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Abstract

In recent years, numerous new backtracking algorithms have been proposed. The
algorithms are usually evaluated by empirical testing. This method, however, has
its limitations. Our thesis adopts a different, purely theoretical approach, which is
based on characterizations of the sets of search tree nodes visited by the backtrack-
ing algorithms. A new notion of inconsistency between instantiations and variables
is introduced, a useful tool for describing such well-known concepts as backtrack,
backjump, and domain annihilation. The characterizations enable us to: (a) prove
the correctness of the algorithms, and (b) partially order the algorithms according to
two standard performance measures: the number of visited nodes, and the number
of performed consistency checks. Among other results, we prove, for the first time,
the correctness of Backjumping and Conflict-Directed Backjumping, and show that
Forward Checking never visits more nodes than Backjumping. Our approach leads
us also to propose a modification to two hybrid backtracking algorithms, Backmark-
ing with Backjumping (BMJ) and Backmarking with Conflict-Directed Backjumping
(BM-CBJ), so that they always perform less consistency checks than the original
algorithms.
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Chapter 1

Introduction

Constraint-based reasoning is a simple, yet powerful paradigm in which many interest-
ing problems can be formulated. A constraint network is defined by a set of variables,
a domain of values for each variable, and a set of constraints between the variables.
The area of constraint-based reasoning has received a lot of attention recently, and
numerous methods for dealing with constraint networks have been developed. The
applications of constraint networks include graph coloring, scene labelling, natural
language parsing, and temporal reasoning.

Constraint networks can be solved using backtracking search. The generic back-
tracking algorithm was first described more than a century ago, and since then has
been re-discovered many times [2]. In recent years, numerous new backtracking al-
gorithms have been proposed. The basic ones include Backjumping [7], Conflict-
Directed Backjumping [18], Graph-Based Backjumping [4], Backmarking [6], and
Forward Checking [10]. Several hybrid algorithms, which combine two or more basic
algorithms, have also been developed [18, 19].

A question arises as to which of the known backtracking algorithms is the best
one. There is no straightforward answer. First, the performance of backtracking algo-
rithms depends heavily on the problem being solved. Often, it is possible to construct
examples of constraint networks on which an apparently very efficient algorithm is
outperformed by the most basic chronological backtracking. Second, it is not obvious
what measure should be employed for the purpose of comparison. Run time is not
a very reliable measure because it depends on hardware and implementation, and
so cannot be easily reproduced. Besides, the cost of performing consistency checks
(checks which verify that the current instantiations of two variables satisfy the con-
straints) cannot be determined in abstraction from a concrete problem. The number
of consistency checks seems to be a more legitimate measure of the efficiency of a
backtracking algorithm, although it neglects the “overhead” costs incurred by main-
taining sophisticated data structures. Another standard measure is the number of
nodes in the backtrack tree generated by an algorithm.

Prosser, in his landmark technical report! [17], presents nine backtracking algo-

Tt has also appeared recently as a journal article [20].
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rithms in a uniform notation, thus facilitating their comparison. Prosser performed a
series of experiments to evaluate the algorithms against each other. Table 1.1 shows
how often one algorithm performed less consistency checks than another over 450
instances of the zebra problem, a well-known benchmarking problem. The entries
containing zeros are especially interesting because they may indicate that one algo-
rithm is always better than another. However, such a hypothesis can never be verified
solely by experimentation; the relationship has to be proven theoretically. In fact,
in the following chapters, it will be shown that some of the zero entries indicate a
general rule, whereas other do not.

BT | BJ | CBJ | BM | BMJ | BM-CBJ | FC | FC-BJ | FC-CBJ
BT - 0 0 0 0 0 0 0 0
BJ 450 | - 0 132 0 0 0 0 0
CBJ 450 | 450 - 370 | 280 0 130 35 3
BM 450 | 318 | 80 - 31 8 13 3 2
BMJ 450 | 450 | 170 | 419 - 17 29 3
BM-CBJ | 450 | 450 | 450 | 442 | 433 - 286 117 35
FC 450 | 450 | 320 | 437 | 421 163 - 0
FC-BJ | 450 | 450 | 415 | 445 | 443 333 438 -
FC-CBJ | 450 | 450 | 445 | 448 | 447 415 440 | 388 -

Table 1.1: How often one algorithm bettered another [17].

In this work we adopt a purely theoretical approach. We analyze several back-
tracking algorithms with the purpose of discovering general rules that determine their
behaviour. A new notion of inconsistency between instantiations and variables is in-
troduced, a useful tool for describing such well-known concepts as backtrack, back-
jump, and domain annihilation. For every algorithm we attempt to formulate the
necessary and sufficient conditions for a search tree node to be visited by the algo-
rithm. Sometimes both conditions are the same, which gives us a complete charac-
terization of the set of visited nodes. More often we have to make do with a partial
characterization, which leaves out a “grey zone” of nodes that may or may not be
visited by the algorithm.

The characterizing conditions enable us to: (a) prove the correctness of the algo-
rithms, and (b) construct partial orders (or hierarchies) of the algorithms according
to standard performance measures. Among other results, we prove, for the first time,
the correctness of Backjumping and Conflict-Directed Backjumping, and show that
Forward Checking never visits more nodes than Backjumping.

The proofs are independent of the implementation method. We do not prove
the correctness of every backtracking algorithm discussed in this work, but rather
present a methodology which can be applied to any backtracking algorithm. All proofs
presented here are original. We hope that, apart from demonstrating correctness, our



new approach will provide a deeper understanding of how the algorithms work. Such
insight may result in less time spent on the implementation and debugging of the
algorithms.

Hierarchies may be useful to anyone who is faced with a choice of a backtracking
algorithm. With so many backtracking algorithms around, it is difficult to implement
and test all of them. The hierarchies make the selection of the right algorithm easier
once it has been established what one’s priorities are. For example, someone may
be interested solely in reducing the number of consistency checks, while for someone
else the complexity of the code may be the main factor. We present two hierarchies;
one orders the algorithms according to the number of visited nodes, and the other
according to the number of performed consistency checks.

The need for hierarchies has been recognized before. Nudel [16] gives a ranking
of some backtracking algorithms based on the average-case performance reported by
Haralick [10]. Prosser [17] orders nine backtracking algorithms according to their
average-case performance on 450 instances of the zebra problem. However, such
an approach is open to the criticism that the test problems are not representative
of the problems that arise in practice’. Even a theoretical average-case analysis is
possible only if one makes simplifying assumptions about the distribution of problems.
In contrast, our hierarchies are valid for all instances of all constraint satisfaction
problems.

In the conclusion of his paper which presented the new hybrid backtracking algo-
rithms, Prosser posed the following question [17]:

It was predicted that the BM hybrids, BMJ and BM-CBJ, could per-
form worse than BM because the advantages of backmarking may be lost
when jumping back. Experimental evidence supported this. Therefore, a
challenge remains. How can the backmarking behaviour be protected?

In this work we answer the question by modifying the two BM hybrids, Backmark-
ing with Backjumping (BMJ), and Backmarking with Conflict-Directed Backjumping
(BM-CBJ), so that they always perform less consistency checks than the correspond-
ing basic algorithms. It is important that hybrid algorithms have this property in
order to offset the disadvantages of a more complex code and higher overhead costs.

The thesis is organized as follows. Chapter 2 contains the necessary definitions
and the descriptions of the backtracking algorithms. Chapter 3 shows our methodol-
ogy applied to four basic backtracking algorithms. Chapter 4 extends the approach
to other backtracking algorithms. Chapter 5 presents some experimental results.
Chapter 6 provides suggestions for future work and a summary.

2Prosser acknowledges this in [17]: “It is naive to say that one of the algorithms is the ‘champion’.
The algorithms have been tested on one problem, the ZEBRA. It might be the case that the relative
performance of these algorithms will change when applied to a different problem.”



Chapter 2

Background

This chapter contains the necessary definitions and the descriptions of the backtrack-
ing algorithms. In the first section, a new notion of inconsistency between instanti-
ations and variables is introduced. The basic concepts of the constraint satisfaction
paradigm are also included. In the second section, backtracking algorithms are iden-
tified by presenting the C-language code adapted from a CSP function library [12].

2.1 Definitions

We begin with some basic concepts of the constraint satisfaction paradigm.

Definition 1 A binary constraint network/13] consists of a set of n wvariables
{x1,...,2,}; their respective value domains, Dy,...,D,; and a set of binary con-
straints. A binary constraint or relation, R;;, belween variables x; and x;, is any
subset of the product of their domains' (that is, R;; € D; x D;). We denote an
assignment of values to a subset of variables by a tuple of ordered pairs, where each
ordered pair (x,t) assigns the value t to the variable x. A tuple is consistent if it
satisfies all constraints on the variables contained in the tuple. A (full) solution of
the network is a consistent tuple containing all variables. A partial solution of the
network is a consistent tuple containing some variables. For simplicity, we usually

abbreviate ((x1, X1),..., (2, X}))) to (Xq,..., X5).

In this work we introduce a new notion of consistency between a tuple of instan-
tiations and a set of variables. This notion is fundamental to virtually all proofs
presented in this work.

Definition 2 A tuple ((@;,, X4), ..., (2, Xi,)) is consistent with a set of variables
{xj,,... 2, } if there exist instantiations X, ,..., X, of the variables x; ..., x;,
respectively, such that the tuple (2, X)),y (@i, Xon), (250, X5y ),y oo (25, X5,)) is

1

!Throughout the thesis we assume that all domain values satisfy the corresponding unary
constraints.
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consistent. A tuple is consistent with a variable if it is consistent with a one-element
set containing this variable. Instead of writing “is consistent with”, we sometimes
use the symbol A.

The notion of consistency between a tuple and a set of variables can also be
expressed by the following formula:

((xith)v' . '7(xiu7Xiu)) A (SU {l’]}) =

Jt € D]‘ : ((l’il,Xil), RN (J}Z'MXZ'“), (l’]‘,t)) A S, (21)
where S is a set of variables.
By applying the above formula n times? we obtain:
e A A{ay,... 2} =
€Dy Tt €Dy (21, t1), ooy (T, tn)) A D, (2.2)

where ¢ is the empty tuple. Informally, the equation states that a network of n
variables is consistent if and only if there exists a solution to the network.

Example 1. The n-queens problem is how to place n queens on a n xn chess board
so that no two queens attack each other. There are several possible representations
of this problem as a constraint network (see [15]). The one we use identifies board
columns with variables, and rows with domain values. Thus, variable x; represents
the 2-th column, and its domain D; contains n values representing each row. The
constraint between variables x; and x; can be expressed as R;; = {(X;, X;) : (X; #
X)N(Ji—=g| #|Xi—X;|)}. Figure 2.1 shows two instances of the 4-queens problem.
The shaded squares denote the positions which are excluded from consideration by
the already placed queens. The instance on the left depicts tuple ((x1,4), (22,2)),
which is a partial solution. The tuple is itself consistent and it is consistent with
the set of variables {x1, 25,24} and all its subsets, including the empty set. It is
inconsistent with all sets of variables that include zs. It is consistent with variables
x1, To9, and x4, but not with variable x3. The instance on the right depicts tuple
((x1,2), (29,4), (23,1), (24,3)), or simply (2,4,1,3), which is a full solution. The tuple
is consistent with all sets of variables. Since the network has a solution, the empty
tuple ¢ is also consistent with all sets of variables.

The idea of a backtracking algorithm is to extend partial solutions. At every stage
of backtracking search, there is some current partial solution which the algorithm
attempts to extend to a full solution. Each variable occurring in the current partial
solution is said to be instantiated to some value from its domain. In this work we
assume the static order of instantiation, in which variables are added to the current
partial solution according to the predefined order of instantiation: z,...,x,. It is
convenient to divide all variables into three sets:

?Throughout the thesis we use n to denote the number of variables in the network.
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Figure 2.1: A partial and a full solution to the 4-queens problem.

o past variables — those which have already been instantiated,
o current variable — that which is being instantiated,
o future variables — those which are to be instantiated.

A dead-end is the situation when all values of the current variable are rejected by
a backtracking algorithm when it tries to extend a partial solution. In such a case,
some instantiated variables become uninstantiated; that is, they are removed from the
current partial solution. This process is called backtracking. If only the most recently
instantiated variable becomes uninstantiated then it is chronological backtracking or
backstepping. Otherwise, it is backjumping. A backtracking algorithm terminates
when all possible assignments have been tested or a certain number of solutions have
been found.

Since we make extensive use of tree terminology, a few definitions are in order (see
[1]). A treeis a directed graph with no cycles satisfying the following properties:

1. There is exactly one node, called the root, which no edges enter.
2. Every node except the root has exactly one entering edge.
3. There is a path from the root to each node.

If there is an edge from node v to node w then v is called the parent of w, and w
is a child of v. If there is a path from v to w then v is an ancestor of w and w is a
descendant of v. Furthermore, if v # w then v is a proper ancestor of w, and w is a
proper descendant of v. A node with no proper descendants is called a leaf. A node
v and all its descendants are called a subtree. The node v is called the root of that
subtree. The level of a node v in a tree is the length of the path from the root to v.

A backtrack search may be seen as a search tree traversal. In this approach we
identify tuples (assignments of values to variables) with nodes: the empty tuple € is
the root of the tree, the first level nodes are 1-tuples (representing an assignment of
a value to variable 1), the second level nodes are 2-tuples, and so on. The levels
closer to the root are called lower levels, and the levels farther from the root are
called higher levels. Similarly, the variables corresponding to these levels are called
lower and higher. The nodes which represent consistent tuples are called consistent



nodes. The nodes which represent inconsistent tuples are called inconsistent nodes.
We say that a backtracking algorithm wisits a node if at some stage of the algorithm’s
execution the instantiations of the current variable and the past variables form the
tuple identified with this node. The nodes visited by a backtracking algorithm form
a subset of the set of all nodes belonging to the search tree. We call this subset,
together with the connecting edges, the backtrack tree generated by a backtracking
algorithm. Backtracking itself can be seen as retreating to lower (closer to the root)
levels of the search tree. Whenever some variables are uninstantiated and xj, 1s set as
the new current variable, we say that the algorithm backtracks to level h.

Example 2. The confused n-queens problem, described in [14], is how to place
n queens on a n X n chess board, one queen per column, so that all queens do
attack each other. Similarly to the regular n-queens problem, variable z; represents
the 2-th column, and its domain D; contains n values representing each row. The
constraint between variables x; and x; can be expressed as R;; = {(X;, X;) : (X =
X)V(li—j| = |Xi=X;|)}. Figure 2.2 shows the search tree for the confused 3-queens
problem. Horizontal dashed lines represent levels of the search tree, which correspond
to variables. White dots denote consistent nodes. Black dots denote inconsistent
nodes. The circled consistent nodes at the last level of the tree are the solution
nodes. Nodes are labelled according to the tuples they represent, but parentheses
and commas have been omitted for clarity; for instance, node ‘23’ represents tuple
(2,3). All nodes except the six nodes marked with ‘x” belong to the backtrack tree of
the generic backtracking algorithm (BT).

root
O 777777777777777777777777
1
1 - - = = = = — =
11 12 13 21 22
2 — — — 0 — 0O— —9— — —
3 — - COJ COJ@

Figure 2.2: An example of a search tree.



We consider two backtracking algorithms to be equivalent if on every constraint
network they generate the same backtrack tree and perform the same consistency

checks.

2.2 Backtracking Algorithms

In this section we present six basic backtracking algorithms and four of Prosser’s hy-
brid backtracking algorithms. We identify the algorithms by including the C language
source code from a CSP library [12]. We chose to include the C code rather than
pseudocode because the C language syntax is widely known and unambiguous. The
code can be actually compiled and run, given suitable header files. The names of the
algorithms are the same as in [17]. These versions of the algorithms are designed to
find the first solution only.

It must be stressed that the algorithms may be implemented in many different
ways. It is important, however, that all implementations of the same algorithm
generate the same backtrack tree and perform the same consistency checks.

2.2.1 Functions and Data Structures
The following variables, constants and routines are used:

e N is a constant that denotes the number of variables.

e K is a constant that denotes the domain size (for simplicity it is assumed that
all domains have the same size).

e current is a variable that contains the number of the current variable.

e v is a one-dimensional array of size N that contains the current instantiations
of the variables.

e The main function of every algorithm returns the number of the variable which
is selected as the backtracking point (in some cases the return value is not used).

e Function consistent(current) returns 1 if the current instantiation is consistent
with past instantiations (or, in the case of forward checking algorithms, future
variables), and 0 otherwise.

e Function check(i,j) returns 1 if the consistency check between v[¢] and v[j] suc-
ceeds, and 0 otherwise.

e Procedure solution() processes the solution stored in the v array (if only one
solution is sought, it also terminates the algorithm).

e Procedure merge(Sy,5;) merges two sets: S := S; U Ss.

e Procedure empty(S) empties a set: S := 0.



e Procedure add(x,S) adds an element to a set: S := S U {«}.
e Procedure delete(x,S) deletes an element from a set 5 := 5 — {«}.
e Function max(S) returns the maximal element of set S.

The search is started by invoking the main function with the first variable as the
parameter.

2.2.2 Chronological Backtracking (BT)

Chronological Backtracking (BT) [9, 2] is the generic backtracking algorithm. This is
the starting point for all modifications that result in more sophisticated backtracking
algorithms. The main advantage of BT is its simplicity. It always backtracks chrono-
logically to the most recently instantiated variable. While BT is more efficient than
the naive “generate and test” approach, there is still much room for improvement.

int consistent (current)
int current;

{
int 1;
for (i = 1; 1 < current; i++)
if (check(current,i) == 0)
return(0);
return(1);
+

int BT(current)
int current;

{
int 1;
if (current > N) {
solution();
return(N); }
for (1 = 0; 1 < K; i++) {
v[current] = 1i;
if (consistent(current))
BT(current + 1); }
return(current-1);
}

In terms of the backtrack tree the algorithm can be described as follows. When
an ¢-level node is visited, consistency checks are performed between the instantiation
of the current variable and all earlier instantiations along the corresponding branch
of the tree, starting from level 1. If all checks succeed, the branch is extended by
instantiating the next variable ;41 to each of the values in its domain. Otherwise
the branch is abandoned, and the next domain value is tried. If there are no more
values to be tried for the current variable, BT backtracks to level : — 1. A solution is
recorded every time when all consistency checks succeed at an n-level node.



BT often generates subtrees that are identical to previously explored subtrees by
instantiating variables that play no role in the current inconsistency. Such behaviour
is called thrashing [11]. Other backtracking algorithms attempt to minimize thrashing.

2.2.3 Backjumping (BJ)

Backjumping (BJ) [7] is similar to BT, except that it behaves more efficiently when no
consistent instantiation can be found for the current variable (a dead-end). Instead
of backstepping to the preceding variable, BJ backjumps to the highest variable that
conflicted with the current variable.

int consistent (current)
int current;

{
int 1;
for (i = 1; 1 < current; i++)
if (check(current,i) == 0) {
max_check[current] = max(max_check[current],i);
return(0); }
max_check[current] = current - 1;
return(1);
}

int BJ(current)
int current;

{
int i1, jump;
if (current > N) {
solution();
return(N); }
max_check[current] = 0;
for (1 = 0; 1 < K; i++) {
v[current] = 1i;
if (consistent(current)) {
jump = BJ(current + 1);
if (jump !'= current)
return(jump); } }
return(max_check[current]) ;
}

The consistency checks between the instantiation of the current variable and the
instantiations of the past variables are performed according to the original order
of instantiations (xy,xq,...). The checking stops as soon as one consistency check
fails. The entry maxz_check[i] stores the number of the highest variable that was
checked against the current instantiation of x;. This value is used for determining the
backtracking point at the end of the main function.

The main problem with BJ is that it backjumps only from dead-ends. All other
backtracks are chronological, so there is still a lot of thrashing. On the plus side, the
overhead costs are small in BJ.

10



2.2.4 Conflict-Directed Backjumping (CBJ)

Conflict-Directed Backjumping (CBJ) [18] has even more sophisticated backjumping
behaviour than BJ. Every variable has its own conflict set that contains the past
variables which failed consistency checks with its current instantiation. Every time a
consistency check fails between the instantiation X; of the current variable and some
past instantiation X, the variable x) is added to the conflict set of ;. When there
are no more values to be tried for the current variable z;, CBJ backtracks to the
highest variable zj, in the conflict set of ;. At the same time, the conflict set of x; is
absorbed by the conflict set of xj, so that no information about conflicts is lost.

int consistent (current)
int current;

{
int 1;
for (i = 1; 1 < current; i++)
if (check(current,i) == 0) {
add(i,conf_set[current]);
return(0); }
, return(1);

int CBJ(current)
int current;

int h, 1, jump;

if (current > N) {
solution();
return(N); }
empty(conf_set[current]);
for (1 = 0; 1 < K; i++) {
v[current] = 1i;
if (consistent(current)) {
jump = CBJ(current + 1);
if (jump !'= current)
return(jump); } }
h = max(conf_set[current]);
merge(conf_set[h], conf_set[current]);
return(h);

The code of CBJ is similar to BJ. Instead of the simple array maz_check we have
an array of sets conf_sel. At a dead-end, max_check[i] corresponds to the maximal
element of conf_setfi].

CBJ has an ability to perform “multiple backjumps,” that is, after the initial
backjump from a dead-end it can continue backjumping across conflicts, which may
potentially result in significant savings. This comes at a price, however, because the
cost of maintaining additional data structures is higher than in BJ.

11



12

2.2.5 Graph-Based Backjumping (GBJ)

Graph-Based Backjumping (GBJ) [4] similarly attempts to backtrack more than one
level if possible. It utilizes knowledge about the constraint graph to backtrack to the
highest variable connected ? to the current one.

int consistent (current)
int current;

{
int 1;
for (i = 1; i < current; i++) {
if (check(current,i) == 0)
return(0); }
return(1);
+

int GBJ(current)
int current;

int h, 1, jump;

if (current > N) {
solution();
return(N); }
for (1 = 0; 1 < K; i++) {
v[current] = 1i;
if (consistent(current)) {
jump = GBJ(current + 1);
if (jump !'= current)
return(jump); } }
merge (P,parents(current)) ;
h = max(P);
delete(h, P);
return(h);

Function consistent() is the same as in BT. There are no additional operations
during consistency checking. Function parents(i) returns the PARENTS set of «;
— the set of variables connected to x; that precede it in the instantiation order.
For example, in the constraint network shown in Figure 4.10: PARENTS[z;] = 0,
PARENTS[zz] = 0, PARENTS[z3] = {21, 22}, PARENTS[z4] = {22}. P is a global
set variable (initially empty) which contains variables that may have caused the in-
consistency.

GBJ is significantly better than BT only if the constraint graph is sparse. If the
constraint graph is fully connected, GBJ generates the same backtrack tree as BT.
The overhead costs are smaller than in CBJ because the PARENTS sets need only
be computed once, before the search begins.

3Two variables are connected if there is a nontrivial constraint between them.



2.2.6 Backmarking (BM)

Backmarking (BM) [6] imposes a marking scheme on the Chronological Backtracking
algorithm in order to eliminate some redundant consistency checks. The scheme is
based on the following two observations [14]: (a) If at the most recent node where a
given instantiation was checked the instantiation failed against some past instantiation
that has not yet changed, then it will fail against it again. Therefore, all consistency
checks involving it may be avoided (type-A savings). (b) If, at the most recent
node where a given instantiation was checked, the instantiation succeeded against
all past instantiations that have not yet changed, then it will succeed against them
again. Therefore we need to check the instantiation only against the more recent past
instantiations which have changed (type-B savings).

int consistent (current)
int current;
{

int 1, oldmbl;

0ldmbl = mbl[current];

if (mcl[current] [v[lcurrent]] < oldmbl)
return(0);

for (i = oldmbl; i < current; i++) {
mcl[current] [v[current]] = 1i;
if (check(current,i) == 0)

return(0); }
return(1);

int BM(current)
int current;

{
int h, 1i;
if (current > N) {
solution();
return(N); }
for (1 = 0; 1 < K; i++) {
v[current] = 1i;
if (consistent(current))
BM(current + 1); }
h = current - 1;
mbl [current] = h;
for (1 = h+1l; 1 <= N; 1i++)
mbl[i] = min(mbl[i],h);
return(h);
}

The marking scheme is implemented using two arrays: mbl (minimum backup
level) of size n, and mel (maximum checking level) of size n x m. The entry mbl[¢]
contains the number of the lowest variable whose instantiation has changed since the
variable x; was last instantiated with a new value. The entry mel[z][j] contains the
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number of the highest variable that was checked against the j-th value in the domain
of the variable x;. All entries in both variables are initially set to 1. The behaviour
of BM will be analyzed in detail in Section 4.1.

BM visits exactly the same nodes as BT, with all the thrashing involved. However,
at some nodes it may perform no consistency checks at all.

2.2.7 Forward Checking (FC)

So far, all described algorithms perform the consistency checks backward, that is,
between the current variable and the past variables. For this reason we call them
the backward checking algorithms. In contrast, Forward Checking (FC) [10] performs
consistency checks forward, that is, between the current variable and the future vari-
ables. When an ¢-level node is visited, the domains of the future variables are filtered
in such a way that all values inconsistent with the current instantiation are removed.
If none of the future domains is annihilated, the branch is extended by instantiating
the next variable z;4;1 to each of the values in its filtered domain. Otherwise, the
branch is abandoned, the effects of forward checking are undone, and the next value
is tried. If there is no more values to tried for the current variable, FC backs up to
the level 1 — 1. A solution is recorded every time an n-level node is reached.

void restore(i)
int 1i;
{

int j, a;

for (j = i+1; j <= N; j++)
if (checkingl[i][j]) {
checking[i][j] = 0;
for (a = 0; a < K; a++)
if (domains[j][a] == 1)
domains[j][a] = 0; }

int consistent (current)
int current;

int j, a;
int old = 0, del = 0;

for (j = current + 1; j <= N; j++) {
for (a = 0; a < K; a++)
if (domains[j][a] == 0) {
old++;
v[ljl = a;
if (check(current,j) == 0) {
domains[j][a] = current;
del++; } }
if (del)
checking[current] [j] = 1;
if (old - del == 0)
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return(j); 7}
return(0);

int FC(current)
int current;

int 1, fail;

if (current > N) {
solution();
return(N); }
for (1 = 0; 1 < K; i++) {
if (domains[current] [i])
continue;
v[current] = 1i;
fail = consistent(current);
if (fail == 0)
FC(current + 1);
restore(current); }
return(current-1);

FC uses two global arrays. The integer array domains is of size N x K. If
domains[i][j] =t and t > 0, it means that the j—th value has been removed from the
domain of variable x; because of the current instantiation of the variable x,. If t =0,
the value is still in the domain. The boolean array checking is of size N x N. The
entry checking[i][j] is set if the current instantiation of variable x; causes removal of
some value from the domain of future variable z;. Otherwise, it is cleared. All entries
in both arrays are initially set to 0.

Forward consistency checking is handled by two routines. Function consistent(i)
returns the number of the variable which has been annihilated during forward check-
ing. If no variable has been annihilated, the function returns 0. Procedure restore(z)
undoes the changes caused by the instantiation of ;.

FC is very efficient because of its ability to discover inconsistencies early. The size
of the backtrack tree is thus greatly reduced. However, since it consults all variables
in the network after every new instantiation, FC sometimes performs consistency
checks that are avoided by the backward checking algorithms.

2.2.8 Backmarking Hybrids

Backmarking and Backjumping (BMJ), and Backmarking and Conflict-Directed Back-
jumping (BM-CBJ) [17] incorporate backjumping within the Backmarking algorithm.
Both algorithms are similar to BM. The difference lies in using additional data struc-
tures for backjumping: maz_check in BMJ, and conf_set in BM-CBJ. The code of
both algorithms is presented side by side in order to emphasize their similarity. Only
the lines marked by ‘#’ are different. The lines marked by ‘=" are identical.
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int consistent(z)
int z;

{

¥

int i, oldmbl;

o0ldmbl = mbl[z];

if (mcl[z][v[z]] < oldmbl) {

return(0); }

for (i = oldmbl; i < z; i++) {

mcll[z] [v[z]] = i;
if (check(z,i) == 0) {
max_check[z] =

max{max_check[z],i);

return{0); } }
max_check[z] = z - 1;

return(1l);

int BMJ(z)
int z;

{

int h, i, j

if (z > N)

ump ;

{

solution();
return(N); ¥
max_check[z] = 0;

for (i = 0; i < K; i++) {

viz] = 1i;

if (consistent(z)) {

jump =

BMI(z + 1);

if (jump != z)
return(jump); } }
h = max_check[z];

mbl[z]

h;

for (i = h+1; i <= N; i++)

mbl[i] =
return(h);

min(mbl[i] ,h);

n #* 10

n = 0 == == 0 0

n == 0 nu

n = 0 nu

n = == 0 0
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int consistent(z)
int z;

{

¥

int i, olmbl;

oldmbl = mbl[z];

if (mcl[z][v[z]] < oldmbl) {
add(mcl[z] [v[z]],conf_set[z]);
return(0); }

for (i = oldmbl; i < z; i++) {
mcl[z] [v[z]] = i;
if (check(z,i) == 0) {

add(i,conf_set[z]);

return{0); } }

return(1l);

int BM_CBJ(z)
int z;

{

¥

int h, i, jump;

if (z > W) {
solution();
return(N); }
empty(conf_set[z]);
for (i = 0; i < K; i++) {
viz] = i;
if (consistent(z)) {
jump = BM_CBJ(z + 1);
if (Gump !'= z)
return(jump); } }
h = max(conf_set[z]);
merge(conf_set[h],conf_set[z]);
mbl [z] h;
for (i = h+1; i <= N; i++)
mbl[i] = min(mbl[i],h);
returnch);

It is straightforward to create other hybrids: BM-GBJ, which combines BM and
GBJ, and FC-GBJ, which combines FC and GBJ. We will not, however, discuss GBJ
hybrids in this work, because they are neither conceptually simple nor more efficient
than the already known backtracking algorithms.
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2.2.9 Forward Checking Hybrids

Forward Checking and Backjumping (FC-BJ) and Forward Checking and Conflict-
Directed Backjumping (FC-CBJ) [17] incorporate backjumping within the Forward
Checking algorithm. In contrast with FC, which always backtracks chronologically,
the FC hybrids record the information about the variables that caused the current
inconsistency. Later, this information is used to determine the backtracking point.

int FC_BJ(z)
int z;
{
int h, i, j, jump, fail;

if (z > N) {
solution();
return(N); }
max_check[z] = 0;
for (i = 0; i < K; i++) {
if (domains[z][i])
continue;
viz] = i;
fail = consistent(z);
if (fail == 0) {
max_check[z] = z-1;
jump = FC_BJ(z + 1);
if (Gump !'= z)
return(jump); }
restore(z);
if (fail)
for (j = 1; j < z; j++)
if (checking[j][faill)
max_check[z] =
max(max_check[z],j);}
h = max_check[z];
for (j = 1; j < z; j++)
if (checkingljl[z])
h = max(h,j);

for (i = z; i >= h; i--)
restore(i);
return(h);

nu == 0 0

n = == 0 0

o= == = 0 0 = == = 0 0

int FC_CBJ(z)
int z;
{
int h, i, j, jump, fail;

if (z > W) {
solution();
return(N); }
empty(conf_set[i]);
for (i = 0; i < K; i++) {
if (domains[z][i])
continue;
viz] = i;
fail = consistent(z);
if (fail == 0) {

jump = FC_CBJI(z + 1);
if (Gump !'= z)
return(jump); }
restore(z);
if (fail)
for (j = 1; j < z; j++)
if (checking[j][faill)
add(j,conf_set[z]); }

for (j = 1; j < z; j++)
if (checkingljl[z])
add(j,conf_set[z]);
h = max(conf_set[z]);
merge(conf_set[h],conf_set[z]);
for (i = z; i >= h; 1i--)
restore(i);
returnch);

¥

In addition to the data structures inherited from FC, the FC hybrids use the data
structures of the backward checking algorithms. FC-BJ employs the array maz_check
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of BJ, whereas FC-CBJ uses conf-set of CBJ. Functions consistent(i) and restore(z)
are identical to those in FC.
The FC hybrids attempt to combine the advantages of forward checking and back-

jumping. However, the resulting algorithms are complex and hard to understand in
detail.



Chapter 3

Four Basic Algorithms

In this chapter we formally analyze the behaviour and prove the correctness of four
well-known backtracking algorithms: Chronological Backtracking (BT), Backjump-
ing (BJ), Conflict-Directed Backjumping (CBJ), and Forward Checking (FC). The
chapter is organized as follows. Section 3.1 shows how the algorithms work on a
nontrivial example. Section 3.2 defines backjumps in terms of inconsistency between
variables and instantiations. Section 3.3 points out the modifications which have
to be introduced in order for the algorithms to find all solutions. Section 3.4 con-
tains the fundamental basic theorems describing the behaviour of the backtracking
algorithms. Section 3.5 presents the hierarchy with respect to the number of visited
nodes. Section 3.6 contains correctness proofs.

3.1 A Few Insights

Let us start by presenting an example which illustrates the differences between these
four algorithms.

Example 3. Figure 3.3 shows a fragment of the backtrack tree generated by BT
for the 6-queens problem. White dots denote consistent nodes. Black dots denote
inconsistent nodes. The dark-shaded part of the tree denotes two nodes which are
skipped by BJ. The light-shaded part denotes nodes which are skipped by CBJ. The
numbered consistent nodes are the nodes visited by FC. Dashed arrows represent
backjumps. The left one is performed by CBJ, and the right one is performed by
BJ. Chronological backtracks are not represented. The board in the upper right
corner depicts the placing of queens corresponding to node 253 in the backtrack tree.
Capital Q’s on the board represent queens which have already been placed on the
board. The shaded squares represent positions which have been excluded due to the
already placed queens. The numbers inside the excluded squares indicate the earliest
placed queen responsible for their exclusion; 1,2,3 correspond to the first, second, and
third queen respectively.

The search performed by BT on the subtree rooted at node 253 is uneventful.
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Figure 3.3: A fragment of the BT backtrack tree for the 6-queens problem.

Every consistent node is fully expanded. Two dead-ends are encountered, and a total
of 31 nodes are visited.

BJ manages to skip two nodes in the subtree. The algorithm detects a dead-end
at variable xg when it tries to expand node 25364. It then backtracks to the highest
variable in conflict with zg, in this case x4. We could say that BJ discovers that the
tuple (2,5,3,6), which is composed of instantiations in conflict with x¢, is inconsistent
with variable z¢. To see this, notice that if we place a queen in column 4 row 6, every
square in column 6 is attacked by the queens placed in the first four columns. Indeed,
there is no point in trying out the remaining values for x5 because that variable plays
no role in the inconsistency. Nodes 25365 and 25366 may be safely skipped.

Note that backtracking to level ¢ does not mean that the next visited node will be
on the level ¢. In our example, BJ after backjumping from node 253646 to level 4 finds
that there are no more values to be tried for variable z4; therefore, it chronologically
backtracks to xs and visits node 254.

CBJ achieves considerable savings as it skips seventeen nodes in the subtree.
The algorithm reaches a dead-end when expanding node 25314. At this moment the
conflict set of x¢ is {1,2, 3,5} because the instantiations of these four variables prevent
a consistent instantiation of variable xg. To see this, notice that after the fourth and



the fifth queen are placed, column 6 of the chess board contains numbers 1,2, 3, and
5 as the reasons for the unavailability of the squares. CBJ backtracks to the highest
variable in the conflict set, which is x5. No nodes are skipped at this point. The
conflict set of x¢ is absorbed by the conflict set of a5, which is now {1,2,3}. After
trying the two remaining values of x5, CBJ backjumps to x5 skipping the rest of the
subtree. In terms of consistency, we could say that the algorithm discovered that
tuple (2,5,3) is inconsistent with the set of variables {5, z6}. A look at the board in
Figure 3.3 convinces us that indeed such a placement of queens cannot be extended
to a full solution. It is impossible to fill columns 5 and 6 simply because the two
available squares are in the same row. Note that (2,5,3) is consistent with either x5
or xg taken separately.

Figure 3.5 shows a detailed trace of CBJ on a larger subtree rooted at node 25.
The four columns in the lower part of Figure 3.5 correspond to the subtree shown
in Figure 3.3. Straight solid arrows represent node expansion. The squares marked
with ‘x” are the ones that are not expanded by CBJ because of the backjump from x5
to x3. Dashed arrow represent backtracks, but this time both chronological and non-
chronological backtracks are shown. The conflict sets, which are passed backwards,
are shown along the backtracks (the values of d should be ignored for the time being).
The reader may want to read the previous paragraph again, this time with Figure 3.5
in front of him. A good starting point is the dead-end in the lower right corner of the
figure, which corresponds to nodes 253141-253146.

FC, in contrast with the backward checking algorithms, visits only consistent
nodes, in this case 253, 2531, 25314, and 2536. The board in Figure 3.3 can be
interpreted in the context of this algorithm as follows. The shaded numbered squares
correspond to the values filtered from domains of variables by forward checking. The
squares that are left empty as the search progresses correspond to the nodes visited
by FC.

Due to the filtering scheme, FC detects an inconsistency between the current
partial solution and some future variable without ever reaching that variable, but it
is unable to discover an inconsistency with a set of variables. In our example, the
algorithm finds that both 25314 and 2536 are inconsistent with x¢. However, it does
not discover that node 253 is inconsistent with {xs5,2¢}. That is why node 2536 is
visited by FC even though it is skipped by the backward checking CBJ.

3.2 Backjump Lemmas

Let us now formalize the intuition about backjumps in the form of two lemmas. The
lemmas will later enable us to prove theorems about the backtrack trees of BJ and
CBJ.

In both lemmas we use C; to denote a tuple composed of instantiations of selected
past variables. This is the only time in this thesis when we use tuples which are
not composed of consecutive instantiations and so cannot be identified with search
tree nodes. Figure 3.4 shows one such tuple in the regular 6-queens problem. Tuple
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((22,5), (24,6), (x5,3)) is inconsistent with variable x¢. All nodes that contain this
tuple, e.g. ((@1,1), (22,5), (x3,2), (24,6), (25,3)), are also inconsistent with x.

1 7
2 R
. %
7 G
, 1.
3 / @\
’ \\/
4 // RN
G
5 @,,,,,,,,7’,,,
N %
6 N @/,,,,,,
A

1 2 3 4 5 6

Figure 3.4: A tuple composed of non-consecutive instantiations in the 6-queens prob-
lem.

Lemma 1 If BJ backtracks to variable x; from a dead-end at variable x; then
(X1,...,X}) is inconsistent with x;.

Proof. A dead-end happens when all values of the current variable are rejected by
BJ. For each rejected value we can name the past variable responsible for the rejection:
it is the variable against which the particular consistency check failed. These variables
are said to be in conflict with the current variable. After no consistent instantiation
can be found for x;, BJ chooses as the point of backtrack the variable z;, which is the
highest variable in conflict with z;. Let C; denote the tuple composed of instantiations
of all variables which are in conflict with x;. Clearly, C; is inconsistent with x;. As
C; consists of instantiations of past variables only, it is a subtuple of (X7,..., X;_1).
Moreover, since X}, is the instantiation of the highest variable in €, C; is a subtuple
of (X1,...,X}). Therefore, (Xy,...,X}) is also inconsistent with x;. O

In order to prove the next lemma, we need the notion of backtrack depth. Infor-
mally, the depth of a backtrack is the distance, measured in backtracks, from the
backtrack destination to the “farthest” dead-end. The definition is recursive:

1. A backtrack from variable x; to variable x) is of depth 1 if it is performed
directly from a dead-end at x;.

2. A backtrack from variable x; to variable xj is of depth d > 2, if all backtracks
performed to variable x; are of depth less than d, and at least one of them is of

depth d — 1.

Figure 3.5 contains six backtracks. Three of them are performed from dead-ends, and
so they are of depth d = 1. The other three backtracks are of depth d > 1 because
they are performed from variables which are the destinations of other backtracks.
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Figure 3.5: CBJ’s backtracking behaviour on the subtree rooted at node 25.

Lemma 2 is given under the assumption that CBJ terminates after finding the
first solution. Later, we change this assumption to a weaker one.

Lemma 2 [f CBJ backtracks from variable x; to variable x;, then C; is inconsistent
with S, where C; is the tuple composed of instantiations of the variables in the conflict
set of x;, and S is a subset of {x;,...,x,} containing x; .

Proof. The variable xp, which is the highest variable in the conflict set of z;, is
chosen by CBJ as the point of backtrack from x;. The conflict set of z; is the union

!More precisely, S is the set of variables that contributed their conflict sets to the conflict set of
x;, but we will not use this fact in the thesis.
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of the set of all past variables in conflict with z; and all conflict sets inherited from
variables higher than z;.

The proof proceeds by induction on the depth of backtrack. For the basis, consider
a backtrack of depth 1, that is, one performed from a dead-end. Since no conflict sets
are inherited from higher variables, the conflict set of z; contains only variables in
conflict with z;. Clearly, C; is inconsistent with the set S = {x;}. Note that in this
case the behaviour of CBJ is identical to that of BJ.

Now, assume the inductive hypothesis is true for all backtracks of depth less than
d and consider a backtrack of depth d. Let Cf denote the tuple produced by extending
C; with some instantiation ¢ € D;. Cf may be consistent or not*. If C} is consistent,
there must have been a backtrack of depth less than d from some variable z! to
variable x;. From the inductive hypothesis we know that the tuple composed of the
instantiations of the variables in the conflict set of x* is inconsistent with some set S*.
Since the conflict set of x; contains all the elements of the conflict set of ', except
z;, C! is also inconsistent with S*. If, on the other hand, C?! is inconsistent itself, it
is also inconsistent with any set of variables, so take S* = (). Therefore, for every
instantiation v € D;, C is inconsistent with the set comprising all S? sets, namely
Usep, S*. This in turn implies that C; is inconsistent® with the set S = {z;}UU,ep, 5"
O

3.3 Finding All Solutions

Faced with a constraint satisfaction problem we can ask several different questions
about it:

o Is there a solution?

e How many solutions are there?
e What is the solution?

e What are all solutions?

Nudel [16] distinguishes four variations of the consistent labelling problem, which
correspond to the four above questions respectively:

e Consistent Labelling Decision Problem (CLDP)
e Consistent Labelling Enumeration Problem (CLEP)

e Consistent Labelling Search Problem (CLSP)

2For example, take the backtrack from x4 to x3 in Figure 3.5. Cy = ((z1,2), (22,5), (z3,1)).
If we take t = (24,6), we get C% = ((x1,2),(22,5), (x3,1),(z4,6)), which is consistent itself, but
inconsistent with S* = {5, zs}. If we take t = (24,5), we get C% = ((x1,2), (22,5), (z3,1), (x4, 5)),
which is inconsistent itself, and so also inconsistent with .

3In our example, S = {4} U (DUOUDU {z5} UDU {5, 26}) = {za, x5, 26}
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e Consistent Labelling Generation Problem (CLGP)

The last variant is the most general since it comprises all others. In this work, we
are interested mainly in algorithms which find all solutions. However, backtracking
algorithms are usually designed to stop after finding the first solution, and have to
be modified in order to solve CLGP. A simple change to the termination condition
is sufficient for some algorithms (e.g.. BT, BJ, FC), but in the case of CBJ and its
hybrids further modifications are necessary.

Example 4. The confused n-queens problem, described in [14], is how to place n
queens on a n Xn chess board, one queen per column, so that every queen attacks every
other queen. Suppose we change the solution() function of CLSP versions so that it
does not terminate the algorithm, and then use BJ and CBJ to solve the confused
3-queens problem. BJ correctly generates all solutions; CBJ, however, misses three
of nine solutions. Figure 3.6 shows one of the solutions detected by both algorithms,
namely (2,1,2). At this moment, the conflict set of 3 contains only one variable, 1,
which causes CBJ to backtrack directly to #1. Two subsequent solutions, (2,2,2) and
(2,3,2), are thus pruned out.

Figure 3.6: A fragment of backtrack tree for the confused 3-queens problem.

The problem here is that the conflict sets of CBJ are meant to indicate which
instantiations are responsible for some previously discovered inconsistency. However,
after a solution is found, conflict sets cannot always be interpreted in this way. It is
the search for other solutions, rather than an inconsistency, that forces the algorithm
to backtrack.

We need to differentiate between these two causes of CBJ backtracks: (1) de-
tecting an inconsistency, and (2) searching for other solutions. In the latter case
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the backtrack must be always chronological, that is, to the immediately preceding
variable (otherwise we risk pruning out some of the solutions).

Although it is possible to make CBJ find all solutions without adding new data
structures, we decided to adopt the following approach for its conceptual clarity. The
modified CBJ employs a one-dimensional boolean array of size n, called ¢bf (chrono-
logical backtrack flag). When set, an array entry signals that the corresponding
conflict set no longer has the intended meaning. Every time a new variable is chosen
for instantiation, the corresponding cbf entry is set to zero. After every discovered
solution, all entries in the c¢bf array are set to one. c¢bf is used when there are no
remaining values to be tried for the current variable. If the corresponding cbf entry
is set, the backtracking point is the variable immediately preceding the current one
in the instantiation order. Otherwise, the highest variable in the conflict set of the
current variable is chosen.

Lemma 2 as formulated in the previous chapter does not hold for every backtrack
in the modified CBJ. Indeed, the definition of backtrack depth does not apply to
backtracks caused by searching for other solutions. However, if we restrict ourselves
to the backtracks performed when the corresponding cbf entry is zero, the lemma
and the proof are still valid. Since the backtracks performed when the ¢bf flag is set
are always chronological and do not involve node skipping, the lemma holds for all
backjumps performed by CBJ. Therefore, we can be sure that whenever nodes are
skipped by backjumps, it is because of some previously detected inconsistency. We
use this fact in the proofs of the theorems presented in the following section.

Not every backtracking algorithm has to be modified in this way to find all solu-
tions. BT and FC never backjump. BJ does backjumps, but only from dead-ends, and
there is no dead-end when a solution is found. In the case of these three algorithms
we need only to change the termination condition to obtain CLGP versions.

3.4 Fundamental Theorems

We now present several theorems which describe the behaviour of four basic back-
tracking algorithms: BT, BJ, CBJ, and FC. It is assumed that all constraints are
binary, the order of instantiations is fixed and static, and the order of performing
consistency checks within the node follows the order of instantiations. We deal first
with the more general problem of finding all solutions. Then, we point out which of
the results are valid when only one solution is sought.

3.4.1 Characterizing Conditions for BT, BJ, and CBJ

The following three conditions are helpful in characterizing nodes in the search tree:

(1) A node’s parent is consistent.
(2) A node’s parent is consistent with all variables.

(3) A node’s parent is consistent with all sets of variables.
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Note that Conditions 2 and 3 are not equivalent. Condition 2 states that for every
individual variable, there exists an instantiation which is consistent with a certain
tuple. Condition 3 states that in addition all instantiations of the individual vari-
ables must be consistent with one another. A tuple that satisfies Condition 3 is in
fact a part of a full solution. If there is no solution to the network then no tuples
satisfy Condition 3. Naturally, Condition 3 implies Condition 2, which in turn implies
Condition 1. Interestingly, we can use the three conditions to specify the sufficient
conditions for nodes to be visited by the three backward checking algorithms. The
following theorems formalize this observation.

Theorem 1 BT wvisits a node if its parent is consistent.

Proof. Suppose that node (X7, ..., X;_1) is consistent, and its child p = (X1, ..., X;)
is not visited by BT. Take the highest j, 7 < ¢ — 1, such that node p' = (Xi,...,X})
is visited by BT. Node p’ is a proper ancestor of node p and is consistent because
(X1,...,X;) is a subtuple (not necessarily proper) of tuple (Xi,...,X;_1). When
BT visits p’, all consistency checks between X; and previous instantiations succeed.
The branch is extended by instantiating the next variable ;41 to each of the values
in its domain, including X;11. The node (Xi,...,X;, X;4+1) is thus visited by BT, a
contradiction. O

Theorem 2 BJ wisits a node if its parent is consistent with all variables.

Proof. Suppose that node (X7,..., X;_1) is consistent with all variables, and its
child p = (Xi,...,X;) is not visited by BJ. Take the highest j, j < ¢ — 1, such
that node p’ = (Xy,...,X;) is visited by BJ. Node p’ is a proper ancestor of node p
and is consistent with all variables because (X1, ..., X;) is a subtuple (not necessarily
proper) of tuple (X71,..., X;_1). When BJ is at node p/, all consistency checks between
X; and previous instantiations succeed. The only reason for not instantiating the
next variable z ;11 to X;41 can be a backjump from some variable z;, to some variable
x,, where ¢ < j and h > j 4 2. But if this is the case, Lemma 1 implies that
(X1,...,X,) is inconsistent with xj, which contradicts the initial assumption that
node (Xi,...,X;_1) is consistent with all variables. O

Theorem 3 CBJ visits a node if its parent is consistent with all sets of variables.

Proof. Suppose that node (X7i,..., X;_1) is consistent with all sets of variables,
and its child p = (Xy,..., X;) is not visited by CBJ. Take the highest j, j <i—1, such
that node p’ = (Xq,..., X;) is visited by CBJ. Node p’ is a proper ancestor of node
p and is consistent with all sets of variables because (Xi,..., X)) is a subtuple (not
necessarily proper) of tuple (Xi,..., X;-1). When CBJ is at node p/, all consistency
checks between X; and previous instantiations succeed. The only reason for not
instantiating the next variable z;1; to X;4; can be a backjump from some variable
xp, to some variable x,, where ¢ < 7 and b > j +2. From Lemma 2 we know that the
tuple composed of instantiations of the variables in the conflict set of xj, is inconsistent
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with some set of variables. Since the conflict set of xj, is a subset of {1,...,2,} and
g < i, this contradicts the initial assumption that (Xi,..., X;_1) is consistent with
all sets of variables. O

The above theorems allow us to identify only the nodes which are necessarily
visited by the algorithms. However, these are not all nodes that the algorithms
visit. For example, in Figure 3.3 BJ visits the node 25364 even though it’s parent
is inconsistent with xg. This happens because backward checking algorithms “look
backward” when they search for a solution. Unlike FC, they have to actually “hit”
an inconsistency in order to discover it. We would like to be able to specify a class
of nodes which are guaranteed not to be visited by algorithms. In other words, we
would like to have not only the sufficient, but also the necessary condition for a node
to be visited. Ideally, the sufficient and the necessary conditions should be the same.

The following three theorems formalize a trivial observation that the backward
checking algorithms expand only consistent nodes. Since all three algorithms BT,
BJ, and CBJ perform consistency checking in the same way, there is no need for more
than one proof.

Theorem 4 BT wvisits a node only if its parent is consistent.

Proof. Suppose that in the search tree there exists a node p = (Xy,..., X;) which
is visited by BT, and at the same time its parent (Xi,..., X;_1) is inconsistent. Take
the highest j, 5 <i—1, such that node (Xy,..., X;_1)is consistent. It is guaranteed to
exist because all first level nodes are consistent by the assumption that the constraint
network is already node consistent. Node p’ = (X71,..., X;) is a proper ancestor of
node p; and so p' is also visited. When BT visits p’, a consistency check fails between
X; and a previous instantiation, thus causing the branch to be abandoned. Therefore,
no descendants of p’ are visited by BT, a contradiction. O

Theorem 5 BJ visits a node only if its parent is consistent.
Proof. The same as for Theorem 4. O
Theorem 6 CB.J visits a node only if its parent is consistent.

Proof. The same as for Theorem 4. O

3.4.2 Characterizing Conditions for FC

For FC we can give a more precise characterization of the set of visited nodes. The
condition used in the following theorem is referred to as Condition 4.

(4) A node is consistent and its parent is consistent with all variables.

Note that the condition consist of two conjuncts, the second of which is identical to

Condition 2. Therefore, Condition 4 implies Condition 2. It does not, however, imply
Condition 3.
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Theorem 7 FC visits a node if it is consistent and its parent is consistent with all
variables.

Proof. Suppose that node (Xi,..., X, 1) is consistent with all variables, and
its child p = (Xi,...,X;) is consistent, but not visited by FC. Take the highest
J, J < ¢ —1, such that node p’ = (Xy,...,X;) is visited by FC, but its child
(X1,...,X;, X;41) is not visited by FC. Node p’ is a proper ancestor of node p and
is consistent with all variables because (Xi,...,X;) is a subtuple (not necessarily
proper) of tuple (Xi,...,X,_1). When FC visits node p’, none of the domains of
the future variables is annihilated. The branch is therefore extended by instantiat-
ing the next variable ;41 to each of the values in its filtered domain. Since tuple
(X1,...,X;) is consistent, its subtuple (X1,..., X;+1) is also consistent, so the filtered
domain of x;1; must still contain X;4;. Node (Xi,...,X;, X;41) is thus visited by
FC, a contradiction. O

The necessary condition for a node to be visited by FC is identical to the sufficient
condition.

Theorem 8 F(C wisits a node only if it is consistent and its parent is consistent with
all variables.

Proof. We prove the second conjunct first. Suppose that FC visits node p =
(X1,...,X;) although its parent (Xi,...,X,;_1) is inconsistent with some variable.
Take the highest j, j < ¢ — 1, such that node (Xi,...,X;_1) is consistent with all
variables. Node p’ = (Xi,...,Xj) is a proper ancestor of node p, so p' is also visited
by FC. When FC is at node p’, consistency checking annihilates the domain of some
variable, thus causing the branch to be abandoned. Therefore, no descendants of p’
are visited by FC, a contradiction.

Now, suppose that FC visits node p = (Xy,...,X;) although p is inconsistent.
Take the lowest &k, k <1 —1, such that instantiation X}, is inconsistent with instantia-
tion X;. When FC is at node (X7,..., X), the value X; is removed from the domain
of the variable z; and cannot be reinstated before the instantiation of z; is changed.
Therefore, p cannot be visited by FC, a contradiction. O

3.4.3 Summary of Conditions

Figure 3.7 summarizes the results of this section. The numbers denote that a node
satisfies a given condition. The names of algorithms denote that a node is visited
by a given algorithm. The arrows represent implications, and are annotated by the
numbers of the corresponding theorems. For example, Theorem 7, which says that a
node is visited by FC if it satisfies Condition 4, is represented by the arrow from ‘4’
to ‘FC.

There is a significant difference between the algorithms that use chronological
backtracking and the algorithms that use backjumping. BT and FC are completely
characterized; that is, for every node we can decide whether it is visited by the
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algorithm without having to generate the whole backtrack tree. In the case of BJ and
CBJ, however, there is a set of nodes for which we are unable to tell if they belong to
the algorithm’s search tree or not. The above theorems are not powerful enough for
this purpose. It is an open question if better characterizing conditions can be found.
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i

Figure 3.7: Conditions graph.

For CLSP versions (one solution sought), the “only if” theorems (4, 5, 6, and 8)
are still valid, since in the respective proofs we do not use the assumption that the
search is continued until all possibilities are exhausted. However, the proofs of the “if”
theorems (1, 2, 3, and 7) are based on the assumption that a node is always extended
to each value in the domain of the next variable. This is true only if the search is
not interrupted until all possibilities are exhausted. Therefore, the “if” theorems are
valid for CLSP only if we restrict ourselves to the search tree nodes preceding (in the
preorder traversal) the last node visited by a backtracking algorithm.

3.5 Hierarchy

It turns out that the nodes visited by the algorithms often form sets which include
one another. Let us look at Figure 3.7 again. If there is a path along the arrows
leading from algorithm A to algorithm B then we can conclude that B visits all nodes
that A visits. This observation immediately yields the following four corollaries. Note
that these corollaries are valid regardless of the constraint satisfaction problem being
solved.

Corollary 1 BT wisits all nodes that BJ visits.

Proof. The corollary states that if a node is visited by BJ then it is also visited by
BT. From Theorem 5 we know that all nodes visited by BJ have parents which are

30



consistent. Theorem 1 guarantees that all such nodes are visited by BT. Therefore,
if a node is visited by BJ, it is also visited by BT. O

Corollary 2 BT wvisits all nodes that CBJ visits.

Proof. From Theorem 6 we know that all nodes visited by CBJ have parents which are
consistent. Theorem 1 guarantees that all such nodes are visited by BT. Therefore,
if a node is visited by CBJ, it is also visited by BT. O

Corollary 3 BT wisits all nodes that FC visits.

Proof. From Theorem 8 we know that all nodes visited by FC have parents which are
consistent with all variables (and so the parents are themselves consistent). Theorem 1
guarantees that all such nodes are visited by BT. Therefore, if a node is visited by
FC, it is also visited by BT. O

The next corollary is the most interesting. The relationship between BJ and FC
has never been stated before, although the two algorithms have been often empirically
compared. This is probably due to their apparent dissimilarity.

Corollary 4 BJ visits all nodes that FC visits.

Proof. From Theorem 8 we know that all nodes visited by FC have parents which are
consistent with all variables. Theorem 2 guarantees that all such nodes are visited
by BJ. Therefore, if a node is visited by FC, it is also visited by BJ. O

The relationship between BJ and CBJ, although not implied by the theorems, can
also be proven using the two lemmas from Section 3.2. The proof is rather technical
and may be skipped without affecting the understanding of the rest of the thesis.

Theorem 9 BJ wvisits all nodes that CBJ wvisits.

Proof. Suppose that in the search tree of CBJ there is a node p at level h which is
not visited by BJ (Figure 3.8, left). The only reason for skipping p can be a backjump
performed by BJ from some node ¢ at level & to level ¢ < h. Recall that BJ performs
backjumps only after detecting a dead-end, and that in such a case it behaves exactly
like CBJ. Therefore, node ¢ could not be visited by CBJ, otherwise CBJ would also
skip node p. The only reason for skipping ¢ can be a backjump performed by CBJ
from some node r at level j to level ¢ < k (Figure 3.8, right).

The nodes in question are
P = (Xl,. .. ,Xh),
qg=Y1,...., V%),

r = (Zl,...,Z]‘).

From Lemma 1 we have:
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Figure 3.8: A hypothetical situation when CBJ visits a node not visited by BJ.

From Lemma 2 we have:

- (Z,...

where S C {zj,...,a,}.
From the properties of trees we have:

u:(Xl,...,Xg):(Yl,...,Y;,):(Zl,...

v=W,...,Y)) = (Z1,.... 2Z:).

Therefore, also

- (Vi

and

- (Z,...

2 AS)

7Zg)7

Y A S),

,Zg) A l’k)

Let us denote the highest variable in S by maxz(S). What is the relationship

between xj and max(S)?

o If x> max(9), BJ would never reach xj, after visiting node v because it would

hit a dead-end at max(.S) first.

o If z;, < max(9), CBJ would never reach maxz(S) after visiting node u because

it would hit a dead-end at z; first.

o If x4 = max(S5), CBJ would not visit node p because from xj it would jump

back directly to level g.

Thus, we arrive at a contradiction. O

The above four corollaries and one theorem enable us to construct a partial order
of backtracking algorithms with respect to the number of visited nodes. Figure 3.9
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shows the hierarchy for the four basic algorithms analyzed so far. BT generates the
biggest backtrack tree, which contains all nodes that the other algorithms visit on
the same problem. BJ visits more nodes than CBJ or FC. The order would be linear
if there was a relationship between FC and CBJ, but this not the case. Figure 3.3
provides a counterexample: some nodes visited by CBJ are not visited by FC, and
vice versa.

BT

FC CBJ

Figure 3.9: The hierarchy with respect to the number of visited nodes.

3.6 Correctness

It is surprisingly difficult to find the correctness proofs of most backtracking algo-
rithms. BT and FC, being conceptually simple, probably do not require rigorous
proofs. It is not immediately clear, however, that BJ and CBJ are correct.

Ginsberg [8] presents five algorithms using a new notation. Ginsberg’s Algorithm
2.5, which is referred to as depth-first search, is most probably equivalent to BT. It is
not clear, however, if Algorithm 3.3, which Ginsberg calls Backjumping, is equivalent
to BJ or CBJ, or is a completely new algorithm. Two propositions are of interest to
us:

Proposition 2.7 [8] Algorithm 2.5 is equivalent to depth-first search and
therefore complete.

Proposition 3.4 [8] Backjumping is complete and always expands fewer
nodes than does depth-first search.

The completeness proofs are difficult to follow. That Backjumping always expands
fewer nodes than depth-first search is not proven. It should be noted that it is not
difficult to find problems on which BJ and CBJ expand the same number of nodes as
BT.

Prosser in [20] mentions there exists an informal correctness proof of CBJ by
Tsang. As it has never been published, nothing more can be said about it.
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The correctness of the four basic algorithms is almost immediate from the theorems
given in Section 3.4. For each algorithm we prove that it is sound (finds only solutions)
and complete (finds all solutions). That all the algorithms terminate is clear.

Corollary 5 BT is correct.

Proof (soundness). A solution is claimed by BT if all consistency checks succeed
at an n-level node. It means that (Xy,...,X,,) is visited and Vi < n : X, is consistent
with X,,. Theorem 4 implies that its parent (Xi,..., X,,—1) is consistent. Therefore,
(X1,...,X,) is consistent.

Proof (completeness). Suppose that some n-level node (X3,..., X,,) in the search
tree is consistent. Then, its parent (Xi,...,X,_1) is consistent as well. From The-
orem 1 we know that (Xi,...,X,) is visited by BT. Since all consistency checks

between X, and previous instantiations must succeed, a solution is claimed by BT.
O

Corollary 6 BJ is correct.

Proof (soundness). The same as the proof of the soundness of BT, except that we
use Theorem 5.

Proof (completeness). Suppose that some n-level node (X3,..., X,,) in the search
tree is consistent. Then, its parent (Xi,..., X,,_1) is consistent as well, and it is also
consistent with x,. Therefore, (Xi,...,X,,—1) is consistent with all variables. From
Theorem 2 we know that (Xy,...,X,) is visited by BJ. Since all consistency checks
between X,, and previous instantiations must succeed, a solution is claimed by BJ. O

Corollary 7 CBJ is correct.

Proof (soundness). The same as the proof of the soundness of BT, except that we
use Theorem 6.

Proof (completeness). Suppose that some n-level node (X3,..., X,,) in the search
tree is consistent. Then, its parent (Xi,..., X,,_1) is consistent as well, and it is also
consistent with the set {x,}. Therefore, (X1,..., X,_1) is consistent with all sets of
variables. From Theorem 3 we know that (X7i,...,X,,) is visited by CBJ. Since all
consistency checks between X,, and previous instantiations must succeed, a solution

is claimed by CBJ. O
Corollary 8 FC'is correct.

Proof (soundness). A solution is claimed by FC if an n-level node p = (Xy,..., X,,)
is reached. Since Theorem 8 guarantees that a node visited by FC is consistent, p
must be consistent.

Proof (completeness). Suppose that some n-level node (X3,..., X,,) in the search
tree is consistent. Then, its parent (Xi,..., X,,_1) is consistent as well, and it is also
consistent with {x, }. Therefore, (Xi,..., X,,—1) is consistent with all variables. From

34



Theorem 7 we know that (Xi,...,X,) is visited by FC. Since this is a n-level node,
a solution is claimed by FC. O

The above theorems prove the correctness of the CLGP versions of the algorithms.
For BT, BJ, and FC, the correctness of the standard CLSP versions is obvious: if an
algorithm is guaranteed to correctly find all solutions then it also correctly finds the
first solution. It is only a little bit more complicated for CBJ because the standard
CLSP version of the algorithm does not use ¢bf array. However, since none of the ¢bf
entries is set before finding the first solution, the additional array does not influence
the behaviour of the CLGP version in this phase of the search. Therefore, we can
conclude that the standard CLSP version of CBJ is also correct.
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Chapter 4

The Six Remaining Algorithms

In this chapter we analyze somewhat less formally the six remaining backtracking
algorithms described in chapter 2. No theorems or proofs are given. All our claims
are conjectures based on empirical tests and a careful analysis of the algorithms.

In the first three sections we discuss three groups of algorithms:

e Backmarking and its hybrids.
e Graph-Based Backjumping.
o Forward Checking hybrids.

In the last section we present the final hierarchies of all backtracking algorithms
analyzed in this thesis.

4.1 Backmarking and its Hybrids

One thing that Backmarking (BM), Backmarking and Backjumping (BMJ), and Back-
marking and Conflict-Directed Backjumping (BM-CBJ) have in common is that they
use a backmarking scheme. A backmarking scheme does not have any influence on
the backtrack tree generated by a backtracking algorithm but usually results in a
dramatic reduction in the number of consistency checks. In this section, we first
thoroughly analyze the behaviour of the backmarking algorithms on a small example,
and then propose a modification to BM.J.

4.1.1 The Problem With BMJ

BMJ is a synthesis of BM and BJ; the hybrid, however, does not retain all the power
of each base algorithm in terms of consistency checks. Prosser [17] observed that on
some instances of the zebra problem BMJ performs more consistency checks than
BM. BMJ is also worse than BM on the benchmark 8-queens problem. The purpose
of the following example is to explain why it happens.
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Figure 4.10: The constraint network of Example 5.

Example 5. Consider the constraint network of four variables represented by the
graph in Figure 4.10. The domains of the variables are given inside the nodes, and
the constraints between variables are specified by the allowed pairs along the arrows.
The search is performed in the natural order. It is easy to verify that there is only
one solution to the network.

Figure 4.11 shows the backtrack tree generated by BT. BT visits 11 nodes, and
performs 17 consistency checks, an improvement over the naive “generate and test”
approach which involves 23 nodes.

root

abca

Figure 4.11: The backtrack tree generated by BT on the constraint network of Ex-
ample 5.

Let r be the number of consistency checks that BT performs at a given node. If
the node is inconsistent, r is the number of the lowest variable whose instantiation is
inconsistent with the instantiation of the current variable x;. If the node is consistent,
all checks succeed, and so r = ¢ — 1. We will use r to compute the consistency checks
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savings achieved by the backmarking algorithms.

We already know from the previous chapter that the set of nodes visited by BJ is a
subset of the set of nodes visited by BT. In this small example BJ manages to perform
only one backjump, which is represented in Figure 4.11 by the dashed arrow. When
node 5 is visited, the entry max_check[4] is set to 2 because variable x4 is inconsistent
with the instantiation (x2,a). By jumping back to x4, BJ skips one node and saves
two consistency checks. Following a general rule, at every other node BJ performs
the same number of checks as BT.

In the case of BM the opposite is true. BM visits exactly the same nodes as BT
but at some of them performs less consistency checks. In our example BM behaves
like BT when it explores the subtree rooted at node 2 (the left subtree). However,
during the search, information about consistency checks is accumulated in its data
structures mbl and mel. This information is utilized when BM visits the subtree
rooted at node 7 (the right subtree). The contents of the arrays just before BM
visits node 7 are shown in Figure 4.12. For the expository purposes, the arrays are
transposed.

1|2 b

c

X1 X2 X3 Xy
Figure 4.12: Arrays mbl and mel of BM before node 7 is visited.

Let us denote by |mcl| and |mbl| respectively the values of the mel and mbl entries
that are consulted when a given node is visited. If |mcl| is smaller than |mbl|, no
consistency checks are performed by BM (type-A savings as described in section 2.2.6).
This is because the instantiation which causes the node to be inconsistent has not
been changed since the mel entry was last updated. The number of saved checks
is thus equal to r = |mcl|. If |mcl| is greater than or equal to |mbl|, only those
instantiations which have changed are checked (type-B savings). The instantiations
of variables lower than |mbl| are guaranteed to succeed, and so the number of saved
checks is equal to |mbl| —1. Therefore, the savings made at each node can be given
by a simple formula: min(|mcl|,|mbl| —1).

BMJ attempts to combine node skipping with consistency check saving. Its back-
track tree is always the same as the backtrack tree of BJ. In our example, it saves
two checks when it backjumps over node 6, but on the right subtree it performs three
checks more than BM. On the whole network BMJ performs more checks than BM.

To see why this happens, consider node 9, which corresponds to the tuple
((x1,a),(x2,b),(x3,b)). The instantiation of 1 has not changed since the consistency
check between instantiations (x1,a) and (a3, b) was performed at node 4. According
to the definition, mb[[3] should contain the number of the lowest variable whose in-
stantiation has changed since the variable x5 was last instantiated with a new value,
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in this case 2. Yet, the value of mb[[3] is 1 (see Figure 4.13), and so the same check
is performed again.

1|2 b

c

X1 X2 X3 Xy
Figure 4.13: Arrays mbl and mel of BMJ before node 7 is visited.

The value is of mb[[3] is not entirely incorrect however, as can be seen at node 10,
which corresponds to tuple ((x1,a), (x2,b),(x3,¢)). BM and BMJ behave differently
at this node. BM “knows” that instantiation (s, c) is consistent with instantiation
(21, a), because it performed the consistency check at node 6. BMJ, however, skipped
node 6, and so has to perform this consistency check now.

A careful analysis of the example leads us to the conclusion that the mbl array,
which was originally designed for a backstepping algorithm, is no longer adequate
for a backjumping algorithm. BM always tests all values of the current variable for
consistency. That is why a single entry for all values is sufficient. In BMJ, however,
it often happens that only some values of the current instantiation are tested; the
other values are skipped by a backjump. A separate entry for each value is necessary
to preserve all collected consistency information.

4.1.2 BMJ2 — A Modified BMJ
The modified BMJ, which we call BMJ2, solves the problem by making mbl a two-

dimensional rather than a one-dimensional array. The new mbl array is of size n x m,
where n is the number of variables, and m is the size of the largest domain. This
is a reasonable space requirement because BMJ already uses one n x m array; each
mel entry has now a corresponding mbl entry. The mbl[¢][j] entry stores the number
of the lowest variable whose instantiation has changed since the variable x; was last
instantiated with the j—th value. The entry is set to 1 in the beginning, and then to
¢ every time the current instantiation (z;,1;) is being tested for consistency with past
instantiations. When the algorithm backtracks, the entries are updated in a similar

way as in BMJ. The BMJ2 code is presented below along with the code of BMJ.
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int consistent(z)
int z;
{

int i, oldmbl;

int consistent(z)
int z;
{

int i, olmbl;

oldmbl = mbl[z]; # oldmbl = mbl[z] [v[z];
# mbl[z] [v[z]] = z;
if (mcllz][v[z]] < oldmbl) = if (mcl[z][v[z]] < oldmbl)
return(0); = return(0);
for (i = oldmbl; 1 < z; i++) { = for (i = oldmbl; i < z; i++) {
mcl[z] [v[z]] = i; = mcl[z] [v[z]] = i;
if (check(z,i) == 0) { = if (check(z,i) == 0) {
max_check[z] = = max_check[z] =
max(max_check[z],1i); = max(max_check[z],1i);
return(0); } } = return(0); } }
max_check[z] = z - 1; = max_check[z] = z - 1;
return(1l); = return(1l);
} = }
int BMJ(z) # int BMJ2(z)
int z; = 1int z;
{ = {
int h, i, jump; it int h, i, j, jump;
if (z > N) { = if (z > N) {
solution(); = solution();
return(N); } = return(N); }
max_check[z] = 0; = max_check[z] = 0;);
for (i = 0; 1 < K; i++) { = for (i = 0; i < K; i++) {
viz] = 1i; = viz] = 1i;
if (consistent(z)) { = if (consistent(z)) {
jump = BMJ(z + 1); = jump = BM_CBJ(z + 1);
if (Gump != z) = if (jump !'= z)
return(jump); } } = return(jump); } }
h = max_check[z]; = h = max_check[z];
mbl[z] = h; #
for (i = h+1; i <= N; i++) = for (i = h+1; i <= N; i++)
# for (j = 0; j < K; j++)
mbl[i] = min(mbl[i],h); # mbl[i][j] = min(mbl[i][j],h);
return(h); = return(h);
} = }

Let us now analyze the behaviour of the modified algorithm on our example.
The mel array (Figure 4.14) looks exactly as in the case of BMJ, but mbl is now
2-dimensional. After the left subtree is visited, mb{[3, a] and mbl[3, b] are set to 2, but
mbl[3, ¢], which corresponds to the skipped node 6, remains unchanged at 1. Savings
are then made at nodes 8, 9 and 11.
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mbl [1]1|2]2|2a ma |1/1]1]2]a
2 b 1|2 b

H K Bk

X1 X2 X3 Xa X1 X2 X3 Xa

Figure 4.14: Arrays mbl and mel of BMJ2 before node 7 is visited.

Table 4.2 contains a node-by-node comparison of all algorithms discussed in this
section. The only node at which BMJ2 performs more consistency checks than any
other algorithm is node 10. However, note that the extra check ((1a,3c)) is performed
by BM earlier, at node 6.

[ Juode | BT [ BJ | BM | BMJ | BMJ? |

1]a 0 0 0 0 0
2 | aa 1 1 1 1 1
3 | aaa 1 1 1 1 1
4 | aab 2 2 2 2 2
5 | aaba 2 2 2 2 2
6 | aac 2 - 2 - -
7| ab 1 1 1 1 1
8 | aba 1 1 0 1 0
9 | abb 2 2 1 2 1
10 | abc 2 2 1 2 2
11 | abca 3 3 2 2 2
| > ] | 17 [ 15 ] 13 | 14 | 12 |

Table 4.2: Number of consistency checks performed at each node by various back-
tracking algorithms.

An analogous modification of BM-CBJ produces BM-CBJ2: mbl should be made

a 2-dimensional array, and maintained in the same way as in BMJ2.

4.2 GBJ

In Graph-Based Backjumping (GBJ) the backtrack tree is determined by the
topology of the constraint network. In contrast with BJ and CBJ, the actual con-
straints have no influence on the backtracking behaviour of this algorithm. GBJ
always backtracks to the most recent variable connected to the current variable in
the constraint network. The topological information is computed once at the start of
algorithm and stored in the PARENTS sets, one set for each variable. This approach



results in small overhead costs, but considerable savings are achieved only if the con-
straint network is sparse. For a fully connected network, such as in the n-queens
problem, GBJ generates the same backtrack tree as BT.

The behaviour of GBJ is similar to the behaviour of CBJ. The main difference is
that the static PARENTS sets are used instead of the dynamic conflict sets. Since the
existence of a nontrivial constraint between two variables does not imply a conflict
between their instantiations, we may expect GBJ to perform shorter backjumps and
consequently visit more nodes than CBJ.

In order to make GBJ find all solutions, the same modification as in the case
of CBJ must be made. A one-dimensional array should be employed to differentiate
between backtracking from an inconsistency, and backtracking after finding a solution
(see Chapter 3.3).

The backjumping behaviour of GBJ may be described by a lemma analogous to
Lemma 2. The only difference in the lemma and its proof would be to use PARENTS
sets instead of conflict sets.

In order to partially characterize the set of nodes visited by GBJ, the backjumping
lemma may be used to formulate two theorems, analogous to Theorems 3 and 6. The
first one, analogous to Theorem 3, states that GBJ visits a node if its parent is
consistent with all sets of variables. The second one, analogous to Theorem 6, states
that GBJ visits a node only if its parent is consistent.

Note that proving such two theorems about any static-order backtracking algo-
rithm amounts to proving its correctness. The first theorem states that all nodes
that lie on the paths between root and solutions are visited, which guarantees that
no solution is omitted. The second theorem states that only consistent nodes are
expanded, which that guarantees the solutions claimed by the algorithm are consis-
tent. The two theorems constitute the minimal characterization of the set of nodes
visited by a backtracking algorithm. The characterization is strong enough, however,
to prove the algorithm’s correctness (see the proof of Theorem 7).

In the hierarchies, GBJ may probably be placed between BT and CBJ. It is clear
that BT visits all nodes that GBJ visits. Also, the similarity between PARENTS sets
and conflict sets and experimental results suggest that GBJ visits all nodes that CBJ
visits. However, since we have not been able to prove it, this proposition remains a
conjecture. BT, GBJ, and CBJ perform the same number of consistency checks at
each visited node; therefore, their ordering with respect to the number of consistency
checks is the same as their ordering with respect to nodes.

4.3 FC Hybrids

Two FC hybrids have not yet been discussed. In this section, we briefly state our
results informally in points.

1. A similar modification as in the case of CBJ must be made to FC-CBJ in order
to make it find all solutions.
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2. FC-CBJ visits a node only if it is consistent and its parent is consistent with
all variables (this is the same necessary condition as for FC).

3. FC-CBJ visits a node if it is consistent and its parent is consistent with all sets
of variables (this is the same sufficient condition as for CBJ).

4. FC-CBJ is correct (implied by Point 2 and 3).
5. FC visits all nodes that FC-CBJ visits (implied by Point 2).

6. At any visited node FC-CBJ performs the same number of consistency checks

as FC.

7. FC-CBJ performs no more consistency checks than FC (follows from Points 5
and 6).

All the above observations except the first one apply to FC-BJ as well. Also,
we conjecture that FC-CBJ always skips more nodes that FC-BJ, and consequently
performs less consistency checks.

4.4 Hierarchies

We can now expand the hierarchy given in the Chapter 3 (Figure 3.9) to include the
backtracking algorithms studied in this chapter.

We have noted that imposing a marking scheme on a backtracking algorithm
does not change the set of nodes which are visited. A marking scheme causes an
algorithm to avoid some of the redundant consistency checks, but it has no influence
on the algorithm’s search tree. Therefore, the sets of nodes expanded by the following
algorithms are identical:

e BT and BM
e BJ and BMJ (BMJ2)
e CBJ and BM-CBJ (BM-CBJ2)

The final hierarchy, which includes the observations made in the previous two
sections, is presented in Figure 4.15. The hard links represent formally proven or
obvious relationships. The soft links represent conjectures which are suggested by
analyses and experimental results.

The second hierarchy seems to be even more important because the number of
consistency checks is a measure that better reflects the actual run times.

Let us define a relation <. (partial order) between backtracking algorithms.

Definition 3 A <.. B if and only if a backtracking algorithm A performs no more
consistency checks than a backtracking algorithm B when finding all solutions of any
constraint satisfaction network.
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BT =BM

BJ=BMJ=BMJ2 GBJ

/ CBJ =BM-CBJ =BM-CBJ2

FC-CBJ

Figure 4.15: The hierarchy with respect to the number of visited nodes.

In addition to the relationships discussed in Sections 4.2 and 4.3, the relation
contains the following pairs:

BJ <.. BT From Corollary 1 we know that BT visits all nodes that BJ visits. At
any given node both algorithms perform the same number of consistency checks.
Therefore, BJ performs no more consistency checks than BT on the whole net-
work.

CBJ <.. BJ From Theorem 9 we know that BJ visits all nodes that CBJ visits.
At any given node both algorithms perform the same number of consistency
checks. Therefore, CBJ performs no more consistency checks than BJ on the
whole network.

BM <.. BT BT and BM generate identical backtrack trees. However, thanks to the
marking scheme, at any given node BM performs no more consistency checks
than BT. Therefore, BM performs no more consistency checks than BT on the
whole network.

BMJ <.. BJ BJ and BMJ generate identical backtrack trees. However, thanks to
the marking scheme, at any given node BMJ performs no more consistency
checks than BJ. Therefore, BMJ performs no more consistency checks than BJ
on the whole network.
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45
BM-CBJ <.. CBJ Similar argument as the previous one.

Experiments and analyses suggest also the following conjectures:
e BMJ2 <.. BMJ

¢ BM-CBJ2 <.. BM-CBJ

¢ BM-CBJ2 <.. BMJ2 <.. BM

Figure 4.16 presents the hierarchy of algorithms with respect to the number of
consistency checks. Besides the relationships that are shown explicitly, it is important
to note the ones which are not in the picture. In order to disprove a relationship
between A and B, one needs to find at least one constraint satisfaction problem on
which A is better than B, and one on which B is better than A. For example, BM
performs more consistency checks than FC on the confused 12-queens problem, but
less on the regular 12-queens problem (Table 5.3). Examples of constraint networks
can be found that disprove all relationships which are not included in the hierarchies.
Thus, however counterintuitive it may seem, FC-CBJ may visit more nodes than
GBJ, and perform more consistency checks than BT!.

BT

GBJ FC

BM-CBJ2

Figure 4.16: The hierarchy with respect to the number of consistency checks.

!Prosser [17] gives an example of a problem on which BT outperforms any algorithm based on
forward checking.



Chapter 5

Experimental Results

In spite of the strongly theoretical approach adopted in this work, we include a handful
of experimental results. Three well-known benchmark problems and one randomly
generated problem were chosen for the comparison of ten backtracking algorithms
(the CLGP versions).

As benchmark problems, we used the regular 12-queens problem, the confused
40-queens problem, and the zebra problem. The queens problems have already been
described in previous chapters. We adopted the same, normal ordering as given in
Examples 1, 2, and 3. The zebra problem has 25 variables with domains of size 5. We
used the problem formulation and the ordering defined by Dechter in [4]. This variant
of the zebra problem has one solution. The results on the benchmark problems may
be reproduced in order to verify the equivalence of other implementations of the same
backtracking algorithms.

The random problem was generated using a function from the CSP code li-
brary [12]. The generator has two parameters: the probability of a nontrivial con-
straint between two variables, which was set at p = 0.12, and the probability of an
allowable pair in a constraint, which was set at ¢ = 0.22. The problem has 15 variables
with domains of size 10, and has no solution. An effort was made to select the values
of the parameters p and ¢ so that they are close to the boundary that separates the
overconstrained (no solution) networks from the underconstrained (many solutions)
networks (as described in [3]). The resulting problem is computationally hard.

The results in Tables 5.3 and 5.4 show that the relative performance of the al-
gorithms varies dramatically on different problems. On the regular queens, BM and
FC perform well, but the additional backjumping ability does not improve their per-
formance significantly. This is because the density of constraints is high (every two
variables are connected), and so long backjumps are rare. On the confused queens,
there is very little difference between the worst and the best results in terms of con-
sistency checks. The smallest backtrack trees are generated by FC and its hybrids.
The problem is rather easy; therefore, it does not require sophisticated techniques.
The performance of the algorithms on the zebra problem depends heavily on the vari-
able ordering (for an excellent statistical analysis see [17]). On this instance of the
problem, BM and its hybrids are the best. In the case of the hard random problem,
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REG Q | CONF Q | ZEBRA | RANDOM
BT 15,396,914 181,300 32,635 | 792,670,770
BJ 38,511,567 151,129 30,930 | 178,238,158
CBJ 36,890,689 151,129 15,331 101,368
GBJ 45,396,914 181,300 31,331 | 2,385,869
BM 5,224 512 115,640 7,300 | 44,971,390
BMJ 5,309,340 123,698 7,204 | 13,609,324
BMJ2 5,003,276 114,557 7,002 | 13,326,594
BM-CBJ | 5,306,272 123,698 5,454 49,415
BM-CBJ2 || 4,938,324 114,557 5,139 31,444
FC 5,958,644 98,696 11,060 611,118
FC-BJ 5,923,788 98,696 8,186 250,013
FC-CBJ 5,915,759 98,696 8,186 40,824

Table 5.3: Number of consistency checks performed by various backtracking algo-
rithms on certain constraint satisfaction problems.

REG Q | CONF Q | ZEBRA | RANDOM

BT 10,103,868 127,880 3,488 | 202,166,510
BJ 8,545,890 98,902 2,990 | 38,566,291
CBJ 8,176,526 98,902 1,673 23,450
GBJ 10,103,868 127,880 3,296 586,545
BM 10,103,868 127,880 3,488 | 202,166,510
BMJ 8,545,890 98,902 2,990 | 38,566,291
BMJ2 8,545,890 98,902 2,990 | 38,566,291
BM-CBJ 8,176,526 98,902 1,673 23,450
BM-CBJ2 | 8,176,526 98,902 1,673 23,450
FC 641,974 1,756 511 32,742
FC-BJ 629,854 1,756 307 10,492
FC-CBJ 627,997 1,756 307 911
Table 5.4: Number of nodes visited by various backtracking algorithms

constraint

satisfaction problems.

on certain
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the difference between the algorithms that use multiple backjumps and the other al-
gorithms is stark. The best results are produced by the hybrids that combine CBJ
with BM or FC.

In summary, the empirical results confirm our theoretical findings. The relative
performance of the algorithms varies significantly; on some problems the hybrid al-
gorithms are much better than the basic algorithms, whereas on other problems the
differences are negligible. However, the rankings of the algorithms always agree with
the partial orders we give in Chapter 4. As for the modified hybrids, on all four
problems BM-CBJ2 is the best of the nine backward checking algorithms, and BM.J2
is better than either BM or BJ.
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Chapter 6

Conclusions

In this chapter we provide some suggestions for future work, and a summary.

6.1

1.

4.

Future Work

The characterizing conditions for all algorithms except BT and FC do not cover
all nodes in their backtrack trees. Ideally, we would like the sufficient and
the necessary conditions to be the same. Since backtracking algorithms are
deterministic, it seems that it should be possible to describe precisely their
backtrack trees.

There exist many other backtracking algorithms which have not been treated
in this thesis such as algorithms with variable ordering, and algorithms that
combine consistency enforcing techniques with backtracking. Our approach
could be applied to all those algorithms.

Even though there is no absolute relationship between many pairs of algorithms,
it may be possible to specify conditions under which such a relationship exists.
For instance, one could try to specify formally the set of networks on which FC
is always better than BT.

The conjectures concerning GBJ and FC hybrids are yet to be proven formally.

6.2 Summary

We presented a theoretical analysis of several backtracking algorithms. Such well-

known concepts as backtrack, backjump, and domain annihilation were described

in terms of inconsistency between instantiations and variables. This enabled us to

formulate general theorems which fully or partially describe sets of nodes visited

by the algorithms. The theorems were then used to prove the correctness of the

algorithms and to construct a hierarchy of algorithms with respect to the number of

visited nodes. Next, we constructed a hierarchy of algorithms with respect to the
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number of consistency checks, which is a better performance measure than number
of nodes. The gaps in the resulting hierarchy prompted us to modify existing hybrid
algorithms so that they are superior to the corresponding basic algorithms in every
case. The empirical tests showed one of the modified algorithms to be better (in
terms of consistency checks) than all six backward checking algorithms described by
Prosser in [17].
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