
Adding Exploration to Greedy Best-First Search

Richard Valenzano, Nathan Sturtevant, and Jonathan Schaeffer

Abstract

While greedy best-first search (GBFS) is a popular algorithm for solving au-
tomated planning tasks, it can exhibit poor performance if the heuristic in use
mistakenly identifies a region of the search space as promising. In such cases, the
way the algorithm greedily trusts the heuristic can cause the algorithm to get stuck
performing a lot of unnecessary work. In this report, we consider simple techniques
that help GBFS to avoid overly trusting the heuristic. The first technique, heuristic
perturbation, will be shown to lead to large increases in coverage in some domains,
and large decreases in others. Over all problems tested, this technique does increase
the average coverage by up to 9.5% over standard GBFS when it is parameterized
effectively. The second technique, ε-greedy node selection, will be shown to lead to
smaller improvements than heuristic perturbation in many domains, though it does
so without hurting the algorithm’s performance in any other domains. Over all
tested problems, this technique will be shown to increase coverage even when used
with a wide range of parameter values, with the best setting leading to a 11.0%
increase in coverage when compared to standard GBFS. We will also show that
these techniques can be paired together effectively in an algorithm portfolio due to
the complementary way they introduce exploration into the search, with our best
portfolio having an expected coverage that is 22.5% higher than standard GBFS.

1 Introduction

Greedy Best-First Search (GBFS) is of the most popular heuristic search algorithms
used for solving planning tasks which cannot be feasibly solved optimally without a
too resource-intensive search. While it has no provable bounds on solution quality,
it is typically much faster than optimal algorithms such as A* [4] and algorithms
with suboptimality guarantees such as WA* [12]. This advantage can be attributed
to the greedy fashion in which GBFS employs the heuristic, unlike A* and WA*
which do not use the heuristic information as greedily.

Unfortunately, the greediness of GBFS can also lead to poor behaviour due to
error in the heuristic function. This is because GBFS will trust or exploit the heuris-
tic information completely, and so if the heuristic function mistakenly identifies a
region of the domain as promising, the greediness of GBFS can often cause the al-
gorithm to exhaustively search such regions. This suggests the need for techniques
that encourage exploration in the search performed by GBFS.

In this document, we look at simple ways to do just that. Specifically, we
will consider stochastic methods which will cause the algorithm to periodically
consider nodes that the heuristic does not identify as being the most promising
of those under consideration. We then show empirically that when used in an

1



GBFS(Initial Node nstart):

1: CLOSED ← {}
2: OPEN ← {nstart}
3: loop
4: if OPEN is empty then
5: return no solution exists
6: n← arg minn∈OPEN h(n)
7: if n is a goal node then
8: return path from nstart to n
9: generate children nodes Ln = {c1, ..., ck} of n

10: for all c ∈ Ln do
11: if c /∈ OPEN and c /∈ CLOSED then
12: Add c to OPEN
13: Remove n from OPEN and add it to CLOSED

Algorithm 1: The Best-First Search Algorithm GBFS.

automated planner, the new techniques can improve performance. The first of
these techniques, heuristic perturbation, will be shown to have different strengths
and weaknesses on a domain-by-domain basis, though the overall trend is that more
problems are solved when this technique is used. The second of these techniques,
ε-greedy node selection, will also be shown to lead to performance improvements in
many domains, though without the loss in performance seen in other domains when
using heuristic perturbation. We will also show that by combining these techniques
in an algorithm portfolio, we can benefit from the strong positive gains made when
using heuristic perturbation in some domains with the robust performance seen
when using ε-greedy node selection in the others.

This report is organized as follows: we begin by first describing the standard
GBFS algorithm and the new techniques for encouraging exploration. This is fol-
lowed by an experimental study into how these techniques impact the performance
of GBFS in planning domains, and how they perform when used in a portfolio.
This is followed by a discussion of future work and an appendix which provides
further detail regarding why heuristic perturbation fails in one particular domain.

2 Greedy Best-First Search

GBFS is an instance of the well-known iterative framework best-first search,
which uses a heuristic function, h, to guide a search for a solution path. This
function provides an estimate of the length of the path from any given state to the
nearest goal state and it is used to order nodes in terms of how promising they are
(ie. how quickly they are expected to lead to a goal).

Pseudocode for GBFS is shown in Algorithm 1. The algorithm uses two lists:
OPEN and CLOSED. OPEN contains the last node on each of the candidate paths
currently being considered, while CLOSED contains all previously examined nodes.
The algorithm iteratively selects the node on OPEN with the lowest h-cost for
expansion (line 6), with ties being broken arbitrarily. This process involves the
generation of the successors or children of that node (line 9). Any children whose
corresponding state has been generated for the first time is then added to OPEN

2



(line 12). Once this is completed, the expanded node is moved to CLOSED (line
13). This process is then continued until either a goal node is expanded (line 7), or
the OPEN list is emptied (line 4), in which case there is provably no solution. When
a goal node is expanded, the solution path can be extracted from the CLOSED list,
which maintains structures for doing just that (see [2] for more detail).

Unlike most best-first search definitions (such as in [2] and [17]), we do not
move nodes from CLOSED back to OPEN if a better path is found to them. This
re-opening step is typically done for the sake of solution quality. As our focus is
on planner coverage — which is defined as the number of problems solved by an
algorithm — we will not perform such updates. This approach is also taken by
such planners as LAMA [14] and Fast Downward [5].

In the next section we will consider how this basic version of GBFS can be
supplemented so that exploration is added to the search.

3 Adding Exploration to GBFS

In this section, we will consider two techniques for encouraging exploration into
GBFS: heuristic perturbation and ε-greedy node selection.

3.1 Heuristic Perturbation

Heuristic perturbation helps GBFS to avoid overly trusting the heuristic by running
the search on a noisy version of the given heuristic function. This means that
instead of using the heuristic h to guide the search, a GBFS instance using heuristic
perturbation will use the heuristic function hHP , defined as hHP (n) = h(n) + r(n)
where r(n) is a random integer from the range [0, a] and a is a user set algorithm
parameter. We will refer to h(n) as the non-noisy heuristic value of n, r(n) as the
noise value of n, and the parameter a as the noise level of the algorithm.

Heuristic perturbation changes the order in which nodes are considered for ex-
pansion by changing how promising nodes appear to be. For example, suppose that
a node n has a low non-noisy heuristic value. If n is assigned a high noise value, it
will appear to be much less promising than it would have otherwise. In such cases,
a node with a higher heuristic value which was assigned a low noise value may be
picked first.

However, heuristic perturbation is still biased towards nodes with low heuristic
values. For example, suppose that the noise level is 4, and that at some time during
the search, the lowest non-noisy heuristic value of any of the nodes on the OPEN
list is 10. This means that the next node selected must have a non-noisy heuristic
value of 14 or lower. Since the expected noise value for any node is 2, and the
variance is the same for all nodes, the nodes with the highest probability of being
selected are also still those with a non-noisy value of 10.

In the implementation of heuristic perturbation used below, the noise value of
a node n will be determined when a node n is first generated. The noise value then
remains static for the remainder of the time that n is on OPEN. This decision was
made in the interest of algorithm simplicity.

3



3.2 ε-greedy Node Selection

While heuristic perturbation can change how promising nodes appear, ε-greedy
node selection uses an even more explicit way to introduce exploration. This is
accomplished by modifying the way nodes are selected from OPEN in line 6 of
Algorithm 1. This modification requires the user to set a parameter, denoted ε,
as some value in the range [0, 1]. With probability (1− ε), ε-greedy node selection
uses the same rule as standard GBFS: it selects the node on OPEN with the lowest
heuristic value, with ties being broken arbitrarily. However, with probability ε, this
new technique selects a node uniformly at random from amongst all of the nodes in
OPEN. This means that with probability (1−ε) this node selection policy chooses a
node greedily according to the heuristic, while with probability ε the policy selects
a node with the aim of exploring.

4 Experiments

In this section, we will experiment with the techniques described above and show
that they often lead to improved coverage in planning domains. To do so, we
implemented these techniques in the Fast Downward planning system [5] and then
ran experiments on a cluster of machines, each with two 4-core 2.8 GHz Intel Xeon
E546s processors with 6 MB of L2 cache. The problem set used is given by all
790 tasks from the 2006, 2008, and 2011 International Planning Competitions.
On each problem, each planner is allowed a maximum of 30 minutes and 4 GB.
As the techniques we are considering are stochastic, we run each tested planner
configuration for 10 times per problem and consider the frequency with which a
problem is solved as the configuration’s coverage on that problem.

As our focus is on coverage, we also treat all tasks as unit-cost tasks. This is
consistent with several existing state-of-the-art planners such as LAMA [14] and
ArvandHerd [18] which do the same with the goal of maximizing coverage.

4.1 Heuristic Perturbation in a Simple Planner

So as to isolate the effects of the new exploration encouraging techniques, we test
them in a simple planner which only uses a single heuristic — the inadmissible
FF heuristic [7] — and a common planning enhancement called deferred heuristic
evaluation [13]. When using this enhancement, the heuristic of a node is only
calculated when it is expanded, not when it is generated as is typically done in
standard GBFS. This means that when a node n is generated and added to OPEN,
the heuristic value used to establish the priority that n has in OPEN is not h(n)
— since h(n) will not be calculated until n has been expanded — but the heuristic
value of the parent of n (ie. the node p whose expansion generated n). As an
example of how this works in practice, consider heuristic perturbation. When using
heuristic perturbation without deferred heuristic evaluation, the heuristic used to
order OPEN is

hHP (n) = h(n) + r(n)

However, when deferred heuristic evaluation is used, the heuristic looks as follows:

hHP (n) = h(p) + r(n)

4



where p is the parent of n.
The average coverage on a per domain basis for different noise levels is shown

in Table 1. The table has been portioned off into 3 sections. The first shows the
2006 domains, the second shows the 2008 domains, and the third shows the 2011
domains. The column labelled as using a noise level of 0 is equivalent to using GBFS
without heuristic perturbation. The variance in coverage was induced through the
use of random operator ordering which changes how ties are broken among nodes
with equal heuristic values [19].

The last row of the table shows the totals for each configuration tested over all
problems. It shows that for noise levels of 16, 64, and 256, heuristic perturbation is
able to solve more problems than the number solved without heuristic perturbation.
GBFS with heuristic perturbation at a noise level of 1 has worse coverage overall
when compared to not using any noise, while noise levels of 2 and 4 have similar
coverage to that seen without any noise.

The table also shows that heuristic perturbation often leads to substantial
changes in coverage — either increases or losses — in several domains. For example,
this technique is quite helpful in 2011 barman, 2011 visitall, and 2011 woodworking,
in which standard GBFS solves a total of 17.8 problems on average, GBFS at a
noise level of 1 solves a total of 22.8 problems on average, and GBFS at a noise level
of 256 solves a total of 56.2 problems on average. In other domains, such as 2011
parcprinter, 2011 parking, and 2006 openstacks, the opposite behaviour emerges.
In these domains, standard GBFS solves a total of 56 problems on average, GBFS
at a noise level of 1 solves a total of 35.2 problems on average, and GBFS at a noise
level of 256 solves a total of 11.3 problems on average. In Section 4.3, we will show
that this variance across domains can be leveraged effectively in the construction
of portfolio-based systems.

The 2006 openstacks domain is notable since standard GBFS solves all 30 prob-
lems in all runs, while the use of heuristic perturbation causes a drastic drop in
coverage even when the noise level is 1. GBFS using heuristic perturbation at a the
noise level of 1 would actually outperform standard GBFS by an average of 10.3
problems if the 2006 openstacks domain is omitted from the results. We consider
this domain in more detail in the appendix.

4.2 ε-Greedy Node Selection in a Simple Planner

In this section, we consider the performance of ε-greedy node selection. As with
heuristic perturbation, the FF heuristic and deferred heuristic evaluation were used.
The average coverage on a per domain basis is shown for different noise levels in
Table 2. The table shows that with the exception of very high values for ε, ε-greedy
node selection improves the overall coverage of GBFS even more so than heuristic
perturbation.

In contrast to heuristic perturbation, ε-greedy node selection typically results
in much smaller performance changes on a domain-by-domain basis. There are no
domains in which ε-greedy node selection leads to any more than a minor decrease
in coverage except when ε is almost 1. In domains in which this technique does
lead to coverage gains, it is usually unable to increase it by as much as heuristic
perturbation. The 2011 woodworking domain is a clear example of this, as the
coverage does increase from the 2.6 problems solved on average when using standard
GBFS to 13.5 when ε = 0.5, but it never gets as high as the 20 seen when using

5



Domain # of Noise Level
Name Probs 0 1 2 4 16 64 256

2006 openstacks 30 30 7.4 7.6 7.3 7.9 9 10.5
2006 pathways 30 9.2 9.1 9.7 7.4 4.7 4.8 5.1
2006 rovers 40 22.3 22.9 23.2 23.8 24.3 29 32.2
2006 storage 30 20.1 19.3 20.4 21.8 22.2 23.8 21.6
2006 tankage 50 21.4 22.3 22.4 22.4 26 33.9 38.1
2006 tpp 30 21.4 22 23.3 24.6 30 30 30
2006 trucks 30 16.1 15.1 15.4 15.5 16.5 19 18.8

2006 Totals 240 140.5 118.1 122 122.8 131.6 149.5 156.3

2008 cybersec 30 25.3 26.8 26.8 28.7 29.1 29.4 17.9
2008 elevators 30 30 30 30 30 30 30 30
2008 openstacks 30 30 30 30 30 30 30 30
2008 parcprinter 30 25.7 24.9 24.4 21.8 20.9 18.4 14.5
2008 pegsol 30 30 30 30 30 30 29.7 29.1
2008 scanalyzer 30 27.6 27.7 27.4 28.1 29.6 27.3 24.1
2008 sokoban 30 29 29 29 29 28.4 28.4 27.1
2008 transport 30 17.2 17.6 17.9 16.9 19.4 21.1 24.3
2008 woodworking 30 15.4 15.7 16 16.5 21.9 30 30

2008 Totals 270 230.2 231.7 231.5 231 239.3 244.3 227

2011 barman 20 11.4 15.7 18.9 19.7 19.9 20 18
2011 elevators 20 13.3 13.9 15.2 15.1 17.2 20 20
2011 floortile 20 4.2 4.4 4.4 4.7 4.6 5 6.6
2011 nomystery 20 8.4 6.2 5.8 5.7 5.5 5.6 4.9
2011 openstacks 20 18.5 20 20 20 20 19.9 19.7
2011 parcprinter 20 11.6 10.9 11.1 9.7 7.4 4.1 0.6
2011 parking 20 14.4 16.9 16.9 16.5 7.2 2.4 0.2
2011 pegsol 20 20 20 20 20 20 19.9 19.4
2011 scanalyzer 20 17.8 17.9 17.7 17.8 19.4 17.6 14.4
2011 sokoban 20 19 19 19 19 18.7 18.4 16.9
2011 tidybot 20 11.2 13.1 14.2 13.8 16.6 16.4 11.8
2011 transport 20 0 0 0 0.1 0.6 2.6 4.7
2011 visitall 20 3.8 4.6 5.4 6.3 8.7 12.5 18.2
2011 woodworking 20 2.6 2.2 2.5 2.9 6.8 19 20

2011 Totals 280 156.2 164.8 171.1 171.3 172.6 183.4 175.4

All Domains Totals 790 526.9 514.6 524.6 525.1 543.5 577.2 558.7

Table 1: The coverage of heuristic perturbation with lazy heuristic evaluation.

6



heuristic perturbation at a noise level of 256. However, as these more modest
coverage improvements do not come with coverage losses in other domains, ε-greedy
node selection did lead to a higher coverage than heuristic perturbation.

There is some correlation between the domains in which heuristic perturbation
and ε-greedy node selection node selection result in coverage improvements. For
example, both lead to improvements 2006 tankage, 2011 barman, 2008 woodwork-
ing, and 2011 woodworking, though heuristic perturbation typically yields larger
coverage gains in such domains. However, there are domains in which ε-greedy
node selection leads to modest improvements while heuristic perturbation leads to
no change in coverage or a decrease in coverage. For example, in 2011 floortile,
2011 nomystery, and 2011 parcprinter, standard GBFS solves a total of 24.2 on
average, while ε = 0.3 solves a total of 29 on average, and GBFS at a noise level
of 64 (the noise level with the highest overall coverage) solved a total of 14.7 on
average. There are also domains in which heuristic perturbation improves coverage
and ε-greedy node selection does not. 2006 tpp and 2008 transport are two such
examples. In these domains, both standard GBFS and ε = 0.2 solve an average of
38.6 problems, while heuristic perturbation at a noise level of 256 solves 51.1.

Since ε-greedy node selection often leads to modest coverage gains on a domain-
by-domain basis without losing much coverage in other domains, it can be viewed
as a low-risk technique. This is because there is little risk in supplementing GBFS
with ε-greedy node selection and badly hurting performance. In contrast, heuristic
perturbation when using a high noise level can be seen as high-risk since the chance
of it significantly improving GBFS also comes with a chance of it causing a substan-
tial decrease in performance. In the next section, we will show that by combining
these low and high-risk techniques in an algorithm portfolio, we can benefit from
the strengths of both.

4.3 Using GBFS Techniques in a Portfolio

An algorithm portfolio is a collection of planning techniques that are available to a
single planning system for use on any given problem. Once a portfolio of algorithms
has been selected, it can be used in a variety of ways. One popular way is to use a
classifier to select a single planner from the portfolio for a given problem, based on
features of the problem description [15, 1]. While this can be effective in practice, it
does require a substantial training phase. A second technique is to use all planners
in the portfolio on the given problem by running each in turn for some portion of
the available time [6, 18, 16]. An easy way to do this is to assign each an equal
portion of the planning time. For example, if there are k planners in the portfolio
and the time limit is 30 minutes, we can run each for 30/k minutes. This approach
will be referred to as uniform time partitioning [18].

Below we will show that these new exploration encouraging techniques lead to
even larger coverage gains when they are used in a portfolio. To do so, we will use
the empirical results summarized in tables 1 and 2 to estimate the expected per-
formance of a number of different portfolios which are each deployed using uniform
time partitioning. For details on how these calculations are performed, see [18].
The results are shown in Table 3 which considers portfolios, mostly of size 2. The
candidates for the portfolios included standard GBFS, and 4 parameter settings of
each of the heuristic perturbation and ε-greedy approaches.

7



Domain # of ε
Name Probs 0.0 0.1 0.2 0.3 0.5 0.75 0.99

2006 openstacks 30 30 29.9 29.8 29.9 30 29.4 29.3
2006 pathways 30 9.2 11.2 11.3 11.4 10.1 10 5.7
2006 rovers 40 22.3 25.4 25.9 25.8 26.1 24.2 18.1
2006 storage 30 20.1 20.9 20.8 20.8 21 20.8 18.6
2006 tankage 50 21.4 25.7 26.5 26.6 26.6 26.9 21.6
2006 tpp 30 21.4 21.8 21.1 20.1 17.6 16.1 13.1
2006 trucks 30 16.1 18.2 18.1 17.6 17.8 16.9 15.2

2006 Totals 240 140.5 153.1 153.5 152.2 149.2 144.3 121.6

2008 cybersec 30 25.3 29.9 29.4 30 29.5 30 29.8
2008 elevators 30 30 30 30 30 30 30 29
2008 openstacks 30 30 30 30 30 30 30 30
2008 parcprinter 30 25.7 26.8 27.2 26.8 26.4 26.5 25.7
2008 pegsol 30 30 30 30 30 30 30 29.9
2008 scanalyzer 30 27.6 29.1 28.7 28.8 27.9 27.5 22.1
2008 sokoban 30 29 29 29 29 29 29 28
2008 transport 30 17.2 17.9 17.5 17.8 16.8 15.8 13.7
2008 woodworking 30 15.4 23.9 26.3 27.3 27.7 24.4 16.1

2008 Totals 270 230.2 246.6 248.1 249.7 247.3 243.2 223.3

2011 barman 20 11.4 17.8 18.2 18.3 17.5 14 0
2011 elevators 20 13.3 14.7 14.7 14.9 13.7 11.9 8.6
2011 floortile 20 4.2 6.4 6.3 6.4 6.5 6.2 5.1
2011 nomystery 20 8.4 9.1 8.6 8.5 9.3 9.1 7.7
2011 openstacks 20 18.5 18.5 17.9 17.5 16.5 14.4 10
2011 parcprinter 20 11.6 13.7 14.1 13.6 13.8 13 12.3
2011 parking 20 14.4 12.5 12.6 11.5 10 6.4 0.3
2011 pegsol 20 20 20 20 20 20 20 19.9
2011 scanalyzer 20 17.8 18.7 18.4 18.6 18.1 17.3 12.1
2011 sokoban 20 19 19 19 19 19 19 18.1
2011 tidybot 20 11.2 13 13.8 14.4 14.6 13.7 6.8
2011 transport 20 0 0.2 0.1 0 0 0 0
2011 visitall 20 3.8 7 6.9 6.6 5.8 4.6 1.8
2011 woodworking 20 2.6 11.1 12.9 13.5 13.2 9.2 2

2011 Totals 280 156.2 181.7 183.5 182.8 178 158.8 104.7

All Domains Totals 790 526.9 581.4 585.1 584.7 574.5 546.3 450.6

Table 2: The coverage of ε-greedy node selection with lazy heuristic evaluation.

8



Each entry in the table shows the expected performance of a different portfolio.
For example, the entry in the row labelled “GBFS” and the column labelled “Noise
Level 16” shows that a portfolio containing one instance of standard GBFS and one
instance of GBFS with heuristic perturbation at a noise level of 16 is expected to
solve an average of 588.9 of the 790 problems in our test set. The data in each row
therefore shows the expected performance of all portfolios tested which contain the
technique corresponding to the row label, with the best portfolio containing that
technique shown in bold. The rows marked NL=k refer to GBFS using heuristic
perturbation at a noise level of k, while ε = j refers to ε-greedy node selection with
ε = j. The “Alone” column shows the performance of the corresponding technique
when it is used alone and not in a portfolio. This data is taken directly from the
“All Domains Totals” rows in Tables 1 and 2.

When the column and row refer to the same planner, we show the performance of
a portfolio which contains several instances of the same technique which only differ
in their random seed. For these entries, we considered every portfolio containing
anywhere from 2 to 10 instances, with the best coverage seen by any of these
portfolio sizes being shown. The number of planner instances used in the portfolio
is shown in brackets. The table shows that in almost all such cases (which can be
found along the diagonal of the table), it is at least as good to perform uniform
time partitioning over multiple instances of the same technique than it is to let a
single run of that technique to use the entire 30 minutes. As described in [18], this
is because uniform time partitioning can take advantage of the variance caused by
the stochastic nature of all techniques considered.

However, none of the portfolios containing only multiple instances of the same
planning technique appear in bold, as in all tested cases it is better to mix-and-
match techniques. In particular, the best portfolios appear to be constructed by
combining a low-risk technique (such as standard GBFS, GBFS at a low noise level,
or ε-greedy node selection), with a high-risk technique (such as GBFS with a high
noise level). For example, the best portfolios containing standard GBFS or GBFS
at the low noise level of 4, are achieved when these are each combined with GBFS
instances with noise levels of 64 and 256, respectively. Similarly, the high noise level
GBFS instances pair best with ε-greedy instances, while the ε-greedy instances are
best paired with GBFS instances at a high noise level. In particular, the best
expected coverage is achieved by the portfolio that contains one instance of GBFS
at a noise level of 256 and an instance of GBFS using ε-greedy node selection with
ε = 0.2. This portfolio solves 22.5% more problems than standard GBFS.

In contrast, combining only multiple low-risk approaches or only high-risk ap-
proaches is ineffective. This can be seen when two different ε-greedy approaches
are used in a portfolio, or when combining ε-greedy with standard GBFS. Similarly,
using a portfolio that only contains GBFS instances at high noise levels also leads
to only minor coverage improvements.

5 Future Work

In this section, we describe future work along two lines. In the first, we consider bet-
ter understanding the techniques described above, while in the second we consider
an alternative way to introduce exploration into search.

9



H
eu

ri
st

ic
P

er
tu

rb
at

io
n

ε-
G

re
ed

y
N

o
d
e

S
el

ec
ti

on
A

lo
n
e

G
B

F
S

N
L

=
4

N
L

=
16

N
L

=
64

N
L

=
25

6
ε

=
0.

1
ε

=
0.

2
ε

=
0.

3
ε

=
0.

5

G
B

F
S

52
6.

9
52

3.
1(

3)
56

1.
2

58
8.

9
6
2
8
.2

62
5.

0
57

3.
7

58
0.

2
58

1.
6

57
7.

8

N
L

=
4

52
5.

1
56

1.
2

54
3.

7(
6)

56
3.

1
60

3.
9

6
1
8
.0

59
3.

6
59

8.
4

59
9.

9
59

8.
1

N
L

=
16

54
3.

5
58

8.
9

56
3.

1
56

6.
4(

7)
59

2.
4

60
8.

7
60

7.
2

61
1.

1
6
1
1
.5

60
9.

6
N

L
=

64
57

7.
2

62
8.

2
60

3.
9

59
2.

4
58

9.
5(

3)
59

7.
7

6
3
6
.2

63
6.

1
63

5.
5

63
3.

3
N

L
=

25
6

55
8.

7
62

5.
0

61
8.

0
60

8.
7

59
7.

7
56

2.
5(

2)
64

3.
6

6
4
5
.2

64
4.

2
64

1.
2

ε
=

0.
1

58
1.

4
57

3.
7

59
3.

6
60

7.
2

63
6.

2
6
4
3
.6

58
2.

4(
2)

58
8.

1
58

9.
1

58
6.

7
ε

=
0.

2
58

5.
1

58
0.

2
59

8.
4

61
1.

1
63

6.
1

6
4
5
.2

58
8.

1
58

7.
6(

2)
58

9.
5

58
7.

5
ε

=
0.

3
58

4.
7

58
1.

6
59

9.
9

61
1.

5
63

5.
5

6
4
4
.2

58
9.

1
58

9.
5

58
7.

3(
2)

58
7.

1
ε

=
0.

5
57

4.
5

57
7.

8
59

8.
1

60
9.

6
63

3.
3

6
4
1
.2

58
6.

7
58

7.
5

58
7.

1
58

0.
4(

2)

T
ab

le
3:

T
h
e

ex
p

ec
te

d
p

er
fo

rm
an

ce
of

p
or

tf
ol

io
s

co
n
st

ru
ct

ed
b
y

p
ai

ri
n
g

th
e

p
la

n
n
in

g
te

ch
n
iq

u
e

sh
ow

n
in

th
e

ro
w

an
d

th
e

co
lu

m
n
.

T
h
e

co
lu

m
n

m
ar

ke
d

“A
lo

n
e”

sh
ow

s
th

e
p

er
fo

rm
an

ce
of

ea
ch

te
ch

n
iq

u
e

w
h
en

u
se

d
w

it
h
ou

t
a

p
or

tf
ol

io
.

W
h
en

th
e

ro
w

an
d

co
lu

m
n

p
la

n
n
er

is
th

e
sa

m
e,

th
e

ta
b
le

sh
ow

s
th

e
b

es
t

p
er

fo
rm

an
ce

of
an

y
p

or
tf

ol
io

of
si

ze
2

to
10

(t
h
e

b
es

t
sh

ow
n

in
b
ra

ck
et

s)
w

h
en

re
st

ar
ti

n
g

m
u
lt

ip
le

ti
m

es
w

it
h

th
e

sa
m

e
p
la

n
n
er

.

10



5.1 Understanding Exploratory GBFS

While the above experiments provide evidence that there are benefits to be had
by adding exploration to GBFS, more experimentation is needed to determine how
this exploration interacts with other popular planning techniques. State-of-the-art
planners such as LAMA use several other planning techniques including multi-queue
best-first search [5] and preferred operators [13]. Exploration may have less of an
impact when the planner is strengthened by these other means, and determining
which of these planning enhancements still work well with heuristic perturbation
and ε-greedy node selection remains an important topic for further study.

There are also other existing techniques for adding randomness and diversity
into search, such as UCT [9], monte-carlo random-walk planning [11], diverse best-
first search [8], and k-best-first search [3]. Further study is needed so as to determine
the relationship between these and the new techniques proposed in this report.

5.2 Alternative Methods for Introducing Exploration

While ε-greedy node selection strategy occasionally samples uniformly from the
nodes in OPEN, an alternative approach could be to always sample based on some
probabilistic distribution defined over all the nodes in OPEN. This is the idea be-
hind Open List Sampling Search. One possible distribution is given by the softmax
function for which the probability of selecting a node n is given by

e−λh(n)∑
n′∈OPEN e

−λh(n′)

where λ is a user set parameter such that λ ≥ 0. This function causes node se-
lection to be exponentially biased towards lower heuristic values. However, as λ
approaches 0, this distribution “flattens” out and approaches the uniform distribu-
tion. An analysis of what sort of distributions lead to effective searches, or which
distributions mix well to make an effective portfolio, remain as future work.

6 Conclusion

In this report, we have considered simple techniques for introducing exploration
into GBFS. The first of these techniques, heuristic perturbation, was shown to
be a high-risk approach that leads to substantial coverage improvements in some
domains and substantial coverage losses in others. The second of these techniques,
ε-greedy node selection, is a much lower-risk approach that leads to modest coverage
improvements over a variety of domains without substantial coverage losses in any
other domains. However, both techniques did lead to coverage improvements when
considered over the entire test set used for a variety of parameter settings.

Since the two techniques achieve their coverage improvements in different ways,
they were also shown to pair together well in portfolios. In particular, a portfolio
containing one instance of GBFS using ε-greedy node selection and one instance of
GBFS using heuristic perturbation was able to solve a total of 118.3 more problems
on average than standard GBFS alone, which represents a 22.5% increase.

11



Appendix A Heuristic Perturbation in the 2006

Openstacks Domain

As described earlier, heuristic perturbation is particularly harmful in the 2006 open-
stacks domain. We will consider why in this appendix.

A.1 Openstacks 2006 Domain Description

In this domain, the task is to schedule the manufacturing of k different types of
products so as to satisfy m given orders, each consisting of some subset of the k
products. This schedule should be selected such that as little of the storage space
on the manufacturing floor is used at all times during the manufacturing process.
Manufacturing floor space is taken up by orders which have been partially filled,
but for which all required products have not been manufactured. Each order which
is currently being filled is given its own stack on the manufacturing floor. Such
orders are said to have been started but not shipped. The products necessary for
a particular order will be placed on the corresponding stack once they are manu-
factured. Once all of the products for a particular order have been manufactured,
that order can be shipped and its corresponding stack will become available for
another order. The best plan will then find an ordering for the manufacturing of
the products such that the maximum number of stacks needed at any time during
production is minimized.

This process is also constrained by the fact that only one kind of product p can
be manufactured at a time, and due to the prohibitive cost of changing production
from one product to another, the same product cannot be produced twice until
the given set of orders are all satisfied. This means that when the production of
product p has been initiated, the total amount of p needed to satisfy all given orders
is done at the same time, and each of the orders requiring p must each already have
a stack designated to them.

While it is difficult to find the best solution, it is easy to find a solution to a given
openstacks problem since any ordering for the manufacturing of the products will
suffice. Yet, when heuristic perturbation is added to the Fast Downward planner,
the achieved coverage in this domain is quite low. So as to see why, we will need
to briefly consider some aspects of how this problem is represented as a planning
problem. We do so in the next section.

A.2 Openstacks 2006 Domain Representation

In the representation of this domain used in the planning competition and the ex-
periments above, there is an predicate encoding of a variable called stacks-avail.
This variable is used to represent the number of stacks that can be assigned to
orders without increasing the maximum number of stacks used at any time during
production. For example, if the maximum number of stacks needed at any time
previously during the manufacturing process is 5 and there are currently only 2
orders which have been started but not shipped, then stacks-avail will be 3.
This is because at most 3 new orders can be started along with the current 2, be-
fore the maximum seen at any time must increase. Note that in the initial state,
stacks-avail is 0 since no stacks have been needed at that point.

12



The problem representation also requires that stacks-avail never be larger
than the total number of orders, m, since there will never need to be any more
than m stacks assigned to orders at any time. While this constraint seems rather
intuitive, it can lead to problems for searches that include exploration. To see
this, we need to consider the actions that can change the value of stacks-avail.
We begin with the two actions that can increase its value by one. The first is
ship-order, which takes a completed order as a parameter and ships it. In doing
so, this action makes a previously used stack available to be designated to some
other order. The second action which increases stacks-avail is open-new-stack.
This action corresponds to a request from the planner for a new unused stack. It is
intended to allow the planner to explicitly increase the maximum number of stacks
used at any one time. There is also one action which can decrease stacks-avail:
start-order. This action takes as a parameter one of the orders which has not
been started or shipped and it decreases the value of stacks-avail by designating
an unused stack to that order. Since an order can only have a stack designated for
it if there is an available stack, start-order can only be applied if stacks-avail
is larger than 0.

Now let us reconsider the constraint which requires that stacks-avail is never
larger than m. One consequence of this constraint is that both ship-order and
open-new-stack are not applicable if the value of stacks-avail ism since applying
either would increase stacks-avail to m + 1. Surprisingly, this also means that
despite the fact that any ordering for the manufacturing of the products leads to
a goal state, there are also regions of the state space from which no goal state can
be reached. To see this, consider a problem in which there are 10 orders, each of
which needs the same one product. One of the optimal solutions is to make 10
open-new-stack actions, designate each of the newly available stacks to an order,
make the product, and then ship each of the completed orders.

Consider the state in this optimal solution which is right after the product has
been made but prior to the shipping phase. We will call this state S. stacks-avail
will be 0 in S, since each of the 10 stacks made available by the application of 10
open-new-stack actions has been designated to an order. Now consider the child
of S, denoted S′, which is the result of applying the unnecessary, but legal action
of open-new-stack to S. The state is not on the optimal path described above.
By applying open-new-stack to S, stacks-avail is increased from 0 in S to 1 in
S′. Since there are no more orders to be started, there are no actions available that
will decrease stacks-avail. The result is that there are 10 orders to be shipped,
but only 9 ship-order actions which can be made, since each ship-order will
increment stacks-avail and stacks-avail can never be larger than 10. As such,
it is not possible to reach a goal state from S′ or any of its descendents. We will
refer to such areas of the state space dead-end regions.

A.3 The FF Heuristic on Openstacks 2006 Problems

In the example given above, the dead-end region is quite large. One reason for this is
that there are 10! different ways to ship 9 of the 10 orders, However, if the heuristic
identifies that there is no solution possible from S′, then this state can be safely
pruned and the region will be avoided. Unfortunately, this is not recognized by the
FF heuristic which instead indicates that progress is made whenever a ship-order

action is applied in any descendent of S′. Instead, the FF heuristic will only prune

13



those descendents of S′ in which stacks-avail is m.
The FF heuristic is unable to recognize that no goal states can be reached from

within these dead-end regions because of the way it evaluates states. This heuristic
uses delete relaxation to define a simpler planning task for which a solution can be
found easily. The length of this solution is then used to estimate the distance from
the goal in the non-relaxed problem. In the relaxed problem, a fact which is true
in the current state cannot become false. For example, recall that stacks-avail

is 1 in S′. If a ship-order action is made to S′ in the relaxed version of this
problem, stacks-avail is both 1 and 2 in the successor state. This means that
regardless of what sequence of actions is applied to the relaxed version of S′, the
fact that stacks-avail is some value other than 10 will always remain true. This
allows for all 10 ship-order actions to be applied in the relaxation of the problem
even though only 9 can be applied in the original problem. The FF heuristic thus
incorrectly suggests that goals are reachable from states in the dead-end region.

This behaviour is similar to that seen when using the FF heuristic in resource-
constrained domains, as shown by Nakhost et al. [10]. In the case of openstacks
2006, the resource is the difference between stacks-avail and the number of orders
m, and both ship-order and open-new-stack are actions which consume it.

A.4 Avoiding Dead-End Regions Using Standard GBFS

The FF heuristic’s inability to detect dead-end regions does not adversely affect
standard GBFS because it never explores such regions. This is because the FF
heuristic usually identifies that such unnecessary open-new-stack actions do not
actually lead to a state which is closer to the goal. For example, in the example
above, both S and S′ will have the same heuristic value of 10. However, the heuristic
does recognize that applying a ship-order action to S will lead to a state with a
heuristic value of 9. A standard GBFS will therefore select a successor Sship of S
reached with a ship-order action. As the heuristic will continue to decrease when
ship-order actions are applied to descendents of Sship, all further node expansions
will be from those in the search tree below Sship. In avoiding such dead-end regions
of the search space, GBFS makes the heuristic’s weakness in such areas irrelevant.

Even when GBFS is used with deferred heuristic evaluation, the algorithm will
still avoid such regions provided that it breaks ties in favour of the node which was
placed on OPEN first. Recall that when using this technique, all successors of S
will be placed in OPEN with a heuristic value of 10. If the first successor of S
that is expanded is reached by applying a ship-order action in S, the resulting
successor will have a heuristic value of 9 which will be assigned to all of its children.
As such, the search will concentrate on the portion of the search tree under this
node and bypass the dead-end region of the search entirely.

Even if S′ is expanded before the other successors of S, this region will also
be avoided if the search is using the tie-breaking scheme described above. This is
because the children of S′ will be assigned a heuristic value of S′, which is 10. As
Sship will have the same evaluation of 10 but was put on OPEN earlier, it must
be expanded before any successor of S′. Since the successors of Sship will then be
assigned a heuristic value of 9, the search will concentrate on the search tree under
Sship and bypass the dead-end region in which the heuristic is uninformative.

Note, that so as to be consistent with Fast Downward [5] and LAMA [14], this
tie-breaking scheme was used in the experiments shown above.

14



A.5 Dead-End Regions and Heuristic Perturbation

Unfortunately, when heuristic perturbation is used, it can push the search into these
dead-end regions. To see why, let us again consider state S as described above and
assume a noise level of 1. Since deferred heuristic evaluation is being used, the
states lead to by all the ship-order actions and the open-new-stack action will
have the same non-noisy heuristic value of 10. If the ship-order actions are all
assigned a noise value of 1, and the open-new-stack action is assigned a noise value
of 0, then S′ will be expanded. As described above, S′ also has a non-noisy heuristic
value of 10. This means that all of its children will end up being assigned a heuristic
value of either 10 or 11. Since all of the other children of S have been assigned the
heuristic of 11, this means that if even one of the children of S′ achieved by using
a ship-order action is assigned a noise value of 0, then it will be expanded. This
child, denoted S′′, cannot lead to a goal. However, due to the use of the ship-order
action, the FF heuristic will instead indicate that progress has been made towards
the goal. As such, it will have a non-noisy heuristic value of 9 and the search will
continue to make progress into a dead-end region of the search space.

Even if the search does correctly expand a successor of S generated using a
ship-order action, the search can still end up in a dead-end region. This is because
stacks-avail will be 1 in the resulting state and 9 orders will still need to be
shipped. As such, the situation is analogous to state S since the unnecessary use of
action open-new-stack will again push the search into a dead-end region. As this
same situation will occur on every step to the goal, the likelihood that the search
enters a dead-end region of the space will increase. This can then cause the low
coverage in this domain achieved with even low noise levels as seen in Table 1.

A.6 Later Representations of the Openstacks Domains

It is unclear why this same behaviour does not occur in the 2008 and 2011 versions
of this problem. The encoding did change somewhat from 2006 to 2008 with the
main result being that the same problem will have a shallower search tree when
encoded using the 2008 representation when compared to the 2006 representation.
Yet despite this difference, the dead-end regions described above still do occur in
the 008 encoding. As such, this topic requires further study.

References

[1] Isabel Cenamor, Tomás de la Rosa, and Fernando Fernández. Learning Predic-
tive Models to Configure Planning Portfolios. In ICAPS Workshop on Planning
and Learning, 2013.

[2] Rina Dechter and Judea Pearl. Generalized Best-First Search Strategies and
the Optimality of A*. J. ACM, 32(3):505–536, 1985.

[3] Ariel Felner, Sarit Kraus, and Richard E. Korf. KBFS: K-Best-First Search.
Annals of Mathematics and Artificial Intelligence, 39(1-2):19–39, 2003.

[4] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics, SSC-4(2):100–107, 1968.

15



[5] Malte Helmert. The Fast Downward Planning System. JAIR, 26:191–246,
2006.

[6] Malte Helmert and Gabriele Röger. Fast Downward Stone Soup: A Baseline
for Building Planner Portfolios. In ICAPS-2011 Workshop on Planning and
Learning, pages 28–35, 2011.

[7] Jörg Hoffmann and Bernhard Nebel. The FF Planning System: Fast Plan
Generation Through Heuristic Search. JAIR, 14:253–302, 2001.

[8] Tatsuya Imai and Akihiro Kishimoto. A Novel Technique for Avoiding Plateaus
of Greedy Best-First Search in Satisficing Planning. In AAAI, 2011.

[9] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In
ECML, pages 282–293, 2006.

[10] Hootan Nakhost, Jörg Hoffmann, and Martin Müller. Resource-Constrained
Planning: A Monte Carlo Random Walk Approach. In ICAPS, 2012.

[11] Hootan Nakhost and Martin Müller. Monte-Carlo Exploration for Determin-
istic Planning. In IJCAI, pages 1766–1771, 2009.

[12] Ira Pohl. Heuristic search viewed as path finding in a graph. Artificial Intel-
ligence, 1(3-4):193–204, 1970.

[13] Silvia Richter and Malte Helmert. Preferred Operators and Deferred Evalua-
tion in Satisficing Planning. In ICAPS, 2009.

[14] Silvia Richter and Matthias Westphal. The LAMA Planner: Guiding Cost-
Based Anytime Planning with Landmarks. JAIR, 39:127–177, 2010.

[15] Mark Roberts, Adele Howe, and Landon Flom. Learned models of performance
for many planners. ICAPS 2007 Workshop AI Planning and Learning, pages
36–40, 2007.

[16] Jendrik Seipp, Manuel Braun, Johannes Garimort, and Malte Helmert. Learn-
ing Portfolios of Automatically Tuned Planners. In ICAPS, 2012.

[17] Richard Valenzano, Shahab Jabbari Arfaee, Jordan Thayer, Roni Stern, and
Nathan R Sturtevant. Using Alternative Suboptimality Bounds in Heuristic
Search. In ICAPS, 2013.

[18] Richard Valenzano, Hootan Nakhost, Martin Muller, Jonathan Schaeffer, and
Nathan Sturtevant. Arvandherd: Parallel Planning with a Portfolio. In ECAI,
pages 786–791. IOS Press, 2012.

[19] Richard Anthony Valenzano, Nathan R. Sturtevant, Jonathan Schaeffer, Karen
Buro, and Akihiro Kishimoto. Simultaneously Searching with Multiple Set-
tings: An Alternative to Parameter Tuning for Suboptimal Single-Agent
Search Algorithms. In ICAPS, pages 177–184, 2010.

16


