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ABSTRACT

The thermal elastohydrodynamic problem of contacts sub-
jected to rolling and sliding is investigated. The governing con-
tinuity and momentum equations have been combined to yield a modified
form of the Reynolds equation. The viscosity and density of the
lubricant are assumed functions of temperature and pressure. The
coupled equations of elasticity, Reynolds and energy equations for
the fluid and the energy equations of the solids are solved iteratively
v

s  ranging from

for values of the non-dimensional speed parameter
10~12 ¢0 10710 and for slip ratios ranging between 0 to 0.25. The
numerical scheme solves the 'isothermal' problem first and the results
are used as an input to the thermal problem. Comparison with other
theoretical solutions and experimental results show that the results

of film thickness obtained in the present work correlate more
favourably with experimental work. The temperature distribution in

the lubricant, the surface temperature of solids and the tractive
forces are also given, The agreement between the calculated and the
experimental values on drag force available in literature is moderately

good.
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CHAPTER 1
INTRODUCTION AND REVIEW OF LITERATURE

1.1 Statement of the Elastohydrodynamic Problem

Elastohydrodynamic lubrication may be defined as the study of
those situations where the elastic deformation of the bounding solids
has a very significant role in the hydrodynamic lubrication. In most
machines forces are transmitted from one component to another by means
of large effective bearing areas. In several applications, as in gears,
cams and roller bearings, the contact is limited to a point or line.
The present study pertains to such situations and the geometry envisaged |
is that of two cylinders in contact along a generator.

In order to fully understand the problem it is necessary to
consider the features of such contacts. The size of the Hertzian [1]
zone of contact between two elastic solids is representative of the
region of effective pressure generation in elastohydrodynamic contacts.
This is of order 10~2 inches. The usual surface speeds are of order
102 to 103 inches per second, The maximum contact pressures are of
order 10! to 102 tons per square inch. Film thicknesses are of order
1075 inches,

The distinguishing feature of elutohydrodﬁmic lubrication
is the elastic deformation of the solids. This is significant compared
to the lubricant film thickness. The stress distribution detemmines
the local shape of the elastic solids. This in turn determines the

shape of the lubricant film. Thus, the isothermal elastohydrodynamic
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problem calls for the simultaneous solution of the continuity and momen-
tum equations for the fluid and elasticity equations for the solid.

The very high contact pressures have a marked influence on the
properties of the lubricant, In particular, viscosity of the lubricant
increases enormously at high pressures and the compressibility of the
lubricant 1s also significant and cannot be ignored.

When the effect of temperature change is considered, the
problem becomes extremely difficult and very little theoretical work
has been done. If the opposing surfaces have nearly equal velocities,
the problem can be idealised to be an isothermal problem. This has been
the usual approach, If the velocities of the mating surfaces are widely
different, viscous dissipation becomes important. Further, temperature
changes have a significant influence on viscosity. Thus, the basic
differential equations for a complete study of elastohydrodynamic lubri-
cation are the continuity equation, the momentum equations, the energy
equations for the fluid, the energy and elasticity equations for the
solid and the equations of state for the lubricant. These equations
are interdependent through the physical properties of the lubricant and
solid, They are extremely complicated and several simplifying assump-
tions have to be made before a solution can be obtained.

Experimental work has rev;aled the effect of temperature upon
film thickness to be little, One of the most important conclusions of
elastohydrodynamic analysis and experiment up to date is that ;he
viscosity of the lubricant in the vicinity of the inlet to the contact
controls the film thickness within the contact. The inlet viscosity of‘

the lubricant is determined mainly by the temperature of the surrounding




solids. This temperature is not sensitive to the heat generated in the
fluid within the contact. Thus, film thickness can be calculated
accurately by neglecting energy equations [2]. Then the effects of
temperature can be analysed.

In the present study two rotating elastic cylinders with a
thin lubricant film inbetween are sﬁbjected to a heavy load. Con-~
sidering viscosity and density of the fluid as functions of temperature
and pressure, and assuming the elastic properties of the solids in con-
tact, the film thickness, the pressure and temperature distribution
within the lubricant film and the temperature distribution in the solids
are computed for different rolling and sliding velocities. The fric-

tional forces are also calculated under these conditions.

1.2 Review of Relevant Literature

The initial interest in elastohydrodynamic lubrication was
generated by the study of lubrication in gears. Martin [3] made a
theoretical approach to the problem of lubrication of rigid cylinders.

For an isoviscous incompressible lubricant he derived an expression of

the form
h Uy + Uy U
= ——— -—S
]f 2.45 Ug W 4.9 W e e e 1.1

Substituting representative values for viscosity, load and speed, it is
found that the thicknesses are too small as compared to actual thick-
nesses.

Peppler [4] considered the elastic distortion problem
assuming an isoviscous lubricant. He came to the conclusion that maxi-

mum oil pressure cannot exceed the maximum Hertzian pressures. This




conclusion is not true for high speeds. Meldahl [5] examined the effect
of high pressure on film shape and pressure profile for an isoviscous
lubricant. He derived expressions for the elastic displacement of a
semi-infinite elastic solid subjected to an arbitrary surface loading.
He tried to solve the elastic and the hydrodynamic equations together,
using iterative methods. Convergence was poor and considerable compu~
tational effort was required for a single solution. Nevertheless, it
was a move in the right direction.

Gatcombe [6] took into account the effect of pressure on vis-
cosity. He used an exponential relation and solved the Reynolds
equation. His calculated film thicknesses were higher than previous
calculations. Hersey and Lowdenslager [7] employed a parabolic vis-
cosity relationship and arrived at results similar to that of Gatcombe
[6]. Cameron [8] and McEwen [9] employed a boundary condition assuming
cavitational effects and improved upon the previous workers' approach.
Block [10] gave a mathematical reasening proving the existence of a
minimum film thickness for lubricants obeying an exponmential pressure
viscosity law. Thus far it has been shown that elastic distortion and
viscosity pressure effects could separately account for modest improve-
ments in minimum £ilm thickness predictions.

Grubin and Vinogradova [11] examined the combined effect of
both elastic distortion and viscosity pressure effects. Grubin made a
aimplifying assumption that the solids adopt the form of dry contact.
Pressure at entry to the high pressure zone was agsumed very high,
Under these agsumptions Grubin calculated the separation of the solids

within the Hertzian contact zone. This approach eliminated the need
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of solving the elastic equations since the Hertzian form of dry contact
was accepted. This assumption is particularly valid at high loads,
where the hydrodynamic film thickness in the high pressure region is a
small proportion of the local elastic displacement. The important con-
tribution of this method was that an approximate formula for film
thickness for highly loaded contacts could be derived whichwas 2 orders
of magnitude greater than Martin's [3] expression. Grubin's [11] work
further postulated the existence of a pressure spike at the outlet end
of the Hertzian region.

The search for accurate formulae for pressure distribution
and film shape has proved very interesting, Weber and Saalfeld [12]
obtained a closed form solution to the elastohydrodynamic problem for
constant and pressure dependent viscosity fluids. Their solutions are
restricted to very small deformations. Their results indicate the
change of film shape with load. Dowson and Higginson [13] developed an
interesting numerical method to solve the isothermal elastohydrodynamic
problem. They found the film shape corresponding to an initially
assumed pressure distribution by solving the Reynolds equation. For
the same pressure distribution the elastic film shape was determined by
solving the elastic equation. The elastic film shape and the hydro-
dynamic film shapes were compared. If there was sufficiently close
agreement, the pressure and film profiles were accepted. If not, the
pressure curve was modified and the procedure repeated till there was
acceptable agreement. The deficiency in the method was that the adjust-
ment of the pressure curve had to be done manually and required

experience and judgement. Further, the results did not reveal any



pressure spikes, which was due to the very low velocities for which the
investigations were carried out. In a later paper Dowson and Higginson
[14] investigated the effect of the material properties on the iso-
thermal elastohydrodynamic situation. They found that an outlet
pressure peak-existed for realistic values of speeds and loads. The
magnitude of the pressure peak varied very slightly with load but
markedly with speed and material properties. The centre-line film
thickness varied hardly with the load and was significantly related to
the product of speed and inlet viscosity. Archard, Gair and Hirst [15]
developed an iterative procedure for the isothermal elastohydrodynamic
problem. The lubricant was assumed to be incompressible. Its viscosity
was assumed to be dependént on pressure only., They divided the pressure
region into four regions and employed the inverse hydrodynamic procedure.
They verified the earlier predictions in a number of cases. The film
thicknesses they calculated are uniformly higher thamn those of other
workers and available experimental values, The method they developed
is valuable in that the whole calculations can be carried out in a com-
puter without the need for human intervention which was necessary in
the methods adopted by Dowson et al. Archard and Kirk [16] examined
the lubrication of point contacts and came to the conclusion that at
heavy loads elastohydrodynamic theory had to be applied to achieve
acceptable results, Dowson, Higginson and Whitaker [17] investig.ted
the effects of speed on film thickness. They also took into account
lubricant compressibility, Speed of rollers had significant

effect on film thickness and the effect of compressibility of the

lubricant on film thickness was little, Compressibility had an

|



effect on the pressure peak. Stephenson and Osterle [18] also came to

similar conclusions. The numerical scheme adopted by these authors is

however useful only for a narrow range of loads. Dowson and Whitaker
~[19] have also indicated easy methods to determine whether a particular
problem is to be treated as a rigid cylinder or as an elastohydrodynamic
problem, Herrebrugh [20] examined the isothermal problem from a mathe-
matical viewpoint, For an isoviscous lubricant he combined the Reynolds
and elasticity equations to yield a Fredholm equation of the second
kind, For a number of loading conditions he has presented numerical
solutions. 1In the range covered, he did not find pressure spikes in

the pressure distribution, showing that spikes occur if the viscosity
increases rapidly with pressure.

When temperature variation and its effect on viscosity and
density of the lubricant is taken into account, the problem becomes
much more difficult. This is indicated by the limited literature avail-
able on the subject. Cheng and Sternlicht [21] examined the problem of
thermal elastohydrodynamic lubrication of rolling and sliding cylinders.
They made an assumption of an average effective viscosity across the
film thickness. Instead of hunting for the spike position, they fixed
the location of the pressure spike and their numerical procedure was to
find the corresponding rolling velocity., Their important conclusions
were that:

(a) Pressure peak existed near the downstream end of the film for all
heavily loaded cases and position of the spike was dependent upon
rolling velocity;

(b) Temperature did not reduce the pressure peak but increased it

slightly;




(c) Temperature had a moderate influence on film thickness.

The compressible work term used by these authors was in error as was

pointed out by Dowson [22] in his discussion of the paper. In a sub-

sequent paper Cheng [23] removed the restriction of average viscosity
across the film. His form of Reynolds equation has been found to be in
error by this author, His important conclusions were:

(a) The position_of the peak is strongly influenced by speed, load
and inlet viscosity;

(b) No significant difference existed between isothermal film profiles
and thermal film profiles for various ratios of slip;

(c) The frictional force was strongly influenced by the temperature
rise.

Dowson and Whitaker [24] have presented results for various sliding

velocities, keeping the rolling velocity constant. In their numerical

solution, the property expressions 6f the lubricant are not differen-
tiated or integrated. This necessitates finding thermal coefficients
in order to use the modified Reynolds equation, Their main conclusions
are:

(a) The effect of temperature on the film thickness is negligible;

(b) Sliding speed has little effect on the film thickness;

(c) Height of the pressure spike is reduced by sliding and its location
moves towards the centre of the Hertzian zome. The spike becomes
more gentle and rounded.

One important common feature of the solutions offered by the

foregoing three references [21, 23, 24] is that all these assumed a

surface temperature equation of the solids as a boundary condition on



temperature for the fluid. The temperature distributions within the
solids were not investigated, When it is realised that experimental
measurements of temperature have necessarily to be done beneath the i
surface, the temperature distribution in the solids assumes importance.
Shear stress is significantly dependent on temperature.
0'Donoghue and Cameron [25] correlated all available data on
friction between hardened steel discs and it is possible to see the
effect of solid temperature on friction, In another paper these
authors [26] investigated the mechanism of scuffing between gears. They
came to the conclusion that scuffing takes place when the surface
attained the transition temperature of the particular metal-oil-metal
combination. If this temperature is reached then scuffing will ensue
(even if the surfaces are fully lubricated) due to chance contacts.
Blok [27], Carslaw and Jaeger [28], Jaeger [29], have studied
the theoretical problem of a moving heat source of constant strength,
It is usual in elastohydrodynamic studies to consider the source
strength over the Hertzian width as constant, The question of partition
of heat between two bodies has been studied by Allen [30] and Cameron,
Gordon and Symm [31]. These authors took as their system a source of
uniform strength and put in the condition that at all points in the
zone of contact the surface temperatures of the solids must be equal.
They have derived expressions for temperatures in terms of the source 5
strength, Francis [32] has derived an analytic expression for the
interfacial temperature in a sliding circular Hertzian contact, where
one surface was stationary and the other moving. He has introduced the

method of the harmonic mean for matching the interfacial temperature.
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It has been suggested that the non;newtonian behaviour of the
lubricant might influence the film thickness in elastohydrodynamic con-
tacts, Cheng and Orcutt [33] considered a visco-elastic model of
Maxwell and found that the shape of the pressure profile obtained was
closer to the experimental results, Milne [34], Tanner [35] and Bell
[36] have come to the conclusion that the load capacity of a Maxwell
fluid was less than that of a Newtonian fluid, Bell [37] derived a
formula for film thickness for a Ree-Eyring fluid., Chow and Saibel [38]
analysed the isothermal problem of a heavily loaded line contact of
rollers in the presence of a Maxwell lubricant, They have found that
the non-Newtonian effect had the tendency to flatten the contact region.
The load capacity was reduced, The shape of the pressure curve did not
vary significantly. The existence of a spike was found as in the case
of newtonian fluids.

A number of experimental investigations have been made for
the problem under study. A brief review of these is presented to indi-
cate the extent of the correlation between available experimental re-
sults and theoretical findings. Merrit [39] was the first to design
and build a disc machine which simulated gear tooth contact conditions.,
His measurement of the coefficient of friction under various sliding
conditions presented valuable design data. Lane and Hughes [40] studied
the oil film formation between gear teeth using electrical resistance
method. They found that under sliding conditions film thickness was
less than under pure rolling conditions. Crook [41] investigated the
possibility of a quantitative evaluation of the film thickness by a

knowledge of the specific resistance of the oil. He found that even
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very small quantities of moisture vitiated the results considerably.
El Sisi and Shawki [42] tried to overcome the effect of moisture by
adding 4 per cent sodium petroleum sulphonate. But since they used
rather heavy currents, their results were one order of magnitude higher.
Leach and Kelley [43] have used electrical resistance methods across
the contact zone to identify lubricant failure point and the effect of
deposit forming additives. They havg céme to the conclusion that the
load capacity of a lubricant varies inversely with reference to speci-
men temperature and that lubricant failure for any lubricant-ﬁaterial
combination occurred at a constant critical temperature. This tempera-
ture did not depend on the range of load, sliding or rolling velocities
or film thickness. Tallian, Chik, Huttenlocher, Kamenshine, Sibley and
Sindlinger [44] have found that there is a good order of magnitude
agreement between measured and theoretical values of film thicknesg.
Significant wear occurred only in regions where the film was interrupted.
All the experimental investigations using resistance method have quali-
tatively confirmed predictions of the elastohydrodynamic theory.

Sibley and Orcutt [45] devised a method which consisted of
directing a mono-chromatic beam of X~-rays tangentially at the contact
of the lubricated discs, The amount of the X-ray beam passing through
the gap was measured by a Geiger counter and was used to determine film
thickness, The wave length of the X-rays was so chosen that the lubri-
cants were quite readily penetrated but the steel surfaces absorbed the
beam entirely, The elastohydrodynamic theory fitted the experimantal ‘
results well up to an oil film thickness of 10™° inches. At lower ‘

thicknesses (the lowest thickness measured was 3% micro-inches) it
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deviated twenty per cent below theoretical., The authors attributed this
deviation to the non-Newtonian behaviour of the lubricant at high shear
rates. The X-ray method relies on the direct transmission of X-rays
through the contact which limits it to discs,

Measurement of the electrical capacity between two surfaces
separated by an oil film has been found to give good results. Crook
[46] used a modified disc machine so that the oil coming from the con-
tact zone remained on th: surfaces and was carried under a flat plate.
The capacitance between each plate and its disc was measured. The use
of the subsidiary plate eliminated uncertainties of the geometry of the
contact zone. From the capacitances the rate of oil flow was deduced
and thus the thickness of the film could be calculated. The method is
applicable for both rolling as well as rolling and sliding conditions.
The important findings of these measurements were that film thickness
at high loads varied little with load, less than proportionately with
speed and greatly with the temperature of the surfaces. The tempera-
ture of the oil in the high pressure region had negligible influence on
the film thickness. Crook thus came to the conclusion that film thick-
ness is largely determined by the conditions on the entry side of the
conjunction shead of the region in which the viscous losses and heating
of the oil became appreciable. In a second paper Crook [47] investi-
gated the effect of viscosity and speed on film thickness. He found
that the viscosity of greatest importance with respect to film thick-
ness was the viscosity of the oil at the surface temperature of the
discs, It was also found to depend upon the mean peripheral speed of

the discs, This was found to be valid even when sliding conditions
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prevailed. In a third paper Crook [48] found that under sliding con-
ditions conduction to the solid surfaces to be the important mechanism
of dissipation of heat. He has also developed expressions for frictio-
nal traction. In a fourth paper Crook [49] has described the measure-
ment of friction in disc machines. He found that rolling traction was
independent of load and was proportional to the thickness of the film.
S§liding traction was dependent upon sliding speed. Friction was found
to increase with sliding speed to a maximum and then full, The four
papers [46, 47, 48, 49] have been described in some detail because they
represent a landmark in the experimental investigation of elastohydro-
dynamic lubrication in line contacts, Dyson and Wilson [50] have
investigated the effect of high slide/roll ratios on film thickness,
using electrical capacitance method, They found that as the slide/roll
ratio increased above a certain level, experimental values of the film
thickness became greater than the values predicted by isothermal theory.
They explain this on the principle that there is a temperature variation
of oil across the film at the inlet zone and this becomes important at
high sliding rates.

‘ Kannel, Bell and Allen [51] have reported two different
methods for measuring pressure distributions in rolling contact. The
first method was to use an X-ray technique and pressures were inferred
from observed deformations of the discs. The second method used a strip
of manganin as a pressure transducer to measure pressures in the con-
tact. The important feature_of the measured profiles were that they
did not show the pressure spike predicted by theory, The authors them-

selves have posed the question whether lack of accuracy could have been
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a cause of the absence of pressure spike. Qualitatively the pressure
profiles have agreed with the theoretical predictions. Kannel [52]
refined the manganin pressure transducer technique so that pressures
could be measured between steel discs. The measured pregsures showed
general trends similar to those predicted by theory. For heavily
loaded rolling-contact conditions, a slight pressure spike has been
reported. Longfeld {53] used oil pressure tappings to measure directly
the pressure in the contact, Facilities were available enabling
measurements of pressure over the entire contact area. At greater
loads, rudimentary peaks were observed on the downstream end of the
contact, Orcutt [54] has reported a detailed experimental study of the
conditions occurring in the conjunctive region of two lubricated
cylindrical discs which roll or roll and slide on their peripheral
surfaces, Platinum transducers were used to measure temperature.
Capacitance method was adopted to measure film thickness. Manganin
pressure transducers measured the pressure, Experimental pressure re-
sults indicated that significant pressures were not generated until
about two Hertzian contact zone half widths ahead of the line of centres.
Experimental pressure profiles were more rounded without the sharp
pressure peak which may be due to the rheological effects, The
measured value of the film thicknesses was about 60 to 70 per cent of
theoretical values. The shapes of the deformation profiles differ from
the calculated profiles which are flatter than the measured ones. The
measured temperature rise is less than the calculated values. However,
these measurements indicate qualitative agreement with theoretical re-

sults,
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Optical interference technique has been used for the measure-
ment of film thicknesses. The advantage of this method is that the
measurement is made at the actual contact and that it is independent of
external calibration. The difficulties are two-fold. Firstly, most
transparent materials such as glass have refractive indices very close
to that of normal lubricants. Secondly, glass is a bad bearingmaterial,
If perspex or some other plastic is used then the modulus of elasticity
and yield stress are small so that the pressures generated are too low
for the pressure-viscosity effect to occur, Cameron and Gohar [55] | i
employed glass with a high refractive index which enabled the colours
of the fringes to be photographed, The opposing surface was a one inch
steel ball, The pressures were high enough to get an elastohydrodynamic
lubrication. The experimental results gave the exit constriction pre-
dicted by theory, Very recently, Westlake and Cameron [56] have used
optical elastohydrodynamic techniques for testing a wide range of lubri-
cants. The pressure viscosity‘coefficients agree well with those de-
termined jn conventional high pressure viscometefs. The effect of aging
on the oil could be studied. Sanborn and Winer [57] have used the
optical interference technique for the study of the rheological effects
in sliding elastohydrodynamic contacts. They used a steel sphere and é
synthetic sapphire in their apparatus, Film thickness profile was not 3
affected by rapid application of the load. These authors also measured
fhe temperafure at the inlet and it was found that there was only a very
slight increase in temperature after a long time which affected the film
thickness only slightly. In a companion paper Sanborn and Winer [58]

have described traction measurements. The traction values obtained
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were primarily a function of the sliding velocity. Large variations
in fluid composition and inlet viscosity had little influence on the
traction force. Rapid application of the normal load also had negli-

gible effect on the traction force.

1.3, Approach to the Thermal Elastohydrodynamic Problem

Combining the continuity and the momentum equations for a
compressible fluld, a modified form of Reynolds equation has been
derived in Chapter II. The energy equations for the fluid and solids
have also been detailed. The elastic equation and the applicable
Hertzian formulae have been listed in Chapter II. The problem under
study was solved in two steps. The first step was to idealise the
problem so that the fluid properties were dependent on pressure only.

This is usually known in the technical literature as the 'isothermal’

problem. The manner in which the coupled elastic and Reynolds equations

have been solved has been shown in detail in Chapter III. This step
yielded the pressure distribution and film thickness.,

Using the well documented assumption that the film thickness
was not sensitive to the temperature of the lubricant in the high
pressure region, the second step was to devise an iterative numerical
procedure which took into account the variation of the fluid properties
with reference to temperature as well. An implicit finite difference

technique has been developed to solve the energy equations of solid-

fluid-solid together. These numerical procedures are the subject matter

of Chapter IV,

The solution to the momentum and energy equations enable the
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calculation of shear stress and the tractive forces. The pertinent
expressions have been listed in Chapter IV. Results for different
values of rolling velocity for a constant load and variable slip ratios
have been displayed. The rolling velocities varied from 30 inches per
second (slow) to 400 inches per second (moderately high). Discussion
of these results and conclusions thereof form the subject content of
Chapter V.

While some of the assumptions have been indicated at the
appropriate places, it has been considered pertinent to list the general
assumptions usually made in the derivation of governing equations.

This 1s done in the next article.

1.4, General Assumptions

For the contacts under consideration in the present study,
the loads are transmitted through lubricant films of very short length.
For this reason the undeformed solids can be adequately represented by
cylinders in the region of the contact zone. Following Dowson and
Higginson [59] it is possible to replace the two cylinders by a geo-
metrically equivalent cylinder near a plane.

The following assumptions are made in the development of the
governing equations.
1. Body forces are neglected,
2. Pressure is constant across the film,
3. Inmertia forces are neglected.
4, Curvature effects are small and can be neglected.

5. The length of the contact region is orders of magnitude smaller
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than the radii of the rollers, Thus, surface deformation of the
rollers can be approximated by those of semi-infinite solids sub-
jected to the same normal load, Elastic deformations due to sur-
face shear 1is neglected.

Viscosity is a function of pressure and temperature only and not
dependent on shear rate.

Side leakage 1s neglected.

There is no slip at the boundaries.

Flow is considered laminar.

The thickness of the lubricant film is orders of magnitude smaller
than the length of the contact,

The problem is two-dimensional and steady~state has been reached.
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CHAPTER II
FLOW GOVERNING EQUATIONS

2.1, Modified Reynolds Equation

One of the major assumptions in the two-dimensional Reynolds
equation, commorily used, is that viscosity is constant throughout the
thickness of the film. Cheng and Sternlicht [21] improved their solu-
tion by using an amended form of the Reynolds equation where an
‘effective' viscosity of the lubricant considered constant across the
film was used. Cheng [23] derived a modified Reynolds equation which |
removed the assumption of the 'effective' viscosity. Unfortunately,

certain errors have occurred in Cheng's analysis and these seem to

of the Reynélda equation is derived and compared with Cheng's [23]
expression. To facilitate direct comparison, Cheng's notation has been ‘
adopted.

Neglecting inertia, the momentum equation is

dp_ 2. du
ax " oy 2.1)
The boundary conditions are

u(x,0) = Uy  u(x,h) = Up (2.2)

p(-=) = p(xt) = 0 = L(xt) 2.9

Integrating equation (2.1) once with respect to y

du_dpy, AR (2.4) ;
dy dxyp U i
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Integrating equation (2.4) once again with respect to y
y y
u=§-§f -E-dy+A(x)f %dy+B(x) (2.5)
0 0

Using boundary condition u(x,0) = Uy in equation (2.5) onme

obtains

B =0 O @.6)

Using boundary condition u(x,h) = U, in equation (2.5) ome

obtains

@ty "1
u2=dx£ udy+A(x)£ Sy +0) 2.7

Following Cheng [23] we define

h

1 1 f 1
— - —dy (2.83)
He Ry
h
L2 1y (2.8b)
We BEL W
h
1 3
F::F‘;j % dy (2.80)
e 0
] b2
t) = 12 {=% - =9 } (2.84)
3ue 2ue
t 1+—-UZ_U1 a ue} (2.8
9 = - — . e)

UaHy Mo
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From (2.7)
2
T Ll
Uz-U1 dx 2u;
= 2
A(x) W (2.9)
He
We define an effective density p = (%) (2.10)
' such that
= h +
mass flow =Q =p f udy (2.11)
0 ,

Integrating by parts equation (2.11)

o b b
0 =plw| -/ vy
0

H QP.hlz hl
= U - -
p {Ush dxgudy A{pdy}

hy 2
-3 g e dp
p {Uzh - 34" dx - " (UZ'UI' ax 211')}
e e e
3

- %y 3 W
=5 W+ L Gz - 3 - o 00D}
e e e

- t1dp 3 toh
= p {Uoh - mu—e - Ush + - (U4 }
_ Uty 14 h3t1

e g f— =9 -
pl—hty -k i (2.12)

T Dowson and Whitaker [24] ignored variation of density across the film
thickness.
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Following Cheng and Sternlicht [21] and Dowson and Whitaker {59]

we adopt the boundary condition that

Let at x = x¥ ; = ;* and h=h*

Then
_ U,

Q |y o g = %= h¥ £ (2.13)
Equating mass flow

_ U1+, Ui+U, 1 hdty

0k (——mmee h¥ to*) = § ~Ldp

PR b

*5k
6u_ (U3405) {ty --h—h;Ltz*}
d .2 b (2.14)
dx t1h®

The expression (2.14) is to be contrasted with Cheng's [23]

expression which reads

6y (U1+U2)
dp, e - ok
ix T {t, ip } (2.15)

This is true only if ty* = 1 and from equation (2.8e) it

follows that for ts* to be equal to unity

* i
ue = lle
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Thus, it seems to be tacitly assumed that the temperature at x = x%
is constant. The validity of this assumption is certainly questionable.
However, it can be used to start an iterative process in the

numerical procedure.

2.2, 'Isothermal' Expressions

The expressions for the case where lubricant properties are
only pressure dependent can be easily deduced from equation (2.13).

For the 'isothermal' case

=uopEw 1=l tp=1

p*
+ -
g B W) 0~
dx h®
6p (Uy4U;)
- —— 0 -2 (2.16)

2.3, Energy Equations for the Fluid and Solids
Following Dowson and Whitaker [24] the reduced form of
energy equation for the fluid is

pCpu-a—=euT—P-+u ( 2+k 2.17)

Boundary conditions are

T (-, 0) = Ts (2.18a)

3T T

kagly=o = gy liao (2.18b)
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dy 'y=h y=h
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(2.18¢)

The temperature distribution in the solids is governed by [60]

321y ¥%my My
ky (——z—ax +—2—ay ) = plcplUl Y
321, 9Ty 3y

ke (gt ) = 0y

Uy =—
9 9x
Non-dimensionalising the equations as shown below

se L
y
hr

[ad £
—

T:-E— X=
8

we obtain

B2 % b2 °1°p1U1 3Ty

+ = -
L% & o2 L, k %

hr2 32T, 3%, hrz pchzUz 3T,

+
L2 & 3 L, ki

substituting (2.21) in (2,18a) yields

usually Tc-l- = 300

h

I.° 0 (1073) in an elastohydrodynamic contact
1

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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hence
y
L= 0 {(200 x 1073)2| = 0 1072

2
1

=] o=

consequently in equations (2.19) and (2.20) we may neglect second order

derivatives with respect to x and obtain

a1y M
k3 % = pICplﬂl Ty (2.24)
a2, 3Ty 2.2

ke 557 = °z°p2"2 'y

0'Donoghue and Cameron [26] have obtained very satisfactory
correlations between experimentally obtained values of temperature and

calculated values using relations similar to (2.24).

2,4, FElasticity Equation and Useful Hertzian Relations

y
A
FILM SHAPE [HERTZIAN PRESSURE
3 \

I”
h"°m ’ho').\‘ hmin
T
= > X
< Q->ie- 0>

hon® NOMINAL FILM FIGURE 1

ho =CENTRAL FILM Nomenclature of the
Filn Thickn
hmin= MINIMUM FILM cknesses
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For the co-ordinate system shown in Fig. 1, the vertical dis-

placement of a two-dimensional elastic half space under a distributed

normal load p(£) can be determined [61] from the following equation

hehy+ 5 -mIB p(E)1n |

For the following Hertzian relations [60]

1-0,2 1-g,2 %
a={(1 2%m

=2—w
Po ® Ta
2 %
p=p, (1-3 (1<)
=0 (|§|>1)
equation (2.26) yields [15]
h - by =h=—t|"| & 0 - m

(>0

=0 (Z]<)

2.5. Property Relations

2 %
&+ &-n )

(2.26)

(2.27)

(2.28)

(2.29a)

(2.29b)

(2,30a)

(2.30b)

Viscosity and density of the fluid are functions of pressure

and temperature. Following Cheng [23] the following property relations



are assumed
- B8,
p=u exp (op + 7 T,5+ T
CAp
P =Py {1 +T+C—BT"+ Dt(T—Ts)}

For. the 'isothermal' case these relations reduce to

W= exp (Gp)

"where o= (o+ J—)

2.6, Non-dimensional Procedures

The equations can be non-dimensionalised by introducing the following

non-dimensional variables, Within the fluid:

I Y

X=%, y= 4, u=s, h=s—y pu=-= p=-=
L h U ho "s ps

Cu 2 p UL

=_ T =-_pa P's U ]

T=g, p=4= Pr= , E= s Re=
Ts W k Cst Mg

oW g B8 W 5.

=3 B=T’ Y=ar D = DT
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(2.31)

(2.32)

(2,33)

(2.34)

(2.35)

(2.36)



Within the solid:

Then equations (2.8a) to (2.8e) are non-dimensionalised, to

&

respectively,

I3

R N2t

u
=12 [,Te"-
ue

U,#)

I
h
r

2

o
=)

2

zié

U,-U i
t =1+-2_._l.[1__e]
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(2.37)

(2.38a)

(2,38b)

(2.38¢c)

(2.38d)

(2.38e)

The equations (2.14), (2.16) and (2.3) are non-dimensionalised to

dp
dx

=M1_e [t -
tlﬂz 2

(2.39)
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& . B -
h - 2,40
&3 L ) (2.40)
B(==) = 5(0.5) = 0= & : (2.41)
p P d:'c":'c = 0.5
respectively, where
6aly U,+U
A= ] ( 1 2) (2.42)
W hy?
The elastic equation (2.26) is non-dimensionalised to
- =2 0.5 - E-_E_ -
h=1+cx2-F pEin |=—=| d (2.43)
-0 xo—'g
where
L2
G= 7R (2. 44)
and
_ L .
F= 'ah_oE—r (2.45)
The energy equation for the fluid (2,17) is non-dimensionalised to
hy? T hy? 22T
. = Pr — 1) ! - 2,46
PrRe( )pu = Pr MeUT pr + PrE = ) ( ) h2 ayz (2.46)
where
VR e — (2.47)

CppSTSaJ
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- 13
E =~ =—
- Ml_ (2.48)
P
J = Joule's constant
One may also define a modified Reynolds number
p Uh02
Re# = = (2.49)
usL
Equation (2.46) could then be rewritten as
Y B g i , 1 9f
PrRe* pi = = PrMl — EuT <L + PrE £ (HB) + = — (2.50)
o% 1.2 dx B2 5y B? aF?
Boundary conditions given by equations (2.18a), (2.18b) and
(2.18¢) are non-dimensionalised to
T (e, 0) = 1 (2.51a)
m K, o
aT
=_ = (=) —=|. (2.51b)
3y|y =0 8y1|y =0
- K, of
g B A (2.51c)

respectively.

The energy equations for the solids (2.19) and (2.20) are non-dimensionalised

to

34T ?
—L = RS

9%, 1y

]
—

(2.52)

M
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82T oT,
—t = R§. —= (2.53)
3,° 2 %
respectively, where
LplCmUl hrl 2
RS, = () (o 2.54a
L2 ) (2.542)
2
LpZCP2U2 hr2
RS, = (———a) (—= 2,54b
" ) (2.54b)

and they denote a refererce solid non-dimensional number pertaining to
bottom and top solids respectively. The boundary conditions on

temperature are given by equations (2.51a), (2.51b), (2.5lc) and by

Tl (%, EH) = T2 (%, Erz) =1 (2.55)

The property expressions (2.31) and (2.32) are non-dimensionalised to

Peemp GHi-F+1) (2.56)
T F
C,p
p=l+—4+D (T-1) (2.57)
LGP t

respectively,

For the 'isothermal case' equations (2.33) and (2.34) are

similarly non-dimensionalised to

i = exp {pg} (2.58)

SR
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1 jEL
p=ld—=0 (2.59)
1+CBp

respectively, where
d=aty (2.60)

The non-dimensionalisation adopted transfers the original solid-fluid-

solid field into a rectangular field shown in Fig. 2.
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CHAPTER III
SOLUTION TO THE ISOTHERMAL PROBLEM

3.1, General Approach

The 'isothermal' problem requires the simultaneous solution
of the Reynolds equation (2.40) along with the elasticity equation
(2.43) taking into account the variation of viscosity and demsity with
pressure as .given by equations (2.58) and (2.59) respectively. As a
closed form solution of the coupled integro-differential system of
equations could not be found, a suitable numerical method had to be
adopted.

Iﬁ relatively low load cases, a straightforward converging
iterative procedure of assuming a pressure distribution, calculating
the film shape through the elastic equations and re-evaluating the
pressure distribution by integrating the Reynolds equation can be de-
vised [12, 18]. However, for high loads, this procedure fails to con-
verge.

The next important consideration is whether to keep a fixed
centre-line film thickness and calculate the pressure distribution
suitable for this assumed thickness or else to assume a given load and
calculate the centre film thickness. Osterle and Stephenson (18]
assumed a fixed centre-line film thickness and their results show poor
convergence even for light loads. Further, even from the design point

of view, only the load to be transmitted and surface speeds are usually
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known apriori. In the present work, load is considered known and the f
numerical procedure developed yields the film profile and pressure
distribution. Earlier work [15, i3] has also revealed that the con-
vergence is much better when load is‘taken as an input.
It is convenient to divide the contact region into sub-
regions A, B, C and D, as is shown in Fig, 3, The methods adopted in
each of these regions to solve the elastic and Reynolds equations to-

gether have been detailed in the subsequent articles.

3.2, Initial Considerations for Integration in Region A

From the consideration that

=0, (3.1)

and using the viscosity equétion (2.58) we can rewrite equation (2,40)

in the form
- - hop
Loy M. 20
wme Do 5] (3.2)

with the boundary condition (2.41)

Thus, if in the entrance region A (Fig. 3) one could calcu-
late h, then for any assumed value of ho’ equation (3.2) can be
numerically integrated., For the initial cycle of calculations the film
profile in region A was assumed to correspond to the Hertzian profile

of dry contact. This assumption has been adopted by many investigators
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[15, 17, 38] and has been used by Grubin and Vinogradova [11] to con~-
siderable advantage when they derived their well known film thickness
formula, The applicable Hertzian relations have been listed under
article 2.3, equations (2.27) to (2.30b).

A Runge-Kutta fourth order integration technique in double
precision arithmetic (detailed in appendix A) was adopted to carry out
the numerical integration., The choice of this method depended on the
considerations that the method 1s self-starting and has a low truncation
error [62) and at any stage the step size can be varied. For numerical
purposes -» was located at x = -5a (X = -2,5). This assumption has
been made on the basis of experimental evidence [52, 53]. Various
authors have chosen basically similar criteria to fix the value of the
pressure at the boundary AB. Dowson and Whitaker [19] calculated a
number of pressure curves, each one corresponding to an assumed Ho and
selected that pressure cuxve which can be extrapolated to run smoothly
into the elliptical pressure profile of dry contact. This called for
human intervention and judgement. In the present work, follewing
Archard, Galr and Hirst [15] it was postulated that had h, been guessed
correctly in the first instance, the extrapolated value of the pressure
at X = -0.4 will be the same as the value of the Hertzian pressure at
that point, At any rate, this is just a first step to get the procedure
started and the iterative procedure takes care of the shape of the final
curve. As will be seen later, the values of the final film thickness
calculated agree quite well with film thicknesses calculated with
these criteria. Several guesses of h, may be necessary to meet the

aforementioned initial criterion but this is easily programmed in a

i o

R e e iieda T
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computer since increasing h, decreases the pressures in region A and
vice-versa, If h, is chosen too small one obtains an error message
from the computer that logarithm of a negative quantity is attempted

to be computed..

3.3, Numerical Integration of the Elastic Equation

The next step is to calculate the displacements in region B
due to pressures in region A through equation (2.43). However, equation
(2.43) has a singularity at % = §. Varlous authors [13, 15, 18] have
used different devices to remove this singularit&. In effect, these
consist of dividing the pressure curve into small segments and consider
p(E) as a second order polynomial [13] or a First order polynomial
{18, 15] and formally integrate the assumed pressure function. Wernick
[63] found that such methods introduced a ripple in the film profile
which he attributed to the neglect of the effect of curvature in the
pressure that was not fully taken care of in the foregoing methods.
His method has been indicated briefly in appendix B, Since there was
a rapid change of curvature in the pressure profile in the entrance
region and as will be seen later in the region near the spikes, this
method was considered the most appropriate and was used. In order to
have a check on the accuracy of the calculations to be expected of this
method, the values of the film thickness as calculated through equation
(2.302) and through Wernick's method for a Hertziam dry contact are
compared at discrete points in Table I.

The displacements in region B due to the pressures in

region A gre added to the Hertzian displacements in B,
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Table I

Position

Through
equation
(2.30a)

7.045%1074

4.635x107*[2,793x10™% |1, 537x10™49. 476x10™5

Through
Wernick's
method
Appendix B

7.047x107%

4,637x107*[2,795%x107% |1.537x10™4 9. 458x10™5

Position

Through
equation
(2.30a)

9.476x10™5

9.476x10751,537x107" [2.793x10™" | 4.635x10™%

Through
Wernick's
method
Appendix B

9.476x1075
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3.4, Ceutre-Line Shift Technique

It will be seen that while the Hertzian pressure profile
for a dry contact is symmetrical about the centre line, the hydro-
dynamic pressure profiles are not. For this reason, when the surface
displacements are calculated taking into account the hydrodynamic
pressures in region A, the elastic displacements will be tilted with
respect to the line of centres of cylinders. This leads to an oil-
film thickness of decreasing height in the direction of surface motion.
But a feature of the elastohydrodynamic contact is that fi must be
sensibly constant over a major portion of the Hertzian zome and parti-
cularly in the central region. This problem is conveniently overcome
by employing what is knowﬁ as the centre-line shift technique [64,59].

This technique has been indicated in appendix D.

3.5. Inverse Hydrodynamic Relation

In region B (Fig. 3), the pressures and viscosities are
high., A straightforward integration of Reynolds equation in this
region leads to inaccuracies [19]. It has been found [13, 15, 17]
better to compare the film shapes calculated by the elastic and hydro-
dynamic relations and modify the pressure curve to emsure close
agreement. For this purpose it is convenient to rewrite equation

(2.40) 1in the form of a cubic equation

hS_E Ah+—L= (3.3)

A rapid and accurate solution to the equation could be had by adopting

a Newton-Raphson iterative technique. This procedure has been
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described in appendix C. For the initial cycle of calculation
pressure is assumed Hertzian (excepf at boundary AB, where the value
already calculated is used) and the pressure gradients are calculated
at discrete points in region B. The values so calculated are used in
the solution of equation (3.3) which yields h at the points chosen.
The values of h are compared to the elastic displacements at the very
same points as calculated through methods developed under article 3.3.
The differences in the film thicknesses as calculated
through the elastic and inverse hydrodynamic relations are a measure
for the amendment of pressures needed at these points. An inverted
Wernick method was developed to calculate the change of pressures
needed and this procedure has been indicated in appendix B. With
these new pressures, pressure gradients can be calculated and the
cycle starts once again with the solution of equation (3.3). It is
illustrative at this stage to present the block diagram (Fig. 4) to
indicate the procedure adopted for the iterative solution of the
elastic and Reynolds equations in regions A and B of Fig, 3. It will
be noticed that one is solving for the centre film thickness by con-
sidering preséures and displacements in regions A and B and Hertzian
pressures in C and D. The mathematical argument for the procedure

adopted 1s given below, Expression (2.16) can be rewritten as

3 hop
b’ d 6U (h - =2 °) (3.4)
poodx p

Differentiating both sides with respect to x and rearranging
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FIGURE 4
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p dx r dx dx dx y dx
poho d|
=60 — £
dp
For Hertzian pressure distribution i 0at x=0 and
expression (3.5) reduces to
h,3 2
dh 0 4
dxlx =0 6Un, E{glx = 0 (3.6)
For Hertzian pressure distribution from expression (2.29b)
&p) b
dx2'x = 0 a?
Thus,
- 3
dh ) Poho
dxx=0 6U a2 .7

Hence, if h, is small and u, is large (as is the case)

dhl

& )
dx

x=0

This shows that under the conditions of our present problem, one may -

~ golve for the regions A and B entirely before going on to the regions

C and D.
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3.6. Integration Procedure for Regions C and D

Different procedures have been suggested by various authors
[15, 19, 24] for the integration in reglons C and D. The choice of
the technique depends on the assumption of the existence of the
pressure 'spike'. Investigating the problem for low loads, Stephenson
and Osterle [18] did not find any spikes. Herrebrugh [20] investi-
gating the problem for an isoviscous lubricant also did not find any
'spikes'. The existence of the spike has however been authenticated
by other authors working under less restrictive assumptions [15, 19,
21, 24, 38] and also verified by experiment [52, 53, 54]. Cheng and
Sternlicht [21] avoided the problem of hunting for the location of
the 'spike'. They fixed the location and found the corresponding
rolling velocity which will yield the spike at the chosen location.
However, in any design problem it is the surface speeds that are known
apriori.

In this work,.a simpler and quicker method to locate fairly
closely the approximate location of the spike (within 4% of the semi-
Hertzian width) was found and this was subsequently refined by an
iterative procedure. Initially the floating boundary CD was located
say at % = 0,4, In the regions C and D the pressures are assumed
Hertzian and zero respectively. For the already found pressure
distributions in regions A and B and the presently assumed pressure
distribution in regions C and D the elastic equation (2.43) is used
to obtain the displacements at discreet points in D. For the dis-
placements found for discreet points in D, equation (2.40) is inte-

grated, The integration starts from X = 0.5 with the boundary
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condition {(0.5) = 0. Simpson's rule is found sufficient for inte-
gration in this region. Integration is carried out till CD is reached,
The value of the pressure at CD serves as a sensitive indicator for
the location of the spike. If, for example, CD is to the right of
the actual location of the spike, pressure found by the integration

at CD is small, If CD is to the left of the actual location, the
pressure will attempt to pass through an infinite value with an error
message from the computer that the logarithm of a negative number is
attempted to be computed, Thus, the direction in which CD has to be
moved becomes known and CD can be loacted. Pressures in region D

are calculated for this tentative location of (D. With the present
pressure distribution in D, the already calculated pressure distri-
bution in A and B and assumed Hertzian pressure distribution in C,

the elastic displacements at discrete points in C are calculated
through equation (2,43), For the Hertzian pressure distribution in

C (Fig. 3) solution of the cubic relation (3.3) will yield the hydro-
dynamic thicknesses at the chosen discrete points in C. As before,
the diZferences in the film thicknesses calculated through the elastic
and inverse hydrodynamic relations are a measure for the amendment of
pressures needed at these points. The inverted Wernick method
(described already) is used to calculate the pressure amendments
needed, It is illustrative at this stage to present the block diagram
(Fig. 5) to indicate the procedure adopted for the iterative solution

of the elastic and Reynolds relations in regions C and D.

e E
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As is shown in the block diagram, the new pressures in C
are used to calculate the elastic displacements in D. And when these

displacements are used to integrate for pressures in region D, it may

become necessary to shift the floating boundary CD to achieve closer
agreement of pressures, In actual calculations it was found that only
a very slight shift to the left was necessary to obtain satisfactory
agreement and between two to four iterations were enough to locate

the position of the spike within /1000 of the Hertzian gemi-width,

3.7. Discussion ;ﬁ the Numerical Scheme

One of the contributions of the present study is that a
completely automatic scheme has been developed which can be extended
to the study of the thermal system as will be seen in Chapter IV, We —
had to make a few assumptions in developing the scheme and the purpose
of this article is to discuss the validity of the assumptions made in
the light of experimental findings and theoretical work. The first
assumption that was made was that the integration can be started in
region A from X = -2.5 (x/a = -5.0). The results that are presented
in the next article show that this is adequate, as the pressure becomes
significant only from X = -1.0. This is also in agreement with the
experimental findings of Kannel [52] and Longfeld [53]. In starting
the iterative process for finding the centre-line film thickness, it

was assumed that the extrapolated pressure should match the Hertzian

pressure at X = -0.4, This consideration is based upon the following
reasoning. The hydrodynamic equation (3.2) shows that h- }_10 has to

be small when the pressures are high. From the elastic standpoint,
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the Hertzian pressure distribution yields the flatness that is observed
and verified. Hence the system should be closer to the Hertzian
rressure distribution. Since the hydrodynamic equations reveal a
pressure build-up in the entrance region, a certain amount of pressure
must be subtracted from the Hertzian distribution to compensate for the
external excess pressure. The true pressure curve may be expected to
cut the Hertzian curve at a value of p well below the maximum since
the depression caused by a force diminishes slowly with the distance
and the flatness at the high pressure region has to be maintained to
correspond with the experimental findings [46, 47, 52, 53]. Thus, for
the starting of the schemes it was assumed that the extrapolated
pressure should match the Hertzian pressure at % = -0.4 where the
pressures are well below the maximum, The iterative procedure improves
the approximation.

Different schemeg are adopted in regions A, B, C and D to
find iterative solutions to the elastic and hydrodynamic equationms.
Previous studies by others have shown the necessity for such a step. The
numerical method to solve for the inverse hvdrodynamic equation, adopted

in the present work, is new to the elastohydrodynamic studies and has

been found to be quick and accurate. The inversion of the Wernick method

to find the amendment to the pressure curve is also a new feature. As
this method takes into account both the pressure gracients and pressures,
the results are likely to be more accurate as is seen by comparison

with an analytical solution (Table I). A simpler method to

locate the spile, reducing the tedious hunting process, has heen deve-
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loped and has been explained in some detail under article 3.6. The
use of the Runge-Kutta procedure in the entrance is numerically more -

accurate and is also new in elastohydrodynamic studies.

3.8. Non-Dimensional Parameters

Dowson and Higginson [59] have formulated three non-dimen-
sional parameters, viz, load parameter, speed parameter and materials
parameter for isothermal elastohydrodynamic contacts, In terms of the

notation used in this study they are

Load parameter P = %% (3.8) E
ud :

Speed parameter SP = = (3.9) ;
Materials parameter MP = ¢E (3.10) 5
5

It has also been shown [59] that the effect of load on film thickness
is very little. For ordinary elastohydrodynamic contacts the variation
in the materials parameter is also small, Thus, the speed parameter
emerges as the dominant variable in controlling film thickness. In the
present study both the load parameter and the materials parameter have
been kept constant. The effect of speed parameter on the film thick-
ness has been studied over the range SP varying between 10712 to 10710, 3
It may however be pointed out that the same numerical scheme can be
adopted for studying the effect of the other parameters. By varying
the slip for the same effective rolling velocity temperature effects

have been studied which form the subject matter of Chapters IV,
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3.9. Results and Discussion

The input data and the isothermal results are given in
appendices E and F respectively. Dowson and Whitaker [19] have pre-
sented a minimum film thickness diagram showing the three regions en-
countered in cylinder lubrication. This diagram has been reproduced
in Fig, F.1 and the range of the present study has been marked therein.
It is seen that the present investigation is inside the elastic range
and that the ranges of speed covered are between moderately low and
moderately high. The pressure distribution and the film profiles have
been obtained for different rolling velocities and are presented in
Figures F.2 and F.3 respectively. Referring to Fig. F.2, it is ob-
served that with the increase in rolling velocity the pressure 'spike’
moves towards the line of centres, The magnitude of the pressure at
the 'spike' increases with rolling velocity though mot proportionately.
At low rolling velocities the pressure distribution is closer to the
Hertzian pressure distribution.

Referring to Fig. F.3, it is noted that the film profiles
are parallel in the high pressure region with a depression developing
in the down-stream end. The area of the depression increases with
inerease in rolling velocity. The film thickness increases appreciably
with speed but the rate of variation tends to diminish at higher
speeds. All the above results are in good qualitative agreement with
other results [14, 15, 17, 19, 21, 24].

Cheng [65] has indicated the three thicknesses in common

use in elastchydrodynamic work. These are the nominal, centre-line

P
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and minimum film thickness and are indicated in Fig. 1. Cheng [65]
has also given a table of the isothermal elastchydrodynamic film
thickness formulae based upon a correlation of the results of various
authors. A good quantitative check on the results of the present
study will be to compare the results on the film thicknesses with
those of other authors, as per Cheng's [65] table. This has been done
in Fig. F.4 to F.6, Experimental results due to Sibley and Orcutt
[45] and Crook [47] have been superimposed. It is clear that the
present studies correlate favourably with experimental results. Fig,

_0.66
F.6 also yields a correlation of the form h, o U .

3.10 Conclusions

The Dowson-Higginson [59] formula or the Grubin [11] formula
have a narrow range of validity, They yleld good results for veloci-
ties not exceeding 400 inches per second and for Hertzian maximum
pressure not exceeding 100,000 psi. Also the materialé parameter oF
has to be high in these formulae, This is a severe restriction. At
low values of the materials parameter the thicknesses predicted are
much lower than is actually the case, For example both these formulae
predict zero film thickness for an isoviscous lubricant. This is absurd
as Herrebrugh's [20] analysis and the measurements of Kannel et al
[67] have shown. Thus a rapid and accurate numerical scheme becomes
necessary to calculate the film thickness for all ranges of the
materials parameter. The numerical scheme devised for the present

study is good for this purpose.
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The favourable correlation with experimental work and
theoretical results also shows that accuracy at every stage is important
and balancing of the elastic and hydrodynamic film thickness has to be
done carefully. The closer agreement also shows that the errors in
the numerical scheme keep within agreeable limits and justify the

assumptions made in developing the scheme,
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CHAPTER IV
THERMAL ELASTOHYDRODYNAMIC PROBLEM

4,1, General Approach

The thermal elastohydrodynamic problem requires the simulta-
neous solution of the Reynolds equation (2.39), the energy equations ?
(2.50), (2.52) and (2.53) along with the elasticity equation (2.43),
taking into account the variation of fluid properties given by
equations (2.56) and (2.57). As a closed form solution of these
coupled non-linear integro-differential systems of equations could not
be found suitable numerical methods had to be used. The method adopted
here is to use the results obtained in Chapter III as the initial input
and devise a cycle of operations that will take into account the

thermal effect on the system,

4,2, Simplifying Assumptions

In order to obtain a solution to this highly complicated
problem, it is necessary to make some simplifying assumptions. Cheng
and Sternlicht [21] made an assumption of a mean viscosity across the i
film. Cheng [23] removed this restrictive assumption but his form of

the Reynolds equation has been found to be in error (Chapter II).

Dowson and Whitaker [24] have used thermal factors, considered functions
of X to obtain property values at any given X location. This again
is an assumption of mean property values. Further, all the above

authors [21, !3, 24] have used a surface energy equation as the
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boundary condition for the energy equation of the lubricant. The
assumption that is inherent in deriving the surface temperature equa-
tion is that the problem can be treated as a case of linear heat flow
[24, 23, 29, 60] and that the dimensionless parameter
P,C

i P

S—— — > 10.

2 K
This is generally true in high speed contacts, but in the case of low
speed, light-weight highly conductive contacts this condition may not
be satisfied. A less restrictive boundary condition would be to
equate the heat fluxes at the fluid-solid interface and this has been

done in the present work., Also, this method ylelds the temperature

distribution in the solids.

4.3, Numerical Method for sclving Energy Equations

A finite difference formulation has been adopted for solving
the energy equations of the solid-fluid-solid together as a unified
field. The grid diagram and the finite difference formulae to be used
are shown in Fig, 6. With the finite difference computational mole-
cules adopted, the energy equations could be written as a system of
algebraic equations as shown below, The energy equation (2.52) 1is

written as

xm=a1"fl +b, T +C, T +d =0 (4.3)
i
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FIGURE 6 Grid Diagram
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where
o =/he 2
a) = 3RS, + 4Ax/Ayl .
by = - 20%/45,2

2 - 2/AG 2
¢ 20%/y,

The boundary condition equation (2.51b) is expressed as

I K F A 3 A

The energy equation (2.50) for the lubricant is expressed as

% ® an1 Ti,n-l * bn Ti,n * an3 Ti,n+l ¥ wnui,n * dn =0
where
2 = -20%
o Ay%h
- dp, =
4Ax 4= = g == i Ax
b + R - 2 Pr¥h —_——
n AyZEiZ 3 PrRe ®4,n%,n o €%y n a5 12
_ =%
n, 25%h 12
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(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4,9)

(4.10)

(4.11)

(4.12)



2
w = 2A% PrE (a") /h

Y i i

= - k= i T - 4T
dn PrRe pi,nui,n (Ti-Z,n 4Ti—l,n)

and

n = MMHL, N-1

The boundary condition equation (2.5lc) is expressed as

K - K
- 2, = =
XN=T1N(1+_A=;L—)'T1N_1-'A=L'—2-T2 =0
’ ty, K ’ by, K “{m1
The energy equation (2.53) is expressed as
Xy = - Ty 2y B, (ams, + -‘f‘?"’%) -
1,pptl 472 1,pp Y2
= 20% = s
=) - s, T, +8s, T, =0
i,pp-1 0%, 2 "i-L,pp -~ T2 i-2,pp
pp = M1, PP-1
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(4.13)

(4.14)

(4.15)

(4.16)

From equation (2.4) and (2.5) one obtains the normalised velocity

gradient and velocity. They are

. w2 g5l e, DUk
—r——x={j-— -
3y usU dx u Zué U T

(4.17)
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Ll A, 2 [
usUaL dx o M U ey
i _ di e s @, (4.18)
2Vl &y U

vhere 7 1s an au#iliary non-dimensional y-coordinate. Equations
(4.3), (4.8), (4.9), (4.15) and (4.16) constitute a system of non-
linear algebralc equations and the following procedure is adopted to
solve them numerically.

For the solution of the energy equation the pressure gradients
and the film thicknesses are considered known [21]. For the first
cycle of calculations the values calculated from the isothermal solu-
tions (Chapter III) are adopted. (In the subsequent cycles, the
pressure gradients are amended by the iterative solution of the modi-
fied Reynolds equation (2.39) along with the elasticity equation
(2.43) and the temperature as calculated in the previous cycle are
used.% Further, for the starting of the iterative solution, the
density and viscosity of the lubricant are considered as functions of
pressure only, This reduces the system of energy equations to a tri-
diagonal linear system and rapid and efficient algorithms are available
to solve this system, Thomas algorithm [66] was adopted. The adoption
of this method reduces the storage difficulties and the grid can be
made as small as is desired. The solution can now proceed column-
wise. As soon as the temperatures have been calculated in a particu~

- lar column, the property values are recalculated, adopting the
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presently calculated temperatures and once again the system is solved

for that column. The iteration is stopped as soon as the criterion

=r =+l

ITj - | )
=1 - 00001 (1.019)
X

was met. It was found that in high speed cases acceleration parameters
[68] of the form

o () 6 (B9 (4.20)

v = 0,47 to 0.61

were useful, The convergence was slower in the spike region. The
Newton-Raphson method was also used in some cases and this also im-
proved convergence [68]. The block diagram illustrating the numerical
procedure described is presented in Fig, 7. Simpson's rule was used
to calculate the integrals iﬁ the equations (2,38a to 2,38¢c) and in

equation (4.18).

4.4, Modified inverse hydrodynamic Relation

It is now necessary to find-the changes induced in the
pressure gradient and in the film profile due to the modifications in
the temperature field. The methods detailed in chapter III can now
be used with a modified inverse hydrodynamic relation. Equation (2.39)

can be rewritten as

E*'*t*
::1‘13§i-xﬁtﬁ+ P2 =0 (4.21)
' gx e ?
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For discreet points in region B (Fig. 3) the values of t,, M ty
can be calculated from our knowledge of temperature distribution.
Further, we can also calculate from the determined temperatures at
the down-stream eng the values of t2* and 5*. Since the pressure
gradients at both the line of centres and the down-stream end are

zero, expression (4.21) applied at these points yields

) E*a*tz* ) E*B*tz*
(- J\uetzh)o + z = (- ’“‘etzh)* + = (4.22)

vhere subscript o and % indicate evaluation of the quantities in
the brackets at the line of centres and the dowm-stream end respect-
ively, Equation (4.22) is a first order relation in B (remembering
our basic assumption that the centre-line film thickness is insensitive
to change of temperature) and E* can be evaluated. The procedure to
be followed hereafter is identical to that described in articles 3.5
and 3,6 with the modifications indicated below.
1. The inverse hydrodynamic relation to be solved is given by
equation (4.21).
2, For finding the position of the spike, computer time is saved
if one starts from the location of the spike obtained from the
previous cycle. Usually only a slight shift towards the line

of centres is necessary.

4.5, TFurther Temperature Calculations
The temperature field needs to be checked on the basis of

the modifications in f£ilm profile and pressure gradient. One repeats

i L i e AR TR ek i S i L e L
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the procedure detailed under article 4.3 with the presently found
values of the pressure gradient and h., If the presently calculated
temperatures do not differ by more than 1% of the values obtained in
earlier cycles, the calculated values are accepted as the solution of
the problem. Convergence in the temperature field was faster than
in the case of pressure and film profile calculations., However,

3 to 5 full cycles were found enough for the range of the present

work,

4,6, Calculations for the Frictional Force

Following Cheng [23], the friction factor is defined as
the ratio of the frictional force to the load per unit width of the
roller. This may be written as

0.5
1 ou -
f == — 4,23
t= 5 {w (u 5= 1 L d% (4.23)

s — f _Ji (1- -—-0 dx

A -v) 5%
L) T (4.24)
o -0

One may define

g 0,0, @,-1, ) 0.5 3
e -
£ = { T dx (4.25)

Simpson's rule was used for integration purposes.

S i e 4 AR T K T Gt ik

B m e 2 T A it R e AT

B

€t e T,




63

CHAPTER V
DISCUSSIONS AND CONCLUSIONS

5.1. Discussion of the Results

Using a modified Reynolds equation for a lubricant whose
density and viscosity are functions of pressure and temperature, the
thermal elastohydrodynamic problem between two rolling and sliding
cylinders has been investigated, The numerical scheme developed
analyses the 'isothermal system' and the results serve as an input to
the thermal problem. One of the contributions of the present work
1s the derivation of the correct thermal form of the Reynolds equation.
Aleo, instead of using a surface temperature equation [24, 23, 21],
the energy equations for the solid-liquid-solid combination has been
golved as a wunified field., This approach extends the validity of the
solution and has been discussed in Chapter IV.

A detailed discussion of the numerical scheme for the
igothermal problem has already been presented in Chapter IIL. The
reasons for adopting a tri-diagonal matrix solution for the temperature
equations and the iterative methods used have been detailed in
Chapter IV,

In the present chapter, the results of the ‘thermgl' v
problem, which are presented in Appendix G, are discussed. ﬁl‘he siip

ratio which is defined as

!
Slip Ratio = ——— (5.1)
U,

i
"

i
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has been varied from zero to a moderately high value of 0.25.
Figure G.1 relates the position of the pressure spike with ﬁ

the slip ratio and rolling velocity, Also indicated in the same §

figure is the magnitude of the pressure at the spike. It is observed |

that at comstant rolling velocity the position of the spike is moved

towards the line of centres as the slip ratio is increased. This

result is in agreement with the result of other workers (21, 24).

It 1is also seen that the magnitude of the pressure at the spike is re-

duced with the increase of slip. This finding is in agreement with

the conclusions of Dowson and Whitaker [24] and is in conflict with

the results of Cheng and Sternlicht [21]. It may be observed that

with the increase in slip the temperature of the lubricant increases

with corresponding decrease in viscosity. Herrebrugh [20] did not

find any spikes for an iso-viscous lubricant and came to the con~

clusion that spikes are due to increase in the absolute viscosity of

the lubricant., Thus, any reduction in viscosity should reduce the

magnitude of the spike and the present results conform to this

reasoning. Figures G.2 (a and b) and G.3 (a and b) represent the

temperature distribution across the film at different % locations

for rolling velocities 400 in/sec. and 30 in/sec. respectively and

i RATRa e AT Nt i e S
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for a constant slip ratio of 0.25. The presentation of each figure
has been subdivided into two parts a and b in order to achieve

clarity. Thus, the figure G.2.a represents the temperature distri- g
buﬁions up to the position of the spike and G.2.b shows the tempera- %

ture distribution from the position of the spike to the down-stream E
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end (% = 0.5). Similarly for the figures G.3.a and G.3.b. Referring
to figure G.2.a, the temperature rise is seen to be moderate till
about % = - 0.3. Thereafter the temperature increase is more rapid
and this is attributed to the increase in viscosity in the high
pressure region, The temperature rise near the fluid-solid interface
is however moderate. The significant increase in temperature at the
region of the spike is evident where the non-dimensional temperature
rise is about 0,185 between % =0 to X = 0,06, This is due to the
rapid increase of viscosity due to high pressures at the spike region.
The nmid-stream éemperatures are geen to fall beyond the spike (Fig.
G.2.b). Here, the lubricant temperatures near the walls are seen to
increase slightly, Both figures, G.2.a and G.2.b, show that the
viscous heat generated at the centre across the film is much higher
than that generated near the boundaries. Figures G.3.a and G.3.b
follow a slightly different pattern., The temperature rise is moderate
t111 % = - 0.2, This is attributed in part to the low rolling
velocity (3 = 30), The temperature rise is less rapid in this case
and at %= 0 the non-dimensional mid-film temperature is 1,14, The
mid-film temperature then falls slowly to 1,09 at location X = 0.32
(not shown in figure G.3.a) due to the fall in pressure. The spike
occurs further away from the line of centres in the case of low
rolling velocity, Thus, the effects of decompression cooling and
conduction are more evident. At the region of the pressure spike the
temperature rises rapidly. Maximum mid-film temperature occurs at

the spike. Beyond the spike (Fig. G.3.b) the mid-film temperature
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falls till at X = 0.5 the temperature across the film is almost
uniform. A comparison of the figures G.2 and G.3 reveals that the
solids with a lower rolling velocity reach higher temperatures for
thé game slip ratio, This finding is in agreement with Cheng and
Sternlicht [21]. It is also observed that in both cases represented
by figures G.2 and G.3, the lower solid which moves more slowly than
the top solid attains the highest temperature. This result is in
agreement with other results [24, 21, 23]. Checking the temperature
distribution at the down-stream end i = 0,5 it is observed that
the variation of temperature across the film is significant at
U = 400 in/sec. Thus, the assumption of Cheng [23] that t,=1 at
%= 0,5 1s inaccurate for high velocities.

Figures G.4 and G.5 represent the mid-film temperatures
along the contact for several slip ratios at U = 130 in/sec. and
U = 200 in/sec. respectively, The temperature profiles follow the
pressure distribution and maximum mid-film temperature is at the
position of the pressure spike. In both cases, for zero slip the
temperature rise is negligible, showing the insignificant effects of
compressive heating.. For other slip ratios the temperature rise is
moderate till X = - 0.3 and thereafter the temperature rise is rapid
t111 the line of centres is reached. For rolling velocities U = 130
in/sec. (Fig. G.4) we notice that for low to moderate slip ratios of
1%, 5% and 10%, there is a slight cooling till the spike region is
reached, This is attributed to the fall in pressure and hence fall in

viscosity and the decompression cooling effects. At higher slip
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ratios of 15% and 25%, the temperature remains constant till the region
of spike is reached, This is attributed to the fact that at higher
slips the spike moves towards the line of centres and thus the
pressure falls slower than in low slip cases. The temperature falls
after the spike and at low slip ratios the temperature at the down-
stream end is moderate. As was to be expected, the temperatures are
higher at the doyn—stream end for higher slip velocities. A similar
pattern is followed for the case U = 200 in/sec. (Fig. 6.5). Figure
G.6 shows the maeximum rise in mid-film temperatures reached at various
slip ratios for different rolling velocities. It is observed that for
a constant slip ratio the temperature rises steadily with rolling
velocity till about U = 200 in/sec. Further increase in rolling
velocity causes the temperature to rise much slower than before.

Fig. G.7 shows the maximum film temperatures plotted against slip
velocity for different rolling velocities. It is observed that for

low values of (U2 - Ul) there is a rapid rise in temperature. Further
substantial increases in (U2 - Ul) causes only slow rise in temperature.
This 1s attributed to the rapid fall in viscosity at high temperatures.
Also it is seen that the increase in rolling velocity causes slight
increase in temperature, showing the major role played by slip velocity
in the generation of heat. Fig. G.8 shows the tempefature rise above
ambient reached by the lower solid at the position of the spike for
various slip velocities, At zero (and near about zero) slip velocity
for U = 400 in/sec. the temperature rise is 4°F and for U = 30 in/sec.

the temperature rise is negligible. 4s (U, - U,) is increased, it is
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observed that the temperature rise is more rapid in the case of lower
rolling velocities than in higher rolling velocities, This leads to the
conclusion that thermal stresses are likely to be less severe at
higher rolling speeds. When it is remembered that the dip in the
down-stream end is more pronounced at lower rolling speeds, one may
conclude that if fatigue and thermal stresses are considered important,
they should be provided for at the lowest rolling velocity the system
is likely to encounter,

Fig. G.9 shows the surface temperature rise above the
ambient for the lower solid along the length of the contact for
U = 30 in/sec. for different slip ratios. It 1s seen that the tempera-
ture rise at the entrance to the high pressure region is of the order
of 1°F, The film thickness has been found to depend on the viscosity
of thé lubricant at the temperature of the surrounding solids at inlet.
The insignificant rise in temperature at inlet shows that film thick-
nesses calculated on the isothermal assumption are valid for the
thermal case as well. Fig. G.10 shows the plot of friction factor fS
against (U2 - Ul)' Super-imposed are the experimental plots of Crook
[49] and Bell and Kannel reported in the discussion in Reference [23].
It is seen that friction factor increases initially with increase in
slip velocity and then decreases. This is due to the fact that the
friction factor depends on ﬁe (U, - U;) and initial increase of
(U2 - U;) increases the friction factor. As (U2 - Ul) is further in-

creased, ﬁe decreases due to rise in temperature and the product

ﬁe (U2 - Ul) decreases. The trends predicted in the present work and
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in the experiment are the same, Quantitatively the agreement is
moderate. The discrepancy may be due to an overestimation of the
viscosity near the peak pressure, The assumption of a Newtonian
fluid near the vicinity of the peak tends to overestimate the peak
as the isothermal analysis of Chow and Saibel [38] has shown., Cheng
[23] has reported that a slight change of the temperature viscosity
exponent f causes a significant change in the predicted friction
factors.

The problem being non-linear, analytically there is no
general proof of the uniqueness of the solution [66]. If comparable
results are obtained by using two different numerical procedures, the
solution is considered correct, This was done in the present study
for u = 30 in/sec. The film thickness results of the present study
which compare well with experimental results also show the consistency
of the numerical solution.

Assessment of error is very difficult for the problem under
study, However, conservative error estimates can be made, Pressures
in the inlet region have been calculated by fourth order Runge-Kutta
method with a step size AX = 0.1, Computation of the non-dimensional
pressures have been carried out with computer errors less than one
percent. In regions B, C, D the numerical procedures are different
but the non-dimensional pressures have been calculated with computer
errors less than one percent, The temperatures are calculated to an
accuracy of better than ninety-nine percent in all regions. The num-
erical procedur:s used are stable [66] and it is well known that if

consistency is satisfied, then stability of the system also ensures
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convergence,

5.2 Conclusion and Scope for further Work

The pressure, temperature and film thickness between two
rolling and sliding cylinders have been determined by solving numeri-
cally the coupled Reynolds,.elaaticity and energy equations, The
isothermal problem was solved first and an iterative procedure was
developed to solve the thermal problem, The results show that a
pressure peak exists in the down-stream erd of the film for all
heavily loaded cases. The effect of temperature was to reduce the
pressure peak slightly in all cases, Inhrease in rolling velocity
shifts the location of the pressure peak towards the line of centres.
Increase in the slip velocity also moves the peak towards the line of
centres. At low speeds the surface temperature was higher, The slip
velocity has been shown to be the major factor in the temperature rise.
Friction factor increases initially with sliding velocity and later
decreases. The present results compare more closely as regards the
film thicknesses with experimental findings. The comparison of the
friction factor with experimental findings shows moderate quantitative
agreement.,

The present numerical procedure can be effectively used to
investigate the effects of the material parameter and the load paré-
meter. The effects of non-Newtonian behaviour of the lubricant is
worthy of study, Study of the dissipation of heat for low reference
solid numbers Rsy and Rsy will be of interest in themmal elastohydro-

dynamic studies.
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APPENDIX A
RUNGE-KUTTA 4TH ORDER INTEGRATION TECHNIQUE

Consider an equation of the form y' = f (x,y) where the
prime denotes the derivative dy/dx, The value of y at station
Xl

expansion as

in terms of its values at X is obtained by Taylor's series

n2 . . h
Yol = Y + hyr'l +'§-!- ya +'§-!- yu + emm—m——— (A.1)

X% 4+ h where h is the step size

The Runge-Kutta method proceeds from station x to

station x using values of the first derivative only calculated

n+l
at a number of intermediate points. They are chosen to give agreehent
with the first few terms of the Taylor's series shown in (A.1) above.

A commonly used set is

1= Oy

o
n

th

f (xn + h/2: Yy + -5-)

~
L]

th
f (xn + h/2, Yy +T)
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[
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B R R L

imieirg

R0 N A e N ST bt e i



A2

_ h
Yo41 = Yn + 3 [K1 + 21(2 + 2x3 + K:,] (A.2)

The local truncation error of algorithm (A.2) is 0 (h5). The method
requires the evaluation of the first derivative four times per each
step but this is not much of a problem in a computer. It has the
important advantage that it is self-starting, i.e. it requires only
the value of y at a point x = x in order to find y and y' at
x® X

In the present study, equation (2,40) along with equation
(2.41) can be solved directly through this method if h can be calcu-
lated, In the first cycle of calculation, h can be calculated from
the Hertzian relations (2.27 to 2.30a). In the second sycle of calcu=
lations h is calculated at discreet points through equation (2.26)

and the intermediate values of h needed for the Runge-Kutta technique

is obtained through an Aitken-Lagrange interpolation.
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APPENDIX B
CALCULATION OF ELASTIC DISPLACEMENT
In the calculation of the elastic displacement of the
cylinders we encounter an integral of the form
B .
I =/ p () In|gx|de- (8.1)
-A

If care is not exercised in the evaluation of (B.1), the singularity
in the integrand can cause large errors. The singularity is removable
by adopting the technique of approximating the function p by a poly-
npmial in each sub~interval, performing the integration in closed form
in the sub-interval and summing over the whole region of integration.

The choice of the degree of the polynomial approximation to
p 1s arbitrary depending on the nature of p., In the literature both
linear approximation [18] and zero degree approximation [15] have been
used. However, since the pressure function can have considerable
curvature, the method developed by Wernick [63] is adopted.

Wernick [63] subdivided the interval -A to B into N
sub-intervals requiring only that the value of p (£) be available at
the end points and mid-point of each sub~interval, He represented

N

I(x)= I Ij (x), (8.2)
i=1

"t
:
N
7.
it
s
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where

g
L = | 1o (6)1n|e-x]ag
11
1

and obtained

I, (x) = [(e-x) {In]&-x|-1} {p(E)-%(E-x)p' (E) +

11
(0?2 p"(©)/6} + (E0)? (o' (©)-5(E0p"(©) /9}/4] T

where
P = p' (Ej) = (-3pj + 4pj+35 - pj+1)/2Aj ;
)
' ' ) 2
Piyp =P gy = (py = 4Py * 304400128y ; = 0,2
" " )
P = Py = Oy * 2Ry Py a2, )

and

by = (B = )

B2

(8.3)

(B.4)

(8.5)

(B.6)

This method can be further extended to yleld the pressure distri-

bution if the deformation is available and the pressures at the two end

points of the interval where the deformation is available is knowm.

A series of linear simultaneous equations can be set up and solved for 'fi

the pressure distribution. This has been called in the present study
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as the 'inverted Wernick' method. It will be noticed that the sub-
intervals need not be uniform. A comparison of the results obtained
through Wernick's method and an analytical solution has been presented

in Table I.
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APPENDIX C
ITERATIVE METHOD FOR CALCULATING POLYNOMIAL ROOTS
Given a polynomial

N
f(z) = I anzn
n=0

(c.1)

Let z = x + iy be a starting value for a root of f£(z). Then

P (x+ iy)"l (c.2)

Define x a8 real terms of expanded equation (C.2). Define v, 38

imaginary terms of expanded equation (C.2). Then for

= o1 T V1 (©.3)

v, =%,

n -1t -1 (.4

Let U be the real terms of (C.1), V be imaginary terms of (C.1)

S SR i N S B O R S SR 1 K8 e, s




c2
N
U= ZO ax (€.5)
n=
N
V= ZO ay, (c.6)
nﬂ
or
N
U= a, + I ax (c.7)
n=1
N
Ve 21 a v, (c.8)
1=
N
U
i nfl nx 8 (c.9)
N
U
2_y =~ Zl SARE R (C.10)
nB

Equations (C.3), (C.4), (C.7), (C.8), (C.9) and (C.10) can be performed
iteratively for n=1 to n=N by saving X1 and Yp-1" Using

Newton-Raphson method for computing Ax and Ay the result is

g m —dy X
au? o du?
[ + 6]

(u-g-q-#-v-gﬁ)
by = - w2, ,ou2
[(3;;) +(3;)]

X
]
i
3
4
1

¢




C3
after applying Cauchy-Rieman equations. Thus, for the next iteration

X =x+ M

Y =y+ly

This procedure was found accurate for solving the cubic inverse hydro-

dynamic relation (3.3).
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APPENDIX D
CENTRE-LINE SHIFT TECHNIQUE

The elastic displacement (equation.2,26) can be written

in the form

X2
h=hy+5z+v (0.1)

Dowson and Higginson [59] have shown that any linear correction to

the displacement can be done arbitrarily. If the centre-line of

the cylinders be moved a distancé Ac relative to the pressure distri--
bution, the film thickness becomes

' _(_x-Ac)2
h h + ———2R + vy ‘ (D.2)

- Ac X
R

centre-line shift of Ac produces a linear change in the film thick-

The change in film thickness is + constant, Therefore a

ness, or in other words, a change in the slope of the datum of - Ac/R.



APPENDIX E

INPUT DATA

Diameter of rollers (Rl’ Rz)

M;terial of rollers

Load (W)

Pressure viscosity exponent (a)
Temperature viscosity exponent (B)
Pressure temperature viscosity exponen£ (v)
Inlet viscosity (us)

Modulus of elasticity (El, Ez)
Poisson's ratio (o, 02)

Inlet temperature (Ts)

Thermal conductivity of oil (K)
Specific heat of oil (Cp)

Density of oil (p)

Thermal conductivity of solids (Kl’ Kz)
Density of solids (p,, p,)

Specific heat of solids (C_, C_)
P Py

Pressure density coefficient (C&Q
Pressure density coefficient (CB)

Coefficienf of thermal expansivity (e)

3 inches

steel

0.32 tons/in.

- 0,214 in.%/ton
8300° R

350 in. 2°F/ton
0.4 poise

13500 tons/sq.in.
0.3

110°F

0.1 B/ft,°F hr.
C.4 B/1b.deg.F
0.0325 1b./in,’
26.6 B/ft,°F hr.
0,283 1b./in.}

0.1 B/1b.°F

0,009 sq.in./ton
0,026 sq.in./ton

0.000348 per °F

El




APPENDIX F

RESULTS OF ISOTHERMAL SOLUTION
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Rigld Intermediote / Elastic

FICURE F.1 Minimum Film Thickness Contours
and Range of Present Study
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APPENDIX G

CURVES AND RESULTS FOR THERMAL SOLUTION
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FIGURE G.4 Mid-film Temperature Rise for U = 130 in./sec.
and different Slip Ratios
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APPENDIX H i
FORTRAN PROGRAM ?

RESULTS OF THE ISOTHERMAL SOLUTION WERF STORED

IN LINE FILES AND USED FOR THERMAL SOLUTION
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H2

THERMAL SOLUTION OF ELASTO=-HYDRUDYNAMIC PROBLEM B
* Y MATRIX METHODS

IMPLICIT REAL¥8{A~H,0-2)

DIMENSTON DUY(114101)4DSX(114101)50SY(115101)45{11
*e101)sT{E14101)4VI114101)921(11411)eGXB({101)+FXB(I
*¥01) H(101)4HD(101)4PD(101)+PT(101),y2Z2(1s11),A(001)

*yP(101),0(101),U(2115101)oTLCL(200)¢TLC2(200)DMUE(
% 200)

COMMON Ry AL HO»VS,PSyPMAX4UD
INITIAL VALUES ARE ASSIGNED

READ(Sy101)U24U14DSyVS
FORMAT(4F1046)

ASSIGN INITIAL VALUES OF PRESSURE

NONDIMENSTONALISE

ubp=u1+u2

CALL HERTZ(HDPD)

CALL THERMA(HD+PDsTLCL,TLC2 | )
sTopP

END
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SUBROUTINE HERTZ(HD.PD)

IMPLICIT REAL®8(A-H,0-Z)

DIMENSION HD(101),HND(101),PD(101),PND{101),DPXND(
*{101),D(101)sV(101),XCOF(4),ROOTRI3)yROOTI(3)4HTT{
*101)4COF{4)+DELPD(1141)sPOR{101)4PSPI{191)4HSPI(19
*1)+PDIP(191)yHTT1(101)sHSPIL(191)sHT(101)

COMMON Rs AsHO4VS9PS»PMAX U

EXTERNAL FUN

H0=041620E~04

READ(5+10)PLsS19S24E14E24R14R2

T=(1e=(S1%S1))/E1+(1+~(S2%52) ) /E2

PI=3.1416000

EC=Y/PI

R=R1*R2/(R14R2)

A=2 4 ¥DSART (R¥PL&EC)

PMAX=2,%PL/{PI*A)

C CALCULATE HERTZIAN PRESSURE AND DISPLACEMENT
PS=2+5D00
WRITE(6+20)PLsS519S2+E1+E29R19sR24RyAyHO

20 FORMAT(10F13+6)
WRITE(69+25)
25 FORMAT(T10+*HERTZIAN PRESSURE AND DISPLACEMENT'//T
¥ 15, 'NODE? ¢ T40,'P
~ ARESSURE IN TONS/SQeINe' o T75,*DISPLACEMENT IN INCHE
% SY)
X==5
DO 30 I=1,41
Z1=(A¥A) 7(24%R)
22=DSQART{DABS{ X¥X=14))
HD(1)=21 *(DABS(X*Z2)-DLOG{DABS(DABS(X}1422)))+HD
PD(1)=0,

30 X=X+0e1
X==1,

00 35 [=41,61
PO(I}=PMAX*DSQRT(DABS(1+=X%*X))
HD{ I)=HN

as X=X4+0e1l
J=41
DO 40 I=61,101
HD(I)=HD({J)

PD(1)=0.

40 J=J-1
DO 50 [=1.101
WRITE(6445)1,P0(1)sHD(I)

45 FORMAT(TISy124TA5,F1548,T75¢F1548)

50 CONTINUE

C

CALL ECAL(RJEC,HOsAsPOIHT 10191014995 HDo 1)
C CALCULATE OPTIMUM FILM THICKNESS
C A RUNGE=-KUTTA ALGORITHM IS USED

I TER=1

i A alene

R

RRAEIERS



o

70

64

80

61

90

L g
LI (]
[+ -]

190

197
196

111

130

H4

CALL RRK2{FUNsOosls=5404040414404PND)
DO 60 i=1+41

PO I )=PND(I)%PS

CONTINUE

CHECK WHETHER ASSUMED VALUES OF MINe THICKNESS IS
¥ QeKo

Al=24%PD(40)-PD(38)
EPS=0.1
A2=PD(42)~Al
IF{A24GT+EPS)GO TO 70
IF(DABS(A2) «GT«EPS)GO TO 80
GO TO 90
HO=HO=140E-07
ITER=ITER+1
IF(ITER-100)55455,64
WRITE(6,100)HOy ITER
sTOP
HO=HO+1 + 0E~08
ITER=ITER+L
IF(ITER-100)55,55,61
WRITE(6+4100)HO4ITER
sTap
WRITE(64+100)HOs ITER
DO 110 I=1,101
PD{41)=(PD(42)+PD{40) ) /2,
WRITE(64120)PD( 1)
FORMAT{T104E1546)

PORT P A
CONT INWE

ITER=}

DO 190 J=1,101

HT(1)=HD(1)

CALL ECAL(RJECoHOsAWPDJHTTL,10140014994HD4L)
CALL CLSHIF{HTT14+AsR,HO)

CALL ECAL(R)ECsHOyAyPDyHTT10151015994HDy1)
CALL CLSHIF(HTTyA.R,HO)

DO 196 I=1,101

WRITE(64197)HTTI(I)JHTT(L) 1
FORMAT(T10+2E15+8 »T60,13)

CONTINUE

COMPARE DEFLECTIONS DUE TO MOMENTUM EQNS<AND ELAST
¥ IC EQGNS

SOLVE 'INVERSE 'EQUATIONS
ACONS=PS¥HD*HO*20004 /(12 %¥A%0,4%] ¢ 4503%1 ¢ 0E~05 )
BCONS=U/2,
CCONS=U/2,
DCONS=14+(0+009%PD(51)/{14402560%PD(51) ) )
DO 130 1=41,61

PND(I)=PO(I)/PS

S AW Y A R e A e S A R
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140

160

250
150

C

11

192
191

163
194

900
10

100

HS

DO 140 I=41,60
DPXNDLT)={PND(1+1)-PND(1-1))/0.2

DPXND{61)=0.

J=1

M=3

MM=41

NN=61

DO 150 I=MMJNN
D(I)=164(0s009%PD([)/(14+040260%PD(1)) )
V{I)=DEXP(PND(1))

XCOF ( J) =DCONS*CCONS
XCOF(J+1)==D{1)*CCONS

XCOF (J+2)=0.

XCOF (J+3)=ACONS*DPXND (1 )%D(1)/V(1)

CALL OPOLRT(XCOF4COFy3,RO0TRyRO0TI,IER)
WRITE(6+160)ROOTR(1)4ROOTI(1)sROUTR(2)4ROOTE(2)4RO
* OTR{3),ROOTI(3),
AIER

FORMAT(6E1548+T100413)

HT(I)=ROOTR(1}*HO

WRITE(6,250)HT(1)

FORMAT(T104E1548)

CONT INUE

HT(61)=HO

CALL HELMAT{HTJECsPyA)

CALL ECALI(HTT,HT4PDJECsA)

IFLAG=1

IFLAG=S

IF(IFLAG.EQe1)GO TN 900

WE WRITE VALUES SO FAR CALCULATED AS DATA IN FILE
& BRIGU -3
WRITE(3+10)PLyS1+524E14E24R1,4R2
WRITE(3511)EC4Ry AsPMAX,PS
FORMAT(T5,5E1548)
WRITE(34100)HO »ITER

DO 191 I=1,101
WRITE(35192)PD{I)sHO(T)4HTT(I)
FORMAT(T10,3E15.8)

CONTINUE

DO 194 1=41,61
WRITE(3,193)HT(I1)
FORMAT({TI0+E15.8)

CONTINUE

GO TO 901 .
WE READ BACK DATA FROM FILE 3
READ{3+410)PLsS19S2,E14E24R19R2
FORMAT{F10¢542F5e342F104242F5+3)
READ(3411)ECyHeA4PMAX,PS

READ(3,100)HO, ITER
FORMAT(ELS5¢64T40,13)

SANONCHE RV

B s e AN P




296

297
901
151

101

102

262

251
253

255

399

400
170

Hé

DO 296 I=1,4101
READ (3¢ 192)PD( 1) oHDLT)yHTT(T)
CONTINUE
DO 297 [=41,61
READ(3:193)HT( 1)
CONTINUE
DO 151 I=1,41091
PDIP{1)=0.
D{S1)=140D00+(0+009%PD(S1))/{1+0+026%PD(51)})
DO 101 I=1451
PSPI(1)=PD(1)
J=151
DO 102 1=61,101
PSPI (J)=PD(1)
J=J+l
1J=1
IKN=72
JJdd=1
SPIX=0.,760001D00
SPIX=0,800001D000
LL=25
LL=35
LL=21
DO 400 1Q=1,dJJ
SPIX=SPIX=0401
LL=LL+]
IKN=TKN+1
L=SP1X/70.01
LP51=L+5]
LP52=1L452
THE SPICAL ROUTINE FIXES SPIKE POSITION
D0 253 [=LP52,151
PSPI(I)=0.
JUK=3
DO 399 NI=1,JUK
CALL SPICAL(RsECsAsHToHTT,PDsD sPMAXyHOyHSPI PSPPI,
%1 JoPDIPsSPIXyNIyHSPI1 4 IKN)
CALL DIPCAL(HOsVSsPS+HSPI1+PSPIsUsAsDsLLsPOIP)
CALL CHEOIP(PDIP,I1J)
THE DIPCAL ROUTINE FIXES PRESSURE IN DIP
CONTINUE
CONTINUE
RETURN
END

i ik s
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20

27
80
21

[}

o000

(2]

75

22

(g}

301
300

H7

SUBROUTINE SPICAL(R¢ECeAsHT4HTT,PD,D+PMAX +HOLHSPL
%,PSPI o 1JsPOIPSPIX NI JHSPIL9IKN)
IMPLICIT REAL¥*3(A-H,0-2)

DIMENSION HTT(IOI)‘HT(IOI)'PD(IOI).D(IOI)oPSPI(IO
*l)oDO(l9l)oHSPl(lQl)oHSPll(lgl)'PUIP(lQI).Al(l9l)v
*PDP(191)

DIVIDE REGION C AND D INTO 100 EQUAL PARTS
L=SPIX /0401

LP53=L+53

LP51=L+51

LP52=L+52

X=0

IF{N[GT.1)GO TO 80

D0 20 [=51,LP51

01=DABS(1+-X¥%¥2)

PSPI (1)=PMAX*DSQRT(Q1)

X=X+0+01D00

READ(5+27) (PSPT(1),1=113,LP53)
FORMAT(20F542)

DO 21 I=1,191
“POP{1)=PSPI(])

WE NOW HAVE ASSUMED PRESSURE IN REGIUN D AS ZERO

CALCULATE THE ELASTIC OISPLACEMENT
CALL ESPCAL(RJECyAsPSPIsHSPI1,4HO)

DD CENTRE LINE SHIFT

DO 75 K=524151
DD(K)=1-ODOO+(O-OOQtPSPl(K))/(l.+0.026#PSPl(K))
Al (K)=D{51)*HO/DD(K)

CONTINUE

C=(HSPI1(52)-HSPT1(102))#R/{A%0450)
CONST=HO=-HSPI1(52)+C¥0+01*A/R

D0 22 1=52,4151

SHINC=C*{ [-51 ) #A%0,01/R

HSPIL (1)=HSPT1(I)+CONST+SHINC

IN ORDER TO MAKE THE FILM SENSIBLY PARALLEL FILM P
RESSURES IN REGION C ARE INCREASED

DO 300 K=52+151

WRITE (65301)KsPSPIIK) yHSPT1(K) sAL(K)
FORMAT(T10,13,T45,3E15.8)

CONTINUE

RETURN

END

K
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15

20

25
26
17
18
19

21
22

23
24

30

41

42
43
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SUBROUTINE ESPCAL(R4ECsA+PSPI,HSPIZHO)

IMPLICIT REAL¥B{A~H,0-2)

DIMENSION E(191),U(191),AK(191),PD1(191) ,PDD (191
%) PSPI{191),HSPI(191),SUM2(191),5UM3{191)

DO 10 J=1,51

E(J)={J=-1)%0e1=5¢

D0 15 J=52,151

E(J)={J=51)%0,01

DO 20 J=152,4191

E(J)=(J=151)%0s1+1,

X==54¢

DO 40 K=1,191

SUM=0,

DO 30J=1,189,2

Ul =E(J) =X

U(J+2)=E({J+2)=-X

Al1=DABS(U{J))

A2=1,0E~03

IF{A1-A2)25,25+26

AK{J) =0,

GO TO 17

AK(J)=05%0(J)%U(J) X (OLOG(DABS(U(J) ) )I=1.5)

M=J+2

A1=DABS(U(M))

IF(A1-A2)18+18419

AK(M) =0,

GO T0 21 .

AK{M)=0s5%U{(M)%U(M) & (DLOG(DABS(U(M)}))=1.5)

IF{J=-49)22+22423
POL(J)=(=3e%PSPI{J)+4.¥PSPI(J¢]1)=-PSPI(J+2))/(042)
PDL1(J42)=( PSPI(J)=4¢*PSPI{J+1)+3.%P5P1(J#+2))/(0,.2
* )

POD(J)I=(PSPI(J)=2+%PSPI{J+1)+PSPI(J+2))/0.01
SUML=(PD1 (J) *AK( J)=PD1(J+2) *¥AK(J+2) )=PDD(J)/3e ¥ (U{
*J)R{AK(J)=U(I)RUTI )76 )=U(J+2) R (AK(J+2)-U(JI+2)%0(J
*4+2)/64¢))

GO TO 30

IF(J~-149)24,24,22
POI{J)=(=3e%PSPI(J)44e4PSPI(J+1)=PSPI{J+2))/10.02)
PDI{JS+2)=( PSPI(J)=86,%PSPI{J+1)+3.%PSPI(J+2))/7(0.0
¥ 2)

PDD(J)=(PSPI(J)=2+%PSPI(J+1)+PSPI(J+2)) /70,0001
SUMLI=(PD1{ J)XAK(J)=PDI{J+2)*¥AK(J+2) ) =-PDD{J)/3«*(U(
* J)Yk(AK(J)=U(J)%U
ACJY/66)=U{J+2)%(AK(J+2)=U(JI+2)2U(J+2)/64))
SUM=SUM+SUM1

IF(K=51)41441,42

X=X+0s1
SUM2(K)=SUM .
60 TO 40
IF(K=-151)43,43,41
X=X+0,01

SUM2 (K )=SUM

SRR TINE RS

RO
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CONTINUE

X==5e

DO 50 K=1,51
SUM3(K)=SUM2{K)-SUM2{51)
GL={X¥¥2) k(A%%2) /{2,%R)
G2=2 4 ¥ECHA¥SUM3(K)
HSPT(K)=HO+G1~-G2

X=X+0e1l

X=0o

DO 60 K=51,4151
SUM3(K)=SUM2{K)~-SUM2(51)
Gl=(X*k2) #(AX¥2) 7(2+%R)
G2=2 ¢ *ECXAXSUM3(K)
HSPI(K)=HO+G1-G2
X=X+0+01

X=1e

D0 70 K=151,191

. SUM3(K)=SUM2(K)-SUM2(51)

G1=(X#%2) ¥(A%**2)/{24%R)
G2=2 ¢ ¥*ECKAKSUM3(K)

HSPI (K)=HO+G1~G2
X=X+0.1

RETURN

END
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SUBRNUTINE CHEDIP(PDIP,1J)
IMPLICIT REAL#¥8(A-H,0-2)
DIMENSION POIP(191)PTOIP(LSL)
IF(1J=1)10+10420

DO 15 I=1,191

PTDIP(1)=PDIP{I)

RETURN

" EPS=1.0E-02

SUM=0.

Do 30 [=103,150

A1=DABS({PTDIPL I)-PDIP(1))/PDIP(T1})
IF(5SUM=A1)36530+30

SUM=A1L

CONTINUE

IF{SUM=EPS)40+40+41

IF{1J-5)42+43443

WRITE(6444)1J

FORMAT (TS5, 'NO CONVERGENCE IN?',12,* ITERATIONS')
GO TQ 42

WRITE(64+45)1J

FORMAT (TS, *CONVERGED IN 512, *ITERATIONS®)
1J=5

D0 50 I=1,191

PTDIP({ 1)=PDIP(I)

RETURN

END
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SUBROUTINE DIPCAL(HOsVSyPSeHSPLsPSPLyUsAsDsLLPDIP
x )
IMPLICIT REAL*8(A~H,0-2)
DIMENSION HSPI(191)4PSPI(191)sD(101)42(101)s VAL(1
*¥01),H(101),PDIP(191)
VAL(1)=0.
R30=D{51)
UB=6 ¢ XVSkU%1 ¢ 45E=05/ (PS*A%2000,.)
HOND=HN/ A
RO=1.
J=153~LL
H{1)=D{(51)%HQ/A
D0 10 [=2,LL
H{I)=HSPI(J)/A
RO=140D00+(0s009%PSPI(J) )/ (1:+0.026%¥PSPI(J))
VAL(I)=UB*(H(I)=-HCND*ROO/RO)/(H{] )*x3)
J=J+1
NDIM=LL
E=04,01
CALL DGSF(EsVALyZyNDIM)
DO 50 I=1,LL
Z{1)=Z(1)+1.
WRITE(6520)2(1)
FORMAT(T104E15.,8)
CONT INUE
J=153-LL
DO 30 I=2LL
Al=1e/(1e-2(1))
IF(A1160460,70
A2=DLOG(A1l)
PDIP(J)=A2%PS
WRITE(6+40)A2,44PDIRP(J)
FORMAT(T104F15484T35,13,T554F158)
G0 TO 30
WRITE(6461)LL :
FORMAT(T104 *NECESSARY TO MOVE SPIKE TO THE RIGHT.V
& ALUE OF LL',13)
STOP
J=J+1
J=153~-LL
DO 80 I=J,s150
PSPI(I)=POIP(I)
PSPI(151)=0.
J=152
POIP(J~LL)=PSPI(J=LL)
RETURN
END
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SUBROUTINE DPOLRT(XCOF s COF ¢My ROOTR4RODTI 4 IER)
IMPLICIT REAL*¥8{A-H,0-2)
DIMENSION XCOF{1),COF(1)+ROOTR{1),4RO0TI(1)
IFIT=0
N=M
1ER=0
IF(XCOF(N+1))10+25410
IF(N)15,15,32

SET ERROR CODE TO 1

IER=1
RETURN
SET ERROR CODE TO 4
TIER=4
GO TO 20

SET ERROR CODE TO 2

1ER=2
GO TO 20
IF{N=-36) 35435,30
NX=M
NXX=N+1
N2=1
KJ1=N+1
DO 40 L=i,KJI1
MT=KJ1-L+1
COF{MT)=XCOF (L)

SET INITIAL VALUES

X0=0.00500101
Y0=0.01000101

ZERO INITIAL COUNTER

IN=0
X=X0

INCREMENT INITIAL VALUES AND COUNTER
X0==10,0%Y0
Y0=-10+0%X

SET X AND Y TO CURRENT VALUE

X=X0
Y=Y0
IN=INtL
GO TO 59




55

0

59
60

70
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78
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80

85
90

(g

95

100

105

IFIT=1
XPR=X
YPR=Y

EVALUATE POLYNOMIAL AND DERIVATIVES
I1CT=0

UX=0e0

UY=0,.0

V=0.0

YT=0.,0

XT=1.0

U=COF(N+1)
IF(U)654130465

DO 70 I=14N

L=N=-1¢1

TEMP=COF (L)
XT2=X&XT~Y%YT
YT2=XkYT+Y¥XT
UsU+TEMP%XT2
V=V+TEMP£YT2

FI=1
UX=UX+F [ ¥XTXTEMP
UY=UY=F IxYT*TEMP
XT=XT2

YT=YT2

SUMS Q=UX*UX+UY*UY
IF{SUMSQ)75+110,75
DX=( V&UY=U%UX) /SUMSQ
X=X+DX
DY=={U%UY+VHUX)/SUMSQ
Y=Y+DY

IF(DABS(DY)+DABS(DX)=10D=05)100480,80

STEP ITERATION COUNTER

1CT=1CT+1
IF(ICT-500)60,85,85

IF(IFIT)100+90+100
IF(IN=5)50495:95

SET ERROR CODE TO 3
TER=3
GO YO 20
DO 105 L=14NXX
MT=KJ1-L+1
TEMP=XCOF {MT)
XCOF (MT)=COF (L)
COF(L)=TEMP

ITEMP=N
N=NX
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115

120

122
125

130

135

140
145
150
155

160

NX=1TEMP
IF{IFIT)120455,120
IF(IFIT)1159504115
X=XPR
Y=YPR
IF1T=0
IF{DABS{Y)=1.,0D-4%DABS{X)) 135,125,125
ALPHA=X+X
SUMSQ=X*X+V¥Y
N=N-2
60 TO 140
X=0e0
NX=NX-1
NXX=NXX=1
¥=040
5UMSQ=0,0
ALPHA=X
N=N-1
COF{2)=COF(2) +ALPHA¥COF(1)
DO 150 L=2,N
COF(L#+1)=COF(L+1)+ALPHA®COF(L)~SUMSQ*COF(L~1)
ROOTI(N2)=Y
ROOTR(N2)=X
N2=N2+1
IF(SUMSQ) 160,165,160
Y==Y
SUMSQ=040
GO TO 155
TF{N)20+ 20445
END
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SUBROUTINE RRK2{FUNsHeXIoYIsJsJJsVEC)
IMPLICIT REAL#*8(A-H,0-Z)
DIMENSION VEC(41)
VEC(1)=0.
H2=H/2.
Y=Y1
X=X1

DO 2 I=1,JJ
DO 1 J2=14J
TI=H*FUN(X,Y)
T2=HRFUN(X#H2,Y+T1/24)
T3=HAFUN(X+H2,Y4T2/24)
T4=HRFUN(X$#Hy Y+T3)
Y=Y+(Tl+2.‘T2+2.*T3+TQ)/6.
X=X+H
VEC(I+1)=Y
RETURN
ENO
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FUNCTION FUN(X,Y)

IMPLICIT REAL*8(A-H,0-2)

COMMON Ry AsHOIETA0PS+PMAXSU
A1=DSORT{DABS{X*%*2-14))

HB=( A*A/R) *(DABS( X*A1)-DLOG(DABS{DABS(X)+A1)))/2.
H=HB+HO

PO=PMAX/PS

RDO0=1 e+ ({:003%PSkP0)/(1++s0067%P5%P0))
HND=H/A

HBND=HB/A

HOND=HO/ A

RO=1¢+({{+003%PSkY)/(1e+e 0067%PSkY))
UB=6+¥ETAOKU%* 1 445E-05/(PS*A%¥2000.)
FUN=UBXDEXP(Y ) k( HND=-HCND*R0Q0/R0) /7 {HND*%3 )
RETURN

END
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SUBROUTINE ECAL(RJECoHDsAsPDoHT 1KC.KD0KE|HD|L)

IMPLICIT REAL%B(A=Hy0-2)

DIMENSION E(lOl’oU(lOl)oAK(lOl)oPDl(IOI) POD(101),
*SUM2(101) (SUM3(101)4HT(101),HTT(101),PD(101),HD(10
*1)

WRITE(641)RyECIHOWAsKCoKDsKEsL

FORMAT{4F15.84+414)

DO 10 J=LsKC

E(J)=(J-1)%0e1 =5,

CONT INUE

==5

00 40 K=L,KD

SUM=0,

DO 20 J=LiKEy2

UJ)=E(J)=X

U(J+2)=E(J+2)=X

Al=DABS(ULJ))

A2=1,0E-03

IF{A1=-A2)15415+16

AK(J)=0,.

GO TO 17

AK{J)=0+5%U{J)*U{J) ¥ (DLOG(DABS(U(J)))=1:5)

M=J+2

A1=DABS(U(M))

IF(A1-A2)18418,+19

AK(M)=0.

GO YO 21

AK(M)=0¢5%U{M)*U(M) % (DLOG(DABS(U(M)))~1.5)

PDI(J)=(~3e%PD(J) #44¥PD(J+1)-PD(J#+2) )/(0,+2)

PDI{JI+2)=(PD(J)=8,4PD{J+1)+3:%PD(J+2))/1{0.2)

PDD{JI=(PL(J)=24PD(J+1)+PD(J+2)) /0401

SUMI=(PD1 (J)*¥AK(J)=PD1(J+2 ) ¥AK(J+2) )-PDD{J) /3« ¥ (U(
J) $CAK(I)I=ULJIRULI )/66 )=U(J+2) ${AK(J+2)=U(J+2) *¥U(J
¥42)/64))

SUM=SUM+SUML

IF(KE«EQ99)G0 TO 22

Al= DABS(E(KC)=X)

IF(A1-A2)22422,23

ADD=0.

GO TO 24

ADD=PO(KC) *¥(E(KC)=X)*{DLOG(DABS{E(KC)=X))=1¢)

SUM=SUM+ADD

IF(L=-1)25425+26

SUBTRA =0

GO T0O 27

A1=DABS(E(L)=X)

IF (A1=A2)28+28429

SUBTRA =0,
GO TO 27
SUBTRA =PD(L)*{E{L)-X)*(DLOG{DABS(E{L)=X))=14)
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SUM= SUM=-SUBTRA

X=X+0.1

IF({K ¢EQeS1 ) SUMX=SUM
SUM2 (K)=SUM

CONTINUE

==5

DO 50 K=1,KD
SUM3{K)=SUM2(K)-SUM2{51)
Gl=(X¥¥2) X (A%%2)/(24%R)
G2=2 ¢+ ¥ECKAXSUM3(K)

HT(K )=HD+G1-G2

X=X+0.1

CONTINUE

RETURN

END
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SUBROUTINE CLSHIF(HT»AsRsHC)
IMPLICIT REAL®8(A=H,0-2)
DIMENSION HT(101)
C=(HT(49)=HT(50) )xR/(041%A)
CONST=HO=-HT(50 )+ (HT(49)=-HT(50))
X==5,

DO 195 I=1,101
HT(L)=HT(I)=C¥X¥A/R+CONST
X=X+041

RETURN

END
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SUBROUTINE HELMAT(HToECeReAA)

IMPLICIT REAL*8(A=H,0~Z)

DIMENSION HT(101)oDELPD(10+1)9A{10410)¢HCH(1041)48
¥ (10)4R{10,1)

THE MATRIX FOR STRAIN IN REGION B DUE TO DELTAP IS
¥ SEY '

HH=041D00
B(1)=28¢/90+%0L0OG( 10+ *HH) ¥HH
B{2)=324%3 ¥DLOG{9 +*HH) ¥HH/90 »
B(3)=12:s%44%DL0OG(8 ¢ ¥HH)%*HH/90
B(4)=324%4%DLOG(7 e *HH)%*HH/90
BU5)=2e %7 e %4 ¥DLOG (60 *HH ) ¥HH/ 904
B(6)=HH%32 ¢ %4 o ¥DLOG( S e *HH ) /90,
BT )=HH*12 %4+ ¥DLOG( 44 *HH ) /90,
B(8)=HH%*32 %4+ *DLOG(3+*HH) /90,
B9 )=HH*T o ¥4 ¢ ¥DL.OG{ 24 ¥HH ) /90 ¢ +HH* 0 e S4OLOG( 24 ¥HH)
B{10)=HH*0 +S¥DLOG(HH)
A{l+1)=HH¥{DLOG(HH)-1,)-B(1)
A(2+1)=~8B(1)
A{3,1)=0,5%HH*DLOG(2+*HH)-B(1)
Af{4,1)=0¢333333%HH¥DLOG(3e%kHH)-8B{1)
A{S41)=0e375%HH#DLOG(4e%HH)=B{ 1)
K1=5
K2=4
K3=3
K4=2
KS=1
D0 10 I=6,10
All41)=7e%44%DLOG(K1%HH) ¥HH/90+.-B(1)
A(l52)=32:%4e%DLOG(K2%HH ) ¥HH/90.~-B(2)
All,33)=12¢%4¢%DLOG{KI¥HH) ¥HH/904-B(3)
A(L+4)=324%4 ¢*%DLOG(K4*¥HH) ¥HH/ 304-B(4)
AlT+5)=Te¥4+%DLOG{KS*HH) *¥HH/ 90 .~B(5)
Kl=K1+1
K2=K2+1
K3=K3+1
Ké=Ka+1
KS5=K5+1
A(T795)=A07+5)+0+S¥HHEDLOG( 2 o kHH)
A{8+5)=A(B95)+0¢3333F¥HH¥DLOG(3+*HH)
A(995)=A{945) +0,375%HH*DLOG( 4 ¢ kHH)
A(10+5)=A(10,5)+28+%DLOG(S e *HH) /90,
K=2
D0 15 [=1,5
A(1,K)=7 e ¥4+ *¥DLOG{ HH ) *HR/90 ¢=B(K)
A(T9K41)=324%4 o kHHADLOG( 2 e%HH ) /90 ¢~B(K#¢1)
A{TsK+42)=12e%4 4 %DLOG{3 o ¥HH) kHH/90 e =B (K+2)
A{T+K+3)=324%4 4 4DLOGE 4 o ¥HH ) ¥HH/90 o =B(K+3)
AlT3K+8)=T7e%4 o ¥ DLOG{ S ¢ ¥HH) ¥HH/ 90+ ~B(K+4)
K=K+l
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A(146)=A(146)+28+%DLOG(5+*HH) ¥HH/90,
A(247)=A(27) 4284 #DLOG( S o ¥HH)&HH/ 904
A(348)=A(358)+0¢375HH*DLOG(Se*HH)
Al439)=A(4849)40033333¥HH*DLOG(S ¢ ¥HH)
A(5410)=A(5910)+04S¥HHKOLOG(Se¥HH)
DO 16 [=2410
A(141)=2 ¢ *HH¥DLOG( HH )=HH-B(T)

REST OF THE ELEMENTS ARE LISTED INDIVIDUALLY
A(342)=0+5%HH¥DLOG(HH)=B(2)
A4y 2)=1433333%HHDLOGI 24%HH) -B(2)
A{592)=9 ¢ ¥HHEDLOG{ 3o ¥HH) /84~B(2)
A{443)=0033333%HH*DLOG{HH)-B(3)
A(593)=9¢%HHXDLOG(2 s *HH)/8e~B(3)
A{S544)=0,375%HHEDLOG{HH)-B(4)
A{7¢6)=045%HH¥DLOG(HH)=B(6)
A(846)=143333%HH*¥DLOG{2 «*HH)-B(6)
A(946)=9 ¢ ¥HHKDLOG( 3 e ¥HH) /84~B(6)
A(1046)=HH%32 %4 ¢ ¥DLOG( 4 ¢ ¥HH) /90,-8(6)
Al147)=324%4 o ¥HH*DLOG( 64 *HH) /90.-B(7)
A6 47)=7e%4 ¢ ¥XHH¥DLOG(HH)/904~B(T)
AlBe7)=043333%HH4DLOG(HH }=B(7)
A(947)=9 ¢ *HH&DLOG( 20 #HH) /8 «~B(7)
AC1047)=124%4 o *¥HH¥DLOG{3 e¥HH)/90,-B(7)
Al148)=12%4 ¢ kHHEDLOG( 7o ¥HH) /790 4-B(8)
A{248)=324%4 XHHEDLOG( 60 *¥HH) /904~B(8)
A(698)=324%4 o ¥HH¥DLOG( 20 %HH) /90 ~B(8)
A(748)=0,375%HH¥DLOG(HH )-B(8)
A{9+8)=0,375%HH¥DLOG(HH)-B(8)
A{1048)=324%4 ¢ kHH¥DLOG(2 4 %HH)/90¢-B(8)
A{149)=32¢%4 o ¥HH¥DLOG( 8¢ *¥HH) /904 =B(9)
A{2+9)=124%4 ¢kHH¥DLOG{ 74 #HH) /904~B(9)
A{349)=94 kHHXDLOG(6 ¢ *¥HH) /B +~B(9)
A1649)=12¢%HH*¥4 ¢ ¥DLOG( 3 ¢ ¥HH) /90 ~B(9)
A(749)=9, ¥HHEDLOG( 20 %HH) /8,.-B{(9)
A{8,9)=HH¥OLOG(HH )/3.~B(9)
A{1049)=7¢%4o%HH*DLOGIHH)/ 90+ ~B(9)

A(1510)=HH®T o %4 o %DLOG( I e #¥HH )/90 o +HH%0 4 S¥DLOG( 9o ¥HH

* )=-B{(10)
Al{2010)=324%4 ¢ ¥HHEDLOG(8 o *¥HH)/904~B(10)
A(3+10)=7¢*%HHEDLOG{7 + ¥HH)/Be-B(10)
A(4510)=4,%¥HH*DLOG(64%HH)/34-8(10)
A{6+10)=32+%4 ¢ ¥HHXDLOG(4 « XHH) /90.~B( 10)
A(7410)=9,%HHXDLOG(3 +¥HH) 78.-B(10)
A(B210)=4 ¢ *HH¥DLOG(2 ¢ *¥HH)/3¢~B(10)
A{9910)=0¢5%HH4DLOG(HH)=B(10)

DO 20 I=1,10
WRITE(6919)(A{IsJ)9J=1410)
FORMAT(10F12.8)

CONT INUE

K=41

s
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DO 25 I=1,10
RULs1)=HT(K)/ (24 %AAXEC)
WRITE(64100)R{I+1)y HTL(K)q AALEC
FORMAT(4F15.8)

K=K+1

M=10

N=1

EPS=1,0E-03

CALL DGELG(RsA+MIN4EPS, IER)
WRITE(6+419)( R{Is1)s1=1,10)
RETURN

END
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SUBROUTINE ECALLI(HTToHT.PDLEC,A)

IMPLICIT REAL*8(A=H,P=2)

OIMENSION HTT(101)4HY(101),PD(101)4E(101),U(101).4A
¥K{101)+C{9+49)4D(9s1)4G6(101)

DO 6 I=41,51

WRITE(6,5)HTT(I)oHT(I)

FORMAT(T10,2E1548)

CONT INUE

WRITE(64.7)EC,A

FORMAT(T1042F15.8)

NnO 10 J=1,101

E(J)=(J=-1)%0.1 =5,

CONTINUE

X==1+1D00

00 40 K=1,9

X=X+0.1D00

D0 20 J=414+51,42

U(Jd)=E(J)-X

U(J+2)=E(J+2)~X

A1=DABS{U(J))

A2=1 ,0E-03

IF(AL=-A2)15,15,16

AK(J)=0.

GO TO 17
AK(J)=0s5%U(J)*U(J)*(DLOGIDABS{U(J)))~145)
M=J+2

Al=DABS{U(M))

IF{A1-A2)18+18,19

AK(M)=0,

GO0 10 21
AK{M)=0e5%U(M) ¥U(M) % (DLOG{DABS(U(M) ) )=145)

GJI=ULJ)*(AK(J)=UCJI)RU(J)}/64)=U(I+2)kAK(I+2)-U{
* J+2)3U(J42)/64)

6{J)=G(J)/3,

CONTINVUE

G(S51)=G(49)

DO 30 1=41,51,2

AK(I)=AK(I)}=AK(S1)

G(1)=6(1)-G{51)
C1=4e%AK(41)/06248e%AK(43)/062424%G{41)/0401
C2==AK(41)/0¢2-3+%AK(43)/042-G(41)/0.01
" C3==3e%AK({43)/70.2-AK(45)/7042-G(43)/0,01

Ca=4 4 %AK (83 )/04244+%AK(45)/06242%G(43)/0.01
C5==AK(43)70¢2=3+%AK(45)/70.2-G(43)/0.01
C6==3e¢%AK(45)/042=AK(47)/70:2-G(45)/0401
CT=44%AK(45)/70e244 ¢ ¥AK(47)/00242%G(45)/70,01
C8==AK(45)/042=34%AK(47)/04:2-G(45)/04+01
C9==3.%AK(47)/7042-AK(49)/042-G(47)/70,01

D1=4 . %¥AK (87 )70 0244 o ¥AK{49)/042424%G(47) /0401
D2==AK(47)/042=3,%AK{49)/70¢2-G{47}/0.01
D3==3+%AK(49)/0.2=AK{51)70.:2=G{49) /0,01
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D4=4 4 #AK(49)/0 e 244 ¢ kAK(51)/ 06242 4%G(49) /70,01
C{Ky1)=C1
C{K¢2)=C24C3
C{Ke3)=Cs
C(Ke4)=C54C6
C(K+5) =C7
C(Ky6)=C84C9
C{K,7)=D1
C(Ky8)=D24D3
C{Ks9)=0D4
CONTINUE -
J=41
DO 100 I=1,9
DIIs1)=(HTTL{J)-HT(J))/(2+%ECXA)
WRITE(6+99)D(Is1)
FORMAT(T10,E1548)
J=J+t
0OPS=1,0E-03
M=9
N=1
CALL DGELG(D+CeMsNsOPS,IER)
WRITE(6+90)(D(1s1)4+1=1,9)
FORMAT(T549E1245)
J=42
DO 150 I1=1,9
PD{J)=PD(J)-D(I,s1)
J=Jd+1
RETURN
END
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SUBROUTINE THERMA(P.H,TLCI,TLC2) g

THERMAL SOLUTION

IMPLICIT REAL*8{A=H¢K=Z)

DIMENSION P(200) 4H(200)4+A1(200)4B1(200)4C1(200),D1
*(200)sT(200)sP1(200)+Q1(200)+61(200),0PX(200) 4DMU1L
*(200),YMUBAL(200) ¢ DMUE(200) s DMUEP (200} 4 TLC1{200),T
*LC2(200) yVL{200) »CO({200) ¢ CMEGAN(200) 4 DMINT(200),TT
*(200)sPP{200)+DDPX(200) sDMUEP2{200)oROB(200) 4 UU(20
%0),DUY(200) s TAU(200) yFTRAC(200)+FTRACS(200) 4 DFTRAC
A{200),DITRAC(200)

WRITE(6+9)(P(I)sI=14121)
WRITE(6+9)(H(I)sI=1,4121)
FORMAT(121F10.7)

HO=.453D-04

L=1,2837D-02

VIS=0.580-05

VLS=VIS

W=0.32

ERPS2=0.

NONDIMENSTONALISE PRESSURE AND H

DO 2 [=14121
P(I)=P(I)*L/(2s%W)
H(I)=H(1)/HO

WRITE(6:49) (P(1)41=14121)
WRITE(6+49)(H(I)s1=1,121)
HH=0405

JOIM=21

CALL ODET3{(HH4P+DPXoJDIM, IER)
J=1

D0 3 I=21,121

PP(J)=P(1)

J=J+1

HH=0,005

JDIM=101

CALL DDET3(HH,PP4DDPX,JDIN,IER)
D0 4 J=1,101
DOPX({J+20)=DDPX(J)
WRITE(6+9)(DPX{I)+s1=1,121)

VALUES OF THE PHYSICAL CONSTANTS ARE READ IN

READ(5+11)KSyKL+CPS»CPL,DS,DL
FORMAT(6F1047)

CALCULATE VELOCITIES

H25
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DO 999 [JMK=1,2

READ (S+12)ROLVEL,SLIP
FORMAT(2F1045)
U1=ROLVEL*{1+=SLIP)/(24~SLIP)

U2=ROLVEL-U1

NRITE(69110)KS KL +CPSyCPLyDS+DLsROLVELsSLIPyU2,UL

FORMAT(10E13.47/77/7/)

CALCULATE REYNOLODS PRANDTL s ECKERT NUMBERS
REY=DS*ROLVEL#L/(VIS®32.2%124)
REYM=REY*HO*HO/ (L*L)
PRANL=CPL¥VLS/KL*¥432006%3242%12¢
ECKT={ROLVEL*%2) /7 (CPL*5704%3242%12:%12+%778,)
M=W%2000¢/(CPL*DLAS5704%05¥L*¥7784%124)
WRITE(6s111)REYSREVMoPRANL +ECKToM
FORMAT(5E13457/77)

DO 15 I=1,153
T{1)=1.0
JJ=102

Ji=1

TEMPERATURE CALCULATION IN FLUID STREAM BEGINS

DG 70 JJJ=11,121
WRITE(6+170)JJJ

FORMAT (50X, *STATION? 413}
ITER=1

HRI=KS*HD/KL

RSI=L%DS*CPS*UI ¥HR1*%HR1%43200+/(L*L*KS)
RS2=RS1%U2/U1
WRITE(64+112)HR14RS14RS2
FORMAT{3E1345//7/7)
IF{JJJ=22)20+21421}

DXB=0405

GO TD 22

DXB=0,005

DYB1=0,05
DYB82=0405
DYB=0.1
DO 57 111=1,50
DO 25 Ji=1,19
AlL{J1)=3.%RS1 +4.%DXB/(DYB] %%2)
B1(J1)=~2,%0DXB/{DYBl¥%2)
D1(J1)=81(J41)
CLEJ1)=RSIX{(T(JI4I1=50)%4e=T(JJ4J1~-101))
IF(J1eEQe11CI{J1)=CL1{I1)=D1(J])
CONT INVE

BOUNDARY CONDITION
A1{20)=(1e+ pys/oYae1)
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B1{20)=~1,
Dl1{20)=~ oYB/pvyal
C1(20)=0,

ENERGY EQUATION FOR LUBRICANT

CALL CALMU{JJJ»P»ToVL s DMUL 4 YMUBAL » DMUEsDMUEP+TLCY
*TLC2WoLDMUEP2,U1,U2)

CALL REEJAY(PRANL ¢yREYMsDXByDYBsHoHOsMyL +EPS24JJJs W
¥ 4DPX s YMUBAL,DMUL 4OMUE 4DMUEP»QQ+VLSyROLVEL yU1,U2,VL
* g OMEGANy OMINT 9Py ECKT yROB s UU sDUY» TAULT)

DO 30 J1=21,29

A1(J1)=0Q(J1-19)

B1(J1)==-DXB¥2e /7(DYB*DYB*H{JJJ)*H(JJIJ))

D1(J1)=B1(J1)

C1(J1)=0OMEGAN(J1=1G) %VL{ J1=19) +OMINT(J1-19) *T(J1+5
£2)%4 o =DMINT(J1-19) ¥T(J1+1)

CONTINUE

BOUNDARY CONDITION BETWEEN LURRICANT AND SOLID2

Al1(30)=1.+0YB/DYB2

D1(30)==1,
81(30)=-DYB/DYH2
C1{30)=0.

ENERGY EQUATION FOR SOLID 2
DO 35 J1=31,49 ,
A1(J1)=3.4RS2+4 4 ¥DXB/ (DYB2%%2)
B1{J1)=-2,$DXB/ (DYB2+$2)
D1(J1)=B1(J1)

© CL{J1)=RS2¥(T(JII+J1=~50)%4¢=T(JJ+J1=101))

C1(49)=C1(49)-B1(49)

TRIDIAGONAL MATRIX SOLUTION BEGINS
PL(1)=A1{(1)
Q1 (1)=81(1)/P1(1)
G1{1)=Cl(1)/P1(1)
DO 40 J1=2,49
P1{J1)=A1(J1)=D1(J1)*QL(J1~1)
QL (J1)=B1UJ1)/PLJ1)
G1(J1)=(C1{J1)=-D1(J1) %G1 (J1-1))}/P1(J1)
DO 41 I=1,153
T=7(1)
Ji=102
J2=49
J21=J2+1
T(J21+4JJ)=G1(J2)
DO 4S5 J1=1,48
J2=J2-1
J21=J2+1
TI2144J0)=G61{J2)=Q1(J2) #¥T{J21 +1+JJ)




65

(o]

65
56
57
69
171

173

174

175

2014

203

202

208

172
70

176

300

CHECK FUR CONVERGENCE

EPS=0401

ERMAX=0.

DO 55 I=1,153
QQQ=DABS({T(I)=TT( 1) )/TT(1))
IF(QQQ«GT+ERMAX) ERMAX=0QQ
IF(ERMAX+GT.EPS)GO TO 65

GO TO 69

CONVERGENCE PARAMETERS ARE PUT IN

DO 56 1=1,153

TUL)=0e5%TT{I) +(1e=0e5)%T{ 1)

ITER=ITER+!

WRITE(64171)ITER

FORMAT (50X *CONVERGED IN'y I3, *ITERATIONS®)
WRITE(64173)(T(1),1=123,133)

H28

FORMAT(10Xe 'LUBRICANT TEMPERATURES ARE'y11F845//)

WRITE(6+4174)(T(T1)41=1034123)

FORMAT(10Xs 'LOWER SOLID TEMPERATURES ARE',21F8.5//

x )
WRITE(64175)(T(I)41=133,4153)

FORMAT{10X+*TOP  SOLID TEMPERATURES ARE'.21F8¢5//

LI
WRITE(6+201)JJJ

FORMAT({10Xs *FOR STATION® ¢13+%29,T40,'VELOCITY?,T60
¥5'DU/DY*4T904 ' SHEAR STRESS®¢T105, *DENSITY*,T120,'V

*ISCOSITY?)
DO 202 I=1.11

WRITE(64203)T4UU(I)4DUY(I)sTAU(I)4ROBET),VL(T)

FORMAT(TS5+12+sT40sF1045¢T60,F10e59T90,F1245,T105,F1

¥ 0449T1204E1244)
CONTINUE

WRITE{6205)DMUE{JJJ) s DMUEP(JJJ) »DMUEP2(JJJ) 5 TLCI (

¥ JJJ) WTLC2(JJJ)

FORMAT(SE12.5)
FTRAC(JJJ)=TAU(11)/H(JJJ)
D0 172 1= 1,102

T(I)=T(1+51)
CONT INUE
DO 176 I=11,121
FTRAC{I~10)=FTRAC{I)

CONTINUE
HH=0+05
JOIM=11
CALL DQSF(HH.FTRAC,FTRACS, JDINM)
AX=FTRACS(11)
DO 300 JKS=21,121
DFTRAC({JKS=20)=F TRAC(JKS)
JOINM=101
HH=04005
CALL DOSF(HH4DFTRAC+D1TRACsJDIM)
AY=D1TRAC(101)
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WRITE(64450)AKsAY

450 FORMAT(2E1244)
FT=(AX+AY) #L¥ROLVEL*VIS/(W#¥20004%HO)

Tend el NN L e e e

SVEL=U2-U1 :
WRITE(6,301)SVEL,FT :

301 FORMAT(10Xy'FOR A SLIP VELOCITY OF *,F1045,'FRICTI ¥
*ONAL TRACTION IS *4F1045//) i
WRITE(65651) (DITRAC(I)oI=1,101) 4

451 FORMAT(101E1044) ;
999 CONTINUE 5
STOP A

END 3

X
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SUBROUTINE BEEJAY(PRANLyREYN,DXBs DYBeHeHOsMsL o EPS2
*¥9JJJeWsDPXoYMUBALSDMUL s DMUE yDMUEP 3 G0 o VLS ¢ ROLVEL sU1
¥9U21 VL CMEGAN DMINT P o ECKT yROB+UUsDUY ¢ TAU, T

IMPLICIT REAL*8({A-HyK=2)

DIMENSION H{200),DPX(200)¢ YMUBAL(200) +DMUL(200) +DM

UE{200) 4DMUEP(200),00(200)4VL{200),GMEGAN(200) 4DMINT(200

1o

30

15

40

*)4DUY(200)4UU(200)4P(200) 4ROB(200) 4 TAU{200) 4T (200)
AAL=2.%DXB/Z({DYBX#2)k{H({JJJ)%%k2))
AA2=WK(H(JJIJ) #%2 ) k(HO%*2 ) %2000 ¢ /( VLS #ROLVEL #L %0 o 5%

* L)

AA3=U1/ROLVEL

UU(1)=AA3

UU{11)=02/ROLVEL

AALO=P(JJJ)*W/(0+5%L)

YY=0,1D00

DO 10 1=2,10

AAG=AA2XDPX(JJJ)XYMUBAL(T)
AAS5=({U2-U1)/ROLVEL*(DMUE{JJJ) ) *xDMUL(T)
Ak6=AA2/20#DPX(JJJ)*DMUE(JJJ)/DNUEP(JJJ)*DMUI([)
UU(I ) =AAG+AAS-AAG+AA3
AA7=YY=DMUE(JJJ) /{2 ¥DMUEP{JJJ))
DUY(l’=AA2*DPX(JJJ)*AA7/VL(I)*(U2-Ul)/RULVEL*DMUE(
¥ JJJIZVL(L)

YY=YY+0.1D000

CONTINUE

J=123

DO 30 I=1,11
ROB(I)=|o+00009*AA|0/(lo+0o026*AAl°)-0.00035*570-*
x (T(J)=~1ts)

J=J+]

J=123

DO 15 I=2,10

EPS2=0,00035%570e%(T{J)=1¢)

JJ+L

QQ(I)=20*AA1*3.*PRANL*REVM*RUB(l)*UU([)-Zo*DXB*HO*

¥ HO*M&EPS2%UU( )%

ADPX(JJJ) #PRANL/Z(L%L)
OMEGAN(T)=2.!DXB*PRANL*ECKT*DUY(I)*OUY(I)/(H(JJJ)*

* %2)

DM[NT(I)=PRANL¥REYM‘RQB(1)*UU([)

CONTINUE
AA7=-DMUE(JJJ)/(2.*DMUEP(JJJ))

DUY(1 )=AA2%DPX(JJJ)*AAT/VL(]1 )+{U2-U1)/ROLVEL¥DMY

* E(JJdizvi(l )

DUY{1 )=AA2%DPX(JJI)*AAT/VLIL1 )+{U2-Ut)/ROLVEL
DUY(ll)=AA2*DPX‘JJJ’*AA7/VL(ll)*(UZ-UI)/RULVEL*DMU

¥ E{(JydisveL(1t)

DO 40 I=1,11
TAUCD)=VL( 1) *nUY(L)
RETURN

END
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SUBRCUTINE CALMULJJJIsPoT o VLo DMUL s YMUBAL o DRUE  DMUEP
4 TLCLATLC2 oWl yDMUEP2,4U1 4U2)
IMPLICIT REAL#B(A=HyK=2) '
DIMENSION P(200)+T(2000)4VL{200)4DMUL (200) 4DMU(200)
*oDMUE(aoo)nYMUBA(ZOO)oYMUBAl(ZOO)oVMUBAZ(ZOO)oYMUB
*AJ(ZOO)-TLCI(200)oTLC2(200)vDNUEP(ZOO).DMUEPZ(ZOO)
ALPHA==04214%2 ,3W/L
BETA=8300,
GAMA=3504%24%W/L
A1=ALPHA®P(JJY) -
A2=BETA/570.
" Jd=123
DO 10 I=1,11
( A3=BETA/(T(J)*570,)
f AA=GAMARP (JJJ) /(T(J)%5704)
3 VLUI)=DEXP (A1 +A3-A24A4)
DMULI)=14/VL(T)
J=J+1
10 CONTINUE
: HH=0,1D00
JOIM=]1
CALL DGSF(HHoDMUDMUL 5 JDIN)
DMUE(JJJ)=14/DMUL(11)
YY=0,
DO 15 I=1,11
YMUBA(T)=YY/sVL(I)
YMUBA2{T )=YY#YY/VL(1)
15 YY=YY+0.,1000
CALL DQSF(HH,YMUBA 4 YMUBAL+JDIM)
CALL DOSF(HH, YMUBA2,YMUBA3 4 JOIM)
OMUEP{JJJ)=1¢/7(2.4YMUBAL(11))
DMUEP2(JJJ)=1+/(3¥YMUBA3(11))
VARAD=DMUE(JJJ) /{3 + ¥ DMUEP2(JJJ) )
SRINU=DMUE(JJJ)/ (2 %DMUEP( JJJ))
SRINISSRINUX*2
TLC1 (JJJ) =124 % (VARAD=-SRINT)
TLCZ(JJJ)=I.+(UZ-UI)/(UZ+UI)¢(l--DMUE(JJJl/DMUEP(J
* JJ)) :
RETURN
END

sTopP 0
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