between the sensors

and the filter, is denoted τk and takes value in N = {1, ..., s} where s is the largest

delay. The probability distribution of the random delay is given as follows [92]:

Prob
{
τk = is

}
= pis , is ∈ N (4.3)

where 0 ⩽ pis ⩽ 1 and
∑
is∈N

pis = 1 Because of the existence of the random delay

during the data transmission, the actual measurement signal received by the filter

is expressed as

z̃ij
k = zij

k−τk
(4.4)

Then, according to (4.1), (4.2) and (4.4) we have:{
x̄i
k = f̄

i
(x̄i

k−1, ū
i
k−1)

z̃ij
k = Eτk h̄ij(x̄

i
k, x̄

j
k) +Eτk ν̄

ij
k ,

(4.5)

where
x̄i
k =

[
xi
k xi

k−1 · · · xi
k−s

]T
x̄j
k =

[
xj
k xj

k−1 · · · xj
k−s

]T
f̄(x̄i

k, ū
i
k) =

[
f(xi

k,u
i
k) f(xi

k−1,u
i
k−1) · · · f(xi

k−s,u
i
k−s)

]T
h̄ij(x̄

i
k, x̄

j
k) =

[
hij(x

i
k,x

j
k) hij(x

i
k−1,x

j
k−1) · · · hij(x

i
k−s,x

j
k−s)

]T
ν̄ij
k =

[
νij
k νij

k−1 · · · νij
k−s

]T
Eτk =

[
0m×m · · · 0m×m︸ ︷︷ ︸

τk

Im 0m×m · · · 0m×m︸ ︷︷ ︸
s−τk

]T
Note that the Eτk is defined as an augmented matrix with zero entries, except the

(τk+1)th element, which is the identity matrix. The recursive filter for the augment

system (4.5) is defined as follows:{
ˆ̄xi−
k = f̄

i
(ˆ̄xi+

k−1, ū
i
k−1)

ˆ̄xi+
k = ˆ̄xi−

k +Ki
k

[
z̃ij
k −Edẑ

ij
k

] (4.6)

where ˆ̄xi−
k and ˆ̄xi+

k denote, respectively, the prediction and estimate of x̄i
k at time

instant k and Ki
k is the filter gain to be designed. ẑij

k denote the predicted mea-

surement. The matrix Ed is defined as follows:

Ed =

[
0m×m · · · 0m×m︸ ︷︷ ︸

d

Im 0m×m · · · 0m×m︸ ︷︷ ︸
s−d

]T
(4.7)

where d is an integer satisfying:

d =

{
⌊τ̄⌋ if τ̄ − ⌊τ̄⌋ < 1

2
⌊τ̄⌋+ 1, otherwise

(4.8)

57



with τ̄ = E[τk+1] =
∑
i∈N

ipi and ⌊τ̄⌋ represents the biggest integer no bigger than

τ̄ . It is worth mentioning that the innovation of the proposed filter (4.6) contains

the matrix Ed instead of Eτk . This is because the filter cannot include a random

variable (e.g. τk). Therefore, we use the mathematical expectation τ̄ of the random

variable Eτk to construct the filter.

Furthermore, robots exchange estimated states and error covariance with each

other in order to correct the estimation results. Therefore, we consider random

transmission delays in the robot-to-robot communication channel, denoted as ξk,

taking value inM = {1, ..., n}, where n is largest delay. The probability distribution

of the random delay is given by:

Prob
{
ξk = ic

}
= pic , ic ∈M (4.9)

where 0 ⩽ pic ⩽ 1 and
∑
ic∈M

pic = 1.

Also, because of the existence of random transmission delays during the data

transmission, the actually predicted states and corresponding error covariance re-

ceived by the filter can be expressed as follows:

˜̂xj−
k = x̂j−

k−ξk
(4.10)

P̃
j−
k = P j−

k−ξk
(4.11)

We assume that the interaction (communication) topology of robots is modeled as

an independent and identically distributed (i.i.d) random process.

Assumption 3. We assume that the random variables for the communication chan-

nel between the sensor and filter of robots (τk) are independent of the communication

channel between two filters (ξk) in i and k.

Remark 5. In this work, the random delay is modeled as a Bernoulli random vari-

able with distribution [118]:

z̃ij
k = θ0,kz̄

ij
k + (I − θ0,k)θ1,kz̄

ij
k−1 + . . .+

s−1∏
i=0

(I − θi,k)θs,kz̄
ij
k−s

˜̂xj−
k = λ0,kx̂

j−
k + (I − λ0,k)λ1,kx̂

j−
k−1 + . . .+

n−1∏
i=0

(I − λi,k)λn,kx̂
j−
k−n

P̃
j−
k = λ0,kP

j−
k + (I − λ0,k)λ1,kP

j−
k−1 + . . .+

n−1∏
i=0

(I − λi,k)λn,kP
j−
k−n

(4.12)

58



where θi,k, i = 0, 1, . . . , s and λi,k, i = 0, 1, . . . , n are mutually uncorrelated scalar

random variables having Bernoulli distribution taking values of 0 or 1 with the fol-

lowing probabilities:

Prob{θi,k = 1} = θ̄i Prob{θi,k = 0} = 1− θ̄i (4.13)

Prob{λi,k = 1} = λ̄i Prob{λi,k = 0} = 1− λ̄i (4.14)

From (4.3) and (4.9), the probability of random delays is:

Prob{τk = is} =
s−1∏
i=0

(1− θ̄i,k)θ̄s,k

Prob{ξk = ic} =
s−1∏
i=0

(1− λ̄i,k)λ̄s,k

(4.15)

Remark 6. It is important to notice that the size of the buffer D can impact the

localization performance and computational load. Different buffer lengths can result

in a different number of discarded packets and different delays.

II.4 Event-Triggered Data Transferring Mechanism

In order to reduce the transmission rate of sensors and therefore extend battery

life, the exteroceptive sensors (overhead camera) are equipped with an event-based

scheduler that decides when range-bearing measurement transmission should take

place. The event-detector works as follow: let zij
k denote the current sensor measure-

ment and z̄ij
k the last measurement transmitted through a communication network.

The triggering rule works as follows. Define now the binary decision variable γij
k :

γij
k =


1, if

∥∥∥eijk ∥∥∥ ≥ αij

∥∥∥zij
k

∥∥∥+ βij

0, otherwise.

(4.16)

where eijk = zij
k − z̄ij

k−1 is the error between transmitted measurement and the cur-

rent measurement and αij , βij > 0 are the event-triggering parameters to be de-

signed. Smaller event-triggering parameters αij , βij , result in more frequent trigger-

ing events. When the parameters αij , βij approach zero, the event-triggered system

performs as a time-triggered system where transmission of information occurs at

every sampling instant. This triggering condition is a discrete-time version of the

so-called mixed-type triggering condition introduced in [91].
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III Design of the CL with random delays (non-time-
stamped mechanism)

III.1 Design of DECL without time stamps

In this section, we design the DECL algorithm via an extended Kalman filter (EKF)

with the event-triggered mechanism (4.16) and random delays (Eqs. (4.4), (4.10),

(4.11)). We assume that packets are transmitted without time-stamped technology,

therefore the local filter does not have knowledge of delays except their probability at

each time. First, we compute the covariances of the prediction and estimation errors.

Second, we derive the upper bound for the estimation error covariance. Finally, we

obtain the Kalman filter gain that minimizes the upper bound of the estimation

error covariance. Our proof makes use of the following lemma and assumptions:

Lemma III.1. For any two vectors a, b ∈ Rn, one has [113]:

abT + baT ≤ εaaT + ε−1bbT . (4.17)

where ε is positive constant.

Assumption 4. The motion and measurement models for all robots in the group

are identical.

Assumption 5. All robots in the team move in the sensing and communication

range of each other.

Theorem III.2. Consider the nonlinear system (4.1) and (4.2) along with the

event-triggered mechanism (4.16). Assume that the relative measurement (z̄ij
k , z̄

ji
k )

and the predicted belief beli−k = (ˆ̄xi−
k , P̄

i−
k ), belj−k = (ˆ̄xj−

k , P̄
j−
k ) are transmitted through

non-time-stamped mechanism with random delays (4.4), (4.10) and (4.11) through

the communication channels. For the DECL via the EKF, the upper bound of esti-
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mation error covariance P̄
i+
k can be obtained as follows:

Σ̄
i+
k = C1

(
I −Ki

kEdH̄i
i,k

)
P̄

i−
k

(
I −Ki

kEdH̄i
i,k

)T
−
∑
ic∈M

pic

(
I −Ki

kEdH̄i
i,k

)
P̄

ij−
k

(
Ki

kEdEicH̄i
j,k

)T
−
∑
ic∈M

pic

(
Ki

kEdEicH̄i
j,k

)
P̄

ij−
k

(
I −Ki

kEdH̄i
i,k

)T
+
∑
ic∈M

picC2
(
Ki

kEdEicH̄i
j,k

)
P̄

j−
k

(
Ki

kEdEicH̄i
j,k

)T
+
∑
is∈N

pisC3
(
Ki

k(Eis −Ed)
)
Ψij

k

(
Ki

k(Eis −Ed)
)T

+
∑
is∈N

pisC4
(
Ki

kEis

)
Rij

k

(
Ki

kEis

)T
+
∑
is∈M

picC6
(
I −Eic

)
Πj

k

(
I −Eic

)T
+
∑
is∈N

pisC5
(
Ki

kEis(I − γij
k )
)
δijk

(
Ki

kEis(I − γij
k )
)T
,

(4.18)

where
C1 = (1− ε1 − ε2 + ε3), C2 = (1− ε7), C3 = (1 + ε−1

1 − ε
−1
5 )

C4 = (1 + ε−1
2 + ε−1

6 ), C5 = (1 + ε−1
3 − ε5 − ε6), C6 = (1− ε−1

7 )

E
[
eijk (e

ij
k )

T
]
= δijk , E

[
x̄j
k(x̄

j
k)

T
]
= Πj

k, E
[
h̄ij(.)(h̄ij(.))

T
]
= Ψij

k

Āi
k = Ā

i
k + B̄

i
kF̄

i
kM̄

i
k, H̄i

i,k = H̄
i
i,k + D̄

i
i,kC̄

i
i,kM

i
i,k,

H̄i
j,k = H̄

i
j,k + D̄

i
j,kC̄

i
j,kM̄

i
j,k, P̄

i−
k+1 = Āi

kP̄
i+
k (Āi

k)
T + Ḡ

i
kQ̄

i
k(Ḡ

i
k)

T

P̄
ij−
k+1 = Āi

kP̄
ij+
k (Āj

k)
T .

Proof. The propagated state error of robot i for multi-robot dynamics system (4.1)

at time instant k + 1 can be defined by:

˜̄xi−
k+1 = x̄i

k+1 − ˆ̄xi−
k+1 (4.19)

where the propagated state of each robot ˆ̄xi−
k+1 is described by:

ˆ̄xi−
k+1 = f i

(
ˆ̄xi+
k , ūi

k

)
(4.20)

Expanding f̄
i
(x̄i

k, ū
i
k) using Taylor series around ˆ̄xi+

k , we have:

f̄
i
(
x̄i
k, ū

i
k

)
≈ f̄

i
(
ˆ̄xi+
k , ūi

k

)
+ Ā

i
k

(
x̄i
k − ˆ̄xi+

k

)
+ o
(
|˜̄xi+

k |
)

(4.21)

where Ā
i
= ∂f̄

i
(ˆ̄xi+,ūi)
∂xi and o

(
|˜̄xi+

k |
)
represent the high-order terms of the Taylor

series expansion. We introduce the unknown time-varying matrix F̄
i
k, and known

scaling matrix B̄
i
k to compensate the linearization error. We can write:

o
(
|˜̄xi+

k |
)
= B̄

i
kF̄

i
kM̄

i
k
˜̄xi+
k (4.22)

where M̄
i
k is a known tuning matrix and assume that F̄

i
k satisfies:

F̄
i
k(F̄

i
k)

T ≤ I (4.23)
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Defining Āi
k =

(
Ā

i
k + B̄

i
kF̄

i
kM̄

i
k

)
and using (4.19)-(4.23), the propagated state error

for robots i and j can be written as follows:

˜̄xi−
k+1 = Āi

k
˜̄xi−
k + Ḡ

i
kη̄

i
k (4.24)

˜̄xj−
k+1 = Āj

k
˜̄xj−
k + Ḡ

j
kη̄

j
k (4.25)

where Ḡ
i
= ∂f̄ i(ˆ̄xi+,ūi)

∂η̄i , Ḡ
j
= ∂f̄j(ˆ̄xj+,ūj)

∂η̄j and Ā
j
= ∂f̄j(ˆ̄xj+,ūj)

∂x̄j . Using Eqs. (4.24)-

(4.25), the propagated state error covariance for robot i and cross-covariance be-

tween two robots (i and j) can be written by:

P̄
i−
k+1 = E

[(
˜̄xi−
k+1

)(
˜̄xi−
k+1

)T ]
= Āi

kP̄
i+
k (Āi

k)
T + Ḡ

i
kQ̄

i
k(Ḡ

i
k)

T (4.26)

P̄
ij−
k+1 = E

[(
˜̄xi−
k+1

)(
˜̄xj−
k+1

)T ]
= Āi

kP̄
ij+
k (Āj

k)
T (4.27)

The state estimates of each robot i for the augmented system (4.5) are defined as

follows:

ˆ̄xi+
k+1 = ˆ̄xi−

k+1 +Ki
k+1

[
z̃ij
k+1 −Edẑ

ij(ˆ̄xi−
k+1, ˆ̄x

j−
k+1)

]
(4.28)

where ẑij = h̄ij(ˆ̄x
i−, ˆ̄xj−) is the estimated measurement. Let the first-order expan-

sion of h̄ij(x̄
i, x̄j) around (ˆ̄xi−, ˆ̄xj−) be

h̄ij(x̄
i, x̄j) ≈ h̄ij(ˆ̄x

i−, ˆ̄xj−) + H̄
i
i(x̄

i − ˆ̄xi−) + H̄
i
j(x̄

j − ˆ̄xj−)

+o
(
|˜̄xi−|, |˜̄xj−|

) (4.29)

where H̄
i
i =

∂h̄ij(ˆ̄x
i−,ˆ̄xj−)

∂xi , H̄
i
j =

∂h̄ij(ˆ̄x
i−,ˆ̄xj−)

∂ ¯̄xj and o
(
|˜̄xi−|, |˜̄xj−|

)
denote the high-order

terms of the Taylor series expansion. We now introduce unknown time-varying

matrices C̄
i
i,k and C̄

i
j,k, and known scaling matrices D̄

i
i,k, D̄

i
j,k accounting for the

linearization errors of the measurement model:

o
(
|˜̄xi−

k |, |˜̄x
j−
k |
)
= D̄

i
i,kC̄

i
i,kM̄

i
i,k

˜̄xi−
k + D̄

i
j,kC̄

i
j,kM̄

i
j,k

˜̄xj−
k (4.30)

where Ē
i
i,k and Ē

i
j,k are known tuning matrices and assume that C̄

i
i,k and C̄

i
j,k

satisfy:

C̄
i
i,k(C̄

i
i,k)

T ≤ I (4.31)

C̄
i
j,k(C̄

i
j,k)

T ≤ I (4.32)

Note that the matrices D̄
i
i,k, D̄

i
j,k, M̄

i
i,k, M̄

i
j,k, B̄

i
k and Ē

i
k should be designed ap-

propriately. Considering the event-triggered mechanism (4.16) and random trans-

mission delays which occurs in the channel from the sensor to the filter, the state
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estimate for robot i is rewritten as follows:

ˆ̄xi+
k+1 = ˆ̄xi−

k+1 +Ki
k+1

[
Eτk h̄ij(x̄

i
k+1, x̄

j
k+1)+Eτk ν̄

ij
k+1

−Eτk(I − γij
k+1)e

ij
k+1 −Edẑ

ij(ˆ̄xi−
k+1, ˆ̄x

j−
k+1)

] (4.33)

Using (4.29)-(4.33) and introducing H̄i
i,k = H̄

i
i,k + D̄

i
i,kC̄

i
i,kM

i
i,k , H̄i

j,k = H̄
i
j,k +

D̄
i
j,kC̄

i
j,kM̄

i
j,k, the estimation error for robot i can be written as follows:

˜̄xi+
k+1 =

(
I −Ki

k+1EdH̄i
i,k+1

)
˜̄xi−
k+1 −Ki

k+1EdEξkH̄i
j,k+1

˜̄xj−
k+1

−(I −Eξk)x̄
j
k+1 −Ki

k+1Eτk ν̄
ij
k+1 +Ki

k+1Eτk(I − γij
k+1)e

ij
k+1

−Ki
k+1(Eτk −Ed)h̄ij(x̄

i
k+1, x̄

j
k+1)

(4.34)

Using (4.34), the estimation error covariance matrix for robot i is written as follows:

P̄
i+
k+1 = E

[(
˜̄xi+
k+1

)(
˜̄xi+
k+1

)T ]
=(

I −Ki
k+1EdH̄i

i,k+1

)
E
[
˜̄xi−
k+1(˜̄x

i−
k+1)

T

](
I −Ki

k+1EdH̄i
i,k+1

)T
−
∑
ic∈M

pic

(
I −Ki

k+1EdH̄i
i,k+1

)
E
[
˜̄xi−
k+1(˜̄x

j−
k+1)

T

](
Ki

k+1EdEicH̄i
j,k+1

)T
−
∑
ic∈M

pic

(
Ki

k+1EdEicH̄i
j,k+1

)
E
[
˜̄xj−
k+1(˜̄x

i−
k+1)

T

](
I −Ki

k+1EdH̄i
i,k+1

)T
−
∑
is∈N

pis

(
I −Ki

k+1EdH̄i
i,k+1

)
E
[
˜̄xi−
k+1(ν̄

ij
k+1)

T

](
Ki

k+1Eis

)T
−
∑
is∈N

pis

(
Ki

k+1Eis

)
E
[
ν̄ij
k+1(˜̄x

i−
k+1)

T

](
I −Ki

k+1EdH̄i
i,k+1

)T
+
∑
is∈N

pis

(
I −Ki

k+1EdH̄i
i,k+1

)
E
[
˜̄xi−
k+1(e

ij
k+1)

T

](
Ki

k+1Eis(I − γij
k+1)

)T
+
∑
is∈N

pis

(
Ki

k+1Eis(I − γij
k+1)

)
E
[
eijk+1(˜̄x

i−
k+1)

T

](
I −Ki

k+1EdH̄i
i,k+1

)T
−
∑
is∈N

pis

(
I −Ki

k+1EdH̄i
i,k+1

)
E
[
˜̄xi−
k+1(h̄ij(., .))

T

](
Ki

k+1(Eis −Ed)
)T

−
∑
is∈N

pis

(
Ki

k+1(Eis −Ed)
)
E
[
h̄ij(., .)(˜̄x

i−
k+1)

T

](
I −Ki

k+1EdH̄i
i,k+1

)T
−
∑
is∈N

pis

(
Ki

k+1Eis(I − γij
k+1)

)
E
[
eijk+1(ν̄

ij
k+1)

T

](
Ki

k+1Eis

)T
−
∑
is∈N

pis

(
Ki

k+1Eis

)
E
[
ν̄ij
k+1(e

ij
k+1)

T

](
Ki

k+1Eis(I − γij
k+1)

)T
+ · · ·

(4.35)

We now look for an upper bound for the error covariance matrix. Defining positive

scalars ε1, ε2, ε3, ε5, ε6, ε7 > 0 and applying Lemma III.1 we write for some terms:∑
is∈N

pis

(
I −Ki

k+1EdH̄i
i,k+1

)
E
[
˜̄xi−
k+1(ν̄

ij
k+1)

T

](
Ki

k+1Eis

)T
+
∑
is∈N

pis

(
Ki

k+1Eis

)
E
[
ν̄ij
k+1(˜̄x

i−
k+1)

T

](
I −Ki

k+1EdH̄i
i,k+1

)T
≤

ε2

(
I −Ki

k+1EdH̄i
i,k+1

)
P̄

i−
k+1

(
I −Ki

k+1EdH̄i
i,k+1

)T
+ε−1

2

∑
is∈N

pis

(
Ki

k+1Eis

)
R̄

ij
k+1

(
Ki

k+1Eis

)T
(4.36)
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∑
is∈N

pis

(
I −Ki

k+1EdH̄i
i,k+1

)
E
[
˜̄xi−
k+1(e

ij
k+1)

T

](
Ki

k+1Eis(I − γij
k+1)

)T
+
∑
is∈N

pis

(
Ki

k+1Eis(I − γij
k+1)

)
E
[
eijk+1(˜̄x

i−
k+1)

T

](
I −Ki

k+1EdH̄i
i,k+1

)T
≤ ε3

(
I −Ki

k+1EdH̄i
i,k+1

)
P̄

i−
k+1

(
I −Ki

k+1EdH̄i
i,k+1

)T
+ε−1

3

∑
is∈N

pis

(
Ki

k+1Eis(I − γij
k+1)

)
δijk+1

(
Ki

k+1Eis(I − γij
k+1)

)T
(4.37)

∑
is∈N

pis

(
I −Ki

k+1EdH̄i
i,k+1

)
E
[
˜̄xi−
k+1(h̄ij(., .))

T

](
Ki

k+1(Eis −Ed)
)T

+
∑
is∈N

pis

(
Ki

k+1(Eis −Ed)
)
E
[
h̄ij(., .)(˜̄x

i−
k+1)

T

](
I −Ki

k+1EdH̄i
i,k+1

)T
ε1

(
I −Ki

k+1EdH̄i
i,k+1

)
P̄

i−
k+1

(
I −Ki

k+1EdH̄i
i,k+1

)T
+ε−1

1

∑
is∈N

pis

(
Ki

k+1(Eis −Ed)
)
Ψij

k+1

(
Ki

k+1(Eis −Ed)
)T

(4.38)

which leads to Eq. (4.18). Then, the proof is completed

Remark 7. It is important to notice that calculating the exact value of the estima-

tion error covariance is impossible because of the terms E[˜̄xi+
k (eijk )

T ], E[˜̄xi+
k (νij

k )
T ],

E[eijk (ν
ij
k )

T ],... which depend on the random delays, measurement noises and error

of the event-triggered mechanism. Therefore, we compute the upper bound of the

estimation error covariance (Σ̄
i+
k ) with respect to random delay parameters (Eic,

Ed, Eis), event-triggering parameter (δij
k ), etc.

Corollary III.2.1. Under the assumptions of Theorem III.2, the DECL gain is

given by:

Ki
k = X(Y )−1 (4.39)

Where X and Y can be expressed as a follows:

X = C1P̄
i−
k (Hi

i,k)
TET

d +
∑
ic∈M

picEicP̄
ij−
k (H̄i

j,k)
TET

icE
T
d

Y = C1EdHi
i,kP̄

i−
k (H̄i

i,k)
TET

d + C4
∑
is∈N

pisEisR̄
ij
k E

T
is

+
∑
ic∈M

picEdH̄i
i,kP̄

ij−
k (Hi

j,k)
TET

icE
T
d

+
∑
ic∈M

picEdEicH̄i
j,kP̄

ij−
k (H̄i

i,k)
TET

d

+C2
∑
ic∈M

picEdEicH̄i
j,kP̄

j−
k (H̄i

j,k)
TET

icE
T
d

+C3
∑
is∈N

pis(Eis −Ed)Ψ
ij
k (Eis −Ed)

T

+C5
∑
is∈N

pisEis(I − γij
k )δ

ij
k (I − γij

k )
T
ET

is

(4.40)
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Remark 8. Considering the structure of DECL gain in (4.39)-(4.40), the event-

triggered mechanism and random delays (sensor-filter and filter-filter) introduce ad-

ditional terms affecting the upper and the lower bounds of the filtering error and the

covariance of filtering error, respectively. The optimal Kalman gain (4.39)-(4.40)

can be obtained by minimizing the upper bound of the filtering error covariance with

respect to Kalman gain, i.e.,
∂Σ̄

i+
k

∂Ki
k

= 0. Also, note that the positive scalars ε1,

ε2, etc, in Theorem III.2 can be tuned to minimize the upper bound of the error

covariance and enhance the performance of the filter.

III.2 Boundedness of estimation error for the DECL without time
stamps

In this part, we analyze the stochastic stability of the event-triggered cooperative

localization with random delays.

Lemma III.3. 36 Suppose that there is a stochastic process V k(ζk) as well as real

constant numbers κ, κ̄, µ > 0 and 0 < σ ≤ 1 such that

κ ∥ζk∥
2 ≤ V k(ζk) ≤ κ̄ ∥ζk∥

2 (4.41)

E{V k(ζk)|ζk−1} − V k−1(ζk−1) ≤ µ− σV k−1(ζk−1) (4.42)

are satisfied. Then the stochastic process is exponentially bounded in mean square,

i.e., we have

E
{
∥ζk∥

2
}
≤ κ̄

κE
{
∥ζ0∥

2
}
(1− σ)k + µ

κ

k−1∑
i=1

(1− σ)i (4.43)

and the stochastic process is bounded with probability one.

Assumption 6. There exist real constants ai, āi, hi, h̄i, hij, h̄ij, qi, q̄i, Rij, R̄ij,

p
ic
, p̄ic, Ed, Ēd, Eic, Ēic, p̄i > 0 such that the following bounds on various matrices

are satisfied for every k ≥ 0:

ai ≤
∥∥Āi

k

∥∥ ≤ āi, hi ≤
∥∥∥H̄i

i,k

∥∥∥ ≤ h̄i, hij ≤
∥∥∥H̄i

j,k

∥∥∥ ≤ h̄ij
q
i
≤
∥∥∥Q̄i

k

∥∥∥ ≤ q̄i, Rij ≤
∥∥∥R̄ij

k

∥∥∥ ≤ R̄ij , Eic ≤ ∥Eic∥ ≤ Ēic

Ed ≤ ∥Ed∥ ≤ Ēd, p
ic
≤
∥∥pic

∥∥ ≤ p̄ic , g
i
≤
∥∥∥Ḡi

k

∥∥∥ ≤ ḡi
(4.44)

Theorem III.4. Consider the nonlinear system (4.1) and (4.2) along with the

event-triggered mechanism (4.16) and random delays (4.4), (4.10) and (4.11) and

assume that Assumption 6 is satisfied. Given p
i
≤ P̄

i+
(0) ≤ p̄i and p

ij
≤ P̄

ij+
(0) ≤
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p̄ij where p̄i, pi
, p̄ij and p

ij
are known positive values. If the following inequality is

satisfied,

P i−
k+1 ≤ ā2i p̄i + 2ā2i

(
C1p̄ih̄iĒd

)[
r−1
i,min − r−1

i,maxC1Edhipih
T
i E

T
d r

−1
i,max

]
×
(
C1p̄ih̄iĒd

)T
+ 2ā2i

(∑
ic∈M

p̄icĒic p̄ih̄
T
i Ē

T
ic
ĒT

d

)
×
[
r−1
i,min − r−1

i,maxC1Edhipih
T
i E

T
d r

−1
i,max

]
×
(∑
ic∈M

p̄icĒic p̄ij h̄
T
i Ē

T
ic
ĒT

d

)T
≤ p̄i

(4.45)

where
ri,k = C4

∑
is∈N

pisEisR̄
ij
k E

T
is +

∑
ic∈M

picEdH̄i
i,kP̄

ij−
k (Hi

j,k)
TET

icE
T
d

+
∑
ic∈M

picEdEicH̄i
j,kP̄

ij−
k (H̄i

i,k)
TET

d

+C2
∑
ic∈M

picEdEicH̄i
j,kP̄

j−
k (H̄i

j,k)
TET

icE
T
d

+C3
∑
is∈N

pis(Eis −Ed)Ψ
ij
k (Eis −Ed)

T

+C5
∑
is∈N

pisEis(I − γij
k )δ

ij
k (I − γij

k )
T
ET

is

then, the inequality p
i
≤ P i+

k ≤ P i−
k ≤ p̄i holds for any k ≥ 1.

Proof. It is obvious that the state estimation error and its error covariance are

updated by receiving new relative measurements. The updated error covariance is

written as follows:

P̄
i+
k = P̄

i−
k −Ki

kS
ij
k (K

i
k)

T (4.46)

P̄
ij+
k = P̄

ij−
k −Ki

kS
ij
k (K

j
k)

T (4.47)

Where Sij
k is covariance of arriving innovation:

Sij
k = C1EdHi

i,kP̄
i−
k (H̄i

i,k)
TET

d + C4
∑
is∈N

pisEisR̄
ij
k E

T
is

+
∑
ic∈M

picEdH̄i
i,kP̄

ij−
k (Hi

j,k)
TET

icE
T
d

+
∑
ic∈M

picEdEicH̄i
j,kP̄

ij−
k (H̄i

i,k)
TET

d

+C2
∑
ic∈M

picEdEicH̄i
j,kP̄

j−
k (H̄i

j,k)
TET

icE
T
d

+C3
∑
is∈N

pis(Eis −Ed)Ψ
ij
k (Eis −Ed)

T

+C5
∑
is∈N

pisEis(I − γij
k )δ

ij
k (I − γij

k )
T
ET

is

So, we can show that P̄
i+
k+1 ≤ P̄

i−
k+1. Considering the propagated state error covari-
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ance in (4.26) and substituting Ki
k in (4.39)-(4.40) we write:

P̄
i−
(k + 1) = Āi

k

[
P̄

i−
k −

(
C1P̄

i−
k (Hi

i,k)
TET

d +
∑
ic∈M

picEicP̄
ij−
k

×(H̄i
j,k)

TET
icE

T
d

)
(Ki

k)
T

]
(Āi

k)
T + Ḡ

i
kQ̄

i
k(Ḡ

i
k)

T

= Āi
k

[
P̄

i−
(k)−

(
C1P̄

i−
k (Hi

i,k)
TET

d +
∑
ic∈M

picEicP̄
ij−
k (H̄i

j,k)
TET

icE
T
d

)
×
{
C1EdHi

i,kP̄
i−
k (H̄i

i,k)
TET

d + rik

}−1(
C1P̄

i−
k (Hi

i,k)
TET

d

+
∑
ic∈M

picEicP̄
ij−
k (H̄i

j,k)
TET

icE
T
d

)T ]
(Āi

k)
T + Ḡ

i
kQ̄

i
k(Ḡ

i
k)

T

(4.48)

where
rik = C4

∑
is∈N

pisEisR̄
ij
k E

T
is +

∑
ic∈M

picEdH̄i
i,kP̄

ij−
k (Hi

j,k)
TET

icE
T
d

+
∑
ic∈M

picEdEicH̄i
j,kP̄

ij−
k (H̄i

i,k)
TET

d

+C2
∑
ic∈M

picEdEicH̄i
j,kP̄

j−
k (H̄i

j,k)
TET

icE
T
d

+C3
∑
is∈N

pis(Eis −Ed)Ψ
ij
k (Eis −Ed)

T

+C5
∑
is∈N

pisEis(I − γij
k )δ

ij
k (I − γij

k )
T
ET

is

(4.49)

Using the inequality (A+B)−1 > A−1 −A−1BA−1 we write:

P̄
i−
k+1 ≤ Āi

kP̄
i−
k (Āi

k)
T + Āi

k

(
C1P̄

i−
k (Hi

i,k)
TET

d

)
×
[
(rik)

−1 − (rik)
−1
(
C1EdHi

i,kP̄
i−
k (H̄i

i,k)
TET

d

)
(rik)

−1
]

×
(
C1P̄

i−
k (Hi

i,k)
TET

d

)T
(Āi

k)
T + Āi

k

(∑
ic∈M

picEicP̄
ij−
k (H̄i

j,k)
TET

icE
T
d

)
×
[
(rik)

−1 − (rik)
−1
(
C1EdHi

i,kP̄
i−
k (H̄i

i,k)
TET

d

)
(rik)

−1
]

×
(
C1P̄

i−
k (Hi

i,k)
TET

d

)T
(Āi

k)
T + Āi

k

(∑
ic∈M

picEicP̄
ij−
k (H̄i

j,k)
TET

icE
T
d

)
×
[
(rik)

−1 − (rik)
−1
(
C1EdHi

i,kP̄
i−
k (H̄i

i,k)
TET

d

)
(rik)

−1
]

×
(∑
ic∈M

picEicP̄
ij−
k (H̄i

j,k)
TET

icE
T
d

)T
(Āi

k)
T + Āi

k

(
C1P̄

i−
k (Hi

i,k)
TET

d

)
×
[
(rik)

−1 − (rik)
−1
(
C1EdHi

i,kP̄
i−
k (H̄i

i,k)
TET

d

)
(rik)

−1
]

×
(∑
ic∈M

picEicP̄
ij−
k (H̄i

j,k)
TET

icE
T
d

)T
(Āi

k)
T ≤ 2Āi

k

(
C1P̄

i−
k (Hi

i,k)
TET

d

)
×
[
(rik)

−1 − (rik)
−1
(
C1EdHi

i,kP̄
i−
k (H̄i

i,k)
TET

d

)
(rik)

−1
]

×
(
C1P̄

i−
k (Hi

i,k)
TET

d

)T
(Āi

k)
T + 2Āi

k

(∑
ic∈M

picEicP̄
ij−
k (H̄i

j,k)
TET

icE
T
d

)
×
[
(rik)

−1 − (rik)
−1
(
C1EdHi

i,kP̄
i−
k (H̄i

i,k)
TET

d

)
(rik)

−1
]

×
(∑
ic∈M

picEicP̄
ij−
k (H̄i

j,k)
TET

icE
T
d

)T
(Āi

k)
T + Āi

kP̄
i−
k (Āi

k)
T

(4.50)

Now, in order to prove the boundedness of error covariance P̄
i−
k+1, we assume that

p
i
I ≤ P̄

i−
k ≤ p̄iI and p

ij
I ≤ P̄

ij−
k ≤ p̄ijI holds at k, then we will show that it is true
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in k + 1.

P i−
k+1 ≤ ā2i p̄i + 2ā2i

(
C1p̄ih̄iĒd

)[
r−1
i,min − r−1

i,maxC1Edhipih
T
i E

T
d r

−1
i,max

]
×
(
C1p̄ih̄iĒd

)T
+ 2ā2i

(∑
ic∈M

picĒic p̄ih̄
T
i Ē

T
ic
ĒT

d

)
×
[
r−1
i,min − r−1

i,maxC1Edhipih
T
i E

T
d r

−1
i,max

]
×
(∑
ic∈M

picĒic p̄ij h̄
T
i Ē

T
ic
ĒT

d

)T
≤ p̄i

(4.51)

Therefore, we show that the error covariance matrix is bounded for k ≥ 1 by math-

ematical induction, which completes the proof.

Remark 9. In Theorem III.4, we obtained sufficient conditions that ensure conver-

gence and stochastic stability of the proposed filter. It is worth mentioning that all

terms involving the dynamics of the multi-robot system, event-triggered scheme as

well as random delays appear in condition (4.51). According to condition (4.51), if

the upper bound of the input delay increases, then ri,max will increase, resulting in

an increase of the upper bound of filtering error covariance. Also, the event-triggered

parameters αij, βij > 0 in Eq. (4.16) have an impact on upper bound of the filter-

ing error covariance. From Eq. (4.16), it can be seen that as the value of αij, βij

increase, the average transmission rate of information (γij
k ) is reduced. Moreover,

based on condition (4.51), we can see that ri,max will increase as the value of αij,

βij increase. Therefore, the upper bound of the filter error covariance increases with

the value of αij, βij. Conversely, smaller values of αij, βij lead to a higher com-

munication rate. In this scenario, the upper bound of the error covariance decreases

resulting in better localization performance, at the cost of imposing a heavier burden

on the communication network. These two scenarios lead to a tradeoff in the value

of αij, βij to balance localization performance and reduced communication costs.

When, both parameters of the event-triggered scheme (αij, βij) and the upper bound

of input delays are large, the filtering error covariance might diverge. Convergence of

the proposed filter is guaranteed provided that the maximum delays, event-triggered

parameters, etc., satisfy inequality (4.51). If upper bound of the filtering error co-

variance converges asymptotically with k, then the filtering error covariance must

converge as well.

Note that the error covariance matrix in the developed CL does not represent

the true estimation error exactly. Therefore, the result of Theorem III.4 can be used

to analyze the performance of estimation error. This is done in our next Theorem.
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Theorem III.5. Consider the nonlinear system (4.1) and (4.2) along with the

event-triggered mechanism (4.16) and random delays (4.4), (4.10) and (4.11). If

P̄
i+
k ≤ P̄

i−
k ≤ p̄i (4.52)

and for some εi> 0, E
{∥∥˜̄xi+(0)

∥∥2} ≤ εi, then the filtering error ˜̄xi+
k = x̄i

k − ˆ̄xi+
k is

exponentially bounded in mean square for any i ∈ ϑ .

Proof. First, we define the Lyapunov function as follows:

V k(˜̄x
i+
k ) = (˜̄xi+

k )T (P̄
i+
k )−1 ˜̄xi+

k (4.53)

Using Theorem III.4 it is obtained that p
i
I ≤ P̄

i+
k ≤ p̄iI. The inequality constraint

form of Eq. (4.53) is written as follows:

1
p̄i

∥∥˜̄xi+
k

∥∥2 ≤ V k(˜̄x
i+
k ) ≤ 1

p
i

∥∥˜̄xi+
k

∥∥2 (4.54)

Next, we have to compute E
{
Vk(˜̄x

i+
k )|˜̄xi+

k−1

}
as follows:

E
{
V k(˜̄x

i+
k )|˜̄xi+

k−1

}
= E

{
(˜̄xi+

k−1)
T (Āi

k−1)
T
(
I −Ki

k+1EdH̄i
i,k+1

)T
×(P̄ i+

k )−1
(
I −Ki

k+1EdH̄i
i,k+1

)
Āi

k−1
˜̄xi+
k−1

}
+ µi

k

(4.55)

Next, we have to ensure the boundary of E
{
Vk(˜̄x

i+
k )|˜̄xi+

k−1

}
− Vk−1(˜̄x

i+
k−1). Note that

considering the property of conditional expectation that E{˜̄xi+
k |˜̄x

i+
k } = ˜̄xi+

k .

E
{
Vk(˜̄x

i+
k )|˜̄xi+

k−1

}
− Vk−1(˜̄x

i+
k−1) ≤

(˜̄xi+
k−1)

T

{
(Āi

k−1)
T
(
I −Ki

k+1EdH̄i
i,k+1

)T [
C1
(
I −Ki

kEdH̄i
i,k

)
×
(
Āi

k−1P̄
i+
k−1(Āi

k−1)
T + Ḡ

i
k−1Q̄

i
k−1(Ḡ

i
k−1)

T
)(

I −Ki
kEdH̄i

i,k

)T
−
∑
ic∈M

pic

(
I −Ki

kEdH̄i
i,k

)(
Āi

k−1P̄
ij+
k−1(Ā

j
k−1)

T
)(

Ki
kEdEicH̄i

j,k

)T
−
∑
ic∈M

pic

(
Ki

kEdEicH̄i
j,k

)(
Āi

k−1P̄
ij+
k−1(Ā

j
k−1)

T
)(

I −Ki
kEdH̄i

i,k

)T
+
∑
ic∈M

picC2
(
Ki

kEdEicH̄i
j,k

)
P̄

j−
k

(
Ki

kEdEicH̄i
j,k

)T
−
∑
is∈N

pisC3
(
Ki

k(Eis −Ed)
)
Ψij

k

(
Ki

k(Eis −Ed)
)T

−
∑
is∈N

pisC4
(
Ki

kEis

)
Rij

k

(
Ki

kEis

)T
+
∑
is∈M

picC6
(
I −Eic

)
Πj

k

(
I −Eic

)T
+
∑
is∈N

pisC5
(
Ki

kEis(I − γij
k )
)
δijk

(
Ki

kEis(I − γij
k )
)T ]−1

×Āi
k−1

˜̄xi+
k−1 −

(
P i+

k−1

)−1
}
x̃i+
k−1

(4.56)
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Then, E
{
Vk(˜̄x

i+
k )|˜̄xi+

k−1

}
− Vk−1(˜̄x

i+
k−1) is written in the following form:

E
{
Vk(˜̄x

i+
k )|˜̄xi+

k−1

}
− Vk−1(˜̄x

i+
k−1) ≤ µ̄i

k − σiV k−1(˜̄x
i+
k−1) (4.57)

We can show the following inequality:

0 < σi ≤ 1 (4.58)

According to Lemma IV.1, there is

E
{∥∥˜̄xi+

k

∥∥2} ≤ κ̄
κE
{∥∥˜̄xi+(0)

∥∥2} (1− σi)k+1 + µ̄i

κ

k−1∑
n=1

(1− σi)i (4.59)

The proof is completed.

Remark 10. According to (4.59) (see supplemental materials), the estimation error

of the proposed filter decays exponentially provided that the initial estimation error

is bounded and 0 < σi ≤ 1. Also, the upper bound of µi
k depends on the event-

triggering parameter, and the parameters of the random delays (sensor-filter and

filter-filter communication channels), which affect the upper bound of E
{∥∥˜̄xi+

k

∥∥2}.
Thus, by assuming bounded delays and choosing a proper event-triggered mechanism,

one can limit the upper bound of the estimation error.

IV Design of the CL Algorithm with random delays (a
time-stamped mechanism)

IV.1 Design of DECL using non-time-stamped mechanism

In the preceding section, we derived an extended Kalman filter assuming that the

data packets received by the filter were not time-stamped. In this section we revisit

the previous result and derive an extended Kalman filter assuming time-stamped

packets. In the time-stamp mechanism, the filter has perfect knowledge of the signal

delay at each time. At time instant k, each measurement z̄ij
k with time-stamp has

a delay of dik time steps.

Theorem IV.1. Consider the nonlinear system (4.1) and (4.2) along with the

event-triggered mechanism (4.16). Assume that the relative measurement (z̄ij
k , z̄

ji
k )

and the predicted belief beli−k = (ˆ̄xi−
k , P̄

i−
k ), belj−k = (ˆ̄xj−

k , P̄
j−
k ) are transmitted through

time-stamped mechanism with random delays (4.4), (4.10) and (4.11) through the
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communication channels. For the DECL via the EKF, the upper bound of estimation

error covariance P̄
i−
ts,k can be obtained as follows:

Σ̄
i+
ts,k = C1

(
I −Ki

ts,kEd,tsH̄i
i,k

)
P̄

i−
ts,k

(
I −Ki

ts,kEd,tsH̄i
i,k

)T
−
(
I −Ki

ts,kEd,tsH̄i
i,k

)
P̄

ij−
ts,k

(
Ki

ts,kEd,tsEξk,tsH̄i
j,k

)T
−
(
Ki

ts,kEd,tsEξk,tsH̄i
j,k

)
P̄

ij−
ts,k

(
I −Ki

ts,kEd,tsH̄i
i,k

)T
+C2

(
Ki

ts,kEd,tsEξk,tsH̄i
j,k

)
P̄

j−
k

(
Ki

ts,kEd,tsEξk,tsH̄i
j,k

)T
+C3

(
Ki

ts,k(Eτk,ts −Ed,ts)
)
Ψij

k

(
Ki

ts,k(Eτk,ts −Ed,ts)
)T

+C4
(
Ki

ts,kEτk,ts

)
Rij

k

(
Ki

ts,kEτk,ts

)T
+C6

(
I −Eξk,ts

)
Πj

k

(
I −Eξk,ts

)T
+C5

(
Ki

ts,kEτk,ts(I − γij
k )
)
δijk

(
Ki

ts,kEτk,ts(I − γij
k )
)T

(4.60)

Proof. The proof is similar to the Theorem III.2 and is omitted.

Corollary IV.1.1. Under the assumptions of Theorem IV.1, the DECL gain is

given by:

Ki
ts,k = X(Y )−1 (4.61)

Where X and Y can be expressed as a follows:

X = C1P̄
i−
ts,k(Hi

i,k)
TET

d,ts +Eξk,tsP̄
ij−
ts,k(H̄i

j,k)
TET

ξk,ts
ET

d,ts

Y = C1Ed,tsHi
i,kP̄

i−
ts,k(H̄i

i,k)
TET

d,ts + C4Eτk,tsR̄
ij
k E

T
τk,ts

+Ed,tsH̄i
i,kP̄

ij−
ts,k(Hi

j,k)
TET

ξk,ts
ET

d,ts

+Ed,tsEξk,tsH̄i
j,kP̄

ij−
ts,k(H̄i

i,k)
TET

d,ts

+C2Ed,tsEξk,tsH̄i
j,kP̄

j−
ts,k(H̄i

j,k)
TET

ξk,ts
ET

d,ts

+C3(Eτk,ts −Ed,ts)Ψ
ij
k (Eτk,ts −Ed,ts)

T

+C5Eτk,ts(I − γij
k )δ

ij
k (I − γij

k )
T
ET

τk,ts

(4.62)

Remark 11. It is important to notice that the main difference between localiza-

tion of multi-robot systems with and without time-stamped mechanism is the nature

of the matrices Eτk , Ed and Eξk . In the time-stamped case (see Theorem IV.1),

the matrices Eτk , Ed and Eξk are known at each time, whereas in the non-time-

stamped case (see Theorem III.2), their expected values are employed. The filter

with time-stamped technology provides better localization performance than without

time-stamped technology in the presence of delayed measurements since it has the

knowledge of delays involved. However, the non time-stamped mechanism may be

an appropriate way to reduce communication costs in the case of limited bandwidth

compared to the time-stamped mechanism.
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Algorithm 2 DECL Algorithm Under Random Delays

1: Initialize state estimation and error covariance as Robots i ∈ ϑ and j ∈ ϑ\{i}: ˆ̄xi+(0) ∈ Rni

,
P̄

i+
(0) ∈ Sni

, P̄ij+
(0) = 0ni×nj

2: repeat
3: Propagation: Compute the predicted state and error covariance for each robot:

ˆ̄xi−
k+1 = f i

(
ˆ̄xi+
k , ūi

k

)
P̄

i−
k+1 = Āi

kP̄
i+
k (Āi

k)
T + Ḡ

i
kQ̄

i
k(Ḡ

i
k)

T

P̄
ij−
k+1 = Āi

kP̄
ij+
k (Āj

k)
T

4: Update:
5: If robot i receive relative measurements zijk , then broadcast the predicted state and

the corresponding error covariance to the other robots. The measurement residual and
its covariance are:

Υij
k = Eτkz

ij
k −Eτk(I − γi

k+1)e
ij
k+1 −Edẑ

ij
k

Sij
k = C1EdHi

i,kP̄
i−
k (H̄i

i,k)
TET

d + C4
∑
is∈N

pisEisR̄
ij
k E

T
is

+
∑
ic∈M

picEdH̄i
i,kP̄

ij−
k (Hi

j,k)
TET

icE
T
d

+
∑
ic∈M

picEdEicH̄i
j,kP̄

ij−
k (H̄i

i,k)
TET

d

+C2
∑
ic∈M

picEdEicH̄i
j,kP̄

j−
k (H̄i

j,k)
TET

icE
T
d

+C3
∑
is∈N

pis(Eis −Ed)Ψ
ij
k (Eis −Ed)

T

+C5
∑
is∈N

pisEis(I − γij
k )δ

ij
k (I − γij

k )
T
ET

is

Sij
ts,k = C1Ed,tsHi

i,kP̄
i−
ts,k(H̄i

i,k)
TET

d,ts + C4Eτk,tsR̄
ij
k E

T
τk,ts

+Ed,tsH̄i
i,kP̄

ij−
ts,k(Hi

j,k)
TET

ξk,ts
ET

d,ts

+Ed,tsEξk,tsH̄i
j,kP̄

ij−
ts,k(H̄i

i,k)
TET

d,ts

+C2Ed,tsEξk,tsH̄i
j,kP̄

j−
ts,k(H̄i

j,k)
TET

ξk,ts
ET

d,ts

+C3(Eτk,ts −Ed,ts)Ψ
ij
k (Eτk,ts −Ed,ts)

T

+C5Eτk,ts(I − γij
k )δ

ij
k (I − γij

k )
T
ET

τk,ts

6: Compute optimal Kalman gain:

Ki
k =

[
C1P̄

i−
k (Hi

i,k)
TET

d +
∑
ic∈M

picEicP̄
ij−
k (H̄i

j,k)
TET

icE
T
d

]
(Sij

k )−1

Ki
ts,k =

[
C1P̄

i−
ts,k(Hi

i,k)
TET

d,ts +Eξk,tsP̄
ij−
ts,k(H̄i

j,k)
TET

ξk,ts
ET

d,ts

]
(Sij

ts,k)
−1

7: Update the filter with the current measurement:

ˆ̄xi+
k = ˆ̄xi−

k +Ki
kΥ

ij
k

ˆ̄xi+
ts,k = ˆ̄xi−

ts,k +Ki
ts,kΥ

ij
ts,k

8: Update the error covariance:

P̄
i+
k = P̄

i−
k −Ki

kS
ij
k (Ki

k)
T

P̄
ij+
k = P̄

ij−
k −Ki

kS
ij
k (Kj

k)
T

P̄
i+
ts,k = P̄

i−
ts,k −Ki

ts,kS
ij
ts,k(K

i
ts,k)

T

P̄
ij+
ts,k = P̄

ij−
ts,k −Ki

ts,kS
ij
ts,k(K

j
ts,k)

T

9: k ← k + 1
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V Case study

V.1 Simulation Results

Simulations of the multi-robot cooperative localization are carried out to demon-

strate the relation between the localization results and time delays and verify the

performance of the proposed algorithms. Consider four mobile robots whose equa-

tions of motion are described by:{
xi(t+ 1) = xi(t) + ∆t(vim(t) cos(ϕi(t) + ∆ϕi(t))
yi(t+ 1) = yi(t) + ∆t(vim(t) sin(ϕi(t) + ∆ϕi(t))
ϕi(t+ 1) = ϕi(t) + ∆tωi(t) i ∈ {1, 2, 3, 4}

(4.63)

where [xi(t), yi(t), ϕi(t)]T represent the position and orientation of robots, vim(k) and

ωi(t) denote the linear and angular velocity, b is the distance between the wheels,

∆ϕi(t) represent the uncertainty on the orientation. The control input of each robot

i is the form of:
ui(t) =

[
∆Li ∆Ri

]T
(4.64)

Where ∆Li and ∆Ri are the distance moved by the left and the distance moved by

the right wheels, respectively. ∆Li and ∆Ri can be obtained by ∆tvim(t) = ∆Ri+∆Li

2

and ∆ϕi(t) = ∆Ri−∆Li

2b . Note that the control input ui(t) is measured from the

odometry sensor. Also, relative pose measurements, i.e., range and bearing, of

robot i relative to robot j are given by:

zij(t) =

[
ρij(t)
θij(t)

]
=

[√
(xi(t)− xj(t))2 + (yi(t)− yj(t))2

arctan( y
i(t)−yj(t)

xi(t)−xj(t) )

]
(4.65)

where:

ρij(t) is the range of the robot i relative to the robot j.

θij(t) is the bearing of the robot i relative to the robot j.

We assume that additive white-Gaussian noise affects both the control input ui(t)

and the relative pose measurements zij(t). In mobile robots, these noises represent

the impact of model uncertainties associated with the odometry sensor and camera.

We will consider the following parameters in our simulations:

ui(t) = [∆Li; ∆Ri] = [0.25m; 0.25m],
Qi = diag([(0.05∆Li)2; (0.05∆Ri)2]),
Rij = diag([0.1m2; 0.1rad2])

We assume that when robots i ∈ {1, 2, 3, 4} move in a random trajectory, the

rest of the robots remain stationary. We choose a random control input for each of
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the moving robots to show the robustness of the DECL algorithm to localize robots

under random trajectories. In our simulations, we compare the following trajec-

tories: 1) the actual pose of each robot; 2) pose estimation from the propagation

of the filter; 3) pose estimation from the proposed DECL algorithm under random

delays. We first examine the performance of the dead-reckoning method where each

robot employs the wheel encoders to propagate the local filter independently and

there is no exchange of range-bearing measurements between the four robots. As

seen in Fig. 4.2 and Fig. 4.3, the position estimation for each robot using the

dead-reckoning method does not accurately track the ground truth.

Non-Time-Stamped Mechanism

Fig. 4.2 shows the localization results of four mobile robots under time delays and

event-triggered mechanisms. We consider a scenario in which packets are transmit-

ted in a non-time-stamped technology, therefore the local filter for each robot does

not have information on the delays incurred by each signal, and relies only on their

probability at each time. In Fig. 4.2(a) and (b), we compare the performance of

the proposed DECL algorithm (2) with the classical CL algorithm considering the

one-step random delayed measurements as follows:

z̃ij
k = θ0,kz̄

ij
k + (1− θ0,k)θ1,kz̄

ij
k−1 (4.66)

where parameters θ0,k and θ1,k are Bernoulli-distributed with the rates of θ̄0 = 0.1

and θ̄1 = 1, respectively. As Fig. 4.2(a) and (b) show, the proposed filter has

better accuracy than the classical filter. Then, we consider two-step random delayed

measurements as follows:

z̃ij
k = θ0,kz̄

ij
k + (1− θ0,k)θ1,kz̄

ij
k−1 + (1− θ0,k)(1− θ1,k)θ2,kz̄

ij
k−2 (4.67)

where parameters θ0,k, θ1,k and θ2,k are Bernoulli-distributed with the rates of

θ̄0 = 0.8, θ̄1 = 0.99 and θ̄2 = 1 respectively. As Fig. 4.2(c) and (d) show, the pro-

posed DECL algorithm 1 has better performance than the classical CL algorithm.

To compare the performance of the proposed DECL with classical CL we use posi-

tion error for each robot. The magnitude of position error for each robot at time

k is given by SEi
k =

√
(xik − x̂

i+
k )2 + (yik − ŷ

i+
k )2 where xik and x̂i+k are the actual

and estimated position in the x-axis, respectively, and yik and ŷi+k are the actual

and estimated position in the y-axis, respectively. According to Fig. 4.2(e), we con-

clude that our proposed algorithm (2) outperforms the classical CL under random
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delays. We also evaluate the performance of the DECL algorithm with the proposed

event-triggered mechanism in terms of the amount of information transmission and

localization accuracy. Fig. 4.4(a)-(c) shows the localization of robots under different

triggering conditions and considering the random delays. Also, Fig. 4.4(d)-(i) shows

the triggering instance for the range and bearing of robots under different trigger-

ing conditions. Finally, we compare the position error of robots under different

triggering conditions and consider the random delays in Fig. 4.4(j). Our analy-

sis shows that as the parameters of the event-triggering mechanism increase, the

average transmission rate of the relative measurements significantly reduces while

localization error slightly increases. Therefore, it is important to tune the param-

eters of the event-triggered mechanism to achieve a balance between localization

quality and communication rate.

Time-Stamped Mechanism

In this case, we consider a scenario in which communication packets are transmitted

using time-stamped technology. In this case, the local filter has perfect knowledge

of the delay at each time. Fig. 4.3(a)-(c) shows localization results without time

delays, one-step, two-step, and three-step delayed measurements. Also, Fig. 4.3(e)

shows that larger step delays cause a larger position error for each robot.

V.2 Experimental Validation

In this part, we validate our theoretical results by performing experiments on a real

robotic system. The experimental setup (see Fig. 4.8) consists of a gaming laptop,

a fleet of 4 e-puck2 mobile robots equipped with an ArUco tag, ZED stereo camera.

We implement our algorithm on a robot operating system (ROS). The computer

running ROS software can also handle the communication between the robots and

the camera. Each e-puck2 robot in the team moves in a circular trajectory (see

Fig. 4.7) and generates time-stamped odometry and inertial measurements used

in the filter propagation step. The overhead ZED camera with the help of ArUco

tags and the ArUco image processing library [117] generates the reference trajec-

tory and also provides time-stamped range-bearing measurements. The accuracy

of the range and bearing measurements based on computer vision is 0.05 m and 7

degrees, respectively. Using the ROS package [119] we synchronize timestamps to all

odometry data, range and bearing measurements. Each e-puck2 robot runs several
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ROS nodes simultaneously, including programs to propagate and update the local

filter using time-stamped odometry and inertial and range-bearing measurements.

These ROS nodes communicate through transmission control protocol (TCP). The

robots communicate with the computer via Bluetooth. Since communication with

robots via Bluetooth is done sequentially, the delays are different for each robot.

Therefore, time delays are considered as an uncertainty term ∆di ∈ [0.15s, 0.195s]

[36], i ∈ {1, 2, 3, 4}. Since the packets transmitted by the sensors are time-stamped,

the filter has knowledge of the time delays. In our experiment, we compare the

following trajectories: 1) Actual pose of each robot provided by overhead ZED cam-

era; 2) pose estimation from odometry sensor; 3) pose estimation from the proposed

DECL algorithm under random delays. Fig. 4.5 and Fig. 4.6 show the localization

results of our experiments. The overhead camera provides the reference trajectory

to examine the performance of the local filter. Note that the odometry sensor does

not provide the reliable estimation of actual position of robots since odometry sen-

sor translates the turn of the robot’s wheels into the traveled distance and highly

sensitive to the slippage. Fig. 4.5(a) show the estimated position of the robots (us-

ing DECL Algorithm) with time delays and a time-triggered mechanism which the

range-bearing measurements improve the localization accuracy. In the implementa-

tion of the event-triggering mechanism, the overhead camera is equipped with an

event-based scheduler which transmits the range and bearing measurements to each

robot based on the triggering condition (4.16). Moreover, two triggering conditions

are employed, one is for range and the other is for bearing. If the triggering condi-

tion for either the range or bearing is satisfied, then the robot receives the current

range or bearing measurement from the overhead camera. Fig. 4.5(b)-(c) shows

the results of the same algorithm but using the event-triggered mechanism proposed

here. We also compare the position error of each robot for different triggering condi-

tions considering inherent time delays in Fig. 4.6(a). Also, the triggering instances

for the range and bearing of robots for different triggering conditions can be shown

in Fig. 4.6(b)-(g). It can be seen that as the parameters of the event-triggered

mechanism increase, the average communication rate of the range and bearing mea-

surements are significantly reduced while slightly sacrificing localization accuracy.

The event-triggering parameters were tuned such that the estimation error remains

bounded despite time delays while the number of transmission packets between the

sensor and filter is reduced.
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(a) classical CL one-step random delay
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(b) proposed DECL one-step random delay
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(c) classical CL two-step random delays
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(d) proposed DECL two-step random delays
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(e) position error under different scenarios

Figure 4.2: (a), (c). Localization of 4 robots by classical CL algorithm under the event-triggered mechanism
and with time delays (non-time-stamped technology) (a) one-step random delay, (c) two-step random delays,
(b), (d) Localization of 4 robots by proposed DECL algorithm (1) under the event-triggered mechanism and
with time delays (b) one-step random delay, (d) two-step random delays, solid-o shows the ground truths,
broken-dot shows the dead-reckoning and broken-x shows the EKF estimates of 4 robots, (e) the position
error of each robot under different scenarios
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(b) proposed DECL one-step random delay
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(c) proposed DECL two-step random delays
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(d) proposed DECL three-step random delays
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(e) position error under different scenarios

Figure 4.3: (a) Localization of 4 robots by proposed DECL algorithm under the event-triggered mechanism
and without random delays (time-stamped technology); Localization of 4 robots by proposed DECL algo-
rithm under the event-triggered mechanism and with time delays (time-stamped technology); (b) one-step
random delay; (c) two-step random delays; (d) three-step random delays; solid-o shows the ground truths,
broken-dot shows the dead-reckoning and broken-x shows the EKF estimates of 4 robots; (e) the position
error of each robot using proposed DECL algorithm under different scenarios
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range of robots (case c)
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(j) The position error of each robot using the proposed DECL
algorithm under different triggering mechanisms and considering
random delays

Figure 4.4: Localization of 4 robots by proposed DECL algorithm under different triggering conditions
considering random delays; solid-o shows the ground truths and broken-x shows the EKF estimates of 4
robots.
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(b) localization of robots under event-triggered mechanism
(αij = 0.05 & βij = 0.01 for range and αij = 0.05 &
βij = 0.01 for bearing)
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Figure 4.5: Trajectories of the e-puck2 mobile robots; the position estimated from overhead ZED camera
(the curve indicated by green), the position estimated from odometry sensor (the red curve), and the posi-
tion estimated by DECL Algorithm considering time-stamped information (the blue curve) under different
triggering conditions and with inherent time delays
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Figure 4.6: (a) The estimated position error of robots under different triggering conditions considering
inherent time delays; (b)-(c) triggering instance for range and bearing of robots in time-triggered mechanism;
(d)-(e) triggering instances for range and bearing of robots under event-triggered mechanism (αij = 0.05
& βij = 0.01 for range and αij = 0.05 & βij = 0.01 for bearing); (f)-(g) triggering instances for range
and bearing of robots under event-triggered mechanism (αij = 0.1 & βij = 0.1 for range and αij = 0.1 &
βij = 0.1 for bearing)
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(a) (b) (c)

Figure 4.7: Experimental setup including (a) e-puck2 robot, (b) gaming laptop (equipped with Nvidia GPU),
(c) overhead ZED camera,

(a) (b)

(c) (d)

Figure 4.8: Each e-puck2 robot move simultaneously in a counter clock-wise direction along a circle path.
Also, the overhead ZED camera provide the relative measurement with the help of ArUco tags and image
processing library.
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Chapter 5

A Secure Decentralized
Event-Triggered Cooperative
Localization In Multi-Robot
Systems Under Cyber Attack

I Introduction

In this chapter, we study the problem of a secure decentralized event-triggered

cooperative localization (SDECL) for a team of mobile robots in an adversarial

environment, where the objective is to perform localization in the presence of a ma-

licious attacker. We consider a scenario in which the attacker is able to attack the

communication channels between the exteroceptive sensors and filter of the robot

and between two robots independently. First, we design a secure decentralized

event-triggered cooperative localization in the multi-robot system against random

Denial of Service (DoS) and False Data Injection (FDI) attacks. Then, we provide

sufficient conditions that ensure the resilience and convergence of the proposed al-

gorithm when the attacker signal rate is bounded. Simulation results show that by

properly tuning the parameters of the event-triggered mechanism and considering

the bounded attack rate, the proposed algorithm is resilient against cyber attacks.

Also, experimental results using four e-puck2 mobile robots have demonstrated the

effectiveness of the proposed method.

The rest of this work is organized as follows. Section II contains the dynamic

of multi-robot systems, multi-robot interaction and attack strategy, problem state-

ment, and event-triggered data transferring mechanism. In section III, we design an

SDECL for multi-robot systems in the presence of a cyber attack. In Section IV, we
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analyze the stochastic boundedness of the estimation error in the mean square for

the SDECL algorithm under cyber attacks. In Section V we present the case study

including the simulation and experimental results. Finally, Section VI contains some

conclusions of the results.

Table 5.1: NOTATION

Notations Description

E[.] or E{.} expectation of the random variable
Tr{.} trace of the matrix
diag(.) block diagonal matrix
∥.∥ Euclidean norm of the vector
Prob{X} occurrence probability of event X
XT transpose of matrix X
X−1 inverse of matrix X

Rni
set of ni-dimensional real vectors

Sni
set of ni × ni real matrices

I identity matrix of appropriate dimensions
i and j identity of robot i and robot j
xi(k) state vector of the robot i (position and orientation)
ui
m(k) control input of robot i

ηi(k) process noise from control input of robot i
νij(k) measurement noise from exteroceptive sensors for pair (i, j)
aij(k) indicator of interaction between robots
Nci set of neighbors of robot i within certain range
zij(k) relative measurement taken by robot i from robot j
Qi(k) covariance of ηi(k)
Rij(k) covariance of νij(k)
Ai(k), Gi(k) system matrix of robot i
Hi

i(k) sensor measurement matrix of robot i
Hi

j(k) sensor measurement matrix of pair (i, j)
l l number of attacks launched to the communication links
αl

ij(k), β
l
ij(k) random variables are employed (for sensor measurement) to

determine whether the (i, j)th communication channel
(sensor-filter) is attacked by DoS and FDI at time k

ζl
ij(k), λ

l
ij(k) random variables are employed (for propagated state) to

determine whether the (i, j)th communication channel
(filter-filter) is attacked by DoS and FDI at time k

σl
ij(k), τ

l
ij(k) random variables are employed (for error covariance) to

determine whether the (i, j)th communication channel
(filter-filter) is attacked by DoS and FDI at time k

x̂i−(k) predicted state of robot i
x̃i−(k) predicted state error of robot i

x̂i+(k) estimation of robot i
x̃i+(k) estimation error of robot i
P i−(k) predicted state error covariance of robot i
P i+(k) estimation error covariance of robot i
P ij−(k) predicted state error covariance between robots i and j
P ij+(k) estimation error covariance between robots i and j
Ki(k) Kalman gain
Θij , Λij event-triggered parameters for pair (i, j)
γij(k) decision variable (event-detector) is used to decide whether

or not the current relative measurement transmission occurs
ψij attack detector parameter for pair (i, j)
dij(k) decision variable (attack detector) is used to decide whether

or not the packets transmit to the neighbors

ξlij(k) attacker signal for (i, j)th communication channel (sensor-filter)

ϱl
ij(k) attacker signal for (i, j)th communication channel (filter-filter)
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II Problem statement and Preliminaries

II.1 Dynamic of Multi-Robot Systems

We consider a team of N mobile robots moving in the two-dimensional space. The

general nonlinear motion of each robot, i ∈ ϑ = {1, 2, ..., N}, is described as follows

([29]):
xi(k) = f i(xi(k − 1),ui

m(k − 1)), (5.1)

where the state vector xi(k) = [xi(k), yi(k), θi(k)]T contains the position and ori-

entation of each robot with respect to global map and ui
m is the control input.

Each robot i ∈ ϑ uses odometry or inertial sensors to measure its linear veloc-

ity ui
m = ui + ηi, where ui represents the actual velocity and ηi is corresponding

white-Gaussian noise. Each robot detects uniquely the other robots in the team

using exteroceptive sensors and takes relative measurements with respect to them,

including range or bearing or a combination of these measurements. The relative

measurement is taken by robot i from robot j at a time k is described by ([29])

zij(k) = hij(x
i(k),xj(k)) + νij(k), (5.2)

where hij(x
i,xj) is the measurement model and νij is measurement noise. The

noises ηi and νij are independent white-Gaussian processes with known positive

definite variances Qi(k) = E[ηi(k)ηi(k)
T ] and Rij(k) = E[νij(k)νij(k)

T ]. All noises are

assumed to be mutually uncorrelated.

II.2 Multi-Robot Interaction and Attack Strategy

The interaction topology of robots is shown in Fig. 5.2. We assume that each

robot can sense the other robots in the team and take relative measurements zij(k)

and exchange information packets (propagated state and error covariance) with its

neighboring robots residing within communication range. Since we have a set of N

robots, we consider the interaction topology G = (V, E ,L), where V = {v1, ..., vN}

is the set of nodes in the graph. For each node vi, the index i ∈ {1, 2, ..., N} is

the unique identifier of the agent i. E represents the set of information links of

the propagated estimates (state and error covariance) exchange between robots.

L = ⌊aij⌋ ∈ RN×N is the adjacency matrix of the propagated estimates (state and

error covariance) interaction topology. When aij > 0, robot i is able to receive

information packets (propagated state and error covariance) from robot j, while

aij = 0 indicates that there is no information flow from the robot j to robot i.
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Notice that the resulting network topology is time-varying and reflects the practical

scenario in a multi-robot system where robots can randomly sense the other robots in

the team only within the reach of the exteroceptive sensors. Notice also that in this

setup, measurement and communication links are identical. A robot j can exchange

information packets with a neighbor robot i, only within a certain communication

range with the robot i belongs to set Nci = {j ∈ V : (i, j) ∈ E}.

We consider that both DoS and FDI attacks can be randomly launched into the

communication network and can arbitrarily block or manipulate sensor measure-

ments and information exchange between robots. We assume that the number of

attacks affecting the network is limited, in order to reflect real-world adversaries.

As Fig. 5.2 shows the attacker launch randomly l ∈ Γ = {1, 2, ..,M} number of at-

tacks at each time to the communication links (sensor measurements and estimates),

where M is the maximum number of attacked links.

Figure 5.1: Block diagram of secure decentralized event-triggered cooperative localization (SDECL)
algorithm under cyber attacks

II.3 Problem Statement

Fig. 5.1 shows the block diagram of the proposed SDECL algorithm. This scheme

is based on our previous work [62] but has been modified to include cyber-attacks.

Here, each robot i detects the other robots in the team using the exteroceptive

sensors. The relative measurement zij(k) taken by each robot i are sent to the event

detector which determines whether or not the current sensor measurement is to be
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Figure 5.2: The interaction topology of robots under cyber attacks

transmitted to the filter over the unreliable communication network, based on a

triggering rule. The relative measurement transmitted by the event detector to the

corresponding filter may be tampered by malicious attackers. Both DoS and FDI

attacks can block and contaminate the sensor measurements through the wireless

networks which is described by [129]:

z̄a
ij(k) = αl

ij(k)z̄ij(k) + (1−αl
ij(k))β

l
ij(k)ξ

l
ij(k) (5.3)

where the random variables αl
ij(k) and βl

ij(k) are mutual independent Bernoulli

distributed white sequences taking values of 0 or 1 with the following probabilities:

Prob{αl
ij(k) = 1} = ᾱl

ij , Prob{αl
ij(k) = 0} = 1− ᾱl

ij

Prob{βl
ij(k) = 1} = β̄

l
ij , Prob{βl

ij(k) = 0} = 1− β̄
l
ij

Considering the different values of the random variables αl
ij(k) and βl

ij(k) it is easy to

see that the measurement model (5.3) comprises of three cases: (1) when αl
ij(k) = 1,

the filter receives the sensor signals; (2) when αl
ij(k) = 0 and βl

ij(k) = 1, the system

suffers from FDI attack; and (3) when αl
ij(k) = 0 and βl

ij(k) = 0, the system is

subject to DoS attack [129]. Note that the adversary signal ξlij(k) is bounded, e.g.,

E{ξlij(k)ξ
l
ij(k)

T } ≤ ξ̄
l
ij . Also, we assume that the random variables αl

ij(k) and βl
ij(k)

are independent of the system variables xi(k), ui
m(k), ηi(k) and νij(k).

Also, all robots exchange information regarding their propagated estimates (namely;

states and error covariance) across the unprotected communication channel. The
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exchanged information (propagated state and error covariance) between filters con-

sidering both DoS and FDI attacks is described by:

x̂j−
a (k) = ζl

ij(k)x̂
j−(k) + (1− ζl

ij(k))λ
l
ij(k)ϱ

l
ij(k) (5.4)

P j−
a (k) = σl

ij(k)P
j−(k) + (1− σl

ij(k))τ
l
ij(k)υ

l
ij(k) (5.5)

where the random variables ζl
ij(k), λ

l
ij(k), σ

l
ij(k) and τ l

ij(k) are mutually indepen-

dent Bernoulli distributed white sequences taking values of 0 or 1 with the following

probabilities:

Prob{ζl
ij(k) = 1} = ζ̄

l
ij , Prob{ζl

ij(k) = 0} = 1− ζ̄
l
ij

Prob{λl
ij(k) = 1} = λ̄

l
ij , Prob{λl

ij(k) = 0} = 1− λ̄
l
ij

Prob{σl
ij(k) = 1} = σ̄l

ij , Prob{σl
ij(k) = 0} = 1− σ̄l

ij

Prob{τ l
ij(k) = 1} = τ̄ l

ij , Prob{τ l
ij(k) = 0} = 1− τ̄ l

ij

The same conclusion about the measurement model (5.3) can be applied to equations

(5.4) and (5.5). Note that the adversaries signals ϱl
ij(k) and υl

ij(k) are bounded, e.g.,

E{ϱl
ij(k)ϱ

l
ij(k)

T } ≤ ϱ̄l
ij and E{υl

ij(k)υ
l
ij(k)

T } ≤ ῡl
ij . Also, the random variables ζl

ij(k),

λl
ij(k), σ

l
ij(k) and τ l

ij(k) are assumed to be independent from the system variables

xi(k), ui
m(k), ηi(k) and νij(k).

The signals ξlij(k), ϱ
l
ij(k) and υl

ij(k) are called the malicious inputs, and can be

chosen as hij(x̂
i−(k), x̂j−

a (k)) + ϖl
ij(k), x̂

j−
a (k) + χl

ij(k) and P j− + ς lij(k) respectively,

where ϖl
ij(k), χ

l
ij(k) and ς

l
ij(k) are the bounded signals.

The attack detector at the estimator side monitors the filter behavior and detects

possible cyber attacks by checking the statistical properties of the arriving innova-

tion, i.e., Υa
ij(k) = z̄a

ij(k) − hij(x̂
i−(k), x̂j−

a (k)). This raises the challenge of how to

use state estimates to detect possible attacks [121]. We now present a mechanism to

detect the malicious attacks based on Euclidean norm [120] of innovation for each

robot i:

dij(k) =


1, if

∥∥Υa
ij(k)

∥∥ ≤ ψij

0, otherwise.
(5.6)

where ψij is the preset threshold. It can be seen in Fig. 1 that the detector decides

whether to trigger the alarm for the robot i or not. The threshold ψij should be

appropriately chosen to balance the false alarm rate and the detection accuracy

[121]. In order to minimize the false alarm rate caused by the relative measurement

noise, we set the detector threshold ψij to 3Rij , where Rij is the covariance of
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the relative measurement noise. As a result, by setting the detector threshold to

3Rij , the probability of a false alarm rate due to relative measurement noise can be

reduced to 1%, the same value as in [120].

Remark 12. Notice that, in practice, attacks can occur randomly. To protect the

system against attacks, the defender can estimate the probability and intensity of the

attack signal using statistical tests by monitoring the attacker’s behavior online for a

period of time. It is therefore reasonable to assume that the probability and the bound

of the attack signal are statistically known to the defender. Similar assumptions can

be found in references [122]-[124].

Remark 13. We assume that all stochastic variables regarding the communication

channel between exteroceptive sensors and the robot’s filter (αl
ij(k), β

l
ij(k)) are inde-

pendent with the communication channel between two filters (ζ l
ij(k), λl

ij(k), σl
ij(k),

τ l
ij(k)) in i, j and k.

Remark 14. In reality, an attacker can typically only launch a limited number of

attacks on the communication links between agents due to limited energy resources.

Denoting Ξij ⊆ Nci the set containing the measurement or communication links af-

fected by attacks, then for l number of attacked measurement links {αl
ij(k) = 0 |(i, j) ∈

Ξij} and attacked communication links {ζl
ij(k) = 0 or σl

ij(k) = 0|(i, j) ∈ Ξij}.

Remark 15. In the FDI attack, it is assumed that the attacker knows the system

model and employs a bounded signal to implement the attack. Notice that a bounded

signal is preferred by the attacker due to resource constraints. Moreover, if the

attack signal has a large amplitude then it can be easily detected by the detector.

Thus, a sophisticated attacker prefers to transmit a bounded false signal to degrade

localization performance. It is therefore reasonable to assume that the false signals

transmitted by attackers are bounded. Similar assumptions can be found in [129],

[125], [126]. Inspired by [129], [127], [128] we consider a scenario in which the

attacker is able to filter the output relative measurements and corrupt them with the

signal ϖl
ij(k) to make the false signal ξlij(k) bounded, which is stealthier and difficult

to detect.

II.4 Event-Triggered Data Transferring Mechanism

In order to reduce the communication rate of sensors and therefore extend the

battery life of mobile robots, the exteroceptive sensors are equipped with an event-
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triggered scheduler that decides when relative measurement transmission should

occur. The event detector mechanism (5.7) is based on mixed triggered mechanism

[91] which works as follows. Define now the binary decision variable γij(k):

γij(k) =

 1, if ∥eij(k)∥ ≥ Θij(k) ∥zij(k)∥+ Λij(k)

0, otherwise.
(5.7)

where zij(k) denotes the current sensor measurement, z̄ij(k) represents the last

measurement transmitted through the channel and eij(k) = zij(k)−z̄ij(k) is the error

between transmitted measurement (when triggered) and the current measurement at

time k. Θij(k), Λij(k) > 0 are design parameters in the event-triggered mechanism.

The smaller the value of Θij , Λij , the more events are triggered, which results in

higher demands on communication resources and higher energy consumed by each

robot. When the parameters Θij(k), Λij(k) > 0 are sufficiently small, the event-

triggered mechanism performs as a time-triggered system. From Eq. (5.7), we see

that, the measurement zij(k) will be sent to the estimator through an unreliable

communication channel if and only if γij(k) = 1.

III Design of an SDECL under cyber attack

In this section, we design an SDECL algorithm via an extended Kalman filter (EKF)

with an event-triggered mechanism (5.7) and consider cyber attacks (5.3)-(5.5).

Firstly, we derive the prediction error and estimation error covariances. Then, we

obtain the upper bound of the estimation error covariance by employing a stochastic

analysis. Finally, we derive the Kalman gain for the proposed filter by minimizing

the estimation error covariance. Before we proceed further, we introduce the follow-

ing Lemma which will be used to obtain our results:

Lemma III.1. For any two vectors x, y ∈ Rn, there exists a scalar ε ∈ R such that

the following inequality holds [113]:

xyT + yxT ≤ εxxT + ε−1yyT . (5.8)

Theorem III.2. Consider the nonlinear discrete-time system (5.1) and (5.2) with

the event-triggered communication strategy (5.7). Assume that the relative mea-

surement (z̄ij(k), z̄ji(k)) and the predicted belief beli−(k) = (x̂i−,P i−), belj−(k) =

(x̂j−,P j−) are affected by DoS and FDI attacks (5.3)-(5.5) in the unreliable com-

munication channels. For the secure CL via the EKF, the upper bound of estimation
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error covariance can be obtained as follows:

P i+
(k) ≤ C1Φ̄1

ij(k)P
i−(k)Φ̄1

ij(k)
T

−
{∑
j∈Nci

Φ̄1
ij(k)P

ij−(k)Φ̄2
i (k)

T
}
Ki(k)

T

−Ki(k)
{∑
j∈Nci

Φ̄2
ij(k)P

ij−(k)Φ̄1
ij(k)

T
}

+C2Ki(k)
{ ∑
j,s∈Nci,j ̸=s

Φ̄2
ij(k)P

js−(k)Φ̄2
is(k)

T
}
Ki(k)

T

+C2Ki(k)
{∑
j∈Nci

Φ̄2
ij(k)P

j−(k)Φ̄2
ij(k)

T
}
Ki(k)

T

+C3Ki(k)
{∑
j∈Nci

Φ̄3
ij(k)Rij(k)Φ̄

3
ij(k)

T
}
Ki(k)

T

+C4Ki(k)E
{∑
j∈Nci

Φ̄4
ij(k)hij(x̂

i−(k), x̂j−
a (k))

×hij(x̂
i−(k), x̂j−

a (k))
T
Φ̄4

ij(k)
T
}
Ki(k)

T

+C5Ki(k)
{∑
j∈Nci

Φ̄5
ij(k)ξ̄ij

l
(k)Φ̄5

ij(k)
T
}
Ki(k)

T

+C6Ki(k)
{∑
j∈Nci

Φ̄6
ij(k)ϱ̄

l
ij(k)Φ̄

6
ij(k)

T
}
Ki(k)

T

+C7Ki(k)
{∑
j∈Nci

Φ̄7
ij(k)δij(k)Φ̄

7
ij(k)

T
}
Ki(k)

T

+Ki(k)
{∑
j∈Nci

Φ̄8
ij(k)Xj(k)Φ̄

8
ij(k)

T
}
Ki(k)

T

(5.9)

where
P i−(k) = Ai(k − 1)P i+(k − 1)Ai(k − 1)T +Gi(k − 1)Qi(k − 1)Gi(k − 1)T

P ij−(k) = Ai(k − 1)P ij+(k − 1)Aj(k − 1)T

Φ̄1
ij(k) =

(
I −Ki(k)

∑
j∈Nci

dij(k)E
{
aij(k)

}
ᾱl

ijHi
i(k)

)

Φ̄2
ij(k) = dij(k)E

{
aij(k)

}
ᾱl

ijHi
j(k)ζ̄

l
ij , Φ̄3

ij(k) = dij(k)E
{
aij(k)

}
ᾱl

ij

Ai(k) = Ai(k) +Bi(k)F i(k)Ei(k), Hi
i(k) = Hi

i(k) +Di
i(k)C

i
i(k)E

i
i(k)

Φ̄4
ij(k) = dij(k)E

{
aij(k)

}
(ᾱl

ij − 1), Hi
j(k) = Hi

j(k) +Di
j(k)C

i
j(k)E

i
j(k)

Φ̄5
ij(k) = dij(k)E

{
aij(k)

}
(1− ᾱl

ij)β̄
l
ij

Φ̄6
ij(k) = dij(k)E

{
aij(k)

}
αl

ijHi
j(k)(1− ζ̄

l
ij)λ̄

l
ij

Φ̄7
ij(k) = dij(k)E

{
aij(k)

}
ᾱl

ij(1− E
{
γij(k)

}
)

Φ̄8
ij(k) = dij(k)E

{
aij(k)

}
ᾱl

ijHi
j(k)(1− ζ̄

l
ij)

C1 = (1− ε1 − ε2 − ε3 − ε4 + ε5 + ε6), C2 = (1 + ε7)

C3 = (1− ε−1
2 − ε8), C4 = (1− ε−1

3 + ε−1
8 − ε9), C5 = (1− ε−1

4 )
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C6 = (1 + ε−1
5 − ε

−1
9 ), C7 = (1 + ε−1

6 − ε
−1
8 ), E

{
λl
ij(k)

}
= λ̄

l
ij

E
{
αl

ij(k)
}
= ᾱl

ij , E
{
βl
ij(k)

}
= β̄

l
ij , E

{
ζl
ij(k)

}
= ζ̄

l
ij

E
{
xj(k)xj(k)T

}
= Xj(k), E

{
eij(k)eij(k)

T
}
= δij(k)

E
{
ξlij(k)ξ

l
ij(k)

T
}
= ξ̄

l
ij(k), E

{
ϱl
ij(k)ϱ

l
ij(k)

T
}
= ϱ̄l

ij(k)

Proof. The predicted state error of robot i for multi-robot system (5.1) at time

instant k + 1 can be described by:

x̃i−(k + 1) = xi(k + 1)− x̂i−(k + 1) (5.10)

where the predicted state of each robot x̂i−(k + 1) is defined by:

x̂i−(k + 1) = f i
(
x̂i+(k),ui

m(k)
)

(5.11)

Expanding f i(xi(k),ui
m(k)) using Taylor series around x̂i+(k), we have:

f i
(
xi(k),ui

m(k)
)
≈ f i

(
x̂i+(k),ui

m(k)
)

+Ai(k)
(
xi(k)− x̂i+(k)

)
+ o
(
|x̃i+(k)|

) (5.12)

where Ai =
∂f i(x̂i+,ui

m)
∂xi and o

(
|x̃i+(k)|

)
denote the high-order terms of the Taylor

series expansion. Following [129], [130], we introduce the unknown time-varying

matrix F i(k), and known scaling matrix Bi(k) to account for the linearization error.

We can write:

o
(
|x̃i+(k)|

)
= Bi(k)F i(k)Ei(k)x̃

i+(k) (5.13)

where Ei(k) is a known tuning matrix and assume that F i(k) satisfies:

F i(k)F i(k)
T ≤ I (5.14)

Defining Ai(k) =
(
Ai(k) + Bi(k)F i(k)Ei(k)

)
and using (5.10)-(5.13), the predicted

state error for robots i and j can be computed as follows:

x̃i−(k + 1) = Ai(k)x̃
i−(k) +Gi(k)ηi(k) (5.15)

x̃j−(k + 1) = Aj(k)x̃
j−(k) +Gj(k)ηj(k) (5.16)

where Gi =
∂f i(x̂i+,ui

m)
∂ηi

, Gj =
∂fj(x̂j+,uj

m)
∂ηj

and Aj =
∂fj(x̂j+,uj

m)
∂xj . Using Eqs. (5.15)-

(5.16), the predicted state error covariance for robot i and cross-covariance between

two robots (i and j) are represented by:

P i−(k + 1) = E
[(

x̃i−(k + 1)
)(

x̃i−(k + 1)
)T ]

=

Ai(k)P
i+(k)Ai(k)

T +Gi(k)Qi(k)Gi(k)
T

(5.17)
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P ij−(k + 1) = E
[(

x̃i−(k + 1)
)(

x̃j−(k + 1)
)T ]

=

Ai(k)P
ij+(k)Aj(k)

T
(5.18)

Considering the event-triggered mechanism (5.7) and random cyber attack (5.3),

the current transmitted measurement is as follows (for simplicity of the notation we

use time instant k instead of time instant k + 1):

z̄a
ij(k) = αl

ij(k)
(
zij(k)− (1− γij(k))eij(k)

)
+(1−αl

ij(k))β
l
ij(k)ξ

l
ij(k)

(5.19)

The arriving innovation can be computed as follows:

Υa
ij(k) = αl

ij(k)
(
zij(k)− (1− γij(k))eij(k)

)
+(1−αl

ij(k))β
l
ij(k)ξ

l
ij(k)− hij

(
x̂i−(k), x̂j−

a (k)
) (5.20)

The state estimates of each robot are corrected according to:

x̂i+(k) = x̂i−(k) +Ki(k)

[∑
j∈Nci

dij(k)aij(k)
(
z̄a
ij(k)

−hij(x̂
i−(k), x̂j−

a (k))
)] (5.21)

where hij(x̂
i−, x̂j−) is the predicted measurement. Let the first-order expansion of

hij(x
i,xj) around (x̂i−, x̂j−) be

hij(x
i,xj) ≈ hij(x̂

i−, x̂j−) +Hi
i(x

i − x̂i−) +Hi
j(x

j − x̂j−)

+o
(
|x̃i−(k)|, |x̃j−(k)|

) (5.22)

where Hi
i =

∂hij(x̂
i−,x̂j−)

∂xi , Hi
j =

∂hij(x̂
i−,x̂j−)

∂xj and o
(
|x̃i−(k)|, |x̃j−(k)|

)
represent

the high-order terms of the Taylor series expansion. We now introduce unknown

time-varying matrices Ci
i(k) and Ci

j(k), and known scaling matrices Di
i(k), Di

j(k)

accounting for the linearization errors of the measurement model:

o
(
|x̃i−(k)|, |x̃j−(k)|

)
= Di

i(k)C
i
i(k)E

i
i(k)x̃

i−(k)

+Di
j(k)C

i
j(k)E

i
j(k)x̃

j−(k)
(5.23)

where Ei
i(k) and Ei

j(k) are known tuning matrices and assume that Ci
i(k) and Ci

j(k)

satisfy:

Ci
i(k)C

i
i(k)

T ≤ I (5.24)

Ci
j(k)C

i
j(k)

T ≤ I (5.25)
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Note that the matrices Di
i(k), D

i
j(k), E

i
i(k), E

i
j(k), Bi(k) and Ei(k) should be de-

signed appropriately. Substituting (5.19) into (5.21), we have:

x̂i+(k) = x̂i−(k) +Ki(k)

[∑
j∈Nci

dij(k)aij(k)

(
αl

ij(k)
(
zij(k)

−(1− γij(k))eij(k)
)
+ (1−αl

ij(k))β
l
ij(k)ξ

l
ij(k)

−hij(x̂
i−(k), x̂j−

a (k))

)] (5.26)

Using (5.22)-(5.26) and introducing Hi
i(k) = Hi

i(k) + Di
i(k)C

i
i(k)E

i
i(k) , Hi

j(k) =

Hi
j(k) +Di

j(k)C
i
j(k)E

i
j(k) the estimation error can be computed as follows:

x̃i+(k) = xi(k)− x̂i+(k) = Φ1
ij(k)x̃

i−(k)

−Ki(k)
∑
j∈Nci

Φ2
ij(k)x̃

j−(k)−Ki(k)
∑
j∈Nci

Φ3
ij(k)νij(k)

−Ki(k)
∑
j∈Nci

Φ4
ij(k)hij(x̂

i−(k), x̂j−
a (k))

−Ki(k)
∑
j∈Nci

Φ5
ij(k)ξ

l
ij(k) +Ki(k)

∑
j∈Nci

Φ6
ij(k)ϱ

l
ij(k)

+Ki(k)
∑
j∈Nci

Φ7
ij(k)eij(k)−Ki(k)

∑
j∈Nci

Φ8
ij(k)x

j(k)

(5.27)

where

Φ1
ij(k) =

(
I −Ki(k)

∑
j∈Nci

dij(k)aij(k)α
l
ij(k)Hi

i(k)
)

Φ2
ij(k) = dij(k)aij(k)α

l
ij(k)Hi

j(k)ζ
l
ij(k)

Φ3
ij(k) = dij(k)aij(k)α

l
ij(k), Φ

4
ij(k) = dij(k)aij(k)(α

l
ij(k)− 1)

Φ5
ij(k) = dij(k)aij(k)(1−αl

ij(k))β
l
ij(k)

Φ6
ij(k) = dij(k)aij(k)α

l
ij(k)Hi

j(k)(1− ζl
ij(k))λ

l
ij(k)

Φ7
ij(k) = dij(k)aij(k)α

l
ij(k)(1− γij(k))

Φ8
ij(k) = dij(k)aij(k)α

l
ij(k)Hi

j(k)(1− ζl
ij(k))
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Using (5.27), the estimation error covariance matrix can be computed as follows:

P i+(k) = E
{
x̃i+(k)x̃i+(k)T

}
= E

{
Φ1

ij(k)x̃
i−(k)x̃i−(k)TΦ1

ij(k)
T
}

+Ki(k)E
{[∑

j∈Nci

Φ2
ij(k)x̃

j−(k)
][∑

j∈Nci

Φ2
ij(k)x̃

j−(k)
]T}

Ki(k)
T +Ki(k)E

{[∑
j∈Nci

Φ3
ij(k)νij(k)

][∑
j∈Nci

Φ3
ij(k)νij(k)

]T}
Ki(k)

T

+Ki(k)E
{[∑

j∈Nci

Φ4
ij(k)hij(.)

][∑
j∈Nci

Φ4
ij(k)hij(.)

]T}
Ki(k)

T +Ki(k)E
{[∑

j∈Nci

Φ5
ij(k)ξ

l
ij(k)

][∑
j∈Nci

Φ5
ij(k)ξ

l
ij(k)

]T}
Ki(k)

T

+Ki(k)E
{[∑

j∈Nci

Φ6
ij(k)ϱ

l
ij(k)

][∑
j∈Nci

Φ6
ij(k)ϱ

l
ij(k)

]T}
Ki(k)

T +Ki(k)E
{[∑

j∈Nci

Φ7
ij(k)eij(k)

][∑
j∈Nci

Φ7
ij(k)eij(k)

]T}
Ki(k)

T

+Ki(k)E
{[∑

j∈Nci

Φ8
ij(k)x

j(k)
][∑

j∈Nci

Φ8
ij(k)x

j(k)
]T}

Ki(k)
T − E

{
Φ1

ij(k)x̃
i−(k)

[∑
j∈Nci

Φ2
ij(k)x̃

j−(k)
]T}

Ki(k)
T

−Ki(k)E
{[∑

j∈Nci

Φ2
ij(k)x̃

j−(k)
]
x̃i−(k)TΦ1

ij(k)
T
}
− E

{
Φ1

ij(k)x̃
i−(k)

[∑
j∈Nci

Φ3
ij(k)νij(k)

]T}
Ki(k)

T

−Ki(k)E
{[∑

j∈Nci

Φ3
ij(k)νij(k)

]
x̃i−(k)TΦ1

ij(k)
T
}
− E

{
Φ1

ij(k)x̃
i−(k)

[∑
j∈Nci

Φ4
ij(k)hij(.)

]T}
Ki(k)

T

−Ki(k)E
{[∑

j∈Nci

Φ4
ij(k)hij(.)

]
x̃i−(k)TΦ1

ij(k)
T
}
− E

{
Φ1

ij(k)x̃
i−(k)

[∑
j∈Nci

Φ5
ij(k)ξ

l
ij(k)

]T}
Ki(k)

T

−Ki(k)E
{[∑

j∈Nci

Φ5
ij(k)ξ

l
ij(k)

]
x̃i−(k)TΦ1

ij(k)
T
}
+ E

{
Φ1

ij(k)x̃
i−(k)

[∑
j∈Nci

Φ6
ij(k)ϱ

l
ij(k)

]T}
Ki(k)

T

+Ki(k)E
{[∑

j∈Nci

Φ6
ij(k)ϱ

l
ij(k)

]
x̃i−(k)TΦ1

ij(k)
T
}
+ E

{
Φ1

ij(k)x̃
i−(k)

[∑
j∈Nci

Φ7
ij(k)eij(k)

]T}
Ki(k)

T

+Ki(k)E
{[∑

j∈Nci

Φ7
ij(k)eij(k)

]
x̃i−(k)TΦ1

ij(k)
T
}
−Ki(k)E

{[∑
j∈Nci

Φ3
ij(k)νij(k)

][∑
j∈Nci

Φ7
ij(k)eij(k)

]T}
Ki(k)

T

−Ki(k)E
{[∑

j∈Nci

Φ7
ij(k)eij(k)

][∑
j∈Nci

Φ3
ij(k)νij(k)

]T}
Ki(k)

T +Ki(k)E
{[∑

j∈Nci

Φ2
ij(k)x̃

j−(k)
][∑

j∈Nci

Φ4
ij(k)hij(.)

]T}
Ki(k)

T

+Ki(k)E
{[∑

j∈Nci

Φ4
ij(k)hij(.)

][∑
j∈Nci

Φ2
ij(k)x̃

j−(k)
]T}

Ki(k)
T −Ki(k)E

{[∑
j∈Nci

Φ6
ij(k)ϱ

l
ij(k)

][∑
j∈Nci

Φ4
ij(k)hij(.)

]T}
Ki(k)

T

−Ki(k)E
{[∑

j∈Nci

Φ4
ij(k)hij(.)

][∑
j∈Nci

Φ6
ij(k)ϱ

l
ij(k)

]T}
Ki(k)

T

(5.28)

Defining constants ε1, ε2, ε3, ε4, ε5, ε6, ε7, ε8, ε9 > 0 and applying Lemma III.1

we obtain an upper bound of the error covariance matrix (5.9), which completes the

proof.

Remark 16. It is important to notice that it is impossible to compute the actual

value of the estimation error covariance due to some terms E
{[∑

j∈Nci

Φ5
i (k)ξ

l
ij(k)

]
x̃i−(k)TΦ1

i (k)
T
}
,

E
{[∑

j∈Nci

Φ3
i (k)νij(k)

]
x̃i−(k)TΦ1

i (k)
T
}
, ... (see Eq. (5.28) for details) which depend on

random cyber attacks, random measurement noise, event-triggering parameter and

etc. Therefore, using Lemma III.1 we provide an upper bound for the estimation

error covariance with respect to the parameters of random attacks, event-triggering

parameter and etc.

Corollary III.2.1. Under the result of Theorem III.2, the optimal Kalman filter

gain that minimizes the upper bound of estimation error covariance P̄
i+
(k) is given
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by:

Ki(k) = X(Y )−1 (5.29)

Where X and Y can be expressed as a follows:

X = C1P i−(k)F̄ij(k) +
∑
j∈Nci

P ij−(k)Φ̄2
ij(k)

T
(5.30)

Y = C1F̄ij(k)P
i−(k)F̄ij(k)

T +
∑
j∈Nci

F̄ij(k)P
ij−(k)Φ̄2

ij(k)
T

+
∑
j∈Nci

Φ̄2
ij(k)P

ij−(k)F̄ij(k)
T + C2

∑
j,s∈Nci

Φ̄2
ij(k)P

js−(k)Φ̄2
is(k)

T

+C3
∑
j∈Nci

Φ̄3
ij(k)Rij(k)Φ̄

3
ij(k)

T + C5
∑
j∈Nci

Φ̄5
ij(k)ξ̄ij

l
(k)Φ̄5

ij(k)
T

+C6
∑
j∈Nci

Φ̄6
ij(k)ϱ̄

l
ij(k)Φ̄

6
ij(k)

T + C7
∑
j∈Nci

Φ̄7
ij(k)δij(k)Φ̄

7
ij(k)

T

+C4E
{∑
j∈Nci

Φ̄4
ij(k)hij(x̂

i−(k), x̂j−
a (k))hij(x̂

i−(k), x̂j−
a (k))

T

×Φ̄4
ij(k)

T
}
+
∑
j∈Nci

Φ̄8
ij(k)Xj(k)Φ̄

8
ij(k)

T

(5.31)

and also F̄ij(k) is defined as

F̄ij(k) =
∑
j∈Nci

dij(k)E
{
aij(k)

}
ᾱl

ijHi
i(k)

Remark 17. In Corollary III.2.1, we obtain the optimal Kalman filter gain for the

proposed filter by minimizing the trace of the upper bound of the estimation error co-

variance. Considering the structure of the optimal Kalman gain in (5.30)-(5.31), the

event-triggered mechanism and cyber-attacks introduce additional parameters affect-

ing the upper and the lower bounds of the estimation error and the estimation error

covariance. Moreover, in the absence of the attack, the optimal gain in (5.30)-(5.31)

is the same as the one in [62]. Also, note that the proposed filter is suboptimal due

to the parameters of the cyber attacks, the event-triggered mechanism, and the topol-

ogy of the interaction between robots. In order to improve the filter’s performance,

the parameters ε1, ε2,... can be tuned in a way that the upper bound of estimation

error covariance is minimized further. Specifically, the parameters ε1, ε2,... can

be obtained by an optimization algorithm (genetic algorithm) in the MATLAB code

“[x, fmin] = ga(f(x), nx, · · · )”, where f(x) is the objective function (upper bound

of error covariance) to be optimized and nx is the dimension of f(x). Note that a

similar approach can be found in [56].
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IV Boundedness of estimation error for the proposed
SDECL

In this section, we analyze the resilience of the proposed filter under cyber attacks.

We derive sufficient conditions that ensure convergence and stochastic stability of

the proposed filter.

Lemma IV.1. ([131]) Assume there is a stochastic process V k(πk) as well as real

numbers κ, κ̄, µ > 0 and 0 < ϕ ≤ 1 such that

κ ∥πk∥2 ≤ V k(πk) ≤ κ̄ ∥πk∥2 (5.32)

and

E{V k(πk)|πk−1} − V k−1(πk−1) ≤ µ− ϕV k−1(πk−1) (5.33)

are satisfied. Then the stochastic process is exponentially bounded in mean square

sense, i.e.,

E
{
∥πk∥2

}
≤ κ̄

κE
{
∥π0∥2

}
(1− ϕ)k + µ

κ

k−1∑
n=1

(1− ϕ)n (5.34)

and the stochastic process is bounded with probability one.

Assumption 7. There exist real constants ai, āi, hi, h̄i, hij, h̄ij, qi, q̄i, Rij, R̄ij,

g
i
, ḡi > 0 such that the following bounds on various matrices are satisfied for every

k ≥ 0:
ai ≤ ∥Ai(k)∥ ≤ āi, hi ≤

∥∥Hi
i(k)

∥∥ ≤ h̄i,
hij ≤

∥∥Hi
j(k)

∥∥ ≤ h̄ij , q
i
≤
∥∥Q̄i(k)

∥∥ ≤ q̄i,
Rij ≤ ∥Rij(k)∥ ≤ R̄ij , g

i
≤ ∥Gi(k)∥ ≤ ḡi

Theorem IV.2. Assume that the nonlinear discrete-time system (5.1) and (5.2)

with the event-triggered communication strategy (5.7) and random cyber attacks

(5.3)-(5.5) satisfies Assumption 7. Given p
i
≤ P i+(0) ≤ p̄i and p

ij
≤ P ij+(0) ≤ p̄ij

where p̄i, p
i
, p̄ij and p

ij
are known positive values. If the following inequality is

satisfied,

ā2i p̄i + 2ā2i

(
C1p̄iF̄ij,max

)[
r−1
ij,min − r−1

ij,maxC1F̄ij,minpiF̄
T
ij,min

×r−1
ij,max

](
C1p̄iF̄ij,max

)T
+ 2ā2i

(∑
j∈Nci

p̄ijΦ̄
2T

ij,max

)[
r−1
ij,min−

r−1
ij,maxC1F̄ij,minpiF̄

T
ij,minr

−1
ij,max

](∑
j∈Nci

p̄ijΦ̄
2T
ij,max

)T
≤ p̄i

(5.35)

where

d̄ij = {dij |maxj∈Nci(ψij)}, dij = {dij |minj∈Nci(ψij)}
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γ
ij
≤ E

{
γij

}
≤ γ̄ij

F̄ij,max =
∑
j∈Nci

d̄ij āijᾱ
l
ij,maxh̄ij , F̄ij,min =

∑
j∈Nci

dij āijᾱ
l
ij,minhij

Φ̄2
ij,max = d̄ij āijᾱ

l
ij,maxh̄ij ζ̄

l
ij,max, Φ̄2

ij,min = dij āijᾱ
l
ij,minhijζ

l

ij,min

Φ̄3
ij,max = d̄ij āijᾱ

l
ij,max, Φ̄3

ij,min = dij āijᾱ
l
ij,min

Φ̄4
ij,max = d̄ij āij(ᾱ

l
ij,min − 1), Φ̄4

ij,min = dij āij(ᾱ
l
ij,max − 1)

Φ̄5
ij,max = d̄ij āij(1− ᾱl

ij,min)β̄
l
ij,max, Φ̄5

ij,min = dij āij(1− ᾱl
ij,max)β̄

l
ij,min

Φ̄7
ij,max = d̄ij āijᾱ

l
ij,max(1− γ

ij
), Φ̄7

ij,min = dij āijᾱ
l
ij,min(1− γ̄ij)

Φ̄8
ij,max = d̄ij āijᾱ

l
ij,maxh̄ij(1− ζ̄

l
ij,min)

Φ̄8
ij,min = dij āijᾱ

l
ij,minhij(1− ζ̄

l
ij,max)

Φ̄6
ij,max = d̄ij āijα

l
ij,maxh̄ij(1− ζ̄

l
ij,min)λ̄

l
ij,max

Φ̄6
ij,min = dij āijα

l
ij,minhij(1− ζ̄

l
ij,max)λ̄

l
ij,min

rij,max =
∑
j∈Nci

F̄ij,maxp̄ij(Φ̄
2
ij,max)

T +
∑
j∈Nci

Φ̄2
ij,maxp̄ijF̄T

ij,max

+C2
∑

j,s∈Nci

Φ̄2
ij,maxp̄js(Φ̄

2
is,max)

T + C3
∑
j∈Nci

Φ̄3
ij,maxR̄ij(Φ̄

3
ij,max)

T

+C5
∑
j∈Nci

Φ̄5
ij,maxξ̄ij

l
(Φ̄5

ij,max)
T + C6

∑
j∈Nci

Φ̄6
ij,maxϱ̄

l
ij(Φ̄

6
ij,max)

T

+C7
∑
j∈Nci

Φ̄7
ij,maxδ̄ij(Φ̄

7
ij,max)

T +
∑
j∈Nci

Φ̄8
ij,maxX̄j(Φ̄

8
ij,max)

T

+C4
∑
j∈Nci

Φ̄4
ij,maxh̄ij(Φ̄

4
ij,max)

T

rij,min =
∑
j∈Nci

F̄ij,minpij
(Φ̄2

ij,min)
T +

∑
j∈Nci

Φ̄2
ij,minpij

F̄T
ij,min

+C2
∑

j,s∈Nci

Φ̄2
ij,minpjs

(Φ̄2
is,min)

T + C3
∑
j∈Nci

Φ̄3
ij,minRij(Φ̄

3
ij,min)

T

+C5
∑
j∈Nci

Φ̄5
ij,minξij

l(Φ̄5
ij,min)

T + C6
∑
j∈Nci

Φ̄6
ij,minϱ

l
ij
(Φ̄6

ij,min)
T

+C7
∑
j∈Nci

Φ̄7
ij,minδij(Φ̄

7
ij,min)

T +
∑
j∈Nci

Φ̄8
ij,minXj(Φ̄

8
ij,min)

T

+C4
∑
j∈Nci

Φ̄4
ij,minhij(Φ̄

4
ij,min)

T

then, the inequality p
i
≤ P i+(k) ≤ P i−(k) ≤ p̄i holds for any k ≥ 1.

Proof. The proof is given in Appendix B.
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Remark 18. In Theorem IV.2, we provide a sufficient condition for the conver-

gence and resilience of the proposed filter using mathematical induction and matrix

analysis. It is important to notice that condition (5.35) includes all terms involving

the dynamics of the multi-robot system, event-triggered mechanism, cyber-attacks,

communication topology as well as attack detector. In practice, the boundary of the

multi-robot system in Assumption 1, the bound of the attacker signal and its proba-

bility, and the interaction of robots can be estimated by the defender using parameter

identification. Note that if the bound of attack signals (ξlij, ϱl
ij, etc) increases ac-

cording to condition (5.35), then rij,max will increase, resulting in an increase of

the upper bound of estimation error covariance. Also, the parameters Θij, Λij > 0

of the event-triggering mechanism in Eq. (5.7) affect the upper bound of the esti-

mation error covariance. From (5.7), we can see that the average communication

rate γ
ij

decreases as the value of Θij, Λij increase. Moreover, based on (5.35), we

can see that rij,max will increase as the value of Θij, Λij increase. Therefore, we

conclude that the upper bound of error covariance increases with the value of Θij,

Λij. Conversely, smaller values of Θij, Λij result in less data transmission. It fol-

lows from (5.35) that the upper bound of the error covariance would be decreased

and better estimation performance would be expected at the cost of imposing a heavy

burden on the communication channels. These two scenarios lead to a tradeoff in

the value of Θij, Λij to balance between the estimation performance and reduced net-

work transmission. When, both parameters of the event triggered mechanism (Θij,

Λij) and those of the adversary signal (ξlij, ϱl
ij, etc) are large, the estimation er-

ror covariance might diverge. Convergence and resilience of the proposed filter are

guaranteed provided that the attack signals, event-triggered parameters, etc., satisfy

inequality (5.35). If the upper bound of the estimation error covariance converges

asymptotically with k, then the error covariance must converge as well.

Remark 19. The parameter ψij of the detection mechanism in Eq. (5.6) affects

the performance of the proposed filter. When the sensor measurements of robot j

are under malicious attack, the data received from robot j, namely, propagated state

and error covariance, is suspicious and then the detector may trigger the alarm

by setting dij(k) = 0 (representing a presence of attack) to avoid the transmission

of the packets to other robots. As a result, the detection mechanism reduces the

impact of malicious attack and improve the performance of the filter. Note that the

defender may design the detector threshold (ψij) in order to minimize the missing
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attack report rate, assuming knowledge of the boundary of the multi-robot system in

Assumption 1, the bound of attacker signals and its probability, the interaction of

robots, event-triggered parameters.

Note that the estimation error covariance in the SDECL algorithm does not

represent the actual estimation error exactly. Therefore, the result of Theorem IV.2

can be employed to analyze the performance of the estimation error. This is done

in our next Theorem.

Theorem IV.3. Consider the nonlinear discrete-time system (5.1) and (5.2) with

the event-triggered communication strategy (5.7) and random cyber attacks (5.3)-

(5.5). If

P̂
i+
(k) ≤ P̂

i−
(k) ≤ p̄i (5.36)

and for some ϵi> 0, E
{∥∥x̃i+(0)

∥∥2} ≤ ϵi, then the estimation error x̃i+(k) = xi(k) −

x̂i+(k) is exponentially bounded in mean square for any i ∈ ϑ .

Proof. First, we choose the Lyapunov function as follows:

V k(x̃
i+(k)) = x̃i+(k)T

(
P i+(k)

)−1

x̃i+(k) (5.37)

Using Theorem IV.2 it is obtained that p
i
I ≤ P i+(k) ≤ p̄iI. According to the

condition in (5.35), the Lyapunov function Eq. (5.37) is bounded according to the

following inequality:

1
p̄i

∥∥x̃i+(k)
∥∥2 ≤ V k(x̃

i+(k)) ≤ 1
p
i

∥∥x̃i+(k)
∥∥2 (5.38)

Next, we will have to ensure the boundary of E
{
V k(x̃

i+(k))|x̃i+(k−1)
}
−V k−1(x̃

i+(k−

1)). On the basis of Eq. (5.37), the conditional expectation E
{
V k(x̃

i+(k))|x̃i+(k−1)
}

is derived:

E
{
V k(x̃

i+(k))|x̃i+(k − 1)
}
= E

{
x̃i+(k − 1)TAi(k − 1)T Φ̄1

ij(k)
T

×
(
P i+(k)

)−1

Φ̄1
ij(k)Ai(k − 1)x̃i+(k − 1)

}
+ µij(k)

(5.39)

Considering the property of conditional expectation that E
{
x̃i+(k)|x̃i+(k)

}
= x̃i+(k),
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the following equation is obtained by subtracting V k−1(x̃
i+(k− 1)) from Eq. (5.39):

E
{
V k(x̃

i+(k))|x̃i+(k − 1)
}
− V k−1(x̃

i+(k − 1)) ≤ x̃i+(k − 1)T

×

{
Ai(k − 1)T Φ̄1

ij(k)
T

[
C1Φ̄1

ij(k)
(
Ai(k − 1)P i+(k − 1)Ai(k − 1)T

+Gi(k − 1)Qi(k − 1)Gi(k − 1)T
)
Φ̄1

ij(k)
T

−
{∑
j∈Nci

Φ̄1
ij(k)

(
Ai(k − 1)P ij+(k − 1)Aj(k − 1)T

)
Φ̄2

ij(k)
T
}
Ki(k)

T

−Ki(k)
{∑
j∈Nci

Φ̄2
ij(k)

(
Ai(k − 1)P ij+(k − 1)Aj(k − 1)T

)
Φ̄1

ij(k)
T
}

+C2Ki(k)
{ ∑
j,s∈Nci

Φ̄2
ij(k)P

js−(k)Φ̄2
is(k)

T
}
Ki(k)

T

+C3Ki(k)
{∑
j∈Nci

Φ̄3
ij(k)Rij(k)Φ̄

3
ij(k)

T
}
Ki(k)

T

+C4Ki(k)E
{∑
j∈Nci

Φ̄4
ij(k)hij(x̂

i−(k), x̂j−
a (k))

×hij(x̂
i−(k), x̂j−

a (k))
T
Φ̄4

ij(k)
T
}
Ki(k)

T

+C5Ki(k)
{∑
j∈Nci

Φ̄5
ij(k)ξ̄ij

l
(k)Φ̄5

ij(k)
T
}
Ki(k)

T

+C6Ki(k)
{∑
j∈Nci

Φ̄6
ij(k)ϱ̄

l
ij(k)Φ̄

6
ij(k)

T
}
Ki(k)

T

+C7Ki(k)
{∑
j∈Nci

Φ̄7
ij(k)δij(k)Φ̄

7
ij(k)

T
}
Ki(k)

T

+Ki(k)
{∑
j∈Nci

Φ̄8
ij(k)Xj(k)Φ̄

8
ij(k)

T
}
Ki(k)

T

]−1

×Φ̄1
ij(k)Ai(k − 1)−

(
P i+(k − 1)

)−1
}
x̃i+(k − 1)

(5.40)

According to Eqs. (5.30)-(5.31), the following inequality for Kalman gain is given

as:
∥Ki(k)∥ ≤

(
C1p̄iF̄ij,max +

∑
j∈Nci

p̄ijΦ̄
2T
ij,max

)
×
(
C1F̄ij,minpiF̄

T
ij,min + rij,min

)−1

= K̄i

(5.41)

Both sides of µij(k) are scalars. Using Lemma III.1 and computing the trace of
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µij(k), we have:

µ̄ij(k) ≤ Tr

{∑
j∈Nci

{
Aj(k − 1)T Φ̄2

ij(k)
T
}
Ki(k)

T
(
P i+(k)

)−1

×Ki(k)
∑
j∈Nci

{
Φ̄2

ij(k)Aj(k − 1)P js+(k − 1)
}}

−Tr
{
Ai(k − 1)T Φ̄1

ij(k)
T
(
P i+(k)

)−1

Ki(k)

×
∑
j∈Nci

{
Φ̄2

ij(k)Aj(k − 1)P ij+(k − 1)
}}

−Tr
{∑

j∈Nci

{
Aj(k − 1)T Φ̄2

ij(k)
T
}
Ki(k)

T
(
P i+(k)

)−1

×
∑
j∈Nci

{
Φ̄1

ij(k)Ai(k − 1)P ij+(k − 1)
}}

+Tr

{∑
j∈Nci

{
Φ̄2

ij(k)
}
Ki(k)

T
(
P i+(k)

)−1

Ki(k)Φ̄
2
ij(k)

×
∑
j∈Nci

{
Gj(k − 1)Qj(k − 1)Gj(k − 1)T

}}
+Tr

{∑
j∈Nci

{
Φ̄1

ij(k)
T
}(

P i+(k)
)−1∑

j∈Nci

{
Φ̄1

ij(k)
}
Gi(k − 1)

×Qi(k − 1)Gi(k − 1)T
}
+Tr

{∑
j∈Nci

{
Φ̄7

ij(k)
T
}
Ki(k)

T

×
(
P i+(k)

)−1

Ki(k)
∑
j∈Nci

{
Φ̄7

ij(k)δij(k)
}}

+ ...

(5.42)

Then, E
{
V k(x̃

i+(k))|x̃i+(k − 1)
}
− V k−1(x̃

i+(k − 1)) is written in the following

form:
E
{
V k(x̃

i+(k))|x̃i+(k − 1)
}
− V k−1(x̃

i+(k − 1)) ≤ µ̄ij

−ϕiV k−1(x̃
i+(k − 1))

(5.43)

we can show the following inequality:

0 < ϕi ≤ 1 (5.44)

According to Lemma IV.1, there is

E
{∥∥x̃i+(k)

∥∥2} ≤ κ̄
κE
{∥∥x̃i+(0)

∥∥2} (1− ϕi)
k

+µi

κ

k−1∑
n=1

(1− ϕi)
n

(5.45)

This completes the proof.

Remark 20. According to Theorem IV.3, the upper bound of µ̄ij(k) in (5.42) de-

pends on the event-triggered threshold, parameters of cyber attack (sensor-filter and

filter-filter communication channels) which affects on the upper bound of E
{∥∥x̃i+(k)

∥∥2}.
Thus, by assuming bounded attacker signal (DoS and FDI) and choosing a proper

event triggered condition, one can limit the upper bound of filtering error.
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Algorithm 3 A Secure Decentralized Cooperative Localization Algorithm Under
Cyber Attack

1: Initialize state estimation and error covariance matrix as Robots i ∈ ϑ and
j ∈ ϑ\{i}: x̂i+(0) ∈ Rni

, Pi+(0) ∈ Sni

, Pij+(0) = 0ni×nj

2: repeat
3: Propagation: Compute the predicted state and error covariance for each

robot:
x̂i−(k) = f i(x̂i+(k − 1),ui+

m (k − 1))

Pi−(k) = Ai(k − 1)Pi+(k − 1)Ai(k − 1)T

+Gi(k − 1)Qi(k − 1)Gi(k − 1)T

4: Update:
5: if robot i ∈ ϑ detect the other robot in the team, the relative measure-

ment zij(k) taken by each robot will sent to event-detector to judge whether
to transmit the current measurement or not through unprotected communica-
tion network. Then, each robot exchange propagated state and error covariance
with the other robot through unreliable communication network. The arriving
innovation and its covariance considering cyber attacks are as follows:

Υa
ij(k) = αl

ij(k)z̄ij(k) + (1−αij
l(k))βl

ij(k)ξ
l
ij(k)

−hij(x̂
i−(k), x̂j−(k))

Sa
ij(k) = C1F̄ij(k)P

i−(k)F̄ij(k)
T +

∑
j∈Nci

F̄ij(k)P
ij−(k)Φ̄2

ij(k)
T

+
∑
j∈Nci

Φ̄2
ij(k)P

ij−(k)F̄ij(k)
T + C2

∑
j,s∈Nci

Φ̄2
ij(k)P

js−(k)Φ̄2
is(k)

T

+C3
∑
j∈Nci

Φ̄3
ij(k)Rij(k)Φ̄

3
ij(k)

T + C5
∑
j∈Nci

Φ̄5
ij(k)ξ̄ij

l
(k)Φ̄5

ij(k)
T

+C6
∑
j∈Nci

Φ̄6
ij(k)ϱ̄

l
ij(k)Φ̄

6
ij(k)

T + C7
∑
j∈Nci

Φ̄7
ij(k)δij(k)Φ̄

7
ij(k)

T

+C4E
{∑
j∈Nci

Φ̄4
ij(k)hij(x̂

i−(k), x̂j−
a (k))hij(x̂

i−(k), x̂j−
a (k))

T

×Φ̄4
ij(k)

T
}
+
∑
j∈Nci

Φ̄8
ij(k)Xj(k)Φ̄

8
ij(k)

T

• If arriving innovation is greater than the threshold, i.e.,
∥∥Υa

ij(k)
∥∥ ≥ ψi =⇒

attack detected =⇒ trigger the alarm

• If arriving innovation is less than the threshold, i.e.,
∥∥Υa

ij(k)
∥∥ < ψi =⇒

proposed filter is resilient against cyber attacks =⇒ follow steps 6-9

6: Compute optimal Kalman gain under cyber attacks:

Ka
i (k) =

[
C1Pi−(k)F̄ij(k) +

∑
j∈Nci

Pij−(k)Φ̄2
ij(k)

T

]
(Sa

ij(k))
−1

7: Update state estimation with the current measurement:

x̂i+
a (k) = x̂i−(k) +Ka

i (k)
∑
j∈Nci

Υa
ij(k)

8: Update the error covariance:

Pi+
a (k) = Pi−(k)−Ka

i (k)Sij,a(k)K
a
i (k)

T

Pij+
a (k) = Pij−(k)−Ka

i (k)Sij,a(k)K
a
j (k)

T

9: k ← k + 1
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V Case study

V.1 Simulation Results

Table 5.2: The value and description of the parameters in simulation

Parameters Description Value

b Distance between 0.5
wheels

N Number of robots 4
Qi Standard deviation (0.05)2diag([(∆Li)2; (∆Ri)2])

of control input
Rij Standard deviation diag([0.1m2; 0.1rad2])

of relative measurements
P i+(0), P j+(0) Initial covariance diag([0.152; 0.152; 0.152])

matrix

In this subsection the performance of the proposed SDECL algorithm (1) under

cyber attacks is verified by simulation results. The motion equations of the ith robot

is described by:  xi(t+ 1) = xi(t) + ∆tvi(t) cos(θi(t) + ∆θi(t))
yi(t+ 1) = yi(t) + ∆tvi(t) sin(θi(t) + ∆θi(t))
θi(t+ 1) = θi(t) + ∆tωi(t) i ∈ {1, 2, 3, 4}

(5.46)

where xi(t) ∈ Rni
and yi(t) ∈ Rni

are the Cartesian coordinates of robot i, θi(t) ∈

Rni
is the orientation, vi(t) and ωi(t) ∈ Rni

are the linear velocity and angular

velocity, respectively. Denote ui(t) = [∆Li,∆Ri]
T , where ∆Li and ∆Ri are distance

moved by wheels. Note that, the control input of each robot i is measured by

odometry and inertial sensors. Also, the relative measurements taken by robot

i ∈ {1, 2, 3, 4} from robot j ∈ {1, 2, 3, 4} \{i} is described by:

zij(t) =

[
ρij(t)
θij(t)

]
=

[√
(xi(t)− xj(t))2 + (yi(t)− yj(t))2

arctan( y
i(t)−yj(t)

xi(t)−xj(t) )

]
(5.47)

where:

ρij(t) is the range of robot i relative to the robot j.

θij(t) is the bearing of the robot i relative to the robot j.

We assume that additive white-Gaussian noise affects both the control input ui(t)

and the relative measurements zij(t). In a practical application, these noises may

account for the effect of model uncertainties associated with the wheel encoders

and an overhead camera. In our simulations, we compare the following: 1) the

Ground truth of each robot; 2) Localization of robots using filter propagation; 3)

Localization of robots using the SDECL algorithm 1 with/without cyber attacks.
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Figure 5.3: (a) Localization of 4 robots by the SDECL algorithm under event-triggered mechanism without
cyber attack; (b)-(d) Localization of 4 robots by SDECL algorithm under different triggering conditions and
with cyber attack; (e)-(j) the triggering instances for the range and bearing of the four robots; solid-o shows
the ground truths, broken-dot shows the dead-reckoning and broken-x shows the EKF estimates of 4 robots.
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Figure 5.4: 1)The position estimation error of each robot using the SDECL algorithm for different scenarios;
the brown curve shows under the event-triggered mechanism and without cyber attacks, the red, blue, and
green curves show under different triggering conditions and with cyber attacks; 2)The pink color shows the
position estimation error of each robot using classical CL algorithm under the event-triggered mechanism
and with cyber attacks.

In our simulations, we assume that the mobile robots move in a random trajec-

tory and at least one of them performs as a stationary robot. Robots then employ

their exteroceptive sensors to observe the stationary robot and take relative mea-

surements. We consider a scenario in which the filter corresponding to each robot

receives information through an unreliable communication network. The moving

robots then receive the predicted position and associated error covariance of each

observed stationary robot over the unreliable communication network. An adver-

sary can attempt to attack the communication between the sensor and filter of each

robot and between two filters and degrade the localization quality. Fig. 5.3, Fig.

5.4, Fig. 5.5, and Fig. 5.6 show the outcome of our simulation results. We first eval-

uate the performance of the dead-reckoning method where each robot employs only

the wheel encoders to estimate the pose (position and orientation) independently
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Figure 5.5: Localization of 4 robots by SDECL algorithm (a) under event-triggered mechanism without
cyber attack; (b) with event-triggered mechanism and in the presence of malicious attacks on communication
between the sensor measurements and the filter of the robot; (c) with event-triggered mechanism and in
the presence of malicious attacks on communication between the filters; (d) with event-triggered mechanism
and in the presence of malicious attacks on communication between the sensor measurements and the filter
of robot and between the filters; (e)-(f) the triggering instances for range and bearing of the four robots

with no exchange of information (estimated states and error covariance) with other

robots. As seen in Fig. 5.3 pose estimation error using the dead-reckoning method

grow continuously for each robot, showing that using only local information (i.e.

using only wheel-encoder information) is ineffective to determine the location of

each robot in the team. Next, we consider the scenario in which each robot receives

continuous (i.e. time-triggered ) relative measurements through a reliable communi-
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Figure 5.6: The position estimation error of each robot using SDECL algorithm for different scenarios.

cation network, without cyber attacks, and correct its pose estimation. As seen in

Fig. 5.3(a), the pose estimation from the SDECL algorithm closely tracks the refer-

ence trajectory (ground truths). Fig. 5.3(e) and Fig. 5.3(f) indicate the triggering

instances with respect to time for the range and bearing of each robot. Note that

the absence of triggering times in the case of a time-triggered mechanism means

that the robot i performs as a stationary robot for the rest of the robots.

Then, we simulate a scenario that includes mixed DoS and FDI attacks with

a probability of 0.2 and 0.2 (both attacks) applied to the communication chan-

nel between the exteroceptive sensors and the corresponding estimator. In other

words, we consider the case in which each robot receives relative measurement in-

termittently (with an event-triggered mechanism) in an unreliable communication

network (with mixed DoS and FDI attacks) and correct its pose estimation using the

proposed algorithm (1). Fig. 5.3(b), Fig. 5.3(c), and Fig. 5.3(d) show that when

the event-triggering parameters increase for the same rate of DoS and FDI attacks,
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Figure 5.7: Relationship between detector threshold vs false positive rate and missing report rate

the quality of the tracking deteriorates slightly, however, the tracking error remains

bounded. Fig. 5.3(g) and Fig. 5.3(h) display the triggering times corresponding

to the event-triggering condition used in Fig. 5.3(c) and also Fig. 5.3(i) and Fig.

5.3(j) indicate the triggering instances corresponding to event-triggering condition

used in Fig. 5.3(d). To compare the filter performance under different triggering

conditions we use position error for each robot. According to Fig. 5.4, we conclude

that our proposed algorithm (1) outperforms the classical CL under cyber attacks.

Also, by properly tuning the triggering condition for the given attack rate, we can

achieve good estimation while reducing the communication rate.

Then we consider the filter’s performance under the following assumptions: (i) no

attacks; when there is an attack affecting one of the following: (ii) communication

between the sensor measurements and the robot’s filter, (iii) communication be-

tween filters; (v) communication between the sensor measurements and the robot’s

filter, and between the filters. The results are shown in Fig. 5.5(a), Fig. 5.5(b),

Fig. 5.5(c) and Fig. 5.5(d). We consider mixed DoS and FDI attacks with the

probability of 0.1 and 0.1 applied in cases (ii), (iii) and (v). Also, the parameters of
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the event-triggering conditions are the same in all cases. Fig. 5.5(e) and Fig. 5.5(f)

show the triggering times corresponding to the event-triggering condition used in

Fig. 5.5(a), Fig. 5.5(b), Fig. 5.5(c) and Fig. 5.5(d). Finally, we evaluate the perfor-

mance of the filter by comparing the position error for all cases. We conclude that

although the position error slightly increases in case (v) with respect to case (ii) and

case (iii), the proposed filter still remains resilient against simultaneous attacks and

considering the reduced amount of range-bearing measurements. Then we simulate

the false alarm rate and missing report rate with different detector parameters. Fig.

5.7 shows the relationship between the false alarm rate and the missing report rate

versus the detector parameter. It can be seen that the false alarm rate decreases

when the detector threshold is increased, while the missing report rate increases

when the detector threshold is increased. In other words, a small false alarm rate

can be interpreted as the detector judging that normal relative measurements are

untrustworthy, whereas a higher rate of the missing report can be interpreted that

the detector judging that falsified relative measurements are credible.

V.2 Experimental Validation

In this subsection, we validate the performance of the SDECL algorithm by per-

forming experiments on our robotic system. Our setup (see Fig. 5.8) consists of a

Linux-based host computer equipped with Nvidia GPU, four e-puck2 mobile robots,

an overhead ZED stereo camera, and a workspace of robots. The system is equipped

with Robot Operating System (ROS) where each robot and the overhead camera

correspond to a ROS node. Our computer vision system [117] tracks the pose of each

robot with respect to the reference trajectory and also provides relative measure-

ments. The accuracy of the computer vision-based positioning algorithm is 0.03m

for range and 5 degrees for bearing. E-puck2 robots move along a circular trajectory

simultaneously with a radius of 0.13 m (see Fig. 5.10). Each e-puck2 is equipped

with an odometry sensor to propagate the filter. The host computer uses the ZED

camera to collect data from the four e-puck2 robots and produce relative measure-

ments (range and bearing) using computer vision software. The event detector uses

the corresponding relative measurements to decide whether or not new information

is to be transmitted to the robots. When a pair of robots receive new relative mea-

surements, they exchange information (propagated state and error covariance) with

each other to update the localization. The communication between e-puck2 robots
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and the host computer is conducted through Bluetooth. There are inherent time

delays in communication between two robots, the camera latency and image pro-

cessing, and the event-detector. Also, the ROS package message filter [119] is used

to synchronize the time stamp of the odometry data and relative measurements. We

perform two experiments as follows:

Localization of robots under cyber attacks

In this experiment, we compare the following: 1) A ground truth of each robot pro-

vided by the overhead ZED camera; 2) Localization of robots by odometry sensor;

3) Localization of robots using the SDECL algorithm 3 considering cyber attacks.

Fig. 5.9 shows the results of our experiments. In our experiments, the trajectory

generated by the overhead camera is employed as our reference trajectory. Note

that the odometry sensor provides the pose estimates for the filter propagation.

Each robot uses range-bearing measurements to improve localization accuracy. Fig.

5.9(a)-(d) and Fig. 5.9(e)-(h) show the performance of the SDECL algorithm un-

der time-triggered and event-triggered mechanisms where packets transmitted in a

reliable communication network. It can be seen that the event-triggered mechanism

achieves a trade-off between localization accuracy and the number of transmitted

packets. Fig. 5.9(i)-(l) shows the resiliency of the proposed SDECL algorithm in

the presence of a bounded attack. We assume mixed DoS and FDI attacks with

probabilities of 0.1 and 0.1 corrupting the sensor measurements in the sensor-filter

communication channel. In this case, we assume that the attacker blocks and ma-

nipulates the relative measurement obtained from the camera in the communication

channel between the exteroceptive sensors and the filter. It can be seen that the

cyber attack deteriorates the localization accuracy slightly but still the proposed

algorithm is resilient against bounded attacks. We also provide the position error

of the four e-puck2 robots (see Fig. 5.11) by comparing (i) time-triggered mecha-

nism without cyber attacks; (ii) event-triggered mechanism without cyber attacks;

(iii) event-triggered mechanism with cyber attacks. We conclude that our algorithm

provides satisfactory localization performance against cyber-attacks while reducing

the amount of transmitted range-bearing measurements.
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(a) (b) (c)

Figure 5.8: Experimental setup including (a) e-puck2 robot, (b) overhead ZED camera, (c) gaming laptop
(equipped with Nvidia GPU)
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Figure 5.9: Trajectories of the e-puck2 robots under an experimental test generated by four simultaneously
running ROS packages, one for the camera location tracking (the green curve), one for the odometry estimate
(the red curve), and the other one (the blue curve) to obtain location estimates by SDECL Algorithm (a)-(d)
under the time-triggered mechanism and without cyber attacks; (e)-(h) under the event-triggered mechanism
and without cyber attacks; (i)-(l) under the event-triggered mechanism and bounded cyber attacks

Cyber attack detection

In this experiment, we apply mixed DoS and FDI attacks to corrupt the transmitted

relative measurement of e-puck0 under an unbounded attack signal. Since the attack
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(a) (b)

(c) (d)

Figure 5.10: Status of robots under bounded attack rate; Proposed SDECL algorithm implemented on
robots where robots moving simultaneously in circle trajectory.

detector monitors the filter by checking the arriving innovation, an alarm is triggered

if the arriving innovation is greater than the threshold. Note that the LEDs of the

e-pucks turn on when the alarm triggers, indicating the presence of a possible attack.

Fig. 5.12(a)-(d) shows the status of e-pucks at t = 0, 7, 13, 20 s. According to the

SDECL algorithm, all robots communicate with each other, in order to perform

localization. When one of the robots receives corrupted sensor measurements, the

corrupted packets (propagated state and error covariance) are transmitted to the

other robots, thus increasing the norm of the arriving innovation and eventually

triggering an alarm. It can be seen from Fig. 5.12(a)-(d) that the LEDs of all

robots turned on as alarm since the corrupted packets (propagated state and error

covariance) received from e-puck0 increase the arriving innovation of other robots

and trigger the alarm indicating a possible attack. In Fig. 5.12(e)-(h) we consider

the proposed attack detection mechanism. Here the alarm of e-puck0 is triggered

indicating an attack, thus, the robot does not transmit the corrupted packets to

the other robots. Therefore, we can see that the arriving innovation in the other

robots is less than the threshold resulting in an improvement in the localization

performance.
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Figure 5.11: The estimated position error of each robot under (i) time-triggered mechanism and without
cyber attacks; (ii) event-triggered mechanism and without cyber attacks; (iii) event-triggered mechanism
and with cyber attacks

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.12: Status of robots under higher bound of attack signal; Proposed attack detector implemented
on robots where robots moving simultaneously in circle trajectory.
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Table 5.3: The value and description of the parameters in experiment

Parameters Description Value

b Distance between 0.053m
wheels

N Number of robots 4
Qi Standard deviation (0.05)2diag([(∆Li)2; (∆Ri)2])

of control input
Rij Standard deviation diag([0.03m; 5◦])

of relative measurements
P i+(0), Initial covariance diag([0.12; 0.12; 0.12])
P j+(0) matrix of e-pucks
x1(0) Initial pose of e-puck0 [0.372,−0.129, 0]T
x̂1+(0) Initial estimated pose [0.372,−0.129, 0]T

of e-puck0
x2(0) Initial pose of e-puck1 [0.305,−0.136, 0]T
x̂2+(0) Initial estimated pose [0.305,−0.136, 0]T

of e-puck1
x3(0) Initial pose of e-puck2 [0.2679,−0.011, 0]T
x̂3+(0) Initial estimated pose [0.2679,−0.011, 0]T

of e-puck2
x4(0) Initial pose of e-puck3 [0.339,−0.005, 0]T
x̂4+(0) Initial estimated pose [0.339,−0.005, 0]T

of e-puck3
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Chapter 6

Event-Triggered Consensus
Control for Multi-Robot
Systems with Cooperative
Localization

I Introduction

In this chapter, we investigate the problem of event-triggered consensus control for

a group of mobile robots based on cooperative localization (CL). In our framework,

each robot employs the position estimates from CL to jointly achieve consensus.

An event-triggered mechanism based on a mixed-type condition is adopted in or-

der to reduce the frequency of control updates and unnecessary transmission of

information between system components. Our goal is to design an event-triggered

consensus controller based on CL such that the closed-loop system achieves the pre-

scribed consensus in spite of inaccurate sensor measurements. We provide sufficient

conditions that guarantee the desired consensus using eigenvalues and eigenvectors

of the Laplacian matrix. We design the controller and filter gains as well as the pa-

rameters of the event-triggering mechanism simultaneously in terms of the solution

for a linear matrix inequality (LMI). Finally, simulation and experimental results

are used to demonstrate the effectiveness of the proposed approach.

The rest of this work is structured as follows. Section II introduces some prelim-

inaries needed throughout the rest of the work. In Section III we derive sufficient

conditions to ensure the desired consensus using a stochastic analysis combined with

linear matrix inequalities. In Section IV, simulation and experiment results are con-

ducted to show the effectiveness of the proposed method. Finally, the work presents
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the conclusion in Section V.

Table 6.1: NOTATION

Notation List

Notations Description Notations Description

E{.} expectation of the ran-
dom variable

diag(.) block diagonal matrix

⊗ Kronecker product ∥.∥ Euclidean norm of the
vector

AT transpose of matrix A A−1 inverse of matrix A

I identity matrix of appro-
priate dimensions

i and j identity of robot i and
robot j

xi(k) state vector of the robot
i

ui(k) consensus control of
robot i

ηi(k) process noise from con-
trol input of robot i

νij(k) measurement noise from
exteroceptive sensors for
pair (i, j)

aij(k) indicator of interaction
between robots

Nci set of neighbors of robot
i within communication
range

zij(k) relative measurement
taken by robot i from
robot j

Qi(k) covariance of ηi(k)

Rij(k) covariance of νij(k) Hi
i(k) sensor measurement ma-

trix of robot i

Hi
j(k) sensor measurement ma-

trix of pair (i, j)
x̂i−(k) propagated state of

robot i

x̃i−(k) propagated state error of
robot i

x̂i+(k) estimation of robot i

x̃i+(k) estimation error of robot
i

P i−(k) propagated state error
covariance of robot i

P i+(k) estimation error covari-
ance of robot i

P ij−(k) propagated state error
covariance for the pair
(i, j)

P ij+(k) estimation error covari-
ance for the pair (i, j)

Ki(k) Kalman gain of CL

Sij covariance of innovation
z̃ij(k)

αi, βi event-triggered parame-
ters of robot i

ξk consensus error (devia-
tion of each state from
the average state)

Gi(k) consensus control gain

ei error of event-triggering
sampling

δ stepsize

L Laplacian matrix λ(A) eigenvalue of matrix A

II Problem Formulation and Preliminaries

II.1 Graph Theory

To work with a group of N robots we need some basic notions of graph theory.

The interaction topology among N robots is modelled as a time-varying undi-

rected graph G(k) = (V, E(k),A(k)). Let V = {1, 2, ..., N} represent an index set of N

robots. An undirected edge of G(k) is represented by the ordered pair (i, j) which

indicates that there is information flow from robot i to robot j. A(k) = ⌊aij(k)⌋
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is the adjacency matrix where aij(k) = 1 if (i, j) ∈ E(k) otherwise aij(k) = 0. Also,

aii(k) = 0 ∀i ∈ {1, 2, ..., N}. The Laplacian matrix L(k) = [lij(k)] of the graph G is de-

fined as lij(k) =
∑

i̸=j aij(k) and lij(k) = −aij(k) where i ̸= j. The in-degree of robot

i is defined as degiin(k) =
∑
j∈Nci

aij(k). Note that the variations of G(k) are driven by

a random process, therefore the communication topology G(k) randomly switches s

distinct graphs over the time, i.e., Gun = {G1,G2, ...,Gs}.

Assumption 8. The interaction topologies G1,G2, ...,Gs among the N robots are

undirected, and the union interaction topology Gun = {G1, ...,Gs} has an undirected

spanning tree [132].

Figure 6.1: Block diagram of event-triggered consensus control for multi-robot systems with cooperative
localization

II.2 Problem of Interest

We consider a group of N mobile robots working cooperatively to achieve a common

objective. Each mobile robot employs position estimates obtained using cooperative

localization (CL) to jointly achieve consensus. We assume a scenario in which each

robot i is able to sense and take a relative measurement zij(k) with respect to its

neighbours and also exchange information packets consistent with propagated and

estimated position as well as error covariance with its neighbours residing within

communication range. In other words, when performing consensus, robot j can

exchange information with a neighbour robot i, only within certain communication
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range defined as the set Nci = {j ∈ V : (i, j) ∈ E}. Notice also that the interaction

topology of robots is time-varying representing the practical scenario in a multi-

robot system where robots can randomly detect other robots in the group only

within the reach of the exteroceptive sensors.

To reduce unnecessary communication between robots we use the event-triggered

scheme as shown in Fig. 6.1 to decide whether or not the current position estimates

are to be transmitted to neighbour robots through the communications network.

For simplicity, we assume that the local clocks of all robots have been synchronized,

which means that the event-checking instants of all robots are synchronized. Then

based on transmitted position estimates, each robot generates the corresponding

consensus control command. Also, the buffers in Fig. 6.1 store and retrieve infor-

mation packets using a last-in-first-out protocol, which means that the filter and

consensus control always receive the newest packets from the buffers.

Remark 21. It is worth mentioning that when the robots are not residing within

the communication range of each other, they may not able to maintain a connected

communication topology. Therefore, in this work the communication topology at

each time instant is not necessary to be connected which is more in line with the

practical scenarios. Note also that, based on Assumption 1, our analysis only con-

siders the connectivity of the union graph Gun rather than the exact graph at time

k. According to the definition of the weighted adjacent matrix for Gun, one can

compute E
[
L(k)

]
≜

s∑
m=1

πmLm. Since Gun includes a spanning tree, zero is a simple

eigenvalue of E
[
L(k)

]
, based on Assumption 8. A similar assumption can be found

in references [132]-[133].

II.3 Cooperative Localization

The motion equation of each robot i can be represented as follows [33]:

xi(k + 1) = f i(xi(k), vim(k), ϕim(k))

= xi(k) +

[
δvim(k) cos(ϕim(k))
δvim(k) sin(ϕim(k))

]
(6.1)

where the vector state xi(k) = [xi(k), yi(k)]T represent the global position of robot i,

vim is the robot’s linear velocity, ϕim is the robot’s orientation, and δ is the sampling

time. Each robot i ∈ V employs a wheel encoder to measure its linear velocity

vim = vi+ηiv and to compute its absolute orientation ϕim = ϕi+ηiϕ. The information
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is used to compute the state propagation according to:

x̂i−(k + 1) = f i(x̂i+(k), vim(k))

= x̂i+(k) +

[
δvi(k) cos(ϕi(k))
δvi(k) sin(ϕi(k))

]
(6.2)

where vi is the actual linear velocity and ϕi is the actual orientation. Also, ηiv ∼ N(0, σηi
v
)

and ηiϕ ∼ N(0, σηi
ϕ
) are mutually uncorrelated zero-mean Gaussian white noises con-

taminating the linear velocity and orientation measurements, respectively. Defining

the state propagation error x̃i−(k) = xi(k)− x̂i−(k), and taking equations (6.1) and

(6.2) into account we can write:

x̃i−(k + 1) = x̃i+(k) + δ

[
cos(ϕi(k)) −vi(k) sin(ϕi(k))
sin(ϕi(k)) vi(k) sin(ϕi(k))

]
×
[
ηiv(k)
ηiϕ(k)

]
= x̃i+(k) + δCi(k)ηi(k)

(6.3)

The propagated error covariance of the motion dynamics (6.1) is given by

P i−(k + 1) = E
[
x̃i−(k + 1)x̃i−(k + 1)T

]
= P i+(k) +Qi(k)

P ij−(k + 1) = E
[
x̃i−(k + 1)x̃j−(k + 1)T

]
= P ij+(k)

(6.4)

where Qi(k) = (δ)2Ci(k)E
[
ηi(k)ηi(k)

T
]
Ci(k)

T . Next, whenever the robot i senses other

robots in the team, it takes relative measurements from robot j using exteroceptive

sensors, described as follows:

zij(k) = hij

(
xi(k),xj(k)

)
+ νij(k) (6.5)

where νij is white-Gaussian measurement noise. The relative position measurement

contains the range and bearing of robot i with respect to robot j. Considering

relative measurements for each pair (i, j), the state estimation and covariance update

for robot i can be obtained using extended Kalman filtering (EKF) as follows:

x̂i+(k) = x̂i−(k) +Ki(k)

[∑
j∈Nci

aij(k)
(
zij(k)− hij(x̂

i−(k), x̂j−(k))
)]

P i+(k) = E
[
x̃i+(k)x̃i+(k)T

]
= P i−(k)−Ki(k)Sij(k)Ki(k)

T

P ij+(k) = E
[
x̃i+(k)x̃j+(k)T

]
= P ij−(k)−Ki(k)Sij(k)Kj(k)

T

(6.6)

where hij(x̂
i−, x̂j−) is the propagated measurement. Let the first-order expansion of

hij(x
i,xj) around (x̂i−, x̂j−) be

hij(x
i,xj) ≈ hij(x̂

i−, x̂j−) +Hi
i(x

i − x̂i−) +Hi
j(x

j − x̂j−) (6.7)

where Hi
i =

∂hij(x̂
i−,x̂j−)

∂xi and Hi
j =

∂hij(x̂
i−,x̂j−)

∂xj . Also, Ki and Kj are the Kalman gain

for robot i and robot j and also Sij is the covariance of the innovation z̃ij(k) = zij(k)− hij(x̂
i−(k), x̂j−(k))

for pair (i, j).
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II.4 Event-Triggered Consensus Control

Considering the nonlinear dynamics of N robots, we discretize (6.1) using the for-

ward Euler approach as

xi(k + 1) = xi(k) + δui(k) + δCi(k)ηi(k) (6.8)

where

ui(k) =

[
ux
i (k)

uy
i (k)

]
=

[
vi(k) cos(ϕi(k))
vi(k) sin(ϕi(k))

]
Without loss of generality, we assume that the error between desired orientation

and the actual orientation of the robot is bounded. The consensus control based on

estimated states obtained from the CL algorithm can be designed as follows:

ui(k) = Gi(k)
∑
j∈Nci

aij(k)
(
x̂i+(k)− x̂j+(k)

)
(6.9)

where Gi(k) is the consensus control gain to be determined.

We now introduce the event-triggered scheme according to Fig. 6.1. In order to

characterize such a scheme, let the triggering instances of robot i be 0 ≤ ki0 < ki1 <

ki2 < · · · < kis. The event-generator functions Υi(., ., .) : Rq × R −→ R (i = 1, 2, ..., N) are

selected as follows:

Υi

(
ei(k), αi, βi

)
= ∥ei(k)∥2 − α2

i

∥∥∥x̂i+(k)
∥∥∥2 − β2

i
(6.10)

Here, ei(k) = x̂i+(k)− x̂i+(kis) is the error between the local estimated state at the

current time k and the latest triggering instance kis and αi, βi are the design pa-

rameters of the event-triggering scheme. We treat the coordinate directions as a

vector (x̂i(k) = [x̂i(k), ŷi(k)]T ) and use a single triggering condition. The triggering

rule used in (6.10) is a discrete-time version of the so-called mixed-type triggering

condition introduced in [91] which includes both send-on-delta type and relative type

triggering conditions as special cases. Indeed, setting αi = 0 we obtain a send-on-

delta type condition, whereas setting βi = 0 we obtain a relative-type condition.

Note that the parameter αi is chosen such that 0 ≤ αi < 1, and usually it takes

values close to zero. Also, the parameter βi is chosen such that βi > 0, [91]. The

control executions are triggered whenever the following condition is satisfied:

Υi(ei(k), αi, βi) > 0. (6.11)

Therefore, the sequence of triggering instances can be determined as follows:

kis+1 = inf{k ∈ N|k > kis,Υi(ei(k), αi, βi) > 0}. (6.12)
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Considering the event-triggered setup for the consensus control, the closed-loop

system can be written as follows:

x̂i+(k) = x̂i−(kis) +Ki(k)

[∑
j∈Nci

aij(k)
(
zij(k)− hij(x̂

i−(kis), x̂
j−(kjs))

)]
= x̂i−(k)− ei(k) +Ki(k)

[∑
j∈Nci

aij(k)
(
Hi

i(k)x̃
i−(k) +Hi

j(k)x̃
j−(k)

+νij(k)
)]
−Ki(k)

[∑
j∈Nci

aij(k)
(
Hi

i(k)ei(k) +Hi
j(k)ej(k)

)]
xi(k + 1) = xi(k) + δGi(k)

[∑
j∈Nci

aij(k)
(
x̂i+(k)− x̂j+(k)

)]
+δGi(k)

[∑
j∈Nci

aij(k)
(
ej(k)− ei(k)

)]
+ δCi(k)ηi(k)

(6.13)

Computing the estimation error x̃i+(k) = xi(k)− x̂i+(k), the closed-loop system (6.13)

can be transformed into:

x̃i+(k + 1) = x̃i+(k)− ei(k) + δCi(k)ηi(k)

+Ki(k)

[∑
j∈Nci

aij(k)
(
Hi(k)

(
x̃i+(k)− x̃j+(k)

)
+ νij(k)

)]
−Ki(k)

[∑
j∈Nci

aij(k)
(
Hi(k)

(
ej(k)− ei(k)

))]
+Ki(k)

[∑
j∈Nci

aij(k)
(
δHi(k)

(
Cj(k)ηj(k)−Ci(k)ηi(k)

))]
xi(k + 1) = xi(k) + δGi(k)

[∑
j∈Nci

aij(k)
(
xi(k)− xj(k)

)]
−δGi(k)

[∑
j∈Nci

aij(k)
(
x̃i+(k)− x̃j+(k)

)]
+δGi(k)

[∑
j∈Nci

aij(k)
(
ej(k)− ei(k)

)]
+ δCi(k)ηi(k)

(6.14)

In order to facilitate the discussion, the closed-loop system (6.14) can be written in

compact form as follows:
xk+1 =

[
I + δ(Lk ⊗Gk)

]
xk − δ(Lk ⊗Gk)x̃k

−δ(Lk ⊗Gk)ek + δCkηk

x̃k+1 =
[
I + δ(Lk ⊗KkHk)

]
x̃k +

[
I + (Lk ⊗KkHk)

]
ek

δ
[
I + (Lk ⊗KkHk)

]
Ckηk − (Lk ⊗Kk)νk

(6.15)

where
xk =

[
x1(k)T x2(k)T ... xN (k)T

]T
, x̃k =

[
x̃1+(k)T x̃2+(k)T ... x̃N+(k)T

]T
ek =

[
e1(k)

T e2(k)
T ... eN (k)T

]T
, ηk =

[
η1(k)

T η2(k)
T ... ηN (k)T

]T
νk =

[
ν1(k)

T ν2(k)
T ... νN (k)T

]T
, Kk =

[
K1(k)

T K2(k)
T ... KN (k)T

]T
Hk =

[
H1(k)

T H2(k)
T ... HN (k)T

]T
, Gk =

[
G1(k)

T G2(k)
T ... GN (k)T

]T
Ck =

[
C1(k)

T C2(k)
T ... CN (k)T

]T
,

Lk =


−deg1in a12 a13 · · · a1N
a21 −deg2in a23 · · · a2N
...

...
...

. . .
...

aN1 aN2 aN3 · · · −degNin

 .
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We now define the average state of all agents as follows:

x̄k =
1

N

N∑
j=1

xi(k) =
1

N
(1T ⊗ I)xk (6.16)

Considering the interaction topology of agents, it is easy to obtain x̄k+1:

x̄k+1 =
1

N
(1T ⊗ I)xk+1 =

1

N
(1T ⊗ I)

{[
I + δ(Lk ⊗Gk)

]
xk

−δ(Lk ⊗Gk)x̃k − δ(Lk ⊗Gk)ek + δCkηk

}
=[

I + δ(Lk ⊗Gk)
]
x̄k −

δ

N
(1TLk ⊗Gk)x̃k −

δ

N
(1TLk ⊗Gk)ek.

(6.17)

The deviation of each state from the average state can be obtained as follows:

ξk+1 = xk+1 − x̄k+1 =

{[
I + δ(Lk ⊗Gk)

]
xk − δ(Lk ⊗Gk)x̃k

−δ(Lk ⊗Gk)ek + δCkηk

}
−
{[
I + δ(Lk ⊗Gk)

]
x̄k

−
δ

N
(1TLk ⊗Gk)x̃k −

δ

N
(1TLk ⊗Gk)ek

}
=
[
I + δ(Lk ⊗Gk)

]
ξk

+δ
(
(N Lk)⊗Gk

)
x̃k + δ

(
(N Lk)⊗Gk

)
ek + δCkηk,

(6.18)

where N = [nij ]N×N with nij =
N − 1

N
for i = j and nij =

− 1

N
for i ̸= j. Given

the coupling nature of MASs, we select ϕi ∈ Rn with ϕTi L = λiϕ
T
i (i = 2, 3, ..., N)

to form a unitary matrix M = [
1
√
N
ϕ2 ... ϕN ] and then transform Lk to diagonal

form as follows:

diag{0, λ2, ..., λN} =MTLM (6.19)

where each ϕi and λi is a pair of eigenvectors and eigenvalue of the Laplacian matrix

Lk. Then closed-loop system (6.15) can be written as follows:
ξk+1 =

[
I + δ(Lk ⊗Gk)

]
ξk + δ

(
(M TN Lk)⊗Gk

)
x̃k

+δ
(
(M TN Lk)⊗Gk

)
ek + δCkηk

x̃k+1 =
[
I + δ(Ξk ⊗KkHk)

]
x̃k +

[
I + (Ξk ⊗KkHk)

]
ek

δ
[
I + (Ξk ⊗KkHk)

]
Ckηk − (Ξk ⊗Kk)νk

(6.20)

where Ξk = diag{λ2, ..., λN} and M = [ϕT2 ... ϕ
T
N ]T . We now introduce the following

definition:

Definition II.1. Let the communication graph G and bounded function U be given.

Assume that the initial position of the robots satisfy
N∑
i=1

∥∥∥∥∥∥xi(0)− (
1

N
)

N∑
j=1

xj(0)

∥∥∥∥∥∥ ≤ X0. The

multi-robot system (6.8) with communication graph G is consensusable with bound

U if the following condition satisfy [134]:

E
{ ∥∥xi(k)− xj(k)∥∥2 } ≤ U, i, j ∈ V , k ≥ 0 (6.21)
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Remark 22. The distributed event-based control protocol ui(k) = Gi(k)
∑
j∈Nci

aij(k)
(
x̂i+(kis)− x̂j+(kjs)

)
is designed for robot i where the control protocol of robot i needs to be updated im-

mediately not only at its own event-triggered times ki0, k
i
1,... but also at the event-

triggered times of its neighbors kj0, k
j
1,..., j ∈ Nci. In other words, each robot i takes

into account the last update value of each of its neighbors in its control protocol

which is different from [135].

Remark 23. In this work, we adopt an event-based consensus control scheme in

order to reduce the exchange of information between robots and reduce energy con-

sumption. It is well established that a relative type triggering condition typically

causes too many unnecessary events. On the other hand, an absolute type triggering

condition can reduce the transmission of information between robots at the cost of

consensus performance degradation. In this work, we use a mixed-type triggering

condition which includes both absolute and relative type conditions as special cases

and leads to a tradeoff between the convergence rate of the consensus error and a

reduced number of events. See reference [136] for further details. Also, our proposed

event-triggering scheme depends only on the state estimates of each robot and is

independent of the state estimates of the neighboring robots as is the case in refer-

ences [74], [93]-[95]. Therefore, with the proposed triggering condition, unnecessary

communication is significantly reduced.

Remark 24. It is worth mentioning that the boundary of the orientation error must

be small to ensure convergence of the EKF filter. This condition is satisfied whenever

the orientation of the robots changes slowly. In this case, we can ignore the higher-

order terms in the Taylor series expansion during the filter design. Moreover, under

these conditions, our design is based on the linear part in the presence of sensor

noise and the proposed event-triggered mechanism.

III Main Result

In this section, we consider the consensus problem for the multi-robot system (6.15)

using a mixed-type event-triggering condition (6.10). We provide sufficient condi-

tions that guarantee consensus of the multi-robot system (6.15) in the mean square

sense using the Lyapunov stability theorem and stochastic analysis.
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III.1 Consensus Analysis

Theorem III.1. Consider the multi-robot system (6.15) with communication graph

G and event-triggering condition (6.10). Bounded consensus in a mean-square sense

for a group of robots is achieved provided that the following matrix inequality and

consensus bound are satisfied:[−P + γI ϵA B̄
ϵAT −P−1 0
B̄T 0 −P−1

]
< 0 (6.22)

U(X0, β,Q,R) = max

{
λmax(P)
λmin(P)

X 2
0 ,

ρ

ρ− 1
Φ

}
(6.23)

where

A =

(I + δ(Lk ⊗Gk)
)
−δ
(
(M TN Lk)⊗Gk

)
0

(
I + δ(Ξk ⊗KkHk)

) 

B =

δ((M TN Lk)⊗Gk

)(
I + (Ξk ⊗KkHk)

)  , B̄ =

δ((M TN Lk)⊗ αGk

)(
α+ (Ξk ⊗ αKkHk)

)
C =

[
δCk

δ
(
I + (Ξk ⊗KkHk)

)
Ck

]
, D =

[
0

−(Ξk ⊗Kk)

]
,

P =

[
I ⊗ P1 I ⊗ P2

I ⊗ P2 I ⊗ P3

]
, Φ = λmax(Ψ)

N∑
i=1

(β2
i +Q2

i +R2
ij),

ρ =
λmax(P)

λmin(P)− γ
, ϵ =

√
(1 + ε1 + ε2 + ε3), α = diag{α1, α2, ..., αN}

Proof. First, we construct the following Lyapunov function:

V k = XT
kPXk (6.24)

where Xk = [ξTk , x̃
T
k ]

T . Computing the difference of V k along the trajectory (7.24)

and taking the mathematical expectation:

E{∆V k|Xk} = E{V k+1|Xk} − V k = E
{(
AXk + Bek + Cηk +Dνk

)T
×P(AXk + Bek + Cηk +Dνk

)}
= XT

k

(
ATPA− P

)
Xk

+2XT
kATPBek + 2XT

kATPCηk + 2XT
kATPDνk + 2νT

kDTPBek
+eTk BTPBek + νT

kDTPDνk + ηT
k CTPCηk.

(6.25)

Using the inequality 2aT b ≤ εaTa+ ε−1bT b we obtain:

2XT
kATPBek ≤ ε1XT

kATPAXk + ε−1
1 eTk BTPBek (6.26)

2XT
kATPCηk ≤ ε2X

T
kATPAXk + ε−1

2 νT
kDTPDνk (6.27)

2XT
kATPDνk ≤ ε3XT

kATPAXk + ε−1
3 ηT

k CTPCηk (6.28)
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2νT
kDTPBek ≤ ε4νT

kDTPDνk + ε−1
4 eTk BTPBek. (6.29)

Substituting Equations (6.26)-(6.29) into (6.25) we obtain:

E{∆V k|Xk} = XT
k

(
(1 + ε1 + ε2 + ε3)ATPA− P

)
Xk

+(1 + ε−1
1 + ε−1

4 )eTk BTPBek + (1 + ε−1
2 + ε−1

4 )νT
kDTPDνk

+(1 + ε−1
3 )ηT

k CTPCηk.

(6.30)

Using the event-triggering condition (6.10) we have:

eTk BTPBek ≤ λmax(BTPB)eTk ek ≤ λmax(BTPB)
N∑
i=1

e2i (k)

≤ λmax(BTPB)
[ N∑
i=1

α2
i x̂

i+(k)T x̂i+(k) + β2
i

]

≤ λmax(BTPB)
[ N∑
i=1

α2
i ξ

i(k)T ξi(k) + β2
i

]

≤ XT
k B̄TPB̄Xk + λmax(BTPB)

N∑
i=1

β2i .

(6.31)

Substituting inequality (6.31) into equation (6.30), we obtain the following expres-

sion:
E{∆V k|Xk} = XT

k

(
(1 + ε1 + ε2 + ε3)ATPA+ αTBTPBα− P

)
Xk

+(1 + ε−1
1 + ε−1

4 )eTk BTPBek + (1 + ε−1
2 + ε−1

4 )νT
kDTPDνk

+(1 + ε−1
3 )ηT

k CTPCηk ≤ −γX
T
kXk +Φ,

(6.32)

where
Ψ = (1 + ε−1

1 + ε−1
4 )BTPB + (1 + ε−1

2 + ε−1
4 )DTPD

+(1 + ε−1
3 )CTPC

Φ = λmax(Ψ)

N∑
i=1

(β2i +Q2
i +R2

ij).

From (6.32) we find the condition for bounded consensus of MASs:

(1 + ε1 + ε2 + ε3)ATPA+ B̄TPB̄α− P + γI < 0. (6.33)

Now we look for the boundary U of consensus. According to (6.33) for any ρ > 1

we have:
ρk+1E{Vk+1} − ρkE{Vk} ≤ ρk+1E{∆Vk}+ ρk(ρ− 1)E{Vk}
≤ ρk+1

[
− γE

{
∥Xk∥2

}
+Φ

]
+ ρk(ρ− 1)E

{
∥Xk∥2

}
≤
(
λmax(P)(ρ− 1)− γρ

)
ρkE

{
∥Xk∥2

}
+ ρk+1Φ.

(6.34)

Selecting a proper positive scalar ρ satisfying λmax(P)(ρ− 1)− γρ = 0, we can write:

ρkE{Vk} − E{V0} ≤
k∑

n=1

ρnΦ. (6.35)

Thus,

E{Vk} ≤ ρ−kE{V0}+
k∑

n=1

ρn−kΦ = ρ−kE{V0}+
(1− ρ−k)Φ

1− ρ−1

= ρ−k
(
E{V0} −

ρΦ

ρ− 1

)
+

ρΦ

ρ− 1
≤ max

{
E{V0},

ρΦ

ρ− 1

}
.

(6.36)
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We know that

E{V0} = XT
0 PX0 ≤ λmax(P)E

{
∥X0.∥2

}
(6.37)

From Definition III.1 we have:

E
{
∥X0∥2

}
=

N∑
i=1

∥∥∥∥∥∥xi(0)− (
1

N
)

N∑
j=1

xj(0)

∥∥∥∥∥∥
2

≤ X 2
0 . (6.38)

Then, we can show that:

U(X0, β,Q,R) = max

{
λmax(P)
λmin(P)

X 2
0 ,

ρ

ρ− 1
Φ

}
(6.39)

Finally, using the Schur complement lemma, inequality (6.33) can be converted into

the following condition (6.22) which complete the proof.

Remark 25. In the proof of theorem III.1, we employ the inequality 2aT b ≤ εaTa+

ε−1bT b to deal with the cross terms ek, ηk, νk and design the distributed consensus

control. Note that due to cross terms ( such as 2XT
kATPBek, 2XT

kATPCηk,...) the

matrix inequality (6.22) includes the parameters ε1, ε2,... which can be optimized

further to minimize the consensus bound.

Remark 26. In this work, we assume that each agent checks the triggering condition

(6.10) periodically using the same sampling period and that all agents are synchro-

nized. For simplicity, our analysis neglects a small delay ∆Ti > 0 that accounts

for the effect of the communication delays between agents. This delay is inevitable

due to the unpredictable nature of the network and can be accounted for using the

same analysis presented in [90]. When the number of agents is small, this delay

is typically negligible. However, as the number of agents increases, the delay ∆Ti

might result in asynchronous behaviour that requires a more detailed analysis. The

number of robots that can be tolerated under the presents assumptions, depends on

the characteristics of the robots and the network. Future research will elaborate on

this problem. See also the experimental results is Section IV for further details.

III.2 Distributed Event-Triggered Controller Design

Theorem III.1 in the previous subsection provides sufficient conditions that guar-

antee bounded consensus for the multi-robot system. However the controller and

Kalman gain and also the event-triggering parameters are difficult to obtain directly

from the matrix inequality (6.22) due to the nonlinear terms αGk, αKk as well as
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the terms P−1 and P. In this section we present an LMI based approach to the

design of suitable control and Kalman gains as well as event-triggered parameters.

Theorem III.2. Consider the multi-robot system (6.15) with communication graph

G and event-triggering condition (6.10). Bounded consensus for the multi-robot

system (6.15) is achieved if there exist matrix sequences K̄k, Ḡk, P and α satisfying

the following linear matrix inequality:[−P + γI ϵA B̄
ϵAT P − Ω− ΩT 0
B̄T 0 P − 2I

]
< 0 (6.40)

A =

(α+ δ(Lk ⊗ Ḡk)
)
−δ
(
(M TN Lk)⊗ Ḡk

)
0

(
α+ δ(Ξk ⊗ K̄kHk)

) 

B̄ =

δ((M TN Lk)⊗ Ḡk

)(
α+ (Ξk ⊗ K̄kHk)

) , Ω =

[
α 0
0 α

]
, α = diag{α1, α2, ..., αN}

with consensus bound given by:

U(X0, β,Q,R) = max

{
λmax(P)
λmin(P)

X 2
0 ,

ρ

ρ− 1
Φ

}
. (6.41)

Moreover, the gains are given by Kk = K̄kα
−1 and Gk = Ḡkα

−1.

Proof. Pre- and post-multiplying inequality (6.22) by diag(I,Ω, I) and diag(I,ΩT , I)

and taking into account that{
(Ω− P)P−1(Ω− P)T ≥ 0
(I − P)P−1(I − P)T ≥ 0

(6.42)

We can write {
−ΩP−1ΩT ≤ P − Ω− ΩT

−P−1 ≤ P − 2I
(6.43)

which implies the LMI condition (6.40). This completes the proof.

Remark 27. Theorem III.2 is written in the form of the LMI condition (6.40)

whose solution determines the consensus control gain. We design the controller,

filter gains, as well as the parameters of the event-triggered mechanism simultane-

ously thus guaranteeing that the desire consensus performance is achieved along with

reduced frequency update of the controllers. Notice also that the consensus bound U

is a function of initial position of the robots (X0), threshold term of event-triggered

mechanism (β), the covariance of process noise (Q) and the covariance of the relative

measurement noise (R). In summary, a suitable consensus bound can be obtained

by optimizing the controller parameters and filter gains as well as the parameters
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of the event-triggering mechanism. In other words, the design can be carried out

as an optimization problem that maximizes the consensus bound while satisfying the

stability condition (6.40), i.e.

max
K̄k,Ḡk,P,α,β

U(X0, β,Q,R)

s.t. LMI condition (6.40) (6.44)

Remark 28. It is worth mentioning that the terms Lk, Kk, etc, in the LMI (6.40)

are time-varying and therefore the LMI condition must be solved online. Moreover,

since (6.40) depends on the Kalman gain Kk, the error covariance P i+(k), P ij+(k)

(in the CL algorithm) must be bounded in order to ensure a feasible solution. It is

also worth noting that our main results can be easily extended to the case when the

Lyapunov matrix P is time-varying. With our established framework, the consensus

bound can be obtained analogously as U(X0, β,Q,R) = max

{
λmax(P0)

λmin(Pk)
X 2

0 +
1

λmin(Pk)
ρ̄kΦ̄k

}
where ρ̄k = [ρ11 ρ22 · · · ρkk] and Φ̄k = [Φ1 Φ2 · · · Φk]

T
for the time-varying

Lyapunov matrix by making some minor modifications in Eqs. (6.34)-(6.39).

In the next section we provide an algorithm to implement the controller in a

practical setting.

Algorithm 4 Distributed event-based consensus control for a group of mobile robots
with cooperative localization

1: Input:Initialize position, estimated position and error covariance matrix of robots i ∈ {1, 2, ..., N}
and j ∈ ϑ\{i}: xi(0) ∈ Rni

, xj(0) ∈ Rnj
, yi(0) ∈ Rni

, yj(0) ∈ Rnj
, x̂i+(0) ∈ Rni

, ŷi+(0) ∈ Rni
,

x̂j+(0) ∈ Rnj
, ŷj+(0) ∈ Rnj

, Pi+(0) ∈ Sni
, Pij+(0) = 0ni×nj , Pj+(0) ∈ Sni

, and choose a small
tolerance parameter ϵ ≪ 0.05

2: Output:Velocity comments ux
i (k), u

y
i (k); position information xi(k), yi(k); performance index Di

3: while
∥∥xi(k)− xj(k)

∥∥ ≤ ϵ &
∥∥yi(k)− yj(k)

∥∥ ≤ ϵ do
4: Given sensor measurements (Odometry and IMU) predict the position and error covariance of robots

using Eqs. (2) and (4).
5: Whenever robot i detects the other robots in the team, it takes a relative measurement zij(k) respect

to its neighbors and also exchange information packets consisting of propagated and estimated position
as well as error covariance with its neighbors residing within communication range. The estimated
position and error covariance of robots can be computed using Eq. (6)

6: Robot i broadcast the current estimated position x̂i+(kis) and ŷi+(kis) to the neighbors by checking
its triggering conditions in (10). If the condition in (10) is satisfied, the robot i broadcasts the current
estimated position to the network.

7: The speed comments is computed for robot i in x and y coordinates using Eq. (9); then the

desired orientation θi = arctan
(
ux
i (k),u

y
i (k)

)
, and the desired velocity vi =

√(
ux
i (k)

)2
+

(
uy
i (k)

)2

is computed for robot i.
8: Robot i rotates in place until its heading reach to the desired orientation θi and the length of rotating

time is recorded as ∆Ti

9: Robot i moves forward/backward if its heading reach to the desired orientation θi, at the velocity

vi + (
vi

τ
) for the time period τ∆Ti.

10: Robot i keeps moving forward/backward at vi until it receives the updates information from other
robots.

11: end while
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IV CASE STUDY

IV.1 Simulation Results

In this section, we consider a multi-robot systems and verify our event-triggered

consensus control based on cooperative localization (CL) via simulation. We con-

sider a scenario in which a group of mobile robots i ∈ {1, 2, 3, 4} are in motion

and at least one of them performs as a stationary robot. Then, robots use their

extroceptive sensors to take relative measurements and receive the predicted posi-

tion and associated error covariance with respect to the observed stationary robot.

Meanwhile, the moving robots updates position estimates using cooperative local-

ization (CL) and perform consensus. We assume the initial position of the robots

is x1(0) = [20,−10]T , x2(0) = [−20,−10]T , x3(0) = [−20, 10]T , and x4(0) = [20, 10]T .

The covariance of the control input is Qi = (0.05)2diag([(∆Li)2; (∆Ri)2]) and the

covariance of the sensor measurements is Rij = diag([0.001m2; 0.001rad2]). In our

simulations, we consider the position x̄des = [0, 0]T as consensus of robots. Note that

the communication graph is considered as time-varying. In our simulations, we con-

sider four different communication strategies to compare the consensus performance

and the amount of information transmitted by each robot. We first design time-

triggered consensus control where each robot transmits position estimates to their

neighbours continuously. Fig. 6.2(a)-(b) shows the trajectory of the four robots. As

shown in the figure, all robots approach the origin thus reaching bounded consensus

in mean-square sense. Note that the position estimates from CL can track the actual

position precisely. Also, the triggering instances for the motion of robots are illus-

trated in Fig. 6.2(c)-(f). Next, we consider the event-triggered consensus control,

where robots transmit position estimates based on the triggering condition (6.10).

We compare the following three event-triggering mechanisms (i) absolute type with

parameters αi = 0, βi = 0.04; (ii) relative type with parameters αi = 0.04, βi = 0.0

and (iii) mixed type with parameters αi = 0.04, βi = 0.04. It can be seen from

Fig. 6.2, that the mixed-type triggering condition generally yields the most desir-

able consensus performance with much reduced transmitted information. Also, the

CL has comparable performance in estimating the position of robots. However, the

relative type triggering condition generated many events and the absolute type trig-

gering condition reduced the unnecessary communications at the cost of consensus

performance degradation.
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IV.2 Experimental Validation

In this part, we experimentally validate our proposed event-triggered consensus

control mechanism. Our experimental setup consists of four e-puck2 robots, a ZED

camera, and a host computer, referred to as the base station (see Fig. 6.3). We

use the open-source Robot Operating System (ROS) as the middleware. The base

station processes acquired camera images from the four e-puck2 robots using com-

puter vision to obtain position estimates of the robots using the CL algorithm. The

velocity feedback control signal is computed at the base station and transmitted

to each robot through Bluetooth, to steer robots to the agreement position. Note

that the transmission of information packets to other robots is decided by the event

detector (6.10). The localization algorithm fuses the position estimate obtained

from the computer vision with odometry sensor readings to get a more accurate

position estimate for the consensus control. More details about cooperative local-

ization can be found in [62]. The communication topology between robots in this

work is considered as time-varying. The initial position of the e-puck2 robots are

set to xepuck0(0) = 0.2, yepuck0(0) = −0.1, xepuck1(0) = −0.2, yepuck1(0) = −0.1,

xepuck2(0) = −0.2, xepuck2(0) = 0.1 and xepuck3(0) = 0.2, xepuck3(0) = 0.1. In this

experiment, we set the position x̄des = [0, 0]T as consensus of e-puck2 robots. Our

goal is to design and implement the event-triggered consensus control to ensure

each e-puck2 robot converges to the desired consensus position with a minimum

amount of transmitted information between robots. More specifically, we provide

the trajectory of positions and velocities as well as performance indexes for four dif-

ferent communication mechanisms (i) time-triggered mechanism; (ii) absolute type

with parameters αi = 0, βi = 0.1; (iii) relative type with parameters αi = 0.1,

βi = 0.0 and (iv) mixed type with parameters αi = 0.1, βi = 0.1. Fig. 6.4(a)-(b)

shows the consensus results of the position and velocities of all four robots im-

plemented with different communication strategies. Note that in the experiment

the position of robots is measured by the odometry sensor in order to show the

update process (or inter-event times) in the position of robots under different trig-

gering conditions. Also, we define the consensus performance of each robot by

Di =

M∑
k=1

[
(xik − x̄k)2 + (yik − ȳk)2

]
where xik and yik are the position of robot i in the x

and y direction, respectively and x̄k and ȳk are the consensus position in the x and

y direction. Table 6.2 represents the performance index of each robot for different
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triggering conditions. Figure 6.4(c)-(j) shows the triggering instances for the control

inputs (linear velocity and angular velocity) of each robot in the implementation of

different communication mechanisms. Based on our analysis (1) the relative type

triggering condition leads to much unnecessary communication between robots (see

Fig. 6.4(g)-(h)); (2) the absolute type triggering condition reduces the unnecessary

communication between robots at the cost of consensus performance degradation

(see Table 6.2 and Fig. 6.4(e)-(f)); (3) the mixed-type triggering condition pro-

vide the satisfactory consensus performance with the much-reduced transmission of

information (see Table 6.2 and Fig. 6.4(i)-(j)).

(a) (b) (c)

Figure 6.3: Experimental setup including (a) four e-puck2 robots equipped with ArUco tags, (b) overhead
ZED camera, (c) e-puck2 robot

Table 6.2: The performance index of mean-square consensus for different event-triggered conditions

Type of e-puck robot e-puck0 e-puck1 e-puck2 e-puck3

Time-triggered 2.5589 3.3523 3.8946 2.1537
Relative-type 3.8233 3.7573 7.2534 6.2312
Mixed-type 3.2373 4.6100 5.6915 4.8050
Absolute-type 3.9601 5.9048 9.2555 7.3006
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Figure 6.4: Experimental testing results: Consensus of e-puck2 robots with CL under different communica-
tion mechanisms 134



Chapter 7

Event-Based Secure Consensus
Control for Multi-Robot
Systems with Cooperative
Localization Against DoS
Attacks

I Introduction

In this chapter, we investigate the secure consensus control problem for multi-

robot systems with event-triggered communication strategy under aperiodic energy-

limited denial-of-service (DoS) attacks, where DoS attacks prevent the transmission

of information between robots. Each robot is equipped with onboard sensors to

estimate its position cooperatively by taking relative measurements and exchanging

the local positioning information with other robots through the unreliable communi-

cation network. In the meantime, each robot determines its consensus control based

on transmitted position estimates and steers the robot to the desired consensus po-

sition. Therefore, our goal is to design a secure control scheme for each robot based

on cooperative localization (CL) with an event-triggered mechanism and obtain a

sufficient condition for the upper bound of duration and the maximum number of

attacks such that N robots can move to the desired secure consensus position in the

presence of DoS attacks. Finally, simulation and experimental results are presented

to show the effectiveness of obtained theoretical results.

The remaining of this chapter is organized as follows. In Section II we introduce

some related preliminary results and formulate the problem to be solved. In Section
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III, we derive sufficient conditions such that the MARs reach secure consensus. In

Section IV, we conduct simulations and experiments to show the effectiveness of

proposed method. Finally, in Section V we present some conclusions.

Table 7.1: NOTATION

Notations Description

E{.} expectation of the random variable
diag(.) block diagonal matrix
⊗ Kronecker product
◦ Hadamard product
∥.∥ Euclidean norm of the vector
AT transpose of matrix A
A−1 inverse of matrix A
I identity matrix of appropriate dimensions
i and j identity of robot i and robot j
xi(k) state vector of the robot i
ui(k) consensus control of robot i
ηi(k) process noise from control input of robot i
νij(k) measurement noise from exteroceptive sensors for pair (i, j)
aij(k) indicator of interaction between robots
Nci set of neighbors of robot i within communication range
zij(k) relative measurement taken by robot i from robot j
Qi(k) covariance of ηi(k)
Rij(k) covariance of νij(k)
Hi

i(k) sensor measurement matrix of robot i
Hi

j(k) sensor measurement matrix of pair (i, j)

x̂i−(k) propagated state of robot i
x̃i−(k) propagated state error of robot i

x̂i+(k) estimation of robot i
x̃i+(k) estimation error of robot i
P i−(k) propagated state error covariance of robot i
P i+(k) estimation error covariance of robot i
P ij−(k) propagated state error covariance for the pair (i, j)
P ij+(k) estimation error covariance for the pair (i, j)
Ki(k) Kalman gain of CL
Sij covariance of innovation z̃ij(k)

αi, βi event-triggered parameters of robot i
ξk consensus error (deviation of each state from the average state)
Gi(k) consensus control gain
ei error of event-triggering sampling
δ stepsize
L Laplacian matrix
λmin(A) the minimum eigenvalue of the matrix A
λmax(A) the maximum eigenvalue of the matrix A

II Problem Formulation and Preliminaries

II.1 Graph Theory

We consider a MRSs with N robots which communicate with each other according

to the interaction topology denoted by graph G = (V, E ,A). Here V = {v1, ..., vN}
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is the set of nodes in the graph. For a node vi, the robot index i ∈ {1, 2, ..., N} is

the unique identifier of the robot i. E represents the edge set, i.e. vij = (vi, vj) ∈ E

if there is a line of communication between robots i and j. A = ⌊aij⌋ ∈ RN×N

is the adjacency matrix where aij = 1 if vij ∈ E otherwise aij = 0. Also, aii = 0

∀i ∈ {1, 2, ..., N}. The graph Laplacian L = [lij ] ∈ Rni×ni is defined as lij =
∑

i̸=j aij

and lij = −aij where i ̸= j.

II.2 Problem Statement

Figure 7.1: Block diagram of event-based secure consensus control for multi-robot systems with
cooperative localization under DoS attacks

We consider a team of N mobile robots equipped with onboard sensors where

each robot localize itself cooperatively in a global coordinate system and aims to

reach consensus (see Fig. 7.1). More specifically, each mobile robot use its exte-

roceptive sensors to observe neighbouring robots and take relative measurements

zij(k). The information collected, namely propagated and estimated position and

error covariance, is then shared with the neighbouring robots. Note that each robot

i can only communicate with neighbouring robots within certain range, defined as

the set Nci, satisfying: Nci = {j ∈ V : aij = 1}. To construct the neighbouring set

we assume that each robot, equipped with a set of exteroceptive sensors (camera,

etc), randomly observes the other robots in the team, whenever they are within

range. Therefore, the resulting communication graph is time-varying and can be

considered as a practical scenario for the multi-robot system. The position estimate
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of each robot is sent to the event-detector which decides whether or not the informa-

tion is to be transmitted based on a triggering condition. The consensus control in

each robot determines the velocity feedback control signal based on the transmitted

position estimates and steer the robot to the desired agreement position.

In this work, we consider an scenario in which the adversary can block some

communication channels between robots by launching DoS attacks for a period of

time so that the information exchange among robots is not possible. Based on above

discussion, we aim to design a resilient control scheme based on cooperative local-

ization (CL) with event-triggered mechanism and investigate under what conditions

the N robots can move cooperatively to the desired consensus position despite the

presence of DoS attacks.

Remark 29. The buffers used in Fig. 7.1 store and retrieve information packets,

namely, relative measurements and position estimates, based on a last-in-first-out

rule which can improve the performance of the localization and secure consensus of

MRSs in the presence of DoS attacks.

Figure 7.2: Illustration of consensus of multi-robot systems under DoS attacks.

II.3 DoS Attack Model

Consider now the DoS attacks. We consider an scenario in which the attacker has

the limited energy. Therefore the DoS attacks appear on a time-sequence which can

be described as in Fig. 7.3. The entire sequence can be divided into two areas. The

138



Figure 7.3: DoS attacks based on time-sequence

green area Πs represents the communication area without attacks. The red area Πa

represents the time sections where the DoS attacks are active and transmission of

information between some robots is interrupted. The mth attack interval is denoted

as Dm = {dm} ∪ [dm, dm + ∆m], where {dm}, dm ∈ N is the DoS attack occurring

instants and ∆m is the duration of attack. The indicator variable of the DoS attack

for pair (i, j) is defined as follows:

ρij(k) =


0, k ∈ Πs(k1, k2)

1, k ∈ Πa(k1, k2)
(7.1)

which shows the status of the communication channel for the pair (i, j). We now

introduce the following assumptions regarding the duration and frequency of the

DoS attacks:

Assumption 9. For k2 > k1 ≥ 0, denoting n(k1, k2) the total number of DoS

attacks over the interval [k1, k2], there exist scalars τD ∈ R and c ∈ R such that

[137]

n(k1, k2) ≤ c+ k2−k1
τD

(7.2)

Assumption 10. For k2 > k1 ≥ 0, denoting Ξa(k1, k2) the total duration of the

DoS attacks over the interval [k1, k2], there exist scalars TD ∈ R and ς ∈ R such

that [137]:

|Ξa(k1, k2)|≤ ς + k2−k1
TD

(7.3)

Remark 30. Assumptions 1 and 2 convey practical restrictions consistent with an

attacker whose energy to produce the attack is limited. Notice that a DoS attack of

unlimited duration and frequency requires continuous supply of energy, which is im-

practical. Also, different from [76]-[80] which assume that the adversary can launch

the attack signals to block all the communication transmissions in each interval, we

relax this assumption and consider a practical scenario in which given constraints
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on energies and resources, the adversary can attack a limited number of communi-

cation links. Furthermore, compared with the periodic DoS attack employed in [79],

we assume that attacks occur randomly and each attack can have different duration.

Assumption 11. The packets transmitted by the robots are time-stamped.

II.4 Dynamics of Multi-Robot Systems and Cooperative Localiza-
tion

We consider a group of N mobile robots with unique identity i ∈ V = {1, 2, ..., N}.

The motion equation for robot i is given by [33]:

xi(k + 1) = f i(xi(k), vim(k), ϕi(k))

= xi(k) +

[
δvim(k) cos(ϕi(k))
δvim(k) sin(ϕi(k))

]
(7.4)

where the state vector xi(k) = [xi(k), yi(k)] is the position of robot i respect to global

coordinates, vi is the velocity command, ϕi is the orientation of robot i and δ is the

sampling time. Note that the velocity command vim = vi + ηi can be obtained from

odometry or inertial measurement unit (IMU), where vi is the actual linear velocity

and ηi is the self-motion measurement noise modelled as white, zero-mean Gaussian

noise. Each robot i performs self-localization by propagating state as follows:

x̂i−(k + 1) = f i(x̂i+(k), vim(k))

= x̂i+(k) +

[
δvi(k) cos(ϕi(k))
δvi(k) sin(ϕi(k)).

]
(7.5)

Define the propagated error as follows: x̃i−(k) = xi(k) − x̂i−(k). Then, using the

motion equation (7.4) and propagated state (7.5) the propagated state error is given

by:

x̃i−(k + 1) = x̃i+(k) + δ

[
ηi(k) cos(ϕ

i(k))
ηi(k) sin(ϕ

i(k))

]
= x̃i+(k) + δ

[
ηxi (k)
ηyi (k)

]
= x̃i+(k) + δηi(k).

(7.6)

The propagated error covariance for the motion equation (7.4) can be computed as

follows:

P i−(k + 1) = E
[
x̃i−(k + 1)x̃i−(k + 1)T

]
= P i+(k) +Qi(k) (7.7)

P ij−(k + 1) = E
[
x̃i−(k + 1)x̃j−(k + 1)T

]
= P ij+(k) (7.8)

where Qi(k) = (δ)2E[ηi(k)ηi(k)
T ]. Since, each robot i only propagates the motion

dynamics (7.4) to perform self-localization, the propagated state error (7.6) can in-

crease due to the noise term ηi(k). In order to reduce the estimation error, we employ
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a CL algorithm based on extended Kalman filter (EKF). Each robot i equipped with

exteroceptive sensors to observe uniquely the other robots in the team and takes

relative measurements described as follows [33]:

zij(k) = hij

(
xi(k),xj(k)

)
+ νij(k) (7.9)

where νij is white-Gaussian measurement noise and hij

(
xi(k),xj(k)

)
is the mea-

surement model. The relative measurements includes range and bearing of robot i

respect to robot j. Considering an scenario in which each robot i is able to take rel-

ative measurements form multiple robots can significantly improve the localization

accuracy, especially in the presence of DoS attacks. The updated position estimate

and covariance update for robot i can be represented as follows:

x̂i+(k) = x̂i−(k) +Ki(k)

[∑
j∈Nci

aij(k)
(
zij(k)

−hij(x̂
i−(k), x̂j−(k))

)] (7.10)

P i+(k) = P i−(k)−Ki(k)Sij(k)Ki(k)
T (7.11)

P ij+(k) = P ij−(k)−Ki(k)Sij(k)Kj(k)
T (7.12)

where hij(x̂
i−, x̂j−) is the propagated measurement. Expanding hij(x

i,xj) using a

series Taylor around (x̂i−, x̂j−) we have:

hij(x
i,xj) ≈ hij(x̂

i−, x̂j−) +Hi
i(x

i − x̂i−) +Hi
j(x

j − x̂j−) (7.13)

where Hi
i =

∂hij(x̂
i−,x̂j−)

∂xi and Hi
j =

∂hij(x̂
i−,x̂j−)

∂xj . Also, Ki and Kj are the Kalman

gains for robot i and robot j and Sij is the covariance of the innovation z̃ij(k) =

zij(k)− hij(x̂
i−(k), x̂j−(k)) for pair (i, j).

III Event-triggered Secure Consensus Control

To reach secure consensus of the multi-robot system, we develop a secure control

scheme with event-triggered mechanism in the presence of DoS attacks. Then, we

analyze the closed-loop stability under DoS attacks. Finally, we provide a sufficient

conditions for the upper bound of the duration of attacks and the maximum number

of attacks that the group ofN robots can tolerate while reaching to the desired secure

consensus.

141



III.1 Secure Control Scheme Design

The linearized, discrete-time motion model for robot i can be represented as follows:

xi(k + 1) = xi(k) + δui(k) + δηi(k) (7.14)

where the control input vector (speed command) and self-motion measurement noise

are given by

ui(k) =

[
ux
i (k)

uy
i (k)

]
=

[
vi(k) cos(ϕi(k))
vi(k) sin(ϕi(k))

]

ηi(k) =

[
ηx
i (k)

ηy
i (k)

]
=

[
ηi(k) cos(ϕ

i(k))
ηi(k) sin(ϕ

i(k))

]
.

Using the position estimates, the consensus control for each robot i can be written

as follows:

ui(k) = Gi(k)

[∑
j∈Nci

aij(k)
(
x̂i+(k)− x̂j+(k)

)]
(7.15)

where Gi(k) is the consensus gain to be designed.

We now consider the event-triggered mechanism to reduce the update frequency

of controllers (see Fig. 7.1). In order to characterize such mechanism, let the

triggering instances of robot i be 0 ≤ ki0 < ki1 < ki2 < ... < kis and event-generator

functions Υi(., ., .) : Rq × R −→ R (i = 1, 2, ..., N) be chosen as follows:

Υi

(
ei(k), αi, βi

)
= ei(k)

T ei(k)− αix̂
i+(k)T x̂i+(k)− βi . (7.16)

Here, ei(k) = x̂i+(k)−x̂i+(kis), where x̂
i+(kis) is the local state estimate at the latest

transmitting instant kis and αi, βi are the parameters event-triggered mechanism to

be designed. The controller can be updated only when the given triggering condition

satisfy:

Υi(ei(k), αi, βi) > 0 (7.17)

Therefore, sequence of transmission instants for robot i can be determined as follows:

kis+1 = inf{k ∈ N|k > kis,Υi(ei(k), αi, βi) > 0} . (7.18)

Considering the DoS attacks and event-triggering mechanism, we propose the fol-

lowing resilient consensus control scheme for each robot i:

ui(k) =
(
1− ρij(k)

)
δGi,1(k)

[∑
j∈Nci

aij(k)
(
x̂i+(k)− x̂j+(k)

)]
+
(
1− ρij(k)

)
δGi,1(k)

[∑
j∈Nci

aij(k)
(
ej(k)− ei(k)

)]
+ρij(k)δGi,2(k)

[∑
j∈Nci

aij(k)
(
q̂i+(k)− q̂j+(k)

)]
.

(7.19)
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The closed-loop equations for the MRSs under DoS attacks, including the event-

triggered mechanism for the consensus control, can bewritten as follows:

x̂i+(k) = x̂i−(k)− ei(k) +
(
1− ρij(k)

)
Ki,1(k)

[∑
j∈Nci

aij(k)

×
(
Hi

i(k)x̃
i−(k) +Hi

j(k)x̃
j−(k) + νij(k)

)]
−
(
1− ρij(k)

)
×Ki,1(k)

[∑
j∈Nci

aij(k)
(
Hi

i(k)ei(k) +Hi
j(k)ej(k)

)]
+ρij(k)Ki,2(k)

[∑
j∈Nci

aij(k)
(
Hi

i(k)q̃
i−(k) +Hi

j(k)q̃
j−(k)

+νij(k)
)]

(7.20)

xi(k + 1) = xi(k)

+
(
1− ρij(k)

)
δGi,1(k)

[∑
j∈Nci

aij(k)
(
x̂i+(k)− x̂j+(k)

)]
+
(
1− ρij(k)

)
δGi,1(k)

[∑
j∈Nci

aij(k)
(
ej(k)− ei(k)

)]
+δηi(k) + ρij(k)δGi,2(k)

[∑
j∈Nci

aij(k)
(
q̂i+(k)− q̂j+(k)

)]
.

(7.21)

Remark 31. Notice that we have divided the transmission of information into two

parts: (i)
(
1 − ρij(k)

)
is used for communication links free of DoS attacks; (ii)

ρij(k) is used for communication links under DoS attacks. Instead of assuming the

position estimates received from attacked communication channels as zero and some

constants, we consider the position estimates from neighbouring robots as q̂j+(k)

which can be predicted based on the motion dynamic of robot j. Also, the last state

estimates of robot j are stored in a buffer until the communication channel returns

from an attack period to normal. This approach improves the resilience and secure

consensus during DoS attack intervals. Note that since robot i can sense and com-

municate with multiple robots, the position estimate from CL can be reconstructed

in the presence of DoS attacks.

Computing the estimation error x̃i+(k) = xi(k) − x̂i+(k), the closed-loop system
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(7.20) and (7.21) can be written as follows:

x̃i+(k + 1) = x̃i+(k)− ei(k) + δηi(k) +
(
1− ρij(k)

)
×Ki,1(k)

[∑
j∈Nci

aij(k)
(
Hi(k)

(
x̃i+(k)− x̃j+(k)

)
+ νij(k)

)]
−
(
1− ρij(k)

)
Ki,1(k)

[∑
j∈Nci

aij(k)
(
Hi(k)

(
ej(k)− ei(k)

))]
+
(
1− ρij(k)

)
Ki,1(k)

[∑
j∈Nci

aij(k)
(
δHi(k)

(
ηj(k)− ηi(k)

))]
+ρij(k)Ki,2(k)

[∑
j∈Nci

aij(k)
(
Hi(k)

(
q̃i+(k)− q̃j+(k)

)
+νij(k)

)]
+ ρij(k)Ki,2(k)

[∑
j∈Nci

aij(k)
(
δHi(k)

(
ηj(k)

−ηi(k)
))]

(7.22)

xi(k + 1) =

xi(k) +
(
1− ρij(k)

)
δGi,1(k)

[∑
j∈Nci

aij(k)
(
xi(k)− xj(k)

)]
+
(
1− ρij(k)

)
δGi,1(k)

[∑
j∈Nci

aij(k)
(
ej(k)− ei(k)

)]
+ δηi(k)

+ρij(k)δGi,2(k)

[∑
j∈Nci

aij(k)
(
xi(k)− xj(k)

)]
+ δηi(k)

−ρij(k)δGi,2(k)

[∑
j∈Nci

aij(k)
(
q̃i+(k)− q̃j(k)

)]
−
(
1− ρij(k)

)
δGi,1(k)

[∑
j∈Nci

aij(k)
(
x̃i+(k)− x̃j(k)

)]

(7.23)

In order to facilitate the discussion, the closed-loop system (7.20) and (7.21) can be

written as following form:

xk+1 =

[
I + δ

((
(1− ρk) ◦ L

)
⊗G1 +

(
ρk ◦ L

)
⊗G2

)]
xk

−δ
((

(1− ρk) ◦ L
)
⊗G1

)
x̃k − δ

((
(1− ρk) ◦ L

)
⊗G1

)
ek

−δ
((
ρk ◦ L

)
⊗G2

)
q̃k + δηk

x̃k+1 =

[
I + δ

((
(1− ρk) ◦ L

)
⊗K1H

)]
x̃k

+

[
I +

((
(1− ρk) ◦ L

)
⊗K1H

)]
ek

+δ

[
I +

((
(1− ρk) ◦ L

)
⊗K1H

)]
ηk

−
((

(1− ρk) ◦ L
)
⊗K1

)
νk −

((
ρk ◦ L

)
⊗K2

)
νk

+δ
((
ρk ◦ L

)
⊗K2H

)
q̃k + δ

((
ρk ◦ L

)
⊗K2H

)
ηk

q̃k+1 =
[
I + δ(L ⊗K2H)

]
q̃k + δ

[
I + (L ⊗K2H)

]
ηk

−(L ⊗K2)νk

(7.24)
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where

xk =
[
x1(k)T x2(k)T ... xN (k)T

]T
x̃k =

[
x̃1+(k)T x̃2+(k)T ... x̃N+(k)T

]T
ek =

[
e1(k)

T e2(k)
T ... eN (k)T

]T
ηk =

[
η1(k)

T η2(k)
T ... ηN (k)T

]T
νk =

[
ν1(k)

T ν2(k)
T ... νN (k)T

]T
K1 =

[
K1,1(k)

T K2,1(k)
T ... KN,1(k)

T
]T

νk =
[
ν1(k)

T ν2(k)
T ... νN (k)T

]T
K2 =

[
K1,2(k)

T K2,2(k)
T ... KN,2(k)

T
]T

Hk =
[
H1(k)

T H2(k)
T ... HN (k)T

]T
G1 =

[
G1,1(k)

T G2,1(k)
T ... GN,1(k)

T
]T

G2 =
[
G1,2(k)

T G2,2(k)
T ... GN,2(k)

T
]T

L =


−deg1in a12 a13 ... a1N
a21 − deg2in a23 ... a2N
...

...
...

. . .
...

aN1 aN2 aN3 ... − degNin

 .
We now define the average state of all robots as follows:

x̄k = 1
N

N∑
j=1

xi(k) = 1
N (1T ⊗ I)xk (7.25)

Considering 1L = 0, the deviation of each state from the average state can be

computed as follows:

ξk+1 = xk+1 − (1T ⊗ I)x̄k+1 =

[
I + δ

((
(1− ρk) ◦ L

)
⊗G1

+
(
ρk ◦ L

)
⊗G2

)]
ξk − δ

((
(1− ρk) ◦ L

)
⊗G1

)
x̃k

−δ
((

(1− ρk) ◦ L
)
⊗G1

)
ek − δ

((
ρk ◦ L

)
⊗G2

)
q̃k + δηk.

(7.26)

Considering the coupling nature of MRSs, we select ϕi ∈ Rn with ϕTi L = λiϕ
T
i (i =

2, 3, ..., N) to form a unitary matrix M = [ 1√
N
ϕ2 ... ϕN ] and then transform L to

diagonal form as follows:

diag{0, λ2, ..., λN} =MTLM (7.27)

where for each i, ϕi and λi are a pair of eigenvector-eigenvalue of the Laplacian
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matrix L. Then closed-loop system (7.24) can be written as follows:

ξk+1 =

[
I + δ

((
(1− ρk) ◦ F

)
⊗G1 +

(
ρk ◦ F

)
⊗G2

)]
ξk

−δ
((

(1− ρk) ◦ F
)
⊗G1

)
x̃k − δ

((
(1− ρk) ◦ F

)
⊗G1

)
ek

−δ
((
ρk ◦ F

)
⊗G2

)
q̃k + δηk

x̃k+1 =

[
I + δ

((
(1− ρk) ◦ F

)
⊗K1H

)]
x̃k

+

[
I +

((
(1− ρk) ◦ F

)
⊗K1H

)]
ek

+δ

[
I +

((
(1− ρk) ◦ F

)
⊗K1H

)]
ηk

−
((

(1− ρk) ◦ F
)
⊗K1

)
νk −

((
ρk ◦ F

)
⊗K2

)
νk

+δ
((
ρk ◦ F

)
⊗K2H

)
q̃k + δ

((
ρk ◦ F

)
⊗K2H

)
ηk

q̃k+1 =
[
I + δ(F ⊗K2H)

]
q̃k + δ

[
I + (F ⊗K2H)

]
ηk

−(F ⊗K2)νk

(7.28)

where F = diag{λ2, ..., λN}. Note that the above closed-loop system is defined in

the period of DoS attacks where some partial communication channels are blocked.

We can define the closed-loop system in the normal period, where communication

is established without DoS attacks, as follows:
ξk+1 =

[
I + δ(F ⊗G)

]
ξk − δ(F ⊗G)x̃k

−δ(F ⊗G)ek + δηk

x̃k+1 =
[
I + δ(F ⊗KH)

]
x̃k +

[
I + (F ⊗KH)

]
ek

δ
[
I + (F ⊗KH)

]
ηk − (F ⊗K)νk.

(7.29)

We now introduce the following definition:

Definition III.1. Let the communication topology G of robots and consensus

bound function U be given. Assume that the initial position of robots is such

that

N∑
i=1

∥∥∥∥∥∥xi(0)− ( 1
N )

N∑
j=1

xj(0)

∥∥∥∥∥∥ ≤ X0. Then, the multi-robot system (7.14) with

the proposed event-triggered control scheme (7.19) is secure consensusable under

DoS attacks with bound U if the following condition is satisfied:

E
{ ∥∥xi(k)− xj(k)∥∥2 } ≤ U, i, j ∈ V , k ≥ 0 (7.30)

Remark 32. In this work, we considered a secure event-based consensus control

scheme to reduce the adverse effect of DoS attacks on the consensus performance.

Also, using this scheme we are able to reduce the usage of communication resources

and save the energy consumed by each mobile robot. Different from the event-

triggering mechanisms proposed in [76], [83]-[84] we employ a mixed-type triggering
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condition which contains both the absolute type and relative type conditions as special

cases. Also, in contrast to [76], [78], [83]-[84], our proposed event-triggered scheme

relies only on the state estimates of each robot itself and does not require state esti-

mates from other robots. This is important since avoids continuous communication

between robots to check the triggering condition.

III.2 Consensus Analysis

Theorem III.1. Consider the MRSs (7.14) with communication topology G and

event-triggering condition (7.17). A secure consensus in mean-square sense for a

team of robots under DoS attacks is reached if the parameters τD and TD satisfy

1

TD
+
τd
τD

<
(τd − 1) ln(γ1)− ln(µ)

ln(γ2)− ln(γ1)
. (7.31)

The parameters γ1 and γ2 can be obtained by solving the following linear matrix

inequality (LMI) conditions:−P + γ1I As Bs
AT

s −ϵ−1P−1 0
BTs 0 −α−1P−1

 < 0 (7.32)

−S + γ2I Aa Ba
AT

a −ϵ−1S−1 0
BTa 0 −α−1S−1

 < 0. (7.33)

Moreover, under these conditions, the following consensus bound is obtained:

U(X0, β,Q,R) = max

{
σmax
σmin
X 2
0 ,

ρ
ρ−1Φ

}
(7.34)

where

As =

[
I + δ(F ⊗G1) − δ(F ⊗G1)

0 I + δ(F ⊗K1H)

]
,

Bs =
[
−δ(F ⊗G1)

I + (F ⊗K1H)

]
, Cs =

[
δ

I + (F ⊗K1H)

]
,

Ds =

[
0

−(F ⊗K1)

]
, P =

[
I ⊗ P1 I ⊗ P2

I ⊗ P2 I ⊗ P3

]
,

Aa =

Ω1 Ω2 Ω3

0 Ω4 Ω5

0 0 Ω6

 , Ba =

Ω7

Ω8

0

 ,

Ca =

Ω9

Ω10

0

 , Da =

 0
Ω11

Ω12

 , S =

[
I ⊗ S1 I ⊗ S2
I ⊗ S2 I ⊗ S3

]
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Ω1 = I + δ
((

(1− ρk) ◦ F
)
⊗G1 +

(
ρk ◦ F

)
⊗G2

)
Ω2 = −δ

((
(1− ρk) ◦ F

)
⊗G1

)
Ω3 = −δ

((
ρk ◦ F

)
⊗G2

)
Ω4 = I + δ

((
(1− ρk) ◦ F

)
⊗K1H

)
Ω5 = δ

((
ρk ◦ F

)
⊗K2H

)
Ω6 = I + δ(F ⊗K2H)

Ω7 = −δ
((

(1− ρk) ◦ F
)
⊗G1

)
Ω8 = I +

((
(1− ρk) ◦ F

)
⊗K1H

)
Ω9 = δ

Ω10 = δ

[
I +

((
(1− ρk) ◦ F

)
⊗K1H

)]
+δ
((
ρk ◦ F

)
⊗K2H

)
Ω11 = −

((
(1− ρk) ◦ F

)
⊗K1

)
−
((
ρk ◦ F

)
⊗K2

)
Ω12 = −(F ⊗K2)

Φ = λmax(Ψ)

N∑
i=1

(β2i +Q2
i +R2

ij)

σmax = λmax(P), σmin = λmin(P)
ζ = σmax

σmax−γ

ϵ = (1 + ε1 + ε2 + ε3).

Proof. Consider the following Lyapunov function:

V k = (1− ρk)V 1,k + ρkV 2,k (7.35)

where V 1,k = XT
s,kPXs,k, V 2,k = XT

a,kSXa,k, Xs,k = [ξTk , x̃
T
k ]

T andXa,k = [ξTk , x̃
T
k , q̃

T
k ]

T .

Dividing the time sequence in two parts, depending on whether or not an attack is

present, we have: k ∈ Πs(k1, k2) and k ∈ Πa(k1, k2). Note that the matrices P and

S are both positive definite. Also, the subscripts s and a are used for the period of

without DoS attacks and under DoS attacks.

First, we consider the area Πs(k1, k2) without DoS attack, in which communica-

tion can be established among the robots. Computing the difference of V 1,k along

the trajectories (7.29) and taking mathematical expectation we obtain:

E{∆V 1,k|Xs,k} = E{V 1,k+1|Xs,k} − V 1,k

= E
{(
AsXs,k + Bses,k + Csηs,k +Dsνs,k

)T
P

×(AsXs,k + Bses,k + Csηs,k +Dsνs,k

)}
= XT

s,k

(
AT

s PAs − P
)
Xs,k + 2XT

s,kAT
s PBses,k

+2XT
s,kAT

s PCsηs,k + 2XT
s,kAT

s PDsνs,k + 2νT
s,kDT

s PBses,k
+eTs,kBTs PBses,k + νT

s,kDT
s PDsνs,k + ηT

s,kCTs PCsηs,k.

(7.36)
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Using Young’s inequality: 2aT b ≤ εaTa+ ε−1bT b, we obtain:

2XT
s,kAT

s PBses,k ≤ ε1X
T
s,kAT

s PAsXs,k + ε−1
1 eTs,kBTs PBses,k (7.37)

2XT
s,kAT

s PCsηs,k ≤ ε2X
T
s,kAT

s PAsXs,k + ε−1
2 νT

s,kDT
s PDsνs,k (7.38)

2XT
s,kAT

s PDsνs,k ≤ ε3XT
s,kAT

s PAsXs,k + ε−1
3 ηT

s,kCTs PCsηs,k (7.39)

2νT
s,kDT

s PBses,k ≤ ε4νT
s,kDT

s PDsνs,k + ε−1
4 eTs,kBTs PBses,k. (7.40)

Substituting Equations (7.37)-(7.40) into (7.36) we obtain:

E{∆V s,k|Xs,k} = XT
s,k

(
(1 + ε1 + ε2 + ε3)AT

s PAs − P
)
Xs,k

+(1 + ε−1
1 + ε−1

4 )eTs,kBTs PBses,k + (1 + ε−1
2 + ε−1

4 )νT
s,kDT

s PDsνs,k

+(1 + ε−1
3 )ηT

s,kCTs PCsηs,k.

(7.41)

Using the event-triggering condition (7.17) we have:

eTs,kBTs PBses,k ≤ λmax(BT
s PBs)eTs,kes,k

≤ λmax(BT
s PBs)

N∑
i=1

e2i,s(k)

≤ λmax(BT
s PBs)

[
αi

N∑
i=1

x̂i+
s (k)T x̂i+

s (k) + βi

]

≤ λmax(BT
s PBs)

[
αi

N∑
i=1

ξis(k)
T ξis(k) + βi

]

≤ αXT
s,kBTs PBsXs,k + λmax(BTs PBs)

[ N∑
i=1

βi
]
.

(7.42)

Substituting inequality (7.42) in equation (7.41), the following expression is ob-

tained:

E{∆V 1,k|Xs,k} =
XT

k

(
(1 + ε1 + ε2 + ε3)AT

s PAs + αBTs PBs − P
)
Xs,k

+(1 + ε−1
1 + ε−1

4 )eTs,kBTs PBses,k + (1 + ε−1
2 + ε−1

4 )νT
s,kDT

s PDsνs,k

+(1 + ε−1
3 )ηT

s,kCTs PCsηs,k ≤ −γ1X
T
s,kXs,k +Φs,

(7.43)

where
Ψs = (1 + ε−1

1 + ε−1
4 )BTs PBs + (1 + ε−1

2 + ε−1
4 )DT

s PDs

+(1 + ε−1
3 )CTs PCs

Φs = λmax(Ψs)

N∑
i=1

(βi +Qi +Rij).

From (7.43) we find a sufficient condition for the bounded consensus of MRSs during

the normal period without DoS attacks:

(1 + ε1 + ε2 + ε3)AT
s PAs + αBTs PBs − P + γ1I < 0. (7.44)
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Now we look for the boundary of consensus U . According to (7.43) for any ζ > 1

we write:
ζk+1E{V1,k+1} − ζkE{V1,k}
≤ ζk+1E{∆V1,k}+ ζk(ζ − 1)E{V1,k}
≤ ζk+1[−γ1E

{
∥Xs,k∥2

}
+Φs] + ζk(ζ − 1)E

{
∥Xs,k∥2

}
≤
(
σmax(ζ − 1)− γ1ζ

)
ρkE

{
∥Xs,k∥2

}
+ ζk+1Φs.

(7.45)

Selecting a proper positive scalar ζ satisfying σmax(ζ−1)−γ1ζ = 0, we can write:

ζkE{V1,k} − E{V1,0} ≤
k∑

n=1

ζnΦs, (7.46)

which implies that:

E{V1,k} ≤ ζ−kE{V1,0}+
k∑

n=1

ζn−kΦs

= ζ−kE{V1,0}+ (1−ζ−k)Φs

1−ζ−1

= ζ−k
(
E{V1,0} − ζΦs

ζ−1

)
+ ζΦs

ζ−1

≤ max

{
E{V1,0}, ζΦs

ζ−1

}
.

(7.47)

We know that

E{V1,0} = XT
0 PX0 ≤ λmax(P)E

{
∥X0∥2

}
. (7.48)

From Definition III.1 we have:

E
{
∥X0∥2

}
=

N∑
i=1

∥∥∥∥∥∥xi(0)− ( 1
N )

N∑
j=1

xj(0)

∥∥∥∥∥∥
2

≤ X 2
0 . (7.49)

Finally, we can show that:

U(X0, β,Q,R) = max

{
σmax
σmin
X 2
0 ,

ζ
ζ−1Φs

}
. (7.50)

Using the Schur complement lemma, inequality (7.44) can be transformed into the

following LMI condition: −P + γ1I As Bs
AT

s − ϵ−1P−1 0
BTs 0 − α−1P−1

 < 0. (7.51)

We now consider the stability of the MRSs when k ∈ Πa(k1, k2), i.e. when some

communication channels between robots are affected by DoS attacks. During this in-

terval, if ρij(k) = 1 the packets exchanged between robots are lost, and if ρij(k) = 0
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then robots can transmit the packets without DoS attacks. Considering the Lya-

punov function V 2,k = XT
a,kSXa,k along the trajectory (7.29) provides the following

sufficient condition for the stability:

(1 + ε1 + ε2 + ε3)AT
a SAa + αBTa SBa − S + γ2I < 0. (7.52)

Using the Schur complement lemma, the inequality (7.52) can be transformed into

the following LMI condition: −S + γ2I Aa Ba
AT

a − ϵ−1S−1 0
BTa 0 − α−1S−1

 < 0. (7.53)

Based on above analysis, we can combine the two scenarios with/without DoS at-

tacks, to obtain the following relation:

E{V k+1} =

 −γ1E{V k}+Φs, k ∈ Πs(k1, k2)

−γ2E{V k}+Φa, k ∈ Πa(k1, k2).
(7.54)

Consider the uncertainty on the duration of DoS attack, we can write:

|Ξ̄a(k1, k2)|≤ |Ξa(k1, k2)|+n(0, k)τd
≤ (ϑ+ cτd) +

1
TD

+ τd
τD

= ϑ∗ + k
T ∗

(7.55)

where ϑ∗ = (ϑ+ cτd) and T
∗ = τDTD

τD+τdTD
. Then,

E{V k+1} ≤ µn(0,k)γ
T1(0,k)−|Ξ̄a(0,k)|
1 γ

|Ξ̄a(0,k)|
2 E{V 0}

+max

{
σmax
σmin
X 2
0 ,

ζ
ζ−1Φ

}
≤ µN0γ−τdN0−ϑ∗

1 γϑ
∗

2

(
µγ

1−τd− 1
T∗

1 γ
1

T∗
2

)k
E{V 0}

+max

{
σmax
σmin
X 2
0 ,

ζ
ζ−1Φ

}
.

(7.56)

The condition for convergence is as follows:

µγ
1−τd− 1

T∗
1 γ

1
T∗
2 < 1 (7.57)

which leads to the following condition for the duration of DoS attack:

1
T ∗ ≤ (τd−1) ln(γ1)−ln(µ)

ln(γ2)−ln(γ1)
. (7.58)

This completes the proof.

Remark 33. Theorem III.1 provides an upper bound for the DoS attack duty cycle

in order to achieve secure consensus. Therefore, resilience and secure consensus
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is guaranteed if the duration of DoS attack is smaller than (τd−1) ln(γ1)−ln(µ)
ln(γ2)−ln(γ1)

. How-

ever, a larger upper bound for the attack duration would provide stronger robustness

against Dos attacks. The following optimization problem can formulated for this

purpose:

max
K1,K2,G1,G2,α,γ1,γ2

(τd − 1) ln(γ1)− ln(µ)

ln(γ2)− ln(γ1)

s.t. LMI conditions (7.32)− (7.33) (7.59)

Remark 34. In Theorem III.1, the consensus bound U depends upon the initial

position of robots (X0), covariance of process noise (Q), covariance of relative mea-

surement noise (R), and parameter of event-triggered mechanism (β). However, the

duration of the DoS attacks can affect the convergence and secure consensus of the

multi-robot system. Therefore, we consider the uncertainty term τd in the attack

duration and co-design a controller and filter as well as the event-triggered mecha-

nisms using LMI conditions (7.32)-(7.33) such that the the robustness of the system

against DoS attacks is improved.

Remark 35. It is worth mentioning that Young’s inequality 2aT b ≤ εaTa+ε−1bT b is

used to deal with some of the cross terms ek, ηk, νk and design the secure consensus

control. Note that parameters ε1, ε2,... in the LMIs (7.32)-(7.33) can be tuned

further to minimize the consensus bound.

IV Case Study

IV.1 Simulation Results

In this section, we verify the performance of the proposed secure consensus control

with event-triggered mechanism in the presence of DoS attacks via simulation. We

consider a group of four mobile robots equipped with on borad sensors to detect the

neighbouring robots and measure range-bearing. We assume that the communica-

tion graph between robots can change over the time. We consider a scenario that

each mobile robot localize itself cooperatively and perform secure consensus under

the Dos attack strategy described in Fig. 7.4. We assume that the initial position

of robots is x1(0) = [20,−10]T , x2(0) = [−20,−10]T , x3(0) = [−20, 10]T , x4(0) =

[20, 10]T , the covariance of the control input Qi = (0.05)2diag([(∆Li)2; (∆Ri)2]) and

covariance of the sensor measurements Rij = diag([0.001m2; 0.001rad2]). In our

simulations, the position x̄des = [0, 0]T is the desired consensus position. We first
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consider a classical consensus control where position estimates received from the

attacked communication links are set to zero when the DoS attacks occurs. Based

on the trajectory of robots in Fig. 7.5(a) we can see that the robots fail to reach the

desire consensus position. However, our proposed secure consensus control safely

steers the robots to the desire consensus position despite the DoS attacks, thanks

to the fact that a predictor estimates the position of neighbouring robots used in

the control scheme during the attacks interval. Also, comparison of the localization

error between the Fig. 7.5(b)-(c) and Fig. 7.6(b)-(c) shows that the localization

results in our approach have better performance than the classical approach. Fi-

nally, using event-triggered mechanism we significantly reduce transmission between

robots as can be seen in Fig. 7.6(d)-(e).
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Figure 7.4: Time sequence of DoS attacks

IV.2 Experimental Validation

In this part, we implement and verify the performance of the proposed event-

triggered secure consensus control experimentally. The experimental testbed (see

Fig. 7.7) consist of four e-puck2 robots (equipped with ArUco tags), ZED camera

and a Linux-based host computer (equipped with Robot Operating Systems). The e-

puck2 robots can communicate with the host computer through Bluetooth. The host

computer works as external processor collecting the camera images from the robots

and processing them using computer vision library [117]. The information collected
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Figure 7.5: (a) Event-based secure consensus (classical) of four mobile robots based on cooperative local-
ization (a) actual position and estimated position (CL) trajectories of four robots on the xy-plane (b),(c)
actual position and estimated position (CL) trajectories of four robots respect to time (d), (e) triggering
times of robots along x-axis and y-axis
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Figure 7.6: (a) Event-based secure consensus (proposed) of four mobile robots based on cooperative local-
ization (a) actual position and estimated position (CL) trajectories of four robots on the xy-plane (b),(c)
actual position and estimated position (CL) trajectories of four robots respect to time (d), (e) triggering
times of robots along x-axis and y-axis
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(a) (b) (c)

Figure 7.7: Experimental setup including (a) four e-puck2 robots equipped with ArUco tags, (b) overhead
ZED camera, (c) e-puck2 robot

is used to calculate an estimate of the position of the e-puck2 robots by implementing

the CL algorithm. In the meantime, the controller determines the velocity feedback

control signal based on position estimates. The signal is then transmitted to each

e-puck2 robots through Bluetooth to steer the robot to the desired consensus posi-

tion. Note that each robot randomly observes the neighbouring robots and exchange

position information over the unreliable network. The velocity control signal of each

robot is implemented based on the event-triggered scheme where the positioning in-

formation of neighbouring robots is transmitted according to the decision made by

the triggering condition (7.17). The e-puck2 robots begin their motion with initial

positions xepuck0(0) = 0.2, yepuck0(0) = −0.1, xepuck1(0) = −0.2, yepuck1(0) = −0.1,

xepuck2(0) = −0.2, xepuck2(0) = 0.1 and xepuck3(0) = 0.2, xepuck3(0) = 0.1. We con-

sider a DoS attack with duration of 8s. Our goal is to design a resilient consensus

control scheme in the presence of DoS attacks such that robots move to the de-

sired consensus position with minimum amount of positioning transmitted between

robots. According to Fig. 7.8 we see that: (1) Using a classical consensus control

scheme where the velocity feedback control signal is maintained constant during the

DoS attack interval, the robots cannot reach the desire consensus position; (2) The

proposed secure consensus control scheme is able to compensate the adverse impact

caused by the DoS attacks and achieve the desire consensus position with minimum

amount of communication between robots. Clearly our proposed control scheme can

improve the resiliency and tolerance of multi-robot system against DoS attacks.
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Figure 7.8: Consensus of e-puck2 robots with time-triggered mechanism (TTM) and event-triggered mech-
anism (ETM) based on CL algorithm in presence of DoS attacks (a) position of four robots on the xy-plane
(b) velocities of four robots respect to time (c), (d) triggering times of robots along x-axis and y-axis in
TTM (e), (f) triggering times of robots along x-axis and y-axis in ETM
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Chapter 8

Summary and Conclusions

In this thesis, we propose to study multi-robot cooperative localization with its

application to a fleet of mobile robots. Then, we investigate the consensus control

problem for group of mobile robots where each robot use the position estimates

from CL agorithm in order to perform consensus. Specifically, our interest is in the

development of a decentralized algorithm that can remain operational under the

following constraints:

1. limited communication resouces,

2. networked induced delays,

3. cyber attacks,

The outcomes of our research attempts are further summarized as follows:

1. In chapter 3, we propose a novel decentralized event-based cooperative local-

ization algorithm for a team of mobile robots where the objective is to perform

localization with limited communication resources. We show that by properly

tuning the event-triggering condition, the estimation error remains bounded

while the data transmission between the sensors and the filters reduced. The

proposed algorithm was successfully applied to four e-puck2 robots and the

comparison results showed the effectiveness of the proposed algorithm.

2. In chapter 4, we study the problem of DECL for a team of mobile robots

assuming that random delays affect the communication flow between robots.

We propose a DECL algorithm that can cope with the effect of random delays

and derive two optimal filters that minimize the estimation variance under

two separate assumption; namely with and without time stamps technology.
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In both case, we provide sufficient conditions for the boundedness of the es-

timation error for both filters proposed. We show that by considering the

proposed boundary for random delays and tuning the event-triggering param-

eters, the estimation error remains bounded while the number of transmission

packets between sensor and filter is reduced. Simulation and experimental

results show the effectiveness of the proposed approach.

3. In chapter 5, we study the problem of event-triggered cooperative localiza-

tion with the specific objective of cyber attacks. For the attacks with limited

resources, we design the optimal Kalman filter under both DoS and FDI at-

tacks, and provided a sufficient condition to guarantee the convergence and

resilience of the proposed filter. Moreover, we also propose an attack detection

mechanism for the proposed algorithm when the attack signal are unbounded.

Simulation and experimental results show the efficiency of the proposed algo-

rithm.

4. In chapter 6, we study the problem of event-triggered consensus control for

a multi-robot systems. In our framework, we consider cooperative localiza-

tion (CL) to estimate the position of robots and employ the result of posi-

tion estimates as input of consensus control. We design an event-triggered

consensus control based on CL such that robots achieve a prescribed consen-

sus while reducing unnecessary communication between robots. We derive

an optimization framework where the control and filter gains as well as the

event-triggered parameters can be designed simultaneously and minimize the

consensus bound. Finally we present both simulation and experimental results

to show the effectiveness of proposed approach.

5. In chapter 7, we investigate the event-triggered secure consensus control for

multi-robot systems in the presence of DoS attacks. Specifically, we employ a

cooperative localization algorithm to estimate the position of robots and design

a consensus control for each robot based on position estimates and steer the

position of robots to the desired agreement position under DoS attacks. We

provide a relation between a secure consensus and attack parameters which

then used to improve the tolerance and resilience of DoS attack intervals. Our

simulations and experiments verify the effectiveness of proposed method.

159



I Directions for Future Work

The research results, provided in this thesis can be extended and pursued in the

following areas:

1. Event-triggered consensus control for multi-robot systems with co-

operative localization under asynchronous behaviour of communi-

cation network: In this thesis, we assume that each robot checks the event-

triggering condition periodically using the same sampling period and that all

robots are synchronized. For simplicity, our analysis ignores a small delay

that accounts for the effect of the communication delays between robots. This

delay is inevitable due to the unpredictable nature of the network. When the

number of robots is small, this delay is typically negligible. However, as the

number of robots increases, the delay might result in asynchronous behaviour

that requires a more detailed analysis. The number of robots that can be

tolerated under the presents assumptions, depends on the characteristics of

the robots and the network. Therefore, how to design a triggering condition

for asynchronous behaviour of multi-robot network will be our future work.

2. Multi-rate consensus control for multi-robot systems with coopera-

tive localization: As we mentioned before, in cooperative localization extero-

ceptive and proprioceptive sensors needs to be fused to correct the navigation

states. More specifically, laser, camera and IMU sensors usually run at quite

different sampling rate, one of the challenges is the sensor data streams be-

ing multi-rate. To tackle this problem, we consider multi-rate EKF design to

estimate the position of robots. Then, the consensus control in each robot de-

termines the velocity feedback control signal based on the transmitted position

estimates and steer the robot to the desired agreement position. Therefore,

considering the effect of multi-rate on the design of the cooperative localization

is an opening problem.

3. Navigation for Mobile Robots in Dynamic and Uncertain Environ-

ments: In recent years, the navigation of autonomous mobile robots have been

received significant amount of attention from academia and industry. One of

the interesting problem in autonomous navigation is to guide the mobile robot

from the dynamic and uncertain environment to the destination. Specifically,
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the main challenging task in the motion planning is to create a path for a

mobile robot in the presence of dynamic objects. To navigate in such envi-

ronments, each robot needs to make an optimal decision at each time so it

can move safely and smoothly toward the desired destination. Although many

research have been conducted in the field of motion planning and control, this

problem remains a difficult challenge with the existing approaches.
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