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ABSTRACT

[ 2]

For a physical interpretation of a theory of quantum gravity. it is necessary to re-
cover classical spacetime. at least approximately. However. quantum gravity may
eventually provide classical spacetimes by giving spectral data similar to those ap-
pearing in noncommutative geometry, rather than by giving directly a spacetime
manifold. It is shown in this thesis that a globally hyperbolic Lorentzian mani-
fold can be given by spectral data. A new phenomenou in the context of spectral
geometry is observed: causal relationships. The employment of the causal relation-

ships of spectral data is shown to lead to a highly efficient description of Lorentzian

manifolds, indicating the possible usefulness of this approach.

Connections to free quantum field theory are discussed for both motivation and
physical interpretation. It is conjectured that the necessary spectral data can be
generically obtained from an effective field theory having the fundamental struc-

tures of generalized quantum mechanics: a decoherence functional and a choice of

histories.
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Introduction

Two experimentally verified theories describe at present the physical world: quan-
tum field theory and general relativity. Both have been extremely successful in
their tested ranges of applicability.

Quantum field theory, particularly implemented in the so-called standard model.
describes the types and behavior of elementary particles as measured in accelerator
experiments and as experienced by everyday contact with matter.

General relativity is concerned with the classical spacetime in which quantum
field theory takes place. This spacetime. a four-dimensional Lorentzian manifold
with events being its points, can have a complicated structure both locally and
globally and can be influenced by the presence of classically understood matter,

Both quantum field theory as applied in the standard model and general rel-
ativity indicate intrinsically that they cannot be valid under very extreme cir-
cumstances. But moreover they are not fully compatible even under rather usual
conditions with the problem being that matter is described by a quantum theory
whereas spacetime interacting with the quantum matter is described classically.

For all these reasons it is believed that it should be possible to find a more
advanced theory in which also gravity is quantized and in which both the compat-
ibility problem for general relativity and quantum field theory and their internzl
problems are resalved.

Such theories have already been proposed, most notably string theory, While
the internal consistency of such a theory turns out to be a difficult problem. another
issuc arises once the theory is formulated. How can one relate it to the physical
world? The interpretational side of a physical theory has at certain points of history
not been trivial but here the question stands with a new urgency. Practically
all measurements that are performed in experimental physics use implicitly the
notion of classical spacetime. The measurements of positions and times play a
dominant role. and there is a clear practical understanding of them. DBut in a
theory where gravity is quantized, there is no classical spacetime in its postulates,
The obvious conclusion is that unless one is able to recover from such a theory
classical spacetime. at least in an approximative sense. the theory may be a nice
piece of mathematics but does not make contact with the physical world and is as
a physical theory rather useless.

This work is concerned with providing a tool for recovering classical spacetime
from an advanced theory and is thus aimed at the interpretation of a quantum
theory of gravity. It is assumed here that such a theory can first be simplified to
an effective low energy theory which will look like a usual quantum field theory
but without having specified spacetime yet. In such a situation no Lorentzian
manifold is present. but there are many structures that contain what one can call

ot




INTRODUCTIGN 2

spectral information. It comes from the structure of the algebra of observables of
the effective theory and eventually from structures like the decoherence functional of

generalized quantum mechanics. The problem is thus to describe classical spacetinie
by spectral data.

There is a theory doing just that for Riemannian spaces: A, Connes’ non-
commutative geometry. Noncommutative geometry describes classical spaces by
commutative algebras of functions on them together with some additional struc-
tures on them. It is actually more powerful than is necded here: Noncommutative
geometry is able to deal even with noncommutative algebras not corresponding
to any classical space. In an indirect way this fact is actually useful even in the
present situation where only a classical space is wished for: The understanding of
the general noncommutative case is “i.ore direct in separating out which concepts
are of fundamental importance and which are from a broader perspective just par-
ticularities. One structure recognized in this way as being important, the spectral
triple. will be especially useful in the considerations presented,

So in a more specific view the problem is to discuss how noncommutative
geometry can be used to describe spacetime in the particular commutative case.
Unfortunately, the present mathematical framework is able to deal only with spaces
of Riemanuian type. having a nonnegative distance between any two points. There
it is very efficient in using spectral data: Practically all the geometric information
is contained in just a few relatively simple structures. The question is whether the
same is possible in the Lorentzian case.

The answer to this question is the main topic and result of this work. Compared
to Riemannian spectral geometry there is a new phenomenon recognized: causal
relationships. Inspired by the thorough discussion of causality in quantum field
theory, its place in the framework of noncommutative geometry is found. With this
understanding it is possible to show that again. as in Riemannian geometry. the
spectral data exhibit a beauriful efficiency in the description of Lorentzian spaces.
at least if they are globally hyperbolic which will be assumed threughout.

This gives hope that the adopted approach may turn out to be actually useful
in the way it is wished to be useful from the physical context. Several remarks
and conjectures on applications in plivsical interpretations are put forward. Many
technical questions are left open for further considerations but have now a clearer
formulation and context and ean thus be attacked gradually,

The work is organized in the following way:

Chapter 1 contains a review of classical and quantum field rheory with special
emphasis on a covariant phase space and algebraic approach and especially on the
local and causal structure of field theory in the inspiring view of the work of U.
Yurtsever.

Chapter 2 shows. after a brief discussion of Connes' spectral triple. first a
naive spectral description of Lorentzian globally hyperbolic manifolds. Then the
information contained in cansal relationships is discussed and used to obtain a
rather compact description of spacetimne. The view obtained is the main result of
this thesis

This is summarized in the ¢onclusion.

There are two appendices:

The first appendix contains a review of spinors. This is useful for three reasons.
First, a (quantized) Weyl spinor field is part of most of the considerations. Second.
spin manifolds play an important role in commutative spectral geometry. Third, a
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thorough understanding of spinors should be by now, but is not, general knowledge,
and thus this appendix serves the author well.

The second appendix gives a brief exposition of some parts of noncommuta-
tive geometry in an attempt to support to some degree the spectral triple used in
Chapter 2.



CHAPTER 1

Quantization of free fields and local algebras of
observables
The action principle and the phase space of classical fields.

In this section, classical field theory is reviewed. The treatment adopts to a
large degree a functional point of view [1.2).

The starting point of classical mechanics is kinematics. It is the description
of the rather general space of all conceivable histories F of the considered systen,
In the case of fields F may be taken to be the set of all field configurations on
spacetime. endowed usually with the structure of an infinite dimensional mauifold

(2].

The problem of dynamics is then to determine which of the histories in F
actually obey the rules of nature. Those that eventually do are selected by satisfving
an equation of motion, fnrmmgi the space of solutions S. The space of solurions.
also called phase space, is assumed to be a submanifold of the space of histories F.
The situation is somewlat ‘s\ll]‘)ﬂ]l( ally expressed in Figure 1.1. a 2-dimensional
picture of the infinite dis

The specific dynamics Df a system can he conveniently determined by an action
functional S[;2]. i.e. amap §: F — E. The idea is then o deternine the clemeurs
of the space of ﬂhlfl(ul, & as the eritical points of the aetion Sigl e e F

Figunre 1.1. Kinematics and dynamics. Inside the space of his-
tories F there is the submanifold of solutions (the phase space)
& determined by dynamics. A point ¢ on it is a solution of the
dynamical equation of motion corresponding to a classical field his-
tory. The shown vector tangent to S at & is to be understood as a
functional (Gateaux) derivative in 2.




1. THE ACTION PRINCIPLE AND THE PHASE SPACE OF CLASSICAL FIELDS. 5

should be a classical solution, if

(1) dpSlp] =0

Here d,, is the functional differential and the index p expresses its covariant entry,
inspired by the supercondensed notation of B. DeWitt (1,2] and, in another, pictorial
notation, by the simplifying power of Feynman diagrams in field tl. 0LV,

EXAMPLE 1. The action functional of a free sealar field ¢ is
B 1 /. 5,5
) S[g] = ;_.Ef (V,8V40 + m262)dQ

Here, the integral is taken over an arbitr ary region of spacetime §) with the measure
given by the volumie element df2, V,, is a covariant derivative and m is a constant
(mass). Assuming that the covariant derivative ¥ u is the one canonically deter-
niined by the metric structure of spacetime. the functional differential of the action
is

»

(3) d,S[6] 0" = ~ / (Y, 0VH60 + m660)d =
Ly

/(?,,T":ps m26)8adn 5/ 0% ,odTH,
1 a

[2y]
with 99 being the boundary of Q with the outside-directed hypersurface element
dTh,
EXAMPLE 2. The action functional of a free Weyl spinor field ¢ is

(4) S[t] = Re / DGR,
Q

The integral is over an arbitrary region of spacetime € with the measure given
by the volume element dQ, D is the Dirac operator and ¢ is the Dirac adjoint
of the Weyl spinor . The field may be taken to be graded commutative (i.c,
supercommutative. see [2]). The functional differential of the action is

(5) 7" d,5(v] = Re / (50De + E-Dv)AQ =
48

(G) 2e /(éL D) ’QEFRS/ E‘;,,E;?di”@
3! an

with 9Q being the boundary of Q with the outside-directed hiypersurface element
dZ'. In the graded commutative case, the differential d, has to be replaced by

the left differential rl (or by its right counterpart together with the appropriately
reordered Lkprcssmna).

region of spacetime and of a boundary term B,. i.c. an integral over the boundary
99 of the spacetime region 9. The boundary terms are

The differentials calculated in Examples 1. 2 are the sum of an integral over a

=- [ 66V ,0dT for a free scalar field.
y]

(7) 607

‘m\

RE/ ’L’" SydZH for a free Weyl spinor field.
o

(8)  &u7 B,

The correct equation of motion is. however, only obtained if the boundary term
is absent. and thus the variational principle 1 has to be modified. This can be
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achieved in two ways. One is to restrict the variations of the field to to those which
do not change the values of the ficld on the boundary:

DEFINITION 1. The classical solutions for a given action S[w], having the form
of an integral of a local function over a spacetime region 2, are the critical points
of S[p] with respect to variations in ¢ vanishing at the boundary 80 of Q.

There is an alternative. One can leave leave the variations of the field arbitrary
and subtract the unwanted boundary term from the equation of motion.

DEFINITION 2, The classical solutions for a given action $[ss], having the form
of an integral of a local function over a spacetime region, are the solutions of the
equation
(9) dpS[¢] = Byl] = 0.
where By[¢] is chosen in such a way that no boundary terms appear on the left side
of Equation (9),

The definitions 1. 2 result into the same equation of motion and both give no
boundary terms for the values of the field on the boundary 8§ of the spacetinie
region Q. In this sense they are equivalent. They give the correct space of solutions
S
L=

action (2) is
(10) V,.VH0 - mia =0,

ExasmprLe 4. The equation of motion of the free spinor field derived from the
action (4) is

(11) Du =0,

Unlike the case in Figure 1.1. the phase spaces S of the free scalar field and
of the free Weyl spinor field are linear. The linearity results from their quadratic
actions (sce examples 1. 2 ). The corresponding symplectic forms have then a global
rather than local meaning on the space of solutions S. since a linear space can be
identified with its tangent space at zero. This will later be helpful for quantization
and is the reason for cousidering only examples of free fields here. However, so far
nothing prevents one to consider at this stage also cases with interaction as long as
S is a manifold.

Given a solution ,» € & (sce figure 1.1) one can characterize the functional

(12) 0" N p(dy S~ B,) = 0.

Here ¥, is some functional connection. Since dyS — B, = 0 in . the equation is
independent of the particular choice of V.

Even though the Definitions 1. 2 lead to the same space of solutions 8. the
definition 2 has the advantage of allowing a simple examination of the boundary,
The equation 9 is a functional equation for a form. It can be restricted to the space
of solutions S, since forms have. unlike vectors, unique restrictions to subspaces.
On S the equation of motion is identically satisfied:

(13) d:S[7] = B:[¢] =0 for - € 8.
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The index z belongs now to the tangent structure of the phase space S. Taking the
functional differential of Equation (13) one obtains

(14) ds ds, S[o] = d:, B:[2) = 0 for ¢ € .

The differential of a differential is identically zero. Thus d.,d.,S5 vanishes and one
has

(15) dz, B:, = 0 on the space of solutions S.

Since B is a boundary term, this cquation sets the integral of a local quantity
on the boundary of an arbitrary region of spacetime equal to zero for any solution
® from the phase space S.

At this point the treatment will be restricted to the case in which the spacetime
M is globally hyperbolic (i.c., is topologically £ x R, sliced by spacelike Cauchy
surfaces [3]) with compact space slices and the spacetime regions considered {2 have
as their boundary two Cauchy hypersurfaces 8Q;. 89,

The decomposition of the boundary 99 has as a consequence the decomposition
of the boundary term d, B.,(8Q) into two integrals:

(16) d: B:,(0Q) = d:, B;,(902) = d., B., (8.

The parts d:, B:, (9$), d2, B:,(982) have the same form. The opposite signs in
front of them in (16) is caused by the use of the same, future orientation of the
hypersurface elements (see Figure 1.2). The importance of the form of one of the
parts. e.g. d:, B.,(8(). is that it is a 2-form on the phase space S which is by
Equation (16) independent of the chosen Cauchy hypersurface 80,. This means
that the space of solutions & has a canonical 2-form, denoted ¢ and determined
entirely by the action S[¢]. The 2-form o, ., is called the symplectic form.

ExaMpLE 5. The symplectic form of the free scalar field follows from the
boundary term (7) by functional differentiation and restriction to one Cauchy hy-
persurface 89:

(17) bon T o C . 66,7 z/ (601 YV 602 = 60, ,60,)dSH,
a5

The symplectic form 0¥ is is also called the Klein-Gordon product and is obviously
antisymmeturic.

boundary term (8) by functional differentiation:
z n L 23 .7.1_17 ] T;E - 4 §
(18) sy Ha’ 5z 02 = RF./S (li’l')’p'l;”E - '@”2“]}1#"1) dTt,
o

Due to the requirements of quantum field theory, in particular the spin statis-
tics theorem [4]. it is necessary to find the symplectic form in the modified case of
anticommuting fields. One possibility is to modify the approach above [2). An al-
ternative is to observe that there is a houndary term connected with the integration
by parts for the Dirac operator which vanishes on solutions:

(19) / Gy dSH = / 07, DUdQ — / Doy, d¥
as 0 3]

Again one can consider the case of spacetime regions § in a globally hyperbolic
spacetime A/ that have as their boundary two spacelike hypersurfaces 69;, 9Q..
The vanishing of the boundary term on solutions means, as in (16). that the integral
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FiGvrEe 1.2, Orientation of hiypersurfaces. A region {1 of a globally
hyperbolic spacetime 1/ is enclosed by two Cauchy surfaces o,

d€, forming its boundary 9Q

0 U 9. The hypersurface

element d¥ with its outward orientation as well as the hypersurface
elements dZ;. dZs oriented into future time direction are shown

as normal vectors

et

over one of the hypersurfaces 89 is independent of the cho
thus a structure solely on the space of solutions. This means

phase space is equipped with a hermitean product

(20) / Gy,

J a5

seil
tha

hypersurface and

at the Weyl spinor



2. BOSONIC QUANTIZATION 9
2. Bosonie quantization
Once the classical description of a system (e.g. a field) is known, one can
make an educated guess of what the correct quantum theory is. This inductive
procedure is called quantization. In principle there are two rather different ways to
do that, namely quantization by path integrals [5] and canonical quantization (see,
e.g. [1,2,6]). In simple examples, as the ones discussed here, they give eventually
the same results, but here the latter, canonical quantization, is chosen, since it leads
more directly to an algebraic setting used in noncommutative geometry.
In canonical quantization one starts with the classical phase space S equipped
with the antisymmetric symplectic form . The functions on the classical phase
space S, the classical observables, are then replaced by elements in a noncommu-

be useful in particular cases, The rules are as follows:

First, a special set F(S) of function on the phase space has to be selected. The
set F(S) of chosen classical observables should be closed under taking the Poisson
bracket {e.#}, ie.,

(21) {a,b} € F(S) for a,b € F(S).
with the Poisson bracket given by the inverse Gp of the symplectic form o:
(22 {a,b} =daoGpgodb for a,b € F(S).
Second. a linear map ¢ into a complex associative algebra A should be given.
(23) G F(5)— A,

The map > should satisfy a commutation relation replacing the Poisson bracket by
a comimutator:
(24)

Ela)@(b) — ¢(b)g(a) = i3({a.b}) for all a.b € F(S),
and its image 3(F(S)) should generate the algebra A.

NoTE 1. If F(S5) contains the constant functions oit & (which have vanishing
Poisson brackets with all other functions on &), then their image under the mapping
¢ must be in the centre of the algebra A, and if A is central then the image of
constant functions is proportional to the unit 1 in the algebra. A not very surprising
addition to the quantization rules then usually is the requirement

(25) (k) =k1 for all constant functions k on &.

NOTE 2. The inverse Gp of the symplectic form o is well defined only if &
is nondegenerate. If that is not the case (e.g. in the presence of a local gauge
symmetry, see [1]). a modification is necessary.

NoTE 3. The Poisson bracket satisfies a Jacobi identity,

(26)  {a,{b.c}}+ {b,{c,a}} + {c.{a,b}} =0 for all functions a,b,c on S,
which can be traced back to the closedness of the symplectic form o. This is helpful.

since the mapping of this identity leads to a Jacobi identity in the algebra A.

(21)

[¢(a), [B(b). @(c)] + [(D). [(c), B(a)] + [B(c): [B(e), p(b)] = O for all a,b,c € F(S).
which is a consequence of the associativity of the algebra A, If the Poisson bracket
did not satisfy the Jacobi identity. the algebra A would have to be nonassociartive.
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One of the difficulties of these rules is the potentially complicated commutation
relation (24). and another is the choice of F(S). Obvious choices, like the space of
all continuous functions on &, are plagued by inconsistencies or by giving an algebra
that is far too big compared with the one that gives a quantum theory in agreement
experiment. To deal with this situation, additional information is usually necessary
(see e.g. [6]), and even then it is a difficult problem,

The situation radically simplifies if a free system (i.c. one with a quadratic
action and thus with a linear phase space S) is considered. The symplectic form
o and thus also the Poisson bracket {e, e} are thus global rather than local. The
obvious choice of F'(5) is then the space S* of linear observables. The commutation
relation (24) can then, using functional tensor indices z, y, be written as

(28) #7a: @by — @¥hy ¥ a, = ia,G3b,1 for all a,, b, € S”,
or simply
(29) ETEY — FYET = iGH1

Yet another form of the commutation relation can be obtained by introducing the
field operator

(30) B(f) = 'y, " for f7 € 8.
which leads to
(31) P(f)P(g) = V(g)P(f)=i{foaoy)l for f.g € S.

where foog oy = flo,,g.

ExXaAMPLE 7. A finite dimensional linear phase space can be quantized accord-
ing to the above scheme. There is, however, still a slight difficulty: It can be shown
that the algebra of quantum observables cannot be realized by bounded operators
on a Hilbert space and in particular not by a C'*-algebra. This can be improved by
exponentiating the commutation relation (31) formally:

(32) W(f) = ™),

(33) W)V (g) = e/ (f + ¢) for f.g € S.

This is called the Weyl form of the commutation relation. It has by the Stone-vou
Neumann theorem [7] a unique regular irreducible representation (up to unitary
isomorphism) by bounded operators in a Hilbert space. So if the Weyl form of the
commutation relations is accepted, there is essentially a unique algebra of quantum
observables for the system, and quantization has then an unambiguous result.

NoTEe 4. In the unique representation of the Weyl commutation relations. the
field operator ®(f) can be obtained by differentiation of (32). The result is an
unbounded operator. It is not true that this is the unique representation of the
commutation relation (31) by possibly unbounded operators on a Hilbert space,
For an example see [8].

EXAMPLE 8. The phase space of a free scalar field can be quantized, accepting
again the Weyl form of the commutation relations as in Example 7. In this case the
inverse G'g of the symplectic form is the cansal Green's function [1] defined as one
half of the difference of the advanced and retarded Green.s function. The situation
here is however complicated by the exhibition of functional analytic phenomena.
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The Stone-von Neumann theorem does not hold in infinite dimensions, and only
a unique C~-algebra may be obtained, generated from smooth field configurations
with compact support [7]. There are many unitarily inequivalent representations
of this C"-algebra. It seems that the smooth structure of spacetime, necessary to
determine which solutions are smooth, is leaving a fingerprint in the quantization.
It is interesting to note that following the cause of this fingerprint it is in the case
of spacetimes with compact spacelike Cauchy hypersurfaces, possible to arrive at a
unique preferred representation containing all physically acceptable states [9). This
is however possible only if one keeps the information about the origin of the algebra
of observables. On the other hand it is known that the double commutant of the
algebra of observables in the preferred representation is a von Neumann algebra
classified as a factor of type III, [10]. This is in some ways a very elementary von
Neumann algebra and cannot contain any information on the spacetime on which
the field exists.

3. Fermionic quantization

The quantization rules of the previous section cannot be applied in the casc of
a free spinor field, since its symplectic structure vanishes (see Example 6). In this
case, however, another structure, namely the hermitean product (20), is available
and can be used for quantization. The imaginary part of this product could be used
to replace the symplectic form needed to define a Poisson bracket and to formulate
the commutation relation (24). Another possibility is to use the real part jt of the
product (20)

(34) i = Re / 07, dT,
aQ,
which is symmetric. and to change the commutation relation (24) to
(35)  ¢(a)d(b) + ¥(b)d(a) = it(a o G ob) for all a,b € F(S).

and leaving the rest of the quantization procedure virtually unchanged. Here Gris
the inverse of /1. and o denotes a the contraction of indices of two tensors. This way
of quantization. using a symmetric rather than an antisymmetric form on the phase
space, is called Fermi quantization and is to be distinguished from the previous.
called Bose quantization. It is in particular forced onto the quantization of spinors
by the spin-statistics theorem [4]

In analogy with (30), one can define the field operator ¥(f) for a classical
solution f € S

(36) ¥(f)=d(nof),
and write the commutation relation (33) in the form
(37) Y(f)¥(g) +2(9)¥(f) =i(fopnog)l for f.ge€sS.

ExanprLE 9. The free Weyl spinor field can be quantized by Fermi quantiza-
tion. Here the inverse Gr of the symmetric form p is the causal Green’s function
of the fermionic field. In contrast to Examples 7, 8, there is no obstruction to
finding the unique C-algebra of observables which in turn has a unique minimal
enveloping von Neumann algebra [11] having. up to isomorphism, a unique regular
irreducible representation by bounded operators in a Hilbert space. There is no
information whatsoever in this algebra about the smooth structure of spacetime.
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4. Local algebras of observables

If the C~-algebra of observables is considered by itself, without reference to its
origin, then it is sufficient to express the evolution of the field by automorphisms
aud the space of states by normed positive linear functionals (see [12]), but then
the physical interpretation is completely lost.

A somewhat similar loss of interpretation can be observed if a classical system
is judged on the basis of its phase space only, where canonical transformations can
rather arbitrarily change the meaning of coordinates and momenta. It is possible
to argue that, e.g., the topology of the phase space is specific to the system, but
this is by no means sufficient to give a complete description if there actually is a
fundamental distinction between coordinates and momenta.

It is to be expected that the information in the C*-algebra of observables of a
free scalar field, discussed in Example 8, is in the same way of rather weak nature
and will be here considered as insignificant. even though there is no fully conclusive
evidence for that presented here. In this direction there is, however, no doubt in the
case of the free spinor field: As mentioned in Example 9, the algebra of observables
does in this case not contain any information about spacetime.

Some structure has thus to be given to the algebra of observables of a quantum
field in order to enableone to give its physical interpretation. One could, of course.
just remember the whole construction of the algebra of observables, starting with
the classical field. In a path integral approach this would not be so bad. since clas-
sical histories are part of that framework. but in an algebraic approach to quantum
field theory. where the classical field has just the position of an effective aApprox-
imation. this is definitely not what one would wish to do. The widely accepted
solution is to give the algebra of observables the structure of a local algebra [10.12].
The idea is to associate with each region of spacetime  a subalgebra A(2) of
the algebra A of observables. Thus one obtains a set of subalgebras indexed (not
necessarily unambiguously) by the set I of open subsets of spacetinie.

For many technical purposes it is not necessary to keep the reference to space-
time, and only some properties of the index set I are extracted and required. This
is the case of the definition of a quasi-local algebra [10.12]. However, since here
interpretation is the main concern. the full link to spacetime will he required [13.14].

DEFINITION 3. A C*-algebra A togetlier with a spacetime manifold M is local
if the following three conditions all Lold:
1. For cach open subset  of A there is a central (see Note 1) C-algebra
A(Q), with A(0)=C. and A(M) = A.
2. For any collection {2;} of open subsets of Af one has

A (Ui) = [U;A ()

(On the right hand side of this equation is the closure of the algebraic enve-
lope (U.'A (Q,‘)) of U;A (Q,))

3. If the regions Q,. Qs are not in causal contact, then the corresponding
algebras A (€;), A (22) commute in the Bose case and graded-commute in
the Fermi case.

ExXAMPLE 10. The quantized scalar field can be given the structure of a local
algebra. The Green’s function G of the field can be used to produce from any
smooth density v with compact support on the spacetime manifold Af a solution
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I

(38) I = G,

and to each solution f one can by (30) and (32) associate a quantum observable
W(f). Given a subsct Q of spacetime, the algebra A(f) can be then generated
by densities with support in . If the supports of two measures v, vz are not
causally connected, then the corresponding classical solutions fi+ fa can be checked
to have vanishing Poisson bracket, and the corresponding quantum observables
W (f1), W{(f2) thus commute.

ExAMPLE 11. The quantized Weyl spinor field can be given the structurc of a
local algebra. The Green’s function G of the field can be used to produce from
any smooth density ¥ on the spacetime manifold M a solution I

(39) 7= (Gr) "y,

and to each solution f one can by (36) associate a quantum observable T(f). Given
a subset 1 of spacetime. the algebra A(€2) can be then generated by densities with
support in . If the supports of two measures v, v» are not causally connected,
then the corresponding classical solutions f;, fa can be checked to have a vanishing
product fy oyt 0 fy. and the corresponding quantum observables ¥(f1). ¥(fz2) thus
anticommute,

5. Reconstruction of spacetime from the lattice of local subalgebras

A very pleasant feature of the local algebra structureis that the C"-subalgebras
A(Q) (with Q C M) of A are actually sufficient to reconstruct the gpacetime
Al as a topological space and to determine its causal structure. as observed by
U.Yurtsever [13,14]. This will be explained now in some Aetail,

The local C-subalgebras A(Q) of the local algebra A correspond to open sets
in spacetime but in a rather nonunique way. Given a region € of spacetime. the
C"-subalgebra A (1) is (by (38) or (39)) generated from measures with support in
Q1. If now €y is a second region of spacetime with Q, causally dependent on it.
then for each measure with support in Q; there is a measure with support in 1.
generating the same element of the quantum field algebra A. Indecd: that € is
causally dependent on Q; means that each inextendible nonspacelike curve through
) passes also through 2. and the rest follows from the fact that the classical
equation of motion of the field respects causality. so that the fields generated from
sources in §1) can also be produced from sources in Qa (see Figure 1.3).

It is possible thar two regions are mutually in causal dependence (see Figure
1.4). The maximal region that is with the region  mutually causally dependent is
called the diamond [14] or the domain of dependence [15] D(Q) of Q.

DeriniTiON 4. The diamond (domain of dependence) D(Q) of a spacetime
region 2 is the set of all points causally dependent on . A point p is causally
dependent on the region 9 if all inextendible nonspacelike curves through p pass
through Q.

NoTE 5. One can think of the diamond D(2) of an open spacetime region 0
as of the set of points in which the value of any causality respecting field is fully
determined by its value on £2,
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future of Q,

past of Q2

FIGURE 1.3. An example of causal dependence. The region §y of
spacetime is causally dependent on the region Q..

It is easy to check that in a globally hyperbolic spacetime two distinct diamonds
give distinct sets of solutions generated by (38) or (39) from measures supported
in them. '

All this means that diamonds are in oue-to-one correspondence with the dis-
tinguished family of C'*-subalgebras of the local algebra A.

Both the set L of all diamonds in spacetime and the set L 5 of C'"-subalgebras
can be equipped with partial orders <p. <4 given by inclusion of subsets or by
inclusion of C'"-subalgebras. These partial orders can be promoted to latrices. and
the two lattices Lp. Ly are isomorphic by the above mentioned one-to-one corre-
spondence of their elements. Since the lattice structure is at this point important
and will be exploited to reconstruct from the local algebra A spacetime as a topo-
logical space. it is uscful to review first some of the relevant definitions and to
mention some simple and important examples and facts.

two of clements a.b € L there is a unique least upper bound a V b. the Joeinof a.b
and a unique greatest lower bound a A b. the meet of a.b. A lattice L is complete
if the meet and the join of every subset of L exists. A lattice homomorphism from
one lattice to another is a map preserving the meet and the join, A complete Jattice
L has a least element 0 = AL and a largest element 1 = VL.

DEFINITION 5. A lattice is a set L with a partial order < such that for every

DEFINITION 6. A frame is a complete lattice F satisfying the distributive iden-
tity
(40) al (V,'E]b;) = Vier{la A bi) forall a.b; € F
and I a possibly infinite index set
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FIGURE 1.4. Mutually causally dependent regions. The re
 and g, as well as their common diamond D(Q) = D(§)
mutually causally dependent.

gions
). are

A frame map from one frame to another is a lattice homomorphisin preserving the
least element 0 and the largest element 1.

EXAMPLE 12. There is a lattice Lig 1} with only two elements 0 =1 Itis
trivially also a complete lattice and a frame.
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EXAMPLE 13. The set Q(M) of open sets of a topological space M is a frame
with the partial order given by inclusion and the j join V and the mect A dLﬁucd by
the union U and the interior of the intersection N of open sets. It is necessary to
take as the meet the interior of the intersection and not just the intersection since
an infinite intersection of open sets needs not to be be open,

Example 13 is of fundamental importance since under favorable conditions one
can from the lattice Q(A) reconstruct the underlying topological space M. The
necessary notions for this are contained in the following

DEeriniTION 7. The points of a frame F are the frame maps from the frame
F to the frame Ly, 1}- The set pt(F) of all points of F is understood to be a
topological space with the open sets U(a) giveu by clements of the frame:

(41) Ula)={p € pt(F)|pla) =1}

NoTE G. For an intuitive understanding of Definition 7 it is helpful to insert
as the frame in quc:tmn the frame 2{/) of Example 13 and to realize that by
choosing a point p € A one can determine a frame map by assigning to each open
set {4 the value

0 ifpgll

\I‘
=

(42) pHQ)) =

as topological spaces. If this is correct one can (at least at the topologieal level)
consider the frame Q(A/) as a fully respectable substitute of the topological space

AL

THEOREM 1. Every Tychonov spuce satisfies (42)

NoTE 7. For the proof of the theorem. see [16]. A Tvchonov space is defined by
the pmpmr\ that for cach closed set A and each point 2 € A there is a continuous
function f such that f(4d) =a. f(r)=band « # U. Here it is sufficient to note that
Hausdorff space and any metrizable space is Tvchonov. and that it is
thus a quite broad class of spaces. Concerning connections with noncommutative
geometry, it is also useful to note that a commutative Cr-algebra is separable if and
only if its Gel'fand transform is metrizable, The Gel'fand transform of a separable
commutative C'"-algebra is thus automatically Tychonov,

any compact Ha

EXAMPLE 14. The set Ly of open rectauglesin B? pd,mllel to the axes (includ-
ing the empty rectangle) is a lattice with the partial erder given by inclusion. The
meet and the join of two rectangles are shown in Figure 14a. The meert is defined
as the intersection. and if infinite meets are to be considered it can be defined as
the interior of the intersection, just as in Example 13. With this the lattice Lyis
a complete lattice. However. it is not a frame. as is sliown in Figure 1.5b.

The open leil’dllfali‘s in Example 14 generate by infinite unions all open sets,
i.e. the underlying set of the frame ¢ 2Af) of Example 13. There may therefore
be the possibility to enlarge the latrice Ly to the frame Q). In fact there is a
general construction which does just that for an arbitrary complete lattice L.
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_aVb

(a) (b)

FIGURE 1.5. The lattice Ly of open rectangles, In (a) the join
aVband the meet aAbof a.b € Ly is shown. In (b) a situation is
presented where the distributivity condition (40) is not satisfied,
Indeed. one has a A (b) V by) = a whereas (e Aby) V (a A byy=0

DeriNiTION 8. The frame F(L) associated with a complete lattice L is defined
as the quotient

F(L)=

s

of the power set 2% of L (the set of all subsets of L) by the equivalence relation ~
defined as follows: Two subsets &Y. R of L are equivalent. Ky ~ 1% if and only if

View,(#Ak) = Vier, (v Ak)orall » e L,
The partial order < an F(L) is given by
[jﬁ] = [Il-;g] = Viep, (rAk) < Vké[\"?(.’l' Ak)Yorall re L.
Here [A]. [I;] denote the equivalence classes of Ky Ky under ~, The join. meet,
least clement and largest element iu F(L) are given by
V;[ff;] = [LJ,‘If,‘]
/\g[ff;] = [ﬁ;l\ii]
0 = [0]
| = [L]

NoTE 8. It is not difficult to show that the structures introduced in Definition
8 indeed turn F(L) into a frame, In particular, the required distributivity (40) can
be checked :
[K]A(VIRY) = [AA UK = UK A K] =

= Vil A K] = Vi{K] A [K7]

for K. A’y € L and 7 an index from a possibly infinite index set.
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In full analogy with the lattice of rectangles Lp. one ean take the complete
lattice of diamonds Lp on a manifold M and produce from it by the general con-
struction of Definition 8 the lattice F(Lp) = Q(Ar), and then by Theorem 1 one
can obtain back the spacetime manifold as a topological space, The same of course
works if one starts instead of the lattice L, of diamonds with the isomorplic lattice
L of the local quantum field algebra A.

Any two clements of the lattice Ly can be tested for graded commutativity and
this encodes causal contact between the two corresponding regions of spacetime, In
this way spacetime can be reconstructed from the loc.; algebra A as a topological
space with its causal structure as long as the knowledge of light cones is sufficient for
that (This may be true, e.g. for 4-dimensional Minkowsky space but 1-dimensional
Minkowski space is a counter example [17]). This is the main result of [14]




CHAPTER 2

Free quantum fields and spectral data for
Lorentzian spaces

1. Overview and motivation

This chapter contains the main new results of this thesis. After a review of
Connes’ spectral triple in Section 2, two major problems are discussed:

First, it is shown how spectral data can be used to describe spacetime in a 3+1
split form. An important role is played by a one parameter family of spectral triples
coexisting on the Hilbert space S. In particular, a set of Dirac triples describing
a Weyl spinor field on a globally hyperbolic spacetime manifold is discussed. The
treatment of the quantized field turns out to be rather trivial. Besides showing the
formulation of the theory. a conjectureis stated suggesting that the structures intro-
duced could eventually be recovered from the fundamental principles of generalized
quantum mechanics [18-21].

Second. the causal structure of the spacetime encoded by the spectral data on
the Hilbert space & is examined. Inspired by the understanding of the structure of
spacetime of U. Yurtsever [14]. it is realized that information about causal relation-
ships in the above description is already automatically encode: by the relationship
between the spectral triples coexisting on the same Hilbert space S and by the
inner product on S. This rather simple observation is the main point of this work
and has far-reaching consequences. At once a large amount of information becomes
available. The proposed spectral data that have not taken into account this fact
become considerably redundant. A part of the previous structure which appeared
as being a matter of arbitrary choice (the lapse functions V) can be completely
dropped since it is now uniquely specified. And even then there is a significant
amount of redundancy. and thus in the general case possible overdeterminacy. left.
The appearing picture is that noncommutative geometry. which initially appeared
to be maybe not as well suited to the description of spacetime as it is to the descrip-
tion of Riemannian spaces. is in the Lorentzian case actually very efficient. even to
such a degree that further work will be necessary to control this compact structure
in more general situations.

Before approaching the main topics. it is useful to review and extend the moti-
vations for which it is attempted to use a description of spacetime and field theories
on spacetime using noncommutative geometry. The physical motivations that have
been put forward, are that noncommutative geometry allows a fine structure of
spacetime that may be useful for renormalization [22.23] and that spacetime ge-
ometry may be unified with field theory [24-26]. At this point of the mathematical
developments [27.28], it is actually fully justified to use the spectral triple in order
only to see how old facts look in the new framework. This is to some degree the
case of [29].

19
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Some additional hopes and motivations will be put forward here, and these will
actually be particularly important in what follows, even though it is not claimed
that they will be completely met by the results obtained.

1. It is clear from the analysis of quantum field measurements affecting macro-
scopic matter distributions, and thus spacetime geometry [30], that there
apparently is not a single classical spacetime underlying a quantum field be-
yond a semiclassical approximation. It is hoped that a suitable formulation
of quantum field theory will be able to accommmodate these situations.

2. It is hoped that spacetime and the causal structure of spacetime can be
viewed as consequences of structures on the algebra of observables of matter
and its noncommutativity and can thus be left out on a more fundamental
level, simplifying thus the structure of the theory. Connections between
time flow and noncommutativity of an algebra of quantum ohservables have
surfaced in a number of contexts [31.32], supporting this hope to some
degree.

3. It is assumed that the primary output to be interpreted is matter. The
observer is assumed to be described as part of the state of the matter field,
This leads to the view that classical spacetime has with respect to interpre-
tation a second class position as a sometimes useful hoo ceeping device for
the reality of matter.

t

NoTe 9. While the first two motivations are in a rather precise way concerned
with the range of applicability and with structural issues of the physical theory.
the last motivation is of a somewhat vague nature, Qne may understand it, if one
wishes. rather as a psychological statement intended to ease the obvious movement
in the direction of abandoning spacetime as a fundamental concept.

2. Connes’ spectral triple

A geometric space may be described by its ser of points with some additional
structures. or. alternatively, by the algebra of functions on it. again with some
additional structures. The first point of view is the one of classical geometry. The
second may be taken as a starting point for a far more general and powerful theory.
A. Connes’ noncommutative geometry [27]. and is adopted here. In particular. a
space can be encoded in the form of a spectral triple [28].

DEFINITION 9. A spectral triple (A.H. D) is given by an involutive algebra of
bounded operators A in a Hilbert space H and a sclfadjoint operator D = D* in
H such that

1. The resolvent (D —A)"', A g B. of D is compact
2. The commutators [D.a] = Da — aD are bounded. for any a € A

The triple is said to be even if there is a hermitean grading operator I' on the
Hilbert space H (i.e. " =T. T2 = 1) such that
(43) e =al foralla € A
(44) I'D=-Dr
Otherwise the triple is called odd
NoTE 10. This section is only concerned with introducing the spectral triple

and mentioning its properties to be used in the applications. From that it is not
fully clear why one should be interested in exactly this kind of structure, so some
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motivation is clearly missing here. This is dealt with in Appendix B, which has as
its single purpose to show the deep and solid structure of noncommutative geometry
that is supporting the spectral triple.

The following example is of great importance.

EXAMPLE 15. On a compact Riemannian spin manifold M (sec Appendix A)
there is canonically the following spectral triple (C'° (M), L*(M,S), D), the Dirac
triple [27], [28]. Here C°°(M) is the commutative algebra of smooth complex fune-
tions on M, L%(M,S) is the Hilbert space of square integrable sections of the

complex spinor bundle S over M and D is the Dirac operator. The algebra of

(45) (f)p) = f(P)¥(p) for all f € C*(M),s € L*(M,S),pe M
and the commutator with the Dirac operator D with a function f is

(46) [D. f] = ~df for f € C™(M).
7 is the Clifford map from the cotangent bundle into operators on LM, S).

In Example 15 the algebra was taken to be C'=(Af). Such a choice contains
a lot of information and is actually not necessary. In the definition of the Dirac
spectral triple it is sufficient to take instead of C'* (M) any algebra A that has the
same weak closure (double commutant) A" as has C>(Af). Such an algebra docs
not necessarily contain any information about the topology or differential structure
of Al whatsoever. From A alone only A as a set of points can be obtained as
the spectrum of A (see Section 2 of appendix B). The rest, however, can then be
recovered from the structure of the spectral triple including the notion of smooth
functions and Lipschitz functions. Lipschitz functions with Lipschitz constant 1 can
then be used to define a distance function d on Af. This means that a Riemannian
spin manifold can be replaced by a spectral triple without the loss of any information
about it. The facts are summarized in Proposition 2 (see [28)]).

ProrosiTioN 2. Let (A, L*(Al. S). D) be a Dirac spectral triple associated to
a closed Riemannian spin manifold M. Then the compact space M is the spectrugn

of the commautative C*-algebra norm closure of
(47) Ap={a€ A" |[D,a] bounded}

while the geodesic distance d on M is given by

(48) d(p.q) = sup{| f(p) — f(a) | f € A, | [D. f] || 1}

It is now in question whether one can reconstruct from a spectral triple a ma-
ifold if one is not assured that the spectral triple actually comes from a manifold.
With some additional conditions it will certainly be possible to prove in the future
a theorem in this direction. One helpful tool for this purpose is a real structure
J on the spectral triple [28], [33], even though it presupposes that the space in
consideration can be caracterized by a fixed dimension.

EXAMPLE 16. In the case of the Dirac spectral triple of Example 15 a real
structure is given by the charge conjugation composed with complex conjugation
(see Appendix A).
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Before giving its general definition it should be mentioned that for simply con-
nected spaces the real structure ensures that the spectrum of a spectral triple will
have the homotopy type of a closed manifold (28], [33]. In addition to that, its
dimension is governed by the spectrum of the Dirac operator [34]. So a theorem
examining which commutative spectral triples are classical Riemanian manifolds is
not out of sight. The considerations of the next sections would be best motivated by
such a theorem but making use of it as in [29] is at this point probably premature.

DEFINITION 10. A real structure J on the spectral triple (A, H, D) is an anti-

linear isometry J

(49) J:H=H
such that
(50) JaJ ' =gq" forallae A
(51) JP=¢
(52) JD=¢DJ
(53) JI=¢TJ

where the signs e.e .e” € = {=1.41} are given by the following table with v being
the dimension of the space nmn’ 8:
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preserves thc mﬁlunhle '51)111 ILIllt‘hL‘llt.—lUDll :Uld lle's thus a ;:,ﬂgd meanmg i it. Iu
the odd case it is assumed that only one of the two irreducible representations is

sen and since T switches between the two irreducible repressentations it has no
meaning just in one of them, More details on spinors can be found in Appendix
A. Also the periodicity mod 8 of Table (54) is explained there. It is just one of the
manifestations of the spinorial cliesshoard. in this case restricted to its Euclidean
row,

3. Spacetime in noncommutative geometry

Here a Lorentzian globally hyperbolic spacetime manifold will be characterized
by spectral data. This cannot be done directly by Connes' spectral triple (sce
Definition 9) since it is well suited for the description of generalized Riemannian
spaces only. This is obvious, e.g., from the distance function (48). which cannot be
negative. A simple idea to avoid thib difficulty is to foliate the spacetime M by a
family of spacelike Cauchy slices T, with t € R a coordinate time (see Figure 2.1),
Each hypersurface £, is then Riemannian and ean be characterized by a family of
Dirac spectral triples (L>(%,). L*(X,.5), D,) (see Example 15 and Proposition 2)
togethier with some additional information on how the spacelike slices T, are related
to each other. In Immculal. the normal distance between two infinitesimally close

Cauchy surfaces I, is encoded by the lapse function N (see [35] and Figure 2.1).
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a

t+dt

T z { t-dt

FIGURE 2.1. A Cauchy foliation. The globally hyperbolic
manifold M can be sliced by spacelike Cauchy surfaces T,
Each of them can be characterized by a Dirac spectral triple
(L*(Z)), L*(S,.5). D) with L*(Zy) being the algebra of essen-
tially bounded functions on T,. L*(X,, §) being the spinor bundle
over &y and D, being the Dirac operator on ;. The normal dis-
tance between infinitesimally close Cauchy surfaces T,, $,, 4 is
characterized by the lapse function N on Z N can be thought
of as an clement in the algebra L=®(E) = (C‘x(E;))”. the double
commutant of the algebra of smooth functions. ’

The only further information needed is the identification 7, : £, — ¢ of points
which lie on the same curve normal to the hypersurfaces. This can be established
in the spectral data by specifying an automorphism i : L=(Zy) — L=(X))
Since the square integrable sections of the spin buudles over the Cauchy surfaces
Zi. t € R are valid Cauchy data for weak solutions of the equation of motion of a
Weyl spinor field on M. there is a preferred isomorphism between the spin bundles
L*(<,,5) and the space of solutions S of Weyl spinors. This means that all spectral
triples can be understood to share the same Hilbert space 5.
Summarizing, a globally hyperholic spacetime can be described using spectral
data by
¢ a family of spectral triples (C,, S, D;) with C; a commutative von Neumann
algebra of bounded operators on S and D, Hermitean (possibly unbounded)
on 8
* afamily of lapse functions N, € C,
¢ an automorphism i* between any two of the commutative algebras C,

NoTE 12. Usually it is not required that the identification of Cauchy surfaces

has to be done along normal lines. Then the deviation of of the direction of identifi-

cation from the normal oue has to be characterized by a shift vector field ¥ on the
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Cauchy surfaces [35]. The restriction to the case N = 0 here avoids the necessity
of a replacement of vector fields by spectral concepts,

he automorphism ;-

The above description agrees with [29] except that there t
is omitted. That omission seems to make the spectral data a ppear incomplete from
the point of view presented there.

It is now possible to describe the quantum field theory for Weyl spinors on
the spacetime specified by the spectral data. Since the Hilbert space & in the
spectral data is taken to be the space of classical solutions equipped with the
canonical Hermitean product (20), this is entirely trivial: The quantum field algebra
of observables is just the Clifford algebra generated from S by the anticommutation
relation (37).

This completes the discussion of quantum field theory on spacetime using a
spectral approach but not taking in account the causal structure information preseut
in the problem. This is a natural place to reflect on the above with a few comments,

From the point of view of the motivatious, one would wish to start from an
algebra of quantum observables, to specify the spectral data. and then to construct,
if possible, classical spacetime. Such an approach will however bring rather difficult
problems: At least in the cases where one hopes to obtain a spacetime that is a
topological or smooth manifold. one would wish to have the one-parameter family
C; in some sense continuous or smooth. (It may be viewed as a continuous or
smeoth algebra bundle over R). This is an important. but on the other hand
technical. issue. Instead of discussing it satisfactorily. the treatment will rely on
the case studied liere starting with a classical spacetime. producing the space of
solutious S of the Weyl spinor field on it and obtaining by quantization the field
algebra A. Then all the facts can be viewed backwards. starting with the field
algebra A. This is clearly dishonest to the motivations in using as its input what
should be abandoned in the first place: classical spacetime. On the other hand
this allows one to go through all the way from the quantumn algebra to spacetime
avoiding some. in general difficult. arguments bridged by the particular features
of this not-so-clegant example. The result is then an understanding of what is
important. and with this. one can then gradually face the technically difficulr points.
This approach has worked so far extremely well in noncommutative geometry, In
this context. the aim here is to gain an understanding only. thus considering the
example as a valid approach.

For a view starting from the quantum field algebra according to the above mo-
tivations. it would also be desirable to have a decper justification of the introduced
structures, particularly for the family of operator algebras C; and the family of
operators Dy on the space S generating the algebra of observables A. It will he
suggested here in the form of two conjectures that this may eventually be possible,

CONJECTURE 1. Another way to look at the family of commutative algebras
C; will be offered now. For a given value of the parameter t = fg, the algebra C,,
splits the space S into orthogonal subspaces by spectral projections. On the quan-
tum level this means that the field algebra A is given preferred mutually commuting
subspaces. In the case in which the Hilbert space is finite dimensional, these spaces
are complex one dimensional. It is conjectured that this structure is sufficient to
determine a preferred complete set of comumuting projectors in the algebra of oh-
servables A or eventually in its (unique) minimal enveloping von Neumann algebra.
If that is the case. then the choice of C;, may be understood as the choice of a



[

4. SPECTRAL DATA AND THE CAUSAL STRUCTURE OF SPACETIME. 2

7 P
- Up,)

¢ nonzero

7 T\ %y -

Py

W nonzero

M|

FIGURE 2.2. Causal contact. Any solution 1 with Cauchy data
on g supported in 2{/(pg) has a vanishing inner product with any
solution ¢ witly Cauchy data on X, supported in U(p,). The points
Po: 1 are not causally connected.
set of histories in generalized quantum mechanics [18-21]. This would to a large
degree justify the introduced structures from a very fundamental point of view.

CoNJECTURE 2. If Conjecture 1 is in some way correct, then the family D,
of Hermitean operators on S can be for a suitable coarse graining recovered from
the decoherence functional of generalized quantum mechanics on histories of the
quantum field A.

These conjectures are a topic of future research. They are stated here only to
show that what was reached so far is really following the call of the motivations
put forward in Section 1, which would not be so easy to see otherwise,

4. Spectral data and the causal structure of spacetimae.

The spectral data describing spacetime as presented in the previous seetion
are sufficient. But they did not take into account the fact that causal structure
information is also stored in the family of spectral triples in a way that was not yet
exploited. It is here that that insight of the work of U.Yurtsever [13.14] revieved
in Section 5 of Chapter 1 is useful,

To understand that. consider two spacelike Cauchy surfaces g, T, on the
spacetime manifold (sec Figure 2.2). They are described by the spectral triples
(Co.8.Dy). (Cy,8, Dy). Given two points po, py on these Cauchy surfaces (po € =y,
P1 € Iy) it is now possible just to decide whether they are in causal contact or not.
If and only if the points pg, p; are not in causal contact. the value of the Weyl
spinor field at the point pg cannot influence the value of the field at the point p;.
In more precise terms on can say that there exist open neighborhoods &/ (po): U ()
of the points py, p; in Zg, ©; such that any solution ¢ of the equation of motion of
the Weyl spinor field with Cauchy data on =, supported in U(po) has a vanishing
inner product with any solution ¢ with Cauchy data on £, supported in U(p). To
identify solutions in S which have Cauchy data on T; supported in a certain region
U(pi) C Z; from the spectral data is easy: they are just given as elements of the
ranges of the spectral projection corresponding to U(p;).

NoTE 13. If one is willing to use generalized eigenvectors (&-functions) then
causal contact can be expressed in the following way. A (generalized) solution with
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Cauchy data on Ty supported in the point pg is a generalized eigenvector of the
algebra C, satisfying
(55) a = a(po)y fora € Cy,

with a(po) being the value of the function a at the point po. The vector ¢ can then
be for briefness called an eigenvector of point po. Then two points are not in causal
contact if and only if all their eigenvectors are orthogonal.

One can now sSuInmarize:

OBSERVATION 1. Using the family C, of commutative algebras represented on
the Hilbert space S of solutions, one can recover spacetime as a set of points and
find by the above procedure which points are in causal contact, using the Hermitean
inner product on §.

This observation is of central importance. Before using it to reduce the spectral
data necessary to describe a Lorentzian spacetime, a two connections will be made.

First, from the point of view of differential equations it is not surprising that
the Hermitean inner product on S contains information on the causal structure.
since as mentioned in Example 9 the real part of it is the inverse of the causal
Green's function,

Second, from the point of view of quantum field theory the orthogonality of
classical solutions with Cauchy data locally supported around two points pg, p; has
as its consequence (or. if one wishes. as its origin) the graded commutativity of the
corresponding C*-subalgebras of the local algebra A of observables generated from
S. This is the point where the notion of causality makes contact with Section 3
and with some of the motivations for this work given in Section 1

Now the consequences of Observation 1 will be discussed. First of all. the
family of spectral triples (C,.8.D;) of Section ? contains already all necessary
information about spacetime and no automorphism i~ between the algebras C, and
no lapse function N need to he specified. Indeed. by knowing the geometry of the
Cauchy surfaces T, corresponding to the spectral triples (Cy. 8. Dy) and the causal
structure one can find the normal identifications of points and the normal distances
between infinitesimally close Cauchy surfaces (sce Figure 2.3),

. Thus a large part of the spectral data can be just left out. and the remaining
family of spectral triples gives now a quite efficient description. But it is still
considerably redundant. To sce this is not difficult: If the metric information
contained in the operators Dy is omitted. then the conformal structure of spacetime
is still rigidly fixed. But not all metrics are conformally related, and thus the D,
determining the metric on the Cauchy surfaces cannot be chosen at will but have to
agree with the conformal structure. This means that the spectral data of spacetime
can be further reduced. How this has to be done in a useful way will be left for
consideration in the future. But even without that a conceptual result is appearing:
The spectral data describing a Lorentzian manifold do so in a very efficient way,

This result based on Observation 1 is the main claim of this work,

NoTE 14. Thereis a way of giving less redundant spectral data. if one is willing
to lose metric information and keep just the conformal structure of spacetime, It is
shown in [27] that for building just differential geometry without metric information.
it is sufficient to take. instead of the spectral triple with an unbounded operator
D, the same spectral triple but with D replaced by F = sgn D. the sign of the
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FIGURE 2.3. The geometry of Cauchy surfaces, causal contact and
the geometry of spacetime. The point p, on &, has as its region of
causal contact on £, 4 the disk U(pt+ar) (including its bounding
sphere). The square of the radius of the sphere is the negative of

the square of the normal spacetime distance between the Cauchy

surfaces T;. T4y 41, and the center pypq of the sphere U(pi+ar) is
the point reached by the normal vector n based in Dt

operator D (see Appendix B). This is actually a grading operator on S since
= 1. Thus the spectral triple (C,.$. F}) with a family of grading operators
contains the topological and causal as well as differential geometric information an

spacetime,

NoTE 15. One may wonder where the cfficiency of the spectral data in the
presented description comes from. In the case of the spectral triple A, Connes
argued [27, 28] that most of the information is not in the algebra of the triple,
giving basically just a set of points, nor in the chosen Hermitean operator, fully
described by its spectrum, but in the relationship between them. This explanation
can be used here again: Most of the information in the spectral data is not in the
commutative algebras C; represented on S but in the relationships between them,
Indeed, the strong causal structure is purely a result of this.




Motivated by the need to recover classical spacetime from a theory of quantum
gravity in order to achieve the theory’s physical interpretation, the thesis examines
the possibility of describing classical Lorentzian spacetime manifolds by spectral
data.

Following in Section 3 a naive Hamiltonian approach. the spectral data for a
Lorentzian manifold are specified as a family of A. Connes' spectral triples with a
common Hilbert space and additional structures known from Hamiltonian general
relativity: a family of lapse functions and an identification of Cauchy surfaces
implemented by isomorphisms of the algebras in the spectral triples. This gives a
complete description of spacetime, trivially extended to a free quantum field theory
ol spacetime.

However. in Section 4 it is realized that the spectral description of spacetime
automatically contains unused information on causal relationships. The use of this

o a significant reduction of the spectral data. The family of lapse
dentification of Cauchy surfaces can be completely left out. and
still there is considerable redundancy in the data present. The discovery of the place
of causal relationships in spectral geometry thus leads to a very efficient spectral
description of spacetime. This is the main result of this thesis,

With the result attained here. there are now two well motivated problems of
conceptual importance:

-

- The remaining redundancy in the spectral dara should be removed and the
result put info a useful form ro he recognized as standard,

- The way in which the result may fit into an interpretation of quantum graviry
should be clarified. possibly along the lines of Conjectures 1 and 2

]

Moreaver, there are also many further points of technical nature. to be worked out.
To suggest just one of them as an example. it would be desirable to have a usefully
formulated expression for spacetime distances.

With the insight obtained here. these questions are now open to future inves-
tigations,



APPENDIX A
Spinors

This appendix reviews some aspects of the structure of finite dimensional Clifford
algebras and their representations [36,11,37-40). Unlike the case of tensors, the
structure of spinors is considerably dependent on the dimension and signature of
the manifold considered. For the intended use here, only complex representations
of the real Clifford algebra connected with a Lorentzian metric in four dimensions
are relevant. However, such a restricted view will not provide good insight into the
significance of separate concepts in the theory, Therefore the treatment here will
start out more generally. attempting to trace the origins of the structures used,

1. Overview

Spinors are vectors in the representation space § of the irreducible representa-
tion of a Clifford algebra CI(V.g). Clifford algebras CI(V,g) in turn are generated
from vector spaces 17 with scalar products g (sce Section 2 for deta ).

Taking as the vector space V' the tangent space at a point of a (pseudo-)
Riemannian manifold equipped with the metric g as the scalar product. spinors
gain geometric significance. Spin bundles with the space of spinors S as fibres may
be constructed on vector bundles with scalar products,

This is not entirely trivial since there may bhe topological obstructions to the
existence of a spin bundle over a vector bundle with a scalar product. And once a
spin bundle exists. it is not necessarily unique.The situation is to some extent dealt
with in the following theorem [37):

THEOREM 3. Let E be an oriented vector bundle over a manifold X. Then
there exists on E a spin bundle if and only if the second Stiefel-Whitney cluss
wy(E) vanishes. If wy(E) = 0, then there is a one-to-one correspondence between
the spin bundles existing on X and the elements of HY(X: Zy). the first cohomology
group of X with values in the group Z-.

The point of view so far presented was that spinors are the result of providing a
vector space V" with a specific algebraic structure, namely extending it to the Clif-
ford algebra C1(V'. g). There is. however, another, group theoretical. approach: The
presence of a metric on the vector space 1 determines the symietry groups O(V. g).
S0(V. g). None of these groups is simply connected, and they have nontrivial (sim-
ply connected) covers denoted Pin(V,g), Spin(V,g). Now these covering groups
are easily realized as subgroups of the inner automorphisms of the Clifford algebra
CI(V.g). Just for a more definite idea, the definitions are given and supplemented
by a theorem [37] describing the covering homomorphisms:

DEFNITION 11. The subgroups Pin(V,g) and Spin(V, g) of the inner auto-
morphism group of the Clifford algebra CI(V, g) are defined by

29
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E~1
=

Pin(Vig) = {vivz..v, € CU(V, g) | v1. vg.00y v € V, g(wp, v) = +1}
Spin(V,g) = {v1ve..v, € CYV,g) | 1. V90 vy € V with r even, g(vg, v ) = %1}
THEOREM 4. Let g be a nondegenerate scalar product on the vector space V7,

Then the following sequences are ezact:

(56) 1 —— F — Pin(1, g) —24s O(V, g) —1

1 ——= F — Spin(V’ g) %> SO(V, g) — 1

2= {=1.+1} ifV is a real vector space.

B

where F =

[

a=A{El. i} if Vis a complex vector spuce.

and the homomorphist Ad is given by

o o € Pin(17.9)
(57) Ady(v) = a(é)vo™" with { ¢ eV
a(tiety) = (=1)"t1..00

This means that spinors can be regarded as elements of the representation space
S of the representations of the covers Pin(1 19). Spin(V.g) of O(V,g). SO(V.g).
This approach is actually more general. since it works also for vector spaces without
a metric: The general linear group GL(17) is not simply connected and has a cover
EZ(V) [41]. For spinor bundles of this type only a manifold structure is nec SSALY
and there is no need for a metrice. Its disadvantage is that, while Spin(1.g) and
Pin(V. g) have for finite dimensional vector spaces 17 finite dimensional represen-
tations. the covering group Ei(\‘) of GL(17) has ouly infinite dimensional ones.
Despire this difficulty it would be interesting to try to see an explicit replacement
of usual spinors by these ones,

The need for a fixed metric in the definition of spinors causes trouble in theo-
ries including a variational principle for gravity. since variations of the metric have
consequences that are difficult to control. This is usually improved by choosing a
vector bundle isomorphic to the tangent bundle with a fixed metric which is used
to construct spinors and transported to the tangent bundle by a particular isomor-
phism. This isomorphism is often called a soldering form or (in the 4-dimensional
case) tetrad and replaces the metric as a dynamical variable [39.42). It can then
be varied without disturbing the spin structure.

In the cases considered lere a fixed metric will be assumed. and therefore it
will be sufficient to use the first approach con

sidered in which Clifford algebras and
their representations play a central role.

The next section defines Clifford algebras and examines their basic structures.
especially the main automorphism. and the main antiautomorphism, the main con-
Jugation. Classification results for complex and real Clifford algebras are given,

The third section deals with the irreducible representations of Clifford alge-

bras, the spin representations. In general. irreducible representations of simple
algebras equipped with an antiautomorphism provide their representation space
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with an inner product that is symmetric or antisymmetric if the antiautomorphism
is involutive. The obvious choice in the case of a Clifford algebra is the main
antiautomorphism.

Moreover, if complex representations of real Clifford algebras are considered.
there is a canonical antiautomorphism on the representation space § called the
charge conjugation. Since for a real Clifford algebra a complex representation gives
more expressive power than is necessary. the representation can be viewed in a
simplified way using the charge conjugation. The charge conjugation either breaks
the complex representation down to two copies of a real representation by providing
a real structure or forces the complex-linear endomorphisms of the representation
to be actually quaternionic-linear.

A combination of the canonical inner product and of the charge conjuga-
tion gives then the Hermitean Dirac product appearing in the Lagrangian for free
fermions.

2. Clifford Algebras

The Clifford algebra CI(V. g) is obtained by providing the vector space V* with
a multiplication, the Clifford multiplication, produced from the scalar product g by
an anticommutation relation. The Clifford multiplication does not preserve 1" and
is thus defined in the form of a map from V into a unital associative algebra:

THEOREM 5. Let f be a linear map from the vector space V with a scalur
product g to a unital associative algebra A,

F:V—= A,

Then. f is called a Clifford map if it salisfies:

(38) S = gle o)L forall v €V,

NoTE 16. It follows by linearity that the anticommutation relation

(59) JO)F(e)+ f(e)flu) = 2g(u.e)1

is satisfied for all u.v € 1", As long as the scalar product is nondegenerate. the
Clifford map is necessarily injective, and one can identify the vector space 1 with
its image in the algebra. Assuming from now on the nondegeneracy of the sealar
product one can write the anticornmutation relation (59} in the form:

(60) . ur 4 ve = 2g(u,v)1

Given V', g, there are many Clifford maps into different algebras. However.
there is a special one:

DEFINITION 12. An algebra together with a Clifford map into it from the vec-
tor space 17 is the Clifford algebra of 1 and denoted by CI(V.,g) with the Clifford
map 7 if it satisfies the following universal mapping property: ‘

For each Clifford map f: 1" — A there exists a unique algebra homomorphism
h such that the diagram
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(61) v —= CI(V, g)
s lh
A

is commutative,

The existence of the Clifford algebra can be shown Ly a tensar algebra con-
struction [11]. It follows from the universal mapping property that the Clifford

algebra is unique up to isomorphisms (for the uniqueness of universals see [43]).

NoTE 17. It will later turn out that the Clifford algebras CI(1',g) by them-
selves are mostly rather boring. It is the Clifford map 7 that makes them interesting.
It is an important part of the definition of this universal.

The universality of the Clifford algebra ensures immediately the existence of
several important structures:

The main automorphism. Each linear isometric map & from vector space
¥ oto V',

h:V =1
induces a unique algebra map
61 : CUV.g) — CI(V". ).

sintce 5 o i is a Clifford map. and by the universal mapping property there exists
a unique algebra homomorphism 8, making the following diagramn commutative:

(62) " —s CIT )
e I
h ’\\‘ 14,

5 eh Y ¥

1 CI1 )

It partieular this is true for all isonietries of the vector space 1, whiere now ¢,
i5 an algebra automorphism of the Clifford algebra Cl(V.g) for each h € O(17y).
These automorphising are called Bogoljubov automorphisius, The map # is a lio-

momorphism of groups:
{G3) 6:0(V.g) = Aut(CI(1.g)).

where Aut(CI(V. g)) is the automorphism group of CI(V.g).
The most important of them. induced by the isometry —id: v — ¢ forall v e
V7 is the main automorphism, denoted by a:

(G4) a=f_;
Since —id o —id = id. the main automorphism satistes;:

(63) noa =1,
and determines thus a grading on Cl(V.g) which will play an importaut role later
in the analysis of the structure of Clifford algebras. :

The main antiautomorphism. Consider the canonical antiautomorphism id

from CI(V g) to its opposite algebra CI(V g)°. CI(V.g)° is identical to CI(V. g) as
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a vector space, only the multiplication is reversed. Due to the symmetry of the anti-
commutation relations (60) the composition idoy : V — CI(V,g)° is a Clifford map,
and thus by the universal mapping property there exists a unique automorphism
B : CYV.g) — CI(V,g)° making the following diagram commutative:

(66) V —> CI(V,9q)
|
idll A
idoy .
Cl(V,g)°

One may interpret § as an antiautomorphism of CI(V,g). This is the main anti-
automorphism. It will play a key role later in providing an inner praduct on the
space of spinors.

The main conjugation. If V" is a real vector space with a scalar product g
and CI(V, g) its complex Clifford algebra, then the conjugate algebra, CI(V, g) is
identical with C1(V,g) as a ring but conjugate with respect to scalar multiplica-
tion. If 7d is the identification of CI(V.g) and CI(V,g) as rings, then id o +is a
Clifford map. and by the universal mapping property there exists a unique alge-
bra homomorphism « from Cl(V,g) onto CI(Vg) making the following diagram
commutative:

(67) " —3 Cl(V.g)
|
Cl(1.y)

The map & can be interpreted as an antilinear ring automorphism. This is the main
conjugation. It will later be implemented in the spin representation by the charge

conjugation.
The main conjugation & and the main antiautomorphism 3 commute and their

composition
(68) *x=rod=730k
is the main involution.

This completes the collection of important structures on a Clifford algebra. It
was obtained relatively easily from the universal mapping property.

The structure of Clifford algebras. The main automorphism a provides a
canonical grading on CI(V,g). The Clifford algebra can then be decomposed into
its even and odd parts Cly(V.g) and ClL(V,g):

(69) Cl(V.g) = Clo(V.g) & CLi(Vi9)

with Clo(V.g) being an algebra. The projections Py. P, for the even and odd
subspace are

Bond [ =t

(70) Pu=‘})'(1+a). B = =(1~=a).

¥ is an odd subspace of CI(V,g) since on it al,. = —id|,..
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It is easily seen [11,38] that the Clifford algebra CI(V, g) of an n-dimensional
space V' is as a vector space isomorphic to the Grassmanian AV of V and thus 2"-
dimensional. A basis in CI(1, g) is casily given: Let vy, vy, ..., v be an orthonormal
system in V" with respect to the scalar product g. Then a basis is the set

(71) {ii{;h,’g”_”,—k} = Vg Vigeeti, [T €02 < < ik?{il.ig,i,i.ik} c {1,25...,12}} .
This is supposed to include
Ug = 1
Of particular importance is the volume element
(?2) N=V{1.2...n} = U1V2...Uy

which is. up to its sign depending on an orientation. independent of the basis s
Depending on whether the vector space V is even or odd dimensional. the volume
clement 7 is even or odd with respect to the grading of CI(V, g) and leads to
substantial struetural differences in the even and odd dimensional case.
Complex Clifford algebras. If 1" is a complex vector space. the correspod-
ing Clifford algebra is isomorphic to a matrix algebra [11]. Denoting by M,, the

algebra of complex n x n-dimensional matrices one has:

(73) ClV ) & M. (D) for dimV” = 2m,
K D = S

Mon (C) = Mam (C)  for dimV" = 2m + 1,

In the even case the Clifford algebras are simple (i.c.. have no nontrivial two-sided

ideal) and eentral {i.e.. with the centre consis ing of the scalars A1, with A € C). In

the odd case the centre is spanned by 1 and 5. and there are two central projections

£(1 £ 1) (assuming that the phiase of i has been cliosen so that 3? = 1. as can in

the complex case always be done). These central projections split CI{17 g) into two

simple central pieces,

Real Clifford algebras. The real case is a bit more complicated. Besides the
dimension n of 1" causing differences. the scalar product g can now have different
signatures. This is expressed in the form of two nonnegative integer indices &, 7 for
q:

(74) T = L T SRS IL NI o YPLL o I I A
for a dual basis »'. ... oF ™ g 1=,

Not only can the signature of gy, not be changed, as in the complex case by a
suitable choice of phase. but also other signs appear with complicated relations to
k.l

The strategy to handle this situation is the following: A case study is necessary
for low dimensional Clifford algebras. and higher dimensional Clifford algebras are
then built from smaller ones,

The fundamental theorem for combining Clifford algebras is the following [30,

38):

THEOREM 6. Let V. W be two real vector spaces with scalar products g, h.
Then there is a natural grading-preserving womorphism of algebras with unity.

FrCV &g h) = CUV, g)ECIIV. h).
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resulting from the Clifford map

(75) f: V& - CIV, g)RCI(IV, h)
(v,w) — v®1 + 10w

NorTE 18. In the theorem, @ is the graded tensor product. The algebra struc-
ture of a graded tensor product of two algebras A, B is given by

(76)  (a1©b1)(aa®by) = (—l)ab’Ba’alagé‘;b,bz,with aj,a; € A and by, bs € B,

Here Oby, Oaa are the Zy-gradings of b;, a;. The proof of Theorem 6 is quite
simple: Omne has only to check that f is a Clifford map, i.e. that Sflu, w)2 =
(9(v.v) + h(w,w)) 1, using the fact that V', TV are odd. The rest follows from tle
universal mapping theorem and inspection of surjectivity for the generators,

A variation on this theorem is less general but very useful for avoiding graded
tensor products by taking care of the grading using the volume element 7 defined
in (72):

THEOREM 7. Let A = ? be the the square of the volume element 3 in an even

dimensional real vector space W with « scalar product h and V' a real vector space
with scalar product g. Then there is a graded isomorphism of algebras with unity,

F:ClV @W,g& h) — CYV.g) & CI(W, h).
resulting from. the Clifford map
Vel - CYTV. g)GCYIF h)
(row) — von+ 12w
NoTE 19. Again onc has for a proof to check that f is a Clifford map and use
the universal mapping property.

The case study of small real Clifford algebras and the combinatorial work of
building larger ones can be found in [38]. Here, only the final results will be stated.
using the shorthand CI(k.1) = CI(V, gi ).

The real Clifford algebras satisfy the periodicity property:
(77) Cl(k +8.1) = Cl(k.l1+ 8) = Cl(k.1) & M5(R)
It is thercfore sufficient to find the Clifford algebras for k.1 € {0, 1. .... 7}. This set
of 8 x 8 algebras is called the spinorial chesshoard [38] and is particularly important
in the representation theory of real Clifford algebra which also exhibits a periodicity
of mod 8.

A further reduction of the spinorial chesshoard is possible:
(78) CI(k+m.+m)= Cl{k, 1) & Mym(R) for k+1> 1.

Thus it is necessary to know only CI(1,1) and the zeroth line and the zeroth row
on the spinorial chessboard. This can be tabulated as follows [38]:

(79) , Cl(1,1) = A,.
(80) Cl(l/, 0) = -’1,/ @M2¢}(u—n‘,)(R)'
(81) Cl(0.8 - v)=A, ®M,,_ 114, (),

where
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v | 0 1 3 3 'l 5 [6]7
(82) Ay | Ma(R) I R&GR | Mp(R) | M(C) | My(H) |HoH |H| C
n, | 2 1 2 3 4 3 271

NoTE 20. The algebra H is the algebra of quaternions generated as a real
unital algebra by two elements 7, j satisfying
(83) ij+ji=0, it =1, j?= -1,

This completes the classification of finite Clifford algebras.

3. Representations of Clifford algebras
Algebras and their representations. The important features of representi-
tions of Clifford algebras have a deeper root in the general representation theory of
algebras, Therefore. some of its simple but fundamental definitions and theoreins
are recalled here first.

DEFINITION 13. The centre of an algebra A over a field & is the subalgebra
Z(A) of the clements in A commuting with all elements of A. An algebra A is
itral if Z{A) = A,

NoTE 21. The ficlds of interest here are A = B and LN=C

cer

DEFINITION 14, An algebra A is simple if it has no two-sided jdeal except A
and {0}.

ExaMPLE 17. The matrix algebras of real numbers or quaternions. M, (R)aud
M, (H) are central and simple as R-algebras. The complex matrix algebra M, ()
is central and simple as a C-algebra but fails to be so as an R-algebra since its centre
is 2-ditmensional in R. namely C. In this connection the following isomorphisius of

algebras
{84) M, (R)z M, (E)=M,,,(F)
(85) Muy(L)y=LzZM,(R) for L =R.C.H.

are quite useful as well as the fact [44] that the tensor product of a simple algebra
and a central simple algebra is simple.

DEFINITION 15. A representation of an algebra A over the field A is a lo-
momorphism 4 from A into the algebra of operators on a vector space 5, the
representalion space,

4:A—Endy$§
The representation is fazthful if it is injective. A subspace of the representation
space § is invariant if it is closed under the action of the representation, The
representation is irreducible if there is no invariant subspace of 5 apart from § and
{0}.

REMARK 1. The restriction of a representation to an invariant subspace is a
representation.

Each algebra A has the reqular representation on itself, given by left multipli-
cation. In this case § = A;

(86) e =ab forae Abe S=A.
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If A is unital then this representation is faithful. If A is simple, finite dimensional
and nonzero then the regular representation must contain a nonzero minimal in-
variant subspace. The restriction to this subspace is clearly a nontrivial irreducible
representation,

Two representations v, : A — Endg 5, 75 : A — End w5y of an algebra A
may be connected by an intertwining transformation, i.e. a linear map F : 8] — 8,
satisfying

(87) Fyi(a) = v (a)F foralla € A.

If F is bijective, then the representations 41,7, are said to be equivalent,
The subspaces ker F' C S1, F(S)) C S, are invariant spaces of 71,72 and thus
one has

Scuunr’s LEMMA. Let F 1 8y — 5y be a nonzero intertwining transformation
between two representations yy,72 of the algebra A on Sy, S;. Then the following
holds:

If 1 is drreducible, then F is injective.

If 72 is irreducible, then F is surjective.

If y1,72 are irreducible, then F is bijective.

COROLLARY 8. In particular. if % (= = = y2) is irreducible then all operalors
F commuting with v(A) (i.e. all elements of the commutant A’ of A) and nonzero
are intertwining and thus invertible.

If the represeritation is complez and finite. then each of these operators F has
at least one nonzero eigenvalue A and must then be automalically equal to A1 since
F — A1 is not invertible and thus necessarily zero.

CoRroLLARY 9. Two nonzero intertwining transformations F.G between two
irreducible representations 4.y must be proportional by an invertible oJicFalor in
the corresponding commutant. Indeed. G'F and FG™! satisfy:

(88) GSIF"‘” = jjg_iF F§=l‘,;§ = "’,;&Fj'-]

If the representations 5.4, are complez. then one has from Corollary 8 that the
nonzero intertwining transformation is unique up to multiplication by a compler
number:
(89) F=AG for some nonzero A € C

THEOREM 10. Let A be a finite dimensional and simple algebra, Then all its
faithful irreducible representations are cquivalent.

PRrooF. Unless A = 0. there exists a nonzero minimal invariant subspace B
in the regular representation of A providing an irreducible representation g of A.
It is now easy to show that any faithful irreducible representation 7:A — 5 must
be equivalent to it. Since v is faithful. there exists a vector v € Sandbe B c A
such that by # 0 and an intertwining operator can then be given by
(90) F:B- S
(91) b= (b))

The equivalence then follows from Schur’s lemma. O
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Theorem 10 is of great importance to Clifford algebras, since they are either
simple or a sum of two simple parts, as can be verified with the help of Example 17
by checking the classification results on Clifford algebras from the previous section.

There are two consequences,

First, it is not strictly necessary to distinguish between the faithful irreducible
representations of a simple part of a Clifford algebra since all of them are isomorphic.
This partially justifies the historically determined use of the same symbol v for
both the Clifford map of a Clifford algebra and for its representation. In the cases
in which the Clifford algebras have two inequivalent representations, they will be
distinguished as ., yg, with L, R standing for left-handed and right-handed.

Second, Theorem 10 allows one to play a game similar to the one played with
the universal mapping property in Section 2: If one can from an irreducible rep-
resentation, using some of its particular features, construct a second one, then
Theorem 10 automatically ensures an intertwining transformation and Corollary 9
shows its uniqueness up to au clement in the commutant of the representation. All
important structures. including the Dirac produets and the charge conjugation. are
produced in this way.

It is now appropriate to consider the particular constructions. Since only com-
plex represcentations of real Clifford algebras have a charge conjugation and ouly
those will be of physical interest. the discussion will be from now on restricted to
the case of complex representations of real algebras.

Inner products on spinors. Let A be finite simple algebra with a faithful
irreducible representation v : A — EndS. Then an antiautomorphism 3 on A
determines an irreducible representation 3 on the dual S° of § by

(92) Z:A — EndS”
(93) a = (3a))”

with T denoting the transposition. i.c.. the action induced on the dual 5°. The
representations 5. 4 are intertwined by an isomorphisin B (determined up to the
multiplication by a nonvauishing complex nunber):

(94) B:S5— 8"
(95) i(a)B = B(a)

That is.

(96) ~(3(a))' B = B (a) for all v € A.

B is a nondegenerate inner product (2-form on S). The intertwining relarion
for its inverse is
(97) B7'5(3(a)) = 4(a)B™'  foralla € A,

The following short calculation shows, using the intertwining relations, that if 3 is
involutive, i.c., if 3% = 1. then B~'B7 is in the commutant of the representation
oE

(98) ¥(a)B™'BT = B~'5(3(a))" BT = B=}(Bv(3(a)))" =

(99) = B~'BT4(j%)
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Assuming the representations to be complex, Corollary 8 ensures that

(100) B~1BT = a1 for some nonzero A € C.

Together with the identity (BT)T = B this results in:

(101) BT = +B

The inner product B is thus either symmetric or antisymmmetric. Which of these
possibility occurs depends on the particular algebra.

All of the above applies strictly to Clifford algebras Cl(k,1) with k + [ = 2m
even only, since those are central and simple. In this case it is relatively easy to
decide the type of symmetry of B,

First, a complex irreducible representation of a central simple Clifford algebra
extends in an obvious way to its complexification

Cl{(2m) = C g CI(k.1).

The symmetry type of B cannot be affected by that and depends thus on the total

dimension 2m = k +1 only.
Second. by transposition and insertion of 1 = B~! B one obtains from (95):

(102) (BTB™) By(f(a)) = (,Bj(a))T for all « € CY{(2mn).

Taking the basis vy in C1(2m) with I C {1,2,...,2m} (sec (71)) . the action o the
main antiautomorphism 4 on it is. using the the defining property of the Clifford
map, given by:

o glg=11
(103) 3y, l-‘,‘.ﬂ,...l!iq) =(~1) 7, Uig.oali,
So Cl(2m) decomposes as a vector space into

(104) Cl(2m) = C1*(2m) = CI™ (2m).
witl CI*(2m)spanned by {v; | 3(vy) = v/}
Witl) e s . -
C1™(2m)spanned by {v; | 3(v;) = =v;}.
If it is now assumed that B is symmetric. then BTB~7 = 1. and (102) gives

- . . symmetric for a € Cl*Y(2m),
(105) B symmetric =  B~(a) is { : e € (2m)

antisymmetric for a € C17(2m).

If it is now assumed that B is antisymmetric, then BYB~1 = —1, and (102)
gives
symmetric for ¢ € C17(2m).

106) B antisymmetric = B~(a) is . ) ,
(106) ) 2(a) antisymmetric for « € C1¥(2m).

Due to the faithfulness of the representation v, the nondegeneracy of B and
the same dimension of C1(2m) 2 M, and the space 5° @ 5, the map

(107) By:Cl2m)—= 5" 5"

the space of antisymmetric forms. In view of (105) and (106). it is then sufficient
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to know the dimensions of C1*(2m) and C17(2m) in order to find the symmetry

type of B. That reduces to a purely combinatorial calculation:
7 N .  omim=1)
(108) BTB™' = sgn (dim CI* - dim C17) = (=1)™%",
So the inner product B on spinors for the signature (k, 1) satisfies
) T ikljtkti=g)
(109) B' = (-1) A B,

Charge conjugation. Given a complex representation 7 of areal algebra A on
S5, one can obtain a new representation 5 on the complex conjugate space 5 of S just
by complex conjugation. Similar to the previous, an intertwining transformation
C, the charge conjugation, can be found. More precisely, the following theorem
holds [38]:

THEOREM 11. Let v : A — EndS be a compler faithful and irreducible rep-
resentation of a central simple real algebra. Then there ezists a compler-tinear

isomorphism C': § — § which intertwines the representations ~. 5, giving
(110) 5(a)C = C(a).

and is such that

(111) either C'C' = id or CC = —id.

Moreover, if A has an involutive anticutomorphism 3. then the isomorphisin B :
5 — 8§ intertwining +. 5 can be chosen so that the linear map

(112) A=BC:5—§

is Hermitean.

[t

Notk 22. The centrality of A is required in order to ensure the simplicity of
the complexification C = A of A. The conditions {111} are obtained from (110)
and its complex conjugate by showing that €'C' is in the commutant of 5 and by »
proper scaling of C'. The hermiticity of 4 is ensured by a proper choice of a phase:
B by itself is determined uniquely up to multiplication by a complex number,

If C'C = +1. then the complex representation can he split into two isomorphic
real ones on spaces 5%, 5§~

(113) 5=

{ves|v==Cu)

The isomorphisin between St and 5 is given by multiplication by /.
If CC = -1, then thereis a quaternionic structure on S (see Note 20) generated
from the imaginary unit i and from j defined as

(114) jv=Cuv  forallves.

It follows from the classification of Clifford algebras (see Table 82) that

(115)

CC = +1 fork=1=0 mod8ork—-1!=2 modS§
=1 fork—1=4 mod8ork—1 6 mod$§

Helicity (Chirality). The two above constructions apply in particular to
complex representations of Clifford algebras Cl(k.1) with & + 1 even. but are of
quite general nature. There is. in the same spirit. a third construction using the
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main automorphism a specific to Clifford algebras. Composing an irreducible rep-

resentation of a simple Clifford algebra with the main automorphism a. a new
representation 4° is obtained:

(116) ~°: Cl(k,1) — End§
a — y(a(a))

This representation is intertwined with the initial one by the operator I', the helicity
(chirality) operator:

(117) v°(a) = Ty(a)l~! for all a € CI(k, 1).

Composing the representation v with the main automorphism a twice does not
give a new representation, since a? = id, However, it has the important consequence
that I' can be chosen so that
(118) I'’=1,
hence T~! = T. It also follows from (118) that the helicity operator T provides a
grading on the representation space S, the space of spinors, The splitting of spinors
with respect to the grading I into the direct sum of two subspaces S, §_ is given
by the projectors

(1+T). P.=(1-T)

o |

(119) P, =

For simple Clifford algebras CI(k,1). i.c.. those with k + I even. the representation
of the helicity operator is proportional to the representation of the volume element
(72):

(120) F=+)"1%y with A = 52

This is indeed correct, since » anticommutes with all 7(v) for v in the vector space
V" generating the Clifford algebra:

(121) Tu)v(n) = ~=v(n)(v) forall vel,

and therefore
o o ) 1 1
(122) Ly(e)T = A~ T 5(n) () (A" ) () = $mate)i(n) =

= y(a(v)) forallve V

The result follows by extension from the space 1, since it generates Cl(%.1).

From (121) one has that the helicity operator I' which is proportional to
also anticommutes with 4(a) for odd a € CI(k,I). This means that the grading of
the Clifford algebra given by the main automorphism a is in agreement with the
grading given by the helicity operator T’ which turns the representation 7 into a
graded representation. This can be established in detail using equation (119).

In order to distinguish general spinors in S from the ones in the even and
odd subspaces S, S_. the former are called Dirac spinors and later are called
Weyl spinors (or reduced spinors) of positive or negative helicity (or of right or left
chirality, respectively).



3
5

3. REPRESENTATIONS OF CLIFFORD ALGEBHAS

For the Clifford algebra C1(k,1) the square of the volume element 7 is

(ket¥k—t-1)
2

(123) 7= (-1)
The helicity operator I is then

(124) r= :I:?'(n) fork—-1=0 mod80rk—12§ méé&

xiy(n) fork—-1=2 mod8ork—1!=6 modS8.

Depending on which case occurs, the helicity operator satisfies either

(125) Ic=cr forp? =1

or

(126) -T¢=cr for n* = ~-1.

since equation (110) in the special case of the volume element 5 € Cl(k, 1) gives
(127) ¥mC = Cy(n).

and 1) is proportional to the helicity operator I,

Assuming that the grading in the space § of complex conjugate spinors is given
by the complex conjugate T', Equations (125) and (126) give the isomorphisins
(128) C:5:— 5. for y* =1
(129) C:8:— 53 for n* = -1

Since. as already mentioned in connection with equation (121). the represen-
tation 5 of CI(k.1) is a graded representation on S, the even and odd subspaces
S+ and S of Weyl spinors are preserved under the action of the even subalgebra
Cly(k,1). Thus the restriction of the representation 4 decomposes into two (irre-
ducible) representations. 44 and +_. of Clg(k.1). It follows then from equations
(125). (126) that the isomorphisms (128) and (129} intertwine 54 and +_ with the
complex conjugate representations F+ and 3_:

(130) ¥

Also the commutation relation of the helicity operator I' with the canonical
inner product can be easily established. noting that the volume element 5 (with
7(n) proportional to T') satisfies

-

+C for §° =

H
I
™

~Jt

7=C for n* = =1,

I
()}

(132) 3(n) = (—1)%—[7).
From cquation (96) one has then:
(133) I'"B = (-1) Br

From all this one can see that the helicity (chirality) operator plays a very
important role in the representation theory of Clifford algebras. underpinned later
by the use of one of its important products. the Weyl spinors.

Other structures on spinors. The Dirac products. The strategy for
finding structures on spinors was so far to construct in a new way another irreducible
representation and to obtain an intertwining operator. The ways used to construct
new representations were:

e transposition composed with the main antiautomorphism 3.



transposjtion and
bn with g

compositj

with a

Ficrre ALl
Related spinor representations. The diagram shows by double arrows three ways
of producing out of a representation 5 of a simple Clifford algebra new ones aud is
then filled in with their combinations. Each representation is characterized by its
[Tname. representation space, and Intertwining operator. ] The definitions of the

symbols not mentioned in the text are obvious from the diagram.

* complex conjugation of the representation.

e composition with the main automorphisu.

It is now possible to combine these coustructions. A first e ample of this was the
construction of the Hermitean product A4 on spinors. see Equation 112, It wus a
combination of complex conjugation and transposition. The variety of possibilities
is summarized in Figure 3

Two of the possibilitics will now be considered in detajl:

First, the main automorphism a and the main antiantomorphism 3 commute,
and their composition is an involutive antiautomorphism producing by transposi-
tion a new irreducible representation from the irreducible representation 5. The
intertwining operator E,

(134) E:S— 5",
satisfies
(135) WB3(a(a)"E = E4(a)  forall a € CI(k.1)

that led to equation (101) in the case of the inner product B. From the way it was
constructed, it follows that with suitable choices of scalar factors
(136) E=pT

Second, using all three ways of constructing a new representation at once, i.e.
transposition, complex conjugation and composition with the main automorphisni,
one gets an intertwining operator D
(137) D:5—

and is either a symmetric or an antisymmetric inner product by the same reasoning

Ly

satisfying

(138) 7(B(a(a))"D = D+(a)  for all a € Cl(k.1)
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where + denotes the composition of transposition and conjugation. The operators
E and D are by Corollary 9 not determined uniquely, but only up to the multipli-
cation by a nonzero complex number. Using this freedom, one can, in analogy with

heorem 11 achieve that D is Hermitean and related to E by:

(139) D=EC

The Hermitean products A, D are called Dirac products.

Summary of structures on spinors. Given a complex representation of
a real simple Clifford algebra with Dirac spinors as the representation space, the
following structures can be found:

There are two inner products B, E on the Dirac spinors, Each of them may be
symmetric or antisymmetric.

There is a grading operator T, the helicity operator. splitting Dirac spinors into
Weyl spinors. It may be real or purely imaginary and may commute or anticommute
with B and E.

There is a complex linear charge conjugation map C' from Dirac spinors to the
complex conjugated Dirac spinors. It satisfies CC' =1 or £C = —1.

There are two (Hermitean) Dirac products A and D on the Dj spinors. The
Dirac conjugation D¢ of a spinor ¢ given by the Dirac product D is in the physical
applications denoted by
(140) v = Du,

All the two-valued choices in the properties of B. C'. E and T above depend on
the signature of the scalar product used to generate the Clifford algebra Cl(k.1).
They exhibit in their dependence on the signature a periodicity [38] in each of the
nonnegative integer parameters

k. I with period 8. enforeing thus again the picture
of a spinorial chesshoard as it already appeared in the classification of Clifford
algebras in Section 2.




APPENDIX B
Noncommutative Geometry

1. Introduction

Classical geometry begins with the concept of a point [45]. The points are
the indivisible building blocks of spaces and parts of spaces, the basic objects of
interest. The idea of a space consisting of points has to be given first. It may
then be equipped with further structures, such as coordinates, topology, measure
or smooth structure - they simply come second.

But it is actually these secondary structures that makes a space an object
worth investigating, and thus it is somewhat pleasing to note that these concepts
can exist also on their own. This comes about in the following way: The points of
a space can be organized and described by coordinates, and the coordinates may
be given the structure of a commutative algebra. Once we are given this algebra of
coordinates, we can completely forget about our space and its points and build up
all the structures of intercst on the algebra.

Even the space can now be reconstructed from the algebra if one wishes to
do so, and each commutative algebra gives in this way a space. The statement
of this fact in the case of topological spaces is the fundamental Gel'fand-N aimark
theorem [12]. But then it is not inevitable that the space and its points be the
fundamental objects anvmore. The position of the basic object is now taken by the
algebra of coordinates,

Now one can leap from the above change in our point of view of geometry to
a changed paradigm: The concepts of classical geometry can be translated to alge-
braic concepts. and with the right translation they make sense regardless of whether
the algebra of coordinates is commutative or noncommutative. With topology.
measure theory and differential geometry extended to the vast territory of noncom-
mutative algebras, it is fair to say that almost all the central concepts of classical
geometry are just special manifestations of general algebraic concepts. These are
now expressed in their natural environment and are the sub ject of noncommautative
geomelry,

The manifestations of a paradigm shift are clearly present [46): The old basic
notions become derived objects, the understanding of what is important changes.
some concepts split up, with the results recognized as separate and coinciding in
special cases only. Some problems set entirely in the context of the old framework
become at once easy to solve [27]

An important example of this is the concept of a point. In the context of the
Gel'fand-Naimark theorem, points are understood as the irreducible representations
of the algebra in question. But many noncommutative algebras. among them the
matrix algebras of any dimension, have (up to isomorphism) only one irreducible
representation. They are all just one-point spaces. but their differential caleulus is
far from trivial. The idea of a point is in these cases somewhat usecless,

45
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The splitting of concepts is what makes noncommutative differential geometry
to some degree tricky: The exterior calculus detaches somewhat from ideas around
vector fields and diffeomorphisms, and tangent spaces are no more vector bundles.

In order not to lose orientation, it is useful to set up a dictionary between
classical and noncommutative geometry. From what was said above it is clear that
the dictionary cannot be one to one, and it is not possible to understand fully the
noncommutative entries by looking at their classical counterparts, since the latter
work only for commutative algebras. But that is not the point of the dictionary.
Whoever has worked with the subdictionary between classical and quantuin me-
chanics, found by physicists, should be aware of that. The dictionary is useful, in
one direction, for guessing and remembering the structure of the theory once the
classical counterparts are clear and learned and, in the other direction, in providing
examples and classical interpretations for suitable cases.

The dictionary between classical and honcomimutative geometry may look as
follows:

Topology:
topological space — commutative C'"-algebra
continuous map — algebra homomorplism
homeomorphism -— algebra automorphismn
open subset —_— ideal
. point —_— irreducible representation
closed subset —_ quorient
open dense subset —_— essential ideal
one-point compactification — unitization
connected —_— without (central) projections
metrizable —_— separable
vector bundle — finite projective module
K-theory —_— algebraic K-theory

Measure theory:

measure — positive linear functional
algebra of L™-functions — von Neumann algebra
Radou derivative — modular operator
equivalence of measures —_— equivalence of GNS-represeutations
Differential geometry:
forms — Hochschild homology
currents — Hochschild colhiomology
de Rham complex — Cyclic coliomology
elliptic operator — Fredholm module
Other:
Semigroup — Bialgebra

Group — Hopf algebra (Quantum group)
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It should be noted that, while the dictionary is straightforward, it also may
be a bit confusing. E.g., in the first entry of our dictionary, we have a topological
space as being the counterpart of an algebra. But the algebra does not correspond
to the space directly, but to the space of functions on that (non-existent, in the
noncommutative case) space. So the first entry should rather be:

continuous functions on a topological space «—— commutative C"-algebra

However that would force one into clumsy terminology or into the definition of
new names for dual concepts (as in the case of quantum groups).

2. C*-Algebras

This part is a short introduction to C*-algebras (For more detail see e.g. [47,
12]). Their importance is that C-=-algebras play in noncommutative geometry the
role of topological spaces and thus one can view this section to some degree as an
introduction into the basics of general topology.

A Cr-algebra A is a complex associative algebra with an involution (e)" and
with a special norm || e || in which A is complete,

That A is a complex algebra means that it is a complex vector space together
with a multiplication m : A x A — A between vectors:

(141) ab:= m(a.b) fora.b e A.

The multiplication is required to be distributive:

(142) (ra+ vb)e = p(ac) + v(bc),
(143) c(pa + vb) = p(ca) + v(cb),
for a,b.c € A and u.v € C.
An associative algebra satisfies moreover
(144) (ab)c = a(bc)
for a,b.c € A.

The involution ()" is defined by the following properties:

(145) (aa)" =ava",
(146) (a+b) " =a"+b",
(147) (ab)” = b"a"
(148) (a*)" = a.

fora,b.c€ Aanda,a" €C
A norm || o || on an algebra A is a norm on A as a vector space satisfying

moreover

(149) lab | <llalll b |.
(150) hal=llal.
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A norm complete algebra with all the above structures is called a Banach
algebra. Among them the C™-algebras are distinguished by the C*-equation:

(151) laall={lal?

This completes the definition of a C*-algebra.

The C*-equation is very restrictive and has several important consequence:

The topology of the C*-algebra is determined uniquely by its algebraic structure
and the involution.

*-homomorphisms, i.c.. mappings from one C*-algebra to another preserving
the algebraic structure and the involution, are necessarily norm decreasing. *-
isomorphisms are necessarily norm preserving.

There is a particularly simple representation theory, and one can show (using
the Gel'fand-Naimark-Segal or GNS construction [12]) that each C-algebra (A) is
isomorphic to a subalgebra A of the bounded operators B( ) on a Hilbert space
The norm || e || is then just the operator norm, and the star operation is given by
the adjoint operation on operators.

ExXAMPLE 18. Each subalgebra of operators B( ) on a Hilbert space . com-
plete in the norm topology and closed under taking adjoints, is a C--algebra.

This could actually be taken as an alternative and more concrete definition
of C=-algebras. since, as mentioned above, each C--algebra is isomorplic to an
operator algebra of this kind. However, from a structural point of view it is more
convenient to adopt the more abstract approach.

EXAMPLE 19. The continuous complex functions on a locally compact Haus-
dorff space X. vanishing at infinity and equipped with point by point addition.
multiplication. multiplication by scalars and involution and with tlhe supremuin
topology form a commutative C*-algebra.

Example 19 gives actually the general commutative case as srated by the
Gel'fand-Naimark theorem [48.12). In order to give a formulation of this funda-
mental theorem which justifies the claim that C'*-algebras play in noncommutative
geometry the role of ropological spaces. the following definition is given:

DEFINITION 16. Let A be a commutative C*-algebra. A character « of A is a
nonzero linear map ' : A — C such that

(152) w(ab) = w(a)w(b)

GEL'FAND-NAIMARK THEOREM. Let A be a commutative C™-algebra and X
the set of characters of A equipped with the weak” topology inherited from the dual
AT of A. It follows that X is a locally compact Hausdorff space which is compact
if and only if A contains the identity. Moreover, A is isomorphic to the alyebru
C(X) of continuous functions over X which vanish at infinity.

The relationship between C'*-algebras and topological Hausdorff spaces can be
used to formulate noncommutative algebraic topology. in particular algebraic K-
theory (see [49.50]), which fits very well with the classical theory and, as will he
mentioned later, with noncommutative differential geometry.
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The structure of algebras can in general be analysed in terms of homological
algebra. This leads one to Hochschild homology [51], known for a long time.

DEFINITION 17, The Hochschild homology HH. of an algebra A is obtained

from the complex

(153)
e e « N N S L, Cy
with the chains C,, = A @ A®",
b A TR b A —~ AGn—1 b b . b
c— AGA®PT — , AGA AQA — A
and with b being the Hochschild boundary:
n=1
(154) b(ap ®...®a,) = Z QW Q... Qaidit1 G @ ay +(-1)"anto & ... @ ay;.
i=0

A variant of this is the subcomplex of ( 153) consisting of the subspaces C'» of
cyclicly antisymmetrized chains:

(185) .. —2m Cp 2y oA b, b, cp L o) —L g

The homology obtained in this case is the cyclic homology HC'.(a).

One of the main insights of noncommutative geometry now is that the intro-
duced homologies give the right noncommutative version of differential geometry:
Hochschild homology modules should be understood as the modules of differential
forms. and cyclic homology takes the place of deRham homology.

In order to make this precise it is necessary to introduce the modules 0"(A)
of differential forms of a complex commutative unital algebra:

DEFINITION 18. The symmetric module Q(A) of differential forms is gener-
ated by the Clinear symbols

adb witha,be A
with the relations
d(ab) = a(db) + b(da)
The symmetric modules "(A) are then given as
(157) Q"(A)=ALQY(A).
Here A} is the n-th exterior power of Q!(A) over A.

1"(A) can be given the structure of a graded differential algebra. In the case
of A being the algebra of smooth functions on a manifold A7 y Le, A= C(M).
the spaces 2"(A) can be identified with the spaces of forms on the manifold.

There are now two rather nontrivial results relating Hochschild homology to
differential forms and cyclic homology to deRham cochomology contained in the
following Theorems (see, e.g., [52]):
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THEOREM( HGEHSC}'I!iLD!I{GNSTANTERQSENEERG)i For any smooth commuta-
tive complez algebra A, the antisymmetrization map
£.: — HH.
given by

Eﬂ(agdaldﬂg.ﬁdan) = Z sgno a @ty oy, @... @ ag,
a
(with o the permutations of ( 1,2,...,n)) is an isomorphism of graded algebras,
THEOREM 12. If A is a smooth complez commutative algebra, then there is o
canonical isomorphism

HCn(A) = mfi"_%% D HPF(A)@ HpR (A) S ...

with Hp,n(A) being the deRham cohomology of A. The last summand is H)p(A)
or Hpp(A) depending on n being even or odd.

NoTe 23. The proofs of these theorems can be found. e.g., in [52]. Smooth-
ness and the deRham cohomology can be defined algebraically (see [52]). but it is
sufficient here to know that these notions agree for an algebra of smooth functions
C*(M) on a manifold M with the ones used in classical differential geometry.

The above theorems are a clear sign of the suggested relationship between
homological algebra and differential geometry. They are, however, not the only
one but supplemented by various other results indicating the same. Particularly,
A. Connes showed [53.27] that it is possible to extend the Chern character to
noncommutative geometry as a map from (algebraic) K-theory to cyclic homology.

This means that at least in some aspects algebraic topology and differential
geometry are found to be compatible which enhances both of them,

Detailed accounts on the relationship hetween differential geometry and Hoch-
schild and cyclic homology can be found in [52,54) and to some extent in [33]. A

dual formulation in terms of Hochschild cohomology and cyclic cohomology is given
in [53,27,56). There are also shorter accounts. e.g. [57-59)

4. Noncommutative differential calculus.

The noncommutative differential calculus of Section 3 can be provided with an
integration implemented by the choice of a cyclic cocycle of the algebra A [53, 27].
It turns out that the structure thus obtained can be particularly given in a quite
compact form: The algebra A is to be represented on a Hilbert space, the differen-
tials are in agreement with insight from quantum mechanics given by commutators
with a Hermitean operator F. and the integration is determined by a variation of
the trace, the Dixmier trace [60]. A substantiaj part of this is summarized in the
notion of a Fredholin module [53.27] originating in the works of M. Atiyah [61]. A.
S. Mishchenko [62], L. G. Brown, R. G. Douglas and P. A. Fillmore [63] and G.
Kasparov [64).

DEFINITION 19. Let A be an involutive complex algebra. Then a Fredholm
module over A is given by

1. an involutive representation 7 of A in a Hilbert space H;
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2. an operator F = F*, F? = 1 on 'H such that
[F,7(a)] is a compact operator for any a € A

A Fredholm module is called even if it is given together with a Zy-grading operator
7, ¥ =", 7% = 1 on the Hilbert space H such that

1. yw(a) = n(a)y foralla € A

2. yF=~Fy
Otherwise the Fredholm module is called odd.

For the definition and properties of the Dixmier trace which supplements Def-
inition 19, see [53,65,27]. All that takes the place of the differential calculus in
the noncommutative case with infinitesimals given by compact operators with their
order determined by the asymptotic behavior of their spectrum (see [27]).

It was realized by A. Connes that the differential geometric information in a
Fredholm module can be nicely extended to contain also metric information by
replacing the grading operator F by an unbounded Hermitean operator D with
F = sgn D being the (unitary) sign of D in its polar decomposition and with the
metric information contained in | D |= (D'D)%. The resulting structure is the
spectral triple of Section 2 which now can be seen to be rooted in the fundamentals
of noncommutative geometry.
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