INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI fiims
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction. .

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

University of Alberta

DESIGN AND IMPLEMENTATION OF DIGIT-SERIAL ONLINE MULTIPLY-ACCUMULATE
ARITHMETIC OPERATIONS

by

William Natter ©

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of Master of Science.

Department of Department of Electrical and Computer Engineering

Edmonton, Alberta
spring 2001

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services
395 Wellington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your Kl Votre rélérence

Our fle Notre rétérence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette these.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-60479-9

Canada

University of Alberta

Library Release Form

Name of Author: William Natter

Title of Thesis: Design and Implementation of Digit-Serial Online Multiply-Accumulate
Arithmetic Operations

Degree: Master of Science

Year this Degree Granted: 2001

Permission is hereby granted to the University of Alberta Library to reproduce single copies
of this thesis and to lend or sell such copies for private, scholarly or scientific research
purposes only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as hereinbefore provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever
without the author’s prior written permission.

Wil Mot

William Natter

CEB 238

University of Alberta
Edmonton, AB
Canada, T6G 2G7

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Gradu-
ate Studies and Research for acceptance, a thesis entitled Design and Implementation
of Digit-Serial Online Multiply-Accumulate Arithmetic Operations submitted by
William Natter in partial fulfillment of the requirements for the degree of Master of Sci-

ence

Date: Yanua Y. 26,2001

7

%{ Lo

Dr. T. Chen/{Committee chair)

CBleud guloe~ Ty L L L L

Dr. B. Nov;f.cjuzian (Supervisor)

Dr. L. Stewart

To my wife, and both our families.

Abstract

This thesis is concerned with the combination of the online and digit-serial arithmetic tech-
niques for the design, development, and hardware implementation of algorithms for mul-
tiplication and multiply-accumulate arithmetic operations. The online technique processes
digital signals as generated and consumed by current practical analog-to-digital and digital-
to-analog converters. The digit-serial technique permits a trade-off between speed and
area in a corresponding hardware implementation, and is extended to dynamically chang-
ing wordlengths (with small hardware overhead). Multiplication and multiply-accumulate
operations are performed as successive additions of partial operation updates, justifying
the use of (redundant) ordinary signed-digit number systems where the addition archi-
tecture delays can be made independent of the wordlengths of the inputs. Emphasis is
placed on the signed-binary number system, as it is closest to the current practical number
systems (signed-magnitude and two’s complement). Relationships between number sys-
tems are established to subsequently exploit their addition scheme similarities and allow
the determination of the corresponding fastest and smallest hardware implementations for
the signed-binary and binary carry-save number systems. A generic online algorithm for
multiply-accumulate operation is developed so as to allow its modification into an algo-
rithm for inner product by the mere change of the computation of a single variable (a
partial operation update), the other variables being operation-independent. Consequently,
considerable design time savings are achieved by sharing the same core element for nu-
merous different arithmetic operations. The feasibility of a re-pipelined online digit-serial
signed-binary multiplication algorithm is established by employing the IEEE 754 SB RNE
rounding technique, and compares it to an existing re-pipelined least-significant-digit- (LSD-
) first digit-serial two’s complement multiplication algorithm employing the same rounding
technique. A simulation of the corresponding FPGA hardware implementation confirms the
correct functionality of the algorithm. Parameterized gate-level area and delay estimates of
corresponding ASIC hardware implementations are given. Moreover, an online bit-parallel
signed-binary algorithm for multiply-accumulate operation employing a novel signed-binary

to minimally redundant base-4 recoding technique, the IEEE 754 SB RNE rounding tech-
nique, and a novel overflow detection and correction technique is developed. The resulting
algorithm is subsequently compared to an existing LSD-first bit-parallel signed-binary algo-
rithm for multiply-accumulate operation employing an existing signed-binary to minimally
redundant base-4 recoding technique and the IEEE 754 SB RNE rounding technique. A
simulation of FPGA hardware implementation again confirms the correct functionality of
the algorithm.

Acknowledgements

First, let me thank my wife, our families, and our close friends for supporting me during
the journey coming to an end with this thesis, in particular for proof-reading part of it.

Neil definitely deserves my humble gratitude for accepting to proof-read the thesis when
he had so much to do.

The writing of this thesis would not have been possible without NSERC and Micronet
grants, obtained through the hard work of numerous students in the research group. In
particular, Vishwas Rao has initiated the work on which this thesis is based.

Last, but far from being least, I would like to acknowledge the help, support, and
guidance of my supervisor, Dr Nowrouzian.

Contents

1 Introduction 1
1.1 Digital Signal Processing 1
1.2 Arithmetic for Digital Signal Processing 3
1.3 Data Processing Techniques 5

1.3.1 The Digit-Serial Arithmetic Technique 6
1.3.2 Online Arithmetic Technique 7
14 OpenProblems 8
1.4.1 OnlineProcessingottt onnen. 8
1.4.2 Constant-Delay Addition 9
1.4.3 Digit-Serial Online Operations 9
1.5 OverviewoftheThesis. v 10

2 Theoretical Background for High-Speed Digit-Serial Online Arithmetic
Operations 12
21 Imtroduction. i it i it i e e e 12
2.2 Fixed-Point Arithmetic 13

221 Imtroduction it 13

2.2.2 Number Representation and Number Systems 13
2.2.3 Similarities Between Addition Schemes in Generalized Signed-Digit

Number Systemst i v ittt 16

2.3 Data Processing Techniques 20

2.3.1 Digit-Serial Arithmetic Technique 20

2.3.2 Online Arithmetic Technique 30

2.4 High-Speed Signed-Binary Addition 34
2.4.1 Redundant Binary Addition Schemes. 35
2.4.2 Characterization and Equivalence of Redundant Binary Addition Schemes 38
2.4.3 Bit-Serial and Digit-Serial Signed-Binary Limited-Carry Addition Ar-

chitectures oo, 43

25 Chapter Summaryttt tt e, 47

Theoretical Background for Online Signed-Digit Multiplication and Multiply-

Accumulate Operations 48
31 Imtroduction.« o i i i e e e e 48
3.2 Proposed Algorithm for Signed-Digit Online MAC Operation 49
321 Nomenclature.ttt 49
3.2.2 Signed-Digit Online MAC Algorithm 51
3.2.3 Determination of the Parameters of the Algorithm 54
3.3 Algorithms and Building Blocks for High-Speed Signed-Binary Multiplication
Architectureso v i it it e e e 59
3.3.1 Single-Digit Multiplier and Digit Clearing Unit 59
3.3.2 Signed-Binary to Minimally Redundant Base-4 Recoding Technique 61
3.4 Rounding and Overflow Handling in Online Arithmetic Operations 70
3.4.1 Rounding of Signed-Binary Words e e 70
3.4.2 Overflow Handling in Online Arithmetic Operations 79
35 ChapterSummaryt i v ittt ot ontn v oenneeens 88
Architecture for Online Signed-Digit Digit-Serial Multiplication 90
41 Imtroductionm. ittt ittt i e 90
4.2 Algorithm for Bit-Serial Signed-Binary Online Multiplication 91
4.3 Extension to a Digit-Serial Signed-Binary Online Multiply-and-Round Algo-
173 ¢+« KR 95

4.4 Architecture for Digit-Serial Signed-Binary Online Multiplication and Round-

442 Online MultiplicationUnits 101

443 OnlineRoundingUnits 103
4.5 Computer Simulation Results and Performance Comparison 104
451 SimulationResults 104

4.5.2 Throughput Parameterization and Improvement Via Re-Pipelining . 106

453 AreaParameterization v v i i it it e e e 109
454 PerformanceComparisons 110
46 ConclusSion . . v v v v i vttt e 112

5 Architecture for Online Signed-Binary Bit-Parallel Multiply-Accumulate
Operation 114
51 Imtroduction. i i ittt e 114
5.2 Bit-Parallel Signed-Binary MAC Algorithm Employing SB to MRB4 Recodingl15
5.3 Architecture for MAC Operation Employing Signed-Binary Multiplier Re-

COding . .« .t e e e e e e e e e e e e e 122

5.3.1 Signed-Binary to Minimally Redundant Base-4 Recoders 122
5.3.2 Online Multiplication Units 123

5.3.3 Rounding and Overflow Correction Unit 124

5.4 Computer Simulation Results and Performance Comparison 124
54.1 SimulationResults, 125

5.4.2 Throughput Parameterization 127
5.4.3 Area Parameterization 00000 127
544 Comparisono v it ittt 128

55 Comclusion00ttt 130
8 Conclusion 131
6.1 Review of Material Presented 131
6.2 Proposed Areasof Future Work 132
63 ConcludingRemarks, 134

Bibliography 135

A Systematic Enumeration of Redundant Binary Addition Schemes

A.l1 Determination of Set Cardinalities
A.2 Systematic Determination of the Sets S;,, Sqy Sc;,and Sg
A2l Casel: |S,y|=3and|Se|=2..........,
A22 Case2: |S;|=2and|Se|=3.........
A.3 Characterization of Redundant Binary Number Addition Schemes
A.4 Equivalence of Redundant Binary Number Addition Schemes

AS Conclusion o v v v ittt e e e e e e e e e e e e e e e e e

List of Figures

L1

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6

4.7

48

Typical DSP System it 2
4-Bit LSD-First Bit-Serial Binary Adder 26
Bit Number in a 4-Bit Bit-Serial Data Stream 27
4-Bit LSD-First Digit-Serial Binary Adder (D=3) 28
Bit Number in a 4-Bit Digit-Serial Data Stream (D=3) 28
Limited Carry Adder Unmit 38
Architecture for Bit-Serial Online Limited-Carry Addition 44
Architecture for Digit-Serial Online Limited-Carry Addition 47
Bound on P, as a function of § and ic for =2,y =4andl,=1... ... 56
Three-Level Signed-Binary to Radix-4 Digit Set Conversion 66
Architecture for Digit-Serial Online Multiply-and-Round Operation 99
Architecture of an Online Multiplication Unit 102
Architecture of an Online Rounding Unit 103
Simulation Resultsfor D=2and W, =W =8................ 105
Simulation Resultsfor D=3 and W, =W, =8................ 106
Re-Pipelined Architecture for MAC Operation and IEEE 754 RNE Rounding,

withWy=8and D=4 108

Throughput Versus Digit-Size of Proposed and Existing Digit-Serial Multi-
plication Architectures, 111
Log of Efficiency Versus Digit-Size of Proposed and Existing Digit-Serial
Multiplication Architectures 112

5.1

5.2
5.3

5.4

Architecture for Bit-Parallel Online Multiply-Accumulate Operation Em-

ployingSBto MRB4 Recoding, 123
Simulation Results for W, =Wy =8 126

Throughput Versus Wordlength of Proposed and Existing Bit-Parallel MAC

Efficiency Versus Wordlength of Proposed and Existing Bit-Parallel MAC
Architectures i e 129

List of Tables

1.1

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4

4.1
4.2
4.3
44

5.1
5.2
5.3
5.4

Classificationof Signals 2
Set Cardinalities in Redundant-Binary Addition Schemes 39
Parametrized Digit Sets of Redundant Binary Addition Schemes 40
CodingtheSet Values 42
Codeforcrandc]oy 45
Signed-Binary Encoding o . 67
Conventions for MRB4 Digit Encoding 68
Low-Precision Roundingof SB Numbers 7
Conversion of OVF,, POVF,, and Spintoe, 87
Test Vectors for Digit-Serial Multiply-Round Operation in Decimal 105
Test Vectors for Digit-Serial Multiply-Round Operation in Signed-Binary . 105
Hexadecimal to Signed-Binary Conversion Table 106
Area Requirement for the Multiplication Architecture 110
Test Vectors for Parallel MAC Operation in Decimal 125
Test Vectors for Parallel MAC Operation in Signed-Binary. 126
List of Delays of Architectural Units 127
List of Areas of Units Constituent in the MAC Architecture 128

List of Symbols

A/D analog-to-digital

ASIC application-specific integrated circuit

BCS binary carry-save

BS bit-serial

BSD balanced (ordinary) signed-digit

D/A digital-to-analog converter

DFG data-flow graph

DS digit-serial

DSP digital signal processing/processor

FA full adder

FPGA field-programmable gate-array

GSD generalized signed-digit

GSDNS generalized signed-digit number system
IEEE Institute of Electrical and Electronics Engineers
LSD least significant digit

MAC multiply-accumulate (arithmetic operation)
MRB4 minimally redundant base-4

MSD most significant digit

OSD ordinary (balanced) signed-digit

OSDNS ordinary signed-digit number system
RNE round to nearest/even

RNU round to nearest/upper

SB signed-binary

TC two’s complement

USD unbalanced signed-digit

USDNS unbalanced signed-digit number system

VHDL Very large scale integrated circuit Hardware Description Language

A multiplicand word
a; multiplicand digit of index i
multiplier word
B, partially formed multiplier word at iteration p
b; multiplier digit of index ¢
c addend word
C, partially formed addend word at iteration p
G addend digit of index &
[attainable upper limit/ bound of a representation
P, off-line partial operation update word at iteration p
13, online partial operation result word at iteration p
3,, truncated (to its y MSDs) online partial operation result word at iteration p
Do online partial operation result digit of index ¢ at iteration p
R, off-line operation result word at iteration p
ﬁp online operation result word at iteration p

i online partial operation result digit of index ¢

wordlength of X

radix/base of a number representation/system

weight of a digit of index ¢

internal wordlength (of ?p)

offset parameter

latency of an online operation

online error at iteration p

redundancy index (OSD number system)
iteration number

addition

logic OR operation

addition of sets

multiplication of a set by a scalar

XOR logic operation

AND logic operation

NOT logic operation

set of positive integers

set of rational

set of reals

equivalence relationship between additions
set of signed integers

set of negative integers

set of positive integers

Chapter 1

Introduction

1.1 Digital Signal Processing

Most living creatures need to communicate in order to survive. Signals, which are sounds,
gestures, or objects, convey the necessary pieces of information to perform communication.

The first man-made devices using electrical signals to convey information are the tele-
graph (invented by Morse in 1844), and the telephone (invented by Bell in 1876). The
fundamental difference between telegraph and telephone is the type of signals they handle.
To send a message by telegraph, one needs to write it on a sheet of paper. Then, a tele-
grapher translates every letter into Morse code. A letter is represented by a sequence of
two symbols, which is called a binary representation of the letter. Then, the symbols are
transmitted in sequence over a wire as short and long impulses of electricity. The message
is decoded on the other side by another telegrapher and handed over to the recipient of
the message or forwarded to another place if necessary. By contrast, to send a message
by telephone one speaks in a mouthpiece which translates the air vibrations into electrical
signals. Of course, these signals are not a binary representation of the message. The elec-
trical signals propagate through a wire, and are translated back to air vibrations through
an ear-piece so that the receiver can hear what was said on the other end.

In electrical engineering, a signal is represented as an amplitude that varies as a function
of time. In other words, the domain of a signal is an interval of time, and its range an
interval of amplitude. An interval is discrete if it contains only a finite number of values
(as opposed to a continuous interval). Therefore, there are four classes of signals, as listed

in Table 1.1. Discrete-time discrete-amplitude signals are frequently referred to as digital,

Table 1.1: Classification of Signals

Continuous Amplitude | Discrete Amplitude

Continuous Time temperature street light
Discrete Time precipitations paycheque

whereas continuous-time continuous-amplitude signals are referred to as analog.

In nature, signals are usually analog, whereas man-made machines usually generate
digital signals. Digital signals are handled by digital signal processors. A main impor-
tant practical advantage of digital processors is their programmability, permitting various
operations to be performed by using the same processor, and their cost-effectiveness. Fortu-
nately, Nyquist determined that if certain conditions apply, analog signals can be digitized,
i.e. represented using corresponding digital signals, and recovered perfectly. Several factors
have contributed to the widespread use of the digital processing of analog and digital data,
often called digital signal processing (DSP). First, the inventions of microprocessors and
application-specific integrated circuits (ASICs) have permitted the custom design of digital
signal processors. Second, the ever-decreasing size of silicon-based transistors has made
possible the doubling of the speed of digital circuits every 18 months, and the reduction of
their cost, the silicon area of a digital circuit largely determining its cost.

A typical DSP system is made of analog-to-digital (A/D) and digital-to-analog (D/A)
converters, and of a digital signal processor, as shown in Figure 1.1. The A/D and D/A

A/D | | Digital Signal | | D/A
Converter Processor Converter

Figure 1.1: Typical DSP System

converters perform the same kind of operation as the translation of a message into their
Morse code in the telegraph. The digital signal processor performs arithmetic operations,
which most often comprise numerous additions and multiplications. The number of calcu-

lations to perform thereby determines the maximum speed at which the DSP system can

2

operate. Moreover, the area of the digital signal processor is a dominant component in the
cost of the DSP system. Both these factors, speed and area, depend greatly on how the
addition and multiplication operations are implemented.

Of particular interest is an arithmetic operation capable of multiplying two numbers,
and adding the result to a third number. Such an operation can be performed by a multiply-
add or by a multiply-accumulate (MAC) arithmetic operation. The multiply-add arithmetic
operation calculates the result and rounds it, whereas the MAC arithmetic operation cal-

culates the full-precision result.

Example 1 Let us multiply 0.01 by 0.02. The result is obtained as 0.0002 in a MAC

arithmetic operation, whereas it is rounded to 0.00 in & multiply-add arithmetic operation.

In this way, the use of MAC arithmetic operations is preferable in digital signal processors
which are sensitive to calculation accuracy.

Consider a digital signal processor employing only addition and multiplication opera-
tions. A MAC modularization technique was developed in (Rao, 1996) to modify such a
processor in order for it to use exclusively MAC arithmetic operations. Therefore, in a
situation where area is the dominant factor, it is sufficient to build a digital signal processor
having a single MAC arithmetic operator, and to perform multiplex all the operations onto
that operator (c.f. the Motorola DSP56002).

A typical digital signal processor using addition, multiplication, and unit-delays is called
a digital filter. Its primary objective is to selectively attenuate or boost certain frequency
components of a signal. This is usually performed by adding weighted present and past
input and past output samples, where the weights are constant. This corresponds to an
inner product of a vector of constant weights by a vector of delayed input and output

samples, which can be translated to a number of MAC arithmetic operations.

1.2 Arithmetic for Digital Signal Processing

Digital signals are sampled and quantized analog signals, and are represented at each sample
time instant by a number. Many different number systems can be used, where the algebraic

value of a number is represented by a succession of digits referred to as a word. The

mapping from word to algebraic value can be performed by assigning each digit a weight.
In this way, the algebraic value is obtained by summing the digit values multiplied by their
corresponding weights. In most number systems, the weights are expressed as consecutive
powers of a radix which will be denoted by 3 (also referred to as the base). Therefore, most
number systems are characterized by their digit set and radix.

Example 2 The radiz of the decimal number system is 10, and the digit set is {0, 1,2,3,4,-
5,6,7,8,9}. Consider the decimal number 5, which can be represented by the decimal word
00510, where 00510 = 0 x 102 4+ 0 x 10! + 5 x 10°. Consider now the binary number system:
it has a radiz 2, and a digit set {0,1}. The decimal number 5 can now be represented in the

binary number system by 1015, where 1 x 22 +0 x 2! +1 x 20 = 005,¢.

Radix- and digit set-based number systems can be classified into two categories, namely,
the fixed-point and floating-point number systems. In a fixed-point number system, the
weights have fixed values, i.e. the largest weight can always be made equal to, for example,
B~1. The digit related to the smallest weight is called the least significant digit (LSD), and
the digit related to the largest weight is called the most significant digit (MSD). Moreover,
the number of digits constituting the word is called the wordlength. In a floating-point
number system, the word is split into two components, namely, the fractional and exponent
parts f and e, respectively. The fractional part is a fixed-point representation of a number
N, and the algebraic value of the desired number is obtained by multiplying N by ¢, which
is referred to as scaling up by B¢. The increased range of a floating-point representation
compared to that of a fixed-point representation is obtained at the expense of additional
precision digits. Consequently, floating-point-based calculations are more prone to accuracy-
related errors than fixed-point-based calculations. The fixed-point binary number system
is the dominant number system in computers, mainly because its digit set has only two
elements, logic 0 and logic 1.

This thesis is concerned with ordinary signed-digit (OSD) number systems, which are
radix-8 fixed-point number systems having a digit set {—n,... ,0,... ,n} such that I.g.l <
n < B (Avizienis, 1961; Parhami, 1990). These number systems are called redundant,

because a given algebraic value may have several different representations.

Example 3 The signed-binary (SB) number system has a radiz 2, and a digit set {1,0,1},
where 1 represents —1. The decimal number 3 can then be represented either by 0115, where
0x22+1x2'+1x29 =3y, by 101, where 1 x 22 +0 x 2! — 1 x 20 = 3,4, or even by
1115, where 1 x22 —1 x 21 +1 x 20 = 3y4.

In high-speed arithmetic operations, the time required to perform an operation, i.e.
the delay, must be minimized. Consider the addition of the words A and B of equal
wordlength, yielding a sum S. If A, B, and S are words expressed in a non-redundant
number system, then the delay to obtain S is, at best, proportional to the logarithm of the
common wordlengths of A and B (Kornerup, 1994). This is mainly due to the fact that the
value of the MSD of S depends on the value of the LSDs of A and B, thereby requiring the
propagation of a carry along the full length of A and B. However, if the number system is
redundant, then the delay can be made independent of the wordlength of A and B, because
the value of the MSD is no longer dependent upon the values of all the digits of A and
B (Avizienis, 1961; Parhami, 1990; Kornerup, 1994). Redundant number system hardware
implementations exhibit larger areas relative to those of non-redundant number systems for
equivalent operations, mainly because their digit sets contain more values. As a result, the
absolute areas of redundant number system hardware implementations have represented a
hindrance in the past. This hindrance has been overcome with the advent of sub-micron
technologies.

In other number systems, such as in the logarithmic, residue, and rational number
systems (Hwang, 1979), the mapping between the word and its algebraic value takes on
different forms, but these forms are beyond the scope of this thesis.

1.3 Data Processing Techniques

A digital signal must be transmitted as a word from an A/D converter to a digital signal
processor, and from the digital signal processor to a D/A converter. At a given time instant,
one, several, or all digits of a word can be transmitted, i.e. in a bit-serial, digit-serial, or bit-
parallel fashion, respectively. Of course, the bit-serial and bit-parallel fashions are subsumed
by the digit-serial arithmetic technique. However, the digit-serial arithmetic technique can

be derived from the bit-serial arithmetic technique.

Moreover, a bit-serial data stream can be processed, (a) the LSD first, which is the
conventional arithmetic technique, or (b) the MSD first, which is the online arithmetic
technique. The digit-serial and online arithmetic techniques are described in the following.

1.3.1 The Digit-Serial Arithmetic Technique

Let us consider an architecture having input data streams consisting of successions of words
having a common wordlength W. By definition, the bit-serial arithmetic technique only
requires to process one bit at a time (as opposed to W for the bit-parallel arithmetic
technique). In addition, the number of wires required for transmission increases from 1
to W. Consequently, the bit-serial technique results in smaller processing units (which is
area-effective), but the bit-parallel technique permits the design of faster architectures. The
speed of an architecture is measured by its throughput, i.e. the number of samples it can
process per time instant.

The main principal trade-off in the design of electronic systems involves achieving the
highest execution speed at the smallest area and the lowest power. The digit-serial arith-
metic technique proposes that the given architecture may process D digits of each of the
input data streams per time instant, where the digit-size D may or may not be a divisor
of W. In this way, a balance can be struck between the area efficiency of bit-serial systems
and the speed efficiency of bit-parallel systems. It is important to note that the bit-serial
and bit-parallel arithmetic techniques are special cases of the digit-serial arithmetic for a
digit-size of 1 and W, respectively.

Any bit-serial architecture can be transformed into its unique digit-serial counterpart
of digit-size D (Parhi, 1991). Then, the bit-serial data stream is sectioned into sets of D
consecutive digits. Of course, digits from two consecutive words may be present in that
set. Therefore, an arithmetic operation on digits coming from two different words/numbers
may occur at a given time instant in a digit-serial architecture, but, of course, must not

interfere.

1.3.2 Online Arithmetic Technique

Current practical A/D and D/A converters generate and consume digits one by one, from
the MSD first to the LSD last. However, in the conventional arithmetic techniques, the
carry propagates from the LSD first to the MSD last. Therefore, unless operations can
be performed the MSD first, delays due to changes in the flow of digits occur. The online
arithmetic technique performs arithmetic operations digit by digit, the MSD first. The result
of such an operation must be expressed in a redundant number system! (Owens, 1983).
Therefore, online arithmetic operations have been seldom used because of the large area in
the corresponding hardware implementations.

The online arithmetic technique finds its roots in 1961, when Avizienis introduced the
notions of signed-digit arithmetic and constant-delay addition (Avizienis, 1961). In 1977,
Irwin introduced online algorithms for several arithmetic operations (Irwin, 1977). In the
past two decades, the increase in transistor density has permitted the very large scale
integration of corresponding architectures to take place. As a result, online algorithms have
gained plenty of interest. The most popular online algorithms perform arithmetic operations
iteratively, the MSD first.

Let us consider an algorithm performing an arithmetic operation. The inputs are referred
to as the operands, and the output as the result. Formally speaking, the online property
can be defined in terms of the input to, or the output from, an arithmetic operation (Owens,
1981). The algorithm is online with respect to its inputs when at a given iteration p, the
first p+ ki, MSDs of the operands are required for calculation, where k;, is a small constant.
Similarly, the algorithm is online with respect to its output when, at a given iteration p,
the first p — kous MSDs of the result have been generated by the algorithm (Owens, 1981),
where ko is again a small constant. Finally, the algorithm is online when it is both online
with respect to its inputs and with respect to its output. The constant k;, + koy: is referred
to as the latency of the online algorithm. The latency represents the number of iterations
elapsing between the arrival time for the input MSD and the departure time for the result
digit having the same weight as the input MSD. It is important to note that, in general, the

'If one assumes that the result word is expressed in a non-redundant number system, then the MSD
cannot be output at the first iteration, because it depends on the values of the LSDs of the inputs.

weight of the MSD of the result is larger than the weight of the MSD of the input, resulting
in a non-zero latency.

The flow of digits in online arithmetic operations corresponds to that in current prac-
tical A/D and D/A converters (unlike the conventional LSD-first arithmetic operations).
The resulting advantages are that, (a) the delay due to a change in the flow of digits is
eliminated, and (b) the LSDs can be discarded when full-precision computation is not re-
quired. Then, the result must be expressed in a redundant number system. If redundant
representations are used both for the input words and the output words, then addition
within online arithmetic processors can be performed in constant time.

The hardware implementations of online arithmetic processors require large areas, be-
cause redundant number systems require larger boolean functions which are more difficult
to develop (Carter and Robertson, 1990; Ercegovac and Lang, 1990; Chow and Robert-
son, 1978); given the rapid decrease in transistor size, the area becomes less important.

In online arithmetic operations, the propagation of the carry toward the MSD must be
stopped. This is accomplished by introducing a latency between the weight of the online
input operand digit(s) and that of the output result digit. As a result, online algorithms
result in slower parallel architectures than LSD-first algorithms for a given number system.

1.4 Open Problems
1.4.1 Online Processing

Numerous online algorithms performing arithmetic operations, including addition, sub-
traction, multiplication, division, and multiply-accumulate arithmetic operation (MAC
arithmetic operation), have been developed (Irwin, 1977; Owens, 1981; Irwin and Owens,
1987; Guyot and Kusumaputri, 1991; Brackert et al., 1989; Sips and Lin, 1990; Lapointe
et al., 1993; McQuillan and McCanny, 1995). The development of such algorithms is com-
monly based on the function approximation, the immediate evaluation, or the recursion-
based approaches. The function approximation is employed for the approximation of
complicated functions as polynomials. Two E-model approaches have been described, in
(Ercegovac, 1984) and in (Sips and Lin, 1990). In (Ercegovac, 1984), a function value is cal-
culated via an equivalent system of linear equations, for which efficient online architectures

exist. In (Sips and Lin, 1990), an exact function value is fetched from a table by using the
partially known inputs, and an output digit is estimated by taking into account the previous
output digits. These two approaches can be employed for any function. The recursion-based
approach can be employed for any polynomial which includes addition, MAC operation, and
inner product (Irwin, 1977; Ercegovac, 1984; Sips and Lin, 1990).

So far, none of these techniques have separated the mechanism of the online process from
the calculation of the function under study. In particular, finding an internal mechanism
common to all recursion-based online algorithms remains an open problem for arithmetic
operations. The main advantage of such a mechanism would be its applicability to the
calculation of several different operations: in the industry, a corresponding hardware imple-
mentation would be common to & number of arithmetic operations, and design re-use could

be applied, saving substantial design time and capital.
1.4.2 Constant-Delay Addition

In a redundant number system with large radix value, arithmetic operations require large
boolean functions which are difficult to optimize for hardware implementation. As a re-
sult, the redundant binary system remains the most suitable for hardware implementation.
Multiplications and MAC operations using redundant-binary number systems are imple-
mented as nested additions of redundant-binary numbers. Architectures for constant-delay
hardware implementations of redundant-binary addition have been reported in (Chow and
Robertson, 1978; Parhami, 1988; Thornton, 1997). A systematic enumeration of such ar-
chitectures for redundant-binary addition has not been undertaken. Such an approach may
result in novel, small, and high-speed hardware implementations. Moreover, interrelation-
ships between the existing developments of architectures for redundant binary addition may

be discovered, saving design time.
1.4.3 Digit-Serial Online Operations

The hardware implementations of architectures for online arithmetic operations often result
in large areas, implying high cost. Therefore, despite their outstanding features (includ-
ing MSD-first processing, and low latency), online arithmetic operations are seldom used

in practical applications. However, the digit-serial arithmetic technique, which permits a
trade-off between the speed and area of an architecture for arithmetic operation, has been
applied to some online operations only for the special case of the digit-size being a divisor
of the wordlength (Irwin and Owens, 1988). The general digit-serial technique has not to
been applied yet to the development of architectures for online MAC arithmetic operations.

1.5 Overview of the Thesis

The purpose of this thesis is twofold, namely, (a) to introduce the necessary background for
the development of architectures for digit-serial online signed-digit arithmetic operations,
and (b) to develop digit-serial and digit-parallel purely signed-digit multiply-accumulate
operations.

Chapter 2 is concerned with an introduction to the mathematical framework neces-
sary for digit-serial online fixed-point arithmetic operations, with a thorough description of
limited-carry addition architectures. Discussions concerning number systems and the digit-
serial and online arithmetic techniques are given. A simplification of the existing digit-serial
unfolding algorithm is provided along with an introduction of 2 new dynamically changing
wordlength technique. A systematic enumeration of architectures permitting the constant-
delay addition of redundant binary numbers is presented. This is required for the design of
high-speed signed-binary MAC operations as nested additions.

Chapter 3 introduces the necessary background for the development of industry-standard
multiplication architectures. The development of bit-serial online MAC arithmetic opera-
tions is first discussed in detail, leading to the description of the recursion-based online
mechanism, which can be used for the calculation of any affine function. Then, description
of single-digit signed-binary multipliers is given, followed by the development of a novel
technique for signed-binary to minimally redundant base-4 conversion. Such a conversion
permits the design of faster and smaller architectures for MAC arithmetic operations. Also,
an online signed-binary algorithm is given for IEEE 754 round-to-nearest/even, together
with an online algorithm for signed-digit overflow handling.

Chapter 4 develops an algorithm for digit-serial online multiply-and-round arithmetic
operation for general digit-size and input wordlength values. The algorithm employs the

10

IEEE 754 RNE industry standard. An architecture for subsequent FPGA or ASIC hardware
implementation is given, which is re-pipelined for throughput maximization and proven
functionally correct through simulation. The throughput and efficiency (throughput per
unit area) performances of this architecture are compared unfavorably to those of an existing
LSD-first digit-serial two’s complement multiply-and-round operation employing signed-
binary intermediate partial products. However, the architecture is shown to be viable for
high-speed applications.

In Chapter 4, an algorithm is developed for signed-binary parallel online MAC arith-
metic operation employing signed-binary to minimally redundant base-4 multiplier conver-
sion, IEEE 754 RNE rounding, and overflow detection and correction. A corresponding
architecture for subsequent FPGA or ASIC hardware implementation is given, and proven
functionally correct through simulation. The throughput and efficiency figures are com-
pared unfavorably to those of an existing architecture for signed-binary parallel LSD-first
MAC arithmetic operation employing signed-binary to minimally redundant base-4 multi-
plier conversion and IEEE 754 RNE rounding.

11

Chapter 2

Theoretical Background for
High-Speed Digit-Serial Online
Arithmetic Operations

2.1 Introduction

Presently, digital signal processing finds numerous applications in many areas, such as
virtual image synthesis, data transmission and reception, and database management. A
digital signal is seen as time-dependent data, and is represented as a sequence of numbers
(frequently referred to as samples), where each sample is represented as a sequence of digits
arranged in a given format. Consequently, digital signal processing requires many arithmetic
operations, predominantly additions and multiplications. The performance of an arithmetic
operation depends heavily on the choice of the digit sets, how many digits to process at a
time, and in which order the digits are processed.

The present chapter provides the necessary background for the design and develop-
ment of architectures for online arithmetic operations in general, and for the multiplication
operation in particular. In Section 2.2, the corresponding fixed-point number representa-
tions are discussed with an emphasis on generalized signed-digit number representations
and their properties. Then, the digit-serial and online arithmetic techniques are introduced
in Section 2.3. An improved digit-serial unfolding algorithm and an example of an online
algorithm are also provided in that section. In addition, a new digit-serial unfolding tech-
nique for architectures performing operations where the wordlength of the input changes

dynamically is proposed. Finally, in Section 2.4, limited-carry addition schemes that yield

12

architectures whose delays are independent of the lengths of their inputs are explored. A
characterization of these schemes permits one to link the design and development of several

kinds of addition architectures, so as to reduce their design and development time.
2.2 Fixed-Point Arithmetic
2.2.1 Introduction

Arithmetic operations are the building blocks of digital signal processors. This section is
concerned with a discussion of the impact of generalized signed-digit number representa-
tion, (a) on the range of permissible digital data, and (b) on the area and speed of the
corresponding DSP hardware architecture.

2.2.2 Number Representation and Number Systems

Definition 4 Number representation: consider a number N that belongs to a set S (e.g.

N, Z, or Q). A representation of N consists of
1. a digit set D (e.g. {0,...,9}),
2. an integer length L,
3. a sequence "4 of digits that belong to D, where ipax — imin + 1 = L, and

iminSiSimax

4. a mapping M defined in accordance with
M: d'l eDltmrses
iminSiSimax

Then, N is represented by the sequence n; through the mapping M if
ﬂ1

imin$iSimax

M (ni'-‘ms..s-'s-'w) =N (2.1)

holds.

The digits n; are constrained to a certain digit set D. For example, the decimal repre-
sentation of N requires that n; belongs to the set {0,1,...,9}. The sequence of digits is

commonly referred to as a word.

13

A system in which number representations share the same mapping is called a num-
ber system. Number systems can be classified into two categories, namely complete and
incomplete number systems. In a complete number system, any number from S can be
represented by using the digit set D and the mapping M (Kornerup, 1994). This thesis is

concerned with complete number systems only.
Fixed- and Floating-Point Number Representations

Usually, the digits of a number representation are assigned weights, denoted by the sequence
Wi and the mapping is the obtained as the inner product of the digit and the

weight sequences in accordance with

iuux

M (m“minsisimu) = 2 mus (2.2)

i=imin
Most often, such a representation is either referred to as fixed-point or as floating-point. Cer-
tain representation mappings do not use weights in this way (e.g. the logarithmic, residue,
and rational number systems (Hwang, 1979)).

In a fixed-point representation, the weights are calculated in accordance with
wy = ﬂ-i Vie {imim s aima.x}a (2.3)

where £ represents the radix (or base). In this thesis, a digit with index 1 is always associated
with a weight 8~%. The digit of smallest weight is referred to as the least-significant digit,
or LSD, and the digit of largest weight is referred to as the most-significant digit, or MSD.

In a floating-point representation, the number N is represented by a fixed-point mantissa
m and a fixed-point exponent e such that N = mpg¢. Part of the word is therefore reserved
for m, and the other part is reserved for e.

This thesis is only concerned with fixed-point number representations. An important
feature of such a representation is that a fixed-point number can always be multiplied by a
power of the radix (scaled up) to yield an integer. A number system using weights in this
way can thus be characterized by the radix 8 and the digit set D. The decimal number
system (8 =10 and D = {0,...,9}) is the one humans use to learn to count and add, and
the binary number system (8 = 2 and D = {0,...,1}) is used by digital computers and
other digital electronic devices.

14

Example 5 The radiz of the decimal number system is 10, and the digit set is {0,...,9}.
Consider the decimal number 25, which can represented by the decimal word 0259, where
02510 = 0 x 102 +2 x 10! +5 x 10°. Consider now the binary number system: it has a radiz
2, and a digit set {0,...,1}. The decimal number 5 can now be represented in the binary

number system by 110012, where 1 x 24 +1x 23 +0x 22 +0 x 2! +1 x 20 = 025;¢.

Redundant Number Systems

A number system is said to be redundant when a given algebraic value can have several

representations (Avizienis, 1961; Parhami, 1990; Kornerup, 1994).

Example 8 The signed-binary (SB) number system has a radiz 2, and a digit set {1,0,1},
where 1 represents —1. The decimal number 3 can then be represented either by 0113, where

0x224+1x214+1x2% =3y, or by 1013, where 1 x 22 + 0 x 2! — 1 x 20 = 3y,.

The key point with redundant number systems rests with the addition of two redundant
words. In fact, when using redundant number systems it is possible to develop constant-
delay architectures for addition In fact, if the result is expressed in a redundant number
system, it is possible to stop the carry propagation, leading to constant-delay architectures
for addition (Avizienis, 1961; Chow and Robertson, 1978; Parhami, 1990; Kornerup, 1994;
Rao, 1996; Thornton, 1997).

Let us describe the conventional addition. One adds two digits at a given digit position,
yielding a sum digit for that digit position and a carry. Then, one adds the carry to the digits
of the next higher digit position, yielding a sum digit and a new carry, and so on. Let us
now describe constant-delay addition in redundant number systems. At any digit position,
the two digits are combined to yield a carry for the next higher digit position, regardless of
the value of the carry generated at the previous lower digit position. Then, the remaining
value is combined with the incoming carry, yielding a sum digit. This process is also referred
to as weight-transfer decomposition. As a consequence, the carry is absorbed immediately,
and does not ripple along the length of the input words, justifying the term constant-delay.
Specific number representations have been developed to stop the carry propagation at fixed
digit position intervals (Phatak and Koren, 1994).

15

For some number systems, two consecutive weight-transfer decompositions are required
for addition as their digit set does not allow sufficient redundancy in the sum word. In this
way, the addition process can still be referred to as either constant-delay, or limited-carry,
since the carry is absorbed after two digit positions instead of one. This is the case for
the signed-binary number system (Avizienis, 1961; Parhami, 1990; Kornerup, 1994). The
performances of the architectures and corresponding hardware implementations developed
in this thesis rely greatly on this constant-delay property.

2.2.3 Similarities Between Addition Schemes in Generalized Signed-Digit
Number Systems
Generalized signed-digit (GSD) number systems were formally introduced in (Parhami,
1990). They are radix-8 number systems having a digit set of the form {—n_,...,n+},
where 7_ > 0, where n4 > 0, and where n+ + n- + 1 > 5. These number systems
are redundant, and were proven to allow constant-delay addition (Parhami, 1990). In
the following, a relationship between GSD number systems is introduced to prove that
their addition mechanisms are very similar. The exploitation of these similarities results in

substantial design time savings by using architecture re-use.
Relationships Between GSD Number Systems

A subset of GSD number systems, ordinary signed-digit (OSD) number systems, was also
introduced in (Parhami, 1990). Their digit set is balanced, i.e. 74 = - = 7, leading to
the added advantage that if z belongs to the digit set {-n,-n+1,...,7— 1,3}, then —z
belongs to the same digit set. Unless otherwise stated, this thesis is concerned with OSD

number systems only. Often, 7 is constrained as follows

[g] <n<B-1, (2.4)

where the lower bound is required in order for the corresponding number system to be
complete and redundant (Kornerup, 1994), whereas the upper bound is required for the
representation of 0 in the corresponding number system to be unique.

Let us introduce unbalanced signed-digit (USD) number systems, where one can choose
N+ =n-+1 £ 7. One could have equivalently chosen n— = n4 + 1. Similarly, one can

16

constrain 7 as follows

l§J+15n5ﬂ—1. (2.5)

As shown in the following, any GSD number system can be related to a unique OSD/USD
number system, and thus inherits the same addition mechanisms. This property is at
the heart of various techniques for limiting the carry propagation in arithmetic operations
(referred to as “tricks of the trade” in (Kornerup, 1994)).

Let us define the addition of two sets in accordance with
Sy + Sz = {a such that @ = a; + a2, where a; € S} and a3 € S»}, (2.6)
and the multiplication of a set by a scalar in accordance with
n x S = {y such that y = n x z, where z € S}. 2.7
Let us give an example:
{1,4} +{0,3} = {1,4,7}, (2.8)
and
3 x {1,4} = {3,12}. (2.9)
The relationship R between two GSD number systems can now be defined as follows:
Definition 7 Denote by T, a a digit set transformation such that
T.n : DeX +» (exD+{A}E€Z,

where T represents {D = {~1_,...,n+}|(n~,n+) € N*2}. Then, consider a radiz-8 GSD
number system NS of digit set D = {—n_,...,n+}, and another radiz-B GSD number
system NS' of digit set D' = {-1_,...,n.} such that v/, +n_ +1 =104 +n-+1. NS
is related through R to NS' if and only if there ezist ¢ € {—1,1} and A € Z such that
D' =T a(D). This relationship is equivalently denoted by NSRNS'.

It can be noted that the reverse transformation T, ! exists, and that

T A=T. e (2.10)

17

It can be proven that R is an equivalence relationship, i.e. that R is reflexive, symmetric,
and transitive.

Let us denote the cardinality of a set S by |S|. There are two types of GSD number
systems: those for which |D| is odd, and those for which |D]| is even (referred to as odd and

even GSD number systems, respectively).

Theorem 8 Any odd GSD number system is related through R to a unique OSD number
system, and any even GSD number system is related through R to a unique USD number

system.

Proof. The proof of the theorem consists of two parts, the first for odd GSD number

systems, and the second for even GSD number systems.

e Let us consider an odd GSD number system GSDN S of digit set D = {-n—,...,n+}.
A necessary condition for an OSD number system OSDN S of digit set D’ = {-n,...,n}
to be related through R to GSDNS is expressed by

ITea(D)] = |D'|, (2.11)

which implies that

-+ N+

n+n+l=n+n-+1 & n= 5 (2.12)

with 7 being a positive integer (because GSDNS is odd). Therefore, only one unique
OSD number system can be related to GSDNS. Let us prove that GSDN'S is related
through R to OSDNS. If one chooses € = —1, then A = 1, — n leading to

Tea(D) = —{-n-,...,n+} + {0+ —n} (2.13)
={-n4+,...,n-} +{ns+ —n} (2.14)
={0,...,n+ +n-}+ {-n} (2.15)
={0,...,2n} + {-n} (2.16)
= {-n,...,n} (2.17)
=D (2.18)

18

Therefore, GSDNS R OSDNS. Similarly, one can prove that e=1and A =7q_ -9
implying that GSDNS R OSDNS. Consequentlyy, GSDNS R OSDNS, where
OSDNS is unique.

Let us consider an even GSD number system GSDN S of digit set D = {—n_,...,n4}.
Similar to the previous discussion, a necessary condition for a USD number system
USDNS of digit set D’ = {—n+1,...,7n} to berelated by R to GSDNS is expressed
by

n-+ny +1

n+n—-1l+l=n+n9-+1 & n= 5

(2.19)

with 7 being a positive integer (because GSDNS is even). Therefore, only one unique
USD number system can be related to GSDNS. Let us prove that GSDNS is related
through R to USDNS. If one chooses € = —1, then A =, — n + 1 leading to

Tea(D) = —{-n-,...,n4} + {1+ =0+ 1} (2.20)
={-n4....n-}+{n+ —n+1} (2.21)
={0,...,n+ +n-}+{-n+1} (2.22)
={0,...,2n -1} + {-n+1} (2.23)
={-n+1,...,n} (2.24)
=D. (2.25)

Therefore, GSDNS R USDNS. Similarly, one can prove that ¢ = 1 and A =

n- —n+1 implying that GSDNS R USDNS. Consequently, GSDNS R USDNS,
where USDN'S is unique.

The above two bulleted points establish the proof. a

Theorem 8 implies that by assigning the same hardware code to an element of D and

to its counterpart in D’ via T, a, the addition of two numbers expressed in these two

different number systems can be performed by using the same architecture. Moreover,

all the GSD number systems of a given class shares the addition mechanisms of a unique

corresponding OSD or USD number system. Therefore, a lot of design time can be saved by
considering these similarities in the internal addition mechanisms in GSD number systems.

19

An application of this theorem will be given in Section 2.4, where addition schemes will be
characterized in the binary case leading to architectural similarities. Numerous studies of
the properties of OSD number systems can now be applied to odd GSD number systems
(Chow and Robertson, 1978; Irwin and Owens, 1987; Irwin and Owens, 1988; Parhami,
1988; Srinivas and Parhi, 1983; Thornton, 1997).

2.3 Data Processing Techniques

This section is concerned with the presentation of the digit-serial and the online arithmetic
techniques as data processing methods. The former technique permits the processing of
“several” digits at a time, from one to the full wordlength. An extension of the digit-serial
technique to a dynamically changing wordlength situation is also introduced. The latter
technique permits the processing of data the MSD first. An introduction to the approaches

to the development of resulting arithmetic operations is given, followed by an example.
2.3.1 Digit-Serial Arithmetic Technique

The bit-serial arithmetic technique processes a digital signal one digit at a time, whereas
the bit-parallel arithmetic technique processes it one word of length W at a time. The
bit-serial technique is area-efficient because only one wire and one single-digit arithmetic
unit are required to process the input data. Conversely, a bit-parallel transmission requires
W wires and W single-digit arithmetic units, but allows the design of faster architectures
by introducing as much concurrency between the internal operations as possible.

The digit-serial arithmetic technique processes words D digits per time instant, where
the digit-size D may or may not be a divisor of W. The bit-serial and bit-parallel arithmetic
are special cases of the digit-serial arithmetic technique for digit-sizes of 1 and W, respec-
tively. Therefore, this technique allows a trade-off between the area-efficiency of bit-serial
systems and the time-efficiency of bit-parallel systems by adjusting the parameter D.

Digit-Serial Unfolding Algorithm

Any bit-serial architecture can be represented by combinatorial units, unit-delays, switches,
and wires. This representation can be translated into a data-flow graph, which is a directed

20

graph whose nodes represent combinatorial units, and whose arcs represent either commu-
nication involving a non-negative integer number of delays or zero-delay communication
at specific time instances. The digit-serial unfolding algorithm (Parhi, 1991) transforms a
data-flow graph DFG of a bit-serial architecture into its corresponding unfolded data-flow
graph UDFG of digit-size D, processing D bits of the original bit-serial stream at a time,
where D may or may not be a divisor of W.

An arc is denoted by U — V, where node U represents its source, and where node V'
represents its destination. If the arc introduces i delays, then the result of node U obtained
at time instant ng is used at time instant ng + 1 in node V. If the arc provides zero-delay
communication at a specific time instance, then the time instance is given by Ww + u,
where W represents the wordlength of the bit-serial stream, where u belongs to the set
{0,1,...,W —1}, and where w represents the word number in the bit-serial stream.

Let us denote L as the least common multiple of W and D. The digit-serial unfolding
algorithm below was presented in (Parhi, 1991).

Algorithm 9 Digit-Serial Unfolding Algorithm

Step 1. For each node U in DFG, draw D nodes in UDFG, and label them
U01“'1UD-1'

Step 2. For each arc U — V in DFG having 0 delay, draw the arcs Uy — V, with 0
delay for allq € {0,...,D —1}.

Step 8. For each arc U = V in DFG having ¢ delays,

Step 3a). If 0 < i < D, draw the arcs Up_i+q — Vy with 1 delay for all g €
{0,1,...,i - 1}, and drow the arcs Us_; — V, with 0 delay for q €
{i,i+1,...,D-1}.

Step 3b). Ifi 2 D, draw the arcs U_;, pra=i1 = Vi with [*-3!] delay(s) for all
g€ {0,1,...,D-1}.

Step 4. For each switch U — S having a switching instance Wi + u, calculate the bit-

serial switching instance as Ll +u+wW, where w € {0,..., % —1}, and where
the corresponding digit-serial switching instance Utyww)mod D are calculated as

i+ | “E% |, vw e {0,..., % —1}.
Then, the following algorithm is a modification of Algorithm 9.
Algorithm 10 Modified Digit-Serial Unfolding Algorithm

21

Step 1°. For each node U in DFG, draw D nodes in UDFG, and label them
UO,--’,UD-I-

Step 2. For each arc U = V in DFG having i delays, draw the arcs Ug_iymoap —
V, with [-54] delay(s) for all g € {0,...,D —1}.

Step 8°. For each switch U — S having a switching instance Wl + u, calculate the
bit-serial switching instance as Ll + u + wW, where w € {0,..., % -1},
and where the corresponding digit-serial switching instance Uiy4ww)modD
are calculated as £l + | =¥ |, vw e {0,...,% — 1}.

Theorem 11 Algorithm 9 and Algorithm 10 perform the same data-flow graph unfolding

operation.

Proof. One can remark that Steps 1’ and 3’ of Algorithm 10 correspond exactly to
Steps 1 and 4 of Algorithm 9, respectively. Therefore, one has to prove that Step 2’ in
Algorithm 10 performs the operations of Steps 2, 3(a) and 3(b) in Algorithm 9. This is

achieved by successively considering the cases i =0,0 < i< D, and i > D.

e Let us assume that ¢ = 0, as in Step 2. One can readily observe that for g in

{,...,D -1},

(g-t)mod D=gq and [1—;—2] =0 (2.26)

hold. Therefore, for all ¢ in {0,...,D - 1}, one arc U; = V, is drawn with 0 delays,
which is the definition of Step 2: Step 2’ and Step 2 are equivalent.

e Let us assume that 0 < i < D, as in Step 3(a). Then, g belongs either to {0,...,i—1}
or to {i,...,D —1}.

— Let us consider q € {0,...,i — 1}, which implies that

(g—1) mod D= (D —1+q) mod D, (2.27)
or equivalently
(g—i)modD=D-i+gq, (2.28)
because
D-i<D-i+q<D-1, (2.29)

22

where D — 1 > 0. Moreover,

<[5 <03

[i Bq] =1 (2.31)

In this case, Step 2’ draws the arcs Up_i+q — V with 1 delay for all ¢ in

holds, which yields

[0,...,i—1]. Therefore, for 0 < i < D and q € [0, — 1], Step 2’ and Step 3(a)

are equivalent.

— Let us consider q € {i,...,D — 1}, which implies that

(g—i) mod D=gq-—1. (2.32)
Moreover,
i-D+1 i—q 0
=] <[5 <[5 (2:339)
holds, yielding
i—q| _
T o3
because
i—-D+1 t+1
[D]—[D]—l, (2.35)

where [55t] = 1. In this case, Step 2’ draws the arcs U,—; = Vg with 0 delay for
all g in {i,...,D — 1}. Therefore, for 0 < i < D, Step 2’ and Step 3(a) are also
equivalent when q € {¢,...,D - 1}.

From these two points, 0 < ¢ < D implies that Step 3(a) and Step 2’ are equivalent.

¢ Let us now assume that ¢ > D. Firstly, one has to prove that Step 2’ and Step 3(b)
create the same arcs. By recalling the definition of the modulo operation,

amodb=a-b l%_l) (2.36)

23

one can write

(q—i)modD:q-i—quBiJ, (2.37)

which becomes

(g -1) modD:q-i+D['—1‘53-]. (2.38)

Therefore, Step 2’ creates the arcs Uq—"+Dr"-B’] — V, for g€ {0,...,D — 1}, which is
the definition of the creation of the arcs in Step 3(b). Secondly, each arc created by
using Step 2’ must be shown to have the same number of delays than if created by
Step 3(b), which holds immediately. Therefore, for 1 2> D, Step 2’ and Step 3(b) are
equivalent.

These above three bulleted cases establish the proof. [
As a result of Theorem 11, digit-serial unfolding can be performed by using Algorithm 10,
thereby avoiding the multiple delay-based cases for the instantiation of arcs.

Theorem 12 One can write Step 2’ equivalently as follows: for each arc U = V in DFG
having i delays, draw the arcs Uy = V(g 1iymodD with I.ig—'J delay(s) for allq’ € {0,...,D~
1}.

Proof. The proof is established by proving that, given i in N, and given ¢’ in {0,...,D—-
1}, any arc Uy = V(g +i)medD With I.iﬁj delay(s) is the same arc as Ug_i)moap —* Vy With
[-‘,—'fl = [ibﬂJ delay(s), where ¢ = (¢ +1) mod D.

Given i in N, and given ¢ in {0,...,D — 1}, defining

g=(¢ +4) mod D (2.39)
implies that
(¢ — 1) mod D = ((¢’ +¢) mod D — i) mod D (2.40)
=(¢+i—i)mod D (2.41)
=¢ mod D (2.42)
=d, (2.43)

24

because ¢ € {0,...,D — 1}. Of course, ¢ € {0,...,D — 1} by definition. Therefore,
Uy = Vg +i)modD is the same arc as Ujy_¢)moap — V4 When ¢ is defined in accordance with
Eqn. 2.39.

One has to prove that if i belongs to N, and if ¢’ belongs to {0,...,D — 1}, then

i-q| _|d+i
EaRwat (249
Firstly, by definition of the modulo operation, one can write
q=q'+i-qu';’J. (2.45)

From Eqn. 2.43 and by modulo operation,
' —q—i-D |31}
g =q-—1 D[DJ. (2.46)
By adding Eqns. 2.45 and 2.46, and by recalling that — @] = [—a], one obtains

q’+q=q+q’—i+i+D(|’i—Tq'|—|.q’+i_|), (2.47)

D
which readily leads to

["'; iJ = [i 'D'q] : (2.48)

In this way, it has been established that given ¢ in N, drawing the arcs Uy = V(¢ 4i)modD
with l%’-J delay(s) forall ¢ in {0, ..., D—1} is equivalent to drawing the arcs Ujy_i)moap —
V, with [451| delay(s) for all g in {,..., D — 1}. .

Theorem 12 allows the replacement in the modified algorithm of Step 2’ by another
equivalent step, which takes the source node number as the index of instantiation instead
of the destination node number.

By varying the digit-size in the application of the digit-serial unfolding algorithm, which
translates bit-serial architectures into digit-serial architectures, one can strike a balance
between the area and the speed of a given hardware architecture. A modified digit-serial
unfolding algorithm allows one to perform the instantiation of the registers of an architecture
in a single step without the need for testing the number of delays on the current arc.
Moreover, the same step in the modified algorithm can be performed by considering either

the source nodes or the destination nodes.

25

Application of the Digit-Serial Architecture Unfolding

Any bit-serial architecture can be translated into its unique digit-serial conterpart of digit-
size D by applying the digit-serial unfolding algorithm presented in (Parhi, 1991). In the
following, this algorithm is applied to the example of bit-serial unsigned binary addition.
Consider two digital signals a and b represented by binary words of wordlength 4, where
a binary digit is referred to as a bit. The bits are transmitted bit-serially, the LSD first, and
the words are concatenated in time. The addition of the words in the two data streams can

be performed by the full-adder (FA) architecture shown in Figure 2.1. There is only one

o & &
&
lull
: ¢
(]
+\FA§
S & 1o
il 5§
$0 & D
T
&
il
g
3
w

Figure 2.1: 4-Bit LSD-First Bit-Serial Binary Adder

FA unit, which is numbered 0. At each bit-serial time instant m, the incoming bits ¢, and
b are added together with the input carry cinm, and a sum bit s, and a corresponding

output carry is generated in accordance with
2Caut,m +Sm = am +bm + Cinm (2.49)

The output carry is then stored in a unit-delay register D for use in the next bit-serial time
instant.

Most of the time, i.e. for m € {4n+1,4n+2,4n+3}, the switch equates the current input
carry value cjsm with the output carry at the previous bit-serial time instant, cout,m-1-
Otherwise, i.e. for m = 4n, the switch resets the input carry to 0. In other words, the
addition of two words begins at every bit-serial time instant m of the form m = 4n in the
bit-serial architecture. The operation performed by the switch is illustrated by the time-line

26

shown in Figure 2.2. The bit number in the A or B data stream fed to the FA unit number 0
Unit
Number

0 J-@1 2 3@5 6 7-9 1011.131415.171819.21

0 1 2 3 4 5 6 7 8 9 101112131415161718192021 Instant m

Figure 2.2: Bit Number in a 4-Bit Bit-Serial Data Stream

is given at any bit-serial time instant m. The bit-serial time instant corresponds exactly to
the bit number in the bit stream as the words are transmitted one bit per bit-serial time
instant. A boxed number indicates the bit number of the LSD of a word, and is equal to the
bit-serial time instant at which the switch must reset the carry-in of the FA unit number
0. In a corresponding hardware implementation, the reset switch is controlled by a signal
Ctrly.

The bit-serial architecture can be transformed into its digit-serial counterpart with a
digit-size of D = 3, by using the digit-serial unfolding algorithm by Parhi (Parhi, 1991),
as shown in Figure 2.3. One can observe that the unfolded architecture has been obtained
as a cascade of FA units with resettable input carry, numbered from 0 to D - 1. In a
corresponding hardware implementation, the reset switches are controlled by corresponding
signals Ctrly, Ctrly, ..., Ctrip_;.

It is important to note that m' represents the digit-serial time instant (as opposed to
m for the bit-serial time instant). This architecture fetches D = 3 consecutive bits in the
bit-serial data stream to process them in parallel at a given digit-serial time instant m’, as
illustrated in the time-line shown in Figure 2.4. At a given digit-serial time instant m’, the
FA unit number 0 is fed with the bit number 3m’+0, while the FA unit number 1 is fed with
the bit number 3m’ + 1, and the FA unit 2 (= D — 1) is fed with the bit number 3m' + 2.
It can now be observed that the reset switches of the FA units 0, 1, and 2 have to reset the
input carries of the same FA units at digit-serial time instants of the form 4n', 4n' + 1, and
4n’ + 2, respectively. Therefore, no input carry has to be reset when m’ = 4n’ + 3.

One can observe that the bit-serial data stream is sectioned into sets of D consecutive

digits. Of course, digits belonging to two consecutive samples may be present in those

27

o
+ (5]
~ (]
< + +
N - -
+ 2 I 3z = T g
= B0 T OE T I
= o . g £ :: =) : s £ :: o i s £
+ s - ® = = P
S O 0 T 0 O T I
] g] ~ e] N e -~
S \ B \ = \ R
~ FA FA - FA
T 0 T % 1 F ¥ 2
¥ ¢ F T B ,
5 ¢ og & s 8 D
S S S ¢
: :
@ N
Figure 2.3: 4-Bit LSD-First Digit-Serial Binary Adder (D = 3)
Unit
Number

2 25.111417.232629@353841.475053.596265
11 1[4]7 1013@192225313437434649[@555861.

o L[o]3 s 9151821.273033.394245.515457.63

| I I r l l l I l l -

3456789 101112131415161718192021 Instant m’

Lo
o 4

0
Figure 2.4: Bit Number in a 4-Bit Digit-Serial Data Stream (D = 3)

sets, e.g. samples 0 and 1 at the digit-serial time instant m’ = 1 (digits 3, 4, and 5)
in Figure 2.4. Therefore, the main function of the reset switches is to isolate these two
consecutive additions being processed at the same digit-serial time instant in the same

addition architecture.
Dynamically Changing Wordlength Technique

Consider the digit-serial unfolding example shown previously in this section. Let us assume
that the addend and augend words have a dynamically changing wordlength, i.e. that W is

28

a function of the word number word > 0. Then, it is possible to calculate the active-high
control signals Ctrl; at each digit-serial time instant in such a manner as to permit addition,

as shown in Algorithm 13.
Algorithm 13 Calculation of Control Signals for Dynamically Changing Wordlength

Step 1: Set word « 0;
Step 2: Set ¢+ 0;
Step 3: For i between 0 and D - 1,

Ifi=c, then
o Set Ctrl; + 1;

o Set c & c+ Wyord;
e Set word + word + 1;

Else
e Set Ctrl; « 0;
End

End
Step 4: Setc+c—D;
Step 5: Go to Step 8

A resulting hardware implementation thus calculates the addition of an addend to an augend
of time-evolving wordlength while still using only D bit-serial cells.

It is important to note that the above algorithm is valid only if the minimum wordlength
value is larger than the digit-size D. Otherwise, more than two Ctrl; signals may be active
at a given time instant. Moreover, the above algorithm can be used for any control signal
that must be active at a time instance Wn, where n € N.

Let us consider a control signal that must be active coge: bit-serial time instants after
the start of the operation, i.e. at bit-serial time instances Wn + c,get, where n € N, and
where coyet € Z. Then, one can generalize the above algorithm by replacing Step 2 by the
step shown below.

29

Step 2 new: If coger < 0, then
e Set c — Wy + coffiets
e Set word « 1;

Else

o Set c ¢ Coffset;
e Set word « 0;

End

The main benefit of a resulting digit-serial cell is that it accepts inputs of dynamically
changing wordlengths. As a result, coarser results using shorter wordlengths can be calcu-
lated faster for a fixed hardware requirement. For example, if the wordlength drops by half,
then the throughput is increased by a factor of 2.

Let us describe the digit-serial dynamically changing wordlength unfolding technique for
directed flow graphs representing arbitrary architectures. First, one executes steps 1 and
2 of Algorithm 10. Then, for every switch, the control signal active at the bit-serial time
instance Wn + cogse: It is imperative that the bit-serial cell accepts inputs of dynamically
changing wordlengths. The main disadvantage of this technique is that one must ensure
that the wordlength truncation does not affect the functionality of the whole system.

2.3.2 Online Arithmetic Technique

In conventional arithmetic operations, the carries naturally ripple toward the MSDs of
the result. The main practical disadvantages of conventional arithmetic operations are,
(a) the required change in the flow of digits from the MSD (imposed by A/D and D/A
converters) to the LSD first, and (b) the large latency due to the calculation in LSD-first
arithmetic. In order to avoid these problems, efforts have been made in the past two decades
to develop online operations processing digits the MSD first, which exhibit small latencies.
An introduction to the main approaches to the development of online arithmetic operations

will be given, followed by the development of an example to iilustrate the technique.
Approaches to the Development of Online Arithmetic Operations

A number of online arithmetic architecutres have been developed in the past, ranging from
the traditional addition, subtraction, multiplication, and division (Trivedi and Ercegovac,

30

1977; Irwin, 1977; Owens, 1980; Chow, 1980; Gorji-Sinaki and Ercegovac, 1981; Irwin and
Owens, 1987; Irwin and Owens, 1988; Guyot et al., 1989; Perlee and Casasent, 1989; Erce-
govac and Lang, 1990; Privat, 1990; Balsara et al., 1991; Sips and Lin, 1990; Guyot and
Kusumaputri, 1991; Srinivas and Parhi, 1983) to the more complex trigonometric, expo-
nential, or filtering operations (Owens, 1981; McQuillan and McCanny, 1995; Fernando and
Ercegovac, 1992; Lapointe et al., 1993; Lin and Sips, 1990; McNally et al., 1990; Brack-
ert et al., 1989). Online arithmetic operations have been developed by employing either a
recursion-based method or an evaluation-based method.

The recursion-based method was developed first (Trivedi and Ercegovac, 1977; Irwin,
1977) and yields iterative and recursive algorithms. A review of such algorithms was pre-
sented in (Ercegovac, 1984). Many of the initial recursive online algorithms were ob-
tained by successively transforming a conventional (LSD-first) algorithm to accept in-
put digits the MSD first, and then introducing additional steps in order for the algo-
rithm to generate the output digits in an online fashion (Trivedi and Ercegovac, 1977; Ir-
win, 1977; Owens, 1980; Chow, 1980; Gorji-Sinaki and Ercegovac, 1981). In this way,
conventional algorithms based on continued sum/products for the evaluation of general
functions (e.g. sine, logarithm, or multiplicative inverse) have been transformed into on-
line algorithms using the aforementioned procedure (Owens, 1981). However, most of the
recent recursive online algorithms were obtained by directly considering the online flow of
the input and output digits (Trivedi and Ercegovac, 1977; Chow, 1980; Gorji-Sinaki and
Ercegovac, 1981; Guyot et al., 1989; Privat, 1990; Guyot and Kusumaputri, 1991; Srinivas
and Parhi, 1983; McQuillan and McCanny, 1995; Fernando and Ercegovac, 1992; Lapointe
et al., 1993; Lin and Sips, 1990; McNally et al., 1990; Brackert et al., 1989).

The recursion-based method yields algorithms which share a common iterative sequence.
At a given iteration, a partial operation update is added to a scaled online error formed at
the previous iteration, where the scaling factor is equal to the number system radix. Then,
the result is rounded to an integer called the online result digit. Finally, an online error is
calculated for use in the next iteration.

Let us recall that the online result MSD is the first online result digit to be calculated.
If no attention is paid to the magnitude of the scaled online error and that of the partial

31

operation update, the radix-8 representation of the result of their addition may require
MSDs of weights that are larger than that of the online result digit to be outputted. This
problem is equivalent to stopping the carry propagation of the cumulative sum of the off-
line partial updates, facilitated by scaling down the partial operation update by a constant
factor, and by using a redundant representation for the online result. Unfortunately, by
scaling down the partial operation update, one increases the latency of the online arithmetic
operation (c.f. Section 1.3.2). The determination of the minimum latency depends on the
online arithmetic operation, as shown by many independent studies (Duprat et al., 1989;
Sips and Lin, 1990). In fact, the latency corresponds to the number of MSDs exceeding the
input representation format (referred to as guard digits), and is thus determined both by
the precision of online result digit estimation and by the range of the result of the operation
itself.

More recently, the evaluation-based method was developed with the intention of finding
the minimum latency of any arithmetic operation (Sips and Lin, 1990). Algorithms for fixed-
point arithmetic operation obtained by using this method all share a common procedure and
are all iterative. At a given iteration, the off-line iterative result is calculated as accurately
as the precision of the input words permits, and an online result digit is calculated by taking
into account that result as well as the previous online result digits. Of course, the hardware
implementations of the exact result calculation are impractical, i.e. they are too slow or
too large (Sips and Lin, 1990). Therefore, in this thesis, efforts are concentrated on the

recursion-based approach.
Application: Online Algorithm for Signed-Binary Addition

Let us consider the addition of an addend A to an augend B resulting in a sum R in

accordance with
R=A+B. (2.50)

The inputs A and B, referred to as the operands, are signed-binary number representations

in accordance with
w-1)
A=) a2 ae{-10,1} (2.51)
i=0

32

and
w-1 _
B=) b2 be{-101}, (2.52)
=0
where W represents the wordlength of A and B. The MSDs of A and B are aq and b,
respectively. As the addition must be online with respect to the operands, the inputs to the
algorithm at iteration p (0 < p < W —1) are @, and b,, thus leading to the formation of
p I3 p .
Ap=) a2 and B,=) b2 (2.53)
i=0 i=0
which represent the partially formed operands 4, and B,.
The sum digits 7,_s are similarly generated in an online fashion, thus leading to the
formation of the signed-binary representation

p—0
R,=) w2, (2.54)

i=—6
where 4 represents the latency of the online addition algorithm to be discussed later. The
signed-binary representation E,, is an increasingly more accurate approximation of the sum
R. The difference R~ ﬁ,, has two origins, namely, the absence of knowledge of all the digits
of accuracy of the operands, and the online error which is due to the online digit selection
process.
The following algorithm performs the addition of A and B in an online fashion: at a

given iteration p, a, and b, are input, and the online sum digit 7,—s is generated.
Algorithm 14 Online Ordinary Signed-Digit Addition

Step 1: Set p+— 0 ande_; « 0,

Step 2: Calculate P, « (a, + b,) B4,

Step 3: Calculate P, «— €,—18 + P,

Step 4: Round ﬁ, to Tp-s»

Step 5: Calculate ¢, « B, — 7,3,

Step 6: Calculate p+—p+1,

Step 7: If p < W, then go to Step 2, else done.

33

In the above algorithm, the online error and the iteration number are initialized to 0. At a
given iteration p, an off-line partial addition update P, is calculated, by using the operand
digits a, and b,. Then, P, is combined to the online error ¢,..; generated at the previous
iteration, yielding an online partial addition update ﬁp. Next, ﬁ,, is rounded to the online
sum digit ¥,_s, giving rise to an online error €,. This rounding operation can be performed
on a small number of the MSDs of ﬁp, increasing the speed of a corresponding hardware
implementation. The iteration number is then incremented, and Steps 2 to 6 are performed
until p = W —1. It can be shown that at the end of iteration p = W — 1, the online iterative
sum ﬁw_l represents the MSDs, and the online error ey —; represents the LSDs of R.

The error between the exact sum and the online sum is caused by the absence of knowl-
edge of A— A, and B — B, and by the online error ¢,. In the algorithm, the former error is
reduced at each iteration by taking into account the off-line partial update P,. The latter
error changes at each iteration, and must be kept small enough so that the addition of P,
to the scaled online error does not affect the online result digits outputted in previous itera-
tions. This problem is further complicated by performing the rounding operation for online
result digit estimation on a small number of MSDs of P,, but can be circumvented by in-
creasing the latency. As a result, the range of P, becomes smaller, reducing the range of ﬁp
(as desired). However, the latency should be kept small in order to reduce the wordlength
of the result. For a given arithmetic operation, one can calculate a minimum bound on
the latency. Then, this bound can be used to determine the optimal trade-off between the
delay of a corresponding implementation, which largely depends on the rounding operation
(McQuillan and McCanny, 1995) and the latency of the operation.

2.4 High-Speed Signed-Binary Addition

This section is concerned with an introduction to limited-carry addition schemes in redun-
dant binary number systems, and with the development of corresponding bit-serial and
digit-serial online addition architectures. In particular, the limited-carry redundant binary
addition schemes will be observed to share a common bit-parallel architecture. A systematic
enumeration of all the corresponding addition schemes will extract and highlight their sim-
ilar behaviors. As a result, one will be able to employ an existing architecture for addition

34

in a given number system as an addition architecture in a different number system.
2.4.1 Redundant Binary Addition Schemes

The addition of two signed-binary (SB) words can be achieved in constant time, indepen-
dently of the wordlengths of the inputs (Avizienis, 1961). The implementation of such adders
was investigated in (Chow and Robertson, 1978) by analyzing all possible digit encodings
and by deriving the corresponding boolean equations, yielding efficient architectures. Then,
a recoding approach was taken in (Parhami, 1988; Kornerup, 1994) for the development of
SB adders. Recently, in (Thornton, 1997), two weight-transfer digit decompositions were
applied to perform the addition of SB numbers, where the binary code of the result always
features an even number of 1’s, referred to as inherent parity. Such a property can be used
for embedded correct functionality testing.

In the following, it is shown that all the above approaches are variations of the same
approach, resulting in similar architectures. Therefore, one will characterize the redundant
binary addition schemes that yield these constant-delay architectures by using two param-
eters, one for the redundant binary digit-set, and one for the addition scheme itself. In this
way, it is shown that the similarity between redundant binary addition schemes can indeed
be exploited to map two different schemes to the same architecture through appropriate
digit encoding. Due to the length of the proofs, the theorems and lemmas are stated, but
the proofs are presented in appendix.

Carry-Free and Limited-Carry Addition

Addition can be performed in constant time when a redundant number representation is
used (Avizienis, 1961; Parhami, 1990). The corresponding addition schemes can be qual-
ified as either carry-free or limited-carry. In a carry-free addition scheme, the digits of
equal weight of the addend and augend words are added in parallel, and the result digit is
decomposed into weight and transfer digits, where the transfer digit bears the next higher
weight. Then, the weight and transfer digits are added (recomposed), yielding the digits
of the sum in the desired number representation. The transfer digit, also called a carry,
has thus been absorbed by the recomposition, resulting in an absence of carry propagation.

35

Both the decomposition and recomposition can be performed in constant time by one level
of hardware cells. This addition scheme is referred to as weight-transfer decomposition
(Parhami, 1990; Rao and Nowrouzian, 1999), and as digit set conversion (Kornerup, 1994).
It can be observed that the cardinality of the digit set of the result representation is smaller
than that of the input representation. In a limited-carry addition scheme, two such conver-
sions are performed successively in order to perform the constant-delay addition, resulting
in a three-level architecture.

It can be observed that in carry-free addition, a change in an input digit of weight
B~ only propagates to the output sum digit of weight 8%, or to that of weight S~**1.
Consequently, in limited-carry addition, a change in an input digit of weight 8~* may
propagate to the result digits of weights S~%, f~%*1, and g~i+2.

Addition in Redundant Binary Number Systems

The redundant binary number systems form three distinct radix-2 GSD number systems
having a digit-set of cardinality 3. These digit-sets are {0,1,2}, {~1,0,1}, and {-2, -1, 0}
for the binary carry-save (Parhami, 1990; Kornerup, 1994), the SB (Avizienis, 1961) and
the negative binary carry-save number systems. The redundant binary number systems
require limited-carry addition schemes because they do not feature enough representation
redundancy (Parhami, 1990). The binary carry-save number system is complete (Kornerup,
1994) for N+, the SB number system is complete for N, and the negative carry-save number
system is complete for N~. Of course, it can be observed that the negative binary carry-save
number system does not find practical applications since it can only yield representations
for negative numbers.

The constant-delay property of addition in the redundant binary number systems has
triggered their widespread use within binary multipliers. As an example, the multipliers
introduced in (Wallace, 1964; Dadda, 1976; Larsson and Nicol-Chris, 1996) use the carry-
save number system. Similarly, the SB number system has been widely used for the design
of non-redundant as well as redundant number multipliers (Lapointe et al., 1993; Rao and
Nowrouzian, 1997). The similarities of the addition schemes obtained here are valid for all
redundant binary number systems, but are expected to be exploited only with the SB and

36

binary carry-save number systems.

Generic Architecture and Corresponding Scheme for Redundant Binary Addi-
tion

Let us consider the result S of the sum of an addend A to an augend B in accordance with
S=A+B. (2.55)

The operands A and B, and the result S are assumed to be represented in the same redun-
dant binary number system having a contiguous digit set {y—1,7,y+1}, where y € {1,0,1}
so that the corresponding number system is complete (Kornerup, 1994). Therefore, by re-
calling the limited-carry property of the addition schemes under consideration, one can
write

w-1
A=) a2 ae{y-1L7,7+1} (2.56)

i=0
w-1

B=3 b2 he{y-lLmv+1} (2.57)
=0

and

w-1
S= z 3i2-i; s; € {7 -1, 77+ 1} (258)

i==2
where W represents the wordlength of A and B. In the following, all the limited-carry
addition schemes which can calculate R are enumerated by determining all the possible sets
for the weight and transfer digits for each conversion.

Since any limited-carry addition scheme can be implemented by using three levels of
hardware cells, one can always group them as shown in Figure 2.5. This three-level ar-
chitecture will be employed for all addition schemes. The variables ¢, ¢}, ¢z, and ¢, are
referred to as the weight digits, and a and 8 as the transfer digits of the addition scheme.
The addition scheme corresponding to Figure 2.5 is expressed in accordance with

a+cdi=a+b (2.59)

B+ch=a+2c, (2.60)
and

4s = B+ 2c,, (2.61)

37

20g 2%

2¢; L1 c,

L3

y
22

Figure 2.5: Limited Carry Adder Unit

respectively, as shown in Figure 2.5. It is necessary that the carries c¢; and c; be given
a weight 2. In this way, one integrates in the successive additions the fact that they are
generated by a similar architecture processing digits of next higher power of two than a and
b.

For the sake of uniformity, any variable z is assumed to belong to a set denoted by S:.
Of course, both ¢; and ¢} belong to the same set S, to allow the above architecture to be
cascaded to form a bit-parallel addition architecture. In such a bit-parallel architecture, the
single-digit architectures can be manipulated to use a and 8 as carries (transfer digits) and
c) and c; as internal weight digits, changing the apparent carry propagation from MSD-first
to LSD-first. Similarly, c; and ¢, belong to the same set Sc,. It is important to note that
the architecture in Figure 2.5 corresponds to a particular case of online addition, where the
latency is equal to 2, and where the online error is obtained as a sum of two components, ¢}
and ¢;. Therefore, by decomposing the online error, it is possible to obtain a constant-delay
online addition.
2.4.2 Characterization and Equivalence of Redundant Binary Addition

Schemes

In the following, it is shown that the hardware implementation of the architecture shown in
Figure 2.5 can perform several addition schemes employing different number systems. This
proof is obtained by first characterizing the addition schemes by using two parameters,
followed by defining an equivalence relationship between them, and by finally observing the

38

resulting similarities and exploiting them for the desired purpose.
Characterization of Redundant Binary Addition Schemes

If one denotes the cardinality of a set S by |S|, then one can readily observe that, by

assumption,
|Sal =3, |Sy| =3, and |S,| =3. (2.62)

Moreover, the calculation of the left-hand sides of Eqns. 2.59——2.61 in terms of their

corresponding right-hand sides are only possible if the following constraints hold:

5=|S.+ 8| <[5, + s¢.| : (2.63)

|s,, +25,| <|s., + Sp| : (2.64)
and

|sﬁ +25,| <4]8 =3. (2.65)

It can be shown that only two sets of cardinality values are allowed by Eqns. 2.63-2.65, as
shown in Table 2.1 (see Appendix A for a proof). In both cases, it is possible to determine

Table 2.1: Set Cardinalities in Redundant-Binary Addition Schemes
Set Se | So|Se, | Sal|Sea|SslSs

Cardinality | 3 | 3| 2 | 3| 2|23

Cardinality | 3 | 3| 3 {2} 2 | 2|3

the values of the elements of the sets as functions of v and of an offset parameter A as given

in Table 2.2 (again, see Appendix A for a proof).

Theorem 15 Given any redundant binary addition scheme, there ezists vy € {—1,0,1} and
A € R such that Sz = Sp = S; = {y—1,7,7+1}, and that the weight and transfer digit-sets

of the addition scheme are as summarized in case 1, 2, or 3 of Table 2.2.

Proof. The proof is given in Appendix A.]
The above theorem proves that there is an infinite number of redundant binary addition
schemes, but that they are characterized by only two parameters, one related to the digit

39

Table 2.2: Parametrized Digit Sets of Redundant Binary Addition Schemes

Set No. 1 No. 2 No. 3

S {y-Lv7+1} {y-Lv,7+1} {y-Lv,v+1}

Se, S +{A} {v- L1} +{A} {v,7+1} + {A}

Sa | {y—Ly+1}+{-A} | {v—-Lv+Lv+3} +{-A} | {y-3,7y - Ly +1} +{-A}
S | {y—Ly+1}+{-A} | {r-1,7+1}+{-4} {v—1,7+1}+{-A}
Sg | 2{v -1,y +1} +2{A} 2{y - 1,7+ 1} +2{A} 2{y - 1,y + 1} +2{A}

set of the number system (7), and the other related to the addition scheme itself (A). It

is important to note that the result does not depend on A, because it is introduced by the

first conversion and is cancelled by the second.

Equivalence of Redundant Binary Addition Schemes

Definition 168 Relationship between addition schemes: consider the redundant binary ad-

dition schemes A with parameters (v,), and A’ with parameters (7', A'). Then, A and A’

are related through R if and only if there ezists € in {1,1} such that

S, =€e(Sa+ {7} + {+'},
Sy =€(Se + {-7H + {+'},
S =¢€(Ss+ {-v}) + {(*'}

S., =€(Se, + {~(y+A)}) + {7 + 4"},
St =€(Sq +{-(r-2)})+{v -4"},
Se=e(Sa+{-(r-A)H+{¥-4",

and

Sh = e(Ss + {~2(v + A)}) + {2(v + A")}.

This is equivalently denoted by

ARA.

(2.66)
(2.67)
(2.68)
(2.69)
(2.70)

(2.71)

(2.72)

(2.73)

In Appendix A, a lemma is given which shows that R is an equivalence relationship. It

can be readily observed that a necessary condition for two addition schemes to be related

40

through R is given by
|Se] =1Sel Vv € {e1,0} (2.74)

It can also be shown that the condition is also sufficient, thus leading to the following

theorem.

Theorem 17 There are two equivalence classes for R in the proposed space of addition
schemes: Cya for which |S,,| = 3 and |Sa| = 2, and Ca3 for which |S;,| = 2 and |Sq| = 3.
In other words, any redundant binary addition scheme is either related to any member of

class C3z, or to any member of class Coz.

Proof. The proof is established in Appendix A. n
Several implementations of schemes of class C3; have been implemented in the past
(Chow and Robertson, 1978; Thornton, 1997). Two addition schemes of class Cz3 have
been implemented in (Thornton, 1997). As a consequence of Theorem 17, one can state the

following:

Theorem 18 Let A and A’ be two two-level redundant binary addition schemes such that
ARA. (2.75)

If there ezists a circuit that implements A, then the same circuit can be used to perform A'.

Proof. The proof is established in Appendix A. []

Theorem 18 is very important as it states that a hardware implementation of a given
addition scheme can be re-used for another equivalent addition scheme. It is crucial to
note that this equivalence can be obtained from one redundant binary representation to
another, i.e. a binary carry-save adder and a signed-binary adder can be translated to the
same architecture.

Let us now give the example of a circuit for addition scheme A with parameters (v,A) =
(0,1) and addition scheme A’ with parameters (v,A) = (0,0). By applying Theorem 17,
one obtains that ARA’. The numbers contained in the various sets are coded as shown in

Table 2.3.

41

Table 2.3: Coding the Set Values

Addition {I, 0, 1} SCI Sg Sc: Sﬁ
1-00 220 0-— 00 0—=0|4—0
A | 0-(01,10) 2 = (01, 10)

1511 i-1 411 291j0-1
i-11 0—1 3-1 1-1(2-91
A 0 — (01,10) i-(01,10)
1-00 1-0 1-00 1-0]2-0

The codes for the elements of the sets of A are arbitrarily chosen. Every element of a
set of A’ is given the same code as its corresponding element of a set of A by using the

appropriate transformation. Then, the conversion tables used for A are given below

a+b|lald a+2xc || &
2 102 4 4|0
1 |o}1l 2 1|2
0 2|2 0 010
1 21 2 0| 2
2 [4]2

and the conversion tables used for A’ are given below

a+bla|d a+2xc |B| g
2 |31 3 2|1
1 |10 i 211
0 111 1 211
1 10 3 211
2 1|1

By replacing the digits by their binary codes, one obtains the same conversion tables,

the same Karnaugh maps, and the same circuit.
A Limited-Carry Adder: The 4:2 Compressor

The 4:2 compressor, among many other counters, was introduced in (Dadda, 1976). Plenty
of research has been carried out to use and optimize the 4:2 compressor (Law et al., 1999;
Hagihara et al., 1998; Shim and Kim, 1997; Goto et al., 1997; Pillai et al., 1996; Larsson
and Nicol-Chris, 1996; Kanie et al., 1994). Its primary application involved the reduction of

42

trees of binary numbers, arising in the multiplication of binary numbers. A 4:2 compressor
adds four bits of weight 1 with a carry-in of weight 1 and generates one bit of weight 1 and
one bit of weight 2 and a carry-out of weight 2. Its main feature is that the carry-in has no
influence on the carry-out, permitting a cascade of 4:2 compressors to perform addition in
constant time (Dadda, 1976). Let us regroup the input bits into two sets of two, to form
two binary carry-save digits. Moreover, let us transmit the output bit of weight 2 as a
carry-out to the 4:2 compressor processing the bits of the next higher power of two. The
second carry-in can thus be output directly, and combined with the existing output bit to
form a binary carry-save sum digit. As a result, the 4:2 compressor has been transformed
into a LSD-first limited-carry binary carry-save adder. Therefore, the 4:2 compressor is also
a SB adder.

The systematic development of SB adders for any given SB digit encoding has been
investigated (Chow and Robertson, 1978). In that article, it was proven that a SB adder
corresponding to the 4:2 compressor is one of the three best SB adders in terms of delay
and area. Consequently, a 4:2 compressor hardware implementation proposed recently
was chosen for subsequent hardware implementation of the limited-carry SB adders (Kanie
et al., 1994).

2.4.3 Bit-Serial and Digit-Serial Signed-Binary Limited-Carry Addition
Architectures
Consider the online limited-carry addition of an addend word A to an augend word B given
by

w w
A=) a2 and B=) b2 (aibh) € {-1,0,1}%, (2.76)

i=1 i=1
where the digits a; and b; are inputted at time instant i. The resulting sum S is of the form

w
S=Ys27% sie{-1,0,1}. (2.77)
i=—1

A corresponding bit-serial architecture is shown in Figure 2.6. This architecture implements
Algorithm 14 (page 33) for bit-serial online addition. The result digit ¥,—s corresponds
to the sum digit s, the online error €, corresponds to ¢, + ¢}, but the partial update P,
cannot be identified directly. This architecture has two modes of operation, namely, addition

43

6’1@

Ctrl %, + &

€2,init S
Figure 2.6: Architecture for Bit-Serial Online Limited-Carry Addition

initialization and continuing addition. During the addition initialization mode, one assumes
that the digits of A and B have been set to zero for all the past time instants. The Ctrl
signal is set to 1 to select the resulting hardwired initialization carry values. The MSDs a;
of A and b; of B are added to the initialization carry values ¢; jnit and ca nit, yielding the
MSD s_; of S, in addition to the carries that are stored for use in the next time instant.
During the continuing addition mode, the digits a; and b; are added to the carries ¢; and
c2 formed at the previous time instant, yielding the digit s;—» and the carries ¢] and ¢,
that are stored for use in the next time instant. This implies a latency of 2 for the online
addition (c.f. Section 1.3.2).

It can be observed that the initialization mode occurs every W time instants. Therefore,

the Citrl signal is equal to 1 for the (discrete) time instant n being divisible by W, i.e. when
nmod W =0. (2.78)

It is important to note that the carries formed at the previous time instant are discarded in
the addition initialization mode. By padding both the addend and the augend with two zeros
as their LSDs, all the digits of accuracy of the sum will be made available, and the carries
will be set to their initialization values (Natter and Nowrouzian, 1999). Consequently, the
switches are not required. Therefore, the cost of padding two zeros as the LSDs of both the
addend and the augend has to be compared to the cost of using switches.

The above adder originates from a very efficient 4:2 compressor developed in (Kanie
et al., 1994), where the modifications introduced solely consist of wire re-routings. The SB

input digit a is represented by a bit pair (}a,2a) so that

a=a+a-1; 'aa€{0,1}. (2.79)
The SB input digit b is similarly represented by a bit pair (15,2 b) so that

b=b +b—1; !bZbe {0,1}. (2.80)

This SB digit encoding was presented in (Lapointe et al., 1993). As in Figure 2.5, ¢ and
b are combined to yield a € {—2,0}, and the output carry ¢; € {0,1,2} so that Eqn. 2.59
(page 37) holds. One represents a by a single bit '« in accordance with

a=2a-1); lae{0,1}, (2.81)

and ¢} by a pair of bits (}c},2¢}) as per Table 2.4. The |, ®, ~, and . symbols represent

Table 2.4: Code for ¢; and ¢

Digit | Code (1¢; 2¢)
0 00
1 10orll
2 01

the logic OR, XOR, AND, and NOT operations, respectively. The above bits representing

a and ¢] are calculated in accordance with

la=1g@%2a ~'a|(}a®?a) ~ b, (2.82)
1 = (*a®?a) @ (*b@?b), and (2.83)
2"!1 = b, (284)

respectively. Then, a and ¢; are combined to yield 8 € {0,4} and ¢, € {—2,0}, as given by
Eqn. 2.60. The representation of ¢; by a bit pair (}c;,2¢;) is identical to that of ¢;. One
represents 3 by a single bit 18 so that

B=416; 'Be{0,1} (2.85)

and ¢, by a single bit ¢} so that
a=2c-1); '¢€{0,1}. (2.86)
These bits are calculated in accordance with
1=1¢; ~2¢ |lcy ~ ' (2.87)
and
g, =a®! q, (2.88)

respectively. Finally, 8 and c; are combined to yield the SB output sum digit s in accordance

with Eqn. 2.61. One represents s by a bit pair (}s,2 s) so that
s=ts+2s-1; !s%2s€{0,1}, (2.89)
and ¢; by a single bit lc; similarly to ¢;. Subsequently, the sum digit s is calculated by
using
lg =l ¢y and 2s =! 8. (2.90)

From Eqns. 2.82-2.90 and Table 2.4, one can obtain the following bit representations of the
initialization carry values

(*e1,inits? €1,init) = (0,1) and ez nie = 0. (2.91)
Digit-Serial Architecture

By using Algorithm 10, one obtains a generic digit-serial architecture of digit-size D for
signed-binary limited-carry addition, as shown in Figure 2.7. At each time instant, D input
digits are made available in both the addend A and augend B streams at each time instant,
resulting in the generation of D corresponding digits that are outputted by the sum S
stream. The signal Ctrl; is set when the (discrete) time instant n satisfies

(mxD+i)mod W =0, (2.92)

where i corresponds to the single-digit addition instance number.

46

CLiait Ctrlg G b Cliais Ctrly [Y Clinis Ctrip., 6p-1 bp;
|

I i i 5

-
-

i

L] n C2inis $p-1

Figure 2.7: Architecture for Digit-Serial Online Limited-Carry Addition
2.5 Chapter Summary

In this chapter, all redundant binary addition schemes have been found and characterized.
Four of these schemes were previously reported in (Thornton, 1997). All schemes belong to
two distinct classes, and a theorem has been given stating that the hardware implementation
of one of these addition schemes can be used for any addition scheme belonging to the same
class. The importance of this theorem lies in the facts that, (a) only two classes of three-
level redundant binary addition schemes exist, and (b) all different implementations of one
addition scheme can be used for all other members of the same class as they share the same
internal mechanisms. This implies that an addition scheme with input and output digit
sets {0,1,2} can be implemented with the same circuit as an addition scheme with input
and output digit sets {—1,0,1}, or with input and output digit sets {-2, ~1,0}.

This chapter has also introduced the necessary background for digit-serial online oper-
ations. The digit-serial unfolding algorithm has been simplified by merging two steps into
one. Moreover, the digit-serial technique has been extended to the case of a dynamically
changing wordlengths. Similarities between number systems have been identified, which can
be exploited for design time savings, in particular for redundant binary number systems,
where the well-documented 4:2 compressor has been proven to be a limited-carry signed-
binary adder. Finally, the proposed techniques have been applied to the development of a
digit-serial online limited-carry addition architecture.

47

Chapter 3

Theoretical Background for Online
Signed-Digit Multiplication and
Multiply-Accumulate Operations

3.1 Introduction

With the advent of the communication era, digital signal processing is rapidly gaining
popularity, mainly because of the flexibility and cost-efficiency of corresponding hardware
implementations. The multiplication and multiply-accumulate operations are essential for

digital signal processors. In such an operation, the result R is obtained in accordance with
R=AB+C, (3.1)

where A, B, and C represent the multiplicand, multiplier, and addend, respectively!.

This chapter is concerned with an introduction to the theoretical background for the
development of architectures for online signed-digit multiplication and multiply-accumulate
operations. The discussions begin with the development of a general algorithm for bit-serial
online signed-digit multiply-accumulate operation (Section 3.2). The salient feature of the
proposed algorithm is to have the operation depend on one single variable only, namely
the partial update, while all the other variables are operation-independent. In this way,
the resulting algorithm can perform any operation expressed as a sum of partial operation
updates in a bit-serial online fashion. Then, in Section 3.3, an architecture unit for the
multiplication of a signed-binary word by a binary and a signed-binary digit is presented

together with a novel signed-binary to minimally redundant base-4 recoding technique. The
A multiplication corresponds to the special case of a MAC operation with C = 0.

48

proposed recoding technique permits a speed-efficient reduction of the number of partial
updates, substantially increasing the processing speed of a corresponding architecture. As
the format of the inputs to such arithmetic operations cannot be naturally preserved for
their outputs, the discussions continue in Section 3.3 with a description of the existing
techniques for the rounding of signed-binary numbers and the overflow handling in online
operations. In particular, algorithms are given for parallel low-precision rounding of a
signed-binary word and for online signed-binary rounding—compliant with the IEEE 754

rounding to nearest/even standard.

3.2 Proposed Algorithm for Signed-Digit Online MAC Op-
eration

In this section, a generalized recursion-based algorithm for signed-digit online MAC op-
eration is developed, where the multiplicand is assumed to be known at the outset, and
where the multiplier and addend are made available in an online fashion. The resulting
algorithm obtains an increasingly more accurate online MAC result as digits of decreasing
weight of the multiplier and addend are made available. For the sake of generality, the
redundancy indices of the MAC operation operands (i.e. the multiplicand, the multiplier,
and the addend) are all assumed to be different. A strategy for the determination of the
various algorithm parameters is presented. This strategy relies on a bound on the latency
of the resulting algorithm together with a bound on the difference between the indices of
the most significant digits of the multiplier and addend.

3.2.1 Nomenclature

It is assumed that the MAC operation operands (A, B, C, and the final MAC result
R) are represented in a fixed-point radix-83 ordinary signed-digit (OSD) number system

49

_(Parhami, 1990) in accordance with

Wtia-l
A= Y @B ai€{-m-.-sTa}s (3.2)

i=tg
Wy+ip—1)
B=) bf™% bi€{-m,....mh (3.3)

=iy
Wetic—1 .
C= Z ciﬂ—‘; ¢ € {"'nca v srlc}y (3'4)

i=ic
and

Wetip—1)
R= Z nf™h n€ {-771"- . -snr}° (3.5)

i=ir

Here W,, Wp, W,., and W, represent the wordlengths of A, B, C, and R, respectively,
ia, b, fc, and i, represent the indices of their MSDs, and l-g] < NayMosNesr S B —1
represent their redundancy indices. An estimation of a number X is denoted by X, and
its truncation by X. The MSDs of A and B can be assumed to have the same weight 5~!
as made possible by proper scaling in Eqn. 3.1, implying that i, and i, are equal to 1.
Consequently, the parameter i, indicates the relative position of the MSDs of AB and C
(Natter and Nowrouzian, 2000a).

For an OSD representation of A, l; can be calculated in accordance with

__"a - A—Wa
o= g7 (1=87"). (3.6)

Since n, < -1, one has
. <1 (3.7

Therefore, the above representations restrict the ranges of the multiplicand A and multiplier
B so as to permit one to represent AB in the same way as A (after rounding and overflow
processing).

An online operation is typically performed in an iterative manner, where the online
input digits are available one by one, the MSD first. By taking into account the online
mode of the arrival of the multiplier and addend,

p) ictp)
By=) bif " and Co=) aif” (38)
i=1 i=ic

50

represent the partially formed B and C at iteration p. The corresponding off-line iterative
MAC result is defined as

Rp = ABp + Cp- (3.9)

The MAC result digits are assumed to be available online, forming an online iterative
MAC result ﬁp at iteration p as given by

where & represents the latency of the MAC operation. The off-line iterative MAC result

can be recursively defined so that
R,=R, 1+ P,p%", (3.11)

where P, represents an off-line partial MAC update (as determined in terms of the newly
arriving b, and c;,4, digits) at iteration p. By padding B or C with zeros, one can set
Wy=W.=W,withpe{l,...,W}

As formed by the accumulation of off-line partial MAC updates of large wordlength, R,
has more digits of accuracy than ﬁp. In this way, R, approximates R, with some online

error €, such that
R,=R,+¢,0". (3.12)
The iterative MAC result R, can be expressed as a function of R,_ in accordance with
R,=R,1+B,p** (3.13)

where ﬁ, represents an online partial MAC update. In the following, recursion equations
are developed, (a) to obtain ﬁp in terms of the off-line partial MAC update P, and the
scaled online error €,~13, and (b) to determine 7,5 in terms of online partial MAC update

P, and the online error ¢,.
3.2.2 Signed-Digit Online MAC Algorithm

The iterative MAC result R, is given by
Ry = Rpy + Ab,f™° + cip o040 (3.14)

51

Therefore, P, = (Ab, + ¢i.+,87%) B is an off-line partial MAC update value determined
by the newly arriving b, and c; 4, digits of the multiplier B and addend C, respectively.
The bound on P, is independent of p as it is scaled by the same weight as ¥,_s, and can
thus be used as a signal in a corresponding hardware implementation.

If Eqn. 3.12 holds at iteration p — 1, then expanding R,-; in Eqn. 3.11 leads to
Rp = Ep—l + (ep—lﬁ + Pp) ﬂa-p- (3.15)

The bound on ¢, is also independent of p. By substituting ﬁp from Eqn. 3.10 into Eqn. 3.12,

one obtains
Ry = Rpy + (Fp—s + €,)8°. (3.16)

Finally, by invoking Eqns. 3.15, 3.16, and 3.13, one arrives at the recursion relationships

and
Fpmi + € = B, (3.18)

The online MAC result digit 7,—s is an integer estimate of ﬁp to within an online error ¢,.
Rounding I.",, can be restricted to rounding €,-18, as in (McQuillan and McCanny, 1995).
The recursion relationships in Eqns. 3.17 and 3.18 can be recast into the following algorithm

for purely signed-digit online MAC operation.

Algorithm 19 Online Ordinary Signed-Digit MAC Operation
Step 1 Set p+ 1 and ¢g « 0,

Step 2 Read b, and c; 4,

Step 8 Calculate P, + (Ab, + cie4p87%) B9,

Step 4 Calculate f",, — €18+ Py,

Step 5 Round ﬁp to Tp—s,

Step 6 Calculate ¢, P, 7,5,

Step 7 Write Tp—s,

Step 8 Calculate p—p+1,

Step 9 If p < W + 1, then go to Step 2, else done end if.

52

In the above algorithm, after the initialization of the online error €g, the multiplier B
and addend C are consumed in an online fashion. At a given iteration p (1 < p < W), an
off-line partial MAC result P, is formed by using the most recent online digits of B and
C. Then, one adds the scaled error ¢,—13 generated at the previous iteration to the off-line
partial MAC update P,, and obtains an online partial MAC update }3,. Next, an integer
online MAC result digit ¥, is obtained by rounding f"p, giving rise to an online error ¢,
(stored for use in the next iteration).

In Step 5, one can use a truncation of f"p to its first ¥ MSDs to perform the rounding
operation, where 1 < v < Wj is called the internal wordlength, and where Wj represents
the wordlength of the online partial result. In the following, the number system radix 8, the
redundancy indices 7, 7, 7, 75, the multiplicand bound /,, the wordlengths W,, W, the
internal wordlength v, and the relative position of the MSDs of AB and C, i., are taken into
account as user-specified MAC arithmetic operation design parameters for the design of a
corresponding architecture, where 75 represents the redundancy index of the OSD number
ﬁ,,, and where [, represents the bound on A such that [4| < l;. Moreover, P,, ¢,, and ﬁ,,
are taken into account as the variables of the MAC arithmetic operation.

At the last iteration p = W, one has By = B and Cyw = C. Therefore,
Rw+ewB " =Ry =R (3.19)

In this way, R represents the MSDs, and ew represents the least significant digits (LSDs)
of R (as desired).

The correct functionality of the above algorithm has been verified by numerous Matlab
simulations. It should be pointed out that the algorithm can be modified to perform other
operations, such as inner products (Muller, 1994).

The internal wordlength « should be kept small, because the delay of the FPCA hard-
ware implementation of the estimator in Step 5 is proportional to logg(y) (look-ahead
operation), or to v (ripple-carry operation). Moreover, a low latency § allows for the con-
sumption of the result digits by another MAC architecture after only a small fixed delay
(McQuillan and McCanny, 1995; Lapointe et al., 1993). Finally, negative values for i, have

been shown to make possible a reduction in the delay of the hardware implementation of

53

the single-digit MAC architecture (Natter and Nowrouzian, 2000a). The same holds if i. is
larger than or equal to W,: if i = W,, the addend digit can be padded as the LSD of the
online error, instead of a zero; otherwise, if i, > W,, the addend digit can be padded as the
LSD of Ab,.

3.2.3 Determination of the Parameters of the Algorithm

In this subsection, an interrelationship between «, J, and 1. is derived, and lower bounds
on § and i. are obtained, (2) to place in evidence the trade-off between these user-specified
parameters for an actual optimal hardware implementation, and (b) to obtain a procedure
for the determination of the numerous design parameters (8, s, 7, s M5 Was lay 7, 9, and
ic). It is assumed that the number system radix 8 has been fixed at the outset, implying
that the redundancy indices are constrained to the range {[g] vere B — 1}. By taking
into account the fact that the redundancy indices can be chosen independently of each
other, one can optimize the latency of nested MAC operations for subsequent hardware
implementation. Therefore, it is further assumed that the redundancy indices have also
been fixed.

At a given iteration p, the rounding of ﬁp to a single-digit integer ¥, in Step 5 restricts
the weight of the MSDs of ﬁp and €,-; to B°. Let I, and I, represent the bounds on ¢, and

P,, respectively, so that
leol <l and [Py < {p (3.20)

both hold, where equality can be obtained for some ¢, and P,. Then, for €,—18 + P, to
be representable by ¥,—s + €,, the bound on P, before rounding (c.f. Eqn. 3.17) must be
tighter than the bound on i", after rounding (c.f. Eqn. 3.18), i.e.

leB+1p < 1 +1e. (3.21)

If Eqn. 3.21 is not satisfied, one may find an off-line partial update P, and an online error
€p-1 such that their sum, P-,,, cannot be represented as an online result digit and a new
online error ¢, that can satisfy the desired upper bounds.

Let us establish the values of the bounds / and I, by introducing an estimation function
whose main operation involves rounding the real OSD number ﬁ,, to the closest single-digit

54

integer Tp—s5. Consider the OSD number P, defined in accordance with

W5—1
By= Y 5piB™% Bpi € (- 5h (3.22)

i=0
where Wj represents the wordlength of ﬁp, and where 75 represents the redundancy index
of ﬁp. In order to reduce the delay of a corresponding hardware implementation of the
estimation function (which depends on the logarithm of the wordlength of I.",,), one may
consider a truncation of ﬁp to its ¥ MSDs as given by
— 7-1
B,=Y ppiB, (3.23)
i=0
to estimate ¥,—s. The advantage of this truncation is to permit a constant-delay estimation
in a corresponding hardware architecture (Irwin, 1977), but it increases l, and, conse-

quently, increases the latency 4. Then, the bound on the online error can be calculated by

observing that the inequalities

leo] < |?p - Fp-al (3.24)
< lﬁp - $p| + I?p - ?p-JI (3.25)

hold (the corresponding equalities may be obtained for some values of the online partial

result). Next, one can calculate the upper bound on the online error in accordance with
_L1 . % ey _ g-w;
z,_2+ﬁ_1(ﬂ g5, (3.26)

where % is the usual real-to-integer rounding error, and where the other term is the bound
on the truncated part of P,. The term — 728~ "7 becomes important when the wordlength
of the online partial result becomes small (e.g. in addition A =1 and C = 0), because it
reduces I substantially, permitting the increase of the bound on the off-line partial update.
However, for practical multiply-accumulation operations, Wj is large enough to warrant
ignoring this term. Once 8 and 7, have been determined, one should minimize /. so as to
avoid over-constraining !,. When « decreases, l increases beyond a typical real-to-integer
rounding error of %, leading to an increase in the latency of the MAC arithmetic operation.

Eqn. 3.21 implies an interrelationship between the bounds on ¢, and P, which will be
exploited in the proposed MAC algorithm to derive a lower bound on the latency 4, with

55

the lower bound being dependent on the characteristics of the input operands A, B, and C.
The following bounds on § and i, can be derived only after /, has been determined.
Let |P,|,,, represent the maximum value of |FPy|. From the definition of F,, one can

show that

IPplmax = (laﬂb + nCB-ic) ﬁ—‘ é lp- (3.27)

For an OSD representation of A, [, has been calculated in Subsection 3.2.1. For number
systems other than OSD, one can replace I; by the appropriate upper bound, e.g. I, =
2 —21-Wa for SB numbers as represented in (McQuillan and McCanny, 1995). Finding the
maximum I, when the internal wordlength, the upper bound on the multiplicand, and the
redundancy indices are given yields the smallest latency 4. For purely signed-binary MAC
operations, all redundancy indices are equal to 1, and l; = 1 — 2-%s. A plot of the valid
bounds on P, with respect to § and i, is obtained as shown in Figure 3.1 for v = 4. The two
598 Functon ot g B or = 4 3802
e

0.8~

.35 4

.18~

MBD Peistve Postion |,

Latency 3

Figure 3.1: Bound on P, as a function of § and ic for 8 =2,7y=4and ;=1

solutions for which I, in Figure 3.1 is maximum are obtained as tuples (,i.) = (3, -1) and
(,%) = (2,1). Similarly, for v = 3, the maximum {, is obtained by the tuple (4,1.) = (3,0).
No improvement on I, is obtained when using ¥ = 5 and «y = 6. This is due to the facts

that I, is given by
I, =270 —2Wa—b o 9-ic=f (3.28)

56

and that [, must always be smaller than 1 — I (c.f. Eqn. 3.21), which in turn implies
1-1<05 (3.29)

since I, > } (unless v = Wj, which is impractical for a large Wj5). Therefore, it can be
shown that the valid value of I, nearest to 0.5 is 0.375, if the term —2~Wa=$ is considered
as small.

By substituting Eqns. 3.27 and 3.26 in Eqn. 3.21, one obtains

(tams + ne8) B¢ < e + 252 1y (847 - 5-5). (3.30)

Let us restrict i. to be smaller than W, 2. In this way, the wordlength of the online partial
result can be calculated as

Ws=W,+8+1 (3.31)

by identifying the weight of its LSD. By manipulating Eqn. 3.30, one obtains the following
lower bound on the latency

l + -Wa _ -Wa
Semin = [mgﬁ (“”‘;r _’"gﬂ;_l _WZ‘f -)] (3.32)

satisfying
§ 2 Omin, (3.33)

which is in agreement with that in (Brackert et al., 1989) for n, = 7 = 7, i = 0. Similarly,
it is in agreement with that in (McQuillan and McCanny, 1995) for 8 = 2 (implying 7 =
fe=mg=mn=1),y=4,ic=1,and [=1 (TC) or [= 2-2!"W (SB).

It is important to note that the digit of weight 1 in the proposed representations
(Eqns. 3.2 through 3.5) must be equal to 0, whereas it can be non-zero in the representations
presented in (McQuillan and McCanny, 1995). Therefore, the resulting latency values from
the two representation types cannot be compared directly, because the representations of
the inputs to and the outputs from the MAC operations are not the same. However, if the

addend C is equal to zero, then one can compare the latency values indirectly by scaling

2Qtherwise, the number of iterations (= W) required by the algorithm to calculate the MAC result must
be increased because of the unnecessary padding of B and C with too many zeros.

57

the proposed result by 2 to obtain the result presented in (McQuillan and McCanny, 1995).
Subsequently, one can show that the two results match exactly, thus proving that the latency
is definitely a relative measurement. It can be concluded that the latency value depends on
the representations of the inputs to and the outputs from the MAC operation.

When the bound on Ab, + ¢;, 4,0~ increases, the latency also increases to force I, to

satisfy Eqn. 3.21. Similarly, from Eqn. 3.30, one can obtain this lower bound on i,

. Te -
Yemin = [loga (Ur ZEIL (B W) = laﬂbﬁ"")" é. (3.34)

The complexity of choosing & and i, in Eqns. 3.32 and 3.34 can be reduced by using the

same number representation for A, B, C, and ﬁ, i.e. by setting ng = = 7. = 0, = 1, also
permitting the consumption of Rasa muitiplicand, multiplier or addend in another online
MAC architecture (Natter and Nowrouzian, 2000a). The following strategy can be applied

for choosing appropriate values for the parameters in Eqns. 3.32 and 3.34.

(a) Choose the number system radix 3,

(b) Choose the redundancy indices, 7, 7, 7r, and 7,

(c) Choose the wordlength W, of the multiplicand, and the bound /; on A,
(d) Choose the internal wordlength «, and calculate 6, using Eqn. 3.32,
(e) Choose the latency § > dmin, and calculate ic,,, using Eqn. 3.34, and

(f) Choose the relative position of the MSDs of AB and C i. such that W, > i. > ic,,,-

As an example, for a SB online MAC arithmetic operation, 8 =2,[, =1,and gy =1, =
75 = fr = 1. Consequently, all the parameters in (a), (b), and (c) above are fixed except
for W, and 4. Let us find valid values for § and i, for various values of vy for W, = 5. For
v = 2, D0 dmin and ic,,, can be found. For v = 3, dpin = 3 and the maximum valid I,
bound of 0.25 (represented by lp,,.) is obtained for ic,,, = 0. Similarly for v = 4, one can
find dmin = 2: if one chooses § = 2, then i¢,, = 1 and lp_,, = 0.375, and if one chooses
0 =3, thenic_,, = -1 and lp,,, = 0.375. No improvement on lp,,, is obtained when using
larger values for v for the same reason as mentioned previously.

The parameter i, introduced in the proposed algorithm gives rise to additional flexibility
in a corresponding hardware implementation, and may lead to the discovery of novel faster

58

MAC architectures. The MAC algorithm can be generalized for the determination of all
affine functions as such functions can be evaluated by a bounded online operator (Muller,
1994). This generalization would be obtained by generating a different off-line partial
update, implying a different lower bound on the latency, but keeping the general bounds
on I, and [as fixed.

3.3 Algorithms and Building Blocks for High-Speed Signed-
Binary Multiplication Architectures

Multiplication is obtained as a successive addition of partial products, where a partial
product is equal to the appropriately scaled result of the multiplication of the multiplicand
word by a single multiplier digit. An important widespread technique to increase the speed
of multiplication involves the reduction of the number of partial products, usually obtained
by encoding the multiplier into a different representation. In addition, the double-precision
representation of a multiplication result must be approximated by a single-precision result,
thereby requiring rounding and overflow correction operations. This section is concerned
with the discussion of a conventional single-digit SB multiplier and a digit clearing unit, and
with the development of an algorithm for recoding a signed-binary (SB) representation into
a minimally redundant base-4 (MRB4) representation having {—2,-1,0,1,2} as its digit
set in an attempt to improve the area-time efficiency of the resulting hardware multiplier

architectures.
3.3.1 Single-Digit Multiplier and Digit Clearing Unit

In an iterative online algorithm for SB multiplication or SB multiply-accumulate operation,
the multiplication of a SB multiplicand by a SB multiplier digit is required to form the
off-line partial update. However, it is sufficient to consider the multiplication of a SB
multiplicand digit by a SB multiplier digit, and to repeat the operation on every digit of
the SB multiplicand.

Consider two SB digits (a,b) € {~1,0,1}? represented by the bits (!a,2a) € {0,1}? and
(5,2b) € {0,1}? in accordance with

a=a+%a-1, and b='b+%b-1, (3.35)

59

as in (Lapointe et al., 1993). Then, the product ab belongs to the set {—1,0,1}, and can

be represented by a single result digit r as given by
r=tr+2r-1, ('r2r)e{0,1}? (3.36)
where the bits !r and ?r are calculated in accordance with
lr = (26 ~10)|(*a ~ 1b), (3.37)
and
2r = (Tg ~2b) | (%a ~ %), (3.38)

where ~, |, and - represent the AND, OR, and NOT logic operations, respectively.

The correct functionality of these equations can be verified by exhaustive enumeration.
Digit Clearing Unit

In an iterative online algorithm, the online error has to be cleared at appropriate time
instants. As the proposed architectures will employ SB words, the clearing operation is
obtained by setting each SB digit a of a given sample to algebraic zero when a clearing
control bit b is equal to logic 0. Consider the SB digit ¢ € {-1,0, 1}, represented by the

bits (*a,2a) € {0,1}? in accordance with
a=la+%a-1, (3.39)

and consider the control bit Ctrl € {0,1}. Then, the SB clearing unit result digit r belongs

to the set {—1,0, 1}, and can be represented in accordance with
r=tr+2r-1, (r2r)€{0,1)% (3.40)
where the bits !r and 2r are given by
lr=lq~Ctrl and ?r=?a4|Ctrl. (3.41)

As a result, if Ctrl = 1, then r = a. Otherwise, Ctrl = 0 implying v = 0 and r = 1,
which corresponds to r = 0, as desired.

60

3.3.2 Signed-Binary to Minimally Redundant Base-4 Recoding Technique

The well-known modified-Booth recoding technique was developed by MacSorley for the

area-time efficient multiplication of two’s complement (TC) numbers. This recoding tech- |
nique recasts a TC multiplier into a corresponding minimally redundant base-4 (MRB4)
representation having {-2,-1,0, 1,2} as its digit set by 3-bit overlapped-scanning. A cor-
responding 5-digit overlapped-scanning technique was developed for parallel signed-binary
(SB) to MRB4 multiplier recoding (Rao and Nowrouzian, 1999). By using a base-4 mul-
tiplier representation, both techniques reduce the number of partial products by half. By
avoiding the digit values 3 and —3 in the MRB4 representation, the modified-Booth re-
coding technique reduces the partial product calculation delay to a constant, whereas the
5-digit overlapped technique mostly reduces the area and delay by a constant factor. A
6-digit overlapped-scanning technique is presented in the following, which performs a par-
allel SB to MRB4 number recoding by using two successive conversions which are similar
to addition. The proposed scanning technique is characterized by three important practical
features. Firstly, as for the two previous techniques, the base-4 multiplier representation
reduces the number of partial products by half, increasing the multiplication speed by
a factor of 2. Secondly, as the 5-digit technique, the scanning technique is available to
SB numbers. Thirdly, the conversions being similar to addition, a corresponding partial
product formation architecture employing this multiplier recoding technique exhibits a re-
duction by half in the area obtained when employing the 5-digit recoding technique, at the
expense of a small increase of the corresponding delay. The proposed technique adapts the
existing binary carry-save (BCS) to MRB4 representation recoding technique proposed in
(Kornerup, 1994) to SB representations by exploiting the similarities between the BCS and

SB number representations.
Development of an Algorithm for SB to MRB4 Recoding

Let B represent a SB number of wordlength W given by

w
B=) b2"% be{-1,0,1}. (3.42)
=1

61

Let us assume that W is even in accordance with
W =2Ww', (3.43)

which can be obtained by padding a zero as the most or least significant digit of B, as
deemed appropriate.

The 6-digit overlapped scanning technique amounts to recoding Eqn. 3.42 into a MRB4
representation B having {-2, -1,0,1,2} as its digit set in accordance with

wl
B" =Y b4, (3.44)
=0

This recoding consists of three phases, namely, (a) recasting the representation B into a
maximally redundant base-4 representation B’ having {-3, —2,~1,0,1,2,3} as its digit-set,
(b) recasting the representation B’ into a base-4 representation B” having {-1,0,1,2,3}
as its digit-set, and (c) recasting the representation B” into the MRB4 representation B".
Firstly, let us recast B into a maximally redundant base-4 representation B’ given by

w
B =) b4 (3.45)

j=1

By regrouping the odd and even terms of B in Eqn. 3.42, one obtains

WI
B =Y (2bg1+bg;)47, (3.46)

i=t

where b; =0 fori <land i > W. Let bg be defined in accordance with

b, = 2bg;—1 + baj, (347)
for all j in {1,...,W’}. Then,
b € {-3,-2,-1,0,1,2,3}, (3.48)
and
B'=B, (3.49)
as desired.

62

Secondly, let us recast Eqn. 3.45 into a base-4 representation B” given by

WI
B" =) b4, (3.50)
=0

where bf,’ belongs to the set {—1,0,1,2,3}. This is achieved through a decomposition of the

digits b} into transfer digits sj—; and weight digits v; in accordance with

4sj_1 +vj = b, (3.51)
subject to
sj-1 € {-1,0} (3.52)
and
v; € {0,1,2,3}. (3.53)

Then, by taking into account the constraints in Eqns. 3.52 and 3.53, it can be shown that

Eqn. 3.51 possesses a unique solution as given by

A
= | .
si-= | 2], (3.54
and
vj = mod(b},4), (3.55)

where b; = 0 for j < 1 and j > W'. Consequently, one can observe that
vp=0 and sy =0. (3.56)

In addition, by making use of Eqns. 3.51 and 3.56, Eqn. 3.45 can be written as

w'
B'=Y (sj+vd7. (3.57)
Jj=0

By letting the digits b} be defined in accordance with

b;! = 8; + vj, (3.58)
it follows that
b_',-' € {-1,0,1,2,3}, (3.59)

63

and that
B"=PH, (3.60)

as desired.

Thirdly, let us recast Eqn. 3.50 into a MRB4 representation B"” given by
w’ ‘
B" =Y #f'4, (3.61)
rd

where b’ belongs to the set {-2,-1,0,1,2}. This is achieved through a decomposition of

the digits bg-’ into transfer digits ¢;—; and weight digits w; in accordance with

4tj_ + wj = bf, (3.62)
subject to
tj-1 € {0,1} (3.63)
and
w; € {-2,-1,0,1}. (3.64)

Then, by taking into account the constraints in Eqns. 3.63 and 3.64, it can be shown that

Eqn. 3.62 possesses a unique solution as given by

b +2
i1 = l-L4—J ' : (3.65)
and
wj = mod (b + 2,4) -2, (3.66)

where b = 0 for j < 0 and j > W’. Consequently, by making use of Eqn. 3.56, one can
observe that

t_1=0 and ity =0. (3.67)
Moreover, by making use of Eqns. 3.62 and 3.67, Eqn. 3.50 can be written as

Wl
B" =Y (t; + w47 (3.68)
e

64

By defining the digits b}’ in accordance with

b’ = t; + wj, (3.69)
it follows that
by € {-2,-1,0,1,2}, (3.70)
and that
B" =B, (3.71)

as desired. Therefore, by making use of Eqns. 3.49, 3.60, 3.71, and 3.70 it can be concluded
that B" is a MRB4 representation corresponding to the SB representation B.
The above steps can be combined into a 6-digit overlapped-scanning technique as follows.

Let a 6-digit overlapped scanning of the sets of digits

(b2j-1, b2jy b2j41, B2je2, D243, b2jta) (3.72)

be performed successively for j in {0,..., W'} to calculate

. mod (¥, ,,4)+ Yiga |,
b.l’!l = mod (bg + lﬂf‘-J +2, 4) -2+ [i +1 A ry : (3.73)

where b; represents a base-4 digit of B’ and is defined in accordance with
bj = 2bgj—1 + baj, (3.79)

and where the digits b; are assumed to be equal to 0 for i > W and i < 1. By defining
the word B" in accordance with Eqn. 3.44, one obtains a MRB4 representation of the SB
representation B.

The proposed recoding technique can also be viewed as successive digit set conversion
schemes, as shown in Figure 3.2. This digit set conversion scheme was developed by using
the technique presented in (Kornerup, 1994), where it was also shown that the digit set
conversion shown in Figure 3.2 cannot be performed by using fewer levels.

The proposed recoding technique can also be regarded as recasting a maximally redun-
dant base-4 representation, B’, into a minimally redundant one, B"'. The digits 3 and -3

65

21{-1,0,1} +29{-1,0,1}
i

L '
¥, € {~3,-2,-1,0,1,2,3}
L I
r v
431 € {-4,0} v; €{0,1,2,3} s; €{-1,0}
1 p4
L2 ' 4
bj € {-1,0,1,2,3}
p4 11
I]
4t € {0,4} w; € {-2,-1,0,1} t; €{0,1}
L3 % //

b € {-2,-1,0,1,2

Figure 3.2: Three-Level Signed-Binary to Radix-4 Digit Set Conversion

are thus avoided in the recoded number representation. Multiplication by -2, -1, 0, 1, and 2
can be obtained in parallel by appropriate hardwired shift, zeroing, and negation. However,
multiplication of A by 3 is the result of 24 + A, which necessitates the addition of two
words. Therefore, the multiplication of a SB multiplicand word A of wordlength W, by a
SB multiplier word B of wordlength W usually requires W additions to obtain the desired
result, whereas recoding the multiplier B into a minimally redundant base-4 representation
implies the need for only [%] + 1 additions.

By recoding the SB multiplier into a corresponding MRB4 representation, about fifty
percent of the additions are saved in a LSD-first SB multiplication algorithm, increasing
the multiplication speed by a factor of 2. It is important to note that higher base recoding
techniques exist, but that the additional gains in speed over the proposed recoding technique
are small (Kornerup, 1994).

The following pseudo-code implements the proposed recoding technique.

Algorithm 20 SB to MRB4 Recoding Algorithm
input: B
output: B’

begin
read B;

66

set ;=0 for i1<0 and i > W —1;
set B'=0;
for j =0 to W’;
begin
select byj—1, boj, bojs1s b2j42, D2j+3, b2jeds
compute bg using Eqn. 3.73;
set B'=B' +b3-4'j ;
end
write B’;

end

This algorithm can be exemplified by the recoding of the 16-digit SB word 0111101011110110
into the 9-digit base-4 word 001211112, where I denotes —1, and where 2 denotes —2.

Implementation of a SB to MRB4 Recoder

In a hardware implementation of a multiplication algorithm employing an SB to MRB4
recoded multiplier, I"'—‘;‘] + 1 recoders are required, and, since a digit value multiplies
an entire word, Wy ([Wiﬂ] + 1) corresponding SB digit by MRB4 digit multipliers are
required. Therefore, by carefully choosing the encoding used for the outputs of the MRB4
recoder, one can minimize the area and delay of a corresponding SB digit by MRB4 digit
multiplier.

The SB encoding given in (Lapointe et al., 1993) is chosen for the input SB digits, as
shown in Table 3.1. If a SB digit b; of weight 2~* is encoded in accordance with Table 3.1

Table 3.1: Signed-Binary Encoding

Binary Code | SB digit
00 -1
0land10
11 1

67

by two bits, 1b; and 2b; respectively, then

by =2 by +28; — 1 (3.75)

holds.
Let us determine the encoding of the digits s;, v;, ¢;, wj, and b]’. Given their respective

digit sets, one can code these variables in accordance with

1

sj='sj—1 (3.76)

v; = 2lv; +2 v; (3.77)

£ =1t (3.78)

w; =2('w; — 1) +? w; (3.79)
and

b = (2negate; — 1) x (shift; + 1) x (zero;) (3.80)

where 1s;, lv;, 2v;, t;, lw;, 2wj, negate;, shift;, and zero; are bits, and thus belong to
{0,1}.

The bit shift; indicates a multiplication by 1 or 2, the bit zero; indicates a multipli-
cation by 0 or 1, and the bit negate; indicates a multiplication by 1 or -1, as listed in

Table 3.2. It can be readily observed that the proposed encoding leads to the desired digit

Table 3.2: Conventions for MRB4 Digit Encoding

shift; zero; negate;
code | action code | action code | action
0 x2 0 x0 0 x1
1 x1 1 x1 1 | x(-1)

sets.

The implementation of the first level is directed by Eqn. 3.51, which can be translated
into
418j-1 + 2lvj +2 v; = 2162j_1 + 2202j_1 +1 a2 +2 a2 +1, (3.81)

which is a binary addition.

The implementation of the second level is directed by Eqn. 3.62, which can be translated

into
41t +2'w; +2wj =2l +P v+ 8 + 1, (3.82)

which is also a binary addition.
The implementation of the third level is directed by Eqn. 3.69 in accordance with

(2negate; — 1) x (shift; + 1) x (zero;) = 2('w; - 1) +2w; +1t, (3.83)

which can be obtained by using

shift; =% s; @' t;, (3.84)
zeroj =' 5 ~ (251 't;)|Ts; ~ (sj ~t;), (3.85)

and
negate; = Vj, (3.86)

where ~, |, and - represent the logical AND, OR, and NOT operations, respectively.

The resulting MRB4 recoder requires a 15 gate-equivalent area, assuming the area of
a multiplexer is the same as that of a gate, and assuming the area of NOT gates can be
neglected. A subsequent ASIC hardware implementation is therefore more area-efficient
than that given in (Rao, 1996), for which 25 gate-equivalents are needed. Let us denote
by t¢ and tpyx the delay through a gate and a multiplexer, respectively. The delays
required to obtain the shift;, zero;, and negate; signals are 4t¢ + 2tmux, 4tc + 3tmux,
and 3tg + 2tmux, respectively. If tppx is assumed to be equal to tg, then the delay of
an ASIC hardware implementation is only larger than that proposed in (Rao, 1996) by one
gate delay.

Implementation of a mixed SB/MRB4 Digit Multiplier

A mixed SB/MRB4 multiplier takes three digits as inputs: two consecutive digits a;—; and
a; of the SB multiplicand word A, having weights 2-*! and 2%, respectively, and one digit
b}’ of the recoded MRB4 multiplier word B", represented by the signals shift;, zero;, and

negate;.

69

The SB result of the multiplication of A by bgf’ is denoted by R, where the bits represent-

ing the digit ri+2; of weight 27°~% can be expressed in terms of the inputs in accordance

with

Yrivej = ((*ai ~ shift;|'ai-1 ~ shift;) ~zero;|0 ~7ero;) ® negate;, (3.87)
and

2riv2j = ((Pai ~ shift;|%a;—; ~shift;) ~zero;j|1 ~Zero;) @ negate;. (3.88)

A corresponding ASIC hardware implementation requires a 6 gate-equivalent area, and its
delay is the maximum of tg + 2tpyx and 2tg + tpyx. This area is much smaller than the

12 gate-equivalent area required in (Rao, 1996).

3.4 Rounding and Overflow Handling in Online Arithmetic
Operations

The result R of an arithmetic operation very often belongs to a range that is different from
that of the input(s). If R must be fed to the same unit as an input, then the problem
of fitting the result into the desired input format comes into play. In more down-to-earth
terms, the weights of some LSDs are too small, and those of some MSDs are too large, and
R has to be re-represented in the desired format by taking all these digits into account.

The format fitting problem can be subdivided into two problems of different nature,
referred to as rounding and overflow handling. Rounding, dealt with in Subsection 3.4.1,
finds the closest number having no LSD of lower weight than desired. Subsection 3.4.2
is concerned with overflow handling, which determines whether the value of R belongs to
the desired range, and corrects the representation accordingly. If the magnitude of R is
too large (overflow), then the new representation corresponds to the largest (positive or
negative, as appropriate) valid value: this is referred to as saturating the representation of
R.

3.4.1 Rounding of Signed-Binary Words

The wordlength of the result R of the multiplication of a multiplicand of wordlength W by
a multiplier of worlength W is at least larger than 2W, as can be observed when calculating

70

0.1 x 0.1 = 0.01. If this result is to be used as an input to another operation requiring
the same format as the input multiplier and multiplicand, then R has to be rounded.
The IEEE 754 standard includes a definition of the rounding-to-nearest/up (RNU) and
the rounding-to-nearest/even (RNE) techniques (Santoro et al., 1989; Rao, 1996). In the
following, a short description of the RNU and RNE rounding techniques will be given.
Then, an algorithm for online IEEE 754 SB RNE rounding will be presented. Finally, a
specific low-precision rounding operation is developed, which is required in online arithmetic
operations for estimation of the online result digit.

IEEE 754 RNU and RNE Rounding Techniques

In both the RNU and the RNE rounding techniques, the exact result R of a multiplication
must be rounded to a lower-precision word R.,4 which minimizes the absolute distance

d(R, Rrnd) given by
d(R, Rena) = |R = Rend| - (3.89)
By scaling R and R,n4 appropriately, one can assume that R,qq is an integer, and thus that
d(R, Rpew) < % (3.90)

holds. The RNU standard stipulates that Rq,q4 must be equal to the integer nearest to R,
and in the case of a tie (e.g. —1.5, —0.5, 0.5, or 1.5), Rpnq must be equal to the lowest
integer larger than R (Santoro et al., 1989; Rao, 1996). The RNE standard differs from the
RNU standard only in case of a tie: Rrng must then be equal to the even integer nearest to
R (Santoro et al., 1989; Rao, 1996).

Algorithms for IEEE 754 RNU and RNE rounding of SB numbers have been developed
in (Rao, 1996) and will be explained briefly. The exact result R is decomposed into its most

significant word R, and its least significant word Ry, in accordance with

Then, one can observe that Ry, is given by

Wie .
Ryw=)_ 27, (3.92)
=1

71

where Wy, represents the wordlength of Ry,,. In this way, Ry, consists of a sum of a digit

r; with a least significant word ﬁ;,,,, in accordance with
Risw =112"" + Rigw (3.93)

One can observe that Ry, represents a fractional number that belongs to the set (-1,1).
Similarly, Ry is given by

0
Rmmw= Y, r2™, (3.94)

where W,y represents the wordlength of Ry,y. Again, Rpgy, consists of a sum of a digit

ro with a most significant word ﬁm in accordance with
Rosw = 102° + B (3.95)

Finally, by considering the sign and magnitude of both r; and ﬁlm, it is possible to de-
termine whether Ry, belongs to one of the five sets [~1+2~Viw, —0.5), {-0.5}, (-0.5,0.5),
{0.5}, and (0.5,1—2~Wisw]. Therefore, an algorithm parsing the 9 cases (3 for ry, followed by
3 for ﬁ,,.,,) is sufficient to perform the RNU rounding technique for a SB number. Similarly,
the RNE rounding technique can be performed by an algorithm that takes into account
the sign and magnitude of both r; and Ripy, as well as the magnitude (and not the sign)
of ro. These rounding algorithms generate a round digit which can be added to Rmsu
for correction. Tables providing the round digit values for all the possible cases, and the
corresponding algorithms have been presented in (Rao, 1996).

In a corresponding hardware implementation, the sign and magnitude of a word are

represented by sign and sticky bits, respectively, by using the following conventions

Rw>0 & sign=0 (3.96)
Ruw<0 & sign=1, (3.97)
and
Rypw=0 & sticky=0 (3.98)
Ruw#0 & sticky=1, (3.99)

72

as in (Rao, 1996). Then, the round digit to add to R, for correction is represented by

two bits in accordance with
round =! round +2round — 1; (*round,? round) € {0,1}>. (3.100)
Similarly, ro and r; are both represented by two bits in accordance with
ro='ro+2ro—1; (*ro,2rg) € {0,1}3, (3.101)
and
n=r+>rn -1 (r,2r)e {01} (3.102)

Next, round is calculated by using the following boolean equations

Lround =! r| ~2r.(sticky ~ 'ro @2 rg | sticky ~ sign) (3.103)

2round = Ir) | 2r) ~ (sticky ~ Iro @2 rg | sticky ~ sign), (3.104)

where ~, |, ®, and ~ denote the AND, OR, XOR, and NOT logic operations, respectively.
Online Algorithm for IEEE 754 SB RNE Rounding

Consider an iterative online algorithm for arithmetic operation with latency d,, and effective
wordlength W,g 3. The symbols relating to the arithmetic and the rounding operations are
marked by using “op” and “rnd” subscripts, respectively. Then, one must recall Eqn. 3.12
(page 51), where the online operation result ﬁop,p is combined with the online operation

€ITOr €op,, to yield the off-line operation result Ry, in accordance with

Rop,p = Ropp + €ap o, (3.105)

In this way, there must exist an iteration number pg such that ﬁop,po represents Rop msu»
and €,, BY»=P0 represents Rop 15w One can calculate the desired round digit at any iteration,
and clear it, unless p = pg. Of course, the online error of the online arithmetic operation
has to be cleared at iteration pg + 1. Otherwise, online arithmetic operation result digits

of lower significance will be generated, although they have been taken into account in the

3The effective wordlength is defined as the wordlength augmented by the number of padded zero digits
needed to match the wordlength of the online rounded operation result.

3

round digit already. At any given iteration p, the online arithmetic operation result digit
Top,p—6ap 18 @dded to a round digit round,—,—4,,- This digit is either equal to the round
digit round obtained by performing the SB RNE algorithm on €4 5, at iteration pg, or to 0
otherwise. Consequently, it is sufficient to modify the online addition Algorithm 14 (page
33) so that it incorporates the calculation of the round digit before its addition to the online
result digit. The resulting algorithm performs the desired SB RNE rounding of ﬁop in an
online fashion.

Algorithm 21 Online IEEE 754 SB RNE Rounding

Step 1: Set p «— 2 and €rpq;1 + 0,
Step 2: Set ro + Tp—4,,, and Rigy ¢ €opp

Step 3: Calculate rnd,,-5,, by performing the SB RNE rounding algorithm on ro and
Risw;

Step 4: If p = po + 1, then calculate Prnqp — Fmd',,-l-;”?'a'"‘, else calculate Prygp +
(?"‘dap-l-aop + r‘ndﬁ"l“op) 2-6"‘"

Step 5: Calculate ﬁmd'p 2€rpd,p—1 + Prnd,p»
Step 6: Round ﬁmd,p to ?md,,,_l_;”_ 4
Step 7: Calculate €rnd,p 13',.,,4', — Frnd,p-1=Gop—Grna?
Step 8: Calculate p — p+1,
Step 9: Store €rnd,p,
Step 10: If p < Weg + 2, then go to Step 4, else done.

In the above algorithm, the online error p starts at 2 to account for the unit-delay
between the arrival of the first input digit to the arithmetic operation and the departure
of the corresponding output result digit. If the arithmetic operation is the addition (c.f.
Subsection 2.4, page 34), then the SB input digits a; and b; are consumed at iteration 1, the
SB sum digit r—; is generated at iteration 1, and made available to the rounding operation
at iteration 2. This delay results in latching the operation result digit in a corresponding
hardware implementation. The online error (corresponding to the carries ¢; and ¢z of a
limited-carry addition, c.f. Subsection 2.4.3) is initialized to 0. Then, at a given iteration p,
a round digit rnd,_s,, is determined in accordance with the SB RNE algorithm presented
in (Rao, 1996). Next, the online arithmetic operation result digit Top -1 is added to the

—bop

74

round digit if the iteration is equal to pg + 1, and 0 otherwise. The resulting off-line partial
update Prng, is combined with the scaled online error 2€mg,-1 calculated at the previ-
ous iteration, yielding the online partial rounding result ﬁmd,,,. Finally, the online partial
rounding result is approximated to the online rounded result digit Trnd,p—1-6,,~8,ng» thus
forming an online error €4, (the carries ¢} and ¢ of a limited-carry addition). The round-
ing operation is finished when the iteration number is larger than the effective wordlength
of the input plus one digit.
The latency of the proposed rounding operation is equal to that of addition, i.e.

Jrnd,min =2 (3.106)
It is important to observe that

€rnd, W g+l = 0. (3.107)

This is due to the fact that é,,4 online result operation digits equal to zero have been
introduced to flush the online rounded operation digits. As a result, the online rounding
error does not need clearing when operations are processed one after another (Natter and

Nowrouzian, 1999).
Low-Precision Rounding for Calculation of a SB Online Result Digit

At any given iteration p of an online algorithm, one must round an online partial result 13,
to an online result digit ¥,—s. This rounding technique differs greatly from other rounding
techniques such as the IEEE 754 standard RNU and RNE rounding techniques described in
(Santoro et al., 1989; Rao, 1996). First, ﬁp is truncated to its first ¥ MSDs before rounding,
where 7 is referred to as the internal wordlength of the online operation. Second, the output
of the rounding operation is an integer that must belong to a restricted output result digit
set. If the result is represented in a SB format, then the digit set is {—1,0,1}.

The first difference results in a degradation of the closeness of the rounded result to
the exact result, which may, in turn, cause true overflow in the online operation. In other
words, thé wordlength of the online partial result may prove to be too large, yielding more
than one online result digit, and thus requiring the change of an online result digit that

has already been generated at a previous iteration. However, a careful determination of

(6]

the internal wordlength together with the latency of the operation, which are commonly
referred to as the online algorithm parameters, solves this problem.

After carefully determining the online algorithm parameters, the second difference can
only cause unnecessary (but correctable) overflow, which can solely occur with redundant
representations. Of course, 7,s must represent the nearest integer to F,. However, in the
case of a tie, it is mandatory to choose the digit value closest to 0 if the online result digit
risks to be chosen out of the valid digit set.

It is important to note that the above rounding principle for online algorithms is appli-
cable to any radix-8 OSD number system. An algorithm causing the unnecessary overflow
can be found in (Owens, 1980), where the online digit r,_s is given by

ro_g =sign (B, xmm([l?iﬂn) (3.108)

where 7 represents the redundancy index of the OSD number representation of the online
result, where sign(.) represents the sign of its argument, where min(.,.) represents the
minimum value of its arguments, where |.| represents the magnitude of its argument, and
where [.] represents the result of the RNU algorithm on its positive argument.

In case of a SB number system, it is desired to obtain an algorithm which rounds a
SB number to the nearest integer, but in the case of a tie, chooses the integer closest to 0.
In this way, an online partial result equal to 1.5 is rounded to 1, which is an allowed SB
digit value. One can use the decomposition of Eqn. 3.91 to determine the desired rounding

procedure.

Let us distinguish between three cases corresponding to the three possible values of r;:
e If r, = —1, then two sub-cases need consideration:

~-If ﬁw < 0, then Ry < —0.5, and one must choose round = —1.

— If R 2 0, then Ry, > —0.5, and one must choose round = 0.
e If r; =0, then one must always choose round = 0.
e If r; =1, then two sub-cases need consideration:

- ﬁ;,.,, > 0, then Ry, > 0.5, and one must choose round = 1.

76

-If Rz,,,, <0, then Ry, < —0.5, and one must choose round = 0.
These results are summarized in Table 3.3.

Table 3.3: Low-Precision Rounding of SB Numbers

rounded = -1 = 0 n= 1
number ﬁw(ﬂ ﬁwzo ﬁwso ﬁ(,w>0
Reng Rpsw—1 Rpsw Ropsw Rmsw Rypsw+1

The above table can be implemented by generating a round digit round, represented

algebraically in accordance with
round = round +2 round — 1, (3.109)

where the two bits !round and 2round can be calculated by the following boolean functions

1

2 —

round =! r; ~2r; ~3ign, (3.110)

2round = sign ~ sticky ~'r |2ry, (3.111)

where sign and sticky are as described for the IEEE 754 RNE rounding technique, and
where r, is represented algebraically in accordance with
1 2
n=r+r-1 (3.112)

Then, the round digit is added to Rpsy to yield Ryng. In order to avoid the generation of
a non-desired carry, this addition must be obtained by letting the carry propagate through
the two digit positions of highest weight.

Let us develop a SB carry-propagate adder combining only one input digit a with a
carry-in ¢jn, and generating a sum digit s and a carry-out digit coye. The SB digit @ and
the SB carry-in ¢, can be expressed as follows

a='a+?a—1 and ci; =!cin +2Cin — 1, (3.113)

where (a,2a) € {0,1}, and where (}cin,2 cin) € {0,1}. Then, addition occurs in accordance
with

2cout + 8 = a + Cin, (3.114)

7

where coyt € {—1,0,1} and s € {—1,0,1} can be expressed as follows
_1..2 _1 2
s="8+°*s—1 and cout =" Cout +° Cout — 1, (3.115)

where (!3,23) € {0,1}, and where (cout,2 Cout) € {0,1}. The coue digit must always be
equal to 0, unless both a and ¢;, are different from 0, thereby avoiding the possible writing

of 1 as 2 —1 or —1 as —2 + 1. The corresponding boolean equations are as follows

lewt ='a (3.116)
2cout =26 ~1a|la ~ (*b]|%b)|%a ~'b ~2b (3.117)
ls=2g~2%|la~1h (3.118)
and
23 =Tg]2a| (10 @20) | % ~ (b ~'a|'b ~)| % ~ (Ta ~'b|'a ~2a), (3.119)

where ~, |, ® and ~ denote the AND, OR, XOR, and NOT logic operations, respectively.
Finally, the proposed low-precision rounding must also generate a least significant word
Risw new that, when added to R4, yields R again in accordance with

R = Rend + Risu new (3.120)
where R is given by Eqn. 3.91. In other words,
R = Rpgy + round + Risw news (3.121)
must hold. In this way, it is sufficient to find a digit r] new satisfying
2round + rypew =T1. (3.122)

If round equals 0, then no correction is necessary. Otherwise, one can observe that r;
is always exactly opposite to round. Therefore, the correction of the digit r; consists of
multiplying it by —1 when round is different from zero. This is obtained by setting

r) new =t 11 @ (‘round @% round) and 2rypew =2 11 ® (fround & round), (3.123)
where

TLnew =" Tinew +° Tlnew — 1 (3.124)

78

holds.
An extension of the proposed rounding technique to larger radices and redundancy
indices consists of obtaining the online result digit in accordance with

ro-s =sign (B,) x ([[B| +05] - 1). (3.125)

In this way, only a RNU algorithm is required for estimation of the online result digit,
as opposed to a RNU algorithm and a operation calculating the minimum value of its
arguments. The complexity of a corresponding hardware implementation is thus lowered.
Since the estimation function is the bottleneck of any architecture for online arithmetic
operation, this reduction in complexity has important practical advantages. It can be
observed that the “even” event in the RNE standard becomes irrelevant in odd bases,

because the decimal value 0.5 cannot be obtained exactly.
3.4.2 Overflow Handling in Online Arithmetic Operations

The result R of an online arithmetic operation with latency 4 is given by
w
R= Y #p% fie{-n-n+l....n} (3.126)
i=1-4
but is desired to be represented in accordance with
w
Rges = Z; TdesiB™"; Taesi € {(—n,—n+1,...,0}, (3.127)
i=
such that ﬁda = ﬁ, where W represents the wordlength of the desired format, where
B represents the radix, and where [g.l < n € B — 1 represents the redundancy index.
The first representation must thus be corrected in order to fit the desired format of the
second representation. The extra MSDs of the first representation may induce too large
a value for R to be corrected. This situation is called a true overflow (Timmermann and
Hosticka, 1993; Rao, 1996). If these extra MSDs represent a non-zero value, and if R canstill
be represented in the desired format, one refers to the situation as a correctable overflow

(Timmermann and Hosticka, 1993; Rao, 1996). Finally, there is no overflow when these
extra MSDs represent 0.

79

Rules to determine and handle overflow situations have been developed in the signed-
binary case in (Woods et al., 1993; Timmermann and Hosticka, 1993; Lapointe et al., 1993;
Rao, 1996). They are extended to the case of an OSD number system in the following.

Necessary Condition for OSD Number Correctability

Let us decompose R into its most significant word ﬁm and its least significant word R(,w

in accordance with

R = Rupsw + Rigw, (3.128)
where
L 0 -
Ry =) Tif™, (3.129)
i=1-4
and where
-~ w -
Ry =) _7ip~ (3.130)

i=1
In this way, Rusw represents the overflow number, and Risw represents the truncation of R

to the desired format.

Theorem 22 If ﬁm represents a correctable overflow, then ﬁ,,.,,,, can take on any of the
following three forms: 0...0Ing...7n, 0...0, or 0...0lnfy... 7, where 59 = B — 1, and

where 19 represents —ng.

Proof. The proof of this theorem can be established after proving the following three

lemmas.]

Lemma 23 If Ris represented as in Eqn. 3.126, then

1-5W
-1

is a necessary and sufficient condition for R to be representable as given in Egn. 3.127.

|1”z| <n (3.131)

Proof. If R can be represented in the desired format of Eqn. 3.127, then Eqn. 3.131
holds, and is thus a necessary condition.

80

Conversely, if Ris represented in the typical format of Eqn. 3.126, and if Eqn. 3.131
holds, then ﬁﬁw is an integer whose range belongs to the representable range of the format
given in Eqn. 3.127. Since an OSD number system is complete, R can be represented in the

desired format. a

Lemma 24 If Ronew represents a correctable overflow, then the corresponding value belongs

to the set {-1,0,1}.

Proof. Let us assume that the (integer) value of Rusw does not belong to the set
{-1,0,1} and that Rumsw represents a correctable overflow. Then, one can observe that
ﬁw, by itself, satisfies Eqn. 3.131. Next, by calculating the extreme values of R, one

obtains
~ 1-8W
<2- .
R<2-n—7p— (3.132)
and
~ 1-8~%
> - .
R>-2+n -1 (3.133)
Since 8 > 2 and n < B — 1, it follows that
1-pW
] 51 <1 (3.134)
Consequently,
|§,,,,,| >1, (3.135)

contradicting the fact that R represents a correctable overflow, and completing the proof.
|
Lemma 24 is an extension of when ﬁm contains one or two SB digits and the operation

is addition (Timmermann and Hosticka, 1993; Rao, 1996).

Lemma 25 Let ng = B — 1 and g = —mg. An integer representation of 0 in any OSD
number system is of the form 00...0. If n = my, then integer representations of —1, and 1
in an OSD number system of redundancy indez 7 are of the form 00...0Ingng... 7o, and
00...017g%0 . . . 10, respectively. If n < 1o, then the corresponding OSD integer number
representations of —1 and 1 become 00...01, and 00...01, respectively.

81

Proof. The representation of the value 0 in any OSD number system is of the form
00...0. To prove this, consider the representation Rg of 0 given by

0
Ry=) foib™ Ta€{-n-n+l,....n} (3.136)
i=1~§

where [represents the radix of the number system, and where [g] < n < B -1 represents
the redundancy index of the number system. Let us assume that 7, is different from 0,
where ip belongs to the set {1 —4,...,0}. Of course, the integer part of ﬁoﬁ'b forms its
most significant word, and must be a correctable overflow. Otherwise, it can be readily
observed that Ry cannot be equal to 0. Then, by applying Lemma 24 to the integer part of
Ryf®, the corresponding value must belong to the set {—1,0,1}. However, the magnitude
of the fractional part of RoB® is strictly smaller than 1 (c.f. Lemma 23 and 7 < 8 - 1).
Therefore, Ry cannot be equal to zero, establishing the proof.

Let us consider a SB representation R, of 1 given by

0

ﬁl = Z ?l,iﬁ-i; ;"1‘,' € {—T], -n+ 1, ves ,7]}. (3'137)
i=1-4

Then, consider the index 1 —§ < ¢p < 0 of the non-zero digit of largest weight. By choosing

i1 in {4o,49 + 1,...,0} and by applying Lemma 24, one has
- il -
B b € {-1,0,1}. (3.138)

By observing that Ry =1andby taking 1) = 1o, it can be readily concluded that 7 ;, = 1.

It is very important to observe that if n < 8 — 1, then ig = 0. The proof is established
by assuming that i < 0 and by observing that 15 < 0 must always hold. In this situation,
the smallest value ﬁmm that can be represented by Ronew i8 given by

0
Brwmn=6%+) -8~ (3.139)
i=ig+1
which can be recast into
~ ﬂ—io-l -1

Sincen< f-1, ﬁm,.,,m > 1, and Ry cannot be equal to 1, leading to a contradiction.

82

Next, let us prove by recurrence on %; that when n = 8 — 1, the following mathematical

proposition is true for ip +1 <4, <0
P, :Vie {io + 1,50 +2,... ,i1}, rni=-(B-1). (3.141)

o Ifi; =ig +1, then

i1
1Y FpTi =1, (3.142)
i=ip
which can be written as
MLioB + TLio+1 = 1. (3.143)

Since 71 i, = 1, one can obtain 7 j,+1, satisfying proposition F;,.

o If P;, is valid for ig + 1 < %) < ~1, then let us prove that F; 4, is also valid. In this
way, it is sufficient to prove that ¥y ;+1 = —(8 — 1). One can replace 7, by i} + 1 in

Eqn. 3.142 to obtain

it _
Fr+ty R =1, (3.144)
i=ig
which, since P;, is valid, becomes
B+ra+1=1, (3.145)

and restricts the value of 7, 5,41 as necessary.

This establishes the proof by recurrence.

The proof for the representation of —1 is obtained by observing that —1 = 1 x (-1),
and that any OSD number system has a balanced digit set. []

The proof of Theorem 22 can now be established.

Proof. If Ry represents a correctable overflow, then Lemma 24 implies that ﬁ,,.,,,,
represents —1, 0, or 1, and Lemma 25 further determines the representation of ﬁm, es-
tablishing the proof. =

83

Online Algorithm for Overflow Handling in OSD Number Systems

The algorithm developed in this subsection extends the existing work on algorithms and
architectures for overflow detection and correction in signed-binary representations (Woods
et al., 1993; Fernando and Ercegovac, 1992; Timmermann and Hosticka, 1993; Lapointe
et al., 1993; McQuillan and McCanny, 1995; Rao, 1996). Moreover, it is shown that the
online detection and correction of an overflow in the most significant part of an OSD rep-
resentation is simplified by the use of Theorem 22.

One must recast the representation of Ras given by Eqn. 3.126 into the desired format of
Eqn. 3.127. Then, at a given iteration 1 < p < W + 6 of the algorithm for online arithmetic
operation of latency 4, the online operation result ﬁ, is defined in accordance with

P
R, =Y "F A (3.146)
i=1

Next, ﬁ,, must be recast into an online corrected result ﬁde,'p as given by

P
Riesp =) Faesi-sB". (3.147)
i=1

The online error between the online corrected result and the online operation result is

defined in accordance with

From Theorem 22, €, can only take on the following five values: ~OV'F, -1, 0, 1, OVF,
where OV F and —OV F denote positive and negative overflow values, respectively. In the
case of an overflow, the digits of ﬁm,p.g must be saturated to f or —7, depending on the
sign of the overflow. A saturation function sat(z,y) can be defined in accordance with

sat(z,y) = max(min(z, y), —-y), (3.149)

where min(.,.) and max(.,.) represent the minimum and maximum values of their argu-
ments, respectively. This function will be used for the determination of the online corrected
result digit. An absolute value of €, equal to 1 indicates a potential overflow, which may turn
into a true overflow, or into no overflow at all (Timmermann and Hosticka, 1993; Rao, 1996).

84

Similar to the online MAC algorithm, an online partial correction result B, is calculated

as follows

B, = ¢y 1B + Fpms (3.150)
and must be translated into a corrected digit ¥ses p—g Such that

€ + Fies,ps = B (3.151)

holds, unless ¢,—) indicates an overflow. If ¢,—; equals OV F or —OV'F, ¢, must be set to the
same positive or negative overflow, and 4., ,—5 must be set to n or —7, in accordance with
the sign of the overflow. It is important to observe that if €,y = 0, then Fyes p—s = Tp_s,
and no correction is necessary. The case |€,—1| = 1 must be explained in more detail.

Let us observe that if €,—; = 1, then the situation is that of a potential overflow. If
ﬁp = n + 1, then one can only choose ¢, = 1 and T4esp—6 = 7 in order for Eqn. 3.151
to hold. However, if 13,, > 1+ 1, then it is not possible to find any valid combination of
online error and online corrected result digit for Eqn. 3.151 to hold. Therefore, one must
set Tges,p-s5 = 1 and €, = OV'F. Finally, if ﬁ,, < n+1, it is always possible to find ¢, = 0
and Tgesp—5 = 5,,..5 so that Eqn. 3.151 holds. It is thus possible to combine the cases
13,, =n+1and 13,, < n + 1 together. Moreover, it can be observed that if a potential
overflow becomes a true overflow, then the previously generated MSDs have saturated to
their correct values. It is very important to note that the calculation of the online corrected
result digit corresponds to that of f’;, saturated to 7. If ,_1 = —1, then it is sufficient to
invert the signs of the above calculations.

Since Tges,p—s must be set to 0 for 0 < p < 4, one can distinguish between two different
phases in the online overflow handling process. The first phase corresponds to 0 < p <6,
while the second phase corresponds to d +1 < p < W +4. In the first phase, one constrains
the desired online result digit 7g.s -5 to be equal to 0, further imposing that ¢, = ﬁp. Asa
consequence, an overflow value must be generated as soon as B, reaches a value outside the
digit set {—1,0,1}. If the first non-zero online operation result digit does not belong to the
set {—1,0,1}, then overflow occurs, (c.f. Theorem 22). In the case of a potential overflow,

true overflow occurs if 7,5 is different from 8 — 1 or 1 — B8 (whichever is appropriate), (c.f.

85

Theorem 22). In the second phase, the desired online result digit is not constrained to be
equal to 0, but true, potential, or no overflow situations can be considered as mentioned

previously.
Algorithm 26 Online Overflow Handling for OSD Representations

Step 1 Set p+ 1, and ¢g + 0,

Step 2 Read 7,3,

Step 8 Calculate P, « Fp_g + €518

Step 4 If p < 0, then set Tges p—5 ¢ 0 else set Tges p—5 sat(ﬁp,n) end

Step 5 If (ﬁ,, — Tdes,p—5) > 1 (true if ;-1 = OV'F), then set ¢, «— OVF else if (ﬁ,, -
Tdes,p-6) < —1 (true if -y = —OV'F), then set ¢, — —OVF else set ¢, «
Pp - ?des‘p_J end

Step 6 Set p +— p+1,
Step 7 If p< W + 1, then go to Step 2, else done end if.

In the above algorithm, each digit of the online operation result is read one by one, the
MSD first. Its value is then combined with that of a scaled online error in an online partial
result ﬁp, where the scaled online error may indicate an overflow. A digit Tges,p-4 of equal
weight to that of the input online operation result digit is either set to 0 for the first ¢
MSDs, or obtained by saturating the online partial result value to —n and 7, as required
for the desired OSD format. Saturation occurs when overflow is indicated by an overflowed
online error, or in a potential overflow situation. The resulting online error is determined
as the subtraction of the online partial result 13',,, but where an absolute value of ﬁp strictly
larger than 1 yields an overflowed online error. Finally, the iteration number is updated.

As one can observe, the online error takes on 5 different values, namely —OV'F, -1, 0,
1, and OVF. Of course, —1 and 1 correspond to a situation of potential overflow. As a
result, three bits are required to represent the online error: OV F indicates an overflow by a
logic 1, POV F indicates a potential overflow by a logic 1, and S indicates a strictly negative
potential or true overflow by a 1. Then, a table for the conversion of OV F,, POV F,, and

S, into ¢, is given in Table 3.4. Next, ¢, is obtained recursively in accordance with

86

Table 3.4: Conversion of OV F,, POV F,, and S, into ¢,

ovF, | POVF,[5,] e
0 o (o] o
0 o |1 o
0 1 o 1
0 1 1| -1
1 0o |0 ovF
1 0 |1|-oOVF
1 1 |o| ovF
1 1 1 || ~oVF
OVF, « (|i5,, ~ Faes,p-delta] > 1) (3.152)
POVF, « (|1“>, = P p-detta| = 1) (3.153)
Sy & Sp1| (s,,_1 ~(OVF,_{|POVE, 1) ~ (Fpug < 0)) , (3.154)

where , ~, and | represent the NOT, AND, and OR logic operations, respectively.
Overflow Situations in Online Arithmetic Operations

The type of overflow handled by the proposed algorithm assumes that the online operation
result is accurate. However, this may not be the case in an algorithm for MAC operation.
If the result is fed back as the addend, then the value of the accumulation may overflow
its fixed-point representation. This results in a feedback of the accumulation value as an
initialization value of the online error that exceeds the upper bound on the online error. This
situation often occurs in digital filters incorporating online arithmetic operations (Brackert
et al., 1989; Ercegovac and Lang, 1989; Fernando and Ercegovac, 1992; Lapointe et al., 1993;
McQuillan and McCanny, 1995).

It is important to note that two different operations make use of the redundancy of the
representation of their result, namely constant-delay addition and online processing, thus
both may generate correctable overflow. As a result, the online partial result may itself
require overflow correction. This is due to the fact that the addition of the online error with
the off-line partial update is obtained by a constant-delay adder.

87

It has been found that algorithms can be developed to correct an overflow if a result R
represented in accordance with

w-1
R=)Y w2 fe{-1,01} (3.155)

i=-1
is known to belong to [-1,1] or [—1.5,1.5], where W represents the wordlength of the
corrected result (Timmermann and Hosticka, 1993). If one assumes that R will belong to
the range [~1.5,1.5], being the result of the addition of a SB addend A of wordlength W

represented in accordance with

w-1
A=) a2 ae{-10,1} (3.156)

i=0
with a SB augend B represented in accordance with

W-1
B=Y b2 be{-10,1}, (3.157)

i=2

then it is possible to avoid generating the correctable overflow altogether by restoring the
carry propagation during the addition of the two first MSDs of the result ¥y and 7. This
is due to the facts that, (a) during a carry propagation, a carry can only be created if the
absolute value of the sum of the input digits (whose weight is assumed to be 1) exceeds 2,
(b) true overflow (F-; = 7y both equal to 1 or —1) cannot occur because of the restriction
of the range of R, and (c) potential overflow (¥_; equal to —1 or 1 and ry = 0) cannot
occur. It can be readily shown that (a) and (b) are valid. To show the validity of (c), one
can consider six cases, three of which are negatives of the other three. Then, 7 is either
equal to 1 or to 0, and R cannot belong to the desired range, or) equals —1, which cannot
occur by forcing the carry to propagate.

3.5 Chapter Summary

In this chapter, a general algorithm has been developed for bit-serial online signed-digit
multiply-accumulate operation. Its predominant salient feature consists of novel operation-
independent variables, which permit the development of a bit-serial online algorithm for

any operation as long as it can be expressed as a sum of partial operation updates.

88

A novel signed-binary to minimally redundant base-4 recoding technique has been in-
troduced, which permits a more speed-efficient reduction of the number of partial updates,
substantially increasing the processing speed of a corresponding architecture. Digits ap-
pear in excess in both the least and the most significant parts of the results of such online
operations. Therefore, algorithms have been presented for online signed-binary IEEE 754
standard for rounding to nearest/even and online signed-digit overflow handling.

One MAC operation has been developed: the multiplicand A is known at the outset,
the multiplier B and the addend C are made available in an online fashion. By using a
multiplicand known at the outset, one reserves the possibility to increase the wordlength
of B without increasing the hardware requirements. Moreover, the wordlength of A can be
increased as desired, since the delay of a corresponding architecture does not depend on it.

If A were consumed in an online fashion, then an incremental multiplication technique
would be required (c.f. (Irwin, 1977)). In this situation, the partial MAC update is formed
as the addition of two words of wordlengths linearly increasing with the iteration number. It
is important to note that, although these wordlengths increase, the delay of a corresponding
implementation is still a constant (limited-carry addition). Therefore, since the hardware
requirements cannot be infinite, a maximum wordlength for A and B must be set.

One MAC operation has been developed: A is known at the outset, B and C online.
By using a multiplicand known at the outset, one reserves the possibility to increase the
wordlength of B without increasing the hardware requirements. Moreover, the wordlength
of the multiplicand A can be increased as desired, since the delay of a corresponding archi-
tecture does not depend on it.

If A were input in an online fashion, then the incremented multiplication technique
would be required, c.f. Irwin. In this situation, the partial MAC update is formed as the
addition of two words of linearly increasing wordlengths. It important to note that, although
these wordlengths increase, the delay of a corresponding implementation is still a constant
(limited-carry addition). Therefore, since the hardware requirements cannot be infinite, a
maximum wordlength for A AND B must be set.

89

Chapter 4

Architecture for Online
Signed-Digit Digit-Serial
Multiplication

4.1 Introduction

Digital signal processing algorithms often require the accumulation of numerous multi-
plication results. A multiply-accumulate (MAC) operation can efficiently perform such

operations by returning a non-rounded intermediate result R in accordance with
R=AB+C, (4.1)

where A represents the multiplicand, B the multiplier, and C the addend. Then, the
intermediate result R is fed back as the addend C for accumulation.

In Chapter 2, the digit-serial and online arithmetic techniques were described, and
efficient addition architectures were developed. Chapter 3 discussed the IEEE 754 SB RNE
rounding technique. This chapter is concerned with, (a) the development of an algorithm
for digit-serial purely signed-binary online multiplication employing the IEEE 754 RNE
rounding technique, (b) the development of a corresponding architecture for subsequent
FPGA hardware implementation, and (c) the comparison of the gate-level speed and area
performances of the proposed architecture to existing similar architectures, illustrating a
combination of the digit-serial and online arithmetic techniques.

Section 4.2 introduces the bit-serial purely signed-binary online multiplication and the
bit-serial online IEEE 754 SB RNE rounding algorithms in a data stream context. Sec-
tion 4.3 combines the above bit-serial online algorithms into a single digit-serial algorithm

90

for purely signed-binary digit-serial online multiply-and-round operation. Section 4.4 de-
scribes a corresponding architecture for subsequent FPGA hardware implementation. Fi-
nally, Section 4.5 presents simulation results to demonstrate that the resulting architecture
is functionally correct, discusses a throughput improvement via re-pipelining (Rao, 1996),
and compares the resulting architecture to existing similar architectures by measuring their

respective throughputs and efficiencies! using speed and area gate-level estimates.

4.2 Algorithm for Bit-Serial Signed-Binary Online Multipli-
cation

This section is concerned with the development of an algorithm for bit-serial signed-binary
online multiplication. A data stream-based framework is used, which will permit the trans-
formation of the bit-serial algorithm into a corresponding digit-serial algorithm without the
need for an architecture or for a digit-serial unfolding algorithm.

Consider a stream A of SB multiplicands of wordlength W, whose digits are made
available in parallel, i.e. all digits of a word are available at a given time instant. Similarly,
consider a stream B of SB multiplier words of wordlength W} and effective wordlength
Wh,ef (c.f. Subsection 3.4.1) whose digits are made available in a bit-serial online fashion,
i.e. digit-by-digit, the MSD first. These two data streams will be combined to obtain
the output stream 'ﬁ,.nd of IEEE 754 SB RNE-rounded multiplication results of effective
wordlength W}, .. The online multiplication operation has a latency dmy, and the online
rounding operation has a latency d,nq4.

The bit-parallel stream of SB multiplicand words A of wordlength W, is represented by
Wa sequences 6;» ., Where i belongs to the set {1,2,...,W,}, and where n represents the
time instant. At tix;e instant n, the multiplicand word is given by

Wa
Ay =) 6in27%5 ain€{-1,0,1}, (4.2)
i=1

where w represents the operation number and is given by

w= [W:ng) (4.3)

!The efficiency is calculated as the quotient of the throughput and the area of a given architecture.

91

Given that W} .4 consecutive values of n yield the same operation number w, the mul-
tiplicand digits of the w-th operation must be made available W) g time instants in a row.

Therefore, for any w € N, for any i € {1,...,W,}, and for any p € {2,..., W} .5},

GiwWy, gtp—1 = Gi,uW} g (4-4)

must hold, where p represents the iteration number of the w-th operation in accordance

with
p=1+(nmod W g . (4.5)

One can observe that w and p — 1 represent the quotient and remainder of the division of

n by W, .4, respectively, and thus satisfy
n=uwWy.g+p-1. (4.6)

The bit-serial stream of SB multiplier digits B is represented by a sequence (bn)n>o0,
where b, belongs to the SB digit set {-1,0,1}. The w-th SB multiplier word B,, can be

defined in accordance with

Wb, of

By = Z wag,.ﬂ-f-p—l2-p1 (4-7)
p=1

where w belongs to N, and where p not only represents the iteration number (as before),
but also the index of the corresponding multiplier digit in the w-th multiplier word.

The non-rounded SB online multiplication result stream Romut of effective wordlength
Wh,eg is represented by the SB sequence (Fmuin)n>0, Where Fpun € {—1,0,1}. By using
Eqns. 4.3 and 4.5, the w-th SB non-rounded online multiplication result word ﬁm‘,w can

be defined in accordance with

Wb.tﬂ'

ﬁmul,w = Z ?mul,wwb,.g-(-p—lza"'"—’,' (4-8)
p=1

It is important to observe that at iteration p, the online multiplication result digit of weight
20mu—? ig generated.

Finally, the IEEE 754 SB RNE-rounded online multiplication result stream ﬁmd of
effective wordlength W} . is represented by the SB sequence (Trndn)n>0, Where Frngn €

{-1,0,1}.

92

Let us recall that the w'-th online rounding operation happens between iterations 2
and Wj g of the w'-th online multiplication operation, and at iteration 1 of the w’ + 1-th
online multiplication operation (c.f. Subsection 3.4.1). Therefore, the w'-th SB IEEE 754
SB RNE-rounded online multiplication result word ﬁ,nd,wr is defined in accordance with

Wo,eff
Rendw = Z Frndu Wy oo 1 25mertrma=r | (4.9)
=l

where the word number v’ is given by

-1
v = l" J , 4.10
Wrng (4.10)
and where the index g’ is given by
p =2+ (n-1) mod W5 (4.11)

Together, w’' and p’ — 2 represent the quotient and remainder of the division of n — 1 by

Wh,eg and thus satisfy
n=w'W,g+p -1 (4.12)

Again, it is important to note that at iteration g/, the online rounded multiplication result
digit has a weight 20mutérna=/',

Given the repetitive nature of the definition of the bit-serial streams, the operations
on the input data streams have to be repeated every W, .4 time instants. Therefore, it is
sufficient to consider the multiplication of a single multiplicand A by a single multiplier B
to yield a single online multiplication result R, corresponding to a MAC operation where
C = 0, but the notion of time must be taken into account to schedule initializations as
necessary. The algorithm developed in Subsection 3.2.2 can thus be used as a bit-serial
online multiplication algorithm, but must be modified so as to be compatible with the algo-
rithm described in Subsection 3.4.1 for online IEEE 754 SB RNE rounding. Subsequently,
the resulting online multiplication and rounding algorithms can be applied successively to
perform the desired online multiply-and-round algorithm.

Let us perform the required modifications to the bit-serial online multiplication algo-
rithm. The result digit of weight 2~Ws is generated at iteration pg = W} + 6y Therefore,

93

the scaled online error must be cleared at iteration pg+1. Moreover, the effective wordlength
of B is determined by taking into account the latencies dpmy of the multiplication opera-
tion and 6,nq Of the rounding operation. In this way, the multiplier digits having indices
wWy e + po + 1 through wWj g+ Wp g — 1 must be set to the algebraic value 0, where
w € N, and where the effective wordlength W), g is given by

In Subsection 3.4.1, the rounding operation latency d,n4 was calculated to be equal to 2.

The latency 6y of the online multiplication operation will be determined shortly.

Algorithm 27 Bit-Serial Signed-Binary Online Multiplication With Online Error Clearing
Step 1 Set p « 1,

Step 2 Set emuip + 0,
Step 8 Read b,
Step 4 Calculate Ppyyp — Aybp2~5m,

Step 5 If p=po + 1 then set €23ed | « 0 else set esal’r | ¢ 2€mulp-1
Step 6 Calculate ﬁmu;,p - e’m"g‘,f:_l + B,
Step 7 Round ﬁ,md,p t0 Trmul,p=6mus

Step 8 Calculate emylp — Prauip = Pl pmmatr
Step 9 Write Tmul,p—6pmurs

Step 10 Calculate p «+ p+1,

Step 11 Store emulp,

Step 12 If p > W5, then go to Step 3, else done.

In the above algorithm, the iteration number p is initialized to 1, and the online multipli-
cation error at the iteration previous to 1 (i.e. 0), €muso, is initialized to 0. Then, an off-line
partial multiplication update Ppy,, is calculated, and the scaled online multiplication error
at the previous iteration, e‘"f:ffp“_l, is either set to the value of the online multiplication error
at the previous iteration €myy,—1 multiplied by 2 (i.e. scaled up by one digit position), or
cleared if the iteration number is equal to pp + 1. Next, Pmu,, and €:53j¢d | are combined
to form an online partial multiplication result, f"m,,l,,,, which is rounded to a single-digit
integer Fmulp—s,,,, referred to as the online multiplication result digit. This low-precision

94

rounding (c.f. Subsection 3.4.1) yields a new online multiplication error €;yi,. Finally, the
online multiplication error €my,, is stored for use in the next iteration, the iteration number
is updated, and the process is repeated. The multiplication operation is complete when the
iteration number is strictly larger than the effective wordlength W} 4.

Let us introduce the notion of time (as opposed to the notion of iteration) back into the
proposed algorithm. At a time instant n corresponding to an iteration 1 of the proposed
algorithm, the online error should be cleared. However, since €}¢3/2d is set to zero in the
previous multiplication operation, and since the digits of B at all the following iterations
(po+1, through W .g—1) are equal to zero, the online multiplication error remains equal to
zero during these iterations. Therefore, the new multiplication operation does not require
a clearing of the online error, except at the first time instant.

The internal wordlength v can be determined leading to the latency .,y of the algorithm,
and yielding the latency of the multiply-and-round operation. For SB numbers, the radix 8
is equal to 2, implying . = np = m = 7s = 1, where 7. = 0 for a multiplication operation.
The bound I4 on the absolute value of A, can be calculated to be equal to 1 —2=We, Asa

result, the bound on the off-line partial multiplication update lp is given by
lp = 2 0mut _ 2=Wa=bmu, (4.14)
which leads to a lower bound on the latency dmuimin given by

1-2-%
Jmul.min = [logz (l—:—zﬁ)] . (4.15)
2

It can be seen that the minimum value that can be chosen for v is 3. If y = 3, then d;y = 2.
As the latency of the online rounding operation 8,nq is equal to 2, the effective wordlength

of the multiplier becomes
Wo,eg =W + 4. (4.16)

4.3 Extension to a Digit-Serial Signed-Binary Online Multiply-
and-Round Algorithm

Bit-serial (BS) operations process one digit of a data stream per BS time instant n € N,

whereas digit-serial (DS) operations process D consecutive digits of the same data stream

95

per DS time instant n' € N. Since D consecutive digits of a given data stream correspond
to D consecutive BS time instants, a DS algorithm consists of D parallel sub-algorithms
(numbered d € {0,1,...,D — 1}) invoking one iteration of the BS algorithm. Of course, all
the D parallel sub-algorithms interact with each other to yield the desired result. Conse-
quently, DS time instant/sub-algorithm number pair (n’,d) corresponds exactly to the BS

time instant n as given by
n=Dn'+d. (4.17)

Moreover, a word number/iteration number pair (w, p) or (v, p') also corresponds exactly
to one particular BS time instant (c.f. Eqns. 4.6 and 4.12). These unique decompositions
of the BS time instant are at the root of the (sometimes complicated) equations underlying
all DS sub-algorithms.

The resulting algorithm for DS SB online multiplication and rounding is given below.

Algorithm 28 Digit-Serial Signed-Binary Online Multiplication and Rounding

Step 1 Set n’ « 0,
Step 2 Read bpy, bpn'+1, --- , and bpp4p-1,

Step 3 Ford in {0,1,...,D — 1} do,

’

Step 3.a Calculate w « [%‘ﬁﬂ and p « 1 + (Dn’ + d) mod W .4,

Step 3.b Perform steps 8 through 9 for iteration p of the bit-serial online mul-
tiplication algorithm, making use of the multiplicand word A, and the
maultiplier digit bpn/id.

Step 8.c Calculate w' + lgﬁyb:‘f,;l-l and ¢ « 2+ (Dn' +d — 1) mod W .5,

Step 8.d Perform steps 2 through 7 for iteration p' of the bit-serial online round-
ing algorithm on the w'-th online multiplication result,

End
Step 4 Store €muiDn'+D-1, Tmul,Dn'+D-1, 618 €rnd Dn'+D~1,

Step 5 Calculate n’ «+ n' +1, and go to Step 2

At a given DS time instant n’, D consecutive digits of the BS multiplier digit sequence
are read, separated, and consumed by the D BS algorithm invocations (or sub-algorithms).
The word numbers w and w’ and iteration numbers p and p’ are calculated as given by

96

Eqns. 4.3, 4.5, 4.10, and 4.11, by calculating the BS time instant n from the DS time
instant n’ and sub-algorithm number d in accordance with Eqn. 4.17. These numbers are
subsequently used to determine the set of elementary operations that must be performed
at the given DS time instant to perform the invocation of the desired iteration of the BS
algorithm. It can be observed that the word number w may be different for two invocations
of the BS algorithm at a given DS time instant n’, i.e. two or more operations may be
computed in the DS algorithm at a given time instant. The number of operations being
computed in the DS algorithm is smaller than two if one chooses D < W, 4.

In the BS algorithm, the online error generated at the BS time instant n is consumed as
the online error at the previous iteration at the BS time instant n+ 1. From the uniqueness
of the decomposition of the BS time instant n into a DS time instant n’ and a sub-algorithm
number d, it follows that an online error generated by the d-th BS algorithm invocation
at the n’-th DS time instant is used as an input by the (d + 1) mod D-th BS algorithm
invocation at the n'-th DS time instant if d belongs to the set {0,1,...,D —2}. However, if
d = D-1, then (Dn'+d)+1 = Dn’+ D which can be re-written as Dn'+D = D(n'+1)+0.
Therefore, the online error generated by the D — 1-th BS algorithm invocation at the n'-th
DS time instant must be stored for use by the 0-th BS algorithm invocation at the n’ +1-th
DS time instant. Similarly, the online result digit and online multiplication error generated
by the D — 1-th BS multiplication algorithm invocation must be delayed by one DS time
instant, and be fed to the 0-th invocation of the BS rounding algorithm.

Let us denote by L the least common multiple of D and W .g. Then, consider the BS
time instants 0 to L — 1, and calculate the DS time instants and sub-algorithm numbers at
which a given iteration p* occurs. If one assumes Wy .4 = 3, D = 2 —yielding L = 6—,
and p* = 1, then iteration p* occurs at BS time instants 0 and 3. The corresponding DS
time instant and sub-algorithm number pairs are (0,0) and (1,1). Moreover, at DS time
instant 2, iteration p* does not occur. Next, let us repeat this process for BS time instants
L to 2L — 1. Iteration p* occurs at BS time instants 6 and 9. The corresponding DS time
instants and sub-algorithm numbers are (3,0) and (4,1). Moreover, at DS time instant 5,
iteration p* does not occur. One can observe a cyclic pattern, which emerges from three

different decompositions of the BS time instant into a quotient and a remainder. The first

97

two decompositions use the effective wordlength W} g as the divisor to obtain the word
numbers (w and w'). The third decomposition uses the digit-size D as the divisor to obtain
the DS time instants (n’).

One can make use of the above cyclic pattern by observing that some invocations do
not require performing a particular iteration of the BS algorithm. In the above example, if
p* = po + 1 and if p* = 1, then iteration pg + 1 is never performed by the sub-algorithm
number 2. As a result, the conditional clearing operation need not be performed for the
sub-algorithm number 2. More generally, if a conditional statement is true only for a given it-
eration, and if that iteration is not performed under a given sub-algorithm number, then the
translation of that sub-algorithm to a corresponding architecture does not require translat-
ing the conditional statement. Step 3 of the simplified DS unfolding algorithm (c.f. Subsec-
tion 2.3.1) calculates the DS time instants and sub-algorithm numbers at which conditional
statements must be performed, and uses the results to determine which conditional state-
ments need to be implemented. This technique has been used in many occasions to reduce
the hardware requirements (Parhi, 1991; Satyanarayana and Nowrouzian, 1996; Rao, 1996).

One can calculate the DS time instances and sub-algorithm numbers for iteration 1 in

accordance with

n = |.1_+_1DWMJ , and d= (1 + in,eﬁ) mod D, (4'18)

where 1 successively takes on all the values from the set {0, 1,..., m@%ﬁ —1}. Similarly,

the DS time instants n’ and sub-algorithm numbers d corresponding to iteration pg + 1 can

be calculated in accordance with

' = lpo +1 ; 1Wb.eﬂ‘J , and d=(pp+1+iWh.q) mod D, (4.19)

where i successively takes on all the values from the set {0, 1,..., !%-‘ﬂ =1} If Wh g
is not a constant, i.e. if it changes dynamically, then Algorithm 13 (page 29) can be used
for the on-the-fly determination of the control bits indicating the desired iterations. In that

situation, one must have D < W} 4.

98

4.4 Architecture for Digit-Serial Signed-Binary Online Mul-
tiplication and Rounding

In this section, the proposed digit-serial algorithm is translated to a corresponding archi-

tecture for a subsequent FPGA or ASIC hardware implementation.

The resulting architecture consists of three main types of units, namely, multiplicand

selection units, online multiplication units, and online rounding units as shown in Figure 4.1

for general values of the digit-size and wordlengths of the multiplicand and multiplier.

A

—[
selectpo

clock
reset

€rnd,0 Emul0
RND, RNDy, b
¢ 12 L] $
Rounding Unit 0 Multiplication Unit 0
-— €md,l — €mul
Trnd,0 RND, Tmu0 RND, b
¥ 2R T + ¥
Rounding Unit 1 Multiplication Unit 1
Q*l €md,2 oy) €mul2
Trnd L RND, Fmull RND;, b
SR f t t
_~_J €md,D-2 — J €mul,D~-2
Trnd,D~3 RNDp_; Tmul,D-3 RNDp.3 bp-2
+ } §] 4
Rounding Unit D -2 Multiplication Urit D ~ 2
‘T‘I €md,D~1 = J €mu.D-1
Frd,D-2 RNDp_, Tmwl,D-2 RNDp_; bpy
¢ § $ $

Rounding Unit D - 1

é

€md,D

?"M.D-l

clock
reset

Multiplication Unit D - 1

NW,
NW,

NW,

NWp_,

ﬁ-._——' €mul,D
Tmul,D-1

clock

reset clock

reset

Figure 4.1: Architecture for Digit-Serial Online Multiply-and-Round Operation

The architecture contains two types of control signals, namely RN Dy and NWjy. First,

the “new word” signal NW; indicates iteration 1 (i.e. a new operation) in the d-th online

multiplication invocation when it is set to the logic value 0. The DS time instants and sub-

algorithm numbers corresponding to these iterations are given by Eqn. 4.18. Second, the

99

“round” signal RN Dy indicates iteration pg + 1 (i.e. the iteration for rounding) in the d-th
online multiplication invocation when it is set to the logic value 0. The DS time instants
and sub-algorithm numbers corresponding to these iterations are given by Eqn. 4.19.

The d-th online multiplication unit and the d-th multiplicand selection unit implement
Steps 3 through 9 of the BS algorithm for online multiplication (c.f. Algorithm 27, page 94).
Similarly, the d-th online rounding unit implements Steps 2 through 7 of the BS algorithm for
online IEEE 754 SB RNE rounding (c.f. Algorithm 21, page 74). The d-th multiplication
selection unit consists of a multiplexer controlled by a selects 4 signal, and a logic gate
performing an AND operation between selecty 41 and a signal NWy if d > 0. The units
will be described individually in the following subsections. The critical path? of the proposed
architecture is shown in bold lines. One can observe that a signal z4 carries the variable
value Zpnr4+q 2t the DS time instant n'.

Now, let us describe how signals flow in the above architecture. As a new multiplicand A
is made available, the d-th selection unit (0 < d < D—1) selects the appropriate multiplicand
to be fed to the d-th multiplication unit. Then, the multiplicand A, the multiplier digit by,
and the online error €py 4 —whose value is controlled by RN Dy— are combined to yield
a result digit 74 and a new online error €myd+1. Of course, €muid+1 is fed to the online
multiplication unit (d+1) mod D, and if d = D -1, then the online error epy, p —generated
by the multiplication unit D — 1— is delayed by one DS time instant. A delay by one DS
time instant is obtained by feeding a signed-binary signal to a register “reg,” where each
digit of the online error is assigned a pair of D-type flip-flops (DFFs). The input signals
are latched on the positive edge of a clock signal, and the output signals of every pair of
DFFs in the register are initialized to 01 (code for algebraic 0) by a general active-low reset
signal.

At time instant n’, the online multiplication result digit Fu4 and the online multipli-
cation error €myrd+1 are fed to the online rounding unit (d+1) mod D. Again, ifd =D -1,
then the results are delayed by one DS time instant. Afterwards, the d-th online rounding

unit combines these values with that of the input online rounding error, and generates an

2The critical path of an architecture corresponds to the path of longest delay between an input and an
output of the architecture

100

online rounded result digit Fmq4,q4 and an online rounding error €mdg+1. This online error is
fed to the online rounding unit (d + 1) mod D. As before, the online error of the rounding
unit number D — 1 must be delayed by one DS time instant so as to be fed to the rounding
unit 0 appropriately. The signal Fm44 at the DS time instant n’ carries the variable value

TDn'+d-
4.4.1 Multiplicand Selection Unit

If one assumes D < W .g, the iterations performed by the D online multiplication units
belong to two separate multiplication operations at most. As a result, it is sufficient for one
to make available in parallel the new multiplicand value A, and to delay that value for use
in the next DS time instant. Consequently, one reduces the multiplicand wire requirements
from D x W, to W, (by a factor D). The following gives a description of the corresponding
architecture.

Let us assume that at a given DS time instant n’, the control signal NWy, (0 < dp <
D —1) is equal to logic 0, indicating that the do-th online multiplication unit performs the
first iteration of an operation. Then, the online multiplication units 1 through dg — 1 must
use the stored value of the multiplicand, while the online multiplication units dp through
D — 1 must use the new multiplicand A. This selection is obtained by setting selection
control bits select40 through select4 4,1 to logic 1, and selecta,o through selects 4,1 to
logic 0. This is obtained by setting

selecta g +— NW,, (4.20)
and by setting
selectg g «— NWgselects g-1 (4.21)

for all d in {1,2,...,D — 1}, where "represents the logic AND operation. These operations
are explicitly shown in Figure 4.1. Finally, the routing of the appropriate multiplicand value
to the corresponding online multiplication unit is obtained by multiplexers.

4.4.2 Online Multiplication Units

An online multiplication unit implements all the elementary operations required at any

iteration of the proposed algorithm for bit-serial online multiplication. The corresponding

101

architecture is shown in Figure 4.2. This unit features an addition/low-precision rounding

A b €muld RNDy
' Clearing
X)
and Scaling
P mul,d C‘,::l‘f‘d
Limited-Carry Addition
Prud
~+ MSDs N\ LSDs

Low-Precision

Rounding
4-1MSDs

Tmuld €mul,d+1

Figure 4.2: Architecture of an Online Multiplication Unit

core unit that can also be utilized for operations different from multiplication. The resulting
added practical advantage originates from the design of the online algorithms in terms of
operation-independent variables.

The multiplication of the multiplicand word A by the multiplier digit bq is performed by
an array of single-digit multipliers (c.f. Subsection 3.3.1). Then, the result is scaled down
by dmu digit positions to yield the off-line partial multiplication update Ppyq. Next, the
online error €mpy 4 is cleared if RN Dy is equal to logic 0 (c.f. Subsection 3.3.1), scaled up,
and then a zero digit is padded as its LSD, resulting in €23}, Zero digits are padded as
MSDs of Pruiq to conform to the format of €24¢f. Subsequently, the e;°%%! is added by
cascaded limited-carry adders to Ppy 4 to generate an online partial multiplication result
13',,",‘,4. It is important to remember that the addition of the last two MSDs is obtained
by carry-propagate adders (c.f. Subsection 3.4.1), while the other digits are combined by
using limited-carry propagation adders (c.f. Subsection 2.4.2). Further, the ¥ MSDs of
f"m,,;,d are taken for low-precision rounding to the online multiplication result digit Fpura

(c.f. Subsection 3.4.1), generating the MSDs of the online multiplication error €my;g+1- The

102

LSDs of the online partial multiplication result form the LSDs of the online multiplication
error.

The addition and low-precision rounding units can be can be merged into a single core
unit for the implementation of other recursive SB online operations as, for example, online
rounding units (Natter and Nowrouzian, 2000b) (c.f. Subsection 3.2.2). Of course, the
wordlength of the online partial update may differ from operation to operation, subsequently
necessitating the adaptation of the wordlengths of the online error and the online partial
result.

4.4.3 Online Rounding Units

An online rounding unit implements all the elementary operations required at any iteration
of the algorithm for bit-serial online rounding. The proposed architecture is shown in
Figure 4.3.

?mul.d €muld+1

[

Round Digit RND
Generator ¢
Fmuld
Limited-Carry
€ ——tpd —— € 1
mad Adder madr
Frodd

Figure 4.3: Architecture of an Online Rounding Unit

The online multiplication error and result digit are used to generate an IEEE 754 SB
RNE round digit, as described in Subsection 3.4.1. The round digit is cleared (set to the
algebraic value 0) if RN D; is equal to logic 1, as opposed to 0 for the online multiplication
error in the online multiplication unit. Therefore, it is always cleared, except at iteration
po + 1, i.e. when the online multiplication error represents the LSDs of the final online
multiplication result. Then, the round digit and the online multiplication result digit are

103

added to the input carries (representing the online rounding error) by a limited-carry adder,
generating an online rounded digit and new carries. The carries of the D ~ 1-th adder are

stored for use in the next DS time instant by the 0-th adder.

4.5 Computer Simulation Results and Performance Compar-
ison

The correct functionality of the proposed architecture is confirmed by computer simulations.
Then, its speed and area performances will be measured, and subsequently compared to

those of existing architectures.
4.5.1 Simulation Results

In the following, simulation results are given to confirm the correct functionality of the
proposed architecture. The wordlengths of the multiplicand and multiplier have both been
chosen to be equal to 8. The latencies of the online multiplication and rounding algorithms
are both equal to 2, as determined previously. Two values of the digit-size, 2 and 3, have
been chosen for the demonstration of the correct functionality under varying digit-size
values. In this way, the same test vectors will be applied to two different implementations
to verify their correct functionality by comparing their outputs against the expected results.
A VHDL code implementing the proposed architecture was developed by using Max+Plus
I1, compiled by using the underlying Synopsys FPGA Design Compiler into a target FPGA
referenced as EPF 10K20 RC240-4, and simulated by using Max+Plus II.

The multiplicand, multiplier, and result values as expressed in decimal are listed in
Table 4.1. Both the full-precision (A x B) and the expected IEEE 754 RNE-rounded (Rma)
results are given. The corresponding signed-binary values of the multiplicand, multiplier,
and expected rounded result are listed in Table 4.2. The simulation results, as expressed
in hexadecimal values, are shown in Figure 4.4, and correspond to a digit-size of 2. The
correspondence between hexadecimal and signed-binary values is listed in Table 4.3.

In order to verify the results, it is important to remember that the signed-binary input
and output representations flow in an online fashion, i.e. the MSD first. Moreover, the
MSD of the result of the first operation appears at the BS time instant 1 (the first BS time

104

Table 4.1: Test Vectors for Digit-Serial Multiply-Round Operation in Decimal

A B AxB Reng
-0.19921875 | -0.86328125 | 0.1719818115234375 | 0.17187500
0.16796875 | 0.28515625 | 0.0478973388671875 | 0.04687500
-0.21875000 | -0.51562500 | 0.1127929687500000 | 0.11328125
-0.57031250 | -0.95312500 | 0.5435791015625000 | 0.54296875
0.96484375 | -0.83203125 | -0.8027801513671875 | -0.80468750

Table 4.2: Test Vectors for Digit-Serial Multiply-Round Operation in Signed-Binary

A B Rond
0.001100I1|0.11011101{0000.01111100
0.00101011|0.01001001{0000.00011100
0.00111000|0.10000100(0000.00101101
0.10010010/0.11110100{0000.10011111
0.11110111|0.1T01I01I01|0001.01010010

MAX+pius (19.3 File: /AFS/UALBERTA.CAHOMEW/NWNATTER/RESEARCH/FPGALCADO/MULT_ADD_RND_DS.SCF Date: 06/26/2000 11:20:44 Page: 1

Neme: oo 10 158 Ms 258 s ks A0 (T Sas Shs 8Os 50

NS ! X 2) 1 X 0 X 1)& 0 X2
TS] X 2 i] X 3 D { [] X2
BA2 1 []) & 3 X 0 X]) § 3) § [) S
fa3 !])4 2) &])& 3 X 1 2
nas ! X 3 X] X 1 X2 X]) S
MAS ! X 2) 1) S X ! 2
fAs 1 [X 3 X 1) & 0 X 3 X]) G
[T} D 0 X 3 X 1 X 3 X] 2
180 We1 o 2 3 2 1 1 SIS O 8 1 Y 1 X 2 {
0 1 0 1 X3X 2 Xs{ 2 1 X0 1 s L t+ X [] X1 X 2) 8l

i i LI L] L L LI L |
1l gt |
Rowsorn || [L] L] L LJ L[]
1 oow_wott i
ne AN ANAANANANANNNANANNAA U
0t]
PRI] 3] I 6 0 &0 6 0SS 00006 68000005
CUTE D O.0 GO & JOEN000000000ER0000EN00H 00K

Figure 4.4: Simulation Results for D =2 and W, =W, =8

instant is 0), corresponding to the DS time instant 0 and the sub-algorithm number 1 in
the above simulation results.
The same vectors have been applied to a proposed architecture with digit-size 3, as

shown in Figure 4.5. From both simulations, it can be concluded that the results are as

105

Table 4.3: Hexadecimal to Signed-Binary Conversion Table

Hex. | SB
0 -1
1 0
2 0
3 1

MAX+pius 11 9.3 File: /AFS/UALBERTA.CAHOME/W/NWNATTER/RESEARCH/FPGA/LCADO/MULT_ADD_RND_OS.SCF Date: 06/26/2000 13:45:30 Page: 1

Nasra: S00s 108 158 208 258 108 15 08 17 $08 S5a

nAo ! X 2) 4 1 X] X s X 0 X 2

B A] X 2) & 1 X 3 X 0 X 2
na2 1 X] X 0 X 1 X [{ !)¢ 2
RA3] [] X 2) & 0 X 3 X 1 X 2
RAs I { 3 I { 0) S & T & 0 X 2
ms v X 2 X ! X A\ N S
Y] %‘ﬁ] X])] X X 0 X 2
1Y) 1 X]) 1 D s X o X ?
Boo

noy

[L¥

A ma_sk0

1 ma st L] LJ L L L | |]
0 ma_sig2

Romses | | [L L) L Ll L |

R tew_worst

M oo o2

ok nNnnnnoanannnAan Ao
f o i
LT ! D € GEEED £ SEE 63§ &5 SN 05 &5 85) ¥) SRS G S
R] OO e+ C 3 0 X 2 XX D Yo
S B €3) SIS €0 63) GO © 6 0 & O

Figure 4.5: Simulation Results for D =3 and W, =W, =8

expected, and that the functionality of the proposed architecture is thus correct.
4.5.2 Throughput Parameterization and Improvement Via Re-Pipelining

The delay along the critical path, shown in bold lines in Figure 4.1, will be calculated
in terms of the multiplicand wordlength and the digit-size. The critical path originates
from the LSD of the newly latched multiplicand. Then, a signal following the critical path
goes through a selection unit and a single-digit signed-binary multiplier. Next, the signal
propagates diagonally (because of the scaling of the online error) through D—2 limited-carry
adders and D —3 online error clearing units (or 0 if D < 3). Further, the signal goes through
an IEEE 754 SB RNE round digit generator, and one limited-carry adder in the D — 2-th

106

online rounding unit. Finally, the signal propagates through one limited-carry adder before
reaching the online rounded result digit ¥4 p—1 in the D — 1-th online rounding unit.

Two components are dominant in the above critical path, namely, the limited-carry
adders in the multiplication units, and the IEEE 754 SB RNE round digit generator. The
first component is due to the unfolding of the bit-serial architecture. In fact, consider the
digit-serial unfolding of a mere bit-serial full-adder with a digit-size equal to the wordlength.
The result is a bit-parallel carry-propagate adder, whose critical path is stretched across the
digit-size (Rao, 1996). However, in the proposed architecture, the required IEEE 754 round-
ing of the result stretches the critical path across the horizontal direction for computation
of the sign and sticky bits.

Let us find ways to improve the throughput of the proposed architecture. One may
reduce the delay through the critical path by employing a look-ahead technique for the
computation of the sign and sticky bits. Another solution, proposed in (Rao, 1996), is to
re-pipeline the proposed architecture. Re-pipelining consists of cutting the critical path in a
given architecture into sub-paths of approximately equal length and introducing latches in
the cut locations. The signals are thus transmitted from one set of latches to the next, the
delay on the critical path now corresponding to a fraction of the original critical path. As a
result, the throughput of the architecture is increased considerably. However, one needs to
wait for as many clock cycles as there are pipelining stages to obtain the output, and the
area of a corresponding ASIC hardware implementation is considerably increased.

Because of the non-homogeneity of the proposed architecture in the MSD part of the mul-
tiplication unit, it is quite complicated to offer a parameterized solution to its re-pipelining.
Therefore, only the pipeline cut delivering the minimum delay is described. The proposed
architecture is shown in Figure 4.6, where the re-pipelining cuts are shown in vertical dashed
lines, where W, = 5, and where D = 4. It is important to point out that the selection units
have not been represented to simplify the figure. The selection units are located just before
the single-digit multipliers, between two pipe cuts. In this way, only A, its delayed version,
and the select 4 control bits have to be pipelined, instead of Ag through Ap_;.

Figure 4.6 is arranged as Figure 4.1 in order to identify each component with its cor-
responding unit. A square box with a “+” inside represents a limited-carry adder. An

107

LSD

MSD

+

Figure 4.6: Re-Pipelined Architecture for MAC Operation and IEEE 754 RNE Rounding,
108

with Wy =5and D =4

octagonal box with a “+" inside represents a carry-propagate adder. A square box with a
“C” inside represents a single-digit clearing unit. A square box with a “x” inside represents
a single-digit multiplier. A rectangular box with a “S™ inside represents a sign and sticky
computation unit. Finally, a rectangular box with “LP ROUND?” or “IEEE ROUND?” rep-
resents a unit generating a low-precision or IEEE 754 SB RNE round digit, respectively.
It can be observed that the LSD to MSD direction of limited-carry addition, implemented
using 4:2 compressors (Kanie et al., 1994), has been used for the accumulation of partial
multiplication updates, because re-pipelining can be applied intuitively. However, the MSD
to LSD direction of limited-carry addition has been used for the addition of the round digits
with the result digits to suit the description of an algorithm for digit-serial online addition
(Natter and Nowrouzian, 1999).

A digit of weight 2% of the online multiplication error emyp is fed as a digit of weight
2-i+1 of the online multiplication error emyro two DS time instants after being generated.

The longest delay T between two re-pipelining cuts is obtained in accordance with
T = 107y + Tmuz- (4.22)

This longest delay results from the combination of one clearing unit, two carry-propagate
adders, and an IEEE 754 SB RNE round digit generation unit. There are W, + 8py1 + 2
pipelining stages. A result of effective wordlength W), g is thus obtained in W, + dmui +
[!Bfﬂ.l + 1 DS time instants.

4.5.3 Area Parameterization

The proposed architecture makes use of a number of elements described in the previous
chapters. The area requirement for gate-level implementation is given in Table 4.4.

Some reductions in the hardware requirements are possible. First, one need not calculate
the carry-out digit of the carry-propagate adder generating the MSD of 13',,.,“. Second,
one can use the sign and sticky bits generated for IEEE 754 rounding as sign and sticky
bits for low-precision rounding, thereby also allowing a reduction in the latency of online
multiplication. As a result of these reductions, the total area of a corresponding ASIC
hardware implementation of the proposed re-pipelined architecture can be calculated in

109

Table 4.4: Area Requirement for the Multiplication Architecture

Unit Area Number of Units
- Gates Multiplexers -

Limited-Carry Adder 4 2 (W + dmut) D
Carry-Propagate Adder 13 2 3D
Low-Precision Rounding 6y—-7 - D
Multiplier - 2 DW,
Clearing 2 - (We +0mu +1)D
Selection D-1 2wW,D 1
D-flip-flop 6 - 2W2 + 10WeD + 22D + 20y + 5
RNE Rounding 6W, + 60mu — 5 2 D

accordance with

A = (12W?2 + 72DW, + 12D8my + 168D + 120y + 29)ag + (6DW, + 2D6mu + 8D)amuz-
(4.23)

where a4 and amyz represent the area of a gate and a multiplexer, respectively.

4.5.4 Performance Comparisons

Let us assume 7y = 1ns, Tmyz = 1.5n8, gy = 25um?, and amys = 37.5um2. Moreover, let us
assume that W, and W, have the same value denoted by W (to simplify the comparisons).
Then, the throughput H of the proposed re-pipelined architecture is obtained by using

-2
“wr

(4.24)
Next, the efficiency of an architecture is calculated as the quotient of its throughput and its
total area. It is extremely important to note that neither the latency of the online operation
nor an estimate of the power consumption of a corresponding hardware implementation is
taken into account in the above efficiency calculation.

The proposed re-pipelined architecture is compared to the re-pipelined architecture for
LSD-first digit-serial multiplication and IEEE 754 rounding of two’s complement numbers

proposed in (Rao, 1996). The main differences between these architectures are, (a) the

110

number representation of the inputs and output, (b) the mode of the arrival of the multi-
plicand (bit-parallel or digit-serial), and (c) the direction (LSD-first versus MSD-first) of
computation of the result.

A plot of the throughput versus the digit-size is shown in Figure 4.7 for various values
of W. A plot of the logarithm of the efficiency versus the digit-size is shown in Figure 4.8

x 10’ Increasing Throughput vs. increasing Digit-Size

— Proposed |
- Exist
35

0 1 L Il L 1 1
0 5 10 15 20 25 30
Digit-Size D

Figure 4.7: Throughput Versus Digit-Size of Proposed and Existing Digit-Serial Multipli-
cation Architectures

for the same values of W. From these plots, it can be concluded that the throughput of the
proposed architecture is approximately equal to that of the existing architecture. The non-
linearities of the curves are due to modulo arithmetic effects. As in (Rao, 1996), the most
efficient architecture is the bit-parallel one. However, the relative efficiency is much lower
than the existing architecture, given that the vertical scale is logarithmic. This dramatic
difference in terms of area performance arises from two fundamental differences between the
architectures, namely, (a) the use of a redundant number representation (requiring large
units for computing the result), and (b) the use of selectors to choose the appropriate multi-
plicand, also increasing largely the area of a corresponding ASIC hardware implementation.
It can also be observed that the computation of the sign bit was not obtained by look-

111

Efficiency of ASIC implementation vs. Digit-Size

155

-
[2)

14.5

-
o

-
w
t

Log of Efficiency, in Throughput per Unit Area

125 ! 3 1 L L L T
[+] S 10 1§ 20 25 30 35

Digit-Size D

Figure 4.8: Log of Efficiency Versus Digit-Size of Proposed and Existing Digit-Serial Mul-
tiplication Architectures

ahead techniques, making the critical path longer. However, this point does not have a
large impact on the results for the wordlengths in Figs. 4.7 and 4.8.

It is possible to make the multiplicand available in a bit-serial fashion in the bit-serial
online algorithm for multiplication, as described in (Irwin, 1977) for signed-magnitude mul-
tiplicand and multiplier inputs. As a result, it is possible to make the multiplicand available
in a digit-serial fashion in the digit-serial algorithm. However, in the resulting algorithm,
the wordlength of the multiplier is constrained to be equal to that of the multiplicand. This
becomes a drawback if the multiplicand is read from a memory, because the computation al-
ways requires W, iterations. By contrast, the proposed algorithm can be developed for any
multiplier wordlength, which becomes a definite asset in a dynamically changing multiplier

wordlength case.

4.6 Conclusion

In this chapter, an algorithm has been developed for digit-serial online purely signed-binary
multiplication employing IEEE 754 SB RNE rounding, illustrating the combination of the

112

digit-serial and the online arithmetic techniques. A corresponding architecture for subse-
quent FPGA hardware implementation has been proposed for general values of the digit-size
and multiplicand and multiplier wordlengths, and confirmed functionally correct through
numerous simulations. The resulting architecture has been re-pipelined for throughput
maximization. Gate-level speed and area estimates have been calculated. The efficiencies
(ratio of throughput by area) of the proposed architecture were compared unfavorably to
those of existing architectures, mainly because of additional low-precision rounding units re-
quired for MSD-first operation, and discrepancies between the operation themselves. Also,
neither the power consumption nor the latency was taken into account in the efficiency
comparisons. Therefore, additional work is required to determine suitability of digit-serial

online operations for high-speed applications.

113

Chapter 5

Architecture for Online
Signed-Binary Bit-Parallel
Multiply-Accumulate Operation

5.1 Introduction

This chapter is concerned with the design and subsequent FPGA hardware implementation
issues of a purely signed-binary bit-parallel online multiply-accumulate operation employ-
ing the SB to MRB4 multiplier recoding, IEEE 754 RNE rounding, and overflow correction
techniques. This includes, (a) the presentation of an algorithm for bit-parallel online signed-
binary MAC operation employing signed-binary to minimally redundant base-4 recoding
and IEEE 754 result rounding to nearest/even, (b) the translation of the algorithm to a cor-
responding architecture for subsequent field-programmable gate array or application-specific
integrated circuit implementation, and (c) the comparison of the resulting architecture to
existing similar architectures.

In Section 5.2 an algorithm is developed for purely signed-binary bit-parallel online
multiply-accumulate operation employing the SB to MRB4 recoding technique. Moreover,
the format of the result of the operation conforms to that of the multiplicand and multi-
plier by the IEEE 754 SB RNE rounding technique and the overflow correction technique
discussed in Chapter 3, allowing one to maintain a standard wordlength across a digital
processor employing the proposed algorithm. Then, Section 5.3 describes a corresponding
architecture for subsequent FPGA hardware implementation. Finally, Section 5.4 presents
the simulation results demonstrating that the resulting architecture is functionally correct,

114

and compares the throughputs and efficiencies of the architecture and existing similar ar-
chitectures (via speed and area gate-level estimates).

Simulation results will be presented for verification of correct functionality. In order to
improve the throughput and allow a comparison of the proposed architecture to existing
similar architectures, Next, the proposed architecture is re-pipelined in order to both im-
prove its throughput, and allow the comparison to existing similar architectures (Rao, 1996)
by measuring their respective throughputs and efficiencies!.

In Section 5.2, an algorithm is described for purely signed-binary bit-parallel online
multiply-accumulation operation employing the SB to MRB4 recoding technique. Moreover,
the result of the operation will be expressed in the same format as the input multiplier and
multiplicand by applying the IEEE 754 SB RNE rounding technique and the overflow correc-
tion technique discussed in Chapter 3, thus allowing one to maintain a standard wordlength
across a digital processor employing the proposed algorithm. Then, a corresponding archi-
tecture for subsequent FPGA hardware implementation will be presented. Speed and area

gate-level estimates will allow a comparison with existing similar architectures.

5.2 Bit-Parallel Signed-Binary MAC Algorithm Employing
SB to MRB4 Recoding

The signed-binary (SB) to minimally redundant base-4 (MRB4) recoding technique pre-
sented in Subsection 3.3.2 permits the reduction of the number of partial MAC updates by
a factor of 2, increasing the speed of execution of a corresponding architecture by a factor
of 2. In the following, an algorithm for bit-parallel online SB MAC operation employing SB
to MRB4 multiplier recoding is developed.

Consider the SB result RSZ of the MAC arithmetic operation given by

RSB = ASBBSE 4 B, (5.1)

where ASB, BSB and CS8 are referred to as the SB MAC operation operands, and represent
the SB multiplicand, the SB multiplier, and the SB addend, respectively.
The efficiency will be measured as the ratio of the throughput by the area of a given architecture.

115

The SB multiplicand and multiplier can be defined in accordance with

Wa
A%B =% "afB27% ofB(-1,0,1}, (5.2)
=1
and
A _
BSB =Y "fP2% b7B{-1,0,1}, (5.3)

i=1
where W, and W, represent the wordlengths of A and B, respectively. By padding A and
B with an appropriate number of zeros as LSDs, the values of W, and W) can be assumed

to be even in accordance with
We=2W, and W,= 2wy, (5.4)

where W, and W) are integers. As a result, one can use the SB to MRB4 recoding technique
presented in Subsection 3.3.2 to obtain a corresponding MRB4 representation B¥284 of B8
given by

Wi

- RB.
BMRB-‘ - Z b:lRB“4 J; th{ 4 € {—21 _la 07 11 2}' (5.5)
j=0

In this way, BMRB4 gatisfies
BMRE4 = BB, (5.6)

Since BMRB4 ig expressed in a base-4 representation, the algorithm for online MAC operation
must process base-4 numbers. The latency of the base-4 online MAC operation is denoted

by dmaec- Let us define the SB representation of the addend in accordance with

Wc+wb A
c= 5 &P fB-1,0,1} (5.7)

i=—1-20mac
Then, one has to express A58 and CS® in equivalent base-4 representations A% and C%4,
respectively. One can obtain these representations by regrouping the odd and even digits,
as seen in the first step of the SB to MRB4 recoding technique in Subsection 3.3.2, resulting
in
w!

AB“ = Z 0?44“"; aiB‘ € {_3’ -2,-1,0,1,2, 3}1 (5.8)

i=1

116

and
Wa
CBé = Z a4t ot € (-3,-2,-1,0,1,2,3}, (5.9)

1=8mac

where the values are preserved in accordance with
ABé = ASB and CB4 =C%8. (5.10)

Of course, this recoding is totally parallel. Finally, the result of the MAC arithmetic
operation on AB4, BMRBL and C54 is defined as

RB4 = ABipMRBL | B4 (5.11)

By substituting the base-4 numbers by their SB equivalents in Eqns. 5.6 and 5.10, and by

comparing the result to Eqn. 5.1, the base-4 result is proven to satisfy
RB4 = RSB, (5.12)

The proposed algorithm for bit-parallel online SB MAC operation will be based on
the recursive algorithm developed in Subsection 3.2.2. All the iterations of the proposed
algorithm will be performed at the same time instant.

Let us decompose CB4 into two components in accordance with

CB =CB, +CH, (5.13)
where
w!-1
CB,= Y cfha (5.14)
j=~0mac

represents the most significant word of CB4, and where

Wi+W}
Crp= Y. cjtad (5.15)
=W,

represents the least significant word of CB4. The first component, CE4,, will be made

available at the outset of the proposed algorithm, while the second component, Cgfu, will
be made available one digit per iteration.

117

Since the operation is performed in a bit-parallel fashion, ASE, BSE, and CSP are avail-
able at the outset, i.e. at the first iteration. The digits of BM”54 and Cg'f, are made available
one per iteration, the MSD first. In this way, the words

p
BMRBE = Y pMRI 4 (5.16)
i=0
and
W.+p
Crs,= 3 ciha™ (5.17)
=W/

are referred to as the partially known multiplier and LSW addend at iteration p, respectively.
Next, the off-line iterative MAC result R5¥ is given by

RB4 = pBipMREL CBL +CJL (5.18)
thus yielding the off-line partial MAC update
PBé = (A%MRB‘ + cW,+p4-Wé) gbmac (5.19)

where ic = W] (c.f. Subsection3.2.1). The resulting MAC operation can be performed by
using Algorithm 29.

Algorithm 29 Bit-Parallel Online Signed-Binary MAC Operation

Step 1 Set p « 0 and €24 « CB4,4-0mec,

Step 2 Read bMRB‘ and cW, " 4o

Step § Calculate PP « (AP4NRE 4 cfh | 4=W2) grimee,
5B. B B
Step 4 Calculate P, 4 4e fl + P, 4,

~B.
Step 5 Round B4 to 74,

~B.
Step 6 Calculate €24 — P24 ,,fa,m

Step 7 Write Fp_5
Step 8 Calculate p—~p+1,
Step 9 If p < Wy + 1, then go to Step 2, else done end.

118

In the above algorithm, the iteration p has to be initialized to 0 instead of 1 because
the MSD of BMRB4 has a weight 4°. Moreover, o4, is scaled down in the same manner
as AP4pMRBI cﬁ,‘; + p4-w; and fed as the initialization value of the scaled online error €_;.

In this way, it is imperative for CE4 4—0mac to satisfy the same constraint as e_y, i.e.

|C ﬂw4-6m¢c

<l (5.20)

must hold true. Other than these two points, the above algorithm corresponds to a bit-serial
online algorithm for MAC operation as described in Subsection 3.2.2. At the last iteration,
the online error eﬁ,“ is padded to the online result word ﬁ% to form the final result R54.

Let us calculate an upper bound on the addend. By applying Eqn. 5.20, one can obtain
|CB4| < legfmec +4~Wa — g~ Wa=W;, (5.21)

By observing that I = § + (417 — 4~Wa=émee), Eqn. 5.21 becomes
|cB4) < (é + 41'7) glmac _ 4=Wa- W, (5.22)

If Eqn. 5.22 is satisfied, then it is guaranteed that the above algorithm generates the MAC
result as expected. Moreover, by applying Eqn. 3.12 (page 51) at iteration W, of the above

algorithm, one obtains the base-4 MAC operation result in accordance with

B{ _ pB{ B4 y0mac—W,
wa, = Rw; + eW‘4 5, (5.23)
Then, Eqn. 5.18 implies that
Rﬁ,“ = AB4B;§?‘” +CB 4+ C,f,f,,wg (5.24)

holds. Next, by observing that Ba,lfw‘ = BMRBi apd that Czﬁ,wg = Cf'f,, Eqn. 5.11 yields
Rf;,‘; = RB4, (5.25)

as desired.
It is very important to observe that Eqn. 5.23 implies that RZ4 is represented in accor-

dance with

Wa+W,)
RB= Y rfB2% e{-1,0,1}, (5.26)

119

which conforms to the representation of the addend C84. Therefore, R34 can be fed back as
the addend, permitting an accumulation of the MAC results, but requiring the addend, and
the successive multiplicand and multiplier values to be constrained so as to yield a result
RB4 satisfying Eqn. 5.22.

The MAC arithmetic operation online result that will be output must be expressed in
the same format as the multiplier, so that one can use it as a multiplier in another online
MAC arithmetic operation. The re-formatting of the result requires two operations, (a)
rounding in accordance with the IEEE 754 RNE standard, and (b) overflow correction.

The MAC arithmetic operation result RSE can be rounded in accordance with the IEEE
754 RNE standard as explained in Subsection 3.4.1. Therefore, RS2 is decomposed in

accordance with

RSB = R3B 4+ RJB (5.27)
where
W, _
RE,= Y rfB2 (5.28)
t==1=20mac

represents its most significant word, and where

Wa+Wp .
RE=) rif2 (5.29)
=W+l

represents its least significant word, and a signed-binary rounded result RSB, is calculated,

and is of the form

W
RSB = 2 r3B 27 (5.30)
i==2=20mac

The extra digit of weight 22+2émsc has been generated by the addition making part of the
rounding operation.
Then, the rounded result R32, is fed to the overflow detection and correction algorithm

given in Subsection 3.4.2. Therefore, RS5, is decomposed in accordance with

RZ% = R7E e+ R3E, s (5.31)

120

where

0

SBd.msw = Z md 12-‘ (5.32)
t=—=2—20mac

represents its most significant word, and where

d Isw — Z rmd 12-' (5.33)

represents its least significant word, and a final output result R is generated. The final
result R may be saturated (to the maximum or minimum representable value), but the
corresponding internal result may not be saturated. In this way, the extra MSDs of the
RSB required by the non-zero latency dpmac act as guard digits.

It is important to observe that the online partial MAC result 584 is obtained as the
addition of Pp and 45341, but can also be viewed as the addition of A54b, MRB4 g—~bmac with
46‘,_1 “ +p4"""“’wc. This observation implies that, instead of padding ef‘ with a
zero as its LSD in a corresponding architecture to obtain a multiplication by 4, one can
pad cf ., as the LSD, to calculate 424, + cpf . 4~%mee=Wa. This is due to the fact that
i = W, (c.f. Subsection 3.2.2).

Along with the development of the algorithm, one must determine the values of the
internal wordlength vy and the latency d.;4c of the base-4 online MAC arithmetic operation.
The digits of B2# are assumed to belong to the set {3, —2,...,3} such that the resulting
addition architecture can be derived from limited-carry addition architectures (c.f. Subsec-
tion 2.4.1). In order to yield a small latency value, the digits Ff -fa,m are assumed to belong
to {-3,...,3}. Consequently, the lower bound on the latency (c.f. Eqn. 3.32 page 57) is

1-4"We
2

Of course, the choice y¥ = 1 is not valid (% — 1 is negative). One can observe that if v could

given by

be equal to 1, then no rounding of ﬁp would be necessary. Then, the minimum valid v value
is 2, and happens to yield the smallest latency value d;qc = 1. As a result, one chooses
7 =2 and e = 1. It is interesting to note that the latency of the resulting signed-binary
operation is twice that of the base-4 operation.

121

5.3 Architecture for MAC Operation Employing Signed-Binary
Multiplier Recoding

In this section, the proposed algorithm for bit-parallel online signed-binary multiply-accumulate
operation will be translated to a corresponding architecture for a subsequent FPGA or ASIC
hardware implementation. The resulting architecture is shown in Figure 5.1 for general val-
ues of the wordlengths of the input multiplicand and multiplier. This architecture comprises
three main parts, namely, a bit-parallel multiplier recoding unit, serial online multiplication
units, and a bit-parallel rounding and overflow unit. Each of these units will be described
individually in the following subsections. The critical path of the proposed architecture is
shown in bold lines.

At a given time instant, the SB multiplier BSZ is fed to the bit-parallel recoder unit
described in Subsection 3.3.2. The resulting digits of the MRB4 representation BMRE4 of
the multiplier are fed individually to each of the W; + 1 online multiplication units. The
p-th multiplication unit takes as other inputs the current SB multiplicand value A58 and
the online error effl generated in the (p—1)-th multiplication unit. One can note that both
the online multiplication unit number and the index of the corresponding MRB4 multiplier
digit correspond to the iteration number in the algorithm. Then, the result digits coming
out of the online multiplication units are gathered to form ﬁﬁ,“, and are combined to the
digits of the online error e% of the last online multiplication unit, yielding the full-precision
result RB4, or, equivalently, RS8.

Next, RB4 branches off into two different paths. In the first path, RS is delayed by one
sample time by registers, as described in Section 4.3, and the delayed signal is fed back as
the accumulation value C54. In the second path, R34 is rounded in accordance with the
IEEE 754 RNE standard, as described in Subsection 3.4.1, and fed to an overflow correction
unit, as described in Subsection 3.4.2. The last two operations are required to restrict the
format of the output result to match that of the multiplier and multiplicand.

5.3.1 Signed-Binary to Minimally Redundant Base-4 Recoders

The recoder is implemented as a cascade of signed-binary to minimally redundant base-4

recoders. These recoders are as described in Subsection 3.3.2.

122

Bl A—Omec
cat Recoder 0
4 | 0
Multiply-Accumulation Unit 0
b5
— B4 SE— I Y Lt/
ng..., ""Bv{;ﬂ I Recoder 1 /
SB
Multiply-Accumulation Unit 1 b
b5
B4 —— A | sr =/
" C;ef;.,.g I Recoder 2 y,
SB
Multiply-Accumulation Unit 2 b
| B4
g8 K
2=6mec
bSB ,
‘ﬁ/" 1 b‘»ﬁw‘ e
2| &
Y wiew [2 Recoder W}
SB
Multiply-Accumulation Unit W} b2w;
0 1

ce

Register

L/ '-:Bl Cw‘

W, ~dmac

54

I

reset clock

RE4

Rounding and Overflow Correction Unit

|a

Figure 5.1: Architecture for Bit-Parallel Online Multiply-Accumulate Operation Employing
SB to MRB4 Recoding

5.3.2 Online Multiplication Units

The online multiplication units employed here are slightly different from those described in

Section 4.3 (page 95). Since the algorithm implemented by this architecture is based on

radix-4 representations, the online error is scaled by 4 as opposed to 2. The first difference

123

is that the online error is shifted up by two signed-binary digit positions instead of one.
Then, the multiplier digits can take on values from the set {—2,~1,0,1,2}. Therefore,
the multiplicand word by multiplier digit multiplication is performed by using dedicated
multipliers, which have been described in Subsection 3.3.2.

The second difference comes from the observation that no clearing of the online error is
required for any of the intermediate online errors, because there is at most one operation
happening at a given time instant within the architecture. Therefore, no online clearing
unit is needed, and only a clearing of the accumulated result (C54) is necessary (achieved
by setting the corresponding register to the appropriate value).

Let us now consider the low-precision rounding unit. The internal wordlength + is equal
to 2 for the base-4 representations. Therefore, the truncated online partial MAC result
comprises two base-4 digits. The base-4 MSD corresponds to the digit of weight 1, and the
base-4 LSD corresponds to the base-4 MSD of the fraction. These two maximally redundant
base-4 digits are represented by four signed-binary digits, two in the integer part, two in
the fraction part. Consequently, the circuit described in Subsection 3.4.1 can be used for

the low-precision rounding of that word.
5.3.3 Rounding and Overflow Correction Unit

In this unit, the result RSB of the MAC operation is first rounded by employing the IEEE
754 RNE rounding technique to eliminate the extra LSDs as described in Subsection 3.4.1
(page 70). The addition of the IEEE 754 RNE round digit is obtained by an array of
limited-carry adders. The overflow correction unit has been described in Subsection 3.4.2
(page 79).

5.4 Computer Simulation Results and Performance Compar-
ison

The correct functionality of the proposed architecture will be confirmed by computer simula-
tions. Then, its speed and area performances will be measured, and subsequently compared
to those of existing architectures.

124

5.4.1 Simulation Results

The wordlengths of both the multiplicand and the multiplier have been set equal to 8 for a
subsequent simulation of FPGA hardware implementation by using Max+Plus II and the
underlying Synopsys compiler. The reference of the target FPGA is EPF 10K20 RC240-
4. The latency of the proposed algorithm is as chosen in the algorithm development (c.f.
Section 4.3, page 95).

The test vectors in decimal notation are listed in Table 5.1. It is important to observe

Table 5.1: Test Vectors for Parallel MAC Operation in Decimal

A B Racc Racc,rnd
-0.33203125 | 0.46875000 | -0.1556396484375000 | -0.15625000
-0.81640625 | -0.42578125 | 0.1919708251953125 | 0.19140625

0.35156250 | 0.55468750 | 0.3869781494140625 | 0.38671875
-0.91796875 | -0.92578125 | 1.2368164062500000 | 0.99609375
0.11718750 | -0.12109375 | 1.2226257324218750 | 0.99609375
-0.15625000 | -0.17968750 | 1.2507019042968750 | 0.99609375
-0.53906250 | 0.57031250 | 0.9432678222656250 | 0.94140625
-0.55468750 | 0.19921875 | 0.8327636718750000 | 0.83203125
-0.67187500 | 0.48046875 | 0.5099487304687500 | 0.51171875
0.89843750 | 0.18359375 | 0.6748962402343750 | 0.67578125

how some of the full-precision results exceed the absolute value 1 —2~8, which is the limit of
the range of representable values in the chosen format. As a consequence, the corresponding
expected result values are saturated to the maximum representable value, but the internal
full-precision accumulated result can still hold these values without any true internal over-
flow. The same vectors have been translated by a Matlab program into their equivalent
signed-binary representations in Table 5.2 for use in a Matlab emulation of the proposed
architecture.

The simulation results are shown in hexadecimal values in Figure 5.2. The correspon-
dence between hexadecimal and signed-binary values is listed in Table 4.3 (page 106). In
Figure 5.2, the signed-binary result values correspond exactly to the expected results, thus
proving the correct functionality of the proposed architecture. Numerous other simulations

125

Table 5.2: Test Vectors for Parallel MAC Operation in Signed-Binary

A B Racc.rnd
0.0I0IoiIoI|0.01111000({0. 01101000
0.1101i000I{0.01101101If0. 01010001
0.01011010[0.10001110(0.11100111
0.11101I011}0.I1101101I(0. 11111111
000011110{0.000I1I111{0. 11111111
0.00101I000/0.001I01110(0. 11111111
0.10001010/0.10010010/0.11110011
0.10001110(0.00110011f0.11111101
0.10101100(0.01111011{0.10000011
0.11100110]0.00101111(0.11010101

MAX+plis 119.3 File: AFSAUALBERTA.CAHOME/WN/WNATTER/RESEARCHFPGALCADDMRBA_MAC_PAR_RND_OVF.SCF Date: 06/18/2000 18:44:28 Page: 1

Name: 1.1837us 2.3674us 3.5511us 4.7348u
M A 1 X 0 x 2 X o X 2 X + X 0 X 3

m ALl 1 X 0 X 38 X 0 X 2 X _ ! X 3

m A2 1 X 2 X o X 2 X o X 1 X o0 X 3

M A3 1 X 0 A 3 X 1 X 3 X 1 X2

0 A4 1 X 38 X 0o X 3 X 0 X2

M AS 1 X0 X v X2 X 1 X 38 X 1 X [} X 3

(1 A8 1 X8 X o X3 X v X o X+ X 3
M A7 1 X 0 X 2 X 0 x 2 X 1 X2

0 B0 1 X2 X 1t X 8 X o X 1 X3 X 2

m e 1 X 3 X 0 X 2 X o0 X ! X___2 X3 X 2

m 8.2 T X3 X o X 2 X o X 1 X o X 2 X 3

mes 1t X 8 X 1t X 2 X t X 0 X t X 3 X 2

M s 1 (3 X0 X 3 X 0 X___2 X__3

0} 85 1 X 2 X 0 X 3 X 0 X 2 X__3

0 8.8 X2 X 1t X 3 X 1 X 0 X 3

mez 1. X2 X 0 X 2 X 0 X_ 1 X 2 X 3

[clock B et il i
[reset

(ClRdes_0 1 K1 K 2 K3 K3 K3 K3 K3 K3 K3 K 3
[OlRdes_1 1 fC o K3 K o K3 K3 K3 K3 K3 Kz K 3
[O]Rdes_2 T K3 K v K3 K3 K3 K2 K3 X3 XK1 K
(Ol Rdes_3 1 K K o K 2 K 3 K3 K3 K3 Ko K2 Ko
(O} Rdes_4 1 Ko K+ Kz 3 K K3 K K3 K1 K
(ClRdes_S 2 K 1 K 2 K 3 K 3 K3 K3 K2 Ko K2 Ko
[O]Rdes_6 T K K2 Ko K33 K32 K3 X33 K2 K3 K 2
(Ol Rdes_7 I G G &ED G G E5 &5 G &5 .
(CIOVF | 1 | | | | | I |] 1 |

Figure 5.2: Simulation Results for Wy = W, =8

126

have been carried out to confirm the correct functionality.
5.4.2 Throughput Parameterization

The various delays corresponding to the units are listed in Table 5.3. The delay of the

Table 5.3: List of Delays of Architectural Units

Unit Delay Number of Units

- Gates Multiplexers -
SB to MRB4 Recoder 6 1 1
Limited-Carry Adder 3 - Wy +2
SB by MRB4 Digit Multiplier 2 1 1
RNE Rounding 2W, - 2W; -2 1 1
Overflow Correction - 1 1
D-flip-flop 3 - 1

IEEE 754 RNE round digit generation unit has been restricted to the delay concerning the
critical path. Let us denote by 7, and Tmyz the delay through a gate and a multiplexer,
respectively. As a result, the delay T of the proposed architecture can be calculated in

accordance with

T = (2W, + W} + 18)7y + 4Tmuz- (5.35)
5.4.3 Area Parameterization

The proposed architecture makes use of a number of elements described in the previous
chapters. A summary of the needs is listed in Table 5.4.

Some reductions of the hardware requirements are possible. For example, the addition
of the round digit to obtain the IEEE 754 SB RNE-rounded result does not require limited-
carry adders to their full extent. As a result of these reductions, the total area A of a

corresponding ASIC hardware implementation can be calculated in accordance with

A =(8W,W; + 155W; + 26W, — 8W}, + 214)a, +

127

Table 5.4;: List of Areas of Units Constituent in the MAC Architecture

Unit Area Number of Units
- Gates Multiplexers -

SB to MRB4 Recoders 15 1 w;
Limited-Carry Adder 4 2 (We+1)W, +1
Carry-Propagate Adder 13 2 5W,
Low-Precision Rounding 11 - Wy
Multiplier 4 2 (Wa + L)W,
D-flip-flop 6 - 2W, +2W, +4
RNE Digit Calculation | 6W, +6W; -5 2 1
Overflow Correction 36W, — 8W;, +36 | 2W, +2W, + 1 1

5.4.4 Comparison

Let us assume 7; = 1ns, Tmyz = 1.508, g = 25ym2, and @muz = 37.5um?. Moreover, one
will assume that W, and W, have the same value denoted by W, thereby simplifying the

comparison. Then, the throughputs H of the proposed architecture is obtained as

w
H=—. (5.37)

Next, the efficiency of an architecture is calculated as the ratio of its throughput by its total
area. It is extremely important to note that neither the latency of the online operation nor
an estimate of the power consumption of a corresponding hardware implementation is taken
into account in the above efficiency calculation.

The proposed architecture is compared to the architecture for LSD-first bit-parallel MAC
operation and IEEE 754 rounding of signed-binary numbers proposed in (Rao, 1996). The
main differences between these architectures are the direction (LSD-first versus MSD-first)
of computation of the result, and the full-wordlength overflow detection and correction of the
result. A comparative plot of the throughput versus the wordlength is shown in Figure 5.3
for some values of W. A comparative plot of the efficiency versus the wordlength is shown
in Figure 5.4 for the same values of W. The curves are not smooth due to slight differences
between architectures when the wordlength is odd or even. The speed and efficiency are
similar, although the proposed architecture performs worse than the existing LSD-first

128

o s 10 15 20 P 30 [
Wordiength of A and B

Figure 5.3: Throughput Versus Wordlength of Proposed and Existing Bit-Parallel MAC
Architectures

x 10" Efficiency of ASIC Impiementation vs. Wordiength
T k] v ¥ L1 T
— Proposed
- Existing
-1
|
8k A\ .
'
i .]
5 -
\
e i .
)
Es- . i o
Sar ' y
1. .
2+ 4
1 B
o] 1 l i L. 1
[§ 10 15 20 % 30 35
Wordiength of A and B

Figure 5.4: Efficiency Versus Wordlength of Proposed and Existing Bit-Parallel MAC Ar-
chitectures

architecture, despite the numerous efforts to increase the speed of computation and reduce
the area of a resulting ASIC hardware implementation. The worse delay calculation is
related to the fact that the signed-binary digit encoding does not embed the sign of the digit

129

directly. Therefore, additional calculations are required to determine the sign of the least
significant word to be rounded using the IEEE 754 SB RNE rounding technique. Moreover,
the area of the proposed architecture is larger because of two factors. The first factor
is the low-precision rounding and carry-propagate addition units required by the online
processing of data. The second factor is the large overflow correction unit performing an
overflow detection and correction over the entire result word, instead of only on the MSD.
It must be observed here that it has not been assumed that |R| is smaller than 1 — 2-Ws,
It must also be observed that the computation of the sign bit has not been obtained by
look-ahead techniques, thereby making the critical path longer. However, this point does
not have a large impact on the results for the wordlengths under consideration.

As a conclusion, the proposed architecture may yield a slightly slower ASIC hardware
implementation than existing LSD-first architectures. However, since current practical
analog-to-digital and digital-to-analog converters generate and consume digits the MSD

first, employing the proposed architecture might prove more attractive and efficient.
5.5 Conclusion

In this chapter, an algorithm has been developed for bit-parallel online purely signed-binary
multiply-accumulate operation employing the proposed SB to MRB4 recoding, IEEE 754
SB RNE result rounding, and overflow detection and correction techniques. Corresponding
architectures for the above algorithms have been proposed, and the subsequent FPGA
hardware implementations have been confirmed functionally correct. The efficiencies (ratio
of throughput by area) of the proposed architectures were compared partially to those of
existing architectures. The differences observed were attributed to additional low-precision
rounding units required for MSD-first operation, and discrepancies between the operations
themselves. However, neither the latency of the online operation nor an estimate of the
power consumption of a corresponding hardware implementation was taken into account in
the efficiency calculations. Therefore, additional work is required to reach a conclusion on
the suitability of online operations for high-speed applications.

130

Chapter 6

Conclusion

6.1 Review of Material Presented

This thesis has been concerned with the design, development, and implementation of digit-
serial online signed-digit arithmetic operations for applications in digital signal processing.

Chapter 1 has introduced arithmetic operations in the digital signal processing context,
has briefly described the online and the digit-serial arithmetic techniques, and has described
the existing advances and their respective extents.

Then, in Chapter 2, fixed-point arithmetic in generalized signed-digit number systems
has been described. The digit-serial and online arithmetic techniques have been discussed,
the existing digit-serial unfolding algorithm has been simplified, and the unfolding of bit-
serial operations into operations featuring a dynamically changing wordlength have been
introduced. Finally, redundant binary addition schemes have been characterized by a new
offset parameter, and subsequently separated into two equivalence classes. An addition
scheme belonging to a given class of equivalence possesses the same addition mechanisms
as the other addition schemes of that class, thus allowing the determination of the smallest
and fastest addition scheme under varying digit encoding. The 4:2 compressor has been
proven to be not only a redundant binary adder, but also one of the most efficient.

Next, Chapter 3 provided the foundation for online generalized signed-digit multiply-
accumulate (MAC) operations by developing a recursion-based algorithm featuring operation-
independent variables. A different operation can be performed by solely calculating a partial
operation update differently. In this way, a generalization of bounds on these variables has

been introduced, leading to a procedure for the determination of the various parameters of

131

the MAC operation. These parameters include the number system radix, the redundancy
indices, the internal wordlength, and the latency. Also, multiplication and clearing units
have been described, and techniques for IEEE 754 SB RNE rounding, low-precision round-
ing, and overflow handling have been presented along with corresponding architectures.

Chapter 4 has applied the proposed algorithm to the development of an algorithm
for digit-serial online purely signed-binary multiplication employing IEEE 754 SB RNE
rounding, illustrating the combination of the digit-serial and online arithmetic techniques.
A corresponding architecture for subsequent FPGA hardware implementation has been
proposed and verified functionally correct. The resulting architecture has been re-pipelined
for throughput maximization. The efficiencies (ratio of throughput by area) of the proposed
architecture were compared to those of existing architectures.

Finally, in Chapter 5, an algorithm has been developed for bit-parallel online purely
signed-binary multiply-accumulate operation employing the proposed SB to MRB4 recod-
ing, IEEE 754 SB RNE result rounding and overflow detection and correction techniques. A
corresponding architecture for subsequent FPGA hardware implementation has been pro-
posed and verified functionally correct. The efficiency of the proposed architecture has been
compared to those of existing architectures.

In Chapters 4 and 5, the efficiency comparisons have been unfavorable to online op-
erations, mainly because of additional low-precision rounding units required for most-
significant-digit-first operation, but also because of functional discrepancies. However, la-
tency and power consumption have not been used as parameters in the efficiency calcula-
tions. Therefore, more work will be needed to reach a conclusion regarding the suitability

of bit-serial, bit-parallel, and digit-serial online operations for high-speed applications.
6.2 Proposed Areas of Future Work

Addition and multiplication properties of ordinary signed-digit number systems have been
presented and extended, but a determination of the speed and area of corresponding efficient
hardware implementations has not been carried out. Such a determination would allow one
to find which ordinary signed-digit number system is most efficient in terms of area and
speed. In particular, it is believed that OSD and USD number systems have another

132

advantage in multiplication over other GSD number systems. Considering an odd (even)
GSD number system of digit set D, the cardinality of the set whose elements result from
the multiplication of two digits belonging to D should be smallest when the number system
is OSD (USD). As a result, the smallest multiplication units would be obtained for OSD
and USD number systems.

The dynamically changing wordlength technique has to be defined more rigorously, in
order to determine its drawbacks and advantages exactly. In particular, the case of a dy-
namically changing wordlength taking on values that are all multiples of a small wordlength
value may lead to an algorithm similar to that for digit-serial unfolding of bit-serial architec-
tures. It is possible to define such an unfolding algorithm at an algorithmic level instead of
an architectural level, which would allow software engineers to benefit from this technique.

In the context of digit-serial online operations, gate-level power estimates for corre-
sponding hardware implementations and latency values should be taken into account in the
calculation of the efficiency of these operations. The use of redundant number systems,
which are known for their property of stopping the carry propagation, is expected to reduce
the switching activity in a hardware implementation, and, consequently, its power consump-
tion. This work would allow one to reach a definitive conclusion regarding the suitability
of digit-serial online operations for high-speed low-power applications.

The proposed online algorithm can be used for inner product operation. The author
developed an example in Matlab code, but did not disclose it in this thesis. A direct
application is the design of finite impulse response filters, since one can see the operation of
such a filter to be the inner product of a vector of coefficients with a vector of delayed input
sample values. The small latency of such operations seems to be also suitable for their use
in infinite impulse response filters. Similarities between the inner product coefficients may
be exploited for low-area low-power design, especially if the coefficients are hard-wired. In
the latter situation, multiplier-less architectures may be developed.

Similarly, it is believed that the proposed online algorithm can be used for incremental
multiplication, whereby both the multiplicand and the multiplier are made available in an
online fashion (Irwin, 1977). One should also be able to extend the resulting algorithm to
a MAC operation. Such an operation could be used for modulation.

133

A significant reduction in the delay required for rounding the least significant word
(LSW) of a multiplication result can be obtained by first truncating the LSW to only a few

of its most significant digits. Then, rounding errors would occur only if the truncated LSW
is equal to 0.

6.3 Concluding Remarks

It is most important to remark that the benefits of the online arithmetic technique are
obtained when using a bit-serial transmission of the data. If the transmission is digit-serial
of bit-parallel, then a hardware implementation of the corresponding LSD-first arithmetic
operation can achieve higher sampling frequencies and much lower areas, since no interme-
diate estimation of the MSD is required. Moreover, since the result is obtained the LSD
first, rounding techniques can be applied concurrently to the computation of the result of
the arithmetic operation, thus avoiding additional delays.

134

Bibliography

Avizienis, A. (1961). Signed-digit numbefr] representations for fast parallel arithmetic, IRE
Transactions on Electronic Computers EC-10(3): 389-400.

Balsara, P., Owens, R. and Irwin, M. (1991). Digit serial multipliers, Journal of Parallel
and Distributed Computing 11: 156-162.

Brackert, Jr, R., Ercegovac, M. and Wilson, Jr, A. (1989). Design of an on-line multiply-
add module for recursive digital filters, Proceedings of the 9** Symposium on Computer
Arithmetic, IEEE, Santa Monica, CA, pp. 34-41.

Carter, T. and Robertson, J. (1990). The set theory of arithmetic decomposition, JEEE
Transactions on Computers 39(8): 993-1005.

Chow, C. (1980). A variable precision processor module, Phd thesis, Departement of Com-
puter Science, University of Illinois, Champaign-Urbana, IL 61801. technical report.

Chow, C. and Robertson, J. (1978). Logical design of a redundant binary adder, Proceedings
of the 4*h Symposium on Computer Arithmetic, IEEE, Santa Monica, CA, pp. 109-115.

Dadda, L. (1976). On parallel digital multipliers, Alta Frequenza 45: 574-580.

Duprat, J., Herreros, Y. and Muller, J. (1989). Some results about on-line computation

of functions, Proceedings of the 9 Symposium on Computer Arithmetic, IEEE, Santa
Monica, CA, pp. 112-118.

Ercegovac, M. (1984). On-line arithmetic: an overview, SPIE, Real-Time Signal Processing
VII, Vol. 495, IEEE, San Diego, pp. 86-93.

Ercegovac, M. and Lang, T. (1989). On-line arithmetic for DSP applications, Proceedings of
the .§2nd Midwest Symposium on Circuits and Systems, Urbana-Champaign, IL, USA,
pp. 365-368.

Ercegovac, M. and Lang, T. (1990). Fast multiplication without carry-propagate addition,
IEEE Transactions on Computers 39(11): 1385-1390.

Fernando, J. and Ercegovac, M. (1992). On-line arithmetic modules for recursive digital

filters, Record of the 26t Asilomar Conference on Signals, Systems, and Computers,
Vol. 2, pp. 681-685.

Gorji-Sinaki, A. and Ercegovac, M. (1981). Design of a digit-slice on-line arithmetic unit,
Proceedings of the 5t* Symposium on Computer Arithmetic, IEEE, University of Michi-
gan, Ann Arbor, MI, pp. 72-80.

Goto, G., Inoue, A., Ohe, R., Kashiwakura, S., Mitarai, S., Tsuru, T. and Izawa, T. (1997).

4.1-ns compact 54 x 54-b multiplier utilizing sign-select booth encoders, IEEE Journal
of Solid-State Circuits 32(11): 1676-1681.

135

Guyot, A., Herreros, Y. and Muller, J. (1989). JANUS, an on-line multiplier/divider for ma-

nipulating large numbers, Proceedings of the 9" Symposium on Computer Arithmetic,
IEEE, Santa Monica, CA, pp. 106-111.

Guyot, A. and Kusumaputri, Y. (1991). OCAPI: a prototype for high precision arithmetic,
in A. Halaas and P. B. D. (Eds) (eds), Proceedings of the International Conference on
Very Large Scale Integration (IFIP) 1991, TC 10/WG 10.5, Elsevier Science Publishers
B. V. (North-Holland), pp. 11-18.

Hagihara, Y., Inui, S., Yoshikawa, A., Nakazato, S., Iriki, S., Ikeda, R., Shibue, Y., Inaba,
T., Kagamihara, M. and Yamashina, M. (1998). 2.7ns 0.25um CMOS 54 x 54b multi-
pliegglg_r%%eedings of the 1998 IEEE 45th International Solid-State Circuits Conference,
pp- 7.

Hwa.ng,sK. (1979). Computer arithmetic - principles, architecture and design, John Wiley
ons.

Irwin, M. (1977). An arithmetic unit for on-line computation, Ph.D. thesis, Department
of Computer Science, University of Illinois, Champaign-Urbana, IL 61801. Technical
Report UTUCDCS-R-77-873.

Irwin, M. and Owens, R. (1987). Digit-pipelined arithmetic as illustrated by the paste-up
system: a tutorial, Computer 20(4): 61-73.

Irwin, M. and Owens, R. (1988). A comparison of two digit serial VLSI adders, Proceedings
of the IEEE Conference on Computer Design 1988, pp. 227-229.

Kanie, Y., Kubota, Y., Toyoyama, S., Iwase, Y. and Tsuchimoto, S. (1994). 4-2 compressor
with complementary pass-transistor logic, IEICE Transactions on Electronics E77-
C(4): 647-649.

Kornerup, P. (1994). Digit-set conversions: generalizations and applications, JEEE Trans-
actions on Computers 43(5): 622-629.

Lapointe, M., Huynh, H. and Fortier, P. (1993). Systematic design of pipelined recursive
filters, IEEE Transactions on Computers 42(4): 413-426.

Larsson, P. and Nicol-Chris, J. (1996). Transition reduction in carry-save adder trees, Pro-

ceedings of the 1996 International Symposium on Low Power Electronics and Design,
pp. 85-88.

Law, C., Rofail, S. and Yeo, K. (1999). Low-power circuit implementation for partial-
product addition using pass-transistor logic, IEE Proc.-Circuits Devices Syst., Vol.
146, IEE, pp. 124-129. No. 3.

Lin, H. and Sips, H. (1990). On-line CORDIC algorithms, IEEE Transactions on Computers
39(8): 1038-1052.

McNally, O., McCanny, J. and Woods, R. (1990). Optimised bit-level architectures for [IR
filtering, Proceedings of the IEEE Conference on Computer Design 1990, pp. 302-306.

McQuillan, S. and McCanny, J. (1995). A systematic methodology for the design of high
performance recursive digital filters, IEEE Transactions on Computers 44(8): 971-982.

Muller, J. (1994). Some characteristics of functions computable in on-line arithmetic, JEEE
Transactions on Computers 43(6): 752-755.

Natter, W. and Nowrouzian, B. (1999). Digit-serial digit-online addition, Proceedings of

the Canadian Conference on Electrical and Computer Engineering 1999 (CCECE’99),
Pp- 583-588.

136

Natter, W. and Nowrouzian, B. (2000a.2. A novel algorithm for signed-digit online multiply-
accumulate operation and its purely signed-digit hardware implementation, Proceedings
of the International Symposium on Circuits and Systems (ISCAS) 2000.

Natter, W. and Nowrouzian, B. (2000b). Signed-Digit Online MAC Operation and its
FPGA Hardware Implementation, ISTAC 2000.

Owens, R. (1980). Digit-online algorithms for pipeline architectures, Phd thesis, Depart-
ment of Computer Science, Pennsylvania State University, University Park, PA 16802.
Technical Report CS-80-21.

Owens, R. (1981). Compound algorithms for digit online arithmetic, Proceedings of the 5t
Symposium on Computer Arithmetic, IEEE, University of Michigan, Ann Arbor, MI,
pp. 64-71.

Owens, R. (1983). Techniques to reduce the inherent limitations of fully digit online arith-
metic, IEEE Transactions on Computers C-32(4): 406-411.

Parhami, B. (1988). Carry-free addition of recoded binary signed-digit numbers, IEEE
Transactions on Computers 37(11): 1470-1476.

Parhami, B. (1990). Generalized signed-digit number systems: a unifying framework for
redundant number representations, IEEE Transactions on Computers 39(1): 89-98.

Parhi, K. (1991). A systematic approach for design of digit-serial signal processing archi-
tectures, IEEE Transactions on Circuits and Systems 38(4): 358-375.

Perlee, C. and Casasent, D. (1989). Optical systems for digit-serial computation, Applied
Optics 28(3): 611-626.

Phatak, D. and Koren, L. (1994). Hybrid signed-digit number systems: a unified framework
for redundant number representations with bounded carry propagation chains, JEEE
Transactions on Computers 43(8): 880-891.

Pillai, R., Al-Khalili, D. and Al-Khalili, A. (1996). Energy delay analysis of partial prod-
uct reduction methods for parallel multiplier implementation, Proceedings of the 1996
International Symposium on Low Power Electronics and Design, pp. 201-204.

Privat, G. (1990). A novel class of serial-parallel redundant signed-digit multipliers, 1990
IEEE International Symposium on Circuits and Systems, Vol. 3, IEEE, New Orleans,
LA, pp. 2116-2119.

Rao, V. (1996). Redundant number multiply-accumulate-modularized digital filters, M.sc.
thesis, The University of Calgary.

arithmetic architecture employing mixed SB/TC number arithmetic, Canadian Journal
of Electrical and Computer Engineering 22(4): 169-175.

Rao, V. and Nowrouzian, B. (1999). 5-digit overlapped-scanning technique for the modified
Iﬁra%ixA recodin, ofssigned-bina.ry numbers, IEE Proc.-Circuits Devices Syst., Vol. 146,
» pp- 1-4. No. 6.

Santoro, M., Bewick, G. and Horowitz, M. (1989). Rounding algorithms for IEEE multipli-

ers, Proceedings of the 9t Symposium on Computer Arithmetic, IEEE, Santa Monica,
CA, pp. 176-183.

Satyanarayana, J. and Nowrouzian, B. (1996). Design and FPGA implementation of
gi(gsi)t-seria.l (x)nodiﬁed booth multipliers, Journal of Circuits, Systems and Computers
: 485-501.

Rao, V. and Nowrouzian, B. (1997). A novel hifh-speed bit-parallel multiply-accumulate

137

Shim, D. and Kim, W. (1997). Design of 16 x 16 wave pipelined multiplier using fan-in
equalization technique, Proceedings of the 1997 40th Midwest Symposium on Circuits
and Systems, Vol. 1, Sacramento, CA, USA, pp. 336-339.

Sips, H. and Lin, H. (1990). A new model for on-line arithmetic with an application to the
reciprocal calculation, Journal of Parallel and Distributed Computing 8: 218-230.

Srinivas, H. and Parhi, K. (1983). Computer arithmetic architectures with redundant num-
ber systems, IEEE Transactions on Computers C-32(4): 406—411.

Thornton, M. (1997). Signed binary addition circuitry with inherent even parity outputs,
IEEE Transactions on Computers 46(7): 811-816.

Timmermann, D. and Hosticka, B. (1993). Overflow effects in redundant binary number
systems, Electronics Letters 29(5): 440-441.

Trivedi, K. and Ercegovac, M. (1977). On-line algorithms for division and multiplication,
IEEE Transactions on Computers C-26(7): 681-687.

Wallace, C. (1964). A suggestion for a fast multiplier, JEEE Transactions on Computers
EC-14: 14-17.

Woods, R., McNally, O. and McQuillan, S. (1993). Saturation circuitry for redundant
number based IR filters, Electronics Letters 29(5): 440-441.

138

Appendix A

Systematic Enumeration of
Redundant Binary Addition
Schemes

This appendix provides the proofs of the various theorems relating to redundant binary ad-
dition schemes stated in this thesis. The goal of these theorems is to introduce a framework
to study similar addition schemes which can be mapped to the same hardware implemen-
tations. Section A.1 determines the cardinalities of the sets of the variables involved in a
redundant binary addition scheme. Then, Section A.2 determines the values of the elements
of these sets in a systematic manner. Next, Section A.3 provides the proofs of the theorem
characterizing the proposed addition schemes. Finally, Section A.4 provides the proofs of
the theorem characterizing the proposed addition schemes.

A.1 Determination of Set Cardinalities

This section is concerned with a determination of all the possibilities for the cardinalities
of the digit sets S;,, Sa, Sc;, and Sg. The cardinalities can be determined by using the
following lemma.

Lemma 30 Let S, = {a1,... ,am} and Sp = {b1,... ,bn} represents sets such that
Vi€ [l,m—1], a; < @i+1; and Vi € [1,n — 1], b; < bi41. (A.1)
Then,

m+n-1<

Sa + sb| <mxn. (A.2)
Proof. The proof consists of two parts.
o Using the relationships between a;’s and b;’s, one obtains

a+h <...<a1+bp<a2+by <...<am+by. (A.3)

The number of different combinations is m +n — 1, therefore S, + Sy contains at least
m +n — 1 elements.

e Each of the m elements of S, can be added to at most n elements of S,. Therefore,
the maximum number of elements in S; + S; is m x n.

139

These two points establish the proof.
In order for Eqn. 2.63 to be satisfied, one must impose

2<18al, 2 <18, and (Sel, 1S) # (2,2).

Otherwise, by using Lemma 30, one can show that

Sei + Sa| <4<

Sat S,
contradicting Eqn. 2.63. Similarly, Eqn. 2.65 imposes that
S8l <2, and [Sc,| <

Otherwise, Lemma 30 imposes the constraint

3< |sg+2sc, ,

contradicting of Eqn. 2.65, because |S,| =
Together, Eqn. A.4 and Lemma 30 i 1mpose the constraint

3< |8, +28,,|.

If |Sg| = 1, then

|5+ Sex

=|Sc,| and |S,| <2,
contradicting Eqn. 2.64. Similarly, if |S,,| = 1, then

|5 + Sca| = 1551 and. IS5l <2,

also contradicting Eqn. 2.64. Therefore, one can conclude that
|Sl = 2 and |S¢;| =
Finally, let us prove that
(ISeil s Sal) = (2,3) or (3,2).

If Eqn. A.12 is not satisfied, then Eqn. A.4 and Lemma 30 impose the constraint

4< |s,, +28.,|,

whereas Eqn. A.11 fixes

|2 + 85| < 4,

(A4)

(A.5)

(A.6)

(A7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

thus contra.dxctm% Eqn. 2.64. If Eqn. A.12 is satisfied, then Eqns. 2.63-2.65 are satisfied.
the possible cases of set cardinalities is given in Table 2.1, Chapter 2.

140

A.2 Systematic Determination of the Sets S, Sa, S,, and S

The values of the elements of Sg and S, are determined first, followed by the determination
of the values of the elements of S, and S, .
In accordance with Table 2.1, let us denote

Sea = {c21,¢22} and Sp = {61, B2}, (A.15)

where one assumes c3; < c29, and where 8; < (>, which can be obtained by swapping the
elements. Let us further denote Acy =c2 —¢21 >0and A =5 - 6 >

The following must hold for the migration from the right-hand side of Eqn 2.61 to its
left-hand side to be possible:

Sp +28S., C 4S, (A.16)
implying
{B1 + 2c21, B1 + 2¢22, B2 + 2¢21, B2 + 2¢22} C {4y — 4,47, 47 +4}. (A.17)
Since
Bi + 2¢21 < By + 2c22 < B2 + 222, (A.18)
and since
B1 + 2¢21 < Ba + 2c21 < B2 + 222, (A.19)

one can identify 1 + 2c21 and B2 + 2¢2 as the minimum and maximum element values in
I% + 2S,. The value B + 2cy must be equal to B> + 2c;, otherwise Sg + 25, ¢ 4S;.

efore,
Br+2c =4y—-4 (A.20)
Br +2¢o0 =4y (A.21)
B2 + 221 = 4y (A.22)
B2 + 220 = 4y + 4. (A.23)

By simple manipulations, one can find

AB =4 and Ac; =2, (A.24)

and
Pr=4y—2c —4 (A.25)
B2 =4y — 2. (A.26)

Therefore, one concludes that

Se; = {ca1,621 +2} (A.27)

and
Sp = {4y —4 — 2c21, 4y — 2e1 }- (A.28)

The digit sets S, and Sg are determined as functions of the parameter c;;. In the
following, the cardinalities of the sets S, and S, are taken into account. Two situations
can occur, namely |S,,| = 3 and |S,| =2, or [S;,| =2 and |S,| = 3.

141

A.2.1 Case 1l: |S,|=3and |S,| =2
Similar to the determination of S, and S, let us denote the elements of S, and S, by
Se, = {e11,¢12, 13} and Sp = {ay, a2}, (A.29)
where ¢;; < ¢12 < €13 and @) < ap. Also, let us define
Aa =ay—a; >0

Acio=c12—0¢11 >0 (A.30)
Aciz=cj3—c11 >0.
By combining these notations successively with Eqns. 2.64 and 2.63, one can exhaustively

determine the values of the elements of S;, and S,.
Eqn. 2.64 is satisfied when

{1 +2¢c11,. .. ,a2 +2¢13} C S, + Sg, (A.31)
where
S, +Sg={4v—-4-ca,4v-2—cn, 4y —coa, 4y +2 —ear }. (A.32)
By identification,
a1 +2c) =4y—cy —4 (A.33)
az +2c;3 =4y —co1 +2. (A.34)
Moreover, one can observe that
{a1 + 2c12, 01 + 213, a2 + 2¢11, 2 + 2¢12} C {4y — 2 — ca1, 4y — ca1}- (A.35)
Since a; + 2¢12 < a1 + 2¢13 and a2 + 2¢1; < a9 + 2¢12,
ay+2c2 =47 —co ~2 (A.36)
a1+ 2c3=4y—-cn (A.37)
as+2c1=4y—co1 —2 . (A.38)
a2 +2c12=4y—-cn (A.39)
is the only set of equations allowing Eqn. A.35 to be satisfied. Therefore, one can calculate
Aa=2, Acja =1, and Acyj3 =2 (A.40)
The sets are now given by
Se, = {en,en1 +1,e11 + 2} (A.41)
Sa = {4y —c21 —2c11 — 4,4y —c21 — 2¢c11 — 2}. (A.42)

Now, one can apply the constraint given by Eqn. 2.63 to obtain

r 3 4)
2y-2, dy—cn—cn—4,
27-1, 4y—c —cn1 -3,
{2y, VYl ty—en-—en-2). (A.43)
2y +1, dy—co1 —cn -1,
| 2y+2) L4’)!-¢g1—cn)

142

Therefore,
c1+en=2y-2. (A.44)

If ¢;; and cp; are considered as two dimensions of a three-dimensional space, and if v is
cogﬁidered as a parameter, then this is the equation of a plane, and one can find a real A
such that

ecn=7+4A-1 (A.45)
cr=7-4-1
As a consequence, one can write
Se={vy-A-1,y-A+1}and S, ={y+A-1,7+A,7v+A+1}, (A.46)
as shown in Case 1 of Table 2.2 (page 40).
A.2.2 Case 2: |S,|=2and |S,|=3
Once again, let us define
Se, = {en, 012} (A.47)
Sa = {al’ g, 03}, (A'48)
where ¢;1 < ¢12 and &) < @z < a3. Moreover, let us define
Aag=ar -1 >0 (A.49)
Aaz=a3—-a; >0 (A.50)
Acy =ci2—c >0. (A.51)
By exchanging the roles of a and ¢; in the above proof, one can obtain
ay+2c;=4y—cy —4 (A.52)
a;+2c1p=47—-cy —2 (A.53)
az+2c;;=47y—c¢c —2 (A.54)
ag +2c12 =47-c21 (A.55)
az+2c =4y —c (A.56)
a3+ 2cj2 = 4y —c21 + 2, (A.57)
which allows Eqn. 2.64 to be satisfied. By some manipulations, one obtains
Aas; =2, Aaz =4, and Ac; = 1. (A.58)
The sets can now be written as
Se, = {c11,e11 + 1} and S, = {4y — c21 — 2¢11 — 4,4y — c21 — 2¢11 — 2} (A.59)

%imilar to the previous demonstration, one can apply the constraint given by Eqn. 2.63
to obtain

Sa 'i‘ Sb C SQ 'i" Scl- (A.GO)

143

Therefore,

1 \ 4y —co —c11 -4,
2y —2,
4y —co1 —c11 — 3,
2y-1, 4y—cy —cyyp —2
¢ 2,) C 4 ATETA A (A.61)
dy—ca—-c—1,
27 +1, ty—c c
-1 — e,
27 +2
\ / | &y—ca—cenn+1

This problem has two solutions. Either

co1 + 011 =27 -2, (A.62)
or

cor+cp=2y-1. (A.63)
Eqn. A.62 is equivalent to choosing A € R such that

{c“=7+A"1 , (A.64)
enn=7—-4A-1
and Eqn. A.63 is equivalent to choosing A € R such that
{ a=v+d (A.65)
cp=y-A-1
In the case of Eqn. A.62, one can write
Se={y-A-1,vy—-A+1,y—A+3}and S, ={y+A~-1,v+ 4}, (A.66)
as shown in Case 2 of Table 2.2 (page 40). In the case of Eqn. A.62, one can write
Se={y-A-3,y-A-1,y—-A+1l}and S, ={vy+A,v+A+1}, (A.67)

as shown in Case 3 of Table 2.2 (page 40). This completes the enumeration of redundant
binary addition schemes, whose parameters are v € {-1,0,1} and A€ R

A.3 Characterization of Redundant Binary Number Addi-
tion Schemes

This section is concerned with a proof of Theorem 15, characterizing redundant binary
addition schemes, and with the proof of for the equivalence of these schemes.

Let us recall that Theorem 15 states that all redundant binary addition schemes are
characterized by 7, which determines the digit-set of the representation, and by A, which
determines the sets of the weight and transfer digits.

Proof. Most of the proof has been given previously. The only sets Sg and S, that can
be defined for a given A are

Sea = {ca1, 21 +2} (A.68)
Sp = {47 —4 — 2cp1,47 — 2c21} (A.69)

144

where co) =y - A ~ 1, ie.

Se={y-A-17y-A+1} (A.70)
Sp={27+2A - 2,27y +2A + 2} (A.71)

because the number ¢;; was always given the same value in the previous demonstrations.
o If |Sq| =2 and |S,,| = 3, then one can only find

Se, = {a,eu1 + 1,e11 + 2} (A.72)
Se = {4y —ca —2cn1 - 4,4y —cnn — 2c11 — 2} (A.73)

where ¢3; =v— A — 1, and where ¢;; = v+ A — 1. Hence,
S, =S +{A} (A.74)
Se={y—Ly+1}+{-A} (A.75)

o If |Sa| = 3 and [S,,| = 2, then one can only find

Se, = {ein,en +1} (A.76)
Se = {47y —ca1 — 2c11 — 4,4y —ca1 — 2c11 - 2} (A.77)
where ¢2; = v — A -1, and where either ¢;; =vy+ A -1 or ¢;; =+ A. Hence, one
either has
Se = {7y - 1,7} +{A} (A.78)
Se={v-Lv+1,7+3} +{-A} (A.79)
or has
Se = {v,7+1} +{A} (A.80)
Se={y-3,v-17v+1}+{-A} (A.81)
This completes the proof.]

A.4 Equivalence of Redundant Binary Number Addition Schemes

This section is concerned with a proof of Theorem 18, stating that certain addition schemes

are equivalent, i.e. two addition schemes may result in the same hardware implementation.
First, one introduces functions that transform an addition scheme into another. Second,

an equivalence relationship for addition schemes is defined. Finally, Theorem 18 is proven

by demonstrating that there exist only two classes of equivalence for the above relationship.
Let us introduce addition scheme transformations.

Lemma 31 Consider the redundant binary number addition schemes A with parameters
(7,A) and A’ with parameters (v, A'). If these addition schemes satisfy

Ve € {e1,}1S:] =151, (A.82)

145

then there ezist an € belonging to {1,1} and transformations

Te,: T €Sy (elz—(y+A)+¥ +A) S,
T, : €S, (e(z—(y—-A)+7 -4A) €S,
Ta: 2€ESa—(e(z-(vy—-A)+¥Y -AYe S,
Tg: z€ S (e(z-2(v+ Q) +2(v +4')) € S5

and
Vd € {a,b,s}, Ty: z € Sy (e(z —7) +7') € S}

3uch that TC[(SC],) = Sél’ Tc2(Sc2) - S&, TQ(SQ) = Sa, Tﬂ(Sﬁ) = S’, Ta(Sa) = S;,
To(Sp) = S, and Te(S,) = S;,. Moreover, one can define the inverse transformations

Tol:zeSyr(e(z— (Y +A))+v+A) €S,
Tl:z€ S, (e(z— (v - 4A))+v-A) €S,
T;l:zeSam(e(z— (Y -A)+v-A)e S,
Tyl:zeSpmr(e(z -2 +A") +2(v+ A)) € S

and

Vd € {a,b,s}, T;!:z € Sy (e(z —7) +7) € S}
such that T;'(St,) = Seys T2 (St,) = Sezs Ta H(Sa) = Sa, Tgl(S:,) = Sg, T, 1(S,) = S,
T, 1(S}) = Sb, and T;1(S) = S,.

The proof of this lemma relies on the following two axioms.
Axiom 32 If one defines S' = S + {n}, then S = S' + {n'}, where n' = —n.
Axiom 33 If one defines S' =nS, then S =n'S', where n' = 1.

Proof. The existence of the transformation from the digit set S = {y—1,v,7+ 1} to
the digit set ' = {¥/ — 1,7',7 + 1} is obtained immediately. In fact, if one subtracts v
from S, then one obtains Sy = {1,0,1} (Axiom 32). Then, from Axiom 33,

Ve € {1,1}, €So = So (A.83)

Hence, (S +{—7}) + {7} = &’ (Axiom 32). By inverting the roles of S and S’, one obtains
the inverse transformation.

Let us now consider each digit-set cardinality case separately to prove the existence of
the transformations for ¢, a, ¢, and 8 and of their respective inverses. Axioms 32 and 33
will be used throughout this demonstration, but will not be cited.

e Situation |S;,| = 3, |Sa] = 2. Since there is only one addition scheme with such
parameters, one can write
S, ={1,0,1} + {y + A}
Se = {1,1} +{y-4}
Se, = {i11} ';{7—A}
Sg = 2{1,1} +2{y + A}

(A.84)

146

Hence, for all € in {1,1},

e(Scl'i' {-y-4}p = {I, 0,1}
e(Sat+ {—7+4}) = {1,1}

. - (A.85)
€(S,+ {-vy+A} = (L1}
e(Sp+ 2{—y — A} = 2{1,1}
By adding v/ + A’ or 7 — A’ appropriately, one can identify the results
(o +A") +€(Se, +{—7-A}) =5,
— AN 4 1 = o

(v - &) +e(S, +{—7+A}) =85,
(¥ +A") +€(Sg +2{—v-A})= S;,
The last equality was obtained by identification of the results. Thus, one found a

transformation from A to A’, and the reverse transformation exists and can be found
by exchanging the roles of A and A'.

e Situation |S,,| = 2, [Sa| = 3. There are two possible addition schemes A (and two A’,
respectively), namely,

Scl = {Ia 0} + {7 + A}

Sa ={ivl$3}'i'{7—A}

Scz = {iw 1} + {"Y - A} (A87)
Ss = 2{1,1} +2{y + A},

or
Scl = {Oa 1} +{‘7 + A}

R T (A.88)

Sg = 2{1,1} +2{y + A}.

When A and A’ are both in case 2 of Table 2.2, or both in case 3, one must choose
€ = 1. When A and A’ are in different cases (e.g. A is in case 2 and A’ is in case
3), one must choose ¢ = 1. The transformations are obtained in the same way as
in the previous situation, and the existence of the reverse transformation is obtained
by exchanging the roles of A and A’. The existence of the transformations and their
inverses is thus proven.

This completes the proof.]

Let us now introduce an equivalence rela.tionship for addition schemes. Consider the re-
dundant binary numbers addition schemes A and A’, having parameters (y, A), and (v, 4’),
respectively. If these addition schemes satisfy Eqn. A.82, then A and A’ are said to be re-
lated through R. In this way, Lemma 31 assures the existence of functions assuring that
the sets of A can be transformed into the sets of A’, and those of A’ into those of A.

In order to class the space of addition schemes into two groups, one needs to prove that
R is an equivalence relationship.

Lemma 34 R is an equivalence relationship.

147

Proof. A relationship is an equivalence relationship when it is reflexive, symmetric,
and transitive.

e The relationship R is reflexive. Given 4’ = «, Theorem 15 proves that there exist
e=1and A’ = A, such that AR A.

o The relationship R is symmetric, because the inverse transformations exist.
o The relationship R is transitive: if AR A’, and if A' R A", then there exists (e, €') in
{1,1}?, and there exists (A, A’,A") in 23 such that
To(z)= e(z-(y+A)+7 +4
To(z) = e(z—-(y—-4))++ -4

A.89
T@)= ea-(r-A)+7 -4 (4-59)
Ts(z) =€z —2(y + A)) +2(v + A")
and such that
T,(z)= z-(7+AN)+7"+4"
Tyfz) = elo=(r - A +7" - A" (A50
T,(z)= €z-(¥-AN)+y"-4"
5(z) =€(z —2(v + A") +2(v" + A")
One can show that
W € {c1,a,¢2,8}, 3T, =Ty 0T, (A.91)
Indeed, there exists €’ = ¢’ x € in {I,1}? and A” in Z such that
To(z)=€de(z—(v+A) + € +A'-(F +A))+v"+4"
Toe) = delo= (=) + Y ~A-(Y -4y =N
To(z)=€e(z—(v=A)) + (¥ -A'-(7 -4+ -4"
Tg(z) =€'e(z — 2(y + 4)) +2¢((v + A) - 2(' + A")) +2(y" + A")
ie.
T (z) = de(z — (v + A)) + (' +4")
Ti(e) = éelz - (v - A)) + (' = &") (A93)

T (z) = ée(z — (y— A)) + (" - A")
Tj(z) =de(z - 2(7 + A)) +2(v" + A")

ie. AR A",

This completes the proof.]

Now that one has defined an equivalence relationship for addition schemes, one can
find all the corresponding equivalence classes. Theorem 15 provided the background to
prove Lemma 31. The lemma established a relationship between A and A’ as soon as they
were in the same situation listed in Table 2.1. Therefore, (|S.,|,|Sal) = (3,2) implies
ARA', and (|S¢,|,|Sal) = (2,3) also implies ARA’. Moreover, as R is an equivalence
relationship on the set of addition schemes. Since every addition scheme in that set must
verify (|Se; |, |Sal) = (3,2) or (1S, |,|Sal) = (2,3), then one can separate the set of addition

148

schemes into two disjoint subsets C3z and Cog, respectively, and C32 U C23 is equal to the
whole set of addition schemes itself, thus establishing that there are only two equivalence
classes for R.

In the following, a proof is given for Theorem 18.

Proof. Assuming a hardware implementation of A's architecture were found, then
three sub-circuits are defined corresponding to the mappings S;, Sz, and S3. Using the
transformations between A and A’ defined earlier, one can obtain a circuit for the cells S7,

%, and S}, i.e. derive a circuit for A'. Define the mapping 5] as
S} : (aar,bar) € Sa X Sy (A anvcar) € Se, % A
such that
S1(aarbar) = (¢ aan)
= (Tc1 (cll.A)v Ta(ca))
where (¢ 4,c4) = S51(T; Yaa) T, }(bar)). Then, define the mapping S5 as

S5 : (1,4, 0ar) € Sty X St —+ (ch a1, Bar) € Sp, X Sp
such that
Sy(er,ars ear) = (ch a0 Bar)
= (Tea(ch,4): T5(Ba))
where (¢ 4,84) = S2(T;'(c1,4), T3} (@ar))- Next, define the mapping S as

S3: (c2,a7,Bar) € S:_.z X S'ﬁ > (4s4:) € S,
such that
Si(c2,ar, Bar) = dsar
= 4T,(s4)
where 4s4 = S3(T;;'(c2,4'), T3 ' (Ba))- Given the above definitions, the mappings 51, 53,
and Sj are A”’s mappings, as proven below.

¢ The inputs and outputs of the defined architecture belon%dto the expected sets of A’
by construction and by definition of the relationship R. Moreover, the intermediate
sets are of the expected size.

e One has now to prove that each mapping performs the expected function:

S}. One can write

C'I'A: +ap =T (¢} 4) + Talaa)
=€l o~ (T +A)+7 +A +e(@a—(v— Q)+ - &'
=e(cjataa—27)+27
=e(T7 (aw) + Ty Hbar) — 27) + 27
=e(elan —7) +71+elbar =7)+7-27) +27
=aa + by

because € € {I,1} (hence €2 = 1), proving that S performs the expected opera-
tion.

149

S5. One can write

S ar + Bar =Tey (S 4) + Tp(Ba)
=e(ga—(1—A)) +7 - A" +e(Ba - 2(y + 4)) +2(7 + A")
=e(ga+Ba—37—A)+3Y + A
=e (2T (era) + Tol(aw) — 37—) + 37 + &'
=2¢ (e(cr,ar — (7 +A)) + (v + 4))
+e(e(fap — (Y —A))+7-A -3y -A)+ 3 + A
=2c,4 +agq

because ¢ € {1, 1}, proving that S; performs the expected operation.
S3. One can write

454 = 4T,(s4)
=4 (é (i[2Tg;1(CQ'AI) +TEl(ﬂAI)] - ‘Y) +’Y’)
=¢[2e(co.ar — [— A']) +2(v - A) + €(Bar — 2]y + A']) + 2(v + A)] —dey + 4

= 2e2cp 4 + 2¢(y — A) + €2Par +2¢(y + A) — dey
= 2c2,4 + Bar

because ¢ € {1,1}, proving that Sj performs the expected operation.

Therefore, simple transformations can be used to transform an architecture for A into an
architecture for A’. If one chooses the same code for a4 and T,(a4), and repeat the same
procedure for all the variables and their corresponding transformations, then the circuit that
performs S is exactly the same as the one found for Sy, because the same input codes must
lead to the same output codes. This remark can also be applied to S5 and S3. Therefore, the
same circuit performs addition scheme A and addition scheme A’, establishing the proof. m

A.5 Conclusion

The developments of the previous sections have established several theorems. The resulting
n;ﬁematical addition scheme framework allows one to further explore addition scheme
similarities.

150

