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Abstract

A graph is said to be well covered if every maximal independent set has the same
size, and very well covered if every maximal independent set contains exactly half
the vertices in the graph. Well-covered graphs are of interest because while the
problem of finding the size of a maximum independent set is NP-complete for
graphs in general, it is in P for well-covered graphs.

Many of the existing results in this area deal with characterizations of families
of well-covered graphs. This thesis focuses on the algorithmic properties of this
family. The first part of this thesis looks at the algorithmic complexities of the
following problems for the families of well-covered and very well covered graphs:
chromatic number, clique cover, clique partition, dominating cycle, dominating set,
Hamiltonian cycle, Hamiltonian path, independent set, independent dominating
set, maximum cut, minimum fill-in, recognition, Steiner tree, and vertex cover.
While most of the above problems prove to be as difficult for well-covered graphs
as for graphs in general, a number of them become tractable when restricted to
the family of very well covered graphs.

In the second part of this thesis, an alternative characterization is given for the
family of well-covered graphs. This leads to the concept of a maximal intersection
of independent sets. Based on this, a hierarchy of four new sub-classes of well-
covered graphs is defined. The families are characterized and the algorithmic
complexities of the above mentioned problems are studied for these families. It is
also shown that the last class in the hierarchy is exactly the family of very well
covered graphs without isolated vertices. A generalization of Favaron’s theorem
for very well covered graphs is also proved.
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Chapter 1

Introduction

The concept of a well-covered graph was introduced by Plummer [24] in 1970. He
defined a graph as being well covered if every maximal independent set has the
same size. These graphs are of interest because while the problem of determining
the size of a maximum independent set for a general graph is NP-complete [15],
in the case of well-covered graphs, this can be done by determining the size of any
maximal independent set.

This thesis looks at the family of well-covered graphs from an algorithmic com-
plexity point of view. The main objectives are: to examine the recognition problem
for this family; to study the complexities of some fundamental graph problems for
this family; and, in case some of the problems prove intractable, to find non-trivial
sub-classes for which such problems can be solved efficiently. These results could
form a basis for characterizing classes of tractable, or provably intractable, prob-
lems on well-covered graphs. This thesis asks questions of the following nature:
Given that the maximum independent set problem is in P, are there other problems
that are tractable for this family? Are there problems that are intractable? What
is the complexity of the recognition problem? Are there non-trivial sub-classes for
which recognition is in P?7 What are the algorithmic properties of such sub-classes?
Can such sub-classes be distinguished algorithmically?

A graph is said to be very well covered if every maximal independent set con-
tains exactly half the vertices in the graph. The first part of this thesis looks at the
algorithmic complexities of the following problems for the families of well-covered
and very well covered graphs: chromatic number, clique cover, clique partition,
dominating cycle, dominating set, Hamiltonian cycle, Hamiltonian path, indepen-
dent set, independent dominating set, maximum cut, minimum fill-in, recognition,
Steiner tree, and vertex cover. The recognition problem turns out to be co-NP-
complete for well-covered graphs, and in P for very well covered graphs without
isolated vertices. While most of the other problems prove to be as difficult for
well-covered graphs as graphs in general, a number of them become tractable when
restricted to the family of very well covered graphs.

In the second part of this thesis, an alternative characterization is given for the
family of well-covered graphs. This leads to the concept of a maximal intersection
of independent sets. Based on this, a hierarchy of four new sub-classes of well-



covered graphs is defined. The families are characterized and the algorithmic
complexities of the above mentioned problems are studied for these families. While
the first family in the hierarchy has recognition co-NP-complete, the remaining
families have recognition in P. All of them have the clique partition problem in
P, a problem that is NP-complete for well-covered graphs. The smallest family
in the hierarchy is exactly the family of very well covered graphs without isolated
vertices.

The last part of this thesis deals with a generalization of Favaron’s [8] charac-
terization of very well covered graphs without isolated vertices. She showed that
all such graphs have a perfect matching which obeys a certain property. In this
thesis, a characterization of the second class in the hierarchy is provided in terms
of a clique partition which obeys certain properties. This is shown to reduce to
Favaron’s characterization when the clique partition considered is a perfect match-
ing. While this result does not immediately fall into the framework of the thesis,
it is interesting because it generalizes the structure of very well covered graphs
without isolated vertices, while preserving the property of recognition being in P.

1.1 Definitions

A graph is a pair G = (V, F), where V is a finite set of vertices and E is a set of
unordered pairs (u,v) of distinct vertices of V; each such pair is called an edge.
V(G) and E(G) are also used to denote the vertex and edge sets, respectively, of
a graph G. The order of a graph is given by the number of vertices, and the size
by the number of edges, in it. In what follows, G denotes a simple, undirected,
finite graph of order n =| V' |, with size m =| E | edges. Two vertices u and v are
adjacent, denoted by u ~ v, if (u,v) € F; u and v are called the end points or ends
of the edge (u,v). Two vertices u and v are non — adjacent, denoted by u 4 v,
if (u,v) ¢ E. The degree d(v) of a vertex v is the number of vertices adjacent to
v. Two edges are adjacent if they have a vertex in common. An edge is said to
be incident with a vertex v if v is one of its end points. A vertex of degree one
is called a leaf. An edge that is incident with a leaf is called a pendant edge. A
graph H = (Vi, Fy) is said to be a subgraph of G'if V{ CV and E; C E. Given a
vertex set A C V, the subgraph induced by A has the vertex set A and the edge
set F(A) = {(u,v) € Flu,v € A}, and is denoted by < A >.

A set of vertices is independent if no two vertices in the set are adjacent. A set
of vertices in G forms a vertex cover for GG if every edge in G is incident with at
least one vertex in the set. A set of vertices [ is said to cover a set of vertices [5 if
every vertex in I3 is adjacent to some vertex in ;. A subset of F is a matching if
no two edges in the set are adjacent. We say that there is a matching from A C V
to B C V — A, if there exists a matching M of (G such that every edge in M has
one end point in A and the other in B; we can also say that there is a matching
from B to A, or there is a matching between A and B. A perfect matching is one
in which every vertex in (G is an end point of some edge in the matching. A set
S is a mazimal set satisfying a certain property P if there is no other set properly



containing S that satisfies property P. Set S is mazimum if there exists no set of
greater cardinality that satisfies property P. A similar distinction is made between
mintmal and meinimum. The size of a maximum independent set in a graph is
referred to as a(G). A graph G is a bipartite graph if V can be partitioned into
two independent sets X and Y. We write the bipartite graph as (X, Y, F). If u
is adjacent to v, then wu is said to be a neighbour of v. N(v) denotes the open
neighbourhood of v € V, that is, N(v) = {z]x € V and (z,v) € F}. N[v] denotes
the closed neighbourhood of v and is given by N[v] = N(v)U{v}. Foraset S C V,
N(S) =UN(v) Yv € S, and N[S] = N(S)U S. A vertex is ¢solated if it has no
neighbours, and simplicial if its closed neighbourhood induces a clique. A graph
is said to be chordal it it does not contain an induced cycle of order greater than
three. The clique cover number of a graph G is the smallest number of complete
subgraphs needed to cover the vertices of (; it is denoted by x(G'). A graph G
is said to be perfect if a(< A >) = k(< A >) for all A C V. For any additional
terms, see [2].

An algorithm is said to run in order f(n) time if its running time is bounded by
cf(n) for all possible instances of input of size n, where ¢ is a positive constant. It
is called a polynomial time algorithm if f(n) is a polynomial in n. An algorithm
is said to be deterministic if each stage in the execution of the algorithm leads to
a unique next stage, and nondetermainistic if there could be many possible next
stages. A problem is said to belong to the class P if there exists a deterministic
polynomial time algorithm, and to the class NP if there exists a nondeterministic
polynomial time algorithm, which solves it. A problem is said to be NP-hard if
the existence of a deterministic polynomial time algorithm for its solution implies
the existence of a deterministic polynomial time algorithm for every problem in
NP. A problem is said to be NP-complete if it is both NP-hard and is in the class
NP. For additional details on complexity and NP-completeness, see [15].

1.2 Organization of this thesis

Chapter 2 looks at related work and gives some examples of well-covered graphs.
Chapter 3 studies the complexities of some fundamental graph problems for the
families of well-covered and very well covered graphs. Chapter 4 gives an alterna-
tive characterization for well-covered and very well covered graphs, and also looks
at the nature of the intersections of pairs of maximal independent sets of a well-
covered graph. It establishes the conditions under which such intersections are
maximal, and under which all such intersections have the same size. Chapter 5
defines and characterizes a hierarchy of four new sub-classes of well-covered graphs.
It also shows that the last sub-class in the hierarchy is exactly the family of very
well covered graphs without isolated vertices. Chapter 6 studies the complexities of
some standard problems for these sub-classes. Chapter 7 provides a generalization
of Favaron’s theorem for very well covered graphs. Conclusions and future work
make up Chapter 8.



Chapter 2

Related work

2.1 Introduction

The concept of a well—covered graph was introduced by Plummer [24] who defined
a graph to be well covered if every minimal vertex cover is also a minimum
vertex cover. If V. C V is a vertex cover for a graph G, then the graph induced
by V — V. cannot contain an edge, as this would contradict the fact that V. is
a vertex cover. That is, I = V — V. is an independent set. This independent
set 1s a maximal independent set since V. is a minimal vertex cover. Therefore,
an equivalent definition for a well-covered graph is: A graph is well covered if
every maximal independent set is maximum. Note that for a well-covered graph,
every independent set is contained in a maximum independent set. Well-covered
graphs are interesting because a greedy algorithm can be used to find a maximum
independent set, a problem that is intractable for general graphs. Another well
known structure for which the greedy algorithm gives an optimal solution is a
matroid. For a comprehensive treatment of matroids, see [30].

We first present a few results that have applications in this thesis and then
give a summary of some other known results. We then present a few examples of
well-covered graphs.

2.2 Results related to the thesis

A graph is said to be quasi-regularizable if one can obtain a regular multigraph of
non-zero degree from it, by deleting some of the edges if necessary, and replacing the
others with several parallel edges. Berge [1] showed that any well-covered graph
without isolated vertices is quasi-regularizable, and that any quasi-regularizable
graph (G has the property that for every independent set S of G, | N(S) |>]| S |.
From this, it is clear that

Corollary 2.1 For any well-covered graph G without isolated vertices, the follow-
ing are true:

a) | N(S) |=| S| for every independent set S of G.



b) The size of a maximal independent set of G is <|V | /2.

A graph is said to be very well covered it every maximal independent set has
cardinality | V' | /2. Staples [28] was the first to study this family. Favaron [§]
gave the following characterization for this family:

Theorem 2.1 (Favaron) For a graph G, the following are equivalent:
a) G is very well covered.
b) There exists a perfect matching in G that satisfies P.
¢) There exists at least one perfect matching in G and every perfect matching

of G satisfies P.

where property P is defined as follows:

Property P: A matching M in a graph G satisfies property P if for any edge
(u,v) € M, N(u) N N(v) = ¢, and N(u) —{v} is adjacent to all of N(v) — {u}.

Chvétal and Slater [6] showed that well-covered graph recognition is co-NP-
complete, that is, recognizing a graph as being not well covered is NP-complete.
This result was arrived at independently by the author and Stewart [27].

2.3 Other results

Ravindra [25] studied well covered bipartite graphs. Let G be a graph and for
e = (u,v) € F, let G be the subgraph induced by N(u)U N(v) in G. Then

Theorem 2.2 (Ravindra) A bipartite graph G without isolated vertices is well
covered if and only if G has a perfect matching M and for every e € M, G, is a
complete bipartite graph.

It G is a well-covered bipartite graph, then every maximal independent set of ¢
has | V | /2 vertices. That is, any such bipartite graph is very well covered. He
also characterized all well-covered trees.

Lewin [19] implicitly characterized well-covered line graphs by characterizing
what he called matching-perfect graphs. A graph is said to be matching — per fect
if every maximal matching is a maximum matching. A line graph G, of a graph G
has a vertex for every edge in (&, and two vertices in () are joined by an edge if
the corresponding two edges in (¢ are adjacent. Hence, a maximal matching in &G
yields a maximal independent set in G, and vice versa. That is, G is matching-
perfect if and only if Gy is well covered. It was later proved by Lesk et al. [18] that
well-covered line graphs can be recognized in polynomial time.

Staples [29] gave the following classification scheme for well-covered graphs:

Definition 2.1 Let n be a positive integer. A graph G belongs to class W, if
| V(G) |> n and every n disjoint independent sets in G are contained in n disjoint
maximum independent sets.



Wi is the class of well-covered graphs, and the W, classes form a descending chain:
Wy O Wy O ---. No W, class is empty, since the complete graph on n vertices
belongs to W,,. She also described some ways of constructing W,, graphs, and
proved some structural results for these graphs.

The girth of a graph is the length of the smallest cycle in it. Finbow and Hart-
nell [10] characterized well-covered graphs of girth > 8. Finbow et al. later char-
acterized well-covered graphs of girth > 5 [14], and well-covered graphs containing
neither 4- nor 5-cycles [13]. They showed that all such graphs can be recognized
in polynomial time. A concept similar to that of a graph being well covered is
that of a graph being well-dominated. A graph is said to be well-dominated if all
minimal dominating sets are of the same cardinality. A set D C V of (& is said to
be dominating if every vertex in ( is either in the set or is adjacent to some vertex
in it. Finbow et al. [12] showed that well-dominated graphs are also well covered.
They gave a characterization of well-dominated graphs having no 3- nor 4-cycles,
and of well-dominated bipartite graphs. A dominating set D is said to be locating
if for every pair of vertices u,v not in D, we have N(u) N D # N(v)N D. Finbow
and Hartnell [11] showed that graphs in which every independent dominating set
is locating form a sub-class of well covered graphs. They also showed that for
graphs of girth 5 or more, the two families are identical. Gasquoine, Hartnell,
Nowakowski, and Whitehead [16] described techniques for constructing a family of
well-covered graphs containing no 4-cycles.

A graph is said to be claw-free if it has no induced subgraph isomorphic to K7 3.
Whitehead [31] showed how a claw-free well-covered graph containing no 4-cycle,
with any given independence number «, can be constructed by linking together «
subgraphs, each isomorphic to either Ky or Kj.

A set S of vertices of a graph is k-independent if each vertex in S is adjacent
to at most k — 1 other vertices in S. Favaron and Hartnell [9] defined a well-
k-covered graph as one in which every maximal k-independent set of vertices is
maximum. Thus, well-1-covered is the same as well covered. They characterized
the well-k-covered trees, and all well-2-covered graphs of girth > 8.

A graph is said to be cubic if the degree of every vertex in it is exactly 3.
Campbell [3] characterized the well-covered cubic graphs of connectivity 1 or 2.
Campbell and Plummer [5] found all 3-connected cubic planar graphs which are
well covered; they showed that there are only four such graphs. Campbell et
al. [4] characterized all well-covered cubic graphs and showed that these can be
recognized in polynomial time.

A graph is called k-extendable if every independent set of size k is contained in
a maximum independent set. Dean and Zito [7] gave the following characterization
of well-covered graphs:

Theorem 2.3 Let C' be a clique cover consisting of t cliques of a graph G with
independence number a(G) =t — d, for some non-negative integer d. Then the
following are equivalent:

a) G is well covered.



b) G is k-extendable for all k € {1,2,...,h}, where h is the sum of the orders
of the d + 1 largest cliques in C'.

¢) For every d + 1 cliques Cy,Cy,...,Cyr1 of the clique cover C with vertex
set W = ULV(Cy), there is no independent set S of G — W such that
| W |>] S| and W C N(S).

They also showed that for two classes of perfect graphs, those with bounded clique
size and those with no induced 4-cycles, it can be determined whether the graph
is well covered in polynomial time.

Moon [21] obtained some results on the number of well-covered trees in various
families of trees.

A well-covered graph is defined to be in the strongly well-covered class if and
only if the deletion of any edge leaves a well-covered graph. Pinter [22] studied
the class Wy as defined by Staples, and the class of strongly well-covered graphs.
He showed that these are two different classes, and that there is only one graph
common to both classes.

For a more detailed analysis of the work done so far, see Plummer’s survey on
well-covered graphs [23].

2.4 Examples

We now give some examples of well-covered and very well covered graphs. The
only induced paths which are well covered are P;, P,, and P,, the paths on 1, 2,
and 4 vertices, respectively. For any other path, one can easily get two maximal
independent sets of different sizes by choosing vertices appropriately. For example,
if the vertices are numbered 1,2,3, ..., choose vertices 1,3,5,... to form one set
and vertices 1,4,7,... to form another.

The only induced cycles which are well covered are Cs5, Cy, Cs, and C;. For any
other cycle, one can find two maximal independent sets of different sizes by using
a sequence similar to that given above for paths.

The complete bipartite graph K, , is very well covered with a maximal inde-
pendent set size of n. Consider bipartite graphs having no isolated vertices. The
complement of any such graph is well covered, as any maximal independent set
will contain exactly two vertices.

The complements of k-trees form another family of well-covered graphs. A k-
tree is defined recursively as follows: a k-tree on k vertices is a clique on k vertices
(k-clique); given a k-tree T, on n vertices, a k-tree on n 4 1 vertices is obtained
by adding a new vertex v,y to T,, and making it adjacent to each vertex of some
k-clique of T,,, and non-adjacent to the remaining n — k vertices. The complement
of a k-tree on k vertices is obviously well covered. To prove this for k-trees on
more than & vertices, we need only show that in every such k-tree, every maximal
clique is a maximum clique, since a maximal clique in a k-tree corresponds to a
maximal independent set in its complement. Rose [26] showed that any k-tree G
has a k-clique but no &+ 2-clique. Hence, the size of a maximal clique for a k-tree
is bounded by £ 4 1. From the definition of a k-tree, any k-tree with more than &



vertices has at least one clique of size k41 and every vertex in it belongs to at least
one clique of this size. Hence, every maximal clique in a k-tree with more than &
vertices has size k + 1. Therefore, the complements of k-trees are well covered.



Chapter 3

Complexity results

3.1 Introduction

From the previous chapter, we see that most of the work done so far on well-
covered graphs deals with characterizations of this family and of specific sub-
classes. We now examine the algorithmic properties of such classes by exploring
the complexities of some fundamental graph problems like recognition, dominating
set, Hamiltonian cycle and path, and clique cover for the families of well-covered
and very well covered graphs. The very well covered graphs looked at here are
those without isolated vertices. We show that recognition is co-NP-complete and
that several other problems are NP-complete for well-covered graphs. A number
of these problems remain NP-complete, while some of them become tractable, for
very well covered graphs. For both families, the isomorphism problem is as hard
as the general graph isomorphism. These results are shown in the Table 3.1.

3.2 Recognition

An important question for any family of graphs is that of recognition, that is,
given a graph (/, can one say whether or not G is well covered? We prove that
this problem is co-NP-complete by showing that the complementary problem of
deciding whether GG is not well covered is NP-complete. This result was arrived at
independently by Chvatal and Slater [6].

Theorem 3.1 The recognition problem is co-NP-complete for well-covered graphs.

Proof:

The decision problem that we are dealing with here is the following: is a given
graph G not well covered? We first show that this problem is in NP. A graph
G is well covered if and only if every maximal independent set is a maximum
independent set. To show that G is not well covered, a nondeterministic algorithm
only needs to guess two subsets of V' and check that they are maximal independent
sets of different sizes.



H Problem ‘ Well covered ‘ Very well covered H

Member co-NP-¢ (K, — K3) P (Favaron)
Chromatic number — NP-c¢ (leaf vertex)
Clique — NP-c¢ (leaf vertex)
Dominating cycle — NP-c¢ (leaf vertex)
Isomorphism — iso-c  (leaf vertex)
Maximum cut — NP-c¢ (leaf vertex)
Minimum fill-in — NP-c¢ (leaf vertex)
Steiner tree — NP-c¢ (leaf vertex)
Independent set P (trivial) =

Independent dominating set P (trivial) -

Vertex cover P (trivial) =

Clique partition NP-¢  (C5—C5) P (Favaron)
Dominating set NP-¢  (H — K3) P (Favaron)
Hamiltonian cycle NP-¢  (K3) P (Kon)
Hamiltonian path NP-¢ () P (cham graph)

Table 3.1: Complexity results for well-covered and very well covered graphs

<—  Result implied from result on right.
—  Result implied from result on left.
(! Similar transformation to one just above.

(. . ) Nature of transformation/result or reference.

We transform from a known NP-complete problem, the SATISFIABILITY
problem, or SAT. This problem is specified as follows: Given a set U of vari-
ables and a collection €' of clauses over U, is there a satisfying truth assignment
for C?7 For any instance of SAT with clauses C = {¢1,¢a,...,¢,} and variables
U= {uy,uz,...,u,}, we construct a graph G = (V, F), where

V = Vo UV, where
Vo = Hea,e,..0,¢n) and
Vi, = {u,ur,ug, .. U, Uy )
Eo= (e ¢)l <i,j <m,i#j}
(w1 <0 < )
U{(e;, uj)|u; is a literal in clause ¢;}
U{(e;, @;)|a; is a literal in clause ¢;}
See Figure 3.1. We assume that no clause contains a variable and its negation, as
such a clause could be satisfied by any truth assignment and therefore eliminated.

(' has 2n + m vertices. The number of edges in Vi is m(m — 1)/2, and in V,
is n. The number of edges between Vi and Vi is < mn, considering the worst

10



Figure 3.1: Recognition

case of each clause having n literals. Therefore, the number of edges in G is
<n+nm+m(m—1)/2. Thus, G can be constructed in polynomial time.
Consider the graph . Any independent set can have at most one vertex
from Vi and one vertex from each K, in Vj,. Therefore, the size of a maximum
independent set for G is n 4+ 1. There are many maximal independent sets of this
size as one can choose a vertex from V¢, and still pick one vertex from each K in
V1, as no vertex in Vi is adjacent to both the vertices of a K, in V. In fact, one
must pick a vertex from each K5 in V7, since there are no edges between the K,’s.

Claim 3.1 C is satisfiable if and only if G is not well covered.

Proof:

only if:

(' is satisfiable. Then we can find a maximal independent set of size n consisting
of vertices of Vi, corresponding to true literals in a satisfying truth assignment for
(. Since we have already shown that there are maximal independent sets of size
n 4+ 1 in G, this means that G is not well covered.

if:

GG is not well covered. Then there exists a maximal independent set in G of size
less than n 4 1. Any independent set can contain at most one vertex from V. We
have already shown that any independent set containing a vertex from Vo must
have one vertex from every Ky in V., giving a maximal independent set of size
n + 1. Thus, any maximal independent set containing fewer than n + 1 vertices
contains only vertices of V7. Since any such independent set must have one vertex
from each K3, all such maximal independent sets will have size n. For such a set
to be maximal, each vertex of Vi should be adjacent to at least one vertex the
in the set. No two vertices corresponding to a literal and its negation will be in
an independent set, since they are adjacent to each other. Hence, if we assign the
value true to the literals corresponding to the vertices of V7 in any such maximal
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independent set of size n, we will have a satisfying truth assignment for . This
completes the proof of the claim.

Therefore, recognizing a graph to be not well covered is NP-complete.

d

A graph is said to be weakly chordal if neither it, nor its complement, contains
a chordless cycle with more than four vertices; see [17]. As mentioned earlier, Dean
and Zito [7] showed that for perfect graphs with no induced 4-cycles, the problem of
determining whether the graph is well covered is tractable. Since chordal graphs are
perfect graphs and have no induced 4-cycles, this means that determining whether
a chordal graph is well covered can be done in polynomial time. We now show
that the problem of recognizing a graph as being not well covered is NP-complete
for weakly chordal and therefore pertect graphs.

Corollary 3.1 The problem of recognizing a graph as being not well covered is
NP-complete for weakly chordal and therefore perfect graphs.

Proof:

We show that the graph G obtained in the proot of the theorem 3.1 is a weakly
chordal graph. We do this by showing that neither G nor its complement contains a
chordless cycle with more than four vertices. The proof makes uses of the following
observation: Any such cycle in (¢ contains exactly two vertices from V¢, and in G*¢
exactly two vertices from V7.

Consider a chordless cycle of length > 5 in G. Any such cycle can have at most
two vertices from V¢ since < Vi > is a clique; hence, it has at least three vertices
from Vz. Since the Kjy’s in < Vi > are mutually non-adjacent, there have to be
at least two vertices from Vi in the cycle. Thus, any such cycle has exactly two
vertices from Vi, which are adjacent, and at least three vertices from V7. Consider
the vertices from V7 in such a cycle. If both vertices from a K, are in the cycle,
they will induce a Cy as a subgraph with the two vertices from Vi, thus creating
a chord. If only one vertex from a K3 is in the cycle, it will form a K5 with the
vertices from Vi, again creating a chord.

Consider a chordless cycle in GG¢ of length > 5. < V7, > consists of independent
sets of size two with each vertex of any such independent set [ being adjacent
to every vertex in Vz — I. Any four vertices from V7 will induce a 4-cycle as a
subgraph, thereby creating a chord in the cycle. Thus, there can be at most three
vertices from V7, in the cycle. This means that there are at least two vertices from
Ve in the cycle. Since < Vi > is an independent set, the vertices in it are connected
to each other only through the vertices in V7. If there are three vertices from Vg,
in the cycle, then these will have a P5 as a subgraph. These vertices, along with
any one of the vertices from Vi in the cycle, will have a (4 or a (5 as an induced
subgraph, thereby creating a chord. Therefore, there are exactly two vertices from
Vz in any such cycle, which will then have at least three vertices from V. Any two
such vertices from V¢, along with the two from Vi, will have a Cy as a subgraph,
thus creating a chord.
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Hence, neither GG nor its complement has a chordless cycle with more than four
vertices. Therefore, G is weakly chordal; that is, the graph obtained in proving
theorem 3.1 is a weakly chordal graph. Hence, recognizing non-well-covered weakly
chordal graphs is NP-complete. Since it has been proven by Hayward [17] that
weakly chordal graphs are also perfect graphs, we conclude that recognizing non-
well-covered perfect graphs is also NP-complete.

d

In contrast to this, very well covered graphs can be recognized in polynomial
time. From Favaron’s characterization, we see that in order to recognize a graph
as being very well covered, we just need to show that it has a perfect matching
that obeys property P. A maximum matching can be found in polynomial time
using the algorithm devised by Micali and Vazirani [20]. Their algorithm runs in
order y/nm. Checking if this is perfect requires finding out if the number of edges
in the matching is equal to n/2. Checking if the neighbours of a pair of vertices
that form an edge in the matching are completely connected to each other can
be done in order n 4+ m time. Since there are exactly n/2 such pairs of vertices,
property P can be checked in order n? + nm time. Therefore, very well covered
graph recognition is in P.

3.3 Independent set and related problems

Some problems are easily solved for the class of well-covered graphs as a result of the
definition of this family of graphs. The maximum independent set problem, which
is to find an independent set whose size is maximum, is easily seen to be polynomial
as we only need to find a maximal independent set. Since a minimum vertex cover is
simply the vertex set minus a maximum independent set, the minimum vertex cover
problem is also in P for this class of graphs. We also observe that the minimum
independent dominating set problem is in P for well-covered graphs because this is
equivalent to the problem of finding a minimum cardinality maximal independent
set.

3.4 Dominating cycle and other problems

We first show that the dominating cycle problem is NP-complete, and then use
the same transformation to show that a number of other problems are also NP-
complete for this class of graphs.
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Problem: Given a graph G, does G have a simple cycle such that every vertex
in G is in the cycle or is adjacent to some vertex in the cycle?

Theorem 3.2 The dominating cycle problem is NP-complete for well-covered
graphs.

Proof:

The problem is known to be in NP. We transform from the Hamiltonian cycle
problem for general graphs. Consider any graph G of order n. Construct Gp
by adding a leaf vertex to every vertex in (. Thus, Gp has 2n vertices and
m + n edges, and can be constructed in polynomial time. For an example, see
Figure 3.2. Consider the graph thus obtained. The edges with the leaf vertices

Figure 3.2: Dominating cycle

form a perfect matching for G'p. Therefore, any maximal independent set will
have to contain exactly one vertex from every edge in the matching; that is, any
maximal independent set will have exactly | V(Gp) | /2 vertices. Therefore, Gp
is a very well covered graph.

Claim 3.2 G has a Hamiltonian cycle if and only if Gp has a dominating cycle.

Proof:

only if:

(G has a Hamiltonian cycle. Therefore, there is a simple cycle in GGp that involves
n vertices. All the other vertices in GGp are adjacent to some vertex in the cycle.
That is, there is a dominating cycle in Gp.

if:

A dominating cycle in G'p will contain only those vertices that have corresponding
ones in (4, as the other vertices are of degree 1 and, hence, cannot be part of a
cycle. It will also have to contain all such vertices as each one is adjacent to a leaf
vertex. Hence, the dominating cycle will contain n vertices and these are the same
as the vertices of (G. Also, the edges in such a cycle will only be those that have
corresponding ones in (7, as the new edges added are all pendant edges and, hence,
cannot be part of a cycle. Hence, we can find a simple cycle in (¢ that covers all
the vertices in it, that is, a Hamiltonian cycle in . This proves the claim.
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Now, the Hamiltonian cycle problem is known to be NP-complete for general
graphs; hence, the dominating cycle problem is NP-complete for very well covered
graphs, and therefore, for well-covered graphs.

d

The reduction used in the dominating cycle proof yields a number of other
results. Consider a graph G which has at least one edge; let G'p be the transformed
graph.

The maximum clique size of Gp will be the same as the maximum clique size of
(¢ as the pendant edges do not change the maximum clique size. The same holds
for chromatic number, which is defined as the minimum number of colours needed
to colour the vertices of a graph G such that no two adjacent vertices have the
same colour.

Given a graph G and a set of target vertices T, a minimum Steiner tree in G,
that is, a sub-tree of G with the minimum number of edges that includes all the
vertices of T'; will be the same as a minimum Steiner tree in G/p, since the pendant
edges and vertices play no role in the minimum Steiner tree.

A minimum fill-in for a graph G is defined as the minimum number of edges
required to be added to GG to make it chordal. A minimum fill-in for ¢ would be
same as a minimum fill-in for GGp as the pendant edges do not play a part in a
minimum fill-in.

The unweighted maximum cut problem is defined as follows: given a graph G
and an integer k., is there a partitioning of V' into disjoint sets V; and V, such
that the number of edges of ¢ with one end-point in V; and the other in V5 is
at least k7 Clearly, a pendant vertex would be in the opposite partition from its
neighbour; otherwise, the size of the cut could be increased by moving one or more
pendant vertices. Thus, the size of a maximum cut for G'p is equal to the size of
a maximum cut for GG plus | V(G') | (each pendant edge contributes one edge to a
maximum cut).

We conclude that the maximum clique size, chromatic number, Steiner tree,
minimum fill-in, and maximum cut problems are all NP-complete for very well
covered graphs, and hence for well-covered graphs.

We use the same reduction to show that the isomorphism problem is isomor-
phism complete for very well covered graphs. For arbitrary connected graphs G4
and Gy, Gip = Gyp if and only if Gy = G;,. Clearly, if two graphs, each with half
of the vertices having degree 1 and distinct neighbourhoods, are isomorphic, then
the graphs resulting from the removal of the pendant vertices must be isomorphic,
and vice versa. Therefore, an algorithm for very well covered graph isomorphism
could solve the general graph isomorphism problem, and we conclude that very
well covered graph isomorphism is isomorphism complete.
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3.5 Hamiltonian cycle

Problem: Given a graph G, does G contain a simple cycle such that every vertex
in G is in the cycle?

Theorem 3.3 The Hamiltonian cycle problem is NP-complete for well-covered
graphs.

Proof:

We transform from the Hamiltonian cycle problem for general graphs. Given a
graph G of order n (n > 2), we construct a graph Gp as follows. For each
vertex v; in (¢, we construct a K3 in Gg. One of the vertices of the K3, say v,
corresponds to v; in (; another one, say vy, forms its image. The third vertex v;3
is a simplicial vertex. For every two adjacent vertices v; and v; in G, there are
three edges between the corresponding K3’s in Gp; these are between v,y and vj,
v and vjy, and vy and vj;. Therefore, Gy has 3n vertices and 3m + 3n edges.
Clearly, this transformation can be done in polynomial time. For an example, see

Figure 3.3.

VARV

Figure 3.3: Hamiltonian cycle

Consider the graph thus obtained. It has n mutually disjoint K3’s, with each
one having a simplicial vertex. Any maximal independent set will have to contain
exactly one vertex from each K3. Hence, this graph is well covered.

Claim 3.3 G has a Hamiltonian cycle if and only if Gy has a Hamiltonian cycle.

Proof:
only if:
(G has a Hamiltonian cycle. For every vertex in (7, there is a corresponding K3 in
Gp. For every edge in (7, there are edges connecting two K3’s. Hence, if there is an
edge (v1,vq) in G, we can always find a path vi1,v13, 012, v21 in Gy. Therefore, if
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(G has a Hamiltonian cycle, we can always find a corresponding Hamiltonian cycle
for Ggy.

if:

Gy has a Hamiltonian cycle. Consider a K3 which consists of vertices v;1, v42, and
v;3 which corresponds to a vertex v; in (. Since v;3 is a simplicial vertex, the path
Vi1, Vi3, Ui Will have to be part of any Hamiltonian cycle. Therefore, the part of a
Hamiltonian cycle in Gy through a K3 can be contracted to a single corresponding
vertex in (. Of the three edges that connect two K3’s, only one can be part of
a Hamiltonian cycle. Any such edge will have a corresponding edge in (. Hence,
if Gy has a Hamiltonian cycle, we can always find a corresponding Hamiltonian
cycle in (. This proves the claim.

Since the Hamiltonian cycle problem is NP-complete for general graphs, from
the above, it is NP-complete for well-covered graphs as well.

d

We now examine the Hamiltonian cycle problem on very well covered graphs.
Recall Favaron’s characterization of very well covered graphs and the definition of
property P from section 2.2. It is clear from this characterization that any edge in
a perfect matching cannot be part of a K3, as this would contradict property P.
An edge (u,v) is said to satisfy property P if the neighbour sets of u and v satisfy
the conditions of property P.

Theorem 3.4 A very well covered graph has a Hamiltonian cycle if and only if it
is a complete bipartite graph.

Proof:

Let G = (V, E) be a very well covered graph.

only if:

Suppose G has a Hamiltonian cycle, Cy = {v1,vq,...,0,,v1}. Then, M; =
{(v1,02), (v3,04), ..., (Vp_1,0,)} and My = {(vg,v3), (V4,05), ..., (v,,v1)} are both
perfect matchings, and hence each edge in Uy satisfies P. Let us define the Cy-
distance between two vertices v; and v; of G to be the distance from v; to v; in a
clockwise traversal of Cy, that is,

. ) — 1 7>
Cy — distance(v;,v;) = { f”b-l-j—i ifj' -

Claim 3.4 For all 1 <1i,j < n;ifi is odd and j is even, then (v;,v;) € E.

Proof:

Suppose not. Let ¢ be odd and j be even such that (v;,v;) € F and such that
no other such pair of nonadjacent vertices has a smaller C'-distance. Since ¢
is odd and j is even and (v;,v;) ¢ E, we know that ¢ + 2(modn) # j and ¢ +
L(modn) # j. Thus, Cy-distance(v;, v;) > Cy-distance(via(modn), v;), and, hence,
(Vig2(modn), vj) € I by our choice of ¢ and j. Therefore, since (Vi1 (modn)» Vit2(modn))
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is a matching edge, we must have (v;,v;) € F by property P. This is a contradic-
tion, which proves the claim.

Finally, if there is an edge between any pair of vertices that are both even

or both odd, then we have a matching edge (one of the vertices with one of its
neighbours on Cp) in a triangle, which is impossible.
if:
(G is a complete bipartite graph. From Favaron’s characterization, it has a perfect
matching; hence, it must have the same number of vertices in each partition, and
is therefore a K, ,. Since a K, , has a Hamiltonian cycle, G’ has a Hamiltonian
cycle.

d

As complete bipartite graphs can be recognized in polynomial time, the Hamil-
tonian cycle problem is in P for very well covered graphs.

3.6 Hamiltonian path

Problem: Given a graph G, does GG contain a simple path such that every vertex
in G is in the path?

Theorem 3.5 The Hamiltonian path problem is NP-complete for well-covered
graphs.

Proof:
We transform from the Hamiltonian cycle problem for general graphs. Given a
graph G of order n, we construct a graph G in the same way as for the Hamil-
tonian cycle problem, with the following change. Take one of the simplicial ver-
tices, say v,3, and replace it with two vertices v,3; and v,35. Replace the edges
(U1, Up3) and (vn2,vn3) With the edges (vn1, vus1) and (V2 va32) respectively. Re-
move the edge (v,1,v,2). The graph Gy will now have 3(n — 1) + 4 vertices and
3m 4 3(n — 1) + 2 edges. Clearly, this transformation can be done in polynomial
time. For an example, see Figure 3.4.

Consider the graph thus obtained. It has (n—1) mutually disjoint K3’s and two
pendant edges. Any maximal independent set has to contain exactly one vertex of
every K3 and of every pendant edge. Hence, (G is well covered.

Claim 3.5 G has a Hamiltonian cycle if and only if Gy has a Hamiltonian path.
Proof:

The proof is similar to the one given for the Hamiltonian cycle problem, except
for the following observations.

only if:

(G has a Hamiltonian cycle. It is easy to see that we can find a simple path in G
that starts at one of the leaf vertices, say v,31, ends at the other, and covers all
the vertices in Gy, that is, a Hamiltonian path for Gp.
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Voo

Figure 3.4: Hamiltonian path

if:

G has a Hamiltonian path. Since Gy has two leaf vertices in the Kj’s, any
Hamiltonian path has to start at one of the leaf vertices and end at the other. The
four vertices that make up the two K3’s can be contracted to a single vertex in G.
Hence, if G; has a Hamiltonian path, we can always find a simple cycle in G that
includes all the vertices in (&, that is, a Hamiltonian cycle for G. This proves the
claim.

Since the Hamiltonian cycle problem is NP-complete for general graphs, from
the above, the Hamiltonian path problem is NP-complete for the family of well-
covered graphs.

d

Let us now examine the Hamiltonian path problem with respect to very well
covered graphs. The result is similar to the Hamiltonian cycle result.

A bipartite graph G = (X,Y, E) is called a chain graph if the vertices of X
can be ordered {z1,zs,..., x|} such that N(z1) C N(z3) € --- € N(z|x|). This
definition was given by Yannakakis [32]. Note that this implies the existence of an
ordering {y1,y2,...,yy|} of the vertices of Y such that N(y;) 2 N(yz) 2 -+ 2

N(yyy)-

Theorem 3.6 A very well covered graph has a Hamiltonian path if and only if it
is a connected chain graph.

Proof:

only if:

Let G = (V. F), | V |=n, be a very well covered graph, with a Hamiltonian path
Py = {v1,vq9,...,0,}. The edges M = {(vy,v2),(v3,04),...,(Vn-1,v,)} form a
perfect matching, and must therefore satisfy property P.
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Claim 3.6 For all 1 < ¢,5 < n; if i is odd and j is even, and j < ¢+ 1,then
(v;,v;) € F.

Proof:

Suppose not. Let ¢ be the smallest odd index for which 45 < ¢+ 1, 5 even, such
that (v;,v;) € F. Let j be the largest index satisfying this. We know that j < ¢—2
because ¢ is odd, j is even, and (v;_1,v;) and (v;, v;41) are edges in Py. Now since
(vi—2,v;,-1) € M, it must satisfy property P. Furthermore, since ¢ is as small as
possible, it must be that (v;,v;_3) € FE. But then P implies that (v;,v;) € F,
which contradicts our assumption. This proves the claim.

Finally, if there is an edge between any pair of vertices v; and vy, where ¢ and
k are both odd, then both vertices are adjacent to v,iu[4+1 by the claim, and
thus the matching edge (Vminfi k] Vmin[i.k+1) 1s in a triangle, which is impossible. A
similar argument can be used to show that there can be no edges amongst the even

vertices. Thus, vy, v3,...,v,-1 and vy, vy, ..., v, are orderings of two independent
sets that demonstrate that ' is a chain graph.
if:

Let G = (X,Y, E) be a very well covered connected chain graph, with X and Y
ordered as in the definition. We know that | X |=| Y | because G is very well
covered; let n =| X |=| Y |. Then, {x1,y1,22,¥2,--.,Tpn,ys} is a Hamiltonian
path.

d

3.7 Clique partition

Problem: Given a graph G and an integer k, is there a set of k cliques such that
every vertex of G is contained in one of the cliques?

Theorem 3.7 The clique partition problem is NP-complete for well-covered
graphs.

Proof:

We transform from a known NP-complete problem, the SAT. For any instance
of SAT with clauses C = {¢1,¢a,...,¢,} and variables U = {uq,uq,...,u,}, we
construct a graph G = (V. F) as follows: G consists of n + m C5’s — one for
each clause and one for each variable. The (5 associated with clause ¢; has a
distinguished connector vertex that we will refer to as ¢;. The (5 associated with
variable u; has two non-adjacent connector vertices, corresponding to the variable
and its negation; we will refer to these vertices as w; and u;, respectively. All
vertices that are not connectors are adjacent only to other vertices in the same Cs.

See Figure 3.5.
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Figure 3.5: Clique partition

The edges of GG are

edges internal to all the C5’s
U {(ci,uj)|u; is a literal in clause ¢;}
U {(ci,@;)|u; is a literal in clause ¢;}
U {(ci,c;)|3 a literal that is in both ¢; and ¢;}

The number of edges between clauses and their literals is < mn, considering
the worst case of n literals per clause. The number of edges between the ¢;’s is <
m(m—1)/2. Therefore, the number of edges in G is < 5(m+n)+mn+m(m—1)/2;
the number of vertices is 5(m + n). Hence, ¢ can be constructed in polynomial
time.

To see that G is well covered, notice that it can be partitioned into (n 4+ m)
disjoint C's’s. There can be at most two vertices from each C5 in any maximal
independent set. Let us see if there can be fewer vertices. This is possible only if
some of the vertices in a s have neighbours outside the cycle. Only the connector
vertices have neighbours outside the cycle. Consider the C5’s corresponding to the
clauses. They have one connector vertex each. Let one of the neighbours of a
connector vertex ¢; be in a maximal independent set. This leaves a P; from the
corresponding C5, and exactly two vertices from it are required in the maximal
independent set to cover all its vertices. We still need two vertices from each Cf
that corresponds to a clause to be in any maximal independent set. Now consider
the C's’s associated with the literals. They have two connector vertices each which
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are non-adjacent. If one of them has a neighbour in a maximal independent set,
then an argument similar to the one given above holds. If both of them have
neighbours in a maximal independent set, then we are left with a K; and a K3,
and we need one vertex from each to be in the set in order that the vertices in them
may be covered. Therefore, any maximal independent set has to have exactly two
vertices from each of the C5’s. Therefore, the graph is well covered.

Claim 3.7 C is satisfiable if and only if G has a clique partition consisting of
2m + 3n cliques.

Proof:

only if:

Consider a satisfying truth assignment for . Take the vertices corresponding
to the true literals along with their neighbours in the C5’s corresponding to the
clauses as n cliques of the partition. These cliques cover one connector from each
of the variable Cs’s and all of the clause connectors. The remaining vertices can
be covered with two cliques for each Cs.

if:

There exists a clique partition of size 2m + 3n. Each of the (5’s must contain at
least two cliques of the partition, by the structure of G. At most four vertices of
each (5 can be covered by these > 2m + 2n cliques that are internal to the Cy’s.
Therefore, the remaining < n cliques of the partition must cover at least one vertex
from each C5. In fact, since the variable C5’s have no edges amongst themselves,
there should be exactly n cliques remaining, each of which covers exactly one vertex
from each variable (5. Also, these n cliques have to cover one vertex from each
clause (5. Since each of these n cliques contains a vertex from a variable (5, the
clause vertices covered must be the connector vertices. Assigning the value true
to each of the literals corresponding to the variable connectors in the last n cliques
yields a satistying truth assignment for €', since each clause connector is adjacent
to one of these variable connectors. This completes the proof of the claim.

We conclude that the clique partition problem is NP-complete for well-covered
graphs.

d

The clique partition problem for very well covered graphs is not difficult to
solve. From Favaron’s characterization, we know that a very well covered graph
has a perfect matching. For any graph ¢/, the minimum number of cliques needed to
partition the graph is greater than or equal to the size of a maximum independent
set in the graph. If G is very well covered, then this size is equal to | V' | /2, and
any perfect matching is a clique partition of this size.

3.8 Dominating set

Problem: Given a graph G' and integer k, is there a set of k vertices of G such
that every vertex not in the set is adjacent to atl least one vertex in it?
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Theorem 3.8 The dominating set problem is NP-complete for well-covered
graphs.

Proof:

We transform from SAT. The reduction is similar to that used for the clique
partition proof in the previous section. For an instance of SAT with clauses
C = {e,e2,...,¢,} and variables U = {uy,us,...,u,}, we construct a graph
G = (V, E) as follows: We first define the graph H to be a cycle on seven vertices
with exactly one chord, which bisects the C; into a Cy and a Cs. The distinguished
connector vertex is the unique vertex of the (5 that is not adjacent to any vertex
of the (4. G consists of m H’s — one for each clause, and n ('3s’s — one for each
variable. We will denote by ¢; the connector vertex that the H associated with
the clause ¢; has. The (5 associated with variable u; has two connector vertices,
corresponding to the variable and its negation, u; and @;, respectively. As before,
all the vertices which are not connectors are adjacent only to vertices in the same
cycle. See Figure 3.6.

Figure 3.6: Dominating set

The edges of GG are

edges internal to all the clause and variable cycles
U {(ci,uj)|u; is a literal in clause ¢;}

U {(ci,@;)|u; is a literal in clause ¢;}
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The number of edges corresponding to clauses and their literals is < mn, as-
suming the worst case of n literals per clause. There are eight edges per H and
three per (5. Therefore, the number of edges in GG is < 8m + 3n + mn; the number
of vertices is Tm + 3n. Hence, G can be constructed in polynomial time.

Consider the graph G. Any maximal independent set for (G can have at most
three vertices from each H. Can it have fewer? Only the connector has any
neighbours outside H. If there is a connector ¢; in some H, say H;, with at least
one of its neighbours in some maximal independent set I, then H,, = H; \ {¢}
consists of a Cy with two pendant edges attached to it. The pendant edges along
with the remaining K3 form a perfect matching for H;,, one that can be easily
seen to obey property P. Therefore, H;, is very well covered and any maximal
independent set for it has exactly three vertices. Hence, I will still contain three
vertices from this H. The (C5’s each have a simplicial vertex whose neighbour set
is in the (5, and therefore any maximal independent set for G will have to have
exactly one vertex from each triangle. Therefore, any maximal independent set for
GG will have exactly 3m 4 n vertices; hence, GG is well covered.

Claim 3.8 C is satisfiable if and only if G has a dominating set of size 2m + n.

Proof:

only if:

(' is satisfiable; therefore, it has a satisfying truth assignment. Vertices correspond-
ing to true literals in this assignment will dominate all the C'5’s and one vertex
of each H. The remaining vertices can be dominated by choosing two additional
vertices from each H. Thus, a dominating set of size 2m + n is obtained.

if:

(¢ has a dominating set of size 2m + n. Any dominating set for G must contain at
least one vertex from each of the C3’s, since each ('3 has a simplicial vertex whose
neighbour set is in the 5. In addition, every dominating set has to contain at
least two vertices from each H. Therefore, a dominating set of size 2m +n contains
exactly one vertex from each C5 and two vertices from each H. In such a dominat-
ing set, the connector vertices of all the H’s must be dominated by vertices from
the C'5’s; else, more than two vertices would be required from some H. Thus, the
variable connectors that are in the dominating set correspond to the true literals
of a satisfying truth assignment. This proves the claim.

We conclude that the dominating set problem is NP-complete for well-covered
graphs.

d

The dominating set problem can be solved efficiently for very well covered
graphs. The result follows from proposition 5.2 of [8], in which it is shown that a
minimum dominating set in a very well covered graph consists of one neighbour of
each degree 1 vertex in a corresponding irreducible graph.
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3.9 Conclusions

We have looked at the families of well-covered and very well graphs from an al-
gorithmic complexity point of view. We have studied the complexities of some
standard problems like recognition, Hamiltonian cycle and path, and dominating
set, for these families. We conclude that many graph problems are as difficult to
solve for well-covered graphs as for graphs in general. Therefore, from an algo-
rithmic complexity point of view, there is little to be gained by restricting our
attention to this family. However, some of these problems are tractable for very
well covered graphs.
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Chapter 4

An alternative characterization

4.1 Introduction

In the previous chapter, we showed that well-covered graph recognition is co-NP-
complete, and that the complexity of some standard graph theory problems like
the Hamiltonian cycle and path, clique cover, and dominating set are NP-complete
for this family. We also observed that very well covered graph recognition is in
P, and that some of the above problems such as Hamiltonian cycle are tractable
for this sub-class. This points to the possible existence of intermediate classes of
well-covered graphs for which some of the problems could prove tractable.

We now provide an alternative characterization for well-covered graphs, a char-
acterization based on the interaction between pairs of maximal independent sets
of such a graph. We establish the conditions under which the intersection of a
pair of maximal independent sets of a well-covered graph is mazimal, and un-
der which all such intersections have the same size. These two results help define
some new sub-classes. The maximal intersection result is the main result of this
chapter and is used extensively in decomposing graphs belonging to the new sub-
classes. The alternative characterization for well-covered graphs also leads to a
new characterization for very well covered graphs.

4.2 Definitions

Let G = (V, E) be a simple graph, where | £ |# 0. Let [; and [z be maximal
independent sets of G. We use R, S, I; and I, to denote the following:

R=1 N1
S=V-{hLUl}
L=IL—-R
IL=1,—R

See Figure 4.1.
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Figure 4.1: Definitions

The intersection R of a pair of maximal independent sets of G is said to be
mazxzimal if for every pair of maximal independent sets [, and [, that contain R,
I,nIl,=R.

A graph G is said to be complete k-partite if its vertex set can be partitioned
into k disjoint independent sets, V = P, U P, U---U Py, for some positive integer
k <| V|, such that N(v) = V — P, for each vertex v € P;, 1 <1 < k. Each
such partition is called a part. A graph is said to be complete k,-partite if it is
complete k-partite with each part having n vertices.

We state Hall’s theorem as it is made use of in this chapter:

Hall’s theorem(see [2]): Let G be a bipartite graph with bipartition (X,Y"). Then
Y contains a matching that saturates every vertex in X if and only if | N(X1) |>|
Xq | forall X; CX.

4.3 An alternative characterization

We give an alternative characterization for well-covered graphs:

Theorem 4.1 (alternative characterization) A graph G is well covered if and
only if for every pair of mazimal independent sets Iy and I of G, < I; U I, > has
a perfect matching.

Proof:
only if:
Let GG be well covered. Assume that the statement is not true; that is, there exist
maximal independent sets [; and I, of G such that < I; U I, > does not have a
perfect matching. Since (i is well covered, I, and I, are of the same size. Consider
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the bipartite graph < I U I, >. Since there does not exist a perfect matching
between I, and I, from Hall’s theorem (section 4.2), there exists an independent

set 51 C ]{ such that | Sy |>| N(S1) |. See Figure 4.2. Let I5 = I, — N(S1) U 5.

Figure 4.2: S; and its neighbour set N(S7)

Since | Sy [>| N(S1) |, | Is |>| Iz |- This is not possible as I3 is an independent set
and G is well covered.

if:

Let GG be a graph such that for any two maximal independent sets Iy and Iy,
< ]{ U ]é > has a perfect matching. Let G not be well covered. Then, there exist
maximal independent sets [; and [ such that | [; |#| I |. Let

szlmjg

Now,

| 1o [#] 12 |
Therefore,
| L= RI# L—-R]
That is,
| 111, |
Therefore, < I, U I, > does not have a perfect matching, which is a contradiction.

d
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4.4 The maximal intersection theorem

The alternative characterization was based on the interaction between the non-
intersecting portions of pairs of maximal independent sets of a well-covered graph.
We now take a closer look at such intersections. We first state the conditions
under which such an intersection is maximal; that is, the conditions under which
the intersection R of a pair of maximal independent sets of a well-covered graph
(& has the property that for every pair of maximal independent sets [; and I, that
it belongs to, Iy N [, = R. This result, called the mazimal intersection theorem,
is the main result of this chapter and is the result used in decomposing graphs
belonging to the new sub-classes.

Theorem 4.2 (maximal intersection) The intersection R of a pair of maximal
independent sets Iy and Iy of a well-covered graph G is mazimal if and only if
<V — N[R] > is complete k,-partite.

In order to prove this theorem, we need the following two propositions. We
first state the conditions under which a graph G'is complete k-partite.

Proposition 4.1 A graph G is complete k-partite if and only if for every non-
adjacent pair of vertices u,v € V, N(u) = N(v).

Proof:

only if:

Since the graph is complete k-partite, any non-adjacent pair of vertices must belong
to the same part. Therefore, they must have the same neighbour set.

if:

For all u,v € V, u £ v, N(u) = N(v). We say that v and v are equivalent if u £ v.
This relation is an equivalence relation since if u % v and v % w, u,v,w € V,
then N(u) = N(v) and hence u + w. This equivalence relation divides the vertex
set V into m equivalence classes, 1 < m <| V |. Let the classes be denoted by

Ky, K,, ..., K,,. We prove the following claim.
Claim 4.1 Forallu € K;; 1 <i¢<m, N(u)=V - K,.
Proof:

Consider a vertex u € K;. Any other vertex v € K; is not adjacent to u because
of the equivalence relation. Therefore, the K;’s are mutually disjoint independent
sets. Now assume that there exists w € K, ¢ # j, such that w ¢ N(u). That
is, u o w. This means that w € K;, from the equivalence relation, which is a
contradiction. This proves the claim.

Therefore, the equivalence classes form a partition of the vertex set into mutu-
ally disjoint independent sets with the property that a vertex from an independent
set is adjacent to all the vertices outside the set; that is, G is complete k-partite.

d

The second proposition states the conditions under which the intersection R of
a pair of maximal independent sets of a graph (' is maximal. Note that & can be
any simple graph, and need not necessarily be well covered.

29



Proposition 4.2 Let G be a graph and R be the intersection of a pair of max-
imal independent sets of . Then R ts a maximal intersection if and only if
<V — N[R] > is complete k-partite.

Proof:

only if:

Assume that < V — N[R] > is not complete k-partite. From proposition 4.1, there
exist u,v € V. — N[R], u o v, such that N(u) # N(v). That is, there exists
w € V — N[R] such that u(say)# w and v ~ w. See Figure 4.3.

Figure 4.3: <V — N[R] > is not complete k,-partite

Let
L =RU {u} U {v}
I = RU{u} U {w}

I; and I, are independent sets. Extend them to form maximal independent sets of
G. L1 #Lasv~w, veEl,wel, Now,

LNLDRU{uY DR

which is a contradiction.

if:

Since < V' — N[R] > is complete k-partite, from proposition 4.1, we have N(u) =
N(v) in < V — N[R] >, for all u,v € V — N[R], u % v. Assume that R is not
a maximal intersection. Therefore, there exist maximal independent sets [y and
Iy of (& such that R belongs to both [; and [, and is properly contained in the
intersection Ry of Iy and [5. Let u be an element of Ry, v ¢ R. Let

L=1—-R
and

L=1,— R,
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I; and [, are maximal independent sets and their intersection is Ry. Hence, every
vertex in I; has at least one neighbour in I, and vice versa. Therefore, there exist
v € I, and w € I, such that v ~ w. Now, u, v, and w are in V — N[R], v ~ w, and
u ot v. Therefore, N(u) = N(v). This means that u ~ w, which is not possible as
both u and w are in the maximal independent set I5.

d

We now prove the maximal intersection theorem, theorem 4.2.

Proof (of the maximal intersection theorem):

only if:

G is well covered, and R is maximal. From proposition 4.2, < V — N[R] > is
complete k-partite. Now, let two parts of < V — N[R] > be of different sizes.
Combining each of these with R would give maximal independent sets of different
sizes for (.

if:

< V= N[R] > is complete k,-partite; therefore, it is also complete k-partite. From
proposition 4.2, R is maximal.

d

Thus, we can decompose a well-covered graph into a complete k-partite graph
which is well covered, and the graph < N[R] >. In the next chapter, we will
see that restricting < N[R] > to be well covered leads to the creation of the new
sub-classes. We now give an example to show that this need not be true in general.

Consider a C5. It is well covered because any maximal independent set has
exactly two vertices. Therefore, any maximal intersection of a pair of maximal
independent sets of a (5 will have exactly one vertex. This means that when R is
maximal, < N[R] > is a P5 which is not well covered.

In fact, even the graph < N(R) > is not always well covered, as the following
example shows. Consider the graph G in the Figure 4.4. Every maximal inde-
pendent set of G has exactly two vertices, making G a well-covered graph. Now
consider the maximal independent sets Iy = {vy,v5} and Iy = {vy,v6}. Their
intersection R = {v1} and N(R) = {va,vs3,v4}, a P5s. Now, <V — N[R] > is a K,
with the vertex set {vs,ve}. That is, it is a complete bipartite graph and hence,
using theorem 4.2, R is a maximal intersection. The graph < N(R) > is a Ps
which is not well covered.

4.5 The fixed intersection theorem

We now state the conditions under which every pair of maximal independent sets
of a well-covered graph (' intersect in exactly k vertices, for some non-negative
integer k. This result, along with the maximal intersection theorem, leads to the
definition of the new sub-classes.
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Figure 4.4: < N(R) > is not always well covered

Theorem 4.3 (fixed intersection) Let GG be a well-covered graph and let [ be a
non-negative integer. Then every pair of mazimal independent sets of G intersect
in exactly | vertices if and only if G' is the union of a complete k,-partite graph
and [ isolated vertices.

Proof:

only if:

Since the intersection of every pair of maximal independent sets of G has a fixed size
[, this means that any such intersection has to be maximal, that is, the intersection
R of any pair of maximal independent sets [y and [ of G cannot be a proper
subset of an intersection of some other pair of maximal independent sets of (.
From theorem 4.2, we see that < V' — N[R] > has to be complete k,-partite.

If I = 0, then the theorem is trivially true. Now, assume that [ > 0, and
that the intersection R of some maximal independent sets I; and I, of G does not
consist entirely of isolated vertices. Then, there exist u € R and v € S such that
u ~ v. See Figure 4.5.

Let S7 be a maximal independent set from S which includes v.

Is = L1 US —N(5)
= (R=N(S0))U (L, = N(S1) U S,

| R — N(S4) | is less than | R |, by the choice of Sy. Let | I; — N(Sy) [> 0. Any
vertex x in I is adjacent to all of V — N[R] — I,, by theorem 4.2. Hence, no vertex
of V.— N[R] — I, can be in Is, that is, I3 is maximal. But

Isnly=R— N(5)
and we know that
| R—N(S1) |[< R
This is a contradiction. Therefore,

|]£_N(51) =0
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Figure 4.5: Fixed intersection proof

that is,
Is=(R— N(5))US;

By the same argument,
= N(81) |= 0

Therefore, I3 is a maximal independent set in G. Then,
LTy = B = N(S)) <] R

Thus, R consists of isolated vertices, whose number equals .

if:

Follows as (G is the union of a complete k,-partite graph and [ isolated vertices.

d

4.6 Very well covered graphs

We now restrict the alternative characterization for well-covered graphs to the
family of very well covered graphs. We know from corollary 2.1 that the size of
a maximal independent set of a well-covered graph ' without isolated vertices is
bounded by | V' | /2. Hence, any well-covered graph without isolated vertices can
be transformed into a very well covered graph by adding an appropriate number
of isolated vertices. We therefore turn our attention to very well covered graphs
without isolated vertices. The following result is used in the next chapter to show
that the smallest sub-class in the hierarchy of new sub-classes is the same as the
family of very well covered graphs without isolated vertices.
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Theorem 4.4 (very well covered graph characterization) Let G be a graph
without isolated vertices. Then the following are equivalent:

a) G is very well covered.

b) G is well covered, and for some pair of maximal independent sets Iy and I,

| B |=[5].
¢) G is well covered, and for every pair of maximal independent sets Iy and I,
| B [=[5].

d) For every pair of maximal independent sets Iy and Iy of G, there exists
a perfect matching M which satisfies P, in which R matches to S and I,
matches to 1.

Property P is the same as the one defined in section 2.2. We recall it here for
convenience.

Property P: A matching M in a graph G satisfies property P if for any edge
(u,v) € M, N(u) N N(v) = ¢, and N(u) —{v} is adjacent to all of N(v) — {u}.

We need the following proposition in order to prove the theorem.

Proposition 4.3 Let G be a well-covered graph. Then G is very well covered if and
only if there exist mazimal independent sets Iy and Iy of G' such that | R |=| S |.

Proof:
only if:
Let I; and I; be a pair of maximal independent sets of (G. Since ' is very well
covered,

| L= 12 =V ] /2
That is,
| L= V=114
This can be written as
| LI+ RI= L +15]
Since | I |=| I, |, | I, |=| I, |. Therefore,
| R|=|5|

if:
There exist maximal independent sets [; and I3 of GG such that | R |=| S |. Now,

[ L=V =( L |+ ]S (4.1)

Since G is well covered, | I, |=| I, |. Also, | R |=| S |. Therefore, equation 4.1 can
be rewritten as

[ L=V I=( L+ ] R )
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That is,

| L=V [=]14]
Therefore,
| L=V [ /2

As G is well covered, all maximal independent sets in it have the same size, which
is | V| /2. Therefore, GG is very well covered.

d

We now prove the main theorem of this section.

Proof (of the very well covered graph characterization)

a) — b)

Since (7 is very well covered, it is also well covered. Statement b) follows from the
proposition 4.3.

b) — ¢)

From proposition 4.3, if | R |=| S | for some pair of maximal independent sets I
and Iy of a well-covered graph, then G is very well covered. The rest follows.

¢) — d)

Using ¢), and proposition 4.3, (i is very well covered. Let [; and Iy be a pair of
maximal independent sets of G. Since G is well covered, using theorem 4.1, we
see that I; and I, have a perfect matching. G does not have any isolated vertices,
and R is an independent set in (¢. Hence, the neighbour set of R is in V' — R.
We observe here that Hall’s theorem (section 4.2) should hold for the sets R and
V — R as long as R does not contain any isolated vertices, since the theorem only
concerns itself with the edges between the two sets. Using corollary 2.1, we see
that for any Ry C R, | N(Ry) |>| Ry |. That is, Hall’s theorem is satisfied. Hence,
there exists a matching from V' — R to R, that is, from N(R) to R, that covers all
the vertices of R. Now, N(R) C S. Hence, there exists a matching from S to R
that covers R. From proposition 4.3, | R | = | S |. Therefore, any such matching
between R and S is a perfect matching. Since (¢ has no isolated vertices, and since
R, S, I, and I, are mutually disjoint sets, a perfect matching between R and S,
and one between I; and I, together form a perfect matching for . The fact that
this matching satisfies P follows from Favaron’s theorem (theorem 2.1).

d) — a)

Since G has no isolated vertices, it has at least two maximal independent sets.
From d), we see that it has a perfect matching which satisfies P. That the graph
is very well covered follows from Favaron’s theorem (theorem 2.1).

d
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4.7 Conclusion

We have given a new characterization for well-covered graphs, and one for very well
covered graphs. We have stated the conditions under which the intersection R of a
pair of maximal independent sets of a graph G is maximal, and under which every
pair of maximal independent sets of (& intersect in exactly [ vertices, for some non-
negative integer [. We have seen that the graph < N[R] > is not necessarily well
covered. In the next chapter, we will restrict our attention to those well-covered
graphs that have the property that the graph < N[R] > is well covered. We will
study four such families of well-covered graphs.
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Chapter 5

Some new sub-classes

5.1 Introduction

In the previous chapter, we gave new characterizations for well-covered and very
well covered graphs. We defined the conditions under which the intersection R
of any pair of maximal independent sets [; and [, of a well-covered graph G is
maximal. We now define a hierarchy of four new sub-classes of well-covered graphs
based on this maximal R, each one of which properly contains the one next to it
in the hierarchy. We show that the last sub-class in the hierarchy is exactly the
family of very well covered graphs without isolated vertices. The objective here
it to find new sub-classes of well-covered graphs for which some of the problems
that proved to be intractable for well-covered graphs prove to be tractable, and to
algorithmically separate the new sub-classes. The algorithmic properties of these
sub-classes will be studied in the next chapter.

5.2 Definitions

Let G be a graph whose vertex set V' can be partitioned into 1 < ¢ <| V| disjoint
sets Ly, Lo, ..., Ly, such that for 1 < < ¢, the subgraph H; =< L; > is complete
k,-partite. G is said to be partitioned into complete k,-partite subgraphs. We
call the L;’s layers, and the H;’s lgraphs. We denote by FE; the edge set, by
k; the number of parts, and by n; the number of vertices in each part, of H;,
1 <k <| L |, n;, =| L; | /ki. We denote the parts in H; by Py, P, ..., Piy,.
We write H; as H; = (P, Pia, ..., Py, E;). Since the P;;’s, 1 < j < k;, form a
partition of L;, we say that each L; consists of, or is made up of, or has, k; parts;
we also talk of a part P;; in the layer L;. Where there is room for confusion, we
shall write P;; as P;;. We say that a part P, is adjacent to a vertex v if v has a
neighbour in P,. We say that two parts P, and P, are adjacent, or connected, or
are netghbours, if there exist u € P, and v € P, such that (u,v) € E. We say that
P, and P, are completely connected, or that P, is completely connected to B, if
< P, U P, > is complete bipartite. We say that two layers are adjacent if there is
a part in one that is adjacent to a part in the other.
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5.3 The hierarchy of sub-classes

As stated earlier, we now define a hierarchy of four new sub-classes of well-covered
graphs. These sub-classes are named Wgsgr, War, Warp, and Wipy. They have
the property that each one is completely contained in the one preceding it, that
is, Wsp D Wir D Warr DO Wypgs. The sub-class Wgp is properly contained in
the family of well-covered graphs, and the family W4go is the same as the family
of very well covered graphs without isolated vertices. These ideas are depicted
pictorially in the Figure 5.1.

Well covered

WARF

U

War2 = Very well covered without isolated vertices

Figure 5.1: The hierarchy of sub-classes

5.4 The first sub-class Wgqp

From theorem 4.2, we know that when the intersection R of a pair of maximal
independent sets of a well-covered graph G is maximal, < V' — N[R] > is complete
k,-partite. We have seen in the last chapter that neither < N[R] > nor < N(R) >
is always well covered. We now restrict our attention to the family of well-covered
graphs for which we can find a maximal intersection R such that < N[R] > is well
covered.

Consider a well-covered graph Gy with vertex set ;. Assume that there exists
a maximal intersection Ry in (G4 such that the graph G5 induced by Vo = N[R;] is
well covered. Let Hy =< Vi — N[Ry] >. Thus, GG; has been decomposed into the
graphs Hy and G3. We call this the first stage of a decomposition of G;. Again,
assume that there exists a maximal intersection Ry in (9 such that the graph Gy
induced by V3 = N[Rs] is well covered. Let Hy; =< V3 — N[Ry] >. Thus, G
has been decomposed into the graphs H; and Gs. This is the second stage of a
decomposition of ;. We observe that by restricting < N[R;] >, ¢ € {1,2}, to be
well covered, we are able to recursively decompose the graph Gy into the graphs
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Hy, Hy and G3. We continue the process by assuming that (3 has a maximal
intersection R such that the graph G4 induced by V; = N[R3] is well covered.

Consider stage j of such a decomposition. We have the graphs H; to H;_;, and
the well covered graph G; with vertex set V;. Assume that there exists a maximal
intersection R; in (7; such that the graph G;41 induced by Vj41 = N[R;] is well
covered. Let H; =< V;— N[R,] >. That is, the graph (&; has been decomposed into
the graphs H; and G;41. We again assume that ;47 has a maximal intersection
R;+1 such that the graph (45 induced by V42 = N[R;41] is well covered.

Since we start with a graph (7 which has a finite number of vertices, this
decomposition stops at some stage, say t. Let the corresponding graph be G, with
vertex set V;. Since we cannot decompose the graph any further, this means that
we cannot find a pair of maximal independent sets in (; which have a non-zero
intersection. That is, GGy either consists of isolated vertices, or the intersection of
every pair of maximal independent sets in (; is the empty set. From theorem 4.3,
the latter will happen when G is complete k,-partite. Therefore, GG; is complete
k,-partite and forms the graph H; in the decomposition.

Thus, (1 has been recursively decomposed into the graphs Hy, Hy, ..., H;. Let
the corresponding vertex sets be given by Lq, Ly,..., L;. As we have seen, H; is
complete k,-partite, with the number of parts in it being > 1. Consider the graph
H;, 1 <i<t Now, H =<V, — N[R] > G; =< V; > and G;3; =< N[R;] >.
Since R; is a maximal intersection in G}, there exist maximal independent sets [;;
and [; 5 in G; such that their intersection is R;. From theorem 4.2, H; is complete
k,-partite. Since ];71 and ];72 are maximal independent sets in H;, H; has at least
two parts. Thus, each of the graphs Hy to H;_; is complete k,-partite and has at
least two parts. Since the graphs H;, 1 < <, are vertex disjoint, the vertex sets
Ly to Ly form a partition of V4. That is, the H;’s are lgraphs, and the V;’s are
layers, 1 <11 <t. See Figure 5.2.

We now define a family of graphs which can be recursively decomposed in this
manner until we arrive at a < N[R] > which is complete k,-partite, & > 1. We
call this family Wgg.

Definition 5.1 A graph G is said to belong to the family Wsg if
a) G is complete k,-partite, or
b) G is well covered and for some maximal R, the intersection of a pair of
mazimal independent sets of G, < N[R] > belongs to Wsp.

From the definition, it is clear that any graph G belonging to Wgsgr can be
decomposed as described above into lgraphs H; to Hy, 1 < t < n, such that
each lgraph, except for H;, has at least two parts; H; need have only one part.
The corresponding layers Ly to L; form a partition of the vertex set of G. The
recursive definition ensures that at each stage of such a decomposition, we can
find a maximal intersection R such that < N[R] > is well covered. At each stage
of a decomposition, there can be more than one maximal intersection R with the
property that < N[R] > belongs to Wsg. Thus, there could be many possible
decompositions of G.
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00 0>

Figure 5.2: The decomposed graph G

We denote by Dsr(() the set of all decompositions of a graph G belonging
to Wsr. A decomposition can be represented by an ordered set of lgraphs, or
equivalently, by an ordered set of layers. We use the latter representation. That
is, each D1(() € Dgp(() is an ordered set of layers Ly, Lo, ..., Ly, 1 <t <n, with
each layer having at least two parts, except for L; which need have only one.

The above definition leads us to the following characterization of the family

WSRi

Theorem 5.1 (Wsg) A graph G belongs to the family Wsg if and only if its
vertices can be partitioned into layers L1, Lo, ..., Ly, 1 <t <| V|, which have the

following properties:
a) The lgraphs H; =< L; >, 1 <@ < t, are complete k,-partite, with every
layer except the last one, L, having at least two parts. L; need have just one

part.
b) Given a layer L;, 1 < j < t, there exists at least one part in each of the
layers Lijiq, Liya, ..., Ly, which is not adjacent to any of the vertices in L;.

Furthermore, one set of these parts forms an independent set.
¢) Every maximal independent set of G contains exactly one part from each
layer.

Proof:
only if:
We assume that (7 is not complete k,-partite, since then the statements a) through
¢) are trivially true. G belongs to Wggr. Therefore, G can be decomposed into
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lgraphs. Let D1(G) € Dsr(G) be a decomposition of G into layers Ly to L;. We
have seen earlier that these layers obey statement @), and form a partition of the
vertex set of . In order to prove statements b) and ¢), we need the following
proposition.

Proposition 5.1 Let G be the graph induced by the layers L; to Ly, 1 < j < 1.
Then the size of every mazimal independent set in G s given by nj+n; 41+ -+ny.

Proof:

The graph G, is induced by the layer L;. Since H; is complete k,-partite, the size
of every maximal independent set in H; is given by the size of a part in it, namely
n:. Now, consider the graph G;_;. This is induced by the layers L; and L; ;.
From the decomposition, we know that there exists R;_;, the maximal intersection
of a pair of maximal independent sets [;_y; and [;_q 5 of G,_1, such that G} is
the graph induced by V; = N[R;_1]. The lgraph H;_; is the graph induced by
Ly = V.1 — V,, and it is complete k,-partite. We also know that ];_171 and
];_172 are parts in H;_;. Now, R,_1 is a maximal independent set in G, because
Gy is made up of R;_; and its neighbour set. This means that R;_; is one of the
parts of H;. Since I;_;; is a maximal independent set in G,_q, its size is given by
| Ri—1 | + | ];_171 |, that is, ny + ny_1. Since Gy_; is well covered, the size of every
maximal independent set is equal to ny; + n;_1, that is, the sum of the sizes of the
parts in the lgraphs H; and H;_;.

Assume that the above is true for graphs Gy to Gy, t > k > 1. Therefore,
the size of every maximal independent set in G} is given by ny + nyqy + --- +
nk—1 + ng. Now, consider the graph G/y_1, induced by the layers L; to Ly_;. From
the decomposition, we know that there exists Rj_q, the maximal intersection of
a pair of maximal independent sets I;_y; and [;_; 2 of Gy_q, such that Gy is the
graph induced by Vi, = N[Rj_1], and the lgraph Hj_; is the graph induced by
Li_1 = Vi1 —V,. We know that Hj_; is complete k,-partite, and that ],;_171 and
],;_172 are parts in Hy_y. The size of I;_1,, a maximal independent set in Gj_q,
is given by | Ry_1 | + | ],;_171 |. Now, Rj_; is a maximal independent set in Gy
because G is made up of Rp_; and its neighbour set. We know that the size of
a maximal independent set in (G, is given by the sum of the sizes of the parts in
the lgraphs Hj to H;. Since, ],;_171 is a part in Hy_q, its size is given by nj_;.
Therefore, the size of I;_1, is given by ny +ns_q + - -+ + ng + ng_1. Since Gjy_q is
well covered, this means that every maximal independent set in it has size equal
to the sum of the sizes of the parts in the lgraphs Hy_; to H;. This proves the
proposition.

b)

Consider some layer L;, 1 < j < t. From a), this layer is complete k,-partite,
and has at least two parts. From the decomposition, we know that there exists
a maximal R;, the intersection of some pair of maximal independent sets [;; and
I;2 of G, such that G411, the graph induced by V41 = N[R;], is in Wggr. We also
know that the complete k,-partite graph H; is the graph induced by L; =V, — V4.

!

I, and ]]/472 are two parts in H;. From proposition 5.1, we know that the size of
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R;, a maximal independent set in (j1;, is given by the sum of the sizes of the
parts in the lgraphs H;4 to Hy, or equivalently, in the layers L;;; to L. Since the
lgraphs are complete k,-partite and R; is an independent set, this means that the
number of vertices of R; that can be present in any given layer is limited by the
size of a part in that layer. From the above two statements, we conclude that the
vertices of R; are distributed amongst the layers L;1; to L; such that they form
exactly one part in each layer. Since R; has no neighbours in L;, the statement is
proved.

)

(G is the graph induced by the layers L; to L;. Since GG is in Wgp, it is well
covered. Using proposition 5.1, we see that the size of every maximal independent
set in (G is given by the sum of the sizes of the parts in the above layers. Since
the lgraphs are complete k,-partite, every maximal independent set can include at
most the vertices of any one part from each layer. From the above two statements,
we conclude that every maximal independent set of G contains exactly one part
from each layer in the decomposition.

if:

Consider a graph G whose vertex set can be partitioned into layers Ly to L; such
that the layers obey properties @) through ¢). Since property ¢) is obeyed, the
graph G is well covered. We prove that GG is in Wsg by induction. We accomplish
this by showing that, for j from ¢ to 1, the subgraph of G induced by the layers
L; to L; i1s in Wgp. For j =1, the subgraph induced by the layers L; to L, is H,,
which is complete k,-partite and is hence in Wsp. Suppose that the graph G4
induced by the layers L;1; to L; is in Wgp, for some 1 < 5 < {. Consider the
subgraph (i, with vertex set V;, induced by the layers L; to L;. From property ¢),
(; is well covered. From property b), we can find an independent set [ consisting
of one part from each of the layers L;4; to L; such that the set has no neighbours
in L;. From property a), there are at least two parts in L;. Consider two such
parts P and Pj;. Now, I U Pj; and I U Pj, are a pair of maximal independent
sets of (7;, since each lgraph is complete k,-partite and these two sets have one
part from each layer in ;. The intersection of these two sets is £ = I, which is
maximal as < V; — N[R] > is the lgraph H; which is complete k,-partite. Now,
the subgraph < N[R] > is the graph < Uj_;,, L; >, which is in Wsg by induction.
Therefore, G;, and hence G, is in Wgp.

d

We now give an example of a graph that is well covered, but does not belong
to Wsg, a Cs. Any maximal independent set for a (5 will have two vertices in it.
Consider a pair of maximal independent sets [y and I, of the graph. Assume that
they do not have a vertex in common, i.e, R, the intersection of [; and I3 is an
empty set. Then, < V — N[R] > is the graph itself. Since a C5 is not complete
k,-partite, from theorem 4.2, R is not maximal. Therefore, R has to be non-empty
for it to be maximal. Since any maximal independent set in a C5 has two vertices,
R will have exactly one vertex. Hence, < N[R] > will be a P, since every vertex
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in a Cy is of degree two. A Ps is not well covered and hence we cannot find a
maximal R such that < N[R] > is well covered. That is, a (5 does not belong to
Wspr. See Figure 5.3. For example, let I; = {vy,v3}, and I = {v1,v4}. Then, a

Figure 5.3: A graph not in Wgsg - Cs

maximal R = {v1}. N[R] = {vs,v1,v2}; hence, < N[R] > is a P53 which is not well
covered.

We give another example to show that not all subgraphs of a graph G'in Wgg
belong to Wsg. Let G be partitioned into layers Ly = {L, Lo, ..., L;} satisfying
properties a) to ¢) of theorem 5.1. From lemma 5.1, any subset of the layers
satisfies the above properties and hence the subgraph induced by any such subset
is in Wsp. Therefore, any subgraph of (G induced by whole layers of Ly is in Wgp.
Hence, we are left with looking at subgraphs which include partial layers of Ly.
Consider the graph G in Figure 5.4. It consists of two layers L, and Ly which are

Figure 5.4: A subgraph not in Wgg

K3’s, joined by an edge (vy,vy4) to form a Py. It is easy to see that the layers obey
properties a) to ¢) of theorem 5.1 and hence the graph is in Wsg. Now consider
the subgraph induced by the layer L, and the vertex vy from the layer L;. This is
a P3 and it is therefore not well covered. Hence, not every subgraph of a graph in
WSR, is in WSR-
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5.4.1 The uniqueness of the decomposition

We now show that all decompositions of a graph G belonging to Wsg yield the
same layers, not necessarily in the same order. That is, the layers obtained are
unique.

Theorem 5.2 (uniqueness) Let G be a graph in Wsg. Then the following are
true:
a) Let D,(G) € Dsp(G) be a decomposition of G into layers Ly to Ly,
1 <t <|V|. Then, any other decomposition Dy(G) € Dsp(G) will give
the same t layers, not necessarily in the same order. Isolated vertices, if
any, will always form the layer L;.
b) Let Ly be a partition of the vertex set V into layers L1 to Ly, 1 <t <| V|,
satisfying properties a) to c¢) of theorem 5.1. Then any other partition of
the vertex set 'V into layers satisfying properties a) to ¢) of theorem 5.1.
will consist of the same t layers, not necessarily in the same order. Isolated
vertices, if any, will always form the layer L;.

The above theorem not only says that all decompositions yield the same layers, but
also that all partitions of V' into layers that satisfy the properties of theorem 5.1
will consist of the same layers. In order to prove this theorem, we need the following
results. We first prove the following lemma.

Lemma 5.1 Let GG be a graph in Wsg, and let its vertices be partitioned into
layers Ly to Ly satisfying properties a) to ¢) of theorem 5.1. Then any subset of
the layers, with the ordering preserved, will satisfy the same properties.

Proof:
This is obviously true, as any property that is violated in a subset of the layers is
violated in the set of layers L1 to L; as well.

d

The next result looks at the nature of a maximal intersection R of a graph
GG € Wsg which has the property that < N[R] > is also in Wgg.

Proposition 5.2 Let G be a graph in Wsg and let its vertex set be partitioned into
layers Ly to Ly satisfying theorem 5.1. Let R be a mazximal intersection of a pair
of mazimal independent sets such that < N[R] > is in Wsgr. Then, the following
are true:

a) R consists of whole parts from some of the layers Ly to L.

b) N[R] contains exactly those layers that have a part in R.

¢) V. — N[R] consists of one complete layer.

Proof:
a)

From property ¢) theorem 5.1, we know that any maximal independent set of ¢
has to have exactly one part from each layer. Hence, any intersection R of a pair
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of maximal independent sets of GG will consist of whole partitions from different
layers.

b)

Assume not. As the lgraphs are complete k,-partite, if a part from a layer is in R,
then the whole layer is in N[R]. Therefore, there exists a layer L; which has no
parts in R, but which has at least one part adjacent to a part in R. Let P, be the
part in L; which is adjacent to a part P; in R. Let P; belong to layer L;. From
a), we know that R consists of whole parts from some of the layers. Therefore,
the size of R is equal to sum of the sizes of these parts. From theorem 5.1 ¢), we
know that starting with a part from any layer, we can find exactly one part from
each of the other layers such that the set so formed is independent. We form an
independent set starting with the part F;. From the above, we should be able to
find one part from each of the layers that has a part in R such that the set is still an
independent set. This set has size equal to the sum of the sizes of the layers with
parts in R plus the size of P, that is, >| R |. Since R is a maximal independent
set for < N[R] >, this means that < N[R] > is not well covered, which contradicts
the fact that < N[R] > is in Wgg.

)

Theorem 4.2 says that when the intersection R is maximal, < V — N[R] > is
complete k,-partite. From b), we know that N[R] consists of complete layers.
Theorem 5.1 ¢) tells us that every two layers have to have at least two parts which
are non-adjacent. Hence, we conclude that V — N[R] consists of one complete
layer.

d

We move on to our next result which shows that every decomposition yields
layers which satisty the properties of theorem 5.1, and that every partition of V
into layers which obey the above theorem can be obtained from a decomposition

of 4.

Proposition 5.3 Let G be a graph in Wsg. Then the following are true:

a) Any decomposition D,(G) € Dsp(G) gives layers Ly, Lo, ..., Ly, 1 <t <
| V|, which form a partition of V and which satisfy properties a) to ¢) of
theorem 5.1.

b) For any partition of V into layers L1, La, ..., Ly, 1 <t <| 'V |, which satisfy
properties a) to ¢) of theorem 5.1, there is a decomposition Dy(G') € Dsp(G)
that yields these layers.

Proof:

G is a graph in Wgp.

a)

While proving the theorem 5.1, we chose an arbitrary decomposition D,(G) €
Dsr(G), and showed that the resulting layers obeyed properties @) to ¢) of the
theorem. This proves the statement.

b)
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Consider some partition of V' into layers Ly, Lo, ..., L; such that the layers obey
properties a) to ¢) of theorem 5.1. We use induction to show that there is a
decomposition of (G which yields these layers. We assume that ¢ > 1 as otherwise
there is only one layer and, from property @), we know that the corresponding
lgraph is complete k,-partite, and thus forms a trivial decomposition of Gi. Let
G1 = (. We know that Gy is the graph induced by the layers Ly to L;. From
property b), there is a part in each of the layers Ly to L; such that the set Ry formed
by these parts is an independent set that has no neighbours in L. From property
a), L1 has at least two parts. Consider two such parts Py; and Pi3. Now Ry U Ppy
and R; U Py are two maximal independent sets in (1, since each layer induces a
complete k,-partite graph, and these two sets have one part from each layer. Their
intersection is Ry, which is maximal from theorem 4.2, as < V — N[R;y] > is the
lgraph H; =< L4 > which is complete k,-partite. From lemma 5.1, the layers L,
to L; satisfy the properties of the theorem 5.1. Hence, Gy =< N[R;] >, which is
the graph induced by the layers L, to Ly, is in Wgg. Thus, we have the first stage
of a decomposition of G which yields a layer [, and a graph G5 which is in Wgg.

Suppose that the layers L; to L; are the layers obtained in the first j stages of
such a decomposition, 1 < j < {. From lemma 5.1, the graph G;4; formed by the
layers L;4q to Ly is in Wep. It j +1 =1, we are done. Assume that j +1 < ¢.
From property b), there is a part in each of the layers ;2 to L; such that the set
R;1; formed by these parts is an independent set that has no neighbours in L;44.
From property a), L;41 has at least two parts. Consider two such parts Pjiq11
and Pji12. Now R;4q U Pj111 and R4y U Pjyq 2 are two maximal independent
sets in (G441, since each layer induces a complete k,-partite graph, and these two
sets have one part from each layer. Their intersection is [;1;, which is maximal
from theorem 4.2, since < V41 — N[Rj41] > is the lgraph H;11 =< L;41 > which
is complete k,-partite. From lemma 5.1, the layers L;1, to L; obey theorem 5.1.
Hence, the graph Gj12 =< N[R;41] > is in Wsg. Thus, we have the j + 1th stage
of a decomposition of G which yields a complete k,-partite layer L;; and a graph
(4j+2 which is in Wspg. This proves statement b).

d

We are now ready to prove the main theorem of this section.

Proof(of the uniqueness theorem):

o

D,(G) is a decomposition of ¢ into layers Lq, La, ..., L;. We note from proposi-
tion 5.3, that the layers obey theorem 5.1. Also, from lemma 5.1, any subset of the
layers, with the ordering preserved, will obey properties @) to ¢) of theorem 5.1.
We also note that since (G is in Wgp, at each stage of a decomposition of (G based
on definition 5.1, we are guaranteed to find at least one maximal R such that
< N[R] > is in Wgg. Consider the first stage of some other decomposition D, (&)
of GG. Let Ry be a maximal intersection of a pair of maximal independent sets of
G, such that < N[R;] > is in Wgg. From proposition 5.2, V5 = N[R;] consists of
t —1 layers from the layers Ly to Ly, and Vg = V — N[R;] consists of the remaining
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layer. The graph G5 induced by V5 is also in Wgg, by definition. Therefore, there
exists a maximal intersection Ry for GGy such that < N[R3] > is in Wsg. Using
proposition 5.2, this will create a V3 = N[R3] that consists of ¢ — 2 layers from the
t — 1 layers in Va; Vre = Vo — N[R;] will consist of the remaining layer. Thus, at
stage 7 of the decomposition, 1 < ¢ < ¢, we will have a layer L; which will be one
complete layer from the ¢ — ¢ 4 1 layers of V;, and a graph (1 whose vertex set
Vi1 will consist of the remaining ¢ — ¢ layers. At stage ¢, we will be left with one
complete layer which will induce the graph G}.

Since there are t layers, and each stage of a decomposition yields one layer,
there will be ¢ stages in any decomposition of . Therefore, the layers obtained
are independent of the choice of a maximal intersection at each stage of a decom-
position; that is, any other decomposition D;(() yields the same ¢ layers. Since
isolated vertices will be a part of any maximal independent set, they will always
form the layer L,.

That the layers obtained need not be in the same order is easily seen to be
true if we consider a graph K consisting of [ > 1 disjoint K3’s. The vertex pairs
forming the edges form the layers of a partition of V(K'). These can easily be seen
to obey theorem 5.1 and hence K is in Wsg. Any set R consisting of one vertex
from each of [ — 1 K3’s will be independent as the K;’s are disjoint. It is also
maximal since the graph < V(K) — N[R] > is a K, which is complete k,-partite.
Choosing different K3’s to form maximal R’s will yield different orderings of the
layers. Hence the ordering of the layers can be different, as long as the layers obey
theorem 5.1.

b)

This follows from proposition 5.3 and «a).

5.4.2 Minimal graphs

We first prove the following result, which is a corollary of theorem 5.1, and then
introduce the concept of a minimal graph.

Corollary 5.1 Let G be a graph in Wsg and let its vertex set be partitioned into
layers Ly to L, satisfying properties a) to ¢) of theorem 5.1. Then, if parts from
different layers are adjacent to each other, then they are completely connected, that
is, they induce a complete bipartite subgraph.

Proof:
Consider any two layers L; and Ly in such a partition, 7 # k. Let P; and P, be
parts in L; and Ly respectively. Let u € Py such that | P, — N(u) |> 0, where
| PN N(u) [> 0, that is, u is adjacent to at least one vertex of P; but not to all
the vertices in it. See Figure 5.5.

Construct an independent set I, where

I = {u) U (P, = N(u))
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Figure 5.5: u adjacent to some, but not all, vertices of P,

Extend this to a maximal independent set in . Now, P; — N(u) will cover all the
vertices of L;. This will have fewer vertices from L; than the size of a part in it,
thus contradicting theorem 5.1 ¢). Hence, if a vertex u from a part in one layer
is adjacent to some vertices in a part in another layer, then it should be adjacent
to all the vertices in that part. Since this works both ways, this means that if
parts in different layers are adjacent to one another, then they must be completely
connected, that is, the subgraph induced must be complete bipartite.

d

Let G be a graph belonging to Wgsg and let it be decomposed into layers Ly to
L;. The above property allows us to replace each part by a single vertex, and the
set of edges between two adjacent parts by a single edge. This results in each Igraph
in the decomposition being a clique. The resulting graph G satisfies theorem 5.1
and hence belongs to Wsgr. We call such graphs minimal graphs. We have seen
in the previous section that any partitioning of the vertices of a graph GG in Wgp
into layers that obey the theorem 5.1 leads to the same set of layers. Thus, all
partitionings of the vertex set of (G leads to the same minimal graph, in the sense
that all such graphs are isomorphic to one another. Also, it is easy to see that
there could be many graphs in Wsgr which yield the same minimal graph. We will
use minimal graphs to show that graphs belonging to the second sub-class have
recognition in P.

As will be shown in the next chapter, the recognition problem for the family
Wspr is co-NP-complete.
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5.5 The second sub-class W,

While decomposing a graph G belonging to Wsg, at each stage, we have to find
a maximal intersection R such that < N[R] > is in Wgg. This is because we are
only guaranteed that there exists such a maximal R, and not that any maximal
R satisfies this property. We now relax this definition and state that any maximal
intersection R at any stage of a decomposition of G yields a graph < N[R] > which
1s in Wsg. This leads to the definition of the second sub-class Wyg.

Definition 5.2 A graph G is said to belong to the family Wag if
a) G is complete k,-partite, or
b) G is well covered and for every mazimal R, the intersection of a pair of
mazximal independent sets of G, < N[R] > belongs to Wup.

Clearly, a graph G which belongs to Wsg also belongs to Wsg. Therefore, the
vertices of (G can be partitioned into layers Ly, Lo, ..., L; which obey theorem 5.1.
We observe that proposition 5.2 holds for every maximal intersection R of a graph
G in Wyg, since for every such R, < N[R] > is in W4p and hence in Wgp.

We now give an example of a graph belonging to Wsg, but not to W4gr. See
Figure 5.6. This graph, call it G, has three layers {vy, vy, v3}, {v4,v5,v6} and

T

Figure 5.6: Graph in Wgsgr but not in Wxp

{v7,vs,v9}, each of which induces a K3. G is in Wsp as the layers clearly obey
theorem 5.1 @) to ¢). Choosing maximal independent sets Iy = {v7,ve,v1} and
Iy = {v7,v6, 02} gives an intersection R = {v7,vg}. The graph induced by V — N[R]
is a bipartite graph with vertices {vy,v2}, and hence, from theorem 4.2, R is
a maximal intersection. Now < N[R] > is not well covered as we easily can
find two maximal independent sets of different sizes: for example, {vs, vs,v3} and
{v7,v6}. Hence, not every maximal intersection of GG yields a graph which is also
well covered. Therefore, using the definition 5.2, GG is not in Wyp.
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We now state the following characterization for graphs belonging to the family

War.

Theorem 5.3 (W4gr) A graph G belongs to the family War if and only if its
vertices can be partitioned into layers L1, Lo, ..., Ly, 1 <t <| V|, which have the
following properties:

a) The lgraphs H; =< L; >, 1 <@ < t, are complete k,-partite, with every
layer except the last one, L, having at least two parts. L; need have just one
part.

b) For any two adjacent layers L; and Ly, there exist parts P; € L; and Py € Ly
such that | N(P;)N Ly |=0 and | N(Py)N L; |=0, and the parts of L; — P;
and Ly — Py are completely connected to each other.

¢) The non-common neighbours of any two parts in any layer of the decomposed
graph are completely connected to each other.

Proof:

only if:

Since GG is in Wyp, it is also in Wsg. From proposition 5.3, we can decompose (G into
layers Ly, La, ..., Ly which satisfy properties a) to ¢) of theorem 5.1. Statement «)
is true since it is the same as the statement «) of theorem 5.1. From corollary 5.1,
we see that if a part in a layer is adjacent to a part in another layer, then they are
completely connected.

b)

From theorem 5.1 @), we see that the only layer that can have only one part is
Ly, in which case it will consist of isolated vertices, since otherwise property b) of
the same theorem will be contradicted. Hence, if two layers are adjacent, each of
them has at least two parts. Now, assume that statement b) is not true. Let L,,,
t > m > 1, be the layer that contradicts statement b) with some other layer, where
m is as large as possible. That is, there exists a layer L;, m > [ > 1, such that the
layers L, and L; contradict statement b). We choose L; to be as close to L,, as
possible. Therefore, all the layers between L,, and L; which are adjacent to L,,,
satisfy statement b) with L,,.

The proof lies in showing that the layers L,, and L; have to satisty statement
b). To do this, we first show that we can form an independent set I, consisting
of one part from each of the layers L;;y to L;, L,, not included, which has no
neighbours in L,,. We then show that some parts in L; with a certain property
can have no neighbours in I,. We then show that if a part in L,, is adjacent to
a part in L;, it has to be adjacent to all but one part in L;, and vice versa. This
property is then used to show that the layers L,, and [; satisfy statement b).

We first form the independent set I.. We observe, from corollary 5.1, that
if a part in one layer is adjacent to a part in another layer, then they are com-
pletely connected, that is, the subgraph induced is complete bipartite. Consider
the graph Gi;1 induced by the layers L;11 to L;. Let its vertex set be denoted
by Vii1. Consider the layers in G4y which are adjacent to L,,. Let these layers
be Lami, Lama, -y Lamg, where t > aml,am?2,...,amq > [+ 1. By assump-
tion, each of these layers satisfies statement b) with L,,. Hence, there exist parts
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Pin1 € Lumiy Pum2 € Lamay -y Ping € Lamg such that I,; = U, P,,; has no
neighbours in L,,. Let the layers in G4 which are not adjacent to L,, be given
by Lemiy Lym2s ooy Loy t 2> rm1,rm2, ... ormr > 1+ 1. From theorem 5.1 b), we
can find P € Loty Pz € Lomay .oy Prr € Ly, such that the set [, formed
by these parts is an independent set, and has no neighbours in L;. Consider the
set I, = [,1 U [,5. We know that this has no neighbours in ,,. We show that [, is
an independent set. Assume not. Then there exist parts P, and P, in [, such that
P, ~ P,. Now, at least one of P, and P, has to be from [,; since we know that
1.5 is an independent set. Let P, be from [I,;. Therefore, there exists a layer L,,
a#m,t>a>1 such that P, € L, and L, is adjacent to L,,. Since L,, and L,
satisfy statement b), there exists P, in L, which is adjacent to all but P, in L,.
Now, P, has no neighbours in L,,, and P, is adjacent to P,. Extending P,, U P,
to a maximal independent set for (& yields one which has no part from L,, thus
contradicting theorem 5.1 ¢). Thus, I, must be an independent set and it has no
neighbours in L,,.

We now show that any part in L; which has a certain property has no neighbours
in [.. Consider the layers L; and L,,. We prove the following claim.

Claim 5.1 Let Py in L; be non-adjacent to at least two parts P,y and P4 in L,,.
Then Py has no neighbours in I,.

Proof:

Assume not. Then there exists P, € [, such that P; ~ P,. P, has to be from
1,1 since I,5 has no neighbours in ;. Therefore, there exists a layer L,, a # m,
t > a > [, such that P, € L, and L, is adjacent to L,,. Since L,, and L, satisty
statement b), at least one of P,,q and P2, say Pn1, is adjacent to all but P, in L,.
Extending Py U P,; to a maximal independent set for (¢ yields one which has no
part from L,, thus contradicting theorem 5.1 ¢). This proves the claim.

Next, we show that if a part in L,, is adjacent to a part in L;, it must be
adjacent to all but one part in L;, and vice versa. We know that a part in [;
can be adjacent to at most all but one part in L,,, and vice versa, since otherwise
theorem 5.1 ¢) will be contradicted. Now, assume that a part in one of these layers
is adjacent to at most all but two parts in the other. Consider one such part
P € Lj, 5 €{l,m}. Let P;y be adjacent to Pys, but not adjacent to Py or Pis,
in the layer Ly, k € {{,m},k # j. This leads to two cases.
case a) j =1, k=m
We have P;; € L; not adjacent to neither of Py nor Py, in the layer L,,. From
claim 5.1, we see that P;; has no neighbours in I,.
case b) g =m, k=1
We have P,y € L, which is adjacent to FPy3, but not to Py or Py in L;. From
theorem 5.1 b), we know that there is a part in L,, which is not adjacent to any
part in L;. This part cannot be Pj; as this is adjacent to Pys in L;. Let this part
be Pj;. That is, there are two parts P;; and Pj; in L,, which are non-adjacent
to both Py and Pgy. From claim 5.1, we see that neither Py nor Py can have
neighbours in [,. Since [, has no neighbours in L,,, this means that in both of the
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above cases, none of Pj, Py and Py have neighbours in 1,.

Let R =1, UPy. Let 1 = RU Py and I; = RU Py,. Consider the graph
G =< Vig1 U L; > with vertex set V. [; and [; are two maximal independent sets
of (i; and their intersection is R. V; — N[R] consists of some, but not all, of the
parts of Ly, and hence < V; — N[R] > is complete k,-partite. From theorem 4.2,
R is maximal. We now argue that G is in Wyp. At each stage of a decomposition
of G yielding layers L; to L;, we obtain a maximal R such that < N[R] > is also
in Wspg. Since G is in Wypg, any maximal R yields a < N[R] > that is in Wyg.
Therefore, the subgraphs G; =< L; U L;y; U---U L; > obtained at each stage of
such a decomposition, 1 < ¢ < ¢, are also in W4p. Hence, Gy isin Wag. Now, N|[R]
has at least one part Pys from Lj. This contradicts proposition 5.2 b). Hence, Pj
can have at most one non-neighbour in L;. We have already seen that P;; has to
have at least one non-neighbour in L;. We conclude that P;; must have exactly
one non-neighbour in Lj. Thus, if a part in L; is adjacent to a part in L,,, it is
adjacent to all but one part in L,,, and vice versa.

We now show that the layers L,, and [; satisfy statement b). From theo-
rem 5.1 b), there has to be a part P, in L,, which is not adjacent to any part in
L;. Therefore, any part in L; that is adjacent to some part in L,, is adjacent to
all but P, in L,,. If every part in L; had neighbours in L,,, then every part in
L,, other than P, would be adjacent to all of L; which, as we have already seen,
cannot be the case. Hence at most k; — 1 parts of I; can have neighbours in L,,.
Since any part in L,, that has neighbours in L; has to be adjacent to all but one
part in L;, all but P,, in L,, is adjacent to all but some part P in L;. That is, [,
and L,, satisfy statement b), which contradicts our assumption.

This proves the statement.

c
)

Suppose that the statement is false. Then there exist parts P;; and Pj; in some
layer L; such that they have at least one pair of non-common neighbours P, € L
and P, € L,, which are not adjacent to each other, j # [, [ # m, m # j, with
Py adjacent to Pj;; but not to Py, and P, adjacent to Pj; but not to Pj;. Since,
from b), P, and P,, are adjacent to (k; — 1) parts each in L;, and P;; € N(F;) but
¢ N(P,), N(P)UN(P,) D L;. Now, P, and P, can be extended to a maximal
independent set which has no part from L;, thus contradicting theorem 5.1 ¢).
if:
Let Ly = {L1, La,..., L;}. Consider some part P; of layer j, 1 < j <t. As the
layers are complete k,-partite, and because of property b), the neighbour sets of
every vertex in P; are the same. Hence, if a maximal independent set contains
a vertex from P;, it will contain all the vertices from P;. Consider the graph G
with vertex set V; induced by some k layers of Ly, 1 < k <t. From the above,
any maximal independent set of (&, and hence (7}, contains whole parts from the
layers in GG;. To prove that GG is in Wypg, we need the following two results.

We first show that G is well covered by proving the following claim.
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Claim 5.2 FEvery mazimal independent set in G; consists of exactly one part from
each layer.

Proof:

We have already shown that any maximal independent set of GG; has to consist of
whole parts from the layers. Suppose that the claim is not true. Then there exists
at least one layer Lj € (G; which has no part in some maximal independent set I
for ;. Therefore there exist parts in [y which cover the layer L;. Consider one
such part Py from layer ;. This means that L; is adjacent to Lj. Properties a),
b), and ¢), will hold for any subset of the layers Ly to L; as otherwise they would
not hold for Ly as well. From b), we know that there exist parts Py € L and
Py € Ly such that | N(Py) N L; |= 0 and | N(P) N L |= 0, and that the parts of
Ly — P, and L; — P, are pairwise complete bipartite. Therefore, P has to be a
part other than P, and it covers all of L except for Pj,. Therefore, there has to be
another part Py, in I; which covers Pj. Let this be from the layer L. Since Ly, is
adjacent to Ly, from b), there must be a part Py # P, € Ly that is not adjacent
to any of Ly. Since Py is adjacent to P, but not to Fj;, and Py is adjacent to Py
but not to Pr, from ¢), Py and P, have to be adjacent. This cannot be true as Py
and Pp belong to I; which is an independent set. This proves the claim.

We next prove the following claim about G;.

Claim 5.3 Let R be a maximal intersection of a pair of maximal independent sets
of G;. Then the following are true:

a) N[R] consists of exactly those layers that have a part in R.

b) V; — N[R] consists of exactly one layer.

Proof:

y

Any subset of the layers in the partition will also obey properties a), b), and ¢),
as otherwise these properties would be contradicted in the partition also. Suppose
that the claim is not true. Then there exists P, in R such that N(FP;) contains
at least one part P; which belongs to a layer L; that has no part in R. Let P
belong to the layer L;. Since L; and L; are adjacent, b) applies. Therefore, P,
is adjacent to all but Pj; in L;. Now, P;; cannot be adjacent to anything in
R as then property ¢) is contradicted. Therefore, any maximal independent set
containing K must contain Pj;, which means that the intersection of a pair of such
maximal independent sets must contain Pj;. Hence, R must contain Pj;, which
is a contradiction since we assumed that R was maximal. Therefore, N[R] must
contain only those layers that have a part in R.

b)

Property a) says that every layer induces a complete k,-partite subgraph. From «)
of this claim, V; — N[R] will consist of whole layers. From property b), every two
such layers will have at least one part in each that has no neighbours in the other.
Using theorem 4.2, we see that < V; — N[R] > has to be complete k,-partite, for
R to be maximal. Statement b) follows from the above. This proves the claim.

33



We now prove that GG is in W4g by induction on the layers. All graphs induced
by any one layer in the partition are in Wyug, since, from a), every layer induces a
complete k,-partite graph. Suppose that all graphs induced by j layers, 1 <7 < ¢,
are in W4pr. Now, look at graphs induced by j 4+ 1 layers. From the claim 5.2,
all such graphs are well covered. Consider any such graph G, with vertex set
Vi41. From the claim 5.3, every maximal intersection R for ;41 has the property
that Vi41 — N[R] consists of exactly one layer, that is, N[R] consists of j layers.
Thus, for graphs induced by j + 1 layers, every maximal intersection R will result
in < N[R] > being a graph induced by some j layers of the partition. By the
induction hypothesis, all such graphs are in W4gr. Hence, all graphs induced by
7 + 1 layers are in Wg. Therefore, GG is in Wyg.

d

Clearly, all decompositions of a graph GG in Wy4g yield the same layers, and
these layers obey the properties of theorem 5.3. That is, the layers are unique.

Property ¢) of theorem 5.3 states that the non-common neighbours of any two
parts in a layer are completely connected to each other. Consider two parts P
and Pj in a layer L;. Let P; ¢ L; be adjacent to both P and Pjy, and Py € L;,
J # k, be adjacent to P;; but not P;;. Property ¢) does not say anything about
P; and Pj, having to be adjacent to each other, since P; is a common neighbour.
Let P; be not adjacent to P;. Using property b) of theorem 5.3, we observe that
the set I = P; U P, will cover the layer L;. Extending [ to a maximal independent
set will yield one which has no part from L;, thus contradicting theorem 5.1 ¢).
This would seem to indicate that property ¢) of theorem 5.3 is not a strong enough
condition. The following corollary shows that properties b) and ¢) of theorem 5.3
ensure that P; has to be adjacent to P;. This result is used in showing that the
dominating set problem is in P for the class Wxp.

Corollary 5.2 Let G be a graph in Wag. Let its vertex set be partitioned into
layers Ly, Lo, ..., Ly, 1 <t < n, obeying properties a) to c¢) of theorem 5.3. Let
P;y and Py be any two parts of a layer L;, 1 < <t. Let P;, P, ¢ L;, j # k, be
netghbours, at least one non-common, of Py and Py. Then P; is adjacent to Py.

Proof:

If P; and Py are both non-common neighbours of Py and Pjy, then property ¢) of
theorem 5.3 ensures that P; is adjacent to Py. Let P; be adjacent to both P and
Pi3, and let Py be adjacent to only Pj;. Since Py and P, are both adjacent to
P;, from property b) of theorem 5.3, there is a part P, € L; which is not adjacent
to P;. Using the same property b), since Py is not adjacent to Py, P;3 has to be
adjacent to P,. Now, we have two parts P, and P;3 in a layer L; which have two
non-common neighbours P; and Pj,. From property ¢) of theorem 5.3, P; has to
be adjacent to F.

d
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The following proposition states some properties of the layers. It is made use
of in proving the generalization of Favaron’s theorem.

Proposition 5.4 Let G be a graph in Wy and let its vertices be partitioned into
layers Ly to Ly satisfying the properties a) to ¢) of theorem 5.3. Then the following
are true:
a) For any layer L; in G, there exists a part in each of the other layers such
that they have no neighbours in L; and form an independent set, 1 < 5 <H{.
b) Every layer is V. — N[R] for some R, except for the last layer Ly if it has
only one part.
c) Any subset of the layers in any order salisfies the properties a) to ¢) of
theorem 5.3, except if the layer L; has only one part, in which case, it has
to be the last layer in any ordering.

Proof:

y

Consider a layer L;, 1 < j < t. Let Ly, Ljs,....L;,, 1 < g < t, be the layers
that are adjacent to L;. From theorem 5.3 b), we know that there exist parts
Py € Ly, Py € Lj,..., P, € L;j; which have no neighbours in L;. We now
prove that the set I formed by these parts is an independent set. Assume not.
Then there exist parts P € Ly and Pj,, € Lj,, such that Pj is adjacent to P,
1 < 1,t <gq. Since L; is adjacent to L;,,, there exists P; in L; which is adjacent
to all but Pj,, in L;,. Start an independent set I3 with P; and Pj;; and extend
it to a maximal independent set for . I; will not have any part from L;,,, thus
contradicting theorem 5.1. Extend [ to include a part from each of the layers that
are non-adjacent to L;; this is possible since G is in Wyp. Thus, I consists of one
part from each of the layers other than L;, and has no neighbours in L;.

b)

From statement @), we can form an independent set [ which consists of a part
from each layer of V — L; such that [ has no neighbours in L;. Since L; has at
least two parts, except if it is the layer L; and has only one part, we can always
find parts P;; and P;; in L; to form maximal independent sets Iy = [ U P;; and
I = I U P;;5. The intersection of these two maximal independent sets is B = I,
and from proposition 5.2, we know that N[R] consists of all the layers except ;.
Since L; is complete k,-partite, using theorem 4.2, we see that R is maximal,
and L; =V — N[R]. As GG is in Wyp and R is a maximal intersection, from the
definition 5.2, N[R] is in Wyg.

)

Consider some subset of the layers L = {L;1, Lja,..., L}, 1 <jl,32,...,5¢9 <1,
with L;, being the layer L, if the layer L, has only one part and is part of the subset.
These layers have to obey properties @) through ¢) of theorem 5.3 as otherwise
they would contradict these properties in the partition too. These properties are
independent of the ordering of the layers, except for isolated vertices which should
form the last layer L.

d
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As will be seen in the next chapter, the recognition problem for this sub-class
is in P.

5.6 The third sub-class W gp

We now define a sub-class of W4r in which every layer in the decomposed graph
has exactly k parts, & > 2. This rules out graphs with isolated vertices, since
isolated vertices form a single layer with one part in the decomposed graph. This
sub-class, which we call Wsgp, is defined as follows:

Definition 5.3 A graph G is said to belong to the family Wagrp if G belongs to
War and for some k > 2, every decomposition of G has exactly k parts in each
layer.

We define a sub-class Wag, of Wagr as follows:

Definition 5.4 For any k > 2, a graph G belongs to Wygy, if G belongs to Wagp
and has exactly k parts in each layer of any decomposition.

Thus, Warr = U, Wagk. Since any maximal independent set has exactly one
part from each layer in the decomposed graph, the size of any maximal independent
set of a graph belonging to Wypgy is n/k.

5.7 The fourth sub-class W pzo

From the previous section, we see that Wpy consists of all the graphs in the family
W arr which have exactly two parts in each layer. We now provide the following
characterization for this family.

Theorem 5.4 (Wypy) A graph G belongs to the family Waps if and only if it is
very well covered without isolated vertices.

Proof:

only if:

GG belongs to Wpy. Therefore, it can be decomposed into t layers, with each
layer having exactly two parts. As G belongs to Wyg, by definition, it obeys
theorem 5.3. Since the layers induce subgraphs which are complete 2,-partite,
there are no isolated vertices. As every maximal independent set for (G contains
exactly one part from each layer, every such set will contain exactly half the number
of vertices in the graph. Hence, (G is very well covered without isolated vertices.
if:

G is very well covered without isolated vertices. We now state a property of any
perfect matching of a very well covered graph without isolated vertices.

Observation 5.1 Let G be a very well covered graph, and let M be a perfect
matching in G. Let My C M. Then, My salisfies P.
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This can be easily verified.

We partition the vertex set of GG into layers Ly, Lo, ..., L;, where t is a positive
integer, as follows. From theorem 4.4, for any pair of maximal independent sets
I; and [, of (&, whenever the intersection R is maximal, there exists a perfect
matching between R and S, and I, and I,, which satisfies property P. From
theorem 4.2, when R is maximal, the graph induced by V — N[R] is complete k,-
partite. In this case, since N(R) = 5, the lgraph H; induced by Ly =V — N[R] is
complete 2,,- partite. Let G5 be the graph induced by N[R]. From observation 5.1,
the matching between R and S satisfies property P, that is, (G5 has a perfect
matching which satisfies property P. Using Favaron’s theorem 2.1, we see that
(i3 1s very well covered. Therefore, (G5 can be decomposed as outlined above to
give a complete 2, -partite Igraph Hy =< Ly > and a very well covered graph G
such that Gy =< V3 U Ly >. Since we start with a graph ' which has a finite
number of vertices, this decomposition will stop at some stage, say . As we cannot
decompose the graph any further, this means that we cannot find a pair of maximal
independent sets in (¢4 which have a non-zero intersection. That is, G; consists of
isolated vertices, or is complete k,-partite. Since (G has no isolated vertices, the
lgraph H; =< L; > is complete 2,,-partite. We now have a decomposition of (G into
t lgraphs, each of which is complete 2, -partite, with the corresponding layers being
Ly to L;. We now show that these layers satisfy properties a) to ¢) of theorem 5.3.
We first prove the following claim.

Claim 5.4 FEvery maximal independent set of G contains exactly one part from
each of the layers Ly to L;.

Proof:

As the layers induce K, ,’s, there can be at most one part from each layer in a
maximal independent set. Since (G is very well covered, and the parts in each
layer have the same size, there has to be exactly one part from each layer in every
maximal independent set. This proves the claim.

property a)

Since the lgraphs are complete 2,-partite, a) is satisfied.

property b)

Let the layers L; and Lj; be adjacent. Let L; and Lj consist of the parts Pj1, Pjq,
and Py, Py respectively. Let Pj; be adjacent to Pyy. Since the lgraphs are com-
plete 2,,-partite, there exists a perfect matching M for (¢ which consists of n; edges
from the lgraph H;, 1 <[ < t. From Favaron’s theorem, M obeys property P.
Let uy be a vertex in Pj;. Let it be adjacent to vy in Pye. Let (uq,uqq) be in M,
where uq7 1s in Pj;. Since the lgraphs are complete 2,,-partite, u1; is adjacent to all
the vertices in Pj;. Now, vy cannot be adjacent to uy; as then we would have the
matching edge uy, u1; with a common neighbour, which would contradict property
P. That is, (u1,uq1) is a matching edge, with u; adjacent to vy but not to the rest
of the vertices in Pj;, and uy; is adjacent to all the vertices in Pj; — uy, but not
to v1. Therefore, from property P, all the vertices in Pj; are adjacent to vy. That
is, if a vertex in Pj; is adjacent to a vertex v in Py, then every vertex in Pj; is
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adjacent to v. We can use a similar argument to show that this should be true
for the vertices in Py also. Therefore, if parts from different layers are adjacent,
then they are complete bipartite. Now, Pj; cannot be adjacent to Py because
any maximal independent set of (G that contains P;; would have no part from Ly,
thus contradicting claim 5.4. For similar reasons, Py, cannot be adjacent to Pj,.
Therefore, Pj; has no neighbours in Lj, and Py has no neighbours in L;. Thus, if
two layers are adjacent then all but one part of one layer is completely connected
to all but one part of the other layer, thus satisfying property b).
property ¢)
While proving b), we have shown that there exists a perfect matching M that con-
tains exactly n; edges from the lgraph H;, 1 < j < t. Property ¢) follows from b)
and the fact that the perfect matching M satisfies Favaron’s theorem.

Therefore, G is in W4g. Since every layer in the decomposition has exactly two
parts, GG belongs to Waps.

d

5.8 Conclusions

We have defined and characterized a hierarchy of four sub-families of well-covered
graphs. We showed that these sub-classes are recursively decomposable. We
showed that for a graph GG in Wsp, all decompositions yields the same set of layers;
that is, the layers are unique. We have also shown that the last sub-family, Wp2,
is the same as the family of very well covered graphs without isolated vertices. In
the next chapter, we study the algorithmic properties of these new sub-classes.
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Chapter 6

Complexity results for the new
sub-classes

6.1 Introduction

We have obtained a hierarchy of four new sub-classes of well-covered graphs. We
now study the complexity of the same problems that we looked at for well-covered
graphs, for these new sub-classes. Since W4ps is the same as the family of very well
covered graphs without isolated vertices, we only need to look at those problems
that have complexities in P for W4g, and check if these remain the same for the
other sub-classes. These problems are recognition, clique partition, Hamiltonian
cycle and path, and dominating set. We see that while clique partition remains
in P, the rest become intractable as one goes higher up in the hierarchy. These
problems separate the classes algorithmically, except for the classes Wagr and Warp
which have the same complexities for all the problems. The results are shown in

Table 6.1.

[ Problem | Wsr | War | Warr | Wag ||
Recognition co-NP-c | P - ==+
Clique partition P — — —
Dominating set NP-c p - ==+
Hamiltonian cycle = <= | NP-c P
Hamiltonian path = <= | NP-c P

Table 6.1: Complexity results for the new sub-classes

<— Result implied from result on right.
—> Result implied from result on left.
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6.2 The class Wgqp

6.2.1 Recognition

We first look at the problem of recognition, that is, given a graph G, how difficult
1s 1t to determine whether or not (¢ is a member of Wgg 7 The answer lies in the
following theorem.

Theorem 6.1 The recognition problem is co-NP-complete for the class Wgp.
Proof:

We use the same reduction from SAT as the one used for well-covered graph recog-
nition, with the following addition: Add a new clause ¢,,11 which has a new literal
Upt1- Add (tpp1, Ungr) to the set of literals. This in no way changes the complexity
of the problem. See Figure 6.1. Rearrange the above graph in the form of layers

Figure 6.1: Wgg recognition - SAT reduction

Ly, Lo, ..., Ly as shown in Figure 6.2. Layers L4 to L;_; induce Ky’s and are not
connected to each other; hence, they obey statements a) through ¢) of theorem 5.1.
< Ly > is a clique and hence obeys a). L; to L;_; also obey b) with respect to L,
as Ly is not adjacent to any of ¢; to ¢, in L;, and L, to L,_; are not adjacent to
¢mt1 in Ly Therefore, the only property that the above graph can violate is ¢).
L; cannot cover any other layer as no clause has both a literal and its negation.
Therefore, the only possibility is an independent set from 4 to L;_y covering L.
As ¢,41 1s covered only by w, 41, this means that a set of independent vertices from
Ly to Ly_1 covers vertices ¢; to ¢, in L;. Since this is an independent set, it can
have at most one vertex from each of the layers Ly to L;_1.

Claim 6.1 C is satisfiable if and only if G does not belong to Wsg.
Proof:
only if:
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Figure 6.2: Wggr recognition - grouping into layers
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C' is satisfiable. Therefore, there exists a satistying truth assignation for ', that
is, there exists a set of vertices corresponding to true literals from layers L; to
L;_1 with there being at most one vertex from each layer. Since the layers are not
adjacent to each other, this set is an independent set. This set will include w14
since this is the only literal in the clause ¢,, 1. Therefore we have an independent
set comprised of vertices from the layers Ly to L;_1 which cover all the vertices in
L;. This contradicts ¢) and hence, i is not in Wgg.

if:

(' is not in Wsg. As we have seen before, only statement ¢) can be violated.
Therefore there exists an independent set of vertices from layers L1 to L;_1 which
covers L;. Since the set is independent, it can have at most one vertex from each
of the layers Ly to L;_y. That is, only a vertex corresponding to a literal, or its
negation, will be present in the set. Assigning the value true to the literals in the
set, we obtain a satisfying truth assignment for C.

d

From the above, it is clear that this group of graphs is as hard to recognize as
the family of well-covered graphs. We now look at the complexity of some other
problems for this family.

6.2.2 Clique Partition

Problem: Given a graph G and an integer k, is there a set of k vertex disjoint
cliques such that every vertex of G is contained in one of the cliques?

This problem is not difficult to solve for the class Wsgr. For any graph G, the
minimum number of cliques needed to cover the graph is greater than or equal to
the size of a maximum independent set of (G. From theorem 5.1 ¢), we know that
the size of a maximal independent set for a graph G € Wgspg is equal to the sum of
the sizes of the parts of the layers [; to L;. Since each layer is complete k,-partite,
a clique cover of this size exists. Hence the size of a minimum clique cover for ¢
is equal to the size of a maximum independent set in it.

6.2.3 Dominating Set

Problem: Given a graph G and an integer k, is there a set of k vertices of GG
such that every vertex not in the set is adjacent to al least one vertex in it?

Theorem 6.2 The dominating set problem is NP-complete for the class Wgp.
Proof:

We reduce from the dominating set problem for general graphs. Given a graph G
of order n (n > 2), we transform it into a graph G'p as follows. For each vertex
v; in G, we have a Ky whose vertices form the layer L; in the transformed graph
Gp, 1 <1 <n. There is a vertex v; ; in the K3 which corresponds to the vertex v;.
Therefore, there are n layers in GGp, each of which induces a K5. These layers are
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numbered [y to L,. There is another layer L, ; which induces a clique of n + 2
vertices, with a vertex v,4q; in it for each vertex v; in GG, plus two other vertices.
These layers are arranged as shown in Figure 6.3 to form the graph Gp. For each

P

Figure 6.3: Wggr - dominating set

edge (v;,v;) in G, there is an edge in G'p from the vertex v,41, in the layer L, 11 to
the vertex v;; in the layer L;, and from the vertex v,44 ; in the layer L, 4; to the
vertex v; 1 in the layer L;. For each vertex v; in (5, there is an edge from the vertex
Upt1,; to the vertex v;; in Gp. There is also an edge from the vertex v; 5 of each
layer, to the vertex v, 41 441 of the layer L, 1. The vertex v,11 ,42 is a simplicial
vertex in the layer L,41. G'p has 3n 4 2 vertices and 2m + 3n + (n + 2)(n + 1)/2
edges, and can be constructed in polynomial time.

The layers Ly to L,41 obey statement a) of theorem 5.1 as each one induces
a clique containing at least two vertices. Statement b) is obeyed as the layers are
non-adjacent to each other except for L, ;1 which has a simplicial vertex v,41 ,42.
Every maximal independent set in Gp will have at most one vertex from each of
the layers since the induced subgraphs are all cliques. The layer L, 1 is the only
layer adjacent to any of the other layers. Since it induces a clique, we can have
only one vertex from this layer in an independent set. Since no vertex in this layer
is connected to both the vertices in some other layer, there is no possibility that
we can exclude all the vertices of any other layer by choosing a vertex from this
layer. Also, any independent set will have a vertex from the layer L, 11 as v,41 042
is a simplicial vertex in this layer. From the above arguments, every maximal
independent set has to have exactly one vertex from each of the layers Ly to L, 11,
that is, G'p obeys statement ¢). Therefore, the graph G'p is in Wgp.

Claim 6.2 G has a dominating set of size < k if and only if Gp has a dominating
set of size < k41,1 <k<n,n>2.
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only if:

(G has a dominating set of size k&y < k. Let Dg be such a dominating set in G.
Choose the corresponding vertices in layer L, to form a set Dgp in G'p. Since
D¢ is a dominating set in G, the vertices of Dgp will dominate the vertices v;; of
Gp, 1 <3 <mn. Any one vertex in D¢gp is sufficient to dominate all the vertices
in the layer L,1;, since < L,41 > is a clique. Add the vertex v,41 ,41 to the set
D¢gp. This will dominate all the vertices v; 5. Therefore, Dgp is a dominating set
for Gp and has size by +1 < k + 1.

if:

Gi'p has a dominating set of size by < k+ 1, k < n. Let Dgp be such a dominating
set. Assume that Dgp does not contain the vertex v,,41 ,41. Consider the vertices
vi2, 1 <5 < n. Fach such v;; is adjacent to the corresponding v;; and v,41 441,
and nothing else. Hence, if Dgp does not contain v, 41,41, then it has to contain at
least one vertex from each of the K;’s forming the layers Ly to L,. Since v,41 42
is a simplicial vertex in the layer L,.1, there has to be at least one vertex from
this layer in Dgp. That is, there has to be at least one vertex from each of the
layers Ly to L,y1 in Dgp. Since Dgp can have at most n + 1 vertices, this means
that there has to be exactly one vertex from each of the layers in G'p in Dgp, and
each such vertex need only dominate the vertices in the layer that it belongs to. If
the vertex from the layer L, 41 is not v,41 541, replace it with v, 4q ,41. Therefore,
it Dgp does not contain the vertex v,41 41, we can always find a vertex v in Dgp
that can be replaced with the vertex v,41,41 such that the new Dgp is still a
dominating set.

We therefore assume that Dgp contains the vertex v,,41 ,41. This will dominate
all the v;5’s, 1 < 7 < n. Replace each vertex v;; , 1 < j < n,in Dgp with the
corresponding vertex v, 11 ; in L,1;. Since there is an edge between v, 41 ; and v; 1,
and the neighbour set of v, is contained in L, U {v;2}, this change does not
make any difference in the vertices that are dominated by v; 1, nor does it change
the number of vertices in Dgp. Therefore, we now have a new dominating set
Depy of size k1. The vertices Dapr N Lpy1 — {Vnt1041, Vnt1.n42 ), dominate the
vertices {v11,v21,...,0,1} of Gp. Choosing the corresponding vertices in G will
yield a dominating set for G of size < ky — 1, that is, < k.

d

6.3 The class Wyp

We now study the complexities of the recognition and dominating set problems for
the family Wyg.

6.3.1 A Polynomial Recognition Algorithm

The algorithm decomposes a graph G based on the definition 5.2 to obtain the
layers Ly to L, and checks if the layers satisfy properties a) to ¢) of theorem 5.3.
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We assume that GG is represented by an adjacency list.
Stage A: Decomposition
We decompose the graph G to obtain the layers L to L;. Since the algorithm also
checks if the subgraphs induced are complete k,-partite, at the end of this stage,
property a) is also verified. Let t = 1.

1) while GG is not complete k-partite

2) find two maximal independent sets 1 and I5 of G, Iy # Iy;
3) find the intersection R of Iy and I;
4)  while R is not a maximal intersection
5) extend R;
6) if <V — N[R] > is complete k,-partite
7) L=V — N[R];
8) t=14+1;
9) G =< NI[R] >;
else
10) G = Kz
11) of G is complete k,-partite
12) L, =V;
else

(7 is not in Wyg;
Stage B: Reduction
13) forall Ly,L;i#j
14) forall P,eL;, P €L
15) 1f P, ~ Py, and < P, U P, > is not complete bipartite
(i 1s not in Wyp.
Construct the minimal graph Gy as follows:
16) create a vertex v; in Gy for each part P; in G
17) U ~ Uy in GM lfPZNP] in G;
Stage C: property b)
18) for all L;, L; in G
19) Z'fviELiNU]‘ELJ‘
20) SZ == LZ — N(v]‘);
21) S]‘ == LJ‘ - N(vi);
2) i |Si£Lor | S I£1
(7 is not in Wyg;
23)  elsedf | Lin N(S;)|>0o0r | L;NN(S;)|>0
(7 is not in Wyg;
24) else if < (L; — S;)U(L; —S;) > is not a clique
(7 is not in Wyg;
Stage D: property c)
25) for all L; in Gy
26)  for allu,v e L;
27) Su = N(u) — Nv);
28) Sy = N(v) — N|ul;
29) for all w e S,

65



30) if N(w)2 S,

(7 is not in Wyg;

We now do the correctness and time analysis for the above steps.

Stage A: Decomposition

1)

We observe that if G is complete k-partite, then its complement G consists of k
disconnected components, each of which is a clique. We can find the complement
of a graph in order n?. The components can be found in order n +m using a depth
first search. If the number of vertices in a component is ny, then the component
is a clique if the degree of every vertex in it is equal to ny — 1. Thus, checking if
each component is a clique be done in order n + m. Therefore, this step can be

done in order n?.

2)

Finding two maximal independent sets I; and I can be done as follows. First
include all vertices of degree zero in both [; and I;. Choose a vertex v from any
one of the remaining vertices and include it in [;. Choose one of its neighbours
and include it in [y, thus ensuring that [; # [,. Extend I; and [, to maximal
independent sets for ¢ using a greedy algorithm. This can be done in order n+m.
3)

We find the intersection R of I; and I as follows. We mark every vertex in I;. We
go through I, and put the marked vertices in a set K. This gives the intersection
of the two sets. This can be done in order n + m.

4)

From proposition 4.2, we know that R is maximal if and only if <V — N[R] > is
complete k-partite. We check if R is maximal by checking if G, the graph induced

by Vg = V — N[R] is complete k,-partite. As in 1), this can be done in order n?.

5)

If R is not maximal, G'g is not complete k,-partite. Therefore, in G'r, there is at
least one component which is not a clique. Consider such a component H. Let
the number of vertices in it be n. Since H is not a clique, there is at least one
vertex u in H such that d(u) < n — 1. Since H is a connected graph, this implies
the existence of a vertex v in H that is not adjacent to u, but is adjacent to a
neighbour w of u. These three vertices induce a P; in . Therefore, in G'g, these
three induce a K3 given by (u,v), and an isolated vertex w. From proposition 4.1,
this is the condition for G to be not complete k-partite. These vertices can be
found in order n + m. Extend R by making R = R U {w}. Thus, this step can be
done in order n + m.

4) and 5)

Since R can contain at most n — 1 vertices, the while loop is repeated at most n —2
times. Hence, these steps can be done in at most order n?.

6)

This is the same as 1), except for checking if all the components have the same
number of vertices. Like 1), this can be done in order n* time.
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7)

This can be done in order n + m time.

8)

This can be done in a constant time.

9)

This can be done in order n + m time.

10)

This can be done in a constant time.

1) to 10)

Therefore, steps 1) to 10) take order n® time. Since there can be at most n/2
layers, considering the case when each layer is a Ky, the whole process can be done
in at most order n* time.

11)

This, like 6), will take order n* time.

12)

This will take order n time.

Therefore, stage A will take at most order n* time.

Stage B: Reduction

13 to 15)

It G is in Wyp, then it is also in Wspg, and hence the layers must obey corollary 5.1.
Therefore, if parts from different layers are adjacent to each other, they are com-
plete bipartite. We first check this as it will enable us to reduce the graph. For
every two parts P, and P, belonging to different layers, we check if they have an
edge between them. If so, we check if the parts are complete bipartite. We can
do this as follows: Mark each vertex in Fj,. For every vertex in P,, go through
its neighbour set and count the number of marked vertices. This can be done in
order n + m. Since each layer except one, L;, has to have at least two parts, and
each part can consist of just one vertex, the number of layers can be at most n/2.
As each part can consist of just one vertex, the number of parts can be at most
n. Hence, the number of comparisons is of order n2. Therefore, the above process
takes at most order n°® + n’m time.

16 to 17)

For properties b) and ¢), we construct a minimal graph Gy; by having a vertex in
Gy for each part in . If two parts are adjacent, we join the corresponding two
vertices in Gy by an edge. The graph Gy will have layers which are cliques and
parts which are single vertices. This process can be done while doing step 13).
Therefore, this stage would require order n® + n*m time.

We now check if GGy obeys properties b) and c¢).

Stage C: property b)

18 to 24)

For any two adjacent layers L, and L;, we check if there is one vertex in each that
has no neighbours in the other, and if the rest of the vertices form a clique. Since
the maximum number of layers is n/2, the number of layer comparisons would be
of order n?, and the comparison between two layers would be of order n+m. Thus,
the above process would take at most order n® + n?m time.
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Stage D: property c)

25 to 30)

For any two vertices in any layer, we check if the non-common neighbours are com-
pletely connected to each other. The number of such vertex pairs is of order n?,
and checking if the non-common neighbours are completely connected will take at
most order n +m time. Hence, the whole process will take at most order n® +n?m
time.

All of the above steps can thus be done in polynomial time, and hence recognition

is in P.

6.3.2 Dominating set

Problem: Given a graph G and an integer k, is there a set of k vertices of GG
such that every vertex not in the set is adjacent to al least one vertex in it?

Theorem 6.3 The dominating set problem is in P for the class Wpg.

Proof:
A part in a layer is said to be a simplicial part it its neighbour set is made up of
only those vertices that belong to that layer. We first prove the following.

Claim 6.3 Let G be in Wyg and let its vertex set be partitioned into layers
L1, Lo, ..., Ly satisfying properties a) to ¢) of theorem 5.3. Then every layer has a
simplicial part or each part of it is adjacent to a layer that has a simplicial part.

Proof:

Assume not. That is, there exists a layer L;;, 1 <1 < ¢, such that L;; does not
have a simplicial part, and there exists a part P;; in L;; that is not adjacent to
any layer that has a simplicial part. Since it is not a simplicial part, it must have
neighbours in some other layer L;;. From theorem 5.3 b), we know that it must
be adjacent to all but one part Py in L;, and P;; must have no neighbours in
L;1. By assumption, L;; has no simplicial part; therefore, P;; should be adjacent
to all but one part P53 in L;3, and P;3 must have no neighbours in L;. Now Py
is not adjacent to P;; but is adjacent to all but P;3 in L;3 and all but Py in L,
are adjacent to P;; in L;;. Therefore, from corollary 5.2, P;; must be adjacent to
all but Pj3 in L;3. Consider the graph G4 formed by the layers L1, L;s, and L;3.
We see that N(P;1) D N(Pi2) D N(P;3). Now, P;5 cannot be a simplicial part and
therefore has to have neighbours in some other layer. This excludes layers ;5 and
Li1 as this would contradict theorem 5.3 b). Therefore, P35 must be adjacent to
all but one part P;4 of Ly, with P4 having no neighbours in L;3. We include this
layer in the graph G'4.

We say that layers L;; to L;; obey property P4 if there exist parts Py €
Lii, Py € Lig,..., Py € Li which have the property that N(Py) O N(P2) D
- DN(Py), 1 <k <t

Let G4 consist of j layers L;; to L;; of G, 1 < j < t. Assume that the layers
obey property P4, that is, N(P1) D N(Pi2) D --- D N(P;;), where Py is a part
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in layer Ly, 1 <1 < j. Since P;; is not simplicial, it must be adjacent to all but
one part P;;41 of some layer L;;1;, with P;;4; having no neighbours in L;;. In fact,
because of property P4, and theorem 5.3 b), the layer L;;41 cannot be any of L;
to L;j_1. Therefore, L;;11 is a new layer from . Now, P;; is not adjacent to any
of Py to P;j_; but is adjacent to all but Pj;41 in L;;4q, and all but P;; in L;; is
adjacent to each of Py to P;j_1 (property P4). Using corollary 5.2, we have that
Py to Pjj_y are adjacent to all but FP;;4q in L;;41. That is, in the new graph Gy
formed by G4 U Lijj11, N(P1) D N(Py) D -+ D N(P;41). Thus, in order for
P;; to be a non-simplicial part, we are forced to extend G4 by adding a new layer
Pij41 from G, and these layers obey property Py.

Thus, in order for P;; to not have neighbours in a layer that has a simplicial part,
we are forced to keep extending (G4, and the layers in (G4 always obey property
P4. We extend (G4 until it is maximal, that is, until no more layers can be added
to it; this is bound to happen as G has a finite number ¢ of layers. Let G4
contain k layers, 1 < k& < t. Since these layers satisty property P4, we have
N(Pi1) D N(Py) D -+ D N(Py). Now, there should be some part Py, in Ly
that has no neighbours in L;; to L;;. Since this part cannot be simplicial as P is
adjacent to L, there has to another layer in GG that P is adjacent to. This is not
possible as we have assumed that 4 is maximal. Therefore, P;;, has to be adjacent
to one of the layers L;; to L;,—; which contradicts theorem 5.3 b). Therefore, Py
has to be a simplicial part, in a layer L;;, which has parts that are adjacent to P,
in L;;. This contradicts our assumption.

d

Since (G is in W4p, from theorem 5.3, we can partition its vertex set into layers
that obey properties a) to ¢) of the theorem. From the recognition algorithm
for the class Wap, we know this partitioning can be done in polynomial time.
Now, form a set by choosing a non-simplicial part from all the layers that have a
simplicial part. This will be a dominating set because of the claim 6.3. This set
is a minimum set because a simplicial part can only be dominated by a part from
the layer it belongs to. Such a set can be obtained in polynomial time and hence
the dominating set problem is in P for the family Wypg.

d

6.4 The class Wygp

We now look at the complexities of the Hamiltonian cycle and path problems for
this family and prove that these are NP-complete.

6.4.1 Hamiltonian cycle

Problem: Given a graph G, does G contain a simple cycle such that every vertex
in G is in the cycle?
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Figure 6.4: Hamiltonian cycle

Theorem 6.4 The Hamiltonian cycle problem is NP-complete for the family
Wars.

Proof:

We transform from the Hamiltonian cycle problem for general graphs. Given a
graph G of order n > 2, we construct a graph G’y as follows. For each vertex vy in
(7, we construct a K3 in Gg. Two of the vertices of the K3 correspond to vy in G}
call them vy; and v12. Each of these two vertices are connected to each two vertex
pair in Gy that corresponds to a neighbour of vy in . The other vertex vy3 is a
simplicial vertex. Each such K3 forms an lgraph in GGg. Thus, there are n layers
in Gy with 3n vertices and 4m 4+ 3n edges. Clearly, this transformation can be
done in polynomial time. For an example, see Figure 6.4. The layers induce K3’s,
each one has a simplicial vertex, and the neighbour sets of the two non-simplicial
vertices in each layer are the same; therefore, the layers obey properties a) through
¢) of theorem 5.3. Therefore, Gy is in Wy4p. Since each layer has exactly three
parts of one vertex each, Gy is in Wy4gs.
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Claim 6.4 G has a Hamiltonian cycle if and only if Gy has a Hamiltonian cycle.

Proof:

only if:

(G has a Hamiltonian cycle. For every vertex in (7, there is a corresponding K3 in
Gp. For every edge in (7, there are edges connecting two K3’s. Hence, if there is an
edge (v1,vq) in G, we can always find a path vi1,v13, 012, v21 in Gy. Therefore, if
(G has a Hamiltonian cycle, we can always find a corresponding Hamiltonian cycle
for Ggy.

if:

G has a Hamiltonian cycle. Consider any layer in G'. It induces a K3 which
corresponds to some vertex in (5. Consider one such K3 which consists of vertices
Vi1, U2, and v,z which corresponds to a vertex v; in (G. Since v;3 is a simplicial
vertex, the path v;1,v;3,v;2 has to be part of any Hamiltonian cycle. Therefore,
the part of a Hamiltonian cycle in Gy through a K3 can be collapsed to a single
corresponding vertex in G. Of the four edges that connect two K3’s, only one
can be part of a Hamiltonian cycle. Any such edge has a corresponding edge in
(G. Hence, if G’y has a Hamiltonian cycle, we can always find a corresponding
Hamiltonian cycle in G. This proves the claim.

Since the Hamiltonian cycle problem is NP-complete for general graphs, from
the above, it is NP-complete for the family Wy4gs and thus for the family Wagp
as well.

d

6.4.2 Hamiltonian path

Problem: Given a graph G, does GG contain a simple path such that every vertex
in G is in the path?

Theorem 6.5 The Hamiltonian path problem is NP-complete for the family
Wars.

Proof:

We transform from the Hamiltonian cycle problem for general graphs. Given a
graph G of order n > 2, we construct a graph Gy in the same way as for the
Hamiltonian cycle problem, with the following change. We replace one of the
layers, say L,, with two layers as follows. Take the K3 which forms the Igraph
< L, > and duplicate it to form the Igraph < L,4+; >. Form two more lgraphs
< Lpyo > and < L,y3 > using K3's such that L., is adjacent only to L, and
L,y3 1s adjacent only to L,11; we will call the K3’s forming these lgraphs leaf
K3’s. Two vertices of L, 49 should form a K4 with the two non-simplicial vertices
of L,; likewise, two vertices of L, 43 should form a K, with the two non-simplicial
vertices of L,41. The graph G has 3(n+3) vertices and 4m+4d(v,,)+3(n+3)+8
edges, where v, is the vertex in (G which forms the layer L, in G'y. Clearly, this
transformation can be done in polynomial time. For an example, see Figure 6.5.
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Figure 6.5: Hamiltonian path



It can be easily seen that Gy still obeys properties @) through ¢) of theorem 5.3,
and hence belongs to the family W4g. Since each layer has exactly three parts of
one vertex each, Gy is in Wyps.

Claim 6.5 G has a Hamiltonian cycle if and only if Gy has a Hamiltonian path.

Proof:

The proof is similar to the one given for Hamiltonian cycle problem, except for the
following observations.

only if:

(G has a Hamiltonian cycle. It is easy to see that we can find a simple path in G
that starts at one of the leat K3’s, say L,12, ends at the other, and covers all the
vertices in Gz, that is, a Hamiltonian path for G'y.

if:

G has a Hamiltonian path. As in the case of the Hamiltonian cycle problem, of
the four edges that connect two K3’s, only one can be used. Consider the leat K3’s;
once a path enters one of them, there is no way out, since each one is adjacent to
exactly one other K5. Therefore, any Hamiltonian path has to start at one of these
K3’s and end at the other. That is, if we ignore the leaf K3’s, the path starts at
one of L, or L,.1, and ends at the other. The two K3’s that make up the lgraphs
< L, > and < L,41 > can be collapsed to a single vertex in (. Hence, it Gy has
a Hamiltonian path, we can always find a simple cycle in G that includes all the
vertices in (5, that is, a Hamiltonian cycle for (G. This proves the claim.

Since the Hamiltonian cycle problem is NP-complete for general graphs, from
the above, the Hamiltonian path problem is NP-complete for the family W4prs and
hence for the family W4grp.

d

From the above, it is seen that the Hamiltonian cycle and path problems are
NP-complete for the family Wagrp, even when the number of parts per layer is

three (k = 3).

6.5 The class W,z

This class is the same as the family of very well covered graphs without isolated
vertices. Hence, the results obtained in chapter 3 hold for this family as well.

6.6 Conclusions

We have studied the complexities of the same problems that we looked at for well-
covered graphs, for the new sub-classes. Since Wy4ps is the same as the family of
very well covered graphs without isolated vertices, we only needed to look at those
problems that had complexities in P for Wsgro and check if these remained the
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same for the other sub-classes. These problems are recognition, clique partition,
Hamiltonian cycle and path, and dominating set. We see that while clique partition
remains in P, the rest become intractable as one goes higher up in the hierarchy.
These problems separate the classes algorithmically, except for the classes Wap
and Wygrp which have the same complexities for all the problems that we have
looked at.
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Chapter 7

(Generalization of Favaron’s
theorem

7.1 Introduction

As we have seen earlier, Favaron characterized the class of very well covered graphs
without isolated vertices. This characterization showed that all such graphs had
a perfect matching which obeyed a certain property P. We have seen that the
class Wapy is the same as the family of very well covered graphs without isolated
vertices. This is contained in the class W4gr which, like W4g,, has the problems of
recognition and clique partition in P. A generalization of a matching is a clique
partition. We now provide an alternative characterization of the sub-class Wap
in terms of a clique partition of size a which obeys a certain property (). This is
shown to be a generalization of Favaron’s theorem (theorem 2.1).

7.2 Definitions

Favaron [8] defined the following equivalence relation for very well covered graphs
without isolated vertices. We state this here as it is referred to in this chapter.

Definition 7.1 Let M be a perfect matching of a very well covered graph G. Two
vertices x and y are called equivalent if either x =y or if (x,v),(y,u) € M and
x € N(u) and y € N(v).

She showed that the equivalence classes form a partition of the vertex set of GG into
independent sets with certain properties.

7.3 A generalization of Favaron’s theorem

We first state the alternative characterization for the sub-class Wsg, which is also
a generalization of Favaron’s theorem. We say that a clique partition of a graph
(G is an a-clique partition if the number of cliques in the partition is «, the size of
a maximum independent set of (.
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Theorem 7.1 (generalization of Favaron’s theorem) The following are eq-
uivalent for a graph G.

a) G belongs to Wyp.

b) There exists an a-clique partition in G that satisfies Q.

¢) There exists an a-clique partition in G, and every a-clique partition in G

satisfies ().

Hence, if G is in W4p, every clique partition of (¢ satisfies (). In order to prove
this theorem, we need to state some definitions and establish some results. We
first define property Q).

Let C ={C1,Cy,...,Cx}, 1 <k < n, be a clique partition of a graph G, with
the corresponding vertex set being Vi, Va, ..., Vi. We denote by C(v) the clique,
and by V(v) the corresponding vertex set, that v € V' belongs to.

Property (): We say that a clique partition ' satisfies property @) if:
a) | N(w)nVi|=0o0r | V;|=1,VoeV,1 <i< k.
b) (w e V(v),u € Nw)—V(v),u g Nw)) — (N(u) 2 N(w)— N(v)), Yo € V.

The first condition states that if a vertex in the graph is adjacent to a vertex in a
clique in the clique partition, then it is adjacent to all but one vertex in that clique.
The second one states that for every two vertices in a clique, their non-common
neighbours are completely adjacent to each other.

Let us see what happens to this property when we restrict the cliques in the
partition to be K3’s, that is, a perfect matching for G. Since each C; is a K5, from
property () a), we have that a vertex in a clique in C' can be adjacent to at most
one vertex in another clique. This means that the vertices in a clique in (' do not
have a common neighbour. We can use this fact to rewrite property ) for graphs
which have a perfect matching. A perfect matching M is said to satisfy property

Q if:
(w € V(v),u € N(v) = V(v) = (u & N(w)) and (N(u) 2 N(w) — N(v)),
Yo e V.

We see that this is the same as the property P defined by Favaron.

In the above theorem (theorem 7.1), if (¢ belongs to Wapgs, then an a-clique
partition is a perfect matching, and property (), as we have just seen, reduces to
property P. That is, the theorem reduces to Favaron’s theorem (theorem 2.1) for
very well covered graphs without isolated vertices.

Let C' be a clique partition of a graph (G, and let (' satisty (). We define the
following equivalence relation:

Definition 7.2 We say that u and v are equivalent if either u=v or

| V(u) |=|V(v) | and . ~ v,y ~u, Ve € V(u) —u,y € V(v) —v.

That is, two vertices v and v are said to be equivalent if either they are the same
vertex, or if their clique sizes are the same, and every vertex of V (u)—u is adjacent
to v, and every vertex of V(v) — v is adjacent to u. Note that two vertices u and
v in the same clique cannot be equivalent as this would require each one to be
adjacent to itself, which is not permitted.
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We need to show that the above is indeed an equivalence relation. We first
prove the following proposition.

Proposition 7.1 Let C be a clique partition that satisfies Q. Then, if u is equiv-
alent to v, u # v, C(u) U C(v) is complete k,-partite with each part having two
vertices, and u and v forming one of the parts.

Proof:

Since u and v are equivalent, we know that | V(u) |=| V(v) |. Also, C(u) and
C(v) are cliques. Let V(u) = {u,us,uq,...,u;}, and V(v) = {v,v1,02,...,0;},
J =] V(u) | —=1. Since u is adjacent to all of V(v) — v, u is not adjacent to v,
from @ a). Also, v is adjacent to all but u in V(u). Consider some u; € V(u) — u,
1 <4 <. Since u; is adjacent to v, from property @) @), u; is adjacent to all but
some v; € V(v) —v, 1 <40 < j. Likewise, since v;; is adjacent to w, it is adjacent
to all but u; in V(u). Therefore, the vertices of V(u) and V(v) can be paired into
disjoint sets of two vertices such that the neighbour set of a vertex in a pair is all
but the other vertex in the pair. From the above, u and v forms one such pair.
Hence, C'(u)UC(v) is complete k,-partite, with each part having two vertices, and
u and v forming one of the parts.

d

Now, let u be equivalent to v, u # v, and v be equivalent to w, u,v # w. Since
| V(u) |=| V(v) | and | V(v) |=] V(w) |, it follows that | V(u) |=| V(w) |. From
proposition 7.1, C(u) U C(v) is complete k,- partite, as is C(v) U C(w). Also,
u o vand v % w; with @ a), this implies that C'(u) # C(w). Consider a part
{z,y} in Clu)UC(v), x € V(u),y € V(v), 2 # u,y # v. Now, v ~ x and w ~ y.
Also, v o4 w and y o x. Since v and y are in the same clique C'(v) and have non-
common neighbours = and w respectively, from property @ b), w ~ x. Therefore,
w is adjacent to all the vertices in V(u) — u. In a similar fashion, we can show
that u is adjacent to all of V(w) —w. That is, u is equivalent to w. Therefore, the
relation of Definition 7.2 is an equivalence relation.

Let E(U) denote the equivalence class of u, and let C'(U) denote the corre-
sponding clique class, that is, C'(U) is made up of the cliques C'(v) corresponding
to each vertex v € E(U). Let V(U) represent the vertex set of C'(U). We now
prove the following proposition.

Proposition 7.2 The following are true:
a) The equivalence classes partition V' into independent sets.
b) The clique classes are complete k,-partite, with each part forming an equiv-
alence class.

Proof:

a)

Take any equivalence class F(U) associated with a vertex v € V. From proposi-
tion 7.1, the vertices in F(U) are pairwise disjoint, i.e, F(U) is an independent set.
As it is an equivalence relation, no vertex can appear in more than one equivalence
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class.

b

Let v # u € F(U), that is, v is equivalent to u. Consider x € V(u), x # u. Since v
isin E(U), using proposition 7.1, we have that C'(u)UC(v) is complete k,-partite,
with {u, v} forming one of the parts. Therefore, there has to be a y € V(v), y # v,
that forms a part with @ in C'(u) U C(v). Thus, y is adjacent to all of V(u) — «,
and x is adjacent to all of V(v) —y. Also, | V(u) |=| V(v) |, since v is equivalent
to u. Hence, y is equivalent to x. So for each vertex v € E(U) that is equivalent
to u, we can find a y € V(v) that is equivalent to x, that is, y is in F(X). Since
u is in C(x), as C'(u) and C(x) are the same, using a similar argument, we can
show that for each z € E(X), we can find a w € V(z) that is equivalent to w.
Therefore, | E(U) |=|] E(X) |. From a), E(U) and E(X) are mutually disjoint
independent sets. Thus, each vertex = in V(u) yields an equivalence class E(X),
| E(X) |=] E(U) |, whose vertices are from V(U). Therefore, the F(X)’s partition
V(U) into mutually disjoint independent sets, all of which have the same size, with
each E(X) having exactly one vertex from each clique in C'(U). Since every two
vertices in E(U) are equivalent to each other, from proposition 7.1, the cliques
in C(U) are pairwise complete k,-partite. From the above, C(U) is complete
k,-partite.

d

Let C(U) be the clique class associated with a vertex u of V. For every other
vertex v € V(U), the clique class C(V) is the same as C(U), since from proposi-
tion 7.2, v belongs to either E(U) or an equivalence class F(X) corresponding to
a vertex x € V(u), and C(U) is complete k,-partite with £(.X) forming one of the
parts. Hence, when we refer to clique classes, we are referring to the distinct clique
classes obtained from the equivalence classes. Clearly, every clique in the clique
partition C' is a part of some clique class, and no clique can belong to more than
one clique class. Hence, the clique classes form a partition of V. We now prove
the following.

Proposition 7.3 Let C be a clique partition of a graph G, and let C' satisfy prop-
erty (). Then, the corresponding clique classes partition the vertices of G into
disjoint sets which satisfy properties a) to ¢) of theorem 5.3, and hence G is in
War.

Proof:

From proposition 7.1, the equivalence classes form a partition of the vertex set
of G into independent sets. From the same proposition, each clique class is com-
plete k,-partite, with each part forming an equivalence class. A clique class is
constructed by taking an equivalence class and picking all the cliques in C' that
contain the vertices of the equivalence class. Since the clique classes are distinct,
every equivalence class can be in exactly one clique class. Furthermore, the clique
classes contain all the equivalence classes. Hence, the clique classes are vertex
disjoint and form a partition of the vertex set of (¢ into disjoint sets, each of which
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induces a complete k,-partite subgraph. We show that these disjoint sets satisfy
properties a) to ¢) of theorem 5.3, by showing that the corresponding induced
subgraphs, that is, the clique classes, satisty these properties.
y
From proposition 7.1, we know that the clique classes are complete k,-partite. If
any isolated vertices are present, they will form one clique class by themselves, as
they will all be in the same equivalence class.
)
Let C(X) and C(Y) be two different clique classes. Let @ € E(X) from the class
C(X) be adjacent to y € E(Y) from the class C(Y). From property @) a), there
exists y; in C(y) that x is not adjacent to. Since C(Y) is complete k,-partite, y;
is adjacent to each z € E(Y). Since y and y; are in the same clique C'(y), using
property @ b), x is adjacent to all such z. Therefore, x is adjacent to all of E(Y).
Now, since every vertex y in F(Y) is adjacent to « in F(X), by a similar argument,
y is adjacent to all of F(X). Thus, F(X) and FE(Y') are complete bipartite.
Therefore, if parts from different clique classes are adjacent, they are complete
bipartite. This enables us to do the following reduction on the clique classes:
replace each part in a clique class by a single vertex, thus reducing each clique
class to a single clique; replace the set of edges between two adjacent parts by a
single edge. Clearly, this transformation preserves the relationship between the
clique classes. We say that two cliques are adjacent if there is a part in one that
is adjacent to a part in the other. Now, consider any two clique classes C'(X') and
C(Y) which are adjacent. We consider the classes to be single cliques and call

them C(x) and C(y). Let ¢ =| V() | and j =| V(y) |. We have two cases.

case a) i # j

Assume ¢ < j. Since C(x) and C(y) are adjacent, 7, j > 2. Now, if all the vertices
of V() were to be adjacent to vertices in V(y), from property @ «), the number
of edges from V(z) to V(y) would be i(j —1). Now, ¢(j —1) > (¢ —1)s which is the
maximum number of edges possible from V(y) to V(x). Hence, if every vertex of
V(x) were to have neighbours in V(y), then at least one vertex of V(y) would have
to be adjacent to all the vertices in V(x), which would contradict @) «). Thus, at
most ¢ — 1 vertices of V(2) can have neighbours in V(). Since any vertex in V(y)
has to be adjacent to exactly 7 — 1 vertices in V(x) from property @ a), exactly
i — 1 vertices of V(x) have to have neighbours in V(y).

Can all the vertices of V(y) have neighbours in V(z)? We have already de-
termined that there are only 7 — 1 vertices in V(x) that have neighbours in V(y).
The number of edges from V(y) to these ¢« — 1 vertices of V() is j(z — 1). Now,
Jle—1)> (5 —1)(: =1) which is the maximum number of edges possible from ¢ — 1
vertices of V(x) to the vertices in V(y). Hence, at least one of the ¢ — 1 vertices of
V(z) should be adjacent to all the vertices of V(y), which contradicts @ a). Thus,
at most j — 1 vertices of V(y) can have neighbours in V(). Since each vertex of
V(z) has to be adjacent to exactly j — 1 vertices of V(y), exactly j — 1 vertices
of V(y) have to be adjacent to exactly i — 1 vertices of V(x). To satisfy property
() a), it can be easily seen that these two sets of vertices have to be completely
adjacent to each other. Thus, there exists exactly one vertex in V(x) which has
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no neighbours in V(y) and vice versa.
case b) 1 =j
Suppose all the vertices of V(z) had neighbours in V(y). The number of edges
from V(x) would be i(¢ — 1) which is the same as the maximum possible number
of edges from V(y) to V(a). Therefore, all the vertices of V(y) would have neigh-
bours in V(x) too. Consider the equivalence class F(x). This consists of the vertex
x. From @) a), there exists a vertex, say w in C(y) which is not adjacent to x.
Since x has neighbours in C'(y) and w has neighbours in C'(x), this means that x is
adjacent to all but w in C'(y) and w is adjacent to all but « in C'(x). That is, w is
equivalent to @ and therefore C'(x) and C(y) belong to the same clique class, which
is a contradiction. So at most ¢ — 1 vertices of V(2) can have neighbours in V(y);
from property @) a), we see that exactly ¢ — 1 vertices of V(z) can have neighbours
in V(y). A similar argument can be used to show that exactly ¢ — 1 vertices of
V(y) can have neighbours in V(). Thus, exactly ¢ — 1 vertices of V(z) and V(y)
are completely adjacent to each other, and there exists exactly one vertex in each
class that has no neighbour in the other.

The above two cases prove that the clique classes obey property b) of theo-
rem 5.3.
‘)
Consider a clique class C(X). Every part in C'(X) has exactly one vertex from
each clique C'(v), Vv € E(X). From b), which we have just proved, if parts from
different clique classes are adjacent, they are completely connected. Property ¢)
follows from this and property @ b).

d

We now prove the generalization of Favaron’s theorem for the class Wypg.

Proof(of the generalization of Favaron’s theorem):

a) — ¢)

GG belongs to Wsg. Therefore, the vertices of G can be partitioned into layers
Ly to L; that satisfy properites a) to ¢) of theorem 5.3. Since the corresponding
lgraphs are complete k,-partite, from property @) of the theorem, each Igraph can
be decomposed into cliques giving an a-clique partition for GG. Let one such clique
partition be given by C' = C4,C,,...,Cy, k& < n. Since the lgraphs are complete
k,-partite, a vertex v in a clique C, in a layer is adjacent to exactly | V(v) | —1
vertices in each clique in that layer. As the layers obey property b) of theorem 5.3,
if v is adjacent to a clique in another layer, it is adjacent to all but one vertex in
that clique. Hence the vertices in C' obey property @ @). Since any clique in C' has
exactly one vertex in each part of a layer that it belongs to, and the parts of the
layers obey property ¢) of theorem 5.3, the vertices in a clique obey ) b). Hence,
there exists an a-clique partition in (' that satisfies ().

Since G is in Wyp, the number of cliques in any minimum clique partition is
equal to a, that is, £ = a. Consider any a-clique partition C' = Cyy, Cha, ..., Cy.
Since k = « and G is in Wyp, any maximal independent set for G has to have
exactly one vertex from each clique. Consider any decomposition of G, with layers
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Ly to L;. We show that the cliques in C! can be rearranged to form the layers of
the decomposition. We ignore isolated vertices as they form one clique each in the
clique partition, and the layer L; in the decomposition. Consider some layer L;,
1 < < t. From proposition 5.4 b), we know that every layer is V — N[R] for some
R. Let R = I; N I, be a maximal intersection, such that V' — N[R] is the layer L;,
where [; and [ are a pair of maximal independent sets of G. R consists of exactly
one vertex from each of [ < k cliques of C.

We now show that N[R] consists of only vertices from those cliques that have
a vertex in R. Assume not. Then there exists C; € C'' which has no vertex in
R, but which has at least one vertex v in N[R]. The graph G5 induced by N[R]
is in W4k from the definition 5.2. Since R is a maximal independent set of (G,
every maximal independent set in (5 should have size | R |. Since any maximal
independent set for G has to have one vertex from every clique in C'!, starting with
v, we should be able to find a vertex from every clique that has a vertex in R such
that the resulting set is independent. This set has size >| R | implying that G is
not in Wyg, which is a contradiction. Hence, N[R] consists of vertices from those
cliques that have a vertex in R. That is, the graph induced by L; = V — N[R]
which forms the lgraph H;, consists of whole cliques from C*' that do not have a
vertex in R. Since the number of vertices in R is given by a — n;, there are o — n;
cliques from C'' in < N[R] >. As the number of cliques in C'! is also «, there are
exactly n; cliques from C! forming the layer L;.

Now, the lgraphs are complete k,-partite. The size of a part in the layer L;
is n;, and the maximum possible size of a clique in it is given by k;, the number
of parts in it. Hence, the minimum number of vertex disjoint cliques required
to cover the vertices of L; is n;, each being of size k;. Since the cliques in C*
are vertex disjoint, this means that the n; cliques forming the Igraph H; have
exactly k; vertices each, and form a partition of the vertices in H;. Therefore,
each lgraph of the decomposition contains whole cliques from C' such that the
cliques form a clique partition for that lgraph. Since the sum of the n;’s is «,
and there are o cliques in O, and the lgraphs are vertex disjoint, each clique in
C' appears in exactly one lgraph in the decomposition. The corresponding layers
obey properties b) and ¢) of theorem 5.3 and hence, as we have seen earlier, the
cliques satisfy property Q).
¢)—b)

Follows.

b) — a)

There exists a clique partition of GG that satisfies (). From proposition 7.3, GG is in
Wag.

d

Now let us see what happens to the equivalence relation 7.2 if G is very well
covered without isolated vertices. From Favaron’s theorem 2.1, there exists a
perfect matching for G. Hence, a clique partition for G consists of Ky’s. The
equivalence relation reduces to:
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Definition 7.3 v and v are equivalent if either v = v, or u € N(V(v) —v) and
v e NV (u)—u).

This is the same as the equivalence relation defined by Favaron (definition 7.1),
and hence the equivalence classes obtained are the same.

7.4 Conclusion

We have given an alternative characterization for the sub-class Wp in terms of a
clique partition of size o which obeys a certain property ). We have shown that
when the cliques in the partition are K5’s, the clique partition reduces to a perfect
matching, property ) reduces to property P, and the characterization reduces to
Favaron’s characterization for very well covered graphs without isolated vertices.
This is an interesting result since it generalizes the structure of very well covered
graphs as characterized by Favaron.

82



Chapter 8

Conclusions and future work

8.1 Conclusions

In this thesis, we first studied the algorithmic complexity of the following graph
theory problems for well-covered and very well covered graphs: chromatic number,
clique cover, clique partition, dominating cycle, dominating set, Hamiltonian cycle,
Hamiltonian path, independent set, independent dominating set, maximum cut,
minimum fill-in, recognition, Steiner tree, and vertex cover. We saw that many
of these problems are as hard for the family of well-covered graphs as for graphs
in general. Some of the above problems turn out to be tractable for the family of
very well covered graphs without isolated vertices.

We then gave a new characterization for well-covered graphs, and restricted
this to a characterization for very well covered graphs. This characterization was
based on the interaction between pairs of maximal independent sets [; and [, of
a graph G. Next, we looked at the intersection of a pair of maximal independent
sets of G. We defined the conditions under which such an intersection would be
maximal, and under which all such intersections would have the same size. Using
these two results, we defined and characterized a hierarchy of four new recursively
decomposable sub-classes of well-covered graphs. The hierarchy of sub-classes are:
Wsr, War, Warpr, and Wygs. Each one properly contains the one next to it in
the hierarchy. We showed that the graphs belonging to these sub-classes can be
decomposed into layers which are unique, and which satisty certain properties. We
also proved that the sub-class W4psy is the same as the family of very well covered
graphs without isolated vertices.

Next, we looked at the algorithmic complexity of the same problems that we
looked at for well-covered graphs, for these new sub-classes. Clearly, the problems
that are intractable for very well covered graphs without isolated vertices are also
intractable for the new sub-classes. Therefore, we restricted our attention to the
following problems: recognition, clique partition, dominating set, and Hamiltonian
cycle and path. The clique partition problem proved to be tractable for all the sub-
classes. The rest proved tractable as we moved down the hierarchy. We observe
that these problems separate the sub-classes algorithmically, except for the sub-

83



classes Wyp and Wygp. It is interesting to note that the Hamiltonian cycle and
path problems, which are in P for the class W4gs, turn out to be NP-complete for
the class Wags.

Lastly, we generalized Favaron’s theorem (theorem 2.1) for very well covered
graphs without isolated vertices to the sub-class W4g. Favaron’s characterization
was based on a perfect matching obeying a property P. We generalized this to
an a-clique partition obeying a certain property (). We showed that this reduces
to Favaron’s characterization when the a-clique partition considered consists of
cliques which are K’s.

The complexity results are shown in the Table 8.1.

[ Problem | WC | Wsr | War [ Warr | Wars |
Member co-NP-c | co-NP-c P = ==
Chromatic number «— — e e NP-c¢
Clique — — &= | <= | NP-c
Dominating cycle — — “— — NP-c
Isomorphism — — “— — iso-c
Maximum cut — «— — e NP-c¢
Minimum fill-in — — — +«— | NP-c
Steiner tree — — — +«— | NP-¢
Independent set P — — — _—
Independent dominating set P — — — _—
Vertex cover P = — — =
Clique partition NP-c P — — =
Dominating set — NP-c p — —
Hamiltonian cycle = — <= | NP-c P
Hamiltonian path = — <= | NP-c P

Table 8.1: Complexity results for well-covered graphs

WC  Well covered.
<—  Result implied from result on right.
—  Result implied from result on left.

Let us look at how far we have succeeded in answering the questions that
were addressed by this thesis. We have shown that well-covered graph recognition
is co-NP-complete. While this does not solve the complexity of the recognition
problem for this family, the result indicates that it is highly unlikely that this
problem is tractable. We have seen that besides the independent set problem, the
independent dominating set and vertex cover problems are also in P for this class.
These results follow trivially from the definition of the class. We have also seen
that there are many problems that are intractable for this class; for example, the
clique partition problem. As we have seen in chapter 2, there are many sub-classes
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of well-covered graphs which have recognition in P, including the family of very
well covered graphs without isolated vertices. We have looked at these two families
algorithmically. The results show that many graph theory problems are as hard
for the family of well-covered graphs as for graphs in general. Some of them prove
tractable for very well covered graphs, thus algorithmically separating the two
classes. We have defined and characterized four new sub-classes of well-covered
graphs, three of which have recognition in P. The first one, Wgsg has recognition in
co-NP-c. We have shown that the problems studied in this thesis distinguish the
sub-classes algorithmically, except for the classes Wap and Wygp.

8.2 Future work

Some questions which remain unanswered in this thesis are: Are there other prob-
lems which are in P for well-covered graphs? Is it possible to separate the classes
War and Wgp algorithmically? What are the algorithmic properties of the other
well-covered families which have recognition in P? How do they relate to the sub-
classes of this thesis?

All the new sub-classes have been defined based on the concept of a maximal
intersection. An obvious question arising from the concept of well-coveredness
is: What graphs have the property that every maximal intersection has the same
size? Can we characterize such graphs? We call such graphs well-intersected
graphs. Another question is: What graphs have the property of being both well
covered and well intersected? Which of the graphs belonging to the newly defined
sub-classes have the property of being well intersected?

Let Wg be the family of well-covered graphs which have the property that there
exists a maximal intersection R for which < N[R] > is well covered. This family
properly contains the family Wgsgr. Are there other sub-classes of this family for
which some of the problems that we have looked at, especially recognition, are
tractable?

We have seen how a graph G belonging to Wsg can be represented by a cor-
responding minimal graph G,,. It would be interesting to study the properties of
such graphs.

What about the complement of a well-covered graph? What well-covered
graphs have the property that the complement is also well covered? Since a maxi-
mal independent set in a graph G is a maximal clique in its complement, this would
imply that the complement of a well-covered graph has the property that every
maximal clique has the same size. We shall call such graphs well-cliqued graphs.
Hence, our question becomes: What well-covered graphs have the property that
they are also well cliqued? Also, what is the nature of well-cliqued graphs?

We have seen that the class Wsg has recognition in P. It would be interesting
to find an efficient recognition algorithm for this class, and for the class of very
well covered graphs without isolated vertices. Also, are there any other sub-classes
of Wspr that have recognition in P?
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