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Abstract

A graph is said to be well covered if every maximal independent set has the same
size� and very well covered if every maximal independent set contains exactly half
the vertices in the graph� Well�covered graphs are of interest because while the
problem of �nding the size of a maximum independent set is NP�complete for
graphs in general� it is in P for well�covered graphs�

Many of the existing results in this area deal with characterizations of families
of well�covered graphs� This thesis focuses on the algorithmic properties of this
family� The �rst part of this thesis looks at the algorithmic complexities of the
following problems for the families of well�covered and very well covered graphs�
chromatic number� clique cover� clique partition� dominating cycle� dominating set�
Hamiltonian cycle� Hamiltonian path� independent set� independent dominating
set� maximum cut� minimum �ll�in� recognition� Steiner tree� and vertex cover�
While most of the above problems prove to be as di�cult for well�covered graphs
as for graphs in general� a number of them become tractable when restricted to
the family of very well covered graphs�

In the second part of this thesis� an alternative characterization is given for the
family of well�covered graphs� This leads to the concept of a maximal intersection
of independent sets� Based on this� a hierarchy of four new sub�classes of well�
covered graphs is de�ned� The families are characterized and the algorithmic
complexities of the above mentioned problems are studied for these families� It is
also shown that the last class in the hierarchy is exactly the family of very well
covered graphs without isolated vertices� A generalization of Favaron	s theorem
for very well covered graphs is also proved�
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Chapter �

Introduction

The concept of a well�covered graph was introduced by Plummer �
�� in ��
�� He
de�ned a graph as being well covered if every maximal independent set has the
same size� These graphs are of interest because while the problem of determining
the size of a maximum independent set for a general graph is NP�complete �����
in the case of well�covered graphs� this can be done by determining the size of any
maximal independent set�

This thesis looks at the family of well�covered graphs from an algorithmic com�
plexity point of view� The main objectives are� to examine the recognition problem
for this family� to study the complexities of some fundamental graph problems for
this family� and� in case some of the problems prove intractable� to �nd non�trivial
sub�classes for which such problems can be solved e�ciently� These results could
form a basis for characterizing classes of tractable� or provably intractable� prob�
lems on well�covered graphs� This thesis asks questions of the following nature�
Given that the maximum independent set problem is in P� are there other problems
that are tractable for this family� Are there problems that are intractable� What
is the complexity of the recognition problem� Are there non�trivial sub�classes for
which recognition is in P� What are the algorithmic properties of such sub�classes�
Can such sub�classes be distinguished algorithmically�

A graph is said to be very well covered if every maximal independent set con�
tains exactly half the vertices in the graph� The �rst part of this thesis looks at the
algorithmic complexities of the following problems for the families of well�covered
and very well covered graphs� chromatic number� clique cover� clique partition�
dominating cycle� dominating set� Hamiltonian cycle� Hamiltonian path� indepen�
dent set� independent dominating set� maximum cut� minimum �ll�in� recognition�
Steiner tree� and vertex cover� The recognition problem turns out to be co�NP�
complete for well�covered graphs� and in P for very well covered graphs without
isolated vertices� While most of the other problems prove to be as di�cult for
well�covered graphs as graphs in general� a number of them become tractable when
restricted to the family of very well covered graphs�

In the second part of this thesis� an alternative characterization is given for the
family of well�covered graphs� This leads to the concept of a maximal intersection
of independent sets� Based on this� a hierarchy of four new sub�classes of well�

�



covered graphs is de�ned� The families are characterized and the algorithmic
complexities of the above mentioned problems are studied for these families� While
the �rst family in the hierarchy has recognition co�NP�complete� the remaining
families have recognition in P� All of them have the clique partition problem in
P� a problem that is NP�complete for well�covered graphs� The smallest family
in the hierarchy is exactly the family of very well covered graphs without isolated
vertices�

The last part of this thesis deals with a generalization of Favaron	s ��� charac�
terization of very well covered graphs without isolated vertices� She showed that
all such graphs have a perfect matching which obeys a certain property� In this
thesis� a characterization of the second class in the hierarchy is provided in terms
of a clique partition which obeys certain properties� This is shown to reduce to
Favaron	s characterization when the clique partition considered is a perfect match�
ing� While this result does not immediately fall into the framework of the thesis�
it is interesting because it generalizes the structure of very well covered graphs
without isolated vertices� while preserving the property of recognition being in P�

��� De�nitions

A graph is a pair G � �V�E�� where V is a �nite set of vertices and E is a set of
unordered pairs �u� v� of distinct vertices of V � each such pair is called an edge�
V �G� and E�G� are also used to denote the vertex and edge sets� respectively� of
a graph G� The order of a graph is given by the number of vertices� and the size
by the number of edges� in it� In what follows� G denotes a simple� undirected�
�nite graph of order n �j V j� with size m �j E j edges� Two vertices u and v are
adjacent� denoted by u � v� if �u� v� � E� u and v are called the end points or ends
of the edge �u� v�� Two vertices u and v are non � adjacent� denoted by u �� v�
if �u� v� �� E� The degree d�v� of a vertex v is the number of vertices adjacent to
v� Two edges are adjacent if they have a vertex in common� An edge is said to
be incident with a vertex v if v is one of its end points� A vertex of degree one
is called a leaf � An edge that is incident with a leaf is called a pendant edge� A
graph H � �V�� E�� is said to be a subgraph of G if V� � V and E� � E� Given a
vertex set A � V � the subgraph induced by A has the vertex set A and the edge
set E�A� � f�u� v� � Eju� v � Ag� and is denoted by � A ��

A set of vertices is independent if no two vertices in the set are adjacent� A set
of vertices in G forms a vertex cover for G if every edge in G is incident with at
least one vertex in the set� A set of vertices I� is said to cover a set of vertices I� if
every vertex in I� is adjacent to some vertex in I�� A subset of E is a matching if
no two edges in the set are adjacent� We say that there is a matching from A � V
to B � V �A� if there exists a matching M of G such that every edge in M has
one end point in A and the other in B� we can also say that there is a matching
from B to A� or there is a matching between A and B� A perfect matching is one
in which every vertex in G is an end point of some edge in the matching� A set
S is a maximal set satisfying a certain property P if there is no other set properly






containing S that satis�es property P � Set S is maximum if there exists no set of
greater cardinality that satis�es property P � A similar distinction is made between
minimal and minimum� The size of a maximum independent set in a graph is
referred to as ��G�� A graph G is a bipartite graph if V can be partitioned into
two independent sets X and Y � We write the bipartite graph as �X�Y�E�� If u
is adjacent to v� then u is said to be a neighbour of v� N�v� denotes the open
neighbourhood of v � V � that is� N�v� � fxjx � V and �x� v� � Eg� N �v� denotes
the closed neighbourhood of v and is given by N �v� � N�v��fvg� For a set S � V �
N�S� � �N�v� �v � S� and N �S� � N�S� � S� A vertex is isolated if it has no
neighbours� and simplicial if its closed neighbourhood induces a clique� A graph
is said to be chordal if it does not contain an induced cycle of order greater than
three� The clique cover number of a graph G is the smallest number of complete
subgraphs needed to cover the vertices of G� it is denoted by ��G�� A graph G
is said to be perfect if ��� A �� � ��� A �� for all A � V � For any additional
terms� see �
��

An algorithm is said to run in order f�n� time if its running time is bounded by
cf�n� for all possible instances of input of size n� where c is a positive constant� It
is called a polynomial time algorithm if f�n� is a polynomial in n� An algorithm
is said to be deterministic if each stage in the execution of the algorithm leads to
a unique next stage� and nondeterministic if there could be many possible next
stages� A problem is said to belong to the class P if there exists a deterministic
polynomial time algorithm� and to the class NP if there exists a nondeterministic
polynomial time algorithm� which solves it� A problem is said to be NP�hard if
the existence of a deterministic polynomial time algorithm for its solution implies
the existence of a deterministic polynomial time algorithm for every problem in
NP� A problem is said to be NP�complete if it is both NP�hard and is in the class
NP� For additional details on complexity and NP�completeness� see �����

��� Organization of this thesis

Chapter 
 looks at related work and gives some examples of well�covered graphs�
Chapter � studies the complexities of some fundamental graph problems for the
families of well�covered and very well covered graphs� Chapter � gives an alterna�
tive characterization for well�covered and very well covered graphs� and also looks
at the nature of the intersections of pairs of maximal independent sets of a well�
covered graph� It establishes the conditions under which such intersections are
maximal� and under which all such intersections have the same size� Chapter �
de�nes and characterizes a hierarchy of four new sub�classes of well�covered graphs�
It also shows that the last sub�class in the hierarchy is exactly the family of very
well covered graphs without isolated vertices� Chapter � studies the complexities of
some standard problems for these sub�classes� Chapter 
 provides a generalization
of Favaron	s theorem for very well covered graphs� Conclusions and future work
make up Chapter ��

�



Chapter �

Related work

��� Introduction

The concept of a well�covered graph was introduced by Plummer �
�� who de�ned
a graph to be well covered if every minimal vertex cover is also a minimum
vertex cover� If Vc � V is a vertex cover for a graph G� then the graph induced
by V � Vc cannot contain an edge� as this would contradict the fact that Vc is
a vertex cover� That is� I � V � Vc is an independent set� This independent
set is a maximal independent set since Vc is a minimal vertex cover� Therefore�
an equivalent de�nition for a well�covered graph is� A graph is well covered if
every maximal independent set is maximum� Note that for a well�covered graph�
every independent set is contained in a maximum independent set� Well�covered
graphs are interesting because a greedy algorithm can be used to �nd a maximum
independent set� a problem that is intractable for general graphs� Another well
known structure for which the greedy algorithm gives an optimal solution is a
matroid� For a comprehensive treatment of matroids� see �����

We �rst present a few results that have applications in this thesis and then
give a summary of some other known results� We then present a few examples of
well�covered graphs�

��� Results related to the thesis

A graph is said to be quasi�regularizable if one can obtain a regular multigraph of
non�zero degree from it� by deleting some of the edges if necessary� and replacing the
others with several parallel edges� Berge ��� showed that any well�covered graph
without isolated vertices is quasi�regularizable� and that any quasi�regularizable
graph G has the property that for every independent set S of G� j N�S� j�j S j�
From this� it is clear that

Corollary ��� For any well�covered graph G without isolated vertices� the follow�
ing are true�

a� j N�S� j�j S j for every independent set S of G�

�



b� The size of a maximal independent set of G is �j V j �
�
A graph is said to be very well covered if every maximal independent set has

cardinality j V j �
� Staples �
�� was the �rst to study this family� Favaron ���
gave the following characterization for this family�

Theorem ��� �Favaron
 For a graph G� the following are equivalent�
a� G is very well covered�
b� There exists a perfect matching in G that satis�es P �
c� There exists at least one perfect matching in G and every perfect matching

of G satis�es P �

where property P is de�ned as follows�

Property P� A matching M in a graph G satis�es property P if for any edge
�u� v� �M � N�u� 	N�v� � �� and N�u�� fvg is adjacent to all of N�v�� fug�

Chv�atal and Slater ��� showed that well�covered graph recognition is co�NP�
complete� that is� recognizing a graph as being not well covered is NP�complete�
This result was arrived at independently by the author and Stewart �

��

��� Other results

Ravindra �
�� studied well covered bipartite graphs� Let G be a graph and for
e � �u� v� � E� let Ge be the subgraph induced by N�u� �N�v� in G� Then

Theorem ��� �Ravindra
 A bipartite graph G without isolated vertices is well
covered if and only if G has a perfect matching M and for every e � M � Ge is a
complete bipartite graph�

If G is a well�covered bipartite graph� then every maximal independent set of G
has j V j �
 vertices� That is� any such bipartite graph is very well covered� He
also characterized all well�covered trees�

Lewin ���� implicitly characterized well�covered line graphs by characterizing
what he called matching�perfect graphs� A graph is said to be matching� perfect
if every maximal matching is a maximummatching� A line graph Gl of a graph G
has a vertex for every edge in G� and two vertices in Gl are joined by an edge if
the corresponding two edges in G are adjacent� Hence� a maximal matching in G
yields a maximal independent set in Gl� and vice versa� That is� G is matching�
perfect if and only if Gl is well covered� It was later proved by Lesk et al� ���� that
well�covered line graphs can be recognized in polynomial time�

Staples �
�� gave the following classi�cation scheme for well�covered graphs�

De�nition ��� Let n be a positive integer� A graph G belongs to class Wn if
j V �G� j� n and every n disjoint independent sets in G are contained in n disjoint
maximum independent sets�
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W� is the class of well�covered graphs� and theWn classes form a descending chain�
W� 
 W� 
 � � �� No Wn class is empty� since the complete graph on n vertices
belongs to Wn� She also described some ways of constructing Wn graphs� and
proved some structural results for these graphs�

The girth of a graph is the length of the smallest cycle in it� Finbow and Hart�
nell ���� characterized well�covered graphs of girth � �� Finbow et al� later char�
acterized well�covered graphs of girth � � ����� and well�covered graphs containing
neither �� nor ��cycles ����� They showed that all such graphs can be recognized
in polynomial time� A concept similar to that of a graph being well covered is
that of a graph being well�dominated� A graph is said to be well�dominated if all
minimal dominating sets are of the same cardinality� A set D � V of G is said to
be dominating if every vertex in G is either in the set or is adjacent to some vertex
in it� Finbow et al� ��
� showed that well�dominated graphs are also well covered�
They gave a characterization of well�dominated graphs having no �� nor ��cycles�
and of well�dominated bipartite graphs� A dominating set D is said to be locating
if for every pair of vertices u� v not in D� we have N�u� 	D �� N�v� 	D� Finbow
and Hartnell ���� showed that graphs in which every independent dominating set
is locating form a sub�class of well covered graphs� They also showed that for
graphs of girth � or more� the two families are identical� Gasquoine� Hartnell�
Nowakowski� and Whitehead ���� described techniques for constructing a family of
well�covered graphs containing no ��cycles�

A graph is said to be claw�free if it has no induced subgraph isomorphic to K����
Whitehead ���� showed how a claw�free well�covered graph containing no ��cycle�
with any given independence number �� can be constructed by linking together �
subgraphs� each isomorphic to either K� or K��

A set S of vertices of a graph is k�independent if each vertex in S is adjacent
to at most k � � other vertices in S� Favaron and Hartnell ��� de�ned a well�
k�covered graph as one in which every maximal k�independent set of vertices is
maximum� Thus� well���covered is the same as well covered� They characterized
the well�k�covered trees� and all well�
�covered graphs of girth � ��

A graph is said to be cubic if the degree of every vertex in it is exactly ��
Campbell ��� characterized the well�covered cubic graphs of connectivity � or 
�
Campbell and Plummer ��� found all ��connected cubic planar graphs which are
well covered� they showed that there are only four such graphs� Campbell et
al� ��� characterized all well�covered cubic graphs and showed that these can be
recognized in polynomial time�

A graph is called k�extendable if every independent set of size k is contained in
a maximum independent set� Dean and Zito �
� gave the following characterization
of well�covered graphs�

Theorem ��� Let C be a clique cover consisting of t cliques of a graph G with
independence number ��G� � t � d� for some non�negative integer d� Then the
following are equivalent�

a� G is well covered�

�



b� G is k�extendable for all k � f�� 
� � � � � hg� where h is the sum of the orders
of the d� � largest cliques in C�

c� For every d � � cliques C�� C�� � � � � Cd�� of the clique cover C with vertex
set W � �d��

i��V �Ci�� there is no independent set S of G � W such that
jW j�j S j and W � N�S��

They also showed that for two classes of perfect graphs� those with bounded clique
size and those with no induced ��cycles� it can be determined whether the graph
is well covered in polynomial time�

Moon �
�� obtained some results on the number of well�covered trees in various
families of trees�

A well�covered graph is de�ned to be in the strongly well�covered class if and
only if the deletion of any edge leaves a well�covered graph� Pinter �

� studied
the class W� as de�ned by Staples� and the class of strongly well�covered graphs�
He showed that these are two di�erent classes� and that there is only one graph
common to both classes�

For a more detailed analysis of the work done so far� see Plummer	s survey on
well�covered graphs �
���

��� Examples

We now give some examples of well�covered and very well covered graphs� The
only induced paths which are well covered are P�� P�� and P�� the paths on �� 
�
and � vertices� respectively� For any other path� one can easily get two maximal
independent sets of di�erent sizes by choosing vertices appropriately� For example�
if the vertices are numbered �� 
� �� � � �� choose vertices �� �� �� � � � to form one set
and vertices �� �� 
� � � � to form another�

The only induced cycles which are well covered are C�� C�� C�� and C�� For any
other cycle� one can �nd two maximal independent sets of di�erent sizes by using
a sequence similar to that given above for paths�

The complete bipartite graph Kn�n is very well covered with a maximal inde�
pendent set size of n� Consider bipartite graphs having no isolated vertices� The
complement of any such graph is well covered� as any maximal independent set
will contain exactly two vertices�

The complements of k�trees form another family of well�covered graphs� A k�
tree is de�ned recursively as follows� a k�tree on k vertices is a clique on k vertices
�k�clique�� given a k�tree Tn on n vertices� a k�tree on n � � vertices is obtained
by adding a new vertex vn�� to Tn� and making it adjacent to each vertex of some
k�clique of Tn� and non�adjacent to the remaining n� k vertices� The complement
of a k�tree on k vertices is obviously well covered� To prove this for k�trees on
more than k vertices� we need only show that in every such k�tree� every maximal
clique is a maximum clique� since a maximal clique in a k�tree corresponds to a
maximal independent set in its complement� Rose �
�� showed that any k�tree G
has a k�clique but no k�
�clique� Hence� the size of a maximal clique for a k�tree
is bounded by k � �� From the de�nition of a k�tree� any k�tree with more than k






vertices has at least one clique of size k�� and every vertex in it belongs to at least
one clique of this size� Hence� every maximal clique in a k�tree with more than k
vertices has size k � �� Therefore� the complements of k�trees are well covered�
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Chapter �

Complexity results

��� Introduction

From the previous chapter� we see that most of the work done so far on well�
covered graphs deals with characterizations of this family and of speci�c sub�
classes� We now examine the algorithmic properties of such classes by exploring
the complexities of some fundamental graph problems like recognition� dominating
set� Hamiltonian cycle and path� and clique cover for the families of well�covered
and very well covered graphs� The very well covered graphs looked at here are
those without isolated vertices� We show that recognition is co�NP�complete and
that several other problems are NP�complete for well�covered graphs� A number
of these problems remain NP�complete� while some of them become tractable� for
very well covered graphs� For both families� the isomorphism problem is as hard
as the general graph isomorphism� These results are shown in the Table ����

��� Recognition

An important question for any family of graphs is that of recognition� that is�
given a graph G� can one say whether or not G is well covered� We prove that
this problem is co�NP�complete by showing that the complementary problem of
deciding whether G is not well covered is NP�complete� This result was arrived at
independently by Chv�atal and Slater ����

Theorem ��� The recognition problem is co�NP�complete for well�covered graphs�

Proof�
The decision problem that we are dealing with here is the following� is a given
graph G not well covered� We �rst show that this problem is in NP� A graph
G is well covered if and only if every maximal independent set is a maximum
independent set� To show that G is not well covered� a nondeterministic algorithm
only needs to guess two subsets of V and check that they are maximal independent
sets of di�erent sizes�
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Problem Well covered Very well covered

Member co�NP�c �Kn �K�� P �Favaron�
Chromatic number �� NP�c �leaf vertex�
Clique �� NP�c �leaf vertex�
Dominating cycle �� NP�c �leaf vertex�
Isomorphism �� iso�c �leaf vertex�
Maximum cut �� NP�c �leaf vertex�
Minimum �ll�in �� NP�c �leaf vertex�
Steiner tree �� NP�c �leaf vertex�
Independent set P �trivial� �

Independent dominating set P �trivial� �

Vertex cover P �trivial� �

Clique partition NP�c �C� � C�� P �Favaron�
Dominating set NP�c �H �K�� P �Favaron�
Hamiltonian cycle NP�c �K�� P �Kn�n�
Hamiltonian path NP�c ��� P �chain graph�

Table ���� Complexity results for well�covered and very well covered graphs

�� Result implied from result on right�

�
 Result implied from result on left�

� Similar transformation to one just above�

�� � �� Nature of transformation�result or reference�

We transform from a known NP�complete problem� the SATISFIABILITY
problem� or SAT� This problem is speci�ed as follows� Given a set U of vari�
ables and a collection C of clauses over U � is there a satisfying truth assignment
for C� For any instance of SAT with clauses C � fc�� c�� � � � � cmg and variables
U � fu�� u�� � � � � ung� we construct a graph G � �V�E�� where

V � VC � VL where

VC � fc�� c�� � � � � cmg and
VL � fu�� u�� u�� u� � � � � un� ung
E � f�ci� cj�j� � i� j � m� i �� jg

�f�ui� ui�j� � i � ng
�f�ci� uj�juj is a literal in clause cig
�f�ci� uj�juj is a literal in clause cig

See Figure ���� We assume that no clause contains a variable and its negation� as
such a clause could be satis�ed by any truth assignment and therefore eliminated�
G has 
n � m vertices� The number of edges in VC is m�m � ���
� and in VL
is n� The number of edges between VC and VL is � mn� considering the worst
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Figure ���� Recognition

case of each clause having n literals� Therefore� the number of edges in G is
� n� nm�m�m� ���
� Thus� G can be constructed in polynomial time�

Consider the graph G� Any independent set can have at most one vertex
from VC and one vertex from each K� in VL� Therefore� the size of a maximum
independent set for G is n� �� There are many maximal independent sets of this
size as one can choose a vertex from VC � and still pick one vertex from each K� in
VL� as no vertex in VC is adjacent to both the vertices of a K� in VL� In fact� one
must pick a vertex from each K� in VL� since there are no edges between the K�	s�

Claim ��� C is satis�able if and only if G is not well covered�

Proof�
only if�
C is satis�able� Then we can �nd a maximal independent set of size n consisting
of vertices of VL corresponding to true literals in a satisfying truth assignment for
G� Since we have already shown that there are maximal independent sets of size
n� � in G� this means that G is not well covered�
if�
G is not well covered� Then there exists a maximal independent set in G of size
less than n��� Any independent set can contain at most one vertex from VC � We
have already shown that any independent set containing a vertex from VC must
have one vertex from every K� in VL� giving a maximal independent set of size
n � �� Thus� any maximal independent set containing fewer than n � � vertices
contains only vertices of VL� Since any such independent set must have one vertex
from each K�� all such maximal independent sets will have size n� For such a set
to be maximal� each vertex of VC should be adjacent to at least one vertex the
in the set� No two vertices corresponding to a literal and its negation will be in
an independent set� since they are adjacent to each other� Hence� if we assign the
value true to the literals corresponding to the vertices of VL in any such maximal
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independent set of size n� we will have a satisfying truth assignment for C� This
completes the proof of the claim�

Therefore� recognizing a graph to be not well covered is NP�complete�

�

A graph is said to be weakly chordal if neither it� nor its complement� contains
a chordless cycle with more than four vertices� see ��
�� As mentioned earlier� Dean
and Zito �
� showed that for perfect graphs with no induced ��cycles� the problem of
determining whether the graph is well covered is tractable� Since chordal graphs are
perfect graphs and have no induced ��cycles� this means that determining whether
a chordal graph is well covered can be done in polynomial time� We now show
that the problem of recognizing a graph as being not well covered is NP�complete
for weakly chordal and therefore perfect graphs�

Corollary ��� The problem of recognizing a graph as being not well covered is
NP�complete for weakly chordal and therefore perfect graphs�

Proof�
We show that the graph G obtained in the proof of the theorem ��� is a weakly
chordal graph� We do this by showing that neitherG nor its complement contains a
chordless cycle with more than four vertices� The proof makes uses of the following
observation� Any such cycle in G contains exactly two vertices from VC � and in Gc

exactly two vertices from VL�
Consider a chordless cycle of length � � in G� Any such cycle can have at most

two vertices from VC since � VC � is a clique� hence� it has at least three vertices
from VL� Since the K�	s in � VL � are mutually non�adjacent� there have to be
at least two vertices from VC in the cycle� Thus� any such cycle has exactly two
vertices from VC � which are adjacent� and at least three vertices from VL� Consider
the vertices from VL in such a cycle� If both vertices from a K� are in the cycle�
they will induce a C� as a subgraph with the two vertices from VC � thus creating
a chord� If only one vertex from a K� is in the cycle� it will form a K� with the
vertices from VC � again creating a chord�

Consider a chordless cycle in Gc of length � �� � VL � consists of independent
sets of size two with each vertex of any such independent set I being adjacent
to every vertex in VL � I� Any four vertices from VL will induce a ��cycle as a
subgraph� thereby creating a chord in the cycle� Thus� there can be at most three
vertices from VL in the cycle� This means that there are at least two vertices from
VC in the cycle� Since� VC � is an independent set� the vertices in it are connected
to each other only through the vertices in VL� If there are three vertices from VL
in the cycle� then these will have a P� as a subgraph� These vertices� along with
any one of the vertices from VC in the cycle� will have a C� or a C� as an induced
subgraph� thereby creating a chord� Therefore� there are exactly two vertices from
VL in any such cycle� which will then have at least three vertices from VC � Any two
such vertices from VC � along with the two from VL� will have a C� as a subgraph�
thus creating a chord�
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Hence� neither G nor its complement has a chordless cycle with more than four
vertices� Therefore� G is weakly chordal� that is� the graph obtained in proving
theorem ��� is a weakly chordal graph� Hence� recognizing non�well�covered weakly
chordal graphs is NP�complete� Since it has been proven by Hayward ��
� that
weakly chordal graphs are also perfect graphs� we conclude that recognizing non�
well�covered perfect graphs is also NP�complete�

�

In contrast to this� very well covered graphs can be recognized in polynomial
time� From Favaron	s characterization� we see that in order to recognize a graph
as being very well covered� we just need to show that it has a perfect matching
that obeys property P � A maximum matching can be found in polynomial time
using the algorithm devised by Micali and Vazirani �
��� Their algorithm runs in
order

p
nm� Checking if this is perfect requires �nding out if the number of edges

in the matching is equal to n�
� Checking if the neighbours of a pair of vertices
that form an edge in the matching are completely connected to each other can
be done in order n � m time� Since there are exactly n�
 such pairs of vertices�
property P can be checked in order n� � nm time� Therefore� very well covered
graph recognition is in P�

��� Independent set and related problems

Some problems are easily solved for the class of well�covered graphs as a result of the
de�nition of this family of graphs� The maximum independent set problem� which
is to �nd an independent set whose size is maximum� is easily seen to be polynomial
as we only need to �nd a maximal independent set� Since a minimumvertex cover is
simply the vertex set minus a maximumindependent set� the minimumvertex cover
problem is also in P for this class of graphs� We also observe that the minimum
independent dominating set problem is in P for well�covered graphs because this is
equivalent to the problem of �nding a minimum cardinality maximal independent
set�

��� Dominating cycle and other problems

We �rst show that the dominating cycle problem is NP�complete� and then use
the same transformation to show that a number of other problems are also NP�
complete for this class of graphs�
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Problem� Given a graph G� does G have a simple cycle such that every vertex
in G is in the cycle or is adjacent to some vertex in the cycle�

Theorem ��� The dominating cycle problem is NP�complete for well�covered
graphs�

Proof�
The problem is known to be in NP� We transform from the Hamiltonian cycle
problem for general graphs� Consider any graph G of order n� Construct GD

by adding a leaf vertex to every vertex in G� Thus� GD has 
n vertices and
m � n edges� and can be constructed in polynomial time� For an example� see
Figure ��
� Consider the graph thus obtained� The edges with the leaf vertices

Figure ��
� Dominating cycle

form a perfect matching for GD� Therefore� any maximal independent set will
have to contain exactly one vertex from every edge in the matching� that is� any
maximal independent set will have exactly j V �GD� j �
 vertices� Therefore� GD

is a very well covered graph�

Claim ��� G has a Hamiltonian cycle if and only if GD has a dominating cycle�

Proof�
only if�
G has a Hamiltonian cycle� Therefore� there is a simple cycle in GD that involves
n vertices� All the other vertices in GD are adjacent to some vertex in the cycle�
That is� there is a dominating cycle in GD�
if�
A dominating cycle in GD will contain only those vertices that have corresponding
ones in G� as the other vertices are of degree � and� hence� cannot be part of a
cycle� It will also have to contain all such vertices as each one is adjacent to a leaf
vertex� Hence� the dominating cycle will contain n vertices and these are the same
as the vertices of G� Also� the edges in such a cycle will only be those that have
corresponding ones in G� as the new edges added are all pendant edges and� hence�
cannot be part of a cycle� Hence� we can �nd a simple cycle in G that covers all
the vertices in it� that is� a Hamiltonian cycle in G� This proves the claim�
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Now� the Hamiltonian cycle problem is known to be NP�complete for general
graphs� hence� the dominating cycle problem is NP�complete for very well covered
graphs� and therefore� for well�covered graphs�

�

The reduction used in the dominating cycle proof yields a number of other
results� Consider a graph G which has at least one edge� let GD be the transformed
graph�

The maximum clique size of GD will be the same as the maximum clique size of
G as the pendant edges do not change the maximum clique size� The same holds
for chromatic number� which is de�ned as the minimum number of colours needed
to colour the vertices of a graph G such that no two adjacent vertices have the
same colour�

Given a graph G and a set of target vertices T � a minimum Steiner tree in G�
that is� a sub�tree of G with the minimum number of edges that includes all the
vertices of T � will be the same as a minimum Steiner tree in GD� since the pendant
edges and vertices play no role in the minimum Steiner tree�

A minimum �ll�in for a graph G is de�ned as the minimum number of edges
required to be added to G to make it chordal� A minimum �ll�in for G would be
same as a minimum �ll�in for GD as the pendant edges do not play a part in a
minimum �ll�in�

The unweighted maximum cut problem is de�ned as follows� given a graph G
and an integer k� is there a partitioning of V into disjoint sets V� and V� such
that the number of edges of G with one end�point in V� and the other in V� is
at least k� Clearly� a pendant vertex would be in the opposite partition from its
neighbour� otherwise� the size of the cut could be increased by moving one or more
pendant vertices� Thus� the size of a maximum cut for GD is equal to the size of
a maximum cut for G plus j V �G� j �each pendant edge contributes one edge to a
maximum cut��

We conclude that the maximum clique size� chromatic number� Steiner tree�
minimum �ll�in� and maximum cut problems are all NP�complete for very well
covered graphs� and hence for well�covered graphs�

We use the same reduction to show that the isomorphism problem is isomor�
phism complete for very well covered graphs� For arbitrary connected graphs G�

and G�� G�D
�� G�D if and only if G�

�� G�� Clearly� if two graphs� each with half
of the vertices having degree � and distinct neighbourhoods� are isomorphic� then
the graphs resulting from the removal of the pendant vertices must be isomorphic�
and vice versa� Therefore� an algorithm for very well covered graph isomorphism
could solve the general graph isomorphism problem� and we conclude that very
well covered graph isomorphism is isomorphism complete�
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��� Hamiltonian cycle

Problem� Given a graph G� does G contain a simple cycle such that every vertex
in G is in the cycle�

Theorem ��� The Hamiltonian cycle problem is NP�complete for well�covered
graphs�

Proof�
We transform from the Hamiltonian cycle problem for general graphs� Given a
graph G of order n �n � 
�� we construct a graph GH as follows� For each
vertex vi in G� we construct a K� in GH � One of the vertices of the K�� say vi��
corresponds to vi in G� another one� say vi�� forms its image� The third vertex vi�
is a simplicial vertex� For every two adjacent vertices vi and vj in G� there are
three edges between the corresponding K�	s in GH � these are between vi� and vj��
vi� and vj�� and vi� and vj�� Therefore� GH has �n vertices and �m � �n edges�
Clearly� this transformation can be done in polynomial time� For an example� see
Figure ����

Figure ���� Hamiltonian cycle

Consider the graph thus obtained� It has n mutually disjoint K�	s� with each
one having a simplicial vertex� Any maximal independent set will have to contain
exactly one vertex from each K�� Hence� this graph is well covered�

Claim ��� G has a Hamiltonian cycle if and only if GH has a Hamiltonian cycle�

Proof�
only if�
G has a Hamiltonian cycle� For every vertex in G� there is a corresponding K� in
GH � For every edge in G� there are edges connecting two K�	s� Hence� if there is an
edge �v�� v�� in G� we can always �nd a path v��� v��� v��� v�� in GH � Therefore� if
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G has a Hamiltonian cycle� we can always �nd a corresponding Hamiltonian cycle
for GH �
if�
GH has a Hamiltonian cycle� Consider a K� which consists of vertices vi�� vi�� and
vi� which corresponds to a vertex vi in G� Since vi� is a simplicial vertex� the path
vi�� vi�� vi� will have to be part of any Hamiltonian cycle� Therefore� the part of a
Hamiltonian cycle in GH through a K� can be contracted to a single corresponding
vertex in G� Of the three edges that connect two K�	s� only one can be part of
a Hamiltonian cycle� Any such edge will have a corresponding edge in G� Hence�
if GH has a Hamiltonian cycle� we can always �nd a corresponding Hamiltonian
cycle in G� This proves the claim�

Since the Hamiltonian cycle problem is NP�complete for general graphs� from
the above� it is NP�complete for well�covered graphs as well�

�

We now examine the Hamiltonian cycle problem on very well covered graphs�
Recall Favaron	s characterization of very well covered graphs and the de�nition of
property P from section 
�
� It is clear from this characterization that any edge in
a perfect matching cannot be part of a K�� as this would contradict property P �
An edge �u� v� is said to satisfy property P if the neighbour sets of u and v satisfy
the conditions of property P �

Theorem ��� A very well covered graph has a Hamiltonian cycle if and only if it
is a complete bipartite graph�

Proof�
Let G � �V�E� be a very well covered graph�
only if�
Suppose G has a Hamiltonian cycle� CH � fv�� v�� � � � � vn� v�g� Then� M� �
f�v�� v��� �v�� v��� � � � � �vn��� vn�g and M� � f�v�� v��� �v�� v��� � � � � �vn� v��g are both
perfect matchings� and hence each edge in CH satis�es P � Let us de�ne the CH �
distance between two vertices vi and vj of G to be the distance from vi to vj in a
clockwise traversal of CH� that is�

CH � distance�vi� vj� �

�
j � i if j � i
n � j � i if j � i

Claim ��� For all � � i� j � n� if i is odd and j is even� then �vi� vj� � E�

Proof�
Suppose not� Let i be odd and j be even such that �vi� vj� �� E and such that
no other such pair of nonadjacent vertices has a smaller CH �distance� Since i
is odd and j is even and �vi� vj� �� E� we know that i � 
�modn� �� j and i �
��modn� �� j� Thus� CH�distance�vi� vj� � CH�distance�vi���modn	� vj�� and� hence�
�vi���modn	� vj� � E by our choice of i and j� Therefore� since �vi���modn	� vi���modn	�
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is a matching edge� we must have �vi� vj� � E by property P � This is a contradic�
tion� which proves the claim�

Finally� if there is an edge between any pair of vertices that are both even
or both odd� then we have a matching edge �one of the vertices with one of its
neighbours on CH� in a triangle� which is impossible�
if�
G is a complete bipartite graph� From Favaron	s characterization� it has a perfect
matching� hence� it must have the same number of vertices in each partition� and
is therefore a Kn�n� Since a Kn�n has a Hamiltonian cycle� G has a Hamiltonian
cycle�

�

As complete bipartite graphs can be recognized in polynomial time� the Hamil�
tonian cycle problem is in P for very well covered graphs�

��� Hamiltonian path

Problem� Given a graph G� does G contain a simple path such that every vertex
in G is in the path�

Theorem ��� The Hamiltonian path problem is NP�complete for well�covered
graphs�

Proof�
We transform from the Hamiltonian cycle problem for general graphs� Given a
graph G of order n� we construct a graph GH in the same way as for the Hamil�
tonian cycle problem� with the following change� Take one of the simplicial ver�
tices� say vn�� and replace it with two vertices vn�� and vn��� Replace the edges
�vn�� vn�� and �vn�� vn�� with the edges �vn�� vn��� and �vn�� vn��� respectively� Re�
move the edge �vn�� vn��� The graph GH will now have ��n � �� � � vertices and
�m � ��n � �� � 
 edges� Clearly� this transformation can be done in polynomial
time� For an example� see Figure ����

Consider the graph thus obtained� It has �n��� mutually disjointK�	s and two
pendant edges� Any maximal independent set has to contain exactly one vertex of
every K� and of every pendant edge� Hence� G is well covered�

Claim ��� G has a Hamiltonian cycle if and only if GH has a Hamiltonian path�

Proof�
The proof is similar to the one given for the Hamiltonian cycle problem� except
for the following observations�
only if�
G has a Hamiltonian cycle� It is easy to see that we can �nd a simple path in GH

that starts at one of the leaf vertices� say vn��� ends at the other� and covers all
the vertices in GH � that is� a Hamiltonian path for GH �

��



Figure ���� Hamiltonian path

if�
GH has a Hamiltonian path� Since GH has two leaf vertices in the K�	s� any
Hamiltonian path has to start at one of the leaf vertices and end at the other� The
four vertices that make up the two K�	s can be contracted to a single vertex in G�
Hence� if GH has a Hamiltonian path� we can always �nd a simple cycle in G that
includes all the vertices in G� that is� a Hamiltonian cycle for G� This proves the
claim�

Since the Hamiltonian cycle problem is NP�complete for general graphs� from
the above� the Hamiltonian path problem is NP�complete for the family of well�
covered graphs�

�

Let us now examine the Hamiltonian path problem with respect to very well
covered graphs� The result is similar to the Hamiltonian cycle result�

A bipartite graph G � �X�Y�E� is called a chain graph if the vertices of X
can be ordered fx�� x�� � � � � xjXjg such that N�x�� � N�x�� � � � � � N�xjXj�� This
de�nition was given by Yannakakis ��
�� Note that this implies the existence of an
ordering fy�� y�� � � � � yjY jg of the vertices of Y such that N�y�� 
 N�y�� 
 � � � 

N�yjY j��

Theorem ��� A very well covered graph has a Hamiltonian path if and only if it
is a connected chain graph�

Proof�
only if�
Let G � �V�E�� j V j� n� be a very well covered graph� with a Hamiltonian path
PH � fv�� v�� � � � � vng� The edges M � f�v�� v��� �v�� v��� � � � � �vn��� vn�g form a
perfect matching� and must therefore satisfy property P �

��



Claim ��� For all � � i� j � n� if i is odd and j is even� and j � i � ��then
�vi� vj� � E�

Proof�
Suppose not� Let i be the smallest odd index for which �j � i � �� j even� such
that �vi� vj� �� E� Let j be the largest index satisfying this� We know that j � i�

because i is odd� j is even� and �vi��� vi� and �vi� vi��� are edges in PH � Now since
�vi��� vi��� � M � it must satisfy property P � Furthermore� since i is as small as
possible� it must be that �vj� vi��� � E� But then P implies that �vi� vj� � E�
which contradicts our assumption� This proves the claim�

Finally� if there is an edge between any pair of vertices vi and vk� where i and
k are both odd� then both vertices are adjacent to vmin
i�k��� by the claim� and
thus the matching edge �vmin
i�k�� vmin
i�k���� is in a triangle� which is impossible� A
similar argument can be used to show that there can be no edges amongst the even
vertices� Thus� v�� v�� � � � � vn�� and v�� v�� � � � � vn are orderings of two independent
sets that demonstrate that G is a chain graph�
if�
Let G � �X�Y�E� be a very well covered connected chain graph� with X and Y
ordered as in the de�nition� We know that j X j�j Y j because G is very well
covered� let n �j X j�j Y j� Then� fx�� y�� x�� y�� � � � � xn� yng is a Hamiltonian
path�

�

��� Clique partition

Problem� Given a graph G and an integer k� is there a set of k cliques such that
every vertex of G is contained in one of the cliques�

Theorem ��� The clique partition problem is NP�complete for well�covered
graphs�

Proof�
We transform from a known NP�complete problem� the SAT� For any instance
of SAT with clauses C � fc�� c�� � � � � cmg and variables U � fu�� u�� � � � � ung� we
construct a graph G � �V�E� as follows� G consists of n � m C�	s � one for
each clause and one for each variable� The C� associated with clause ci has a
distinguished connector vertex that we will refer to as ci� The C� associated with
variable ui has two non�adjacent connector vertices� corresponding to the variable
and its negation� we will refer to these vertices as ui and ui� respectively� All
vertices that are not connectors are adjacent only to other vertices in the same C��
See Figure ����
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Figure ���� Clique partition

The edges of G are

edges internal to all the C�	s

� f�ci� uj�juj is a literal in clause cig
� f�ci� uj�juj is a literal in clause cig
� f�ci� cj�j� a literal that is in both ci and cjg

The number of edges between clauses and their literals is � mn� considering
the worst case of n literals per clause� The number of edges between the ci	s is �
m�m����
� Therefore� the number of edges in G is � ��m�n��mn�m�m����
�
the number of vertices is ��m � n�� Hence� G can be constructed in polynomial
time�

To see that G is well covered� notice that it can be partitioned into �n � m�
disjoint C�	s� There can be at most two vertices from each C� in any maximal
independent set� Let us see if there can be fewer vertices� This is possible only if
some of the vertices in a C� have neighbours outside the cycle� Only the connector
vertices have neighbours outside the cycle� Consider the C�	s corresponding to the
clauses� They have one connector vertex each� Let one of the neighbours of a
connector vertex ci be in a maximal independent set� This leaves a P� from the
corresponding C�� and exactly two vertices from it are required in the maximal
independent set to cover all its vertices� We still need two vertices from each C�

that corresponds to a clause to be in any maximal independent set� Now consider
the C�	s associated with the literals� They have two connector vertices each which
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are non�adjacent� If one of them has a neighbour in a maximal independent set�
then an argument similar to the one given above holds� If both of them have
neighbours in a maximal independent set� then we are left with a K� and a K��
and we need one vertex from each to be in the set in order that the vertices in them
may be covered� Therefore� any maximal independent set has to have exactly two
vertices from each of the C�	s� Therefore� the graph is well covered�

Claim ��� C is satis�able if and only if G has a clique partition consisting of

m� �n cliques�

Proof�
only if�
Consider a satisfying truth assignment for C� Take the vertices corresponding
to the true literals along with their neighbours in the C�	s corresponding to the
clauses as n cliques of the partition� These cliques cover one connector from each
of the variable C�	s and all of the clause connectors� The remaining vertices can
be covered with two cliques for each C��
if�
There exists a clique partition of size 
m� �n� Each of the C�	s must contain at
least two cliques of the partition� by the structure of G� At most four vertices of
each C� can be covered by these � 
m� 
n cliques that are internal to the C�	s�
Therefore� the remaining� n cliques of the partition must cover at least one vertex
from each C�� In fact� since the variable C�	s have no edges amongst themselves�
there should be exactly n cliques remaining� each of which covers exactly one vertex
from each variable C�� Also� these n cliques have to cover one vertex from each
clause C�� Since each of these n cliques contains a vertex from a variable C�� the
clause vertices covered must be the connector vertices� Assigning the value true
to each of the literals corresponding to the variable connectors in the last n cliques
yields a satisfying truth assignment for C� since each clause connector is adjacent
to one of these variable connectors� This completes the proof of the claim�

We conclude that the clique partition problem is NP�complete for well�covered
graphs�

�

The clique partition problem for very well covered graphs is not di�cult to
solve� From Favaron	s characterization� we know that a very well covered graph
has a perfect matching� For any graph G� the minimumnumber of cliques needed to
partition the graph is greater than or equal to the size of a maximum independent
set in the graph� If G is very well covered� then this size is equal to j V j �
� and
any perfect matching is a clique partition of this size�

��	 Dominating set

Problem� Given a graph G and integer k� is there a set of k vertices of G such
that every vertex not in the set is adjacent to at least one vertex in it�







Theorem ��
 The dominating set problem is NP�complete for well�covered
graphs�

Proof�
We transform from SAT� The reduction is similar to that used for the clique
partition proof in the previous section� For an instance of SAT with clauses
C � fc�� c�� � � � � cmg and variables U � fu�� u�� � � � � ung� we construct a graph
G � �V�E� as follows� We �rst de�ne the graph H to be a cycle on seven vertices
with exactly one chord� which bisects the C� into a C� and a C�� The distinguished
connector vertex is the unique vertex of the C� that is not adjacent to any vertex
of the C�� G consists of m H	s � one for each clause� and n C�	s � one for each
variable� We will denote by ci the connector vertex that the H associated with
the clause ci has� The C� associated with variable ui has two connector vertices�
corresponding to the variable and its negation� ui and ui� respectively� As before�
all the vertices which are not connectors are adjacent only to vertices in the same
cycle� See Figure ����

Figure ���� Dominating set

The edges of G are

edges internal to all the clause and variable cycles

� f�ci� uj�juj is a literal in clause cig
� f�ci� uj�juj is a literal in clause cig
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The number of edges corresponding to clauses and their literals is � mn� as�
suming the worst case of n literals per clause� There are eight edges per H and
three per C�� Therefore� the number of edges in G is � �m��n�mn� the number
of vertices is 
m� �n� Hence� G can be constructed in polynomial time�

Consider the graph G� Any maximal independent set for G can have at most
three vertices from each H� Can it have fewer� Only the connector has any
neighbours outside H� If there is a connector ci in some H� say Hi� with at least
one of its neighbours in some maximal independent set I� then Hir � Hi n fcig
consists of a C� with two pendant edges attached to it� The pendant edges along
with the remaining K� form a perfect matching for Hir� one that can be easily
seen to obey property P � Therefore� Hir is very well covered and any maximal
independent set for it has exactly three vertices� Hence� I will still contain three
vertices from this H� The C�	s each have a simplicial vertex whose neighbour set
is in the C�� and therefore any maximal independent set for G will have to have
exactly one vertex from each triangle� Therefore� any maximal independent set for
G will have exactly �m� n vertices� hence� G is well covered�

Claim ��
 C is satis�able if and only if G has a dominating set of size 
m� n�

Proof�
only if�
C is satis�able� therefore� it has a satisfying truth assignment� Vertices correspond�
ing to true literals in this assignment will dominate all the C�	s and one vertex
of each H� The remaining vertices can be dominated by choosing two additional
vertices from each H� Thus� a dominating set of size 
m� n is obtained�
if�
G has a dominating set of size 
m� n� Any dominating set for G must contain at
least one vertex from each of the C�	s� since each C� has a simplicial vertex whose
neighbour set is in the C�� In addition� every dominating set has to contain at
least two vertices from each H� Therefore� a dominating set of size 
m�n contains
exactly one vertex from each C� and two vertices from each H� In such a dominat�
ing set� the connector vertices of all the H	s must be dominated by vertices from
the C�	s� else� more than two vertices would be required from some H� Thus� the
variable connectors that are in the dominating set correspond to the true literals
of a satisfying truth assignment� This proves the claim�

We conclude that the dominating set problem is NP�complete for well�covered
graphs�

�

The dominating set problem can be solved e�ciently for very well covered
graphs� The result follows from proposition ��
 of ���� in which it is shown that a
minimum dominating set in a very well covered graph consists of one neighbour of
each degree � vertex in a corresponding irreducible graph�
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��
 Conclusions

We have looked at the families of well�covered and very well graphs from an al�
gorithmic complexity point of view� We have studied the complexities of some
standard problems like recognition� Hamiltonian cycle and path� and dominating
set� for these families� We conclude that many graph problems are as di�cult to
solve for well�covered graphs as for graphs in general� Therefore� from an algo�
rithmic complexity point of view� there is little to be gained by restricting our
attention to this family� However� some of these problems are tractable for very
well covered graphs�
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Chapter �

An alternative characterization

��� Introduction

In the previous chapter� we showed that well�covered graph recognition is co�NP�
complete� and that the complexity of some standard graph theory problems like
the Hamiltonian cycle and path� clique cover� and dominating set are NP�complete
for this family� We also observed that very well covered graph recognition is in
P� and that some of the above problems such as Hamiltonian cycle are tractable
for this sub�class� This points to the possible existence of intermediate classes of
well�covered graphs for which some of the problems could prove tractable�

We now provide an alternative characterization for well�covered graphs� a char�
acterization based on the interaction between pairs of maximal independent sets
of such a graph� We establish the conditions under which the intersection of a
pair of maximal independent sets of a well�covered graph is maximal� and un�
der which all such intersections have the same size� These two results help de�ne
some new sub�classes� The maximal intersection result is the main result of this
chapter and is used extensively in decomposing graphs belonging to tbe new sub�
classes� The alternative characterization for well�covered graphs also leads to a
new characterization for very well covered graphs�

��� De�nitions

Let G � �V�E� be a simple graph� where j E j�� �� Let I� and I� be maximal
independent sets of G� We use R� S� I

�

� and I
�

� to denote the following�

R � I� 	 I�
S � V � fI� � I�g
I

�

� � I� �R

I
�

� � I� �R

See Figure ����


�



Figure ���� De�nitions

The intersection R of a pair of maximal independent sets of G is said to be
maximal if for every pair of maximal independent sets Ia and Ib that contain R�
Ia 	 Ib � R�

A graph G is said to be complete k�partite if its vertex set can be partitioned
into k disjoint independent sets� V � P� � P� � � � � � Pk� for some positive integer
k �j V j� such that N�v� � V � Pi for each vertex v � Pi� � � i � k� Each
such partition is called a part� A graph is said to be complete kn�partite if it is
complete k�partite with each part having n vertices�

We state Hall	s theorem as it is made use of in this chapter�

Hall	s theorem�see �
��� Let G be a bipartite graph with bipartition �X�Y �� Then
Y contains a matching that saturates every vertex in X if and only if j N�X�� j�j
X� j for all X� � X�

��� An alternative characterization

We give an alternative characterization for well�covered graphs�

Theorem ��� �alternative characterization
 A graph G is well covered if and
only if for every pair of maximal independent sets I� and I� of G� � I

�

� � I �

� � has
a perfect matching�

Proof�
only if�
Let G be well covered� Assume that the statement is not true� that is� there exist
maximal independent sets I� and I� of G such that � I

�

� � I �

� � does not have a
perfect matching� Since G is well covered� I

�

� and I
�

� are of the same size� Consider







the bipartite graph � I
�

� � I
�

� �� Since there does not exist a perfect matching
between I

�

� and I
�

�� from Hall	s theorem �section ��
�� there exists an independent
set S� � I

�

� such that j S� j�j N�S�� j� See Figure ��
� Let I� � I� �N�S�� � S��

Figure ��
� S� and its neighbour set N�S��

Since j S� j�j N�S�� j� j I� j�j I� j� This is not possible as I� is an independent set
and G is well covered�
if�
Let G be a graph such that for any two maximal independent sets I� and I��
� I

�

� � I
�

� � has a perfect matching� Let G not be well covered� Then� there exist
maximal independent sets I� and I� such that j I� j��j I� j� Let

R � I� 	 I�
Now�

j I� j��j I� j
Therefore�

j I� �R j��j I� �R j
That is�

j I �

� j��j I
�

� j
Therefore� � I

�

� � I �

� � does not have a perfect matching� which is a contradiction�

�
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��� The maximal intersection theorem

The alternative characterization was based on the interaction between the non�
intersecting portions of pairs of maximal independent sets of a well�covered graph�
We now take a closer look at such intersections� We �rst state the conditions
under which such an intersection is maximal� that is� the conditions under which
the intersection R of a pair of maximal independent sets of a well�covered graph
G has the property that for every pair of maximal independent sets I� and I� that
it belongs to� I� 	 I� � R� This result� called the maximal intersection theorem�
is the main result of this chapter and is the result used in decomposing graphs
belonging to the new sub�classes�

Theorem ��� �maximal intersection
 The intersection R of a pair of maximal
independent sets I� and I� of a well�covered graph G is maximal if and only if
� V �N �R� � is complete kn�partite�

In order to prove this theorem� we need the following two propositions� We
�rst state the conditions under which a graph G is complete k�partite�

Proposition ��� A graph G is complete k�partite if and only if for every non�
adjacent pair of vertices u� v � V � N�u� � N�v��

Proof�
only if�
Since the graph is complete k�partite� any non�adjacent pair of verticesmust belong
to the same part� Therefore� they must have the same neighbour set�
if�
For all u� v � V � u �� v� N�u� � N�v�� We say that u and v are equivalent if u �� v�
This relation is an equivalence relation since if u �� v and v �� w� u� v� w � V �
then N�u� � N�v� and hence u �� w� This equivalence relation divides the vertex
set V into m equivalence classes� � � m �j V j� Let the classes be denoted by
K��K�� � � � �Km� We prove the following claim�

Claim ��� For all u � Ki� � � i � m� N�u� � V �Ki�

Proof�
Consider a vertex u � Ki� Any other vertex v � Ki is not adjacent to u because
of the equivalence relation� Therefore� the Ki	s are mutually disjoint independent
sets� Now assume that there exists w � Kj� i �� j� such that w �� N�u�� That
is� u �� w� This means that w � Ki� from the equivalence relation� which is a
contradiction� This proves the claim�

Therefore� the equivalence classes form a partition of the vertex set into mutu�
ally disjoint independent sets with the property that a vertex from an independent
set is adjacent to all the vertices outside the set� that is� G is complete k�partite�

�

The second proposition states the conditions under which the intersection R of
a pair of maximal independent sets of a graph G is maximal� Note that G can be
any simple graph� and need not necessarily be well covered�
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Proposition ��� Let G be a graph and R be the intersection of a pair of max�
imal independent sets of G� Then R is a maximal intersection if and only if
� V �N �R� � is complete k�partite�

Proof�
only if�
Assume that � V �N �R� � is not complete k�partite� From proposition ���� there
exist u� v � V � N �R�� u �� v� such that N�u� �� N�v�� That is� there exists
w � V �N �R� such that u�say��� w and v � w� See Figure ����

Figure ���� � V �N �R� � is not complete kn�partite

Let

I� � R � fug � fvg

I� � R � fug � fwg

I� and I� are independent sets� Extend them to form maximal independent sets of
G� I� �� I� as v � w� v � I�� w � I�� Now�

I� 	 I� 
 R � fug � R

which is a contradiction�
if�
Since � V �N �R� � is complete k�partite� from proposition ���� we have N�u� �
N�v� in � V � N �R� �� for all u� v � V � N �R�� u �� v� Assume that R is not
a maximal intersection� Therefore� there exist maximal independent sets I� and
I� of G such that R belongs to both I� and I�� and is properly contained in the
intersection R� of I� and I�� Let u be an element of R�� u �� R� Let

I
�

� � I� �R�

and

I
�

� � I� �R�

��



I� and I� are maximal independent sets and their intersection is R�� Hence� every
vertex in I

�

� has at least one neighbour in I
�

� and vice versa� Therefore� there exist
v � I

�

� and w � I
�

� such that v � w� Now� u� v� and w are in V �N �R�� v � w� and
u �� v� Therefore� N�u� � N�v�� This means that u � w� which is not possible as
both u and w are in the maximal independent set I��

�

We now prove the maximal intersection theorem� theorem ��
�

Proof �of the maximal intersection theorem��
only if�
G is well covered� and R is maximal� From proposition ��
� � V � N �R� � is
complete k�partite� Now� let two parts of � V � N �R� � be of di�erent sizes�
Combining each of these with R would give maximal independent sets of di�erent
sizes for G�
if�
� V �N �R� � is complete kn�partite� therefore� it is also complete k�partite� From
proposition ��
� R is maximal�

�

Thus� we can decompose a well�covered graph into a complete k�partite graph
which is well covered� and the graph � N �R� �� In the next chapter� we will
see that restricting � N �R� � to be well covered leads to the creation of the new
sub�classes� We now give an example to show that this need not be true in general�

Consider a C�� It is well covered because any maximal independent set has
exactly two vertices� Therefore� any maximal intersection of a pair of maximal
independent sets of a C� will have exactly one vertex� This means that when R is
maximal� � N �R� � is a P� which is not well covered�

In fact� even the graph � N�R� � is not always well covered� as the following
example shows� Consider the graph G in the Figure ���� Every maximal inde�
pendent set of G has exactly two vertices� making G a well�covered graph� Now
consider the maximal independent sets I� � fv�� v�g and I� � fv�� v�g� Their
intersection R � fv�g and N�R� � fv�� v�� v�g� a P�� Now� � V �N �R� � is a K�

with the vertex set fv�� v�g� That is� it is a complete bipartite graph and hence�
using theorem ��
� R is a maximal intersection� The graph � N�R� � is a P�

which is not well covered�

��� The �xed intersection theorem

We now state the conditions under which every pair of maximal independent sets
of a well�covered graph G intersect in exactly k vertices� for some non�negative
integer k� This result� along with the maximal intersection theorem� leads to the
de�nition of the new sub�classes�

��



Figure ���� � N�R� � is not always well covered

Theorem ��� ��xed intersection
 Let G be a well�covered graph and let l be a
non�negative integer� Then every pair of maximal independent sets of G intersect
in exactly l vertices if and only if G is the union of a complete kn�partite graph
and l isolated vertices�

Proof�
only if�
Since the intersection of every pair of maximal independent sets of G has a �xed size
l� this means that any such intersection has to be maximal� that is� the intersection
R of any pair of maximal independent sets I� and I� of G cannot be a proper
subset of an intersection of some other pair of maximal independent sets of G�
From theorem ��
� we see that � V �N �R� � has to be complete kn�partite�

If l � �� then the theorem is trivially true� Now� assume that l � �� and
that the intersection R of some maximal independent sets I� and I� of G does not
consist entirely of isolated vertices� Then� there exist u � R and v � S such that
u � v� See Figure ����

Let S� be a maximal independent set from S which includes v�

I� � I� � S� �N�S��

� �R �N�S��� � �I
�

� �N�S��� � S�

j R � N�S�� j is less than j R j� by the choice of S�� Let j I �

� � N�S�� j� �� Any
vertex x in I

�

� is adjacent to all of V �N �R�� I
�

�� by theorem ��
� Hence� no vertex
of V �N �R�� I

�

� can be in I�� that is� I� is maximal� But

I� 	 I� � R �N�S��

and we know that

j R�N�S�� j� R

This is a contradiction� Therefore�

j I �

� �N�S�� j� �

�




Figure ���� Fixed intersection proof

that is�

I� � �R�N�S��� � S�

By the same argument�

j I �

� �N�S�� j� �

Therefore� I� is a maximal independent set in G� Then�

j I� 	 I� j�j R�N�S�� j�j R j
Thus� R consists of isolated vertices� whose number equals l�
if�
Follows as G is the union of a complete kn�partite graph and l isolated vertices�

�

��� Very well covered graphs

We now restrict the alternative characterization for well�covered graphs to the
family of very well covered graphs� We know from corollary 
�� that the size of
a maximal independent set of a well�covered graph G without isolated vertices is
bounded by j V j �
� Hence� any well�covered graph without isolated vertices can
be transformed into a very well covered graph by adding an appropriate number
of isolated vertices� We therefore turn our attention to very well covered graphs
without isolated vertices� The following result is used in the next chapter to show
that the smallest sub�class in the hierarchy of new sub�classes is the same as the
family of very well covered graphs without isolated vertices�

��



Theorem ��� �very well covered graph characterization
 Let G be a graph
without isolated vertices� Then the following are equivalent�

a� G is very well covered�
b� G is well covered� and for some pair of maximal independent sets I� and I��
j R j�j S j�

c� G is well covered� and for every pair of maximal independent sets I� and I��
j R j�j S j�

d� For every pair of maximal independent sets I� and I� of G� there exists
a perfect matching M which satis�es P � in which R matches to S and I

�

�

matches to I
�

��

Property P is the same as the one de�ned in section 
�
� We recall it here for
convenience�

Property P � A matching M in a graph G satis�es property P if for any edge
�u� v� �M � N�u� 	N�v� � �� and N�u�� fvg is adjacent to all of N�v�� fug�

We need the following proposition in order to prove the theorem�

Proposition ��� Let G be a well�covered graph� Then G is very well covered if and
only if there exist maximal independent sets I� and I� of G such that j R j�j S j�
Proof�
only if�
Let I� and I� be a pair of maximal independent sets of G� Since G is very well
covered�

j I� j�j I� j�j V j �

That is�

j I� j�j V j � j I� j
This can be written as

j I �

� j � j R j�j I �

� j � j S j
Since j I� j�j I� j� j I �

� j�j I �

� j� Therefore�
j R j�j S j

if�
There exist maximal independent sets I� and I� of G such that j R j�j S j� Now�

j I� j�j V j ��j I �

� j � j S j� �����

Since G is well covered� j I �

� j�j I �

� j� Also� j R j�j S j� Therefore� equation ��� can
be rewritten as

j I� j�j V j ��j I �

� j � j R j�

��



That is�

j I� j�j V j � j I� j
Therefore�

j I� j�j V j �

As G is well covered� all maximal independent sets in it have the same size� which
is j V j �
� Therefore� G is very well covered�

�

We now prove the main theorem of this section�

Proof �of the very well covered graph characterization� �
a� � b�
Since G is very well covered� it is also well covered� Statement b� follows from the
proposition ����
b� � c�
From proposition ���� if j R j�j S j for some pair of maximal independent sets I�
and I� of a well�covered graph� then G is very well covered� The rest follows�
c� � d�
Using c�� and proposition ���� G is very well covered� Let I� and I� be a pair of
maximal independent sets of G� Since G is well covered� using theorem ���� we
see that I

�

� and I
�

� have a perfect matching� G does not have any isolated vertices�
and R is an independent set in G� Hence� the neighbour set of R is in V � R�
We observe here that Hall	s theorem �section ��
� should hold for the sets R and
V �R as long as R does not contain any isolated vertices� since the theorem only
concerns itself with the edges between the two sets� Using corollary 
��� we see
that for any R� � R� j N�R�� j�j R� j� That is� Hall	s theorem is satis�ed� Hence�
there exists a matching from V �R to R� that is� from N�R� to R� that covers all
the vertices of R� Now� N�R� � S� Hence� there exists a matching from S to R
that covers R� From proposition ���� j R j � j S j� Therefore� any such matching
between R and S is a perfect matching� Since G has no isolated vertices� and since
R� S� I

�

�� and I
�

� are mutually disjoint sets� a perfect matching between R and S�
and one between I

�

� and I
�

�� together form a perfect matching for G� The fact that
this matching satis�es P follows from Favaron	s theorem �theorem 
����
d� � a�
Since G has no isolated vertices� it has at least two maximal independent sets�
From d�� we see that it has a perfect matching which satis�es P � That the graph
is very well covered follows from Favaron	s theorem �theorem 
����

�
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��� Conclusion

We have given a new characterization for well�covered graphs� and one for very well
covered graphs� We have stated the conditions under which the intersection R of a
pair of maximal independent sets of a graph G is maximal� and under which every
pair of maximal independent sets of G intersect in exactly l vertices� for some non�
negative integer l� We have seen that the graph � N �R� � is not necessarily well
covered� In the next chapter� we will restrict our attention to those well�covered
graphs that have the property that the graph � N �R� � is well covered� We will
study four such families of well�covered graphs�

��



Chapter �

Some new sub�classes

��� Introduction

In the previous chapter� we gave new characterizations for well�covered and very
well covered graphs� We de�ned the conditions under which the intersection R
of any pair of maximal independent sets I� and I� of a well�covered graph G is
maximal� We now de�ne a hierarchy of four new sub�classes of well�covered graphs
based on this maximal R� each one of which properly contains the one next to it
in the hierarchy� We show that the last sub�class in the hierarchy is exactly the
family of very well covered graphs without isolated vertices� The objective here
it to �nd new sub�classes of well�covered graphs for which some of the problems
that proved to be intractable for well�covered graphs prove to be tractable� and to
algorithmically separate the new sub�classes� The algorithmic properties of these
sub�classes will be studied in the next chapter�

��� De�nitions

Let G be a graph whose vertex set V can be partitioned into � � t �j V j disjoint
sets L�� L�� � � � � Lt� such that for � � i � t� the subgraph Hi �� Li � is complete
kn�partite� G is said to be partitioned into complete kn�partite subgraphs� We
call the Li	s layers� and the Hi	s lgraphs� We denote by Ei the edge set� by
ki the number of parts� and by ni the number of vertices in each part� of Hi�
� � ki �j Li j� ni �j Li j �ki� We denote the parts in Hi by Pi�� Pi�� � � � � Piki�
We write Hi as Hi � �Pi�� Pi�� � � � � Piki � Ei�� Since the Pij 	s� � � j � ki� form a
partition of Li� we say that each Li consists of� or is made up of� or has� ki parts�
we also talk of a part Pij in the layer Li� Where there is room for confusion� we
shall write Pij as Pi�j � We say that a part Pa is adjacent to a vertex v if v has a
neighbour in Pa� We say that two parts Pa and Pb are adjacent� or connected� or
are neighbours� if there exist u � Pa and v � Pb such that �u� v� � E� We say that
Pa and Pb are completely connected� or that Pa is completely connected to Pb� if
� Pa � Pb � is complete bipartite� We say that two layers are adjacent if there is
a part in one that is adjacent to a part in the other�

�




��� The hierarchy of sub�classes

As stated earlier� we now de�ne a hierarchy of four new sub�classes of well�covered
graphs� These sub�classes are named WSR� WAR� WARF � and WAR�� They have
the property that each one is completely contained in the one preceding it� that
is� WSR � WAR � WARF � WAR�� The sub�class WSR is properly contained in
the family of well�covered graphs� and the family WAR� is the same as the family
of very well covered graphs without isolated vertices� These ideas are depicted
pictorially in the Figure ����

Well covered�
WSR�
WAR�
WARF�

WAR� � Very well covered without isolated vertices

Figure ���� The hierarchy of sub�classes

��� The �rst sub�class WSR

From theorem ��
� we know that when the intersection R of a pair of maximal
independent sets of a well�covered graph G is maximal�� V �N �R� � is complete
kn�partite� We have seen in the last chapter that neither � N �R� � nor � N�R� �
is always well covered� We now restrict our attention to the family of well�covered
graphs for which we can �nd a maximal intersection R such that � N �R� � is well
covered�

Consider a well�covered graph G� with vertex set V�� Assume that there exists
a maximal intersection R� in G� such that the graph G� induced by V� � N �R�� is
well covered� Let H� �� V� � N �R�� �� Thus� G� has been decomposed into the
graphs H� and G�� We call this the �rst stage of a decomposition of G�� Again�
assume that there exists a maximal intersection R� in G� such that the graph G�

induced by V� � N �R�� is well covered� Let H� �� V� � N �R�� �� Thus� G�

has been decomposed into the graphs H� and G�� This is the second stage of a
decomposition of G�� We observe that by restricting � N �Ri� �� i � f�� 
g� to be
well covered� we are able to recursively decompose the graph G� into the graphs
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H�� H� and G�� We continue the process by assuming that G� has a maximal
intersection R� such that the graph G� induced by V� � N �R�� is well covered�

Consider stage j of such a decomposition� We have the graphs H� to Hj��� and
the well covered graph Gj with vertex set Vj� Assume that there exists a maximal
intersection Rj in Gj such that the graph Gj�� induced by Vj�� � N �Rj� is well
covered� Let Hj �� Vj�N �Rj� �� That is� the graph Gj has been decomposed into
the graphs Hj and Gj��� We again assume that Gj�� has a maximal intersection
Rj�� such that the graph Gj�� induced by Vj�� � N �Rj��� is well covered�

Since we start with a graph G� which has a �nite number of vertices� this
decomposition stops at some stage� say t� Let the corresponding graph be Gt� with
vertex set Vt� Since we cannot decompose the graph any further� this means that
we cannot �nd a pair of maximal independent sets in Gt which have a non�zero
intersection� That is� Gt either consists of isolated vertices� or the intersection of
every pair of maximal independent sets in Gt is the empty set� From theorem ����
the latter will happen when Gt is complete kn�partite� Therefore� Gt is complete
kn�partite and forms the graph Ht in the decomposition�

Thus� G� has been recursively decomposed into the graphs H��H�� � � � �Ht� Let
the corresponding vertex sets be given by L�� L�� � � � � Lt� As we have seen� Ht is
complete kn�partite� with the number of parts in it being � �� Consider the graph
Hi� � � i � t� Now� Hi �� Vi � N �Ri� � Gi �� Vi � and Gi�� �� N �Ri� ��
Since Ri is a maximal intersection in Gi� there exist maximal independent sets Ii��
and Ii�� in Gi such that their intersection is Ri� From theorem ��
� Hi is complete
kn�partite� Since I

�

i�� and I
�

i�� are maximal independent sets in Hi� Hi has at least
two parts� Thus� each of the graphs H� to Ht�� is complete kn�partite and has at
least two parts� Since the graphs Hi� � � i � t� are vertex disjoint� the vertex sets
L� to Lt form a partition of V�� That is� the Hi	s are lgraphs� and the Vi	s are
layers� � � i � t� See Figure ��
�

We now de�ne a family of graphs which can be recursively decomposed in this
manner until we arrive at a � N �R� � which is complete kn�partite� k � �� We
call this family WSR�

De�nition ��� A graph G is said to belong to the family WSR if
a� G is complete kn�partite� or
b� G is well covered and for some maximal R� the intersection of a pair of

maximal independent sets of G� � N �R� � belongs to WSR�

From the de�nition� it is clear that any graph G belonging to WSR can be
decomposed as described above into lgraphs H� to Ht� � � t � n� such that
each lgraph� except for Ht� has at least two parts� Ht need have only one part�
The corresponding layers L� to Lt form a partition of the vertex set of G� The
recursive de�nition ensures that at each stage of such a decomposition� we can
�nd a maximal intersection R such that � N �R� � is well covered� At each stage
of a decomposition� there can be more than one maximal intersection R with the
property that � N �R� � belongs to WSR� Thus� there could be many possible
decompositions of G�
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Figure ��
� The decomposed graph G

We denote by DSR�G� the set of all decompositions of a graph G belonging
to WSR� A decomposition can be represented by an ordered set of lgraphs� or
equivalently� by an ordered set of layers� We use the latter representation� That
is� each D��G� � DSR�G� is an ordered set of layers L�� L�� � � � � Lt� � � t � n� with
each layer having at least two parts� except for Lt which need have only one�

The above de�nition leads us to the following characterization of the family
WSR�

Theorem ��� �WSR
 A graph G belongs to the family WSR if and only if its
vertices can be partitioned into layers L�� L�� � � � � Lt� � � t �j V j� which have the
following properties�

a� The lgraphs Hi �� Li �� � � i � t� are complete kn�partite� with every
layer except the last one� Lt� having at least two parts� Lt need have just one
part�

b� Given a layer Lj� � � j � t� there exists at least one part in each of the
layers Lj��� Lj��� � � � � Lt� which is not adjacent to any of the vertices in Lj�
Furthermore� one set of these parts forms an independent set�

c� Every maximal independent set of G contains exactly one part from each
layer�

Proof�
only if�
We assume that G is not complete kn�partite� since then the statements a� through
c� are trivially true� G belongs to WSR� Therefore� G can be decomposed into
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lgraphs� Let D��G� � DSR�G� be a decomposition of G into layers L� to Lt� We
have seen earlier that these layers obey statement a�� and form a partition of the
vertex set of G� In order to prove statements b� and c�� we need the following
proposition�

Proposition ��� Let Gj be the graph induced by the layers Lj to Lt� � � j � t�
Then the size of every maximal independent set in Gj is given by nj�nj���� � ��nt�
Proof�
The graph Gt is induced by the layer Lt� Since Ht is complete kn�partite� the size
of every maximal independent set in Ht is given by the size of a part in it� namely
nt� Now� consider the graph Gt��� This is induced by the layers Lt and Lt���
From the decomposition� we know that there exists Rt��� the maximal intersection
of a pair of maximal independent sets It���� and It���� of Gt��� such that Gt is
the graph induced by Vt � N �Rt���� The lgraph Ht�� is the graph induced by
Lt�� � Vt�� � Vt� and it is complete kn�partite� We also know that I

�

t���� and

I
�

t���� are parts in Ht��� Now� Rt�� is a maximal independent set in Gt� because
Gt is made up of Rt�� and its neighbour set� This means that Rt�� is one of the
parts of Ht� Since It���� is a maximal independent set in Gt��� its size is given by
j Rt�� j � j I �

t���� j� that is� nt � nt��� Since Gt�� is well covered� the size of every
maximal independent set is equal to nt � nt��� that is� the sum of the sizes of the
parts in the lgraphs Ht and Ht���

Assume that the above is true for graphs Gk to Gt� t � k � �� Therefore�
the size of every maximal independent set in Gk is given by nt � nt�� � � � � �
nk�� � nk� Now� consider the graph Gk��� induced by the layers Lt to Lk��� From
the decomposition� we know that there exists Rk��� the maximal intersection of
a pair of maximal independent sets Ik���� and Ik���� of Gk��� such that Gk is the
graph induced by Vk � N �Rk���� and the lgraph Hk�� is the graph induced by
Lk�� � Vk�� � Vk� We know that Hk�� is complete kn�partite� and that I

�

k���� and

I
�

k���� are parts in Hk��� The size of Ik����� a maximal independent set in Gk���

is given by j Rk�� j � j I �

k���� j� Now� Rk�� is a maximal independent set in Gk

because Gk is made up of Rk�� and its neighbour set� We know that the size of
a maximal independent set in Gk is given by the sum of the sizes of the parts in
the lgraphs Hk to Ht� Since� I

�

k���� is a part in Hk��� its size is given by nk���
Therefore� the size of Ik���� is given by nt � nt�� � � � �� nk � nk��� Since Gk�� is
well covered� this means that every maximal independent set in it has size equal
to the sum of the sizes of the parts in the lgraphs Hk�� to Ht� This proves the
proposition�
b�
Consider some layer Lj� � � j � t� From a�� this layer is complete kn�partite�
and has at least two parts� From the decomposition� we know that there exists
a maximal Rj� the intersection of some pair of maximal independent sets Ij�� and
Ij�� of Gj � such that Gj��� the graph induced by Vj�� � N �Rj�� is in WSR� We also
know that the complete kn�partite graphHj is the graph induced by Lj � Vj�Vj���
I

�

j�� and I
�

j�� are two parts in Hj � From proposition ���� we know that the size of
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Rj� a maximal independent set in Gj��� is given by the sum of the sizes of the
parts in the lgraphs Hj�� to Ht� or equivalently� in the layers Lj�� to Lt� Since the
lgraphs are complete kn�partite and Rj is an independent set� this means that the
number of vertices of Rj that can be present in any given layer is limited by the
size of a part in that layer� From the above two statements� we conclude that the
vertices of Rj are distributed amongst the layers Lj�� to Lt such that they form
exactly one part in each layer� Since Rj has no neighbours in Lj � the statement is
proved�
c�
G is the graph induced by the layers L� to Lt� Since G is in WSR� it is well
covered� Using proposition ���� we see that the size of every maximal independent
set in G is given by the sum of the sizes of the parts in the above layers� Since
the lgraphs are complete kn�partite� every maximal independent set can include at
most the vertices of any one part from each layer� From the above two statements�
we conclude that every maximal independent set of G contains exactly one part
from each layer in the decomposition�
if�
Consider a graph G whose vertex set can be partitioned into layers L� to Lt such
that the layers obey properties a� through c�� Since property c� is obeyed� the
graph G is well covered� We prove that G is in WSR by induction� We accomplish
this by showing that� for j from t to �� the subgraph of G induced by the layers
Lj to Lt is in WSR� For j � t� the subgraph induced by the layers Lj to Lt is Ht�
which is complete kn�partite and is hence in WSR� Suppose that the graph Gj��

induced by the layers Lj�� to Lt is in WSR� for some � � j � t� Consider the
subgraph Gj � with vertex set Vj � induced by the layers Lj to Lt� From property c��
Gj is well covered� From property b�� we can �nd an independent set I consisting
of one part from each of the layers Lj�� to Lt such that the set has no neighbours
in Lj � From property a�� there are at least two parts in Lj� Consider two such
parts Pj� and Pj�� Now� I � Pj� and I � Pj� are a pair of maximal independent
sets of Gj� since each lgraph is complete kn�partite and these two sets have one
part from each layer in Gj � The intersection of these two sets is R � I� which is
maximal as � Vj � N �R� � is the lgraph Hj which is complete kn�partite� Now�
the subgraph � N �R� � is the graph � �ti�j��Li �� which is in WSR by induction�
Therefore� Gj � and hence G� is in WSR�

�

We now give an example of a graph that is well covered� but does not belong
to WSR� a C�� Any maximal independent set for a C� will have two vertices in it�
Consider a pair of maximal independent sets I� and I� of the graph� Assume that
they do not have a vertex in common� i�e� R� the intersection of I� and I� is an
empty set� Then� � V � N �R� � is the graph itself� Since a C� is not complete
kn�partite� from theorem ��
� R is not maximal� Therefore� R has to be non�empty
for it to be maximal� Since any maximal independent set in a C� has two vertices�
R will have exactly one vertex� Hence� � N �R� � will be a P�� since every vertex
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in a C� is of degree two� A P� is not well covered and hence we cannot �nd a
maximal R such that � N �R� � is well covered� That is� a C� does not belong to
WSR� See Figure ���� For example� let I� � fv�� v�g� and I� � fv�� v�g� Then� a

Figure ���� A graph not in WSR � C�

maximal R � fv�g� N �R� � fv�� v�� v�g� hence� � N �R� � is a P� which is not well
covered�

We give another example to show that not all subgraphs of a graph G in WSR

belong to WSR� Let G be partitioned into layers LV � fL�� L�� � � � � Ltg satisfying
properties a� to c� of theorem ���� From lemma ���� any subset of the layers
satis�es the above properties and hence the subgraph induced by any such subset
is in WSR� Therefore� any subgraph of G induced by whole layers of LV is in WSR�
Hence� we are left with looking at subgraphs which include partial layers of LV �
Consider the graph G in Figure ���� It consists of two layers L� and L� which are

Figure ���� A subgraph not in WSR

K�	s� joined by an edge �v�� v�� to form a P�� It is easy to see that the layers obey
properties a� to c� of theorem ��� and hence the graph is in WSR� Now consider
the subgraph induced by the layer L� and the vertex v� from the layer L�� This is
a P� and it is therefore not well covered� Hence� not every subgraph of a graph in
WSR� is in WSR�
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����� The uniqueness of the decomposition

We now show that all decompositions of a graph G belonging to WSR yield the
same layers� not necessarily in the same order� That is� the layers obtained are
unique�

Theorem ��� �uniqueness
 Let G be a graph in WSR� Then the following are
true�

a� Let Da�G� � DSR�G� be a decomposition of G into layers L� to Lt�
� � t �j V j� Then� any other decomposition Db�G� � DSR�G� will give
the same t layers� not necessarily in the same order� Isolated vertices� if
any� will always form the layer Lt�

b� Let LV be a partition of the vertex set V into layers L� to Lt� � � t �j V j�
satisfying properties a� to c� of theorem 	�
� Then any other partition of
the vertex set V into layers satisfying properties a� to c� of theorem 	�
�
will consist of the same t layers� not necessarily in the same order� Isolated
vertices� if any� will always form the layer Lt�

The above theorem not only says that all decompositions yield the same layers� but
also that all partitions of V into layers that satisfy the properties of theorem ���
will consist of the same layers� In order to prove this theorem� we need the following
results� We �rst prove the following lemma�

Lemma ��� Let G be a graph in WSR� and let its vertices be partitioned into
layers L� to Lt satisfying properties a� to c� of theorem 	�
� Then any subset of
the layers� with the ordering preserved� will satisfy the same properties�

Proof�
This is obviously true� as any property that is violated in a subset of the layers is
violated in the set of layers L� to Lt as well�

�

The next result looks at the nature of a maximal intersection R of a graph
G � WSR which has the property that � N �R� � is also in WSR�

Proposition ��� Let G be a graph in WSR and let its vertex set be partitioned into
layers L� to Lt satisfying theorem 	�
� Let R be a maximal intersection of a pair
of maximal independent sets such that � N �R� � is in WSR� Then� the following
are true�

a� R consists of whole parts from some of the layers L� to Lt�
b� N �R� contains exactly those layers that have a part in R�
c� V �N �R� consists of one complete layer�

Proof�
a�
From property c� theorem ���� we know that any maximal independent set of G
has to have exactly one part from each layer� Hence� any intersection R of a pair
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of maximal independent sets of G will consist of whole partitions from di�erent
layers�
b�
Assume not� As the lgraphs are complete kn�partite� if a part from a layer is in R�
then the whole layer is in N �R�� Therefore� there exists a layer Ll which has no
parts in R� but which has at least one part adjacent to a part in R� Let Pl be the
part in Ll which is adjacent to a part Pj in R� Let Pj belong to layer Lj � From
a�� we know that R consists of whole parts from some of the layers� Therefore�
the size of R is equal to sum of the sizes of these parts� From theorem ��� c�� we
know that starting with a part from any layer� we can �nd exactly one part from
each of the other layers such that the set so formed is independent� We form an
independent set starting with the part Pl� From the above� we should be able to
�nd one part from each of the layers that has a part in R such that the set is still an
independent set� This set has size equal to the sum of the sizes of the layers with
parts in R plus the size of Pl� that is� �j R j� Since R is a maximal independent
set for � N �R� �� this means that � N �R� � is not well covered� which contradicts
the fact that � N �R� � is in WSR�
c�
Theorem ��
 says that when the intersection R is maximal� � V � N �R� � is
complete kn�partite� From b�� we know that N �R� consists of complete layers�
Theorem ��� c� tells us that every two layers have to have at least two parts which
are non�adjacent� Hence� we conclude that V � N �R� consists of one complete
layer�

�

We move on to our next result which shows that every decomposition yields
layers which satisfy the properties of theorem ���� and that every partition of V
into layers which obey the above theorem can be obtained from a decomposition
of G�

Proposition ��� Let G be a graph in WSR� Then the following are true�
a� Any decomposition Da�G� � DSR�G� gives layers �L�� L�� � � � � Lt� � � t �

j V j� which form a partition of V and which satisfy properties a� to c� of
theorem 	�
�

b� For any partition of V into layers L�� L�� � � � � Lt� � � t �j V j� which satisfy
properties a� to c� of theorem 	�
� there is a decomposition Db�G� � DSR�G�
that yields these layers�

Proof�
G is a graph in WSR�
a�
While proving the theorem ���� we chose an arbitrary decomposition Da�G� �
DSR�G�� and showed that the resulting layers obeyed properties a� to c� of the
theorem� This proves the statement�
b�
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Consider some partition of V into layers L�� L�� � � � � Lt such that the layers obey
properties a� to c� of theorem ���� We use induction to show that there is a
decomposition of G which yields these layers� We assume that t � � as otherwise
there is only one layer and� from property a�� we know that the corresponding
lgraph is complete kn�partite� and thus forms a trivial decomposition of G� Let
G� � G� We know that G� is the graph induced by the layers L� to Lt� From
property b�� there is a part in each of the layers L� to Lt such that the set R� formed
by these parts is an independent set that has no neighbours in L�� From property
a�� L� has at least two parts� Consider two such parts P�� and P��� Now R� � P��

and R� � P�� are two maximal independent sets in G�� since each layer induces a
complete kn�partite graph� and these two sets have one part from each layer� Their
intersection is R�� which is maximal from theorem ��
� as � V � N �R�� � is the
lgraph H� �� L� � which is complete kn�partite� From lemma ���� the layers L�

to Lt satisfy the properties of the theorem ���� Hence� G� �� N �R�� �� which is
the graph induced by the layers L� to Lt� is in WSR� Thus� we have the �rst stage
of a decomposition of G which yields a layer L� and a graph G� which is in WSR�

Suppose that the layers L� to Lj are the layers obtained in the �rst j stages of
such a decomposition� � � j � t� From lemma ���� the graph Gj�� formed by the
layers Lj�� to Lt is in WSR� If j � � � t� we are done� Assume that j � � � t�
From property b�� there is a part in each of the layers Lj�� to Lt such that the set
Rj�� formed by these parts is an independent set that has no neighbours in Lj���
From property a�� Lj�� has at least two parts� Consider two such parts Pj����

and Pj����� Now Rj�� � Pj���� and Rj�� � Pj���� are two maximal independent
sets in Gj��� since each layer induces a complete kn�partite graph� and these two
sets have one part from each layer� Their intersection is Rj��� which is maximal
from theorem ��
� since � Vj�� �N �Rj��� � is the lgraph Hj�� �� Lj�� � which
is complete kn�partite� From lemma ���� the layers Lj�� to Lt obey theorem ����
Hence� the graph Gj�� �� N �Rj��� � is in WSR� Thus� we have the j � �th stage
of a decomposition of G which yields a complete kn�partite layer Lj�� and a graph
Gj�� which is in WSR� This proves statement b��

�

We are now ready to prove the main theorem of this section�

Proof�of the uniqueness theorem��
a�
Da�G� is a decomposition of G into layers L�� L�� � � � � Lt� We note from proposi�
tion ���� that the layers obey theorem ���� Also� from lemma ���� any subset of the
layers� with the ordering preserved� will obey properties a� to c� of theorem ����
We also note that since G is in WSR� at each stage of a decomposition of G based
on de�nition ���� we are guaranteed to �nd at least one maximal R such that
� N �R� � is in WSR� Consider the �rst stage of some other decomposition Db�G�
of G� Let R� be a maximal intersection of a pair of maximal independent sets of
G� such that � N �R�� � is in WSR� From proposition ��
� V� � N �R�� consists of
t�� layers from the layers L� to Lt� and VR� � V �N �R�� consists of the remaining
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layer� The graph G� induced by V� is also in WSR� by de�nition� Therefore� there
exists a maximal intersection R� for G� such that � N �R�� � is in WSR� Using
proposition ��
� this will create a V� � N �R�� that consists of t� 
 layers from the
t� � layers in V�� VR� � V� � N �R�� will consist of the remaining layer� Thus� at
stage i of the decomposition� � � i � t� we will have a layer Li which will be one
complete layer from the t� i� � layers of Vi� and a graph Gi�� whose vertex set
Vi�� will consist of the remaining t� i layers� At stage t� we will be left with one
complete layer which will induce the graph Gt�

Since there are t layers� and each stage of a decomposition yields one layer�
there will be t stages in any decomposition of G� Therefore� the layers obtained
are independent of the choice of a maximal intersection at each stage of a decom�
position� that is� any other decomposition Db�G� yields the same t layers� Since
isolated vertices will be a part of any maximal independent set� they will always
form the layer Lt�

That the layers obtained need not be in the same order is easily seen to be
true if we consider a graph K consisting of l � � disjoint K�	s� The vertex pairs
forming the edges form the layers of a partition of V �K�� These can easily be seen
to obey theorem ��� and hence K is in WSR� Any set R consisting of one vertex
from each of l � � K�	s will be independent as the K�	s are disjoint� It is also
maximal since the graph � V �K��N �R� � is a K� which is complete kn�partite�
Choosing di�erent K�	s to form maximal R	s will yield di�erent orderings of the
layers� Hence the ordering of the layers can be di�erent� as long as the layers obey
theorem ����
b�
This follows from proposition ��� and a��

�

����� Minimal graphs

We �rst prove the following result� which is a corollary of theorem ���� and then
introduce the concept of a minimal graph�

Corollary ��� Let G be a graph in WSR and let its vertex set be partitioned into
layers L� to Lt satisfying properties a� to c� of theorem 	�
� Then� if parts from
di�erent layers are adjacent to each other� then they are completely connected� that
is� they induce a complete bipartite subgraph�

Proof�
Consider any two layers Lj and Lk in such a partition� j �� k� Let Pj and Pk be
parts in Lj and Lk respectively� Let u � Pk such that j Pj � N�u� j� �� where
j Pj 	 N�u� j� �� that is� u is adjacent to at least one vertex of Pj but not to all
the vertices in it� See Figure ����

Construct an independent set I�� where

I� � fug � �Pj �N�u��

�




Figure ���� u adjacent to some� but not all� vertices of Pj

Extend this to a maximal independent set in G� Now� Pj �N�u� will cover all the
vertices of Lj � This will have fewer vertices from Lj than the size of a part in it�
thus contradicting theorem ��� c�� Hence� if a vertex u from a part in one layer
is adjacent to some vertices in a part in another layer� then it should be adjacent
to all the vertices in that part� Since this works both ways� this means that if
parts in di�erent layers are adjacent to one another� then they must be completely
connected� that is� the subgraph induced must be complete bipartite�

�

Let G be a graph belonging to WSR and let it be decomposed into layers L� to
Lt� The above property allows us to replace each part by a single vertex� and the
set of edges between two adjacent parts by a single edge� This results in each lgraph
in the decomposition being a clique� The resulting graph GM satis�es theorem ���
and hence belongs to WSR� We call such graphs minimal graphs� We have seen
in the previous section that any partitioning of the vertices of a graph G in WSR

into layers that obey the theorem ��� leads to the same set of layers� Thus� all
partitionings of the vertex set of G leads to the same minimal graph� in the sense
that all such graphs are isomorphic to one another� Also� it is easy to see that
there could be many graphs in WSR which yield the same minimal graph� We will
use minimal graphs to show that graphs belonging to the second sub�class have
recognition in P�

As will be shown in the next chapter� the recognition problem for the family
WSR is co�NP�complete�
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��� The second sub�class WAR

While decomposing a graph G belonging to WSR� at each stage� we have to �nd
a maximal intersection R such that � N �R� � is in WSR� This is because we are
only guaranteed that there exists such a maximal R� and not that any maximal
R satis�es this property� We now relax this de�nition and state that any maximal
intersectionR at any stage of a decomposition of G yields a graph � N �R� � which
is in WSR� This leads to the de�nition of the second sub�class WAR�

De�nition ��� A graph G is said to belong to the family WAR if
a� G is complete kn�partite� or
b� G is well covered and for every maximal R� the intersection of a pair of

maximal independent sets of G� � N �R� � belongs to WAR�

Clearly� a graph G which belongs to WAR also belongs to WSR� Therefore� the
vertices of G can be partitioned into layers L�� L�� � � � � Lt which obey theorem ����
We observe that proposition ��
 holds for every maximal intersection R of a graph
G in WAR� since for every such R� � N �R� � is in WAR and hence in WSR�

We now give an example of a graph belonging to WSR� but not to WAR� See
Figure ���� This graph� call it G� has three layers fv�� v�� v�g� fv�� v�� v�g and

Figure ���� Graph in WSR but not in WAR

fv�� v
� v�g� each of which induces a K�� G is in WSR as the layers clearly obey
theorem ��� a� to c�� Choosing maximal independent sets I� � fv�� v�� v�g and
I� � fv�� v�� v�g gives an intersectionR � fv�� v�g� The graph induced by V �N �R�
is a bipartite graph with vertices fv�� v�g� and hence� from theorem ��
� R is
a maximal intersection� Now � N �R� � is not well covered as we easily can
�nd two maximal independent sets of di�erent sizes� for example� fv
� v�� v�g and
fv�� v�g� Hence� not every maximal intersection of G yields a graph which is also
well covered� Therefore� using the de�nition ��
� G is not in WAR�
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We now state the following characterization for graphs belonging to the family
WAR�

Theorem ��� �WAR
 A graph G belongs to the family WAR if and only if its
vertices can be partitioned into layers L�� L�� � � � � Lt� � � t �j V j� which have the
following properties�

a� The lgraphs Hi �� Li �� � � i � t� are complete kn�partite� with every
layer except the last one� Lt� having at least two parts� Lt need have just one
part�

b� For any two adjacent layers Lj and Lk� there exist parts Pj � Lj and Pk � Lk

such that j N�Pj� 	 Lk j� � and j N�Pk� 	 Lj j� �� and the parts of Lj � Pj
and Lk � Pk are completely connected to each other�

c� The non�common neighbours of any two parts in any layer of the decomposed
graph are completely connected to each other�

Proof�
only if�
SinceG is inWAR� it is also inWSR� From proposition ���� we can decomposeG into
layers L�� L�� � � � � Lt which satisfy properties a� to c� of theorem ���� Statement a�
is true since it is the same as the statement a� of theorem ���� From corollary ����
we see that if a part in a layer is adjacent to a part in another layer� then they are
completely connected�
b�
From theorem ��� a�� we see that the only layer that can have only one part is
Lt� in which case it will consist of isolated vertices� since otherwise property b� of
the same theorem will be contradicted� Hence� if two layers are adjacent� each of
them has at least two parts� Now� assume that statement b� is not true� Let Lm�
t � m � �� be the layer that contradicts statement b� with some other layer� where
m is as large as possible� That is� there exists a layer Ll� m � l � �� such that the
layers Lm and Ll contradict statement b�� We choose Ll to be as close to Lm as
possible� Therefore� all the layers between Lm and Ll which are adjacent to Lm�
satisfy statement b� with Lm�

The proof lies in showing that the layers Lm and Ll have to satisfy statement
b�� To do this� we �rst show that we can form an independent set Ir consisting
of one part from each of the layers Ll�� to Lt� Lm not included� which has no
neighbours in Lm� We then show that some parts in Ll with a certain property
can have no neighbours in Ir� We then show that if a part in Lm is adjacent to
a part in Ll� it has to be adjacent to all but one part in Ll� and vice versa� This
property is then used to show that the layers Lm and Ll satisfy statement b��

We �rst form the independent set Ir� We observe� from corollary ���� that
if a part in one layer is adjacent to a part in another layer� then they are com�
pletely connected� that is� the subgraph induced is complete bipartite� Consider
the graph Gl�� induced by the layers Ll�� to Lt� Let its vertex set be denoted
by Vl��� Consider the layers in Gl�� which are adjacent to Lm� Let these layers
be Lam�� Lam�� � � � � Lamq� where t � am�� am
� � � � � amq � l � �� By assump�
tion� each of these layers satis�es statement b� with Lm� Hence� there exist parts

��



Pam� � Lam�� Pam� � Lam�� � � � � Pamq � Lamq such that Ir� � �qi��Pami has no
neighbours in Lm� Let the layers in Gl�� which are not adjacent to Lm be given
by Lrm�� Lrm�� � � � � Lrmr� t � rm�� rm
� � � � � rmr � l � �� From theorem ��� b�� we
can �nd Prm� � Lrm�� Prm� � Lrm�� � � � � Prmr � Lrmr such that the set Ir� formed
by these parts is an independent set� and has no neighbours in Ll� Consider the
set Ir � Ir� � Ir�� We know that this has no neighbours in Lm� We show that Ir is
an independent set� Assume not� Then there exist parts Pa and Pb in Ir such that
Pa � Pb� Now� at least one of Pa and Pb has to be from Ir� since we know that
Ir� is an independent set� Let Pa be from Ir�� Therefore� there exists a layer La�
a �� m� t � a � l� such that Pa � La and La is adjacent to Lm� Since Lm and La

satisfy statement b�� there exists Pm in Lm which is adjacent to all but Pa in La�
Now� Pb has no neighbours in Lm� and Pb is adjacent to Pa� Extending Pm � Pb
to a maximal independent set for G yields one which has no part from La� thus
contradicting theorem ��� c�� Thus� Ir must be an independent set and it has no
neighbours in Lm�

We now show that any part in Ll which has a certain property has no neighbours
in Ir� Consider the layers Ll and Lm� We prove the following claim�

Claim ��� Let Pl� in Ll be non�adjacent to at least two parts Pm� and Pm� in Lm�
Then Pl� has no neighbours in Ir�

Proof�
Assume not� Then there exists Pa � Ir such that Pl� � Pa� Pa has to be from
Ir� since Ir� has no neighbours in Ll� Therefore� there exists a layer La� a �� m�
t � a � l� such that Pa � La and La is adjacent to Lm� Since Lm and La satisfy
statement b�� at least one of Pm� and Pm�� say Pm�� is adjacent to all but Pa in La�
Extending Pl� � Pm� to a maximal independent set for G yields one which has no
part from La� thus contradicting theorem ��� c�� This proves the claim�

Next� we show that if a part in Lm is adjacent to a part in Ll� it must be
adjacent to all but one part in Ll� and vice versa� We know that a part in Ll

can be adjacent to at most all but one part in Lm� and vice versa� since otherwise
theorem ��� c� will be contradicted� Now� assume that a part in one of these layers
is adjacent to at most all but two parts in the other� Consider one such part
Pj� � Lj � j � fl�mg� Let Pj� be adjacent to Pk�� but not adjacent to Pk� or Pk��
in the layer Lk� k � fl�mg� k �� j� This leads to two cases�
case a� j � l� k � m
We have Pj� � Ll not adjacent to neither of Pk� nor Pk� in the layer Lm� From
claim ���� we see that Pj� has no neighbours in Ir�
case b� j � m�k � l
We have Pj� � Lm which is adjacent to Pk�� but not to Pk� or Pk� in Ll� From
theorem ��� b�� we know that there is a part in Lm which is not adjacent to any
part in Ll� This part cannot be Pj� as this is adjacent to Pk� in Ll� Let this part
be Pj�� That is� there are two parts Pj� and Pj� in Lm which are non�adjacent
to both Pk� and Pk�� From claim ���� we see that neither Pk� nor Pk� can have
neighbours in Ir� Since Ir has no neighbours in Lm� this means that in both of the
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above cases� none of Pj�� Pk� and Pk� have neighbours in Ir�
Let R � Ir � Pj�� Let I� � R � Pk� and I� � R � Pk�� Consider the graph

Gl �� Vl�� �Ll � with vertex set Vl� I� and I� are two maximal independent sets
of Gl and their intersection is R� Vl � N �R� consists of some� but not all� of the
parts of Lk� and hence � Vl � N �R� � is complete kn�partite� From theorem ��
�
R is maximal� We now argue that Gl is in WAR� At each stage of a decomposition
of G yielding layers L� to Lt� we obtain a maximal R such that � N �R� � is also
in WSR� Since G is in WAR� any maximal R yields a � N �R� � that is in WAR�
Therefore� the subgraphs Gi �� Li � Li�� � � � � � Lt � obtained at each stage of
such a decomposition� � � i � t� are also inWAR� Hence� Gl is inWAR� Now� N �R�
has at least one part Pk� from Lk� This contradicts proposition ��
 b�� Hence� Pj�
can have at most one non�neighbour in Lk� We have already seen that Pj� has to
have at least one non�neighbour in Lk� We conclude that Pj� must have exactly
one non�neighbour in Lk� Thus� if a part in Ll is adjacent to a part in Lm� it is
adjacent to all but one part in Lm� and vice versa�

We now show that the layers Lm and Ll satisfy statement b�� From theo�
rem ��� b�� there has to be a part Pm in Lm which is not adjacent to any part in
Ll� Therefore� any part in Ll that is adjacent to some part in Lm is adjacent to
all but Pm in Lm� If every part in Ll had neighbours in Lm� then every part in
Lm other than Pm would be adjacent to all of Ll which� as we have already seen�
cannot be the case� Hence at most kl � � parts of Ll can have neighbours in Lm�
Since any part in Lm that has neighbours in Ll has to be adjacent to all but one
part in Ll� all but Pm in Lm is adjacent to all but some part Pl in Ll� That is� Ll

and Lm satisfy statement b�� which contradicts our assumption�
This proves the statement�

c�
Suppose that the statement is false� Then there exist parts Pj� and Pj� in some
layer Lj such that they have at least one pair of non�common neighbours Pl � Ll

and Pm � Lm which are not adjacent to each other� j �� l� l �� m� m �� j� with
Pl adjacent to Pj� but not to Pj�� and Pm adjacent to Pj� but not to Pj�� Since�
from b�� Pl and Pm are adjacent to �kj � �� parts each in Lj � and Pj� � N�Pl� but
�� N�Pm�� N�Pl� � N�Pm� � Lj � Now� Pl and Pm can be extended to a maximal
independent set which has no part from Lj� thus contradicting theorem ��� c��
if�
Let LV � fL�� L�� � � � � Ltg� Consider some part Pj of layer j� � � j � t� As the
layers are complete kn�partite� and because of property b�� the neighbour sets of
every vertex in Pj are the same� Hence� if a maximal independent set contains
a vertex from Pj � it will contain all the vertices from Pj � Consider the graph Gj

with vertex set Vj induced by some k layers of LV � � � k � t� From the above�
any maximal independent set of G� and hence Gj� contains whole parts from the
layers in Gj � To prove that G is in WAR� we need the following two results�

We �rst show that Gj is well covered by proving the following claim�
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Claim ��� Every maximal independent set in Gj consists of exactly one part from
each layer�

Proof�
We have already shown that any maximal independent set of Gj has to consist of
whole parts from the layers� Suppose that the claim is not true� Then there exists
at least one layer Lk � Gj which has no part in some maximal independent set I�
for Gj� Therefore there exist parts in I� which cover the layer Lk� Consider one
such part Pl� from layer Ll� This means that Ll is adjacent to Lk� Properties a��
b�� and c�� will hold for any subset of the layers L� to Lt as otherwise they would
not hold for LV as well� From b�� we know that there exist parts Pk � Lk and
Pl � Ll such that j N�Pk� 	 Ll j� � and j N�Pl� 	 Lk j� �� and that the parts of
Lk � Pk and Ll � Pl are pairwise complete bipartite� Therefore� Pl� has to be a
part other than Pl� and it covers all of Lk except for Pk� Therefore� there has to be
another part PL in I� which covers Pk� Let this be from the layer LL� Since LL is
adjacent to Lk� from b�� there must be a part Pk� �� Pk � Lk that is not adjacent
to any of LL� Since Pk is adjacent to PL but not to Pl�� and Pk� is adjacent to Pl�
but not to PL� from c�� Pl� and PL have to be adjacent� This cannot be true as Pl�
and PL belong to I� which is an independent set� This proves the claim�

We next prove the following claim about Gj �

Claim ��� Let R be a maximal intersection of a pair of maximal independent sets
of Gj � Then the following are true�

a� N �R� consists of exactly those layers that have a part in R�
b� Vj �N �R� consists of exactly one layer�

Proof�
a�
Any subset of the layers in the partition will also obey properties a�� b�� and c��
as otherwise these properties would be contradicted in the partition also� Suppose
that the claim is not true� Then there exists Pi in R such that N�Pi� contains
at least one part Pj which belongs to a layer Lj that has no part in R� Let Pi
belong to the layer Li� Since Li and Lj are adjacent� b� applies� Therefore� Pi
is adjacent to all but Pj� in Lj� Now� Pj� cannot be adjacent to anything in
R as then property c� is contradicted� Therefore� any maximal independent set
containing R must contain Pj�� which means that the intersection of a pair of such
maximal independent sets must contain Pj�� Hence� R must contain Pj�� which
is a contradiction since we assumed that R was maximal� Therefore� N �R� must
contain only those layers that have a part in R�
b�
Property a� says that every layer induces a complete kn�partite subgraph� From a�
of this claim� Vj �N �R� will consist of whole layers� From property b�� every two
such layers will have at least one part in each that has no neighbours in the other�
Using theorem ��
� we see that � Vj �N �R� � has to be complete kn�partite� for
R to be maximal� Statement b� follows from the above� This proves the claim�

��



We now prove that G is in WAR by induction on the layers� All graphs induced
by any one layer in the partition are in WAR� since� from a�� every layer induces a
complete kn�partite graph� Suppose that all graphs induced by j layers� � � j � t�
are in WAR� Now� look at graphs induced by j � � layers� From the claim ��
�
all such graphs are well covered� Consider any such graph Gj��� with vertex set
Vj��� From the claim ���� every maximal intersection R for Gj�� has the property
that Vj�� � N �R� consists of exactly one layer� that is� N �R� consists of j layers�
Thus� for graphs induced by j � � layers� every maximal intersection R will result
in � N �R� � being a graph induced by some j layers of the partition� By the
induction hypothesis� all such graphs are in WAR� Hence� all graphs induced by
j � � layers are in WAR� Therefore� G is in WAR�

�

Clearly� all decompositions of a graph G in WAR yield the same layers� and
these layers obey the properties of theorem ���� That is� the layers are unique�

Property c� of theorem ��� states that the non�common neighbours of any two
parts in a layer are completely connected to each other� Consider two parts Pi�
and Pi� in a layer Li� Let Pj �� Li be adjacent to both Pi� and Pi�� and Pk �� Li�
j �� k� be adjacent to Pi� but not Pi�� Property c� does not say anything about
Pj and Pk having to be adjacent to each other� since Pj is a common neighbour�
Let Pj be not adjacent to Pk� Using property b� of theorem ���� we observe that
the set I � Pj �Pk will cover the layer Li� Extending I to a maximal independent
set will yield one which has no part from Li� thus contradicting theorem ��� c��
This would seem to indicate that property c� of theorem ��� is not a strong enough
condition� The following corollary shows that properties b� and c� of theorem ���
ensure that Pj has to be adjacent to Pk� This result is used in showing that the
dominating set problem is in P for the class WAR�

Corollary ��� Let G be a graph in WAR� Let its vertex set be partitioned into
layers L�� L�� � � � � Lt� � � t � n� obeying properties a� to c� of theorem 	�
� Let
Pi� and Pi� be any two parts of a layer Li� � � i � t� Let Pj� Pk �� Li� j �� k� be
neighbours� at least one non�common� of Pi� and Pi�� Then Pj is adjacent to Pk�

Proof�
If Pj and Pk are both non�common neighbours of Pi� and Pi�� then property c� of
theorem ��� ensures that Pj is adjacent to Pk� Let Pj be adjacent to both Pi� and
Pi�� and let Pk be adjacent to only Pj�� Since Pi� and Pi� are both adjacent to
Pj � from property b� of theorem ���� there is a part Pi� � Li which is not adjacent
to Pj � Using the same property b�� since Pi� is not adjacent to Pk� Pi� has to be
adjacent to Pk� Now� we have two parts Pi� and Pi� in a layer Li which have two
non�common neighbours Pj and Pk� From property c� of theorem ���� Pj has to
be adjacent to Pk�

�
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The following proposition states some properties of the layers� It is made use
of in proving the generalization of Favaron	s theorem�

Proposition ��� Let G be a graph in WAR and let its vertices be partitioned into
layers L� to Lt satisfying the properties a� to c� of theorem 	�
� Then the following
are true�

a� For any layer Lj in G� there exists a part in each of the other layers such
that they have no neighbours in Lj and form an independent set� � � j � t�

b� Every layer is V � N �R� for some R� except for the last layer Lt if it has
only one part�

c� Any subset of the layers in any order satis�es the properties a� to c� of
theorem 	�
� except if the layer Lt has only one part� in which case� it has
to be the last layer in any ordering�

Proof�
a�
Consider a layer Lj� � � j � t� Let Lj�� Lj�� � � � � �Ljq� � � q � t� be the layers
that are adjacent to Lj � From theorem ��� b�� we know that there exist parts
Pj� � Lj�� Pj� � Lj�� � � � � Pjq � Ljq which have no neighbours in Lj� We now
prove that the set I formed by these parts is an independent set� Assume not�
Then there exist parts Pjl � Ljl and Pjm � Ljm such that Pjl is adjacent to Pjm�
� � l� t � q� Since Lj is adjacent to Ljm� there exists Pj in Lj which is adjacent
to all but Pjm in Ljm� Start an independent set I� with Pj and Pjl and extend
it to a maximal independent set for G� I� will not have any part from Ljm� thus
contradicting theorem ���� Extend I to include a part from each of the layers that
are non�adjacent to Lj � this is possible since G is in WAR� Thus� I consists of one
part from each of the layers other than Lj � and has no neighbours in Lj�
b�
From statement a�� we can form an independent set I which consists of a part
from each layer of V � Lj such that I has no neighbours in Lj� Since Lj has at
least two parts� except if it is the layer Lt and has only one part� we can always
�nd parts Pj�� and Pj�� in Lj to form maximal independent sets I� � I � Pj�� and
I� � I � Pj��� The intersection of these two maximal independent sets is R � I�
and from proposition ��
� we know that N �R� consists of all the layers except Lj�
Since Lj is complete kn�partite� using theorem ��
� we see that R is maximal�
and Lj � V � N �R�� As G is in WAR and R is a maximal intersection� from the
de�nition ��
� N �R� is in WAR�
c�
Consider some subset of the layers L � fLj�� Lj�� � � � � Ljqg� � � j�� j
� � � � � jq � t�
with Ljq being the layer Lt if the layer Lt has only one part and is part of the subset�
These layers have to obey properties a� through c� of theorem ��� as otherwise
they would contradict these properties in the partition too� These properties are
independent of the ordering of the layers� except for isolated vertices which should
form the last layer Lt�

�
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As will be seen in the next chapter� the recognition problem for this sub�class
is in P�

��� The third sub�class WARF

We now de�ne a sub�class of WAR in which every layer in the decomposed graph
has exactly k parts� k � 
� This rules out graphs with isolated vertices� since
isolated vertices form a single layer with one part in the decomposed graph� This
sub�class� which we call WARF � is de�ned as follows�

De�nition ��� A graph G is said to belong to the family WARF if G belongs to
WAR and for some k � 
� every decomposition of G has exactly k parts in each
layer�

We de�ne a sub�class WARk of WARF as follows�

De�nition ��� For any k � 
� a graph G belongs to WARk if G belongs to WARF

and has exactly k parts in each layer of any decomposition�

Thus� WARF � ��k��WARk� Since any maximal independent set has exactly one
part from each layer in the decomposed graph� the size of any maximal independent
set of a graph belonging to WARk is n�k�

��� The fourth sub�class WAR


From the previous section� we see thatWAR� consists of all the graphs in the family
WARF which have exactly two parts in each layer� We now provide the following
characterization for this family�

Theorem ��� �WAR�
 A graph G belongs to the family WAR� if and only if it is
very well covered without isolated vertices�

Proof�
only if�
G belongs to WAR�� Therefore� it can be decomposed into t layers� with each
layer having exactly two parts� As G belongs to WAR� by de�nition� it obeys
theorem ���� Since the layers induce subgraphs which are complete 
n�partite�
there are no isolated vertices� As every maximal independent set for G contains
exactly one part from each layer� every such set will contain exactly half the number
of vertices in the graph� Hence� G is very well covered without isolated vertices�
if�
G is very well covered without isolated vertices� We now state a property of any
perfect matching of a very well covered graph without isolated vertices�

Observation ��� Let G be a very well covered graph� and let M be a perfect
matching in G� Let M� �M � Then� M� satis�es P �
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This can be easily veri�ed�

We partition the vertex set of G into layers L�� L�� � � � � Lt� where t is a positive
integer� as follows� From theorem ���� for any pair of maximal independent sets
I� and I� of G� whenever the intersection R is maximal� there exists a perfect
matching between R and S� and I

�

� and I
�

�� which satis�es property P � From
theorem ��
� when R is maximal� the graph induced by V �N �R� is complete kn�
partite� In this case� since N�R� � S� the lgraph H� induced by L� � V �N �R� is
complete 
n� partite� Let G� be the graph induced by N �R�� From observation ����
the matching between R and S satis�es property P � that is� G� has a perfect
matching which satis�es property P � Using Favaron	s theorem 
��� we see that
G� is very well covered� Therefore� G� can be decomposed as outlined above to
give a complete 
n�partite lgraph H� �� L� � and a very well covered graph G�

such that G� �� V� � L� �� Since we start with a graph G which has a �nite
number of vertices� this decomposition will stop at some stage� say t� As we cannot
decompose the graph any further� this means that we cannot �nd a pair of maximal
independent sets in Gt which have a non�zero intersection� That is� Gt consists of
isolated vertices� or is complete kn�partite� Since G has no isolated vertices� the
lgraph Ht �� Lt � is complete 
n�partite� We now have a decomposition of G into
t lgraphs� each of which is complete 
n�partite� with the corresponding layers being
L� to Lt� We now show that these layers satisfy properties a� to c� of theorem ����
We �rst prove the following claim�

Claim ��� Every maximal independent set of G contains exactly one part from
each of the layers L� to Lt�

Proof�
As the layers induce Kn�n	s� there can be at most one part from each layer in a
maximal independent set� Since G is very well covered� and the parts in each
layer have the same size� there has to be exactly one part from each layer in every
maximal independent set� This proves the claim�

property a�
Since the lgraphs are complete 
n�partite� a� is satis�ed�
property b�
Let the layers Lj and Lk be adjacent� Let Lj and Lk consist of the parts Pj�� Pj��
and Pk�� Pk� respectively� Let Pj� be adjacent to Pk�� Since the lgraphs are com�
plete 
n�partite� there exists a perfect matchingM for G which consists of nl edges
from the lgraph Hl� � � l � t� From Favaron	s theorem� M obeys property P �
Let u� be a vertex in Pj�� Let it be adjacent to v� in Pk�� Let �u�� u��� be in M �
where u�� is in Pj�� Since the lgraphs are complete 
n�partite� u�� is adjacent to all
the vertices in Pj�� Now� v� cannot be adjacent to u�� as then we would have the
matching edge u�� u�� with a common neighbour� which would contradict property
P � That is� �u�� u��� is a matching edge� with u� adjacent to v� but not to the rest
of the vertices in Pj�� and u�� is adjacent to all the vertices in Pj� � u�� but not
to v�� Therefore� from property P � all the vertices in Pj� are adjacent to v�� That
is� if a vertex in Pj� is adjacent to a vertex v in Pk�� then every vertex in Pj� is
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adjacent to v� We can use a similar argument to show that this should be true
for the vertices in Pk� also� Therefore� if parts from di�erent layers are adjacent�
then they are complete bipartite� Now� Pj� cannot be adjacent to Pk� because
any maximal independent set of G that contains Pj� would have no part from Lk�
thus contradicting claim ���� For similar reasons� Pk� cannot be adjacent to Pj��
Therefore� Pj� has no neighbours in Lk and Pk� has no neighbours in Lj� Thus� if
two layers are adjacent then all but one part of one layer is completely connected
to all but one part of the other layer� thus satisfying property b��
property c�
While proving b�� we have shown that there exists a perfect matchingM that con�
tains exactly nj edges from the lgraph Hj � � � j � t� Property c� follows from b�
and the fact that the perfect matching M satis�es Favaron	s theorem�

Therefore� G is inWAR� Since every layer in the decomposition has exactly two
parts� G belongs to WAR��

�

��	 Conclusions

We have de�ned and characterized a hierarchy of four sub�families of well�covered
graphs� We showed that these sub�classes are recursively decomposable� We
showed that for a graph G inWSR� all decompositions yields the same set of layers�
that is� the layers are unique� We have also shown that the last sub�family�WAR��
is the same as the family of very well covered graphs without isolated vertices� In
the next chapter� we study the algorithmic properties of these new sub�classes�
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Chapter �

Complexity results for the new

sub�classes

��� Introduction

We have obtained a hierarchy of four new sub�classes of well�covered graphs� We
now study the complexity of the same problems that we looked at for well�covered
graphs� for these new sub�classes� SinceWAR� is the same as the family of very well
covered graphs without isolated vertices� we only need to look at those problems
that have complexities in P for WAR� and check if these remain the same for the
other sub�classes� These problems are recognition� clique partition� Hamiltonian
cycle and path� and dominating set� We see that while clique partition remains
in P� the rest become intractable as one goes higher up in the hierarchy� These
problems separate the classes algorithmically� except for the classesWAR andWARF

which have the same complexities for all the problems� The results are shown in
Table ����

Problem WSR WAR WARF WAR�

Recognition co�NP�c P �
 �

Clique partition P �
 �
 �

Dominating set NP�c P �
 �

Hamiltonian cycle �� �� NP�c P
Hamiltonian path �� �� NP�c P

Table ���� Complexity results for the new sub�classes

�� Result implied from result on right�

�
 Result implied from result on left�

��



��� The class WSR

����� Recognition

We �rst look at the problem of recognition� that is� given a graph G� how di�cult
is it to determine whether or not G is a member of WSR � The answer lies in the
following theorem�

Theorem ��� The recognition problem is co�NP�complete for the class WSR�

Proof�
We use the same reduction from SAT as the one used for well�covered graph recog�
nition� with the following addition� Add a new clause cm�� which has a new literal
un��� Add �un��� un��� to the set of literals� This in no way changes the complexity
of the problem� See Figure ���� Rearrange the above graph in the form of layers

Figure ���� WSR recognition � SAT reduction

L�� L�� � � � � Lt as shown in Figure ��
� Layers L� to Lt�� induce K�	s and are not
connected to each other� hence� they obey statements a� through c� of theorem ����
� Lt � is a clique and hence obeys a�� L� to Lt�� also obey b� with respect to Lt

as L� is not adjacent to any of c� to cm in Lt� and L� to Lt�� are not adjacent to
cm�� in Lt� Therefore� the only property that the above graph can violate is c��
Lt cannot cover any other layer as no clause has both a literal and its negation�
Therefore� the only possibility is an independent set from L� to Lt�� covering Lt�
As cm�� is covered only by un��� this means that a set of independent vertices from
L� to Lt�� covers vertices c� to cm in Lt� Since this is an independent set� it can
have at most one vertex from each of the layers L� to Lt���

Claim ��� C is satis�able if and only if G does not belong to WSR�

Proof�
only if�

��



Figure ��
� WSR recognition � grouping into layers

��



C is satis�able� Therefore� there exists a satisfying truth assignation for C� that
is� there exists a set of vertices corresponding to true literals from layers L� to
Lt�� with there being at most one vertex from each layer� Since the layers are not
adjacent to each other� this set is an independent set� This set will include un��

since this is the only literal in the clause cm��� Therefore we have an independent
set comprised of vertices from the layers L� to Lt�� which cover all the vertices in
Lt� This contradicts c� and hence� G is not in WSR�
if�
G is not in WSR� As we have seen before� only statement c� can be violated�
Therefore there exists an independent set of vertices from layers L� to Lt�� which
covers Lt� Since the set is independent� it can have at most one vertex from each
of the layers L� to Lt��� That is� only a vertex corresponding to a literal� or its
negation� will be present in the set� Assigning the value true to the literals in the
set� we obtain a satisfying truth assignment for C�

�

From the above� it is clear that this group of graphs is as hard to recognize as
the family of well�covered graphs� We now look at the complexity of some other
problems for this family�

����� Clique Partition

Problem� Given a graph G and an integer k� is there a set of k vertex disjoint
cliques such that every vertex of G is contained in one of the cliques�

This problem is not di�cult to solve for the class WSR� For any graph G� the
minimum number of cliques needed to cover the graph is greater than or equal to
the size of a maximum independent set of G� From theorem ��� c�� we know that
the size of a maximal independent set for a graph G � WSR is equal to the sum of
the sizes of the parts of the layers L� to Lt� Since each layer is complete kn�partite�
a clique cover of this size exists� Hence the size of a minimum clique cover for G
is equal to the size of a maximum independent set in it�

����� Dominating Set

Problem� Given a graph G and an integer k� is there a set of k vertices of G
such that every vertex not in the set is adjacent to at least one vertex in it�

Theorem ��� The dominating set problem is NP�complete for the class WSR�

Proof�
We reduce from the dominating set problem for general graphs� Given a graph G
of order n �n � 
�� we transform it into a graph GD as follows� For each vertex
vi in G� we have a K� whose vertices form the layer Li in the transformed graph
GD� � � i � n� There is a vertex vi�� in the K� which corresponds to the vertex vi�
Therefore� there are n layers in GD� each of which induces a K�� These layers are
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numbered L� to Ln� There is another layer Ln�� which induces a clique of n � 

vertices� with a vertex vn���i in it for each vertex vi in G� plus two other vertices�
These layers are arranged as shown in Figure ��� to form the graph GD� For each

Figure ���� WSR � dominating set

edge �vi� vj� in G� there is an edge in GD from the vertex vn���i in the layer Ln�� to
the vertex vj�� in the layer Lj� and from the vertex vn���j in the layer Ln�� to the
vertex vi�� in the layer Li� For each vertex vi in G� there is an edge from the vertex
vn���i to the vertex vi�� in GD� There is also an edge from the vertex vi�� of each
layer� to the vertex vn���n�� of the layer Ln��� The vertex vn���n�� is a simplicial
vertex in the layer Ln��� GD has �n � 
 vertices and 
m� �n� �n � 
��n � ���

edges� and can be constructed in polynomial time�

The layers L� to Ln�� obey statement a� of theorem ��� as each one induces
a clique containing at least two vertices� Statement b� is obeyed as the layers are
non�adjacent to each other except for Ln�� which has a simplicial vertex vn���n���
Every maximal independent set in GD will have at most one vertex from each of
the layers since the induced subgraphs are all cliques� The layer Ln�� is the only
layer adjacent to any of the other layers� Since it induces a clique� we can have
only one vertex from this layer in an independent set� Since no vertex in this layer
is connected to both the vertices in some other layer� there is no possibility that
we can exclude all the vertices of any other layer by choosing a vertex from this
layer� Also� any independent set will have a vertex from the layer Ln�� as vn���n��

is a simplicial vertex in this layer� From the above arguments� every maximal
independent set has to have exactly one vertex from each of the layers L� to Ln���
that is� GD obeys statement c�� Therefore� the graph GD is in WSR�

Claim ��� G has a dominating set of size � k if and only if GD has a dominating
set of size � k � �� � � k � n� n � 
�
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only if�
G has a dominating set of size k� � k� Let DG be such a dominating set in G�
Choose the corresponding vertices in layer Ln�� to form a set DGD in GD� Since
DG is a dominating set in G� the vertices of DGD will dominate the vertices vj�� of
GD� � � j � n� Any one vertex in DGD is su�cient to dominate all the vertices
in the layer Ln��� since � Ln�� � is a clique� Add the vertex vn���n�� to the set
DGD� This will dominate all the vertices vj��� Therefore� DGD is a dominating set
for GD and has size k� � � � k � ��
if�
GD has a dominating set of size k� � k��� k � n� Let DGD be such a dominating
set� Assume that DGD does not contain the vertex vn���n��� Consider the vertices
vj��� � � j � n� Each such vj�� is adjacent to the corresponding vj�� and vn���n���
and nothing else� Hence� ifDGD does not contain vn���n��� then it has to contain at
least one vertex from each of the K�	s forming the layers L� to Ln� Since vn���n��

is a simplicial vertex in the layer Ln��� there has to be at least one vertex from
this layer in DGD� That is� there has to be at least one vertex from each of the
layers L� to Ln�� in DGD� Since DGD can have at most n� � vertices� this means
that there has to be exactly one vertex from each of the layers in GD in DGD� and
each such vertex need only dominate the vertices in the layer that it belongs to� If
the vertex from the layer Ln�� is not vn���n��� replace it with vn���n��� Therefore�
if DGD does not contain the vertex vn���n��� we can always �nd a vertex v in DGD

that can be replaced with the vertex vn���n�� such that the new DGD is still a
dominating set�

We therefore assume thatDGD contains the vertex vn���n��� This will dominate
all the vj��	s� � � j � n� Replace each vertex vj�� � � � j � n� in DGD with the
corresponding vertex vn���j in Ln��� Since there is an edge between vn���j and vj���
and the neighbour set of vj�� is contained in Ln�� � fvj��g� this change does not
make any di�erence in the vertices that are dominated by vj��� nor does it change
the number of vertices in DGD� Therefore� we now have a new dominating set
DGD� of size k�� The vertices DGD� 	 Ln�� � fvn���n��� vn���n��g� dominate the
vertices fv���� v���� � � � � vn��g of GD� Choosing the corresponding vertices in G will
yield a dominating set for G of size � k� � �� that is� � k�

�

��� The class WAR

We now study the complexities of the recognition and dominating set problems for
the family WAR�

����� A Polynomial Recognition Algorithm

The algorithm decomposes a graph G based on the de�nition ��
 to obtain the
layers L� to Lt� and checks if the layers satisfy properties a� to c� of theorem ����
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We assume that G is represented by an adjacency list�
Stage A� Decomposition
We decompose the graph G to obtain the layers L� to Lt� Since the algorithm also
checks if the subgraphs induced are complete kn�partite� at the end of this stage�
property a� is also veri�ed� Let t � ��

�� while G is not complete k�partite

� �nd two maximal independent sets I� and I� of G� I� �� I��
�� �nd the intersection R of I� and I��
�� while R is not a maximal intersection
�� extend R�
�� if � V �N �R� � is complete kn�partite

� Lt � V �N �R��
�� t � t� ��
�� G �� N �R� ��

else
��� G � K����
��� if G is complete kn�partite
�
� Lt � V �

else
G is not in WAR�

Stage B� Reduction
��� for all Li� Lj i �� j
��� for all Pa � Li� Pb � Lj

��� if Pa � Pb and � Pa � Pb � is not complete bipartite
G is not in WAR�

Construct the minimal graph GM as follows�
��� create a vertex vi in GM for each part Pi in G�
�
� vi � vj in GM if Pi � Pj in G�

Stage C� property b�
��� for all Li� Lj in GM

��� if vi � Li � vj � Lj


�� Si � Li �N�vj��

�� Sj � Lj �N�vi��


� if j Si j�� � or j Sj j�� �

G is not in WAR�

�� else if j Li 	N�Sj� j� � or j Lj 	N�Si� j� �

G is not in WAR�

�� else if � �Li � Si� � �Lj � Sj� � is not a clique

G is not in WAR�
Stage D� property c�

�� for all Li in GM


�� for all u� v � Li



� Su � N�u��N �v��

�� Sv � N�v��N �u��

�� for all w � Su

��



��� if N�w� �
 Sv
G is not in WAR�

We now do the correctness and time analysis for the above steps�
Stage A� Decomposition

�
We observe that if G is complete k�partite� then its complement G consists of k
disconnected components� each of which is a clique� We can �nd the complement
of a graph in order n�� The components can be found in order n�m using a depth
�rst search� If the number of vertices in a component is n�� then the component
is a clique if the degree of every vertex in it is equal to n� � �� Thus� checking if
each component is a clique be done in order n � m� Therefore� this step can be
done in order n��
��
Finding two maximal independent sets I� and I� can be done as follows� First
include all vertices of degree zero in both I� and I�� Choose a vertex v from any
one of the remaining vertices and include it in I�� Choose one of its neighbours
and include it in I�� thus ensuring that I� �� I�� Extend I� and I� to maximal
independent sets for G using a greedy algorithm� This can be done in order n�m�

�
We �nd the intersection R of I� and I� as follows� We mark every vertex in I�� We
go through I� and put the marked vertices in a set R� This gives the intersection
of the two sets� This can be done in order n�m�
��
From proposition ��
� we know that R is maximal if and only if � V �N �R� � is
complete k�partite� We check if R is maximal by checking if GR� the graph induced
by VR � V �N �R� is complete kn�partite� As in ��� this can be done in order n��
	�
If R is not maximal� GR is not complete kn�partite� Therefore� in GR� there is at
least one component which is not a clique� Consider such a component H� Let
the number of vertices in it be n� Since H is not a clique� there is at least one
vertex u in H such that d�u� � n� �� Since H is a connected graph� this implies
the existence of a vertex v in H that is not adjacent to u� but is adjacent to a
neighbour w of u� These three vertices induce a P� in G� Therefore� in GR� these
three induce a K� given by �u� v�� and an isolated vertex w� From proposition ����
this is the condition for G to be not complete k�partite� These vertices can be
found in order n�m� Extend R by making R � R � fwg� Thus� this step can be
done in order n�m�
�� and 	�
Since R can contain at most n�� vertices� the while loop is repeated at most n�

times� Hence� these steps can be done in at most order n��
��
This is the same as ��� except for checking if all the components have the same
number of vertices� Like ��� this can be done in order n� time�
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��
This can be done in order n�m time�
��
This can be done in a constant time�
��
This can be done in order n�m time�

��
This can be done in a constant time�

� to 
��
Therefore� steps �� to ��� take order n� time� Since there can be at most n�

layers� considering the case when each layer is a K�� the whole process can be done
in at most order n� time�


�
This� like ��� will take order n� time�

��
This will take order n time�
Therefore� stage A will take at most order n� time�
Stage B� Reduction


 to 
	�
If G is inWAR� then it is also inWSR� and hence the layers must obey corollary ����
Therefore� if parts from di�erent layers are adjacent to each other� they are com�
plete bipartite� We �rst check this as it will enable us to reduce the graph� For
every two parts Pa and Pb belonging to di�erent layers� we check if they have an
edge between them� If so� we check if the parts are complete bipartite� We can
do this as follows� Mark each vertex in Pb� For every vertex in Pa� go through
its neighbour set and count the number of marked vertices� This can be done in
order n �m� Since each layer except one� Lt� has to have at least two parts� and
each part can consist of just one vertex� the number of layers can be at most n�
�
As each part can consist of just one vertex� the number of parts can be at most
n� Hence� the number of comparisons is of order n�� Therefore� the above process
takes at most order n� � n�m time�

� to 
��
For properties b� and c�� we construct a minimal graph GM by having a vertex in
GM for each part in G� If two parts are adjacent� we join the corresponding two
vertices in GM by an edge� The graph GM will have layers which are cliques and
parts which are single vertices� This process can be done while doing step ����
Therefore� this stage would require order n� � n�m time�
We now check if GM obeys properties b� and c��
Stage C� property b�

� to ���
For any two adjacent layers La and Lb� we check if there is one vertex in each that
has no neighbours in the other� and if the rest of the vertices form a clique� Since
the maximum number of layers is n�
� the number of layer comparisons would be
of order n�� and the comparison between two layers would be of order n�m� Thus�
the above process would take at most order n� � n�m time�
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Stage D� property c�
�	 to 
��
For any two vertices in any layer� we check if the non�common neighbours are com�
pletely connected to each other� The number of such vertex pairs is of order n��
and checking if the non�common neighbours are completely connected will take at
most order n�m time� Hence� the whole process will take at most order n��n�m
time�
All of the above steps can thus be done in polynomial time� and hence recognition
is in P�

����� Dominating set

Problem� Given a graph G and an integer k� is there a set of k vertices of G
such that every vertex not in the set is adjacent to at least one vertex in it�

Theorem ��� The dominating set problem is in P for the class WAR�

Proof�
A part in a layer is said to be a simplicial part if its neighbour set is made up of
only those vertices that belong to that layer� We �rst prove the following�

Claim ��� Let G be in WAR and let its vertex set be partitioned into layers
L�� L�� � � � � Lt satisfying properties a� to c� of theorem 	�
� Then every layer has a
simplicial part or each part of it is adjacent to a layer that has a simplicial part�

Proof�
Assume not� That is� there exists a layer Li�� � � i� � t� such that Li� does not
have a simplicial part� and there exists a part Pi� in Li� that is not adjacent to
any layer that has a simplicial part� Since it is not a simplicial part� it must have
neighbours in some other layer Li�� From theorem ��� b�� we know that it must
be adjacent to all but one part Pi� in Li�� and Pi� must have no neighbours in
Li�� By assumption� Li� has no simplicial part� therefore� Pi� should be adjacent
to all but one part Pi� in Li�� and Pi� must have no neighbours in Li�� Now Pi�
is not adjacent to Pi� but is adjacent to all but Pi� in Li� and all but Pi� in Li�

are adjacent to Pi� in Li�� Therefore� from corollary ��
� Pi� must be adjacent to
all but Pi� in Li�� Consider the graph GA formed by the layers Li�� Li�� and Li��
We see that N�Pi�� � N�Pi�� � N�Pi��� Now� Pi� cannot be a simplicial part and
therefore has to have neighbours in some other layer� This excludes layers Li� and
Li� as this would contradict theorem ��� b�� Therefore� Pi� must be adjacent to
all but one part Pi� of Li�� with Pi� having no neighbours in Li�� We include this
layer in the graph GA�

We say that layers Li� to Lik obey property PA if there exist parts Pi� �
Li�� Pi� � Li�� � � � � Pik � Lik which have the property that N�Pi�� � N�Pi�� �
� � � � N�Pik�� � � k � t�

Let GA consist of j layers Li� to Lij of G� � � j � t� Assume that the layers
obey property PA� that is� N�Pi�� � N�Pi�� � � � � � N�Pij�� where Pil is a part
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in layer Lil� � � l � j� Since Pij is not simplicial� it must be adjacent to all but
one part Pij�� of some layer Lij��� with Pij�� having no neighbours in Lij� In fact�
because of property PA� and theorem ��� b�� the layer Lij�� cannot be any of Li�

to Lij��� Therefore� Lij�� is a new layer from G� Now� Pij is not adjacent to any
of Pi� to Pij�� but is adjacent to all but Pij�� in Lij��� and all but Pij in Lij is
adjacent to each of Pi� to Pij�� �property PA�� Using corollary ��
� we have that
Pi� to Pij�� are adjacent to all but Pij�� in Lij��� That is� in the new graph GA

formed by GA � Lij��� N�Pi�� � N�Pi�� � � � � � N�Pij���� Thus� in order for
Pij to be a non�simplicial part� we are forced to extend GA by adding a new layer
Pij�� from G� and these layers obey property PA�

Thus� in order for Pi� to not have neighbours in a layer that has a simplicial part�
we are forced to keep extending GA� and the layers in GA always obey property
PA� We extend GA until it is maximal� that is� until no more layers can be added
to it� this is bound to happen as G has a �nite number t of layers� Let GA

contain k layers� � � k � t� Since these layers satisfy property PA� we have
N�Pi�� � N�Pi�� � � � � � N�Pik�� Now� there should be some part Pik in Lk

that has no neighbours in Li� to Lik� Since this part cannot be simplicial as Pi� is
adjacent to Lik� there has to another layer in G that Pik is adjacent to� This is not
possible as we have assumed that GA is maximal� Therefore� Pik has to be adjacent
to one of the layers Li� to Lik�� which contradicts theorem ��� b�� Therefore� Pik
has to be a simplicial part� in a layer Lik which has parts that are adjacent to Pi�
in Li�� This contradicts our assumption�

�

Since G is in WAR� from theorem ���� we can partition its vertex set into layers
that obey properties a� to c� of the theorem� From the recognition algorithm
for the class WAR� we know this partitioning can be done in polynomial time�
Now� form a set by choosing a non�simplicial part from all the layers that have a
simplicial part� This will be a dominating set because of the claim ���� This set
is a minimum set because a simplicial part can only be dominated by a part from
the layer it belongs to� Such a set can be obtained in polynomial time and hence
the dominating set problem is in P for the family WAR�

�

��� The class WARF

We now look at the complexities of the Hamiltonian cycle and path problems for
this family and prove that these are NP�complete�

����� Hamiltonian cycle

Problem� Given a graph G� does G contain a simple cycle such that every vertex
in G is in the cycle�

��



Figure ���� Hamiltonian cycle

Theorem ��� The Hamiltonian cycle problem is NP�complete for the family
WAR��

Proof�
We transform from the Hamiltonian cycle problem for general graphs� Given a
graph G of order n � 
� we construct a graph GH as follows� For each vertex v� in
G� we construct a K� in GH � Two of the vertices of the K� correspond to v� in G�
call them v�� and v��� Each of these two vertices are connected to each two vertex
pair in GH that corresponds to a neighbour of v� in G� The other vertex v�� is a
simplicial vertex� Each such K� forms an lgraph in GH � Thus� there are n layers
in GH with �n vertices and �m � �n edges� Clearly� this transformation can be
done in polynomial time� For an example� see Figure ���� The layers induce K�	s�
each one has a simplicial vertex� and the neighbour sets of the two non�simplicial
vertices in each layer are the same� therefore� the layers obey properties a� through
c� of theorem ���� Therefore� GH is in WAR� Since each layer has exactly three
parts of one vertex each� GH is in WAR��
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Claim ��� G has a Hamiltonian cycle if and only if GH has a Hamiltonian cycle�

Proof�
only if�
G has a Hamiltonian cycle� For every vertex in G� there is a corresponding K� in
GH � For every edge in G� there are edges connecting two K�	s� Hence� if there is an
edge �v�� v�� in G� we can always �nd a path v��� v��� v��� v�� in GH � Therefore� if
G has a Hamiltonian cycle� we can always �nd a corresponding Hamiltonian cycle
for GH �
if�
GH has a Hamiltonian cycle� Consider any layer in GH � It induces a K� which
corresponds to some vertex in G� Consider one such K� which consists of vertices
vi�� vi�� and vi� which corresponds to a vertex vi in G� Since vi� is a simplicial
vertex� the path vi�� vi�� vi� has to be part of any Hamiltonian cycle� Therefore�
the part of a Hamiltonian cycle in GH through a K� can be collapsed to a single
corresponding vertex in G� Of the four edges that connect two K�	s� only one
can be part of a Hamiltonian cycle� Any such edge has a corresponding edge in
G� Hence� if GH has a Hamiltonian cycle� we can always �nd a corresponding
Hamiltonian cycle in G� This proves the claim�

Since the Hamiltonian cycle problem is NP�complete for general graphs� from
the above� it is NP�complete for the family WAR� and thus for the family WARF

as well�

�

����� Hamiltonian path

Problem� Given a graph G� does G contain a simple path such that every vertex
in G is in the path�

Theorem ��� The Hamiltonian path problem is NP�complete for the family
WAR��

Proof�
We transform from the Hamiltonian cycle problem for general graphs� Given a
graph G of order n � 
� we construct a graph GH in the same way as for the
Hamiltonian cycle problem� with the following change� We replace one of the
layers� say Ln� with two layers as follows� Take the K� which forms the lgraph
� Ln � and duplicate it to form the lgraph � Ln�� �� Form two more lgraphs
� Ln�� � and � Ln�� � using K�	s such that Ln�� is adjacent only to Ln and
Ln�� is adjacent only to Ln��� we will call the K�	s forming these lgraphs leaf
K�	s� Two vertices of Ln�� should form a K� with the two non�simplicial vertices
of Ln� likewise� two vertices of Ln�� should form a K� with the two non�simplicial
vertices of Ln��� The graph GH has ��n��� vertices and �m��d�vn����n�����
edges� where vn is the vertex in G which forms the layer Ln in GH � Clearly� this
transformation can be done in polynomial time� For an example� see Figure ����
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Figure ���� Hamiltonian path







It can be easily seen that GH still obeys properties a� through c� of theorem ����
and hence belongs to the family WAR� Since each layer has exactly three parts of
one vertex each� GH is in WAR��

Claim ��� G has a Hamiltonian cycle if and only if GH has a Hamiltonian path�

Proof�
The proof is similar to the one given for Hamiltonian cycle problem� except for the
following observations�
only if�
G has a Hamiltonian cycle� It is easy to see that we can �nd a simple path in GH

that starts at one of the leaf K�	s� say Ln��� ends at the other� and covers all the
vertices in GH � that is� a Hamiltonian path for GH �
if�
GH has a Hamiltonian path� As in the case of the Hamiltonian cycle problem� of
the four edges that connect two K�	s� only one can be used� Consider the leafK�	s�
once a path enters one of them� there is no way out� since each one is adjacent to
exactly one other K�� Therefore� any Hamiltonian path has to start at one of these
K�	s and end at the other� That is� if we ignore the leaf K�	s� the path starts at
one of Ln or Ln��� and ends at the other� The two K�	s that make up the lgraphs
� Ln � and � Ln�� � can be collapsed to a single vertex in G� Hence� if GH has
a Hamiltonian path� we can always �nd a simple cycle in G that includes all the
vertices in G� that is� a Hamiltonian cycle for G� This proves the claim�

Since the Hamiltonian cycle problem is NP�complete for general graphs� from
the above� the Hamiltonian path problem is NP�complete for the familyWAR� and
hence for the family WARF �

�

From the above� it is seen that the Hamiltonian cycle and path problems are
NP�complete for the family WARF � even when the number of parts per layer is
three �k � ���

��� The class WAR


This class is the same as the family of very well covered graphs without isolated
vertices� Hence� the results obtained in chapter � hold for this family as well�

��� Conclusions

We have studied the complexities of the same problems that we looked at for well�
covered graphs� for the new sub�classes� Since WAR� is the same as the family of
very well covered graphs without isolated vertices� we only needed to look at those
problems that had complexities in P for WAR� and check if these remained the
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same for the other sub�classes� These problems are recognition� clique partition�
Hamiltonian cycle and path� and dominating set� We see that while clique partition
remains in P� the rest become intractable as one goes higher up in the hierarchy�
These problems separate the classes algorithmically� except for the classes WAR

and WARF which have the same complexities for all the problems that we have
looked at�
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Chapter �

Generalization of Favaron�s

theorem

��� Introduction

As we have seen earlier� Favaron characterized the class of very well covered graphs
without isolated vertices� This characterization showed that all such graphs had
a perfect matching which obeyed a certain property P � We have seen that the
class WAR� is the same as the family of very well covered graphs without isolated
vertices� This is contained in the class WAR which� likeWAR�� has the problems of
recognition and clique partition in P � A generalization of a matching is a clique
partition� We now provide an alternative characterization of the sub�class WAR

in terms of a clique partition of size � which obeys a certain property Q� This is
shown to be a generalization of Favaron	s theorem �theorem 
����

��� De�nitions

Favaron ��� de�ned the following equivalence relation for very well covered graphs
without isolated vertices� We state this here as it is referred to in this chapter�

De�nition ��� Let M be a perfect matching of a very well covered graph G� Two
vertices x and y are called equivalent if either x � y or if �x� v�� �y� u� � M and
x � N�u� and y � N�v��

She showed that the equivalence classes form a partition of the vertex set of G into
independent sets with certain properties�

��� A generalization of Favaron�s theorem

We �rst state the alternative characterization for the sub�class WAR� which is also
a generalization of Favaron	s theorem� We say that a clique partition of a graph
G is an ��clique partition if the number of cliques in the partition is �� the size of
a maximum independent set of G�
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Theorem ��� �generalization of Favaron	s theorem
 The following are eq�
uivalent for a graph G�

a� G belongs to WAR�
b� There exists an ��clique partition in G that satis�es Q�
c� There exists an ��clique partition in G� and every ��clique partition in G

satis�es Q�

Hence� if G is in WAR� every clique partition of G satis�es Q� In order to prove
this theorem� we need to state some de�nitions and establish some results� We
�rst de�ne property Q�

Let C � fC�� C�� � � � � Ckg� � � k � n� be a clique partition of a graph G� with
the corresponding vertex set being V�� V�� � � � � Vk� We denote by C�v� the clique�
and by V �v� the corresponding vertex set� that v � V belongs to�

Property Q� We say that a clique partition C satis�es property Q if�
a� j N�v� 	 Vi j� � or j Vi j ��� �v � V� � � i � k�
b� �w � V �v�� u � N�v��V �v�� u �� N�w��� �N�u� 
 N�w��N�v��� �v � V �

The �rst condition states that if a vertex in the graph is adjacent to a vertex in a
clique in the clique partition� then it is adjacent to all but one vertex in that clique�
The second one states that for every two vertices in a clique� their non�common
neighbours are completely adjacent to each other�

Let us see what happens to this property when we restrict the cliques in the
partition to be K�	s� that is� a perfect matching for G� Since each Ci is a K�� from
property Q a�� we have that a vertex in a clique in C can be adjacent to at most
one vertex in another clique� This means that the vertices in a clique in C do not
have a common neighbour� We can use this fact to rewrite property Q for graphs
which have a perfect matching� A perfect matching M is said to satisfy property
Q if�

�w � V �v�� u � N�v� � V �v�� � �u �� N�w�� and �N�u� 
 N�w� � N�v���
�v � V �

We see that this is the same as the property P de�ned by Favaron�
In the above theorem �theorem 
���� if G belongs to WAR�� then an ��clique

partition is a perfect matching� and property Q� as we have just seen� reduces to
property P � That is� the theorem reduces to Favaron	s theorem �theorem 
��� for
very well covered graphs without isolated vertices�

Let C be a clique partition of a graph G� and let C satisfy Q� We de�ne the
following equivalence relation�

De�nition ��� We say that u and v are equivalent if either u � v or
j V �u� j�j V �v� j and x � v� y � u� �x � V �u�� u� y � V �v�� v�

That is� two vertices u and v are said to be equivalent if either they are the same
vertex� or if their clique sizes are the same� and every vertex of V �u��u is adjacent
to v� and every vertex of V �v�� v is adjacent to u� Note that two vertices u and
v in the same clique cannot be equivalent as this would require each one to be
adjacent to itself� which is not permitted�
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We need to show that the above is indeed an equivalence relation� We �rst
prove the following proposition�

Proposition ��� Let C be a clique partition that satis�es Q� Then� if u is equiv�
alent to v� u �� v� C�u� � C�v� is complete kn�partite with each part having two
vertices� and u and v forming one of the parts�

Proof�
Since u and v are equivalent� we know that j V �u� j�j V �v� j� Also� C�u� and
C�v� are cliques� Let V �u� � fu� u�� u�� � � � � ujg� and V �v� � fv� v�� v�� � � � � vjg�
j �j V �u� j ��� Since u is adjacent to all of V �v� � v� u is not adjacent to v�
from Q a�� Also� v is adjacent to all but u in V �u�� Consider some ui � V �u�� u�
� � i � j� Since ui is adjacent to v� from property Q a�� ui is adjacent to all but
some vii � V �v�� v� � � ii � j� Likewise� since vii is adjacent to u� it is adjacent
to all but ui in V �u�� Therefore� the vertices of V �u� and V �v� can be paired into
disjoint sets of two vertices such that the neighbour set of a vertex in a pair is all
but the other vertex in the pair� From the above� u and v forms one such pair�
Hence� C�u��C�v� is complete kn�partite� with each part having two vertices� and
u and v forming one of the parts�

�

Now� let u be equivalent to v� u �� v� and v be equivalent to w� u� v �� w� Since
j V �u� j�j V �v� j and j V �v� j�j V �w� j� it follows that j V �u� j�j V �w� j� From
proposition 
��� C�u� � C�v� is complete kn� partite� as is C�v� � C�w�� Also�
u �� v and v �� w� with Q a�� this implies that C�u� �� C�w�� Consider a part
fx� yg in C�u� � C�v�� x � V �u�� y � V �v�� x �� u� y �� v� Now� v � x and w � y�
Also� v �� w and y �� x� Since v and y are in the same clique C�v� and have non�
common neighbours x and w respectively� from property Q b�� w � x� Therefore�
w is adjacent to all the vertices in V �u� � u� In a similar fashion� we can show
that u is adjacent to all of V �w��w� That is� u is equivalent to w� Therefore� the
relation of De�nition 
�
 is an equivalence relation�

Let E�U� denote the equivalence class of u� and let C�U� denote the corre�
sponding clique class� that is� C�U� is made up of the cliques C�v� corresponding
to each vertex v � E�U�� Let V �U� represent the vertex set of C�U�� We now
prove the following proposition�

Proposition ��� The following are true�
a� The equivalence classes partition V into independent sets�
b� The clique classes are complete kn�partite� with each part forming an equiv�

alence class�

Proof�
a�
Take any equivalence class E�U� associated with a vertex u � V � From proposi�
tion 
��� the vertices in E�U� are pairwise disjoint� i�e� E�U� is an independent set�
As it is an equivalence relation� no vertex can appear in more than one equivalence







class�
b�
Let v �� u � E�U�� that is� v is equivalent to u� Consider x � V �u�� x �� u� Since v
is in E�U�� using proposition 
��� we have that C�u��C�v� is complete kn�partite�
with fu� vg forming one of the parts� Therefore� there has to be a y � V �v�� y �� v�
that forms a part with x in C�u� � C�v�� Thus� y is adjacent to all of V �u� � x�
and x is adjacent to all of V �v�� y� Also� j V �u� j�j V �v� j� since v is equivalent
to u� Hence� y is equivalent to x� So for each vertex v � E�U� that is equivalent
to u� we can �nd a y � V �v� that is equivalent to x� that is� y is in E�X�� Since
u is in C�x�� as C�u� and C�x� are the same� using a similar argument� we can
show that for each z � E�X�� we can �nd a w � V �z� that is equivalent to u�
Therefore� j E�U� j�j E�X� j� From a�� E�U� and E�X� are mutually disjoint
independent sets� Thus� each vertex x in V �u� yields an equivalence class E�X��
j E�X� j�j E�U� j� whose vertices are from V �U�� Therefore� the E�X�	s partition
V �U� into mutually disjoint independent sets� all of which have the same size� with
each E�X� having exactly one vertex from each clique in C�U�� Since every two
vertices in E�U� are equivalent to each other� from proposition 
��� the cliques
in C�U� are pairwise complete kn�partite� From the above� C�U� is complete
kn�partite�

�

Let C�U� be the clique class associated with a vertex u of V � For every other
vertex v � V �U�� the clique class C�V � is the same as C�U�� since from proposi�
tion 
�
� v belongs to either E�U� or an equivalence class E�X� corresponding to
a vertex x � V �u�� and C�U� is complete kn�partite with E�X� forming one of the
parts� Hence� when we refer to clique classes� we are referring to the distinct clique
classes obtained from the equivalence classes� Clearly� every clique in the clique
partition C is a part of some clique class� and no clique can belong to more than
one clique class� Hence� the clique classes form a partition of V � We now prove
the following�

Proposition ��� Let C be a clique partition of a graph G� and let C satisfy prop�
erty Q� Then� the corresponding clique classes partition the vertices of G into
disjoint sets which satisfy properties a� to c� of theorem 	�
� and hence G is in
WAR�

Proof�
From proposition 
��� the equivalence classes form a partition of the vertex set
of G into independent sets� From the same proposition� each clique class is com�
plete kn�partite� with each part forming an equivalence class� A clique class is
constructed by taking an equivalence class and picking all the cliques in C that
contain the vertices of the equivalence class� Since the clique classes are distinct�
every equivalence class can be in exactly one clique class� Furthermore� the clique
classes contain all the equivalence classes� Hence� the clique classes are vertex
disjoint and form a partition of the vertex set of G into disjoint sets� each of which
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induces a complete kn�partite subgraph� We show that these disjoint sets satisfy
properties a� to c� of theorem ���� by showing that the corresponding induced
subgraphs� that is� the clique classes� satisfy these properties�
a�
From proposition 
��� we know that the clique classes are complete kn�partite� If
any isolated vertices are present� they will form one clique class by themselves� as
they will all be in the same equivalence class�
b�
Let C�X� and C�Y � be two di�erent clique classes� Let x � E�X� from the class
C�X� be adjacent to y � E�Y � from the class C�Y �� From property Q a�� there
exists y� in C�y� that x is not adjacent to� Since C�Y � is complete kn�partite� y�
is adjacent to each z � E�Y �� Since y and y� are in the same clique C�y�� using
property Q b�� x is adjacent to all such z� Therefore� x is adjacent to all of E�Y ��
Now� since every vertex y in E�Y � is adjacent to x in E�X�� by a similar argument�
y is adjacent to all of E�X�� Thus� E�X� and E�Y � are complete bipartite�

Therefore� if parts from di�erent clique classes are adjacent� they are complete
bipartite� This enables us to do the following reduction on the clique classes�
replace each part in a clique class by a single vertex� thus reducing each clique
class to a single clique� replace the set of edges between two adjacent parts by a
single edge� Clearly� this transformation preserves the relationship between the
clique classes� We say that two cliques are adjacent if there is a part in one that
is adjacent to a part in the other� Now� consider any two clique classes C�X� and
C�Y � which are adjacent� We consider the classes to be single cliques and call
them C�x� and C�y�� Let i �j V �x� j and j �j V �y� j� We have two cases�
case a� i �� j
Assume i � j� Since C�x� and C�y� are adjacent� i� j � 
� Now� if all the vertices
of V �x� were to be adjacent to vertices in V �y�� from property Q a�� the number
of edges from V �x� to V �y� would be i�j���� Now� i�j��� � �i���j which is the
maximum number of edges possible from V �y� to V �x�� Hence� if every vertex of
V �x� were to have neighbours in V �y�� then at least one vertex of V �y� would have
to be adjacent to all the vertices in V �x�� which would contradict Q a�� Thus� at
most i� � vertices of V �x� can have neighbours in V �y�� Since any vertex in V �y�
has to be adjacent to exactly i � � vertices in V �x� from property Q a�� exactly
i� � vertices of V �x� have to have neighbours in V �y��

Can all the vertices of V �y� have neighbours in V �x�� We have already de�
termined that there are only i� � vertices in V �x� that have neighbours in V �y��
The number of edges from V �y� to these i� � vertices of V �x� is j�i � ��� Now�
j�i��� � �j����i��� which is the maximum number of edges possible from i��
vertices of V �x� to the vertices in V �y�� Hence� at least one of the i� � vertices of
V �x� should be adjacent to all the vertices of V �y�� which contradicts Q a�� Thus�
at most j � � vertices of V �y� can have neighbours in V �x�� Since each vertex of
V �x� has to be adjacent to exactly j � � vertices of V �y�� exactly j � � vertices
of V �y� have to be adjacent to exactly i� � vertices of V �x�� To satisfy property
Q a�� it can be easily seen that these two sets of vertices have to be completely
adjacent to each other� Thus� there exists exactly one vertex in V �x� which has
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no neighbours in V �y� and vice versa�
case b� i � j
Suppose all the vertices of V �x� had neighbours in V �y�� The number of edges
from V �x� would be i�i� �� which is the same as the maximum possible number
of edges from V �y� to V �x�� Therefore� all the vertices of V �y� would have neigh�
bours in V �x� too� Consider the equivalence class E�x�� This consists of the vertex
x� From Q a�� there exists a vertex� say w in C�y� which is not adjacent to x�
Since x has neighbours in C�y� and w has neighbours in C�x�� this means that x is
adjacent to all but w in C�y� and w is adjacent to all but x in C�x�� That is� w is
equivalent to x and therefore C�x� and C�y� belong to the same clique class� which
is a contradiction� So at most i� � vertices of V �x� can have neighbours in V �y��
from property Q a�� we see that exactly i�� vertices of V �x� can have neighbours
in V �y�� A similar argument can be used to show that exactly i � � vertices of
V �y� can have neighbours in V �x�� Thus� exactly i� � vertices of V �x� and V �y�
are completely adjacent to each other� and there exists exactly one vertex in each
class that has no neighbour in the other�

The above two cases prove that the clique classes obey property b� of theo�
rem ����
c�
Consider a clique class C�X�� Every part in C�X� has exactly one vertex from
each clique C�v�� �v � E�X�� From b�� which we have just proved� if parts from
di�erent clique classes are adjacent� they are completely connected� Property c�
follows from this and property Q b��

�

We now prove the generalization of Favaron	s theorem for the class WAR�

Proof�of the generalization of Favaron�s theorem��
a� � c�
G belongs to WAR� Therefore� the vertices of G can be partitioned into layers
L� to Lt that satisfy properites a� to c� of theorem ���� Since the corresponding
lgraphs are complete kn�partite� from property a� of the theorem� each lgraph can
be decomposed into cliques giving an ��clique partition for G� Let one such clique
partition be given by C � C�� C�� � � � � Ck� k � n� Since the lgraphs are complete
kn�partite� a vertex v in a clique Cv in a layer is adjacent to exactly j V �v� j ��
vertices in each clique in that layer� As the layers obey property b� of theorem ����
if v is adjacent to a clique in another layer� it is adjacent to all but one vertex in
that clique� Hence the vertices in C obey property Q a�� Since any clique in C has
exactly one vertex in each part of a layer that it belongs to� and the parts of the
layers obey property c� of theorem ���� the vertices in a clique obey Q b�� Hence�
there exists an ��clique partition in C that satis�es Q�

Since G is in WAR� the number of cliques in any minimum clique partition is
equal to �� that is� k � �� Consider any ��clique partition C� � C��� C��� � � � � C�k�
Since k � � and G is in WAR� any maximal independent set for G has to have
exactly one vertex from each clique� Consider any decomposition of G� with layers
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L� to Lt� We show that the cliques in C� can be rearranged to form the layers of
the decomposition� We ignore isolated vertices as they form one clique each in the
clique partition� and the layer Lt in the decomposition� Consider some layer Li�
� � i � t� From proposition ��� b�� we know that every layer is V �N �R� for some
R� Let R � I� 	 I� be a maximal intersection� such that V �N �R� is the layer Li�
where I� and I� are a pair of maximal independent sets of G� R consists of exactly
one vertex from each of l � k cliques of C��

We now show that N �R� consists of only vertices from those cliques that have
a vertex in R� Assume not� Then there exists Cj � C� which has no vertex in
R� but which has at least one vertex v in N �R�� The graph G� induced by N �R�
is in WAR from the de�nition ��
� Since R is a maximal independent set of G��
every maximal independent set in G� should have size j R j� Since any maximal
independent set for G has to have one vertex from every clique in C�� starting with
v� we should be able to �nd a vertex from every clique that has a vertex in R such
that the resulting set is independent� This set has size �j R j implying that G� is
not in WAR� which is a contradiction� Hence� N �R� consists of vertices from those
cliques that have a vertex in R� That is� the graph induced by Li � V � N �R�
which forms the lgraph Hi� consists of whole cliques from C� that do not have a
vertex in R� Since the number of vertices in R is given by �� ni� there are �� ni
cliques from C� in � N �R� �� As the number of cliques in C� is also �� there are
exactly ni cliques from C� forming the layer Li�

Now� the lgraphs are complete kn�partite� The size of a part in the layer Li

is ni� and the maximum possible size of a clique in it is given by ki� the number
of parts in it� Hence� the minimum number of vertex disjoint cliques required
to cover the vertices of Li is ni� each being of size ki� Since the cliques in C�

are vertex disjoint� this means that the ni cliques forming the lgraph Hi have
exactly ki vertices each� and form a partition of the vertices in Hi� Therefore�
each lgraph of the decomposition contains whole cliques from C� such that the
cliques form a clique partition for that lgraph� Since the sum of the ni	s is ��
and there are � cliques in C�� and the lgraphs are vertex disjoint� each clique in
C� appears in exactly one lgraph in the decomposition� The corresponding layers
obey properties b� and c� of theorem ��� and hence� as we have seen earlier� the
cliques satisfy property Q�
c� � b�
Follows�
b� � a�
There exists a clique partition of G that satis�es Q� From proposition 
��� G is in
WAR�

�

Now let us see what happens to the equivalence relation 
�
 if G is very well
covered without isolated vertices� From Favaron	s theorem 
��� there exists a
perfect matching for G� Hence� a clique partition for G consists of K�	s� The
equivalence relation reduces to�

��



De�nition ��� u and v are equivalent if either u � v� or u � N�V �v� � v� and
v � N�V �u�� u��

This is the same as the equivalence relation de�ned by Favaron �de�nition 
����
and hence the equivalence classes obtained are the same�

��� Conclusion

We have given an alternative characterization for the sub�class WAR in terms of a
clique partition of size � which obeys a certain property Q� We have shown that
when the cliques in the partition are K�	s� the clique partition reduces to a perfect
matching� property Q reduces to property P � and the characterization reduces to
Favaron	s characterization for very well covered graphs without isolated vertices�
This is an interesting result since it generalizes the structure of very well covered
graphs as characterized by Favaron�

�




Chapter 	

Conclusions and future work

	�� Conclusions

In this thesis� we �rst studied the algorithmic complexity of the following graph
theory problems for well�covered and very well covered graphs� chromatic number�
clique cover� clique partition� dominating cycle� dominating set� Hamiltonian cycle�
Hamiltonian path� independent set� independent dominating set� maximum cut�
minimum �ll�in� recognition� Steiner tree� and vertex cover� We saw that many
of these problems are as hard for the family of well�covered graphs as for graphs
in general� Some of the above problems turn out to be tractable for the family of
very well covered graphs without isolated vertices�

We then gave a new characterization for well�covered graphs� and restricted
this to a characterization for very well covered graphs� This characterization was
based on the interaction between pairs of maximal independent sets I� and I� of
a graph G� Next� we looked at the intersection of a pair of maximal independent
sets of G� We de�ned the conditions under which such an intersection would be
maximal� and under which all such intersections would have the same size� Using
these two results� we de�ned and characterized a hierarchy of four new recursively
decomposable sub�classes of well�covered graphs� The hierarchy of sub�classes are�
WSR� WAR� WARF � and WAR�� Each one properly contains the one next to it in
the hierarchy� We showed that the graphs belonging to these sub�classes can be
decomposed into layers which are unique� and which satisfy certain properties� We
also proved that the sub�class WAR� is the same as the family of very well covered
graphs without isolated vertices�

Next� we looked at the algorithmic complexity of the same problems that we
looked at for well�covered graphs� for these new sub�classes� Clearly� the problems
that are intractable for very well covered graphs without isolated vertices are also
intractable for the new sub�classes� Therefore� we restricted our attention to the
following problems� recognition� clique partition� dominating set� and Hamiltonian
cycle and path� The clique partition problem proved to be tractable for all the sub�
classes� The rest proved tractable as we moved down the hierarchy� We observe
that these problems separate the sub�classes algorithmically� except for the sub�

��



classes WAR and WARF � It is interesting to note that the Hamiltonian cycle and
path problems� which are in P for the class WAR�� turn out to be NP�complete for
the class WAR��

Lastly� we generalized Favaron	s theorem �theorem 
��� for very well covered
graphs without isolated vertices to the sub�class WAR� Favaron	s characterization
was based on a perfect matching obeying a property P � We generalized this to
an ��clique partition obeying a certain property Q� We showed that this reduces
to Favaron	s characterization when the ��clique partition considered consists of
cliques which are K�	s�

The complexity results are shown in the Table ����

Problem WC WSR WAR WARF WAR�

Member co�NP�c co�NP�c P �
 �

Chromatic number �� �� �� �� NP�c
Clique �� �� �� �� NP�c
Dominating cycle �� �� �� �� NP�c
Isomorphism �� �� �� �� iso�c
Maximum cut �� �� �� �� NP�c
Minimum �ll�in �� �� �� �� NP�c
Steiner tree �� �� �� �� NP�c
Independent set P �
 �
 �
 �

Independent dominating set P �
 �
 �
 �

Vertex cover P �
 �
 �
 �

Clique partition NP�c P �
 �
 �

Dominating set �� NP�c P �
 �

Hamiltonian cycle �� �� �� NP�c P
Hamiltonian path �� �� �� NP�c P

Table ���� Complexity results for well�covered graphs

WC Well covered�

�� Result implied from result on right�

�
 Result implied from result on left�

Let us look at how far we have succeeded in answering the questions that
were addressed by this thesis� We have shown that well�covered graph recognition
is co�NP�complete� While this does not solve the complexity of the recognition
problem for this family� the result indicates that it is highly unlikely that this
problem is tractable� We have seen that besides the independent set problem� the
independent dominating set and vertex cover problems are also in P for this class�
These results follow trivially from the de�nition of the class� We have also seen
that there are many problems that are intractable for this class� for example� the
clique partition problem� As we have seen in chapter 
� there are many sub�classes

��



of well�covered graphs which have recognition in P� including the family of very
well covered graphs without isolated vertices� We have looked at these two families
algorithmically� The results show that many graph theory problems are as hard
for the family of well�covered graphs as for graphs in general� Some of them prove
tractable for very well covered graphs� thus algorithmically separating the two
classes� We have de�ned and characterized four new sub�classes of well�covered
graphs� three of which have recognition in P� The �rst one� WSR has recognition in
co�NP�c� We have shown that the problems studied in this thesis distinguish the
sub�classes algorithmically� except for the classes WAR and WARF �

	�� Future work

Some questions which remain unanswered in this thesis are� Are there other prob�
lems which are in P for well�covered graphs� Is it possible to separate the classes
WAR and WARF algorithmically� What are the algorithmic properties of the other
well�covered families which have recognition in P� How do they relate to the sub�
classes of this thesis�

All the new sub�classes have been de�ned based on the concept of a maximal
intersection� An obvious question arising from the concept of well�coveredness
is� What graphs have the property that every maximal intersection has the same
size� Can we characterize such graphs� We call such graphs well�intersected
graphs� Another question is� What graphs have the property of being both well
covered and well intersected� Which of the graphs belonging to the newly de�ned
sub�classes have the property of being well intersected�

LetWR be the family of well�covered graphs which have the property that there
exists a maximal intersection R for which � N �R� � is well covered� This family
properly contains the family WSR� Are there other sub�classes of this family for
which some of the problems that we have looked at� especially recognition� are
tractable�

We have seen how a graph G belonging to WSR can be represented by a cor�
responding minimal graph Gm� It would be interesting to study the properties of
such graphs�

What about the complement of a well�covered graph� What well�covered
graphs have the property that the complement is also well covered� Since a maxi�
mal independent set in a graph G is a maximal clique in its complement� this would
imply that the complement of a well�covered graph has the property that every
maximal clique has the same size� We shall call such graphs well�cliqued graphs�
Hence� our question becomes� What well�covered graphs have the property that
they are also well cliqued� Also� what is the nature of well�cliqued graphs�

We have seen that the class WAR has recognition in P� It would be interesting
to �nd an e�cient recognition algorithm for this class� and for the class of very
well covered graphs without isolated vertices� Also� are there any other sub�classes
of WSR that have recognition in P�
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