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Abstract

In recent years� numerous new backtracking algorithms have been proposed� The
algorithms are usually evaluated by empirical testing� This method� however� has
its limitations� Our thesis adopts a di�erent� purely theoretical approach� which is
based on characterizations of the sets of search tree nodes visited by the backtrack�
ing algorithms� A new notion of inconsistency between instantiations and variables
is introduced� a useful tool for describing such well�known concepts as backtrack�
backjump� and domain annihilation� The characterizations enable us to� 	a
 prove
the correctness of the algorithms� and 	b
 partially order the algorithms according to
two standard performance measures� the number of visited nodes� and the number
of performed consistency checks� Among other results� we prove� for the �rst time�
the correctness of Backjumping and Con�ict�Directed Backjumping� and show that
Forward Checking never visits more nodes than Backjumping� Our approach leads
us also to propose a modi�cation to two hybrid backtracking algorithms� Backmark�
ing with Backjumping 	BMJ
 and Backmarking with Con�ict�Directed Backjumping
	BM�CBJ
� so that they always perform less consistency checks than the original
algorithms�
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Chapter �

Introduction

Constraint�based reasoning is a simple� yet powerful paradigm in which many interest�
ing problems can be formulated� A constraint network is de�ned by a set of variables�
a domain of values for each variable� and a set of constraints between the variables�
The area of constraint�based reasoning has received a lot of attention recently� and
numerous methods for dealing with constraint networks have been developed� The
applications of constraint networks include graph coloring� scene labelling� natural
language parsing� and temporal reasoning�
Constraint networks can be solved using backtracking search� The generic back�

tracking algorithm was �rst described more than a century ago� and since then has
been re�discovered many times ���� In recent years� numerous new backtracking al�
gorithms have been proposed� The basic ones include Backjumping ���� Con�ict�
Directed Backjumping ���� Graph�Based Backjumping ���� Backmarking ���� and
Forward Checking ����� Several hybrid algorithms� which combine two or more basic
algorithms� have also been developed ��� ����
A question arises as to which of the known backtracking algorithms is the best

one� There is no straightforward answer� First� the performance of backtracking algo�
rithms depends heavily on the problem being solved� Often� it is possible to construct
examples of constraint networks on which an apparently very e�cient algorithm is
outperformed by the most basic chronological backtracking� Second� it is not obvious
what measure should be employed for the purpose of comparison� Run time is not
a very reliable measure because it depends on hardware and implementation� and
so cannot be easily reproduced� Besides� the cost of performing consistency checks
	checks which verify that the current instantiations of two variables satisfy the con�
straints
 cannot be determined in abstraction from a concrete problem� The number
of consistency checks seems to be a more legitimate measure of the e�ciency of a
backtracking algorithm� although it neglects the �overhead� costs incurred by main�
taining sophisticated data structures� Another standard measure is the number of
nodes in the backtrack tree generated by an algorithm�
Prosser� in his landmark technical report� ����� presents nine backtracking algo�

�It has also appeared recently as a journal article �����
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rithms in a uniform notation� thus facilitating their comparison� Prosser performed a
series of experiments to evaluate the algorithms against each other� Table ��� shows
how often one algorithm performed less consistency checks than another over ���
instances of the zebra problem� a well�known benchmarking problem� The entries
containing zeros are especially interesting because they may indicate that one algo�
rithm is always better than another� However� such a hypothesis can never be veri�ed
solely by experimentation� the relationship has to be proven theoretically� In fact�
in the following chapters� it will be shown that some of the zero entries indicate a
general rule� whereas other do not�

BT BJ CBJ BM BMJ BM�CBJ FC FC�BJ FC�CBJ
BT � � � � � � � � �

BJ ��� � � ��� � � � � �

CBJ ��� ��� � ��� �� � ��� �� �
BM ��� �� � � ��  �� � �
BMJ ��� ��� ��� ��� � �� �� � �

BM�CBJ ��� ��� ��� ��� ��� � �� ��� ��
FC ��� ��� ��� ��� ��� ��� � � �

FC�BJ ��� ��� ��� ��� ��� ��� �� � �

FC�CBJ ��� ��� ��� �� ��� ��� ��� � �

Table ���� How often one algorithm bettered another �����

In this work we adopt a purely theoretical approach� We analyze several back�
tracking algorithms with the purpose of discovering general rules that determine their
behaviour� A new notion of inconsistency between instantiations and variables is in�
troduced� a useful tool for describing such well�known concepts as backtrack� back�
jump� and domain annihilation� For every algorithm we attempt to formulate the
necessary and su�cient conditions for a search tree node to be visited by the algo�
rithm� Sometimes both conditions are the same� which gives us a complete charac�
terization of the set of visited nodes� More often we have to make do with a partial
characterization� which leaves out a �grey zone� of nodes that may or may not be
visited by the algorithm�
The characterizing conditions enable us to� 	a
 prove the correctness of the algo�

rithms� and 	b
 construct partial orders 	or hierarchies
 of the algorithms according
to standard performance measures� Among other results� we prove� for the �rst time�
the correctness of Backjumping and Con�ict�Directed Backjumping� and show that
Forward Checking never visits more nodes than Backjumping�
The proofs are independent of the implementation method� We do not prove

the correctness of every backtracking algorithm discussed in this work� but rather
present a methodology which can be applied to any backtracking algorithm� All proofs
presented here are original� We hope that� apart from demonstrating correctness� our



�

new approach will provide a deeper understanding of how the algorithms work� Such
insight may result in less time spent on the implementation and debugging of the
algorithms�
Hierarchies may be useful to anyone who is faced with a choice of a backtracking

algorithm� With so many backtracking algorithms around� it is di�cult to implement
and test all of them� The hierarchies make the selection of the right algorithm easier
once it has been established what one�s priorities are� For example� someone may
be interested solely in reducing the number of consistency checks� while for someone
else the complexity of the code may be the main factor� We present two hierarchies�
one orders the algorithms according to the number of visited nodes� and the other
according to the number of performed consistency checks�
The need for hierarchies has been recognized before� Nudel ���� gives a ranking

of some backtracking algorithms based on the average�case performance reported by
Haralick ����� Prosser ���� orders nine backtracking algorithms according to their
average�case performance on ��� instances of the zebra problem� However� such
an approach is open to the criticism that the test problems are not representative
of the problems that arise in practice�� Even a theoretical average�case analysis is
possible only if one makes simplifying assumptions about the distribution of problems�
In contrast� our hierarchies are valid for all instances of all constraint satisfaction
problems�
In the conclusion of his paper which presented the new hybrid backtracking algo�

rithms� Prosser posed the following question �����

It was predicted that the BM hybrids� BMJ and BM�CBJ� could per�
form worse than BM because the advantages of backmarking may be lost
when jumping back� Experimental evidence supported this� Therefore� a
challenge remains� How can the backmarking behaviour be protected�

In this work we answer the question by modifying the two BM hybrids� Backmark�
ing with Backjumping 	BMJ
� and Backmarking with Con�ict�Directed Backjumping
	BM�CBJ
� so that they always perform less consistency checks than the correspond�
ing basic algorithms� It is important that hybrid algorithms have this property in
order to o�set the disadvantages of a more complex code and higher overhead costs�
The thesis is organized as follows� Chapter � contains the necessary de�nitions

and the descriptions of the backtracking algorithms� Chapter � shows our methodol�
ogy applied to four basic backtracking algorithms� Chapter � extends the approach
to other backtracking algorithms� Chapter � presents some experimental results�
Chapter � provides suggestions for future work and a summary�

�Prosser acknowledges this in ����� �It is naive to say that one of the algorithms is the 	champion
�
The algorithms have been tested on one problem� the ZEBRA� It might be the case that the relative
performance of these algorithms will change when applied to a di�erent problem�



Chapter �

Background

This chapter contains the necessary de�nitions and the descriptions of the backtrack�
ing algorithms� In the �rst section� a new notion of inconsistency between instanti�
ations and variables is introduced� The basic concepts of the constraint satisfaction
paradigm are also included� In the second section� backtracking algorithms are iden�
ti�ed by presenting the C�language code adapted from a CSP function library �����

��� De�nitions

We begin with some basic concepts of the constraint satisfaction paradigm�

De�nition � A binary constraint network���� consists of a set of n variables
fx�� � � � � xng� their respective value domains� D�� � � � �Dn� and a set of binary con�
straints� A binary constraint or relation� Rij� between variables xi and xj� is any
subset of the product of their domains� �that is� Rij � Di � Dj	� We denote an
assignment of values to a subset of variables by a tuple of ordered pairs� where each
ordered pair 	x� t
 assigns the value t to the variable x� A tuple is consistent if it
satis
es all constraints on the variables contained in the tuple� A 	full
 solution of
the network is a consistent tuple containing all variables� A partial solution of the
network is a consistent tuple containing some variables� For simplicity� we usually
abbreviate 		x��X�
� � � � � 	xi�Xi


 to 	X�� � � � �Xi
�

In this work we introduce a new notion of consistency between a tuple of instan�
tiations and a set of variables� This notion is fundamental to virtually all proofs
presented in this work�

De�nition � A tuple 		xi��Xi�
� � � � � 	xiu�Xiu

 is consistent with a set of variables
fxj�� � � � � xjvg if there exist instantiations Xj� � � � � �Xjv of the variables xj�� � � � � xjv
respectively� such that the tuple 		xi��Xi�
� � � � � 	xiu �Xiu
� 	xj� �Xj�
� � � � � 	xjv�Xjv

 is

�Throughout the thesis we assume that all domain values satisfy the corresponding unary
constraints�

�
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consistent� A tuple is consistent with a variable if it is consistent with a one�element
set containing this variable� Instead of writing �is consistent with�� we sometimes
use the symbol ��

The notion of consistency between a tuple and a set of variables can also be
expressed by the following formula�

		xi��Xi�
� � � � � 	xiu�Xiu

 � 	S � fxjg
 �

�t � Dj � 		xi��Xi�
� � � � � 	xiu�Xiu
� 	xj� t

 � S� 	���


where S is a set of variables�
By applying the above formula n times� we obtain�

� � fx�� � � � � xng �

�t� � D� � � � ��tn � Dn � 		x�� t�
� � � � � 	xn� tn

 � �� 	���


where � is the empty tuple� Informally� the equation states that a network of n
variables is consistent if and only if there exists a solution to the network�

Example �	 The n�queens problem is how to place n queens on a n�n chess board
so that no two queens attack each other� There are several possible representations
of this problem as a constraint network 	see ����
� The one we use identi�es board
columns with variables� and rows with domain values� Thus� variable xi represents
the i�th column� and its domain Di contains n values representing each row� The
constraint between variables xi and xj can be expressed as Rij � f	Xi�Xj
 � 	Xi ��
Xj
� 	ji	 jj �� jXi	Xj j
g� Figure ��� shows two instances of the ��queens problem�
The shaded squares denote the positions which are excluded from consideration by
the already placed queens� The instance on the left depicts tuple 		x�� �
� 	x�� �

�
which is a partial solution� The tuple is itself consistent and it is consistent with
the set of variables fx�� x�� x�g and all its subsets� including the empty set� It is
inconsistent with all sets of variables that include x�� It is consistent with variables
x�� x�� and x�� but not with variable x�� The instance on the right depicts tuple
		x�� �
� 	x�� �
� 	x�� �
� 	x�� �

� or simply 	�������
� which is a full solution� The tuple
is consistent with all sets of variables� Since the network has a solution� the empty
tuple � is also consistent with all sets of variables�

The idea of a backtracking algorithm is to extend partial solutions� At every stage
of backtracking search� there is some current partial solution which the algorithm
attempts to extend to a full solution� Each variable occurring in the current partial
solution is said to be instantiated to some value from its domain� In this work we
assume the static order of instantiation� in which variables are added to the current
partial solution according to the prede�ned order of instantiation� x�� � � � � xn� It is
convenient to divide all variables into three sets�

�Throughout the thesis we use n to denote the number of variables in the network�
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Figure ���� A partial and a full solution to the ��queens problem�


 past variables � those which have already been instantiated�


 current variable � that which is being instantiated�


 future variables � those which are to be instantiated�

A dead�end is the situation when all values of the current variable are rejected by
a backtracking algorithm when it tries to extend a partial solution� In such a case�
some instantiated variables become uninstantiated� that is� they are removed from the
current partial solution� This process is called backtracking� If only the most recently
instantiated variable becomes uninstantiated then it is chronological backtracking or
backstepping� Otherwise� it is backjumping� A backtracking algorithm terminates
when all possible assignments have been tested or a certain number of solutions have
been found�

Since we make extensive use of tree terminology� a few de�nitions are in order 	see
���
� A tree is a directed graph with no cycles satisfying the following properties�

�� There is exactly one node� called the root� which no edges enter�

�� Every node except the root has exactly one entering edge�

�� There is a path from the root to each node�

If there is an edge from node v to node w then v is called the parent of w� and w
is a child of v� If there is a path from v to w then v is an ancestor of w and w is a
descendant of v� Furthermore� if v �� w then v is a proper ancestor of w� and w is a
proper descendant of v� A node with no proper descendants is called a leaf� A node
v and all its descendants are called a subtree� The node v is called the root of that
subtree� The level of a node v in a tree is the length of the path from the root to v�

A backtrack search may be seen as a search tree traversal� In this approach we
identify tuples 	assignments of values to variables
 with nodes� the empty tuple � is
the root of the tree� the �rst level nodes are ��tuples 	representing an assignment of
a value to variable x�
� the second level nodes are ��tuples� and so on� The levels
closer to the root are called lower levels� and the levels farther from the root are
called higher levels� Similarly� the variables corresponding to these levels are called
lower and higher� The nodes which represent consistent tuples are called consistent



�

nodes� The nodes which represent inconsistent tuples are called inconsistent nodes�
We say that a backtracking algorithm visits a node if at some stage of the algorithm�s
execution the instantiations of the current variable and the past variables form the
tuple identi�ed with this node� The nodes visited by a backtracking algorithm form
a subset of the set of all nodes belonging to the search tree� We call this subset�
together with the connecting edges� the backtrack tree generated by a backtracking
algorithm� Backtracking itself can be seen as retreating to lower 	closer to the root

levels of the search tree� Whenever some variables are uninstantiated and xh is set as
the new current variable� we say that the algorithm backtracks to level h�

Example �	 The confused n�queens problem� described in ����� is how to place
n queens on a n � n chess board� one queen per column� so that all queens do
attack each other� Similarly to the regular n�queens problem� variable xi represents
the i�th column� and its domain Di contains n values representing each row� The
constraint between variables xi and xj can be expressed as Rij � f	Xi�Xj
 � 	Xi �
Xj
�	ji	jj � jXi	Xj j
g� Figure ��� shows the search tree for the confused ��queens
problem� Horizontal dashed lines represent levels of the search tree� which correspond
to variables� White dots denote consistent nodes� Black dots denote inconsistent
nodes� The circled consistent nodes at the last level of the tree are the solution
nodes� Nodes are labelled according to the tuples they represent� but parentheses
and commas have been omitted for clarity� for instance� node ���� represents tuple
	���
� All nodes except the six nodes marked with �x� belong to the backtrack tree of
the generic backtracking algorithm 	BT
�

root

1 2 3

11 12 21 22 23 32 3313 31

0

1

2

3
xxx x x x

Figure ���� An example of a search tree�





We consider two backtracking algorithms to be equivalent if on every constraint
network they generate the same backtrack tree and perform the same consistency
checks�

��� Backtracking Algorithms

In this section we present six basic backtracking algorithms and four of Prosser�s hy�
brid backtracking algorithms� We identify the algorithms by including the C language
source code from a CSP library ����� We chose to include the C code rather than
pseudocode because the C language syntax is widely known and unambiguous� The
code can be actually compiled and run� given suitable header �les� The names of the
algorithms are the same as in ����� These versions of the algorithms are designed to
�nd the �rst solution only�
It must be stressed that the algorithms may be implemented in many di�erent

ways� It is important� however� that all implementations of the same algorithm
generate the same backtrack tree and perform the same consistency checks�

����� Functions and Data Structures

The following variables� constants and routines are used�


 N is a constant that denotes the number of variables�


 K is a constant that denotes the domain size 	for simplicity it is assumed that
all domains have the same size
�


 current is a variable that contains the number of the current variable�


 v is a one�dimensional array of size N that contains the current instantiations
of the variables�


 The main function of every algorithm returns the number of the variable which
is selected as the backtracking point 	in some cases the return value is not used
�


 Function consistent�current	 returns � if the current instantiation is consistent
with past instantiations 	or� in the case of forward checking algorithms� future
variables
� and � otherwise�


 Function check�i�j	 returns � if the consistency check between v�i� and v�j� suc�
ceeds� and � otherwise�


 Procedure solution�	 processes the solution stored in the v array 	if only one
solution is sought� it also terminates the algorithm
�


 Procedure merge�S��S�	 merges two sets� S� �� S� � S��


 Procedure empty�S	 empties a set� S �� ��



�


 Procedure add�x�S	 adds an element to a set� S �� S � fxg�


 Procedure delete�x�S	 deletes an element from a set S �� S 	 fxg�


 Function max�S	 returns the maximal element of set S�

The search is started by invoking the main function with the �rst variable as the
parameter�

����� Chronological Backtracking �BT�

Chronological Backtracking 	BT
 ��� �� is the generic backtracking algorithm� This is
the starting point for all modi�cations that result in more sophisticated backtracking
algorithms� The main advantage of BT is its simplicity� It always backtracks chrono�
logically to the most recently instantiated variable� While BT is more e�cient than
the naive �generate and test� approach� there is still much room for improvement�

int consistent�current�
int current�
�

int i�

for �i � �� i � current� i���
if �check�current�i� �� 	�

return�	��
return����




int BT�current�
int current�
�

int i�

if �current � N� �
solution���
return�N�� 


for �i � 	� i � K� i��� �
v�current � i�
if �consistent�current��

BT�current � ��� 

return�current����




In terms of the backtrack tree the algorithm can be described as follows� When
an i�level node is visited� consistency checks are performed between the instantiation
of the current variable and all earlier instantiations along the corresponding branch
of the tree� starting from level �� If all checks succeed� the branch is extended by
instantiating the next variable xi�� to each of the values in its domain� Otherwise
the branch is abandoned� and the next domain value is tried� If there are no more
values to be tried for the current variable� BT backtracks to level i	 �� A solution is
recorded every time when all consistency checks succeed at an n�level node�
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BT often generates subtrees that are identical to previously explored subtrees by
instantiating variables that play no role in the current inconsistency� Such behaviour
is called thrashing ����� Other backtracking algorithms attempt to minimize thrashing�

����� Backjumping �BJ�

Backjumping 	BJ
 ��� is similar to BT� except that it behaves more e�ciently when no
consistent instantiation can be found for the current variable 	a dead�end
� Instead
of backstepping to the preceding variable� BJ backjumps to the highest variable that
con�icted with the current variable�

int consistent�current�
int current�
�

int i�

for �i � �� i � current� i���
if �check�current�i� �� 	� �

max�check�current � max�max�check�current�i��
return�	�� 


max�check�current � current � ��
return����




int BJ�current�
int current�
�

int i� jump�

if �current � N� �
solution���
return�N�� 


max�check�current � 	�
for �i � 	� i � K� i��� �

v�current � i�
if �consistent�current�� �

jump � BJ�current � ���
if �jump �� current�

return�jump�� 
 

return�max�check�current��




The consistency checks between the instantiation of the current variable and the
instantiations of the past variables are performed according to the original order
of instantiations 	x�� x�� � � �
� The checking stops as soon as one consistency check
fails� The entry max check�i� stores the number of the highest variable that was
checked against the current instantiation of xi� This value is used for determining the
backtracking point at the end of the main function�
The main problem with BJ is that it backjumps only from dead�ends� All other

backtracks are chronological� so there is still a lot of thrashing� On the plus side� the
overhead costs are small in BJ�
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����� Con�ict�Directed Backjumping �CBJ�

Con�ict�Directed Backjumping 	CBJ
 ��� has even more sophisticated backjumping
behaviour than BJ� Every variable has its own con�ict set that contains the past
variables which failed consistency checks with its current instantiation� Every time a
consistency check fails between the instantiation Xi of the current variable and some
past instantiation Xh� the variable xh is added to the con�ict set of xi� When there
are no more values to be tried for the current variable xi� CBJ backtracks to the
highest variable xh in the con�ict set of xi� At the same time� the con�ict set of xi is
absorbed by the con�ict set of xh� so that no information about con�icts is lost�

int consistent�current�
int current�
�

int i�

for �i � �� i � current� i���
if �check�current�i� �� 	� �

add�i�conf�set�current��
return�	�� 


return����



int CBJ�current�
int current�
�

int h� i� jump�

if �current � N� �
solution���
return�N�� 


empty�conf�set�current��
for �i � 	� i � K� i��� �

v�current � i�
if �consistent�current�� �

jump � CBJ�current � ���
if �jump �� current�

return�jump�� 
 

h � max�conf�set�current��
merge�conf�set�h� conf�set�current��
return�h��




The code of CBJ is similar to BJ� Instead of the simple array max check we have
an array of sets conf set� At a dead�end� max check�i� corresponds to the maximal
element of conf set�i��
CBJ has an ability to perform �multiple backjumps�� that is� after the initial

backjump from a dead�end it can continue backjumping across con�icts� which may
potentially result in signi�cant savings� This comes at a price� however� because the
cost of maintaining additional data structures is higher than in BJ�
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����	 Graph�Based Backjumping �GBJ�

Graph�Based Backjumping 	GBJ
 ��� similarly attempts to backtrack more than one
level if possible� It utilizes knowledge about the constraint graph to backtrack to the
highest variable connected � to the current one�

int consistent�current�
int current�
�

int i�

for �i � �� i � current� i��� �
if �check�current�i� �� 	�

return�	�� 

return����




int GBJ�current�
int current�
�

int h� i� jump�

if �current � N� �
solution���
return�N�� 


for �i � 	� i � K� i��� �
v�current � i�
if �consistent�current�� �

jump � GBJ�current � ���
if �jump �� current�

return�jump�� 
 

merge�P�parents�current���
h � max�P��
delete�h� P��
return�h��




Function consistent	
 is the same as in BT� There are no additional operations
during consistency checking� Function parents	i
 returns the PARENTS set of xi
� the set of variables connected to xi that precede it in the instantiation order�
For example� in the constraint network shown in Figure ����� PARENTS�x�� � ��
PARENTS�x�� � �� PARENTS�x�� � fx�� x�g� PARENTS�x�� � fx�g� P is a global
set variable 	initially empty
 which contains variables that may have caused the in�
consistency�
GBJ is signi�cantly better than BT only if the constraint graph is sparse� If the

constraint graph is fully connected� GBJ generates the same backtrack tree as BT�
The overhead costs are smaller than in CBJ because the PARENTS sets need only
be computed once� before the search begins�

�Two variables are connected if there is a nontrivial constraint between them�
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����
 Backmarking �BM�

Backmarking 	BM
 ��� imposes a marking scheme on the Chronological Backtracking
algorithm in order to eliminate some redundant consistency checks� The scheme is
based on the following two observations ����� 	a
 If at the most recent node where a
given instantiation was checked the instantiation failed against some past instantiation
that has not yet changed� then it will fail against it again� Therefore� all consistency
checks involving it may be avoided 	type�A savings
� 	b
 If� at the most recent
node where a given instantiation was checked� the instantiation succeeded against
all past instantiations that have not yet changed� then it will succeed against them
again� Therefore we need to check the instantiation only against the more recent past
instantiations which have changed 	type�B savings
�

int consistent�current�
int current�
�

int i� oldmbl�

oldmbl � mbl�current�
if �mcl�current�v�current � oldmbl�

return�	��
for �i � oldmbl� i � current� i��� �

mcl�current�v�current � i�
if �check�current�i� �� 	�

return�	�� 

return����




int BM�current�
int current�
�

int h� i�

if �current � N� �
solution���
return�N�� 


for �i � 	� i � K� i��� �
v�current � i�
if �consistent�current��

BM�current � ��� 

h � current � ��
mbl�current � h�
for �i � h��� i �� N� i���

mbl�i � min�mbl�i�h��
return�h��




The marking scheme is implemented using two arrays� mbl 	minimum backup
level
 of size n� and mcl 	maximum checking level
 of size n �m� The entry mbl�i�
contains the number of the lowest variable whose instantiation has changed since the
variable xi was last instantiated with a new value� The entry mcl�i��j� contains the
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number of the highest variable that was checked against the j�th value in the domain
of the variable xi� All entries in both variables are initially set to �� The behaviour
of BM will be analyzed in detail in Section ����
BM visits exactly the same nodes as BT� with all the thrashing involved� However�

at some nodes it may perform no consistency checks at all�

����� Forward Checking �FC�

So far� all described algorithms perform the consistency checks backward� that is�
between the current variable and the past variables� For this reason we call them
the backward checking algorithms� In contrast� Forward Checking 	FC
 ���� performs
consistency checks forward� that is� between the current variable and the future vari�
ables� When an i�level node is visited� the domains of the future variables are �ltered
in such a way that all values inconsistent with the current instantiation are removed�
If none of the future domains is annihilated� the branch is extended by instantiating
the next variable xi�� to each of the values in its �ltered domain� Otherwise� the
branch is abandoned� the e�ects of forward checking are undone� and the next value
is tried� If there is no more values to tried for the current variable� FC backs up to
the level i	 �� A solution is recorded every time an n�level node is reached�

void restore�i�
int i�
�

int j� a�

for �j � i��� j �� N� j���
if �checking�i�j� �

checking�i�j � 	�
for �a � 	� a � K� a���

if �domains�j�a �� i�
domains�j�a � 	� 





int consistent�current�
int current�
�

int j� a�
int old � 	� del � 	�

for �j � current � �� j �� N� j��� �
for �a � 	� a � K� a���

if �domains�j�a �� 	� �
old���
v�j � a�
if �check�current�j� �� 	� �

domains�j�a � current�
del��� 
 


if �del�
checking�current�j � ��

if �old � del �� 	�



��

return�j�� 

return�	��




int FC�current�
int current�
�

int i� fail�

if �current � N� �
solution���
return�N�� 


for �i � 	� i � K� i��� �
if �domains�current�i�

continue�
v�current � i�
fail � consistent�current��
if �fail �� 	�

FC�current � ���
restore�current�� 


return�current����



FC uses two global arrays� The integer array domains is of size N � K� If
domains�i��j� � t and t � �� it means that the j�th value has been removed from the
domain of variable xi because of the current instantiation of the variable xt� If t � ��
the value is still in the domain� The boolean array checking is of size N � N � The
entry checking�i��j� is set if the current instantiation of variable xi causes removal of
some value from the domain of future variable xj� Otherwise� it is cleared� All entries
in both arrays are initially set to ��
Forward consistency checking is handled by two routines� Function consistent	i


returns the number of the variable which has been annihilated during forward check�
ing� If no variable has been annihilated� the function returns �� Procedure restore	i

undoes the changes caused by the instantiation of xi�
FC is very e�cient because of its ability to discover inconsistencies early� The size

of the backtrack tree is thus greatly reduced� However� since it consults all variables
in the network after every new instantiation� FC sometimes performs consistency
checks that are avoided by the backward checking algorithms�

����� Backmarking Hybrids

Backmarking and Backjumping 	BMJ
� and Backmarking and Con�ict�Directed Back�
jumping 	BM�CBJ
 ���� incorporate backjumping within the Backmarking algorithm�
Both algorithms are similar to BM� The di�erence lies in using additional data struc�
tures for backjumping� max check in BMJ� and conf set in BM�CBJ� The code of
both algorithms is presented side by side in order to emphasize their similarity� Only
the lines marked by � � are di�erent� The lines marked by ��� are identical�
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int consistent�z� � int consistent�z�

int z� � int z�

� � �

int i� oldmbl� � int i� olmbl�

�

oldmbl � mbl�z�� � oldmbl � mbl�z��

if �mcl�z��v�z�� � oldmbl� � � if �mcl�z��v�z�� � oldmbl� �

	 add�mcl�z��v�z���conf
set�z���

return���� � � return���� �

for �i � oldmbl� i � z� i� � � for �i � oldmbl� i � z� i� �

mcl�z��v�z�� � i� � mcl�z��v�z�� � i�

if �check�z�i� �� �� � � if �check�z�i� �� �� �

max
check�z� � 	 add�i�conf
set�z���

max�max
check�z��i�� 	

return���� � � � return���� � �

max
check�z� � z � �� 	

return���� � return����

� � �

�

int BMJ�z� 	 int BM
CBJ�z�

int z� � int z�

� � �

int h� i� jump� � int h� i� jump�

�

if �z � N� � � if �z � N� �

solution��� � solution���

return�N�� � � return�N�� �

max
check�z� � �� 	 empty�conf
set�z���

for �i � �� i � K� i� � � for �i � �� i � K� i� �

v�z� � i� � v�z� � i�

if �consistent�z�� � � if �consistent�z�� �

jump � BMJ�z  ��� � jump � BM
CBJ�z  ���

if �jump �� z� � if �jump �� z�

return�jump�� � � � return�jump�� � �

h � max
check�z�� 	 h � max�conf
set�z���

	 merge�conf
set�h��conf
set�z���

mbl�z� � h� � mbl�z� � h�

for �i � h�� i �� N� i� � for �i � h�� i �� N� i�

mbl�i� � min�mbl�i��h�� � mbl�i� � min�mbl�i��h��

return�h�� � return�h��

� � �

It is straightforward to create other hybrids� BM�GBJ� which combines BM and
GBJ� and FC�GBJ� which combines FC and GBJ� We will not� however� discuss GBJ
hybrids in this work� because they are neither conceptually simple nor more e�cient
than the already known backtracking algorithms�
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���� Forward Checking Hybrids

Forward Checking and Backjumping 	FC�BJ
 and Forward Checking and Con�ict�
Directed Backjumping 	FC�CBJ
 ���� incorporate backjumping within the Forward
Checking algorithm� In contrast with FC� which always backtracks chronologically�
the FC hybrids record the information about the variables that caused the current
inconsistency� Later� this information is used to determine the backtracking point�

int FC
BJ�z� 	 int FC
CBJ�z�

int z� � int z�

� � �

int h� i� j� jump� fail� � int h� i� j� jump� fail�

�

if �z � N� � � if �z � N� �

solution��� � solution���

return�N�� � � return�N�� �

max
check�z� � �� 	 empty�conf
set�i���

for �i � �� i � K� i� � � for �i � �� i � K� i� �

if �domains�z��i�� � if �domains�z��i��

continue� � continue�

v�z� � i� � v�z� � i�

fail � consistent�z�� � fail � consistent�z��

if �fail �� �� � � if �fail �� �� �

max
check�z� � z��� 	

jump � FC
BJ�z  ��� 	 jump � FC
CBJ�z  ���

if �jump �� z� � if �jump �� z�

return�jump�� � � return�jump�� �

restore�z�� � restore�z��

if �fail� � if �fail�

for �j � �� j � z� j� � for �j � �� j � z� j�

if �checking�j��fail�� � if �checking�j��fail��

max
check�z� � 	 add�j�conf
set�z��� �

max�max
check�z��j��� 	

h � max
check�z�� 	

for �j � �� j � z� j� � for �j � �� j � z� j�

if �checking�j��z�� � if �checking�j��z��

h � max�h�j�� 	 add�j�conf
set�z���

	 h � max�conf
set�z���

	 merge�conf
set�h��conf
set�z���

for �i � z� i �� h� i��� � for �i � z� i �� h� i���

restore�i�� � restore�i��

return�h�� � return�h��

� � �

In addition to the data structures inherited from FC� the FC hybrids use the data
structures of the backward checking algorithms� FC�BJ employs the array max check
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of BJ� whereas FC�CBJ uses conf set of CBJ� Functions consistent	i
 and restore	i

are identical to those in FC�
The FC hybrids attempt to combine the advantages of forward checking and back�

jumping� However� the resulting algorithms are complex and hard to understand in
detail�



Chapter �

Four Basic Algorithms

In this chapter we formally analyze the behaviour and prove the correctness of four
well�known backtracking algorithms� Chronological Backtracking 	BT
� Backjump�
ing 	BJ
� Con�ict�Directed Backjumping 	CBJ
� and Forward Checking 	FC
� The
chapter is organized as follows� Section ��� shows how the algorithms work on a
nontrivial example� Section ��� de�nes backjumps in terms of inconsistency between
variables and instantiations� Section ��� points out the modi�cations which have
to be introduced in order for the algorithms to �nd all solutions� Section ��� con�
tains the fundamental basic theorems describing the behaviour of the backtracking
algorithms� Section ��� presents the hierarchy with respect to the number of visited
nodes� Section ��� contains correctness proofs�

��� A Few Insights

Let us start by presenting an example which illustrates the di�erences between these
four algorithms�

Example �	 Figure ��� shows a fragment of the backtrack tree generated by BT
for the ��queens problem� White dots denote consistent nodes� Black dots denote
inconsistent nodes� The dark�shaded part of the tree denotes two nodes which are
skipped by BJ� The light�shaded part denotes nodes which are skipped by CBJ� The
numbered consistent nodes are the nodes visited by FC� Dashed arrows represent
backjumps� The left one is performed by CBJ� and the right one is performed by
BJ� Chronological backtracks are not represented� The board in the upper right
corner depicts the placing of queens corresponding to node ��� in the backtrack tree�
Capital Q�s on the board represent queens which have already been placed on the
board� The shaded squares represent positions which have been excluded due to the
already placed queens� The numbers inside the excluded squares indicate the earliest
placed queen responsible for their exclusion� ����� correspond to the �rst� second� and
third queen respectively�

The search performed by BT on the subtree rooted at node ��� is uneventful�

��
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Figure ���� A fragment of the BT backtrack tree for the ��queens problem�

Every consistent node is fully expanded� Two dead�ends are encountered� and a total
of �� nodes are visited�
BJ manages to skip two nodes in the subtree� The algorithm detects a dead�end

at variable x� when it tries to expand node ������ It then backtracks to the highest
variable in con�ict with x�� in this case x�� We could say that BJ discovers that the
tuple 	�������
� which is composed of instantiations in con�ict with x�� is inconsistent
with variable x�� To see this� notice that if we place a queen in column � row �� every
square in column � is attacked by the queens placed in the �rst four columns� Indeed�
there is no point in trying out the remaining values for x� because that variable plays
no role in the inconsistency� Nodes ����� and ����� may be safely skipped�
Note that backtracking to level i does not mean that the next visited node will be

on the level i� In our example� BJ after backjumping from node ������ to level � �nds
that there are no more values to be tried for variable x�� therefore� it chronologically
backtracks to x� and visits node ����
CBJ achieves considerable savings as it skips seventeen nodes in the subtree�

The algorithm reaches a dead�end when expanding node ������ At this moment the
con�ict set of x� is f�� �� �� �g because the instantiations of these four variables prevent
a consistent instantiation of variable x�� To see this� notice that after the fourth and
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the �fth queen are placed� column � of the chess board contains numbers �� �� �� and
� as the reasons for the unavailability of the squares� CBJ backtracks to the highest
variable in the con�ict set� which is x�� No nodes are skipped at this point� The
con�ict set of x� is absorbed by the con�ict set of x�� which is now f�� �� �g� After
trying the two remaining values of x�� CBJ backjumps to x� skipping the rest of the
subtree� In terms of consistency� we could say that the algorithm discovered that
tuple 	�����
 is inconsistent with the set of variables fx�� x�g� A look at the board in
Figure ��� convinces us that indeed such a placement of queens cannot be extended
to a full solution� It is impossible to �ll columns � and � simply because the two
available squares are in the same row� Note that 	�����
 is consistent with either x�
or x� taken separately�
Figure ��� shows a detailed trace of CBJ on a larger subtree rooted at node ���

The four columns in the lower part of Figure ��� correspond to the subtree shown
in Figure ���� Straight solid arrows represent node expansion� The squares marked
with �x� are the ones that are not expanded by CBJ because of the backjump from x�
to x�� Dashed arrow represent backtracks� but this time both chronological and non�
chronological backtracks are shown� The con�ict sets� which are passed backwards�
are shown along the backtracks 	the values of d should be ignored for the time being
�
The reader may want to read the previous paragraph again� this time with Figure ���
in front of him� A good starting point is the dead�end in the lower right corner of the
�gure� which corresponds to nodes ��������������
FC� in contrast with the backward checking algorithms� visits only consistent

nodes� in this case ���� ����� ������ and ����� The board in Figure ��� can be
interpreted in the context of this algorithm as follows� The shaded numbered squares
correspond to the values �ltered from domains of variables by forward checking� The
squares that are left empty as the search progresses correspond to the nodes visited
by FC�
Due to the �ltering scheme� FC detects an inconsistency between the current

partial solution and some future variable without ever reaching that variable� but it
is unable to discover an inconsistency with a set of variables� In our example� the
algorithm �nds that both ����� and ���� are inconsistent with x�� However� it does
not discover that node ��� is inconsistent with fx�� x�g� That is why node ���� is
visited by FC even though it is skipped by the backward checking CBJ�

��� Backjump Lemmas

Let us now formalize the intuition about backjumps in the form of two lemmas� The
lemmas will later enable us to prove theorems about the backtrack trees of BJ and
CBJ�
In both lemmas we use Ci to denote a tuple composed of instantiations of selected

past variables� This is the only time in this thesis when we use tuples which are
not composed of consecutive instantiations and so cannot be identi�ed with search
tree nodes� Figure ��� shows one such tuple in the regular ��queens problem� Tuple
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Figure ���� A tuple composed of non�consecutive instantiations in the ��queens prob�
lem�

Lemma � If BJ backtracks to variable xh from a dead�end at variable xi then
	X�� � � � �Xh
 is inconsistent with xi�

Proof� A dead�end happens when all values of the current variable are rejected by
BJ� For each rejected value we can name the past variable responsible for the rejection�
it is the variable against which the particular consistency check failed� These variables
are said to be in con�ict with the current variable� After no consistent instantiation
can be found for xi� BJ chooses as the point of backtrack the variable xh which is the
highest variable in con�ict with xi� Let Ci denote the tuple composed of instantiations
of all variables which are in con�ict with xi� Clearly� Ci is inconsistent with xi� As
Ci consists of instantiations of past variables only� it is a subtuple of 	X�� � � � �Xi��
�
Moreover� since Xh is the instantiation of the highest variable in Ci� Ci is a subtuple
of 	X�� � � � �Xh
� Therefore� 	X�� � � � �Xh
 is also inconsistent with xi� �

In order to prove the next lemma� we need the notion of backtrack depth� Infor�
mally� the depth of a backtrack is the distance� measured in backtracks� from the
backtrack destination to the �farthest� dead�end� The de�nition is recursive�

�� A backtrack from variable xi to variable xh is of depth � if it is performed
directly from a dead�end at xi�

�� A backtrack from variable xi to variable xh is of depth d � �� if all backtracks
performed to variable xi are of depth less than d� and at least one of them is of
depth d 	 ��

Figure ��� contains six backtracks� Three of them are performed from dead�ends� and
so they are of depth d � �� The other three backtracks are of depth d � � because
they are performed from variables which are the destinations of other backtracks�
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Figure ���� CBJ�s backtracking behaviour on the subtree rooted at node ���

Lemma � is given under the assumption that CBJ terminates after �nding the
�rst solution� Later� we change this assumption to a weaker one�

Lemma � If CBJ backtracks from variable xi to variable xh then Ci is inconsistent
with S� where Ci is the tuple composed of instantiations of the variables in the con�ict
set of xi� and S is a subset of fxi� � � � � xng containing xi

��

Proof� The variable xh� which is the highest variable in the con�ict set of xi� is
chosen by CBJ as the point of backtrack from xi� The con�ict set of xi is the union

�More precisely� S is the set of variables that contributed their con�ict sets to the con�ict set of
xi� but we will not use this fact in the thesis�
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of the set of all past variables in con�ict with xi and all con�ict sets inherited from
variables higher than xi�
The proof proceeds by induction on the depth of backtrack� For the basis� consider

a backtrack of depth �� that is� one performed from a dead�end� Since no con�ict sets
are inherited from higher variables� the con�ict set of xi contains only variables in
con�ict with xi� Clearly� Ci is inconsistent with the set S � fxig� Note that in this
case the behaviour of CBJ is identical to that of BJ�
Now� assume the inductive hypothesis is true for all backtracks of depth less than

d and consider a backtrack of depth d� Let C t
i denote the tuple produced by extending

Ci with some instantiation t � Di� C t
i may be consistent or not

�� If C t
i is consistent�

there must have been a backtrack of depth less than d from some variable xt to
variable xi� From the inductive hypothesis we know that the tuple composed of the
instantiations of the variables in the con�ict set of xt is inconsistent with some set St�
Since the con�ict set of xi contains all the elements of the con�ict set of xt� except
xi� C t

i is also inconsistent with S
t� If� on the other hand� C t

i is inconsistent itself� it
is also inconsistent with any set of variables� so take St � �� Therefore� for every
instantiation u � Di� Cu

i is inconsistent with the set comprising all S
t sets� namely

S
t�Di

St� This in turn implies that Ci is inconsistent
� with the set S � fxig�

S
t�Di

St�
�

��� Finding All Solutions

Faced with a constraint satisfaction problem we can ask several di�erent questions
about it�


 Is there a solution�


 How many solutions are there�


 What is the solution�


 What are all solutions�

Nudel ���� distinguishes four variations of the consistent labelling problem� which
correspond to the four above questions respectively�


 Consistent Labelling Decision Problem 	CLDP



 Consistent Labelling Enumeration Problem 	CLEP



 Consistent Labelling Search Problem 	CLSP


�For example� take the backtrack from x� to x� in Figure ���� C� � ��x�� ��� �x�� ��� �x�� ����
If we take t � �x�� ��� we get Ct

�
� ��x�� ��� �x�� ��� �x�� ��� �x�� ���� which is consistent itself� but

inconsistent with St � fx�� x�g� If we take t � �x�� ��� we get Ct

�
� ��x�� ��� �x�� ��� �x�� ��� �x�� ����

which is inconsistent itself� and so also inconsistent with ��
�In our example� S � fx�g � �� � � � � � fx�g � � � fx�� x�g� � fx�� x�� x�g�
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 Consistent Labelling Generation Problem 	CLGP


The last variant is the most general since it comprises all others� In this work� we
are interested mainly in algorithms which �nd all solutions� However� backtracking
algorithms are usually designed to stop after �nding the �rst solution� and have to
be modi�ed in order to solve CLGP� A simple change to the termination condition
is su�cient for some algorithms 	e�g�� BT� BJ� FC
� but in the case of CBJ and its
hybrids further modi�cations are necessary�

Example �	 The confused n�queens problem� described in ����� is how to place n
queens on a n�n chess board� one queen per column� so that every queen attacks every
other queen� Suppose we change the solution�	 function of CLSP versions so that it
does not terminate the algorithm� and then use BJ and CBJ to solve the confused
��queens problem� BJ correctly generates all solutions� CBJ� however� misses three
of nine solutions� Figure ��� shows one of the solutions detected by both algorithms�
namely 	�����
� At this moment� the con�ict set of x� contains only one variable� x��
which causes CBJ to backtrack directly to x�� Two subsequent solutions� 	�����
 and
	�����
� are thus pruned out�

2

21 22 23

212 222 232
3

2

1

1 2 3

1

13

2

1 Q

Q Q

Figure ���� A fragment of backtrack tree for the confused ��queens problem�

The problem here is that the con�ict sets of CBJ are meant to indicate which
instantiations are responsible for some previously discovered inconsistency� However�
after a solution is found� con�ict sets cannot always be interpreted in this way� It is
the search for other solutions� rather than an inconsistency� that forces the algorithm
to backtrack�
We need to di�erentiate between these two causes of CBJ backtracks� 	�
 de�

tecting an inconsistency� and 	�
 searching for other solutions� In the latter case
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the backtrack must be always chronological� that is� to the immediately preceding
variable 	otherwise we risk pruning out some of the solutions
�
Although it is possible to make CBJ �nd all solutions without adding new data

structures� we decided to adopt the following approach for its conceptual clarity� The
modi�ed CBJ employs a one�dimensional boolean array of size n� called cbf 	chrono�
logical backtrack �ag
� When set� an array entry signals that the corresponding
con�ict set no longer has the intended meaning� Every time a new variable is chosen
for instantiation� the corresponding cbf entry is set to zero� After every discovered
solution� all entries in the cbf array are set to one� cbf is used when there are no
remaining values to be tried for the current variable� If the corresponding cbf entry
is set� the backtracking point is the variable immediately preceding the current one
in the instantiation order� Otherwise� the highest variable in the con�ict set of the
current variable is chosen�
Lemma � as formulated in the previous chapter does not hold for every backtrack

in the modi�ed CBJ� Indeed� the de�nition of backtrack depth does not apply to
backtracks caused by searching for other solutions� However� if we restrict ourselves
to the backtracks performed when the corresponding cbf entry is zero� the lemma
and the proof are still valid� Since the backtracks performed when the cbf �ag is set
are always chronological and do not involve node skipping� the lemma holds for all
backjumps performed by CBJ� Therefore� we can be sure that whenever nodes are
skipped by backjumps� it is because of some previously detected inconsistency� We
use this fact in the proofs of the theorems presented in the following section�
Not every backtracking algorithm has to be modi�ed in this way to �nd all solu�

tions� BT and FC never backjump� BJ does backjumps� but only from dead�ends� and
there is no dead�end when a solution is found� In the case of these three algorithms
we need only to change the termination condition to obtain CLGP versions�

��� Fundamental Theorems

We now present several theorems which describe the behaviour of four basic back�
tracking algorithms� BT� BJ� CBJ� and FC� It is assumed that all constraints are
binary� the order of instantiations is �xed and static� and the order of performing
consistency checks within the node follows the order of instantiations� We deal �rst
with the more general problem of �nding all solutions� Then� we point out which of
the results are valid when only one solution is sought�

����� Characterizing Conditions for BT� BJ� and CBJ

The following three conditions are helpful in characterizing nodes in the search tree�

��	 A node�s parent is consistent�

�	 A node�s parent is consistent with all variables�

��	 A node�s parent is consistent with all sets of variables�
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Note that Conditions � and � are not equivalent� Condition � states that for every
individual variable� there exists an instantiation which is consistent with a certain
tuple� Condition � states that in addition all instantiations of the individual vari�
ables must be consistent with one another� A tuple that satis�es Condition � is in
fact a part of a full solution� If there is no solution to the network then no tuples
satisfy Condition �� Naturally� Condition � implies Condition �� which in turn implies
Condition �� Interestingly� we can use the three conditions to specify the su�cient
conditions for nodes to be visited by the three backward checking algorithms� The
following theorems formalize this observation�

Theorem � BT visits a node if its parent is consistent�

Proof� Suppose that node 	X�� � � � �Xi��
 is consistent� and its child p � 	X�� ����Xi

is not visited by BT� Take the highest j� j  i	 �� such that node p� � 	X�� � � � �Xj

is visited by BT� Node p� is a proper ancestor of node p and is consistent because
	X�� � � � �Xj
 is a subtuple 	not necessarily proper
 of tuple 	X�� � � � �Xi��
� When
BT visits p�� all consistency checks between Xj and previous instantiations succeed�
The branch is extended by instantiating the next variable xj�� to each of the values
in its domain� including Xj��� The node 	X�� � � � �Xj �Xj��
 is thus visited by BT� a
contradiction� �

Theorem � BJ visits a node if its parent is consistent with all variables�

Proof� Suppose that node 	X�� � � � �Xi��
 is consistent with all variables� and its
child p � 	X�� � � � �Xi
 is not visited by BJ� Take the highest j� j  i 	 �� such
that node p� � 	X�� � � � �Xj
 is visited by BJ� Node p� is a proper ancestor of node p
and is consistent with all variables because 	X�� � � � �Xj
 is a subtuple 	not necessarily
proper
 of tuple 	X�� � � � �Xi��
� When BJ is at node p�� all consistency checks between
Xj and previous instantiations succeed� The only reason for not instantiating the
next variable xj�� to Xj�� can be a backjump from some variable xh to some variable
xg� where g  j and h � j ! �� But if this is the case� Lemma � implies that
	X�� � � � �Xg
 is inconsistent with xh� which contradicts the initial assumption that
node 	X�� � � � �Xi��
 is consistent with all variables� �

Theorem � CBJ visits a node if its parent is consistent with all sets of variables�

Proof� Suppose that node 	X�� � � � �Xi��
 is consistent with all sets of variables�
and its child p � 	X�� � � � �Xi
 is not visited by CBJ� Take the highest j� j  i	�� such
that node p� � 	X�� � � � �Xj
 is visited by CBJ� Node p� is a proper ancestor of node
p and is consistent with all sets of variables because 	X�� � � � �Xj
 is a subtuple 	not
necessarily proper
 of tuple 	X�� � � � �Xi��
� When CBJ is at node p�� all consistency
checks between Xj and previous instantiations succeed� The only reason for not
instantiating the next variable xj�� to Xj�� can be a backjump from some variable
xh to some variable xg� where g  j and h � j!�� From Lemma � we know that the
tuple composed of instantiations of the variables in the con�ict set of xh is inconsistent
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with some set of variables� Since the con�ict set of xh is a subset of fx�� � � � � xgg and
g � i� this contradicts the initial assumption that 	X�� � � � �Xi��
 is consistent with
all sets of variables� �

The above theorems allow us to identify only the nodes which are necessarily
visited by the algorithms� However� these are not all nodes that the algorithms
visit� For example� in Figure ��� BJ visits the node ����� even though it�s parent
is inconsistent with x�� This happens because backward checking algorithms �look
backward� when they search for a solution� Unlike FC� they have to actually �hit�
an inconsistency in order to discover it� We would like to be able to specify a class
of nodes which are guaranteed not to be visited by algorithms� In other words� we
would like to have not only the su�cient� but also the necessary condition for a node
to be visited� Ideally� the su�cient and the necessary conditions should be the same�
The following three theorems formalize a trivial observation that the backward

checking algorithms expand only consistent nodes� Since all three algorithms BT�
BJ� and CBJ perform consistency checking in the same way� there is no need for more
than one proof�

Theorem � BT visits a node only if its parent is consistent�

Proof� Suppose that in the search tree there exists a node p � 	X�� � � � �Xi
 which
is visited by BT� and at the same time its parent 	X�� � � � �Xi��
 is inconsistent� Take
the highest j� j  i	�� such that node 	X�� � � � �Xj��
 is consistent� It is guaranteed to
exist because all �rst level nodes are consistent by the assumption that the constraint
network is already node consistent� Node p� � 	X�� � � � �Xj
 is a proper ancestor of
node p� and so p� is also visited� When BT visits p�� a consistency check fails between
Xj and a previous instantiation� thus causing the branch to be abandoned� Therefore�
no descendants of p� are visited by BT� a contradiction� �

Theorem � BJ visits a node only if its parent is consistent�

Proof� The same as for Theorem �� �

Theorem � CBJ visits a node only if its parent is consistent�

Proof� The same as for Theorem �� �

����� Characterizing Conditions for FC

For FC we can give a more precise characterization of the set of visited nodes� The
condition used in the following theorem is referred to as Condition ��

��	 A node is consistent and its parent is consistent with all variables�

Note that the condition consist of two conjuncts� the second of which is identical to
Condition �� Therefore� Condition � implies Condition �� It does not� however� imply
Condition ��
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Theorem 
 FC visits a node if it is consistent and its parent is consistent with all
variables�

Proof� Suppose that node 	X�� � � � �Xi��
 is consistent with all variables� and
its child p � 	X�� � � � �Xi
 is consistent� but not visited by FC� Take the highest
j� j  i 	 �� such that node p� � 	X�� � � � �Xj
 is visited by FC� but its child
	X�� � � � �Xj�Xj��
 is not visited by FC� Node p� is a proper ancestor of node p and
is consistent with all variables because 	X�� � � � �Xj
 is a subtuple 	not necessarily
proper
 of tuple 	X�� � � � �Xi��
� When FC visits node p�� none of the domains of
the future variables is annihilated� The branch is therefore extended by instantiat�
ing the next variable xj�� to each of the values in its �ltered domain� Since tuple
	X�� � � � �Xi
 is consistent� its subtuple 	X�� � � � �Xj��
 is also consistent� so the �ltered
domain of xj�� must still contain Xj��� Node 	X�� � � � �Xj �Xj��
 is thus visited by
FC� a contradiction� �

The necessary condition for a node to be visited by FC is identical to the su�cient
condition�

Theorem � FC visits a node only if it is consistent and its parent is consistent with
all variables�

Proof� We prove the second conjunct �rst� Suppose that FC visits node p �
	X�� � � � �Xi
 although its parent 	X�� � � � �Xi��
 is inconsistent with some variable�
Take the highest j� j  i 	 �� such that node 	X�� � � � �Xj��
 is consistent with all
variables� Node p� � 	X�� � � � �Xj
 is a proper ancestor of node p� so p� is also visited
by FC� When FC is at node p�� consistency checking annihilates the domain of some
variable� thus causing the branch to be abandoned� Therefore� no descendants of p�

are visited by FC� a contradiction�
Now� suppose that FC visits node p � 	X�� � � � �Xi
 although p is inconsistent�

Take the lowest k� k  i	�� such that instantiation Xk is inconsistent with instantia�
tion Xi� When FC is at node 	X�� � � � �Xk
� the value Xi is removed from the domain
of the variable xi and cannot be reinstated before the instantiation of xk is changed�
Therefore� p cannot be visited by FC� a contradiction� �

����� Summary of Conditions

Figure ��� summarizes the results of this section� The numbers denote that a node
satis�es a given condition� The names of algorithms denote that a node is visited
by a given algorithm� The arrows represent implications� and are annotated by the
numbers of the corresponding theorems� For example� Theorem �� which says that a
node is visited by FC if it satis�es Condition �� is represented by the arrow from ���
to �FC��
There is a signi�cant di�erence between the algorithms that use chronological

backtracking and the algorithms that use backjumping� BT and FC are completely
characterized� that is� for every node we can decide whether it is visited by the
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algorithm without having to generate the whole backtrack tree� In the case of BJ and
CBJ� however� there is a set of nodes for which we are unable to tell if they belong to
the algorithm�s search tree or not� The above theorems are not powerful enough for
this purpose� It is an open question if better characterizing conditions can be found�

FC
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BJ

BT

4 2
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1

Th. 6
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Th. 2

Th. 1

Th. 7

Th. 8

Figure ���� Conditions graph�

For CLSP versions 	one solution sought
� the �only if� theorems 	�� �� �� and 

are still valid� since in the respective proofs we do not use the assumption that the
search is continued until all possibilities are exhausted� However� the proofs of the �if�
theorems 	�� �� �� and �
 are based on the assumption that a node is always extended
to each value in the domain of the next variable� This is true only if the search is
not interrupted until all possibilities are exhausted� Therefore� the �if� theorems are
valid for CLSP only if we restrict ourselves to the search tree nodes preceding 	in the
preorder traversal
 the last node visited by a backtracking algorithm�

��� Hierarchy

It turns out that the nodes visited by the algorithms often form sets which include
one another� Let us look at Figure ��� again� If there is a path along the arrows
leading from algorithm A to algorithm B then we can conclude that B visits all nodes
that A visits� This observation immediately yields the following four corollaries� Note
that these corollaries are valid regardless of the constraint satisfaction problem being
solved�

Corollary � BT visits all nodes that BJ visits�

Proof� The corollary states that if a node is visited by BJ then it is also visited by
BT� From Theorem � we know that all nodes visited by BJ have parents which are
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consistent� Theorem � guarantees that all such nodes are visited by BT� Therefore�
if a node is visited by BJ� it is also visited by BT� �

Corollary � BT visits all nodes that CBJ visits�

Proof� From Theorem � we know that all nodes visited by CBJ have parents which are
consistent� Theorem � guarantees that all such nodes are visited by BT� Therefore�
if a node is visited by CBJ� it is also visited by BT� �

Corollary � BT visits all nodes that FC visits�

Proof� From Theorem  we know that all nodes visited by FC have parents which are
consistent with all variables 	and so the parents are themselves consistent
� Theorem �
guarantees that all such nodes are visited by BT� Therefore� if a node is visited by
FC� it is also visited by BT� �

The next corollary is the most interesting� The relationship between BJ and FC
has never been stated before� although the two algorithms have been often empirically
compared� This is probably due to their apparent dissimilarity�

Corollary � BJ visits all nodes that FC visits�

Proof� From Theorem  we know that all nodes visited by FC have parents which are
consistent with all variables� Theorem � guarantees that all such nodes are visited
by BJ� Therefore� if a node is visited by FC� it is also visited by BJ� �

The relationship between BJ and CBJ� although not implied by the theorems� can
also be proven using the two lemmas from Section ���� The proof is rather technical
and may be skipped without a�ecting the understanding of the rest of the thesis�

Theorem � BJ visits all nodes that CBJ visits�

Proof� Suppose that in the search tree of CBJ there is a node p at level h which is
not visited by BJ 	Figure ��� left
� The only reason for skipping p can be a backjump
performed by BJ from some node q at level k to level g � h� Recall that BJ performs
backjumps only after detecting a dead�end� and that in such a case it behaves exactly
like CBJ� Therefore� node q could not be visited by CBJ� otherwise CBJ would also
skip node p� The only reason for skipping q can be a backjump performed by CBJ
from some node r at level j to level i � k 	Figure ��� right
�
The nodes in question are

p � 	X�� � � � �Xh
�
q � 	Y�� � � � � Yk
�
r � 	Z�� � � � � Zj
�
From Lemma � we have�

� 		Y�� � � � � Yg
 � xk
�
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Figure ��� A hypothetical situation when CBJ visits a node not visited by BJ�

From Lemma � we have�
� 		Z�� � � � � Zi
 � S


where S � fxj� � � � � xng�
From the properties of trees we have�
u � 	X�� � � � �Xg
 � 	Y�� � � � � Yg
 � 	Z�� � � � � Zg
�
v � 	Y�� � � � � Yi
 � 	Z�� � � � � Zi
�
Therefore� also

� 		Y�� � � � � Yi
 � S
�

and
� 		Z�� � � � � Zg
 � xk
�

Let us denote the highest variable in S by max	S
� What is the relationship
between xk and max	S
�


 If xk � max	S
� BJ would never reach xk after visiting node v because it would
hit a dead�end at max	S
 �rst�


 If xk � max	S
� CBJ would never reach max	S
 after visiting node u because
it would hit a dead�end at xk �rst�


 If xk � max	S
� CBJ would not visit node p because from xk it would jump
back directly to level g�

Thus� we arrive at a contradiction� �

The above four corollaries and one theorem enable us to construct a partial order
of backtracking algorithms with respect to the number of visited nodes� Figure ���
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shows the hierarchy for the four basic algorithms analyzed so far� BT generates the
biggest backtrack tree� which contains all nodes that the other algorithms visit on
the same problem� BJ visits more nodes than CBJ or FC� The order would be linear
if there was a relationship between FC and CBJ� but this not the case� Figure ���
provides a counterexample� some nodes visited by CBJ are not visited by FC� and
vice versa�

FC CBJ

BJ

BT

Figure ���� The hierarchy with respect to the number of visited nodes�

��� Correctness

It is surprisingly di�cult to �nd the correctness proofs of most backtracking algo�
rithms� BT and FC� being conceptually simple� probably do not require rigorous
proofs� It is not immediately clear� however� that BJ and CBJ are correct�
Ginsberg �� presents �ve algorithms using a new notation� Ginsberg�s Algorithm

���� which is referred to as depth��rst search� is most probably equivalent to BT� It is
not clear� however� if Algorithm ���� which Ginsberg calls Backjumping� is equivalent
to BJ or CBJ� or is a completely new algorithm� Two propositions are of interest to
us�

Proposition �	
 �� Algorithm �� is equivalent to depth�
rst search and
therefore complete�
Proposition �	� �� Backjumping is complete and always expands fewer
nodes than does depth�
rst search�

The completeness proofs are di�cult to follow� That Backjumping always expands
fewer nodes than depth��rst search is not proven� It should be noted that it is not
di�cult to �nd problems on which BJ and CBJ expand the same number of nodes as
BT�
Prosser in ���� mentions there exists an informal correctness proof of CBJ by

Tsang� As it has never been published� nothing more can be said about it�
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The correctness of the four basic algorithms is almost immediate from the theorems
given in Section ���� For each algorithmwe prove that it is sound 	�nds only solutions

and complete 	�nds all solutions
� That all the algorithms terminate is clear�

Corollary � BT is correct�

Proof �soundness	� A solution is claimed by BT if all consistency checks succeed
at an n�level node� It means that 	X�� � � � �Xn
 is visited and �i � n � Xi is consistent
with Xn� Theorem � implies that its parent 	X�� � � � �Xn��
 is consistent� Therefore�
	X�� � � � �Xn
 is consistent�

Proof �completeness	� Suppose that some n�level node 	X�� � � � �Xn
 in the search
tree is consistent� Then� its parent 	X�� � � � �Xn��
 is consistent as well� From The�
orem � we know that 	X�� � � � �Xn
 is visited by BT� Since all consistency checks
between Xn and previous instantiations must succeed� a solution is claimed by BT�
�

Corollary � BJ is correct�

Proof �soundness	� The same as the proof of the soundness of BT� except that we
use Theorem ��

Proof �completeness	� Suppose that some n�level node 	X�� � � � �Xn
 in the search
tree is consistent� Then� its parent 	X�� � � � �Xn��
 is consistent as well� and it is also
consistent with xn� Therefore� 	X�� � � � �Xn��
 is consistent with all variables� From
Theorem � we know that 	X�� � � � �Xn
 is visited by BJ� Since all consistency checks
between Xn and previous instantiations must succeed� a solution is claimed by BJ� �

Corollary 
 CBJ is correct�

Proof �soundness	� The same as the proof of the soundness of BT� except that we
use Theorem ��

Proof �completeness	� Suppose that some n�level node 	X�� � � � �Xn
 in the search
tree is consistent� Then� its parent 	X�� � � � �Xn��
 is consistent as well� and it is also
consistent with the set fxng� Therefore� 	X�� � � � �Xn��
 is consistent with all sets of
variables� From Theorem � we know that 	X�� � � � �Xn
 is visited by CBJ� Since all
consistency checks between Xn and previous instantiations must succeed� a solution
is claimed by CBJ� �

Corollary � FC is correct�

Proof �soundness	� A solution is claimed by FC if an n�level node p � 	X�� � � � �Xn

is reached� Since Theorem  guarantees that a node visited by FC is consistent� p
must be consistent�

Proof �completeness	� Suppose that some n�level node 	X�� � � � �Xn
 in the search
tree is consistent� Then� its parent 	X�� � � � �Xn��
 is consistent as well� and it is also
consistent with fxng� Therefore� 	X�� � � � �Xn��
 is consistent with all variables� From



��

Theorem � we know that 	X�� � � � �Xn
 is visited by FC� Since this is a n�level node�
a solution is claimed by FC� �

The above theorems prove the correctness of the CLGP versions of the algorithms�
For BT� BJ� and FC� the correctness of the standard CLSP versions is obvious� if an
algorithm is guaranteed to correctly �nd all solutions then it also correctly �nds the
�rst solution� It is only a little bit more complicated for CBJ because the standard
CLSP version of the algorithm does not use cbf array� However� since none of the cbf
entries is set before �nding the �rst solution� the additional array does not in�uence
the behaviour of the CLGP version in this phase of the search� Therefore� we can
conclude that the standard CLSP version of CBJ is also correct�



Chapter �

The Six Remaining Algorithms

In this chapter we analyze somewhat less formally the six remaining backtracking
algorithms described in chapter �� No theorems or proofs are given� All our claims
are conjectures based on empirical tests and a careful analysis of the algorithms�
In the �rst three sections we discuss three groups of algorithms�


 Backmarking and its hybrids�


 Graph�Based Backjumping�


 Forward Checking hybrids�

In the last section we present the �nal hierarchies of all backtracking algorithms
analyzed in this thesis�

��� Backmarking and its Hybrids

One thing that Backmarking 	BM
� Backmarking and Backjumping 	BMJ
� and Back�
marking and Con�ict�Directed Backjumping 	BM�CBJ
 have in common is that they
use a backmarking scheme� A backmarking scheme does not have any in�uence on
the backtrack tree generated by a backtracking algorithm but usually results in a
dramatic reduction in the number of consistency checks� In this section� we �rst
thoroughly analyze the behaviour of the backmarking algorithms on a small example�
and then propose a modi�cation to BMJ�

����� The Problem With BMJ

BMJ is a synthesis of BM and BJ� the hybrid� however� does not retain all the power
of each base algorithm in terms of consistency checks� Prosser ���� observed that on
some instances of the zebra problem BMJ performs more consistency checks than
BM� BMJ is also worse than BM on the benchmark �queens problem� The purpose
of the following example is to explain why it happens�

��
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Figure ����� The constraint network of Example ��

Example �	 Consider the constraint network of four variables represented by the
graph in Figure ����� The domains of the variables are given inside the nodes� and
the constraints between variables are speci�ed by the allowed pairs along the arrows�
The search is performed in the natural order� It is easy to verify that there is only
one solution to the network�

Figure ���� shows the backtrack tree generated by BT� BT visits �� nodes� and
performs �� consistency checks� an improvement over the naive �generate and test�
approach which involves �� nodes�
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Figure ����� The backtrack tree generated by BT on the constraint network of Ex�
ample ��

Let r be the number of consistency checks that BT performs at a given node� If
the node is inconsistent� r is the number of the lowest variable whose instantiation is
inconsistent with the instantiation of the current variable xi� If the node is consistent�
all checks succeed� and so r � i	 �� We will use r to compute the consistency checks
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savings achieved by the backmarking algorithms�
We already know from the previous chapter that the set of nodes visited by BJ is a

subset of the set of nodes visited by BT� In this small example BJ manages to perform
only one backjump� which is represented in Figure ���� by the dashed arrow� When
node � is visited� the entry max check��� is set to � because variable x� is inconsistent
with the instantiation 	x�� a
� By jumping back to x�� BJ skips one node and saves
two consistency checks� Following a general rule� at every other node BJ performs
the same number of checks as BT�
In the case of BM the opposite is true� BM visits exactly the same nodes as BT

but at some of them performs less consistency checks� In our example BM behaves
like BT when it explores the subtree rooted at node � 	the left subtree
� However�
during the search� information about consistency checks is accumulated in its data
structures mbl and mcl� This information is utilized when BM visits the subtree
rooted at node � 	the right subtree
� The contents of the arrays just before BM
visits node � are shown in Figure ����� For the expository purposes� the arrays are
transposed�

x 1 x x x2 3 4

a

b

c

x 1 x x x2 3 4

1 1 1

1 2

2mcl11 2mbl 2

2

Figure ����� Arrays mbl and mcl of BM before node � is visited�

Let us denote by jmclj and jmblj respectively the values of the mcl and mbl entries
that are consulted when a given node is visited� If jmclj is smaller than jmblj� no
consistency checks are performed by BM 	type�A savings as described in section �����
�
This is because the instantiation which causes the node to be inconsistent has not
been changed since the mcl entry was last updated� The number of saved checks
is thus equal to r � jmclj� If jmclj is greater than or equal to jmblj� only those
instantiations which have changed are checked 	type�B savings
� The instantiations
of variables lower than jmblj are guaranteed to succeed� and so the number of saved
checks is equal to jmblj 	�� Therefore� the savings made at each node can be given
by a simple formula� min	jmclj�jmblj 	�
�
BMJ attempts to combine node skipping with consistency check saving� Its back�

track tree is always the same as the backtrack tree of BJ� In our example� it saves
two checks when it backjumps over node �� but on the right subtree it performs three
checks more than BM� On the whole network BMJ performs more checks than BM�
To see why this happens� consider node �� which corresponds to the tuple

		x�� a
�	x�� b
�	x�� b

� The instantiation of x� has not changed since the consistency
check between instantiations 	x�� a
 and 	x�� b
 was performed at node �� According
to the de�nition� mbl��� should contain the number of the lowest variable whose in�
stantiation has changed since the variable x� was last instantiated with a new value�
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in this case �� Yet� the value of mbl��� is � 	see Figure ����
� and so the same check
is performed again�

x 1 x x x2 3 4

a

b

c

x 1 x x x2 3 4

11 21mbl 1 1 1

1 2

2

1

mcl

Figure ����� Arrays mbl and mcl of BMJ before node � is visited�

The value is of mbl��� is not entirely incorrect however� as can be seen at node ���
which corresponds to tuple 		x�� a
� 	x�� b
� 	x�� c

� BM and BMJ behave di�erently
at this node� BM �knows� that instantiation 	x�� c
 is consistent with instantiation
	x�� a
� because it performed the consistency check at node �� BMJ� however� skipped
node �� and so has to perform this consistency check now�
A careful analysis of the example leads us to the conclusion that the mbl array�

which was originally designed for a backstepping algorithm� is no longer adequate
for a backjumping algorithm� BM always tests all values of the current variable for
consistency� That is why a single entry for all values is su�cient� In BMJ� however�
it often happens that only some values of the current instantiation are tested� the
other values are skipped by a backjump� A separate entry for each value is necessary
to preserve all collected consistency information�

����� BMJ� � A Modi�ed BMJ

The modi�ed BMJ� which we call BMJ�� solves the problem by making mbl a two�
dimensional rather than a one�dimensional array� The new mbl array is of size n�m�
where n is the number of variables� and m is the size of the largest domain� This
is a reasonable space requirement because BMJ already uses one n �m array� each
mcl entry has now a corresponding mbl entry� The mbl�i��j� entry stores the number
of the lowest variable whose instantiation has changed since the variable xi was last
instantiated with the j�th value� The entry is set to � in the beginning� and then to
i every time the current instantiation 	xi� tj
 is being tested for consistency with past
instantiations� When the algorithm backtracks� the entries are updated in a similar
way as in BMJ� The BMJ� code is presented below along with the code of BMJ�
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int consistent�z� � int consistent�z�

int z� � int z�

� � �

int i� olmbl� � int i� oldmbl�

�

oldmbl � mbl�z�� 	 oldmbl � mbl�z��v�z��

	 mbl�z��v�z�� � z�

if �mcl�z��v�z�� � oldmbl� � if �mcl�z��v�z�� � oldmbl�

return���� � return����

for �i � oldmbl� i � z� i� � � for �i � oldmbl� i � z� i� �

mcl�z��v�z�� � i� � mcl�z��v�z�� � i�

if �check�z�i� �� �� � � if �check�z�i� �� �� �

max
check�z� � � max
check�z� �

max�max
check�z��i�� � max�max
check�z��i��

return���� � � � return���� � �

max
check�z� � z � �� � max
check�z� � z � ��

return���� � return����

� � �

�

int BMJ�z� 	 int BMJ��z�

int z� � int z�

� � �

int h� i� jump� 	 int h� i� j� jump�

�

if �z � N� � � if �z � N� �

solution��� � solution���

return�N�� � � return�N�� �

max
check�z� � �� � max
check�z� � ����

for �i � �� i � K� i� � � for �i � �� i � K� i� �

v�z� � i� � v�z� � i�

if �consistent�z�� � � if �consistent�z�� �

jump � BMJ�z  ��� � jump � BM
CBJ�z  ���

if �jump �� z� � if �jump �� z�

return�jump�� � � � return�jump�� � �

h � max
check�z�� � h � max
check�z��

mbl�z� � h� 	

for �i � h�� i �� N� i� � for �i � h�� i �� N� i�

	 for �j � �� j � K� j�

mbl�i� � min�mbl�i��h�� 	 mbl�i��j� � min�mbl�i��j��h��

return�h�� � return�h��

� � �

Let us now analyze the behaviour of the modi�ed algorithm on our example�
The mcl array 	Figure ����
 looks exactly as in the case of BMJ� but mbl is now
��dimensional� After the left subtree is visited� mbl��� a� and mbl��� b� are set to �� but
mbl��� c�� which corresponds to the skipped node �� remains unchanged at �� Savings
are then made at nodes � � and ���
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Figure ����� Arrays mbl and mcl of BMJ� before node � is visited�

Table ��� contains a node�by�node comparison of all algorithms discussed in this
section� The only node at which BMJ� performs more consistency checks than any
other algorithm is node ��� However� note that the extra check 		�a��c

 is performed
by BM earlier� at node ��

node BT BJ BM BMJ BMJ�

� a � � � � �
� aa � � � � �
� aaa � � � � �
� aab � � � � �
� aaba � � � � �
� aac � � � � �
� ab � � � � �
 aba � � � � �
� abb � � � � �
�� abc � � � � �
�� abca � � � � �
P

�� �� �� �� ��

Table ���� Number of consistency checks performed at each node by various back�
tracking algorithms�

An analogous modi�cation of BM�CBJ produces BM�CBJ�� mbl should be made
a ��dimensional array� and maintained in the same way as in BMJ��

��� GBJ

In Graph�Based Backjumping GBJ� the backtrack tree is determined by the
topology of the constraint network� In contrast with BJ and CBJ� the actual con�
straints have no in�uence on the backtracking behaviour of this algorithm� GBJ
always backtracks to the most recent variable connected to the current variable in
the constraint network� The topological information is computed once at the start of
algorithm and stored in the PARENTS sets� one set for each variable� This approach
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results in small overhead costs� but considerable savings are achieved only if the con�
straint network is sparse� For a fully connected network� such as in the n�queens
problem� GBJ generates the same backtrack tree as BT�
The behaviour of GBJ is similar to the behaviour of CBJ� The main di�erence is

that the static PARENTS sets are used instead of the dynamic con�ict sets� Since the
existence of a nontrivial constraint between two variables does not imply a con�ict
between their instantiations� we may expect GBJ to perform shorter backjumps and
consequently visit more nodes than CBJ�
In order to make GBJ �nd all solutions� the same modi�cation as in the case

of CBJ must be made� A one�dimensional array should be employed to di�erentiate
between backtracking from an inconsistency� and backtracking after �nding a solution
	see Chapter ���
�
The backjumping behaviour of GBJ may be described by a lemma analogous to

Lemma �� The only di�erence in the lemma and its proof would be to use PARENTS
sets instead of con�ict sets�
In order to partially characterize the set of nodes visited by GBJ� the backjumping

lemma may be used to formulate two theorems� analogous to Theorems � and �� The
�rst one� analogous to Theorem �� states that GBJ visits a node if its parent is
consistent with all sets of variables� The second one� analogous to Theorem �� states
that GBJ visits a node only if its parent is consistent�
Note that proving such two theorems about any static�order backtracking algo�

rithm amounts to proving its correctness� The �rst theorem states that all nodes
that lie on the paths between root and solutions are visited� which guarantees that
no solution is omitted� The second theorem states that only consistent nodes are
expanded� which that guarantees the solutions claimed by the algorithm are consis�
tent� The two theorems constitute the minimal characterization of the set of nodes
visited by a backtracking algorithm� The characterization is strong enough� however�
to prove the algorithm�s correctness 	see the proof of Theorem �
�
In the hierarchies� GBJ may probably be placed between BT and CBJ� It is clear

that BT visits all nodes that GBJ visits� Also� the similarity between PARENTS sets
and con�ict sets and experimental results suggest that GBJ visits all nodes that CBJ
visits� However� since we have not been able to prove it� this proposition remains a
conjecture� BT� GBJ� and CBJ perform the same number of consistency checks at
each visited node� therefore� their ordering with respect to the number of consistency
checks is the same as their ordering with respect to nodes�

��� FC Hybrids

Two FC hybrids have not yet been discussed� In this section� we brie�y state our
results informally in points�

�� A similar modi�cation as in the case of CBJ must be made to FC�CBJ in order
to make it �nd all solutions�
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�� FC�CBJ visits a node only if it is consistent and its parent is consistent with
all variables 	this is the same necessary condition as for FC
�

�� FC�CBJ visits a node if it is consistent and its parent is consistent with all sets
of variables 	this is the same su�cient condition as for CBJ
�

�� FC�CBJ is correct 	implied by Point � and �
�

�� FC visits all nodes that FC�CBJ visits 	implied by Point �
�

�� At any visited node FC�CBJ performs the same number of consistency checks
as FC�

�� FC�CBJ performs no more consistency checks than FC 	follows from Points �
and �
�

All the above observations except the �rst one apply to FC�BJ as well� Also�
we conjecture that FC�CBJ always skips more nodes that FC�BJ� and consequently
performs less consistency checks�

��� Hierarchies

We can now expand the hierarchy given in the Chapter � 	Figure ���
 to include the
backtracking algorithms studied in this chapter�
We have noted that imposing a marking scheme on a backtracking algorithm

does not change the set of nodes which are visited� A marking scheme causes an
algorithm to avoid some of the redundant consistency checks� but it has no in�uence
on the algorithm�s search tree� Therefore� the sets of nodes expanded by the following
algorithms are identical�


 BT and BM


 BJ and BMJ 	BMJ�



 CBJ and BM�CBJ 	BM�CBJ�


The �nal hierarchy� which includes the observations made in the previous two
sections� is presented in Figure ����� The hard links represent formally proven or
obvious relationships� The soft links represent conjectures which are suggested by
analyses and experimental results�
The second hierarchy seems to be even more important because the number of

consistency checks is a measure that better re�ects the actual run times�
Let us de�ne a relation cc 	partial order
 between backtracking algorithms�

De�nition � A cc B if and only if a backtracking algorithm A performs no more
consistency checks than a backtracking algorithm B when 
nding all solutions of any
constraint satisfaction network�
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BT = BM

FC

FC-CBJ

CBJ = BM-CBJ = BM-CBJ2

GBJBJ = BMJ = BMJ2

FC-BJ

Figure ����� The hierarchy with respect to the number of visited nodes�

In addition to the relationships discussed in Sections ��� and ���� the relation
contains the following pairs�

BJ cc BT From Corollary � we know that BT visits all nodes that BJ visits� At
any given node both algorithms perform the same number of consistency checks�
Therefore� BJ performs no more consistency checks than BT on the whole net�
work�

CBJ cc BJ From Theorem � we know that BJ visits all nodes that CBJ visits�
At any given node both algorithms perform the same number of consistency
checks� Therefore� CBJ performs no more consistency checks than BJ on the
whole network�

BM cc BT BT and BM generate identical backtrack trees� However� thanks to the
marking scheme� at any given node BM performs no more consistency checks
than BT� Therefore� BM performs no more consistency checks than BT on the
whole network�

BMJ cc BJ BJ and BMJ generate identical backtrack trees� However� thanks to
the marking scheme� at any given node BMJ performs no more consistency
checks than BJ� Therefore� BMJ performs no more consistency checks than BJ
on the whole network�
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BM�CBJ cc CBJ Similar argument as the previous one�

Experiments and analyses suggest also the following conjectures�


 BMJ� cc BMJ


 BM�CBJ� cc BM�CBJ


 BM�CBJ� cc BMJ� cc BM

Figure ���� presents the hierarchy of algorithms with respect to the number of
consistency checks� Besides the relationships that are shown explicitly� it is important
to note the ones which are not in the picture� In order to disprove a relationship
between A and B� one needs to �nd at least one constraint satisfaction problem on
which A is better than B� and one on which B is better than A� For example� BM
performs more consistency checks than FC on the confused ���queens problem� but
less on the regular ���queens problem 	Table ���
� Examples of constraint networks
can be found that disprove all relationships which are not included in the hierarchies�
Thus� however counterintuitive it may seem� FC�CBJ may visit more nodes than
GBJ� and perform more consistency checks than BT��

BJ

CBJBMJ

BM-CBJBMJ2

BM-CBJ2

BM

BT

GBJ

FC-CBJ

FC

FC-BJ

Figure ����� The hierarchy with respect to the number of consistency checks�

�Prosser ���� gives an example of a problem on which BT outperforms any algorithm based on
forward checking�



Chapter �

Experimental Results

In spite of the strongly theoretical approach adopted in this work� we include a handful
of experimental results� Three well�known benchmark problems and one randomly
generated problem were chosen for the comparison of ten backtracking algorithms
	the CLGP versions
�
As benchmark problems� we used the regular ���queens problem� the confused

���queens problem� and the zebra problem� The queens problems have already been
described in previous chapters� We adopted the same� normal ordering as given in
Examples �� �� and �� The zebra problem has �� variables with domains of size �� We
used the problem formulation and the ordering de�ned by Dechter in ���� This variant
of the zebra problem has one solution� The results on the benchmark problems may
be reproduced in order to verify the equivalence of other implementations of the same
backtracking algorithms�
The random problem was generated using a function from the CSP code li�

brary ����� The generator has two parameters� the probability of a nontrivial con�
straint between two variables� which was set at p � ����� and the probability of an
allowable pair in a constraint� which was set at q � ����� The problem has �� variables
with domains of size ��� and has no solution� An e�ort was made to select the values
of the parameters p and q so that they are close to the boundary that separates the
overconstrained 	no solution
 networks from the underconstrained 	many solutions

networks 	as described in ���
� The resulting problem is computationally hard�
The results in Tables ��� and ��� show that the relative performance of the al�

gorithms varies dramatically on di�erent problems� On the regular queens� BM and
FC perform well� but the additional backjumping ability does not improve their per�
formance signi�cantly� This is because the density of constraints is high 	every two
variables are connected
� and so long backjumps are rare� On the confused queens�
there is very little di�erence between the worst and the best results in terms of con�
sistency checks� The smallest backtrack trees are generated by FC and its hybrids�
The problem is rather easy� therefore� it does not require sophisticated techniques�
The performance of the algorithms on the zebra problem depends heavily on the vari�
able ordering 	for an excellent statistical analysis see ����
� On this instance of the
problem� BM and its hybrids are the best� In the case of the hard random problem�

��
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REG Q CONF Q ZEBRA RANDOM
BT ���������� ������ ������ �����������
BJ ��������� ������� ������ ��������
CBJ �������� ������� ������ ������
GBJ ���������� ������ ������ �������
BM ��������� ������� ����� ����������
BMJ ��������� ������ ����� ����������
BMJ� ��������� ������� ����� ����������
BM�CBJ ��������� ������ ����� ������
BM�CBJ� �������� ������� ����� ������
FC �������� ����� ������ ������
FC�BJ ������� ����� ��� �������
FC�CBJ ��������� ����� ��� �����

Table ���� Number of consistency checks performed by various backtracking algo�
rithms on certain constraint satisfaction problems�

REG Q CONF Q ZEBRA RANDOM
BT �������� ����� ��� �����������
BJ ������� ����� ����� ���������
CBJ �������� ����� ����� ������
GBJ �������� ����� ����� ������
BM �������� ����� ��� �����������
BMJ ������� ����� ����� ���������
BMJ� ������� ����� ����� ���������
BM�CBJ �������� ����� ����� ������
BM�CBJ� �������� ����� ����� ������
FC ������� ����� ��� ������
FC�BJ ������ ����� ��� ������
FC�CBJ ������� ����� ��� ���

Table ���� Number of nodes visited by various backtracking algorithms on certain
constraint satisfaction problems�
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the di�erence between the algorithms that use multiple backjumps and the other al�
gorithms is stark� The best results are produced by the hybrids that combine CBJ
with BM or FC�
In summary� the empirical results con�rm our theoretical �ndings� The relative

performance of the algorithms varies signi�cantly� on some problems the hybrid al�
gorithms are much better than the basic algorithms� whereas on other problems the
di�erences are negligible� However� the rankings of the algorithms always agree with
the partial orders we give in Chapter �� As for the modi�ed hybrids� on all four
problems BM�CBJ� is the best of the nine backward checking algorithms� and BMJ�
is better than either BM or BJ�



Chapter �

Conclusions

In this chapter we provide some suggestions for future work� and a summary�

��� Future Work

�� The characterizing conditions for all algorithms except BT and FC do not cover
all nodes in their backtrack trees� Ideally� we would like the su�cient and
the necessary conditions to be the same� Since backtracking algorithms are
deterministic� it seems that it should be possible to describe precisely their
backtrack trees�

�� There exist many other backtracking algorithms which have not been treated
in this thesis such as algorithms with variable ordering� and algorithms that
combine consistency enforcing techniques with backtracking� Our approach
could be applied to all those algorithms�

�� Even though there is no absolute relationship between many pairs of algorithms�
it may be possible to specify conditions under which such a relationship exists�
For instance� one could try to specify formally the set of networks on which FC
is always better than BT�

�� The conjectures concerning GBJ and FC hybrids are yet to be proven formally�

��� Summary

We presented a theoretical analysis of several backtracking algorithms� Such well�
known concepts as backtrack� backjump� and domain annihilation were described
in terms of inconsistency between instantiations and variables� This enabled us to
formulate general theorems which fully or partially describe sets of nodes visited
by the algorithms� The theorems were then used to prove the correctness of the
algorithms and to construct a hierarchy of algorithms with respect to the number of
visited nodes� Next� we constructed a hierarchy of algorithms with respect to the

��



��

number of consistency checks� which is a better performance measure than number
of nodes� The gaps in the resulting hierarchy prompted us to modify existing hybrid
algorithms so that they are superior to the corresponding basic algorithms in every
case� The empirical tests showed one of the modi�ed algorithms to be better 	in
terms of consistency checks
 than all six backward checking algorithms described by
Prosser in �����
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