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ABSTRACT 

Statistical Shape Models (SSMs) describe the shape variation in a family of similar objects 

in a computational format. An example of a shape family is the periphery of a specific bone for 

different individuals. SSMs have diverse applications in computer vision and medicine. In 

orthopaedics, SSMs are used to study the morphology of bones, automate image segmentation, 

and restore the healthy shape of injured bones. To build an SSM, an invertible mapping should be 

identified between the objects, referred to as correspondence. Point-set registration methods are 

used to establish correspondence between the objects which are represented by a dense set of 

points. This doctoral thesis explores a range of applications of statistical shape modelling in 

orthopaedics. 

Firstly, this research implements hypoelastic constitutive equations into the finite element 

software Abaqus. Abaqus is a computational platform that could be used for the biomechanical 

simulation of anatomical structures with various types of nonlinearity; the software allows the user 

to implement advanced constitutive models through the user-material subroutine. However, the 

implementation of a constitutive model into Abaqus is not straightforward, and the constitutive 

model should be expressed in a special hypoelastic form. This thesis provides such reformulation 

for several hypoelastic models and describes the algorithms behind many variables in the UMAT 

subroutine. 

Second, the thesis employs SSMs to study the geometry of the pelvic bone, focusing on 

variation within individuals, asymmetry, and sexual dimorphism (sex-based differences). Using 

computational methods in shape analysis and statistical tests, the significant patterns of variation, 

as well as the areas of significant variation, are identified on the pelvic bone. Anatomical 
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measurements and interpretation are then provided. Previous studies have been solely focused on 

a single type of variation on the pelvic bone or studied men and women collectively. However, the 

pelvic bone shows noticeable differences between men and women and its variation within a 

population arises from the differences in the shape, size, position, and orientation of its 

components. This research provides a sex-specific assessment of pelvic geometry at multiple levels 

of variation, including the shape of the hemipelvis, the shape-size of the hemipelvis, and the shape-

size of the left-right hemipelvis in the pelvic structure. In addition, the thesis characterizes and 

evaluates the ability of SSMs to simulate training samples as well as predict unseen samples, for 

two bones, the hemipelvis, and talus. 

Lastly, the thesis addresses a limitation of a probabilistic point-set registration method; the 

Coherent Point Drift (CPD) is a probabilistic registration method that matches complex objects 

such as anatomical structures. However, the method might struggle to match the intricate local 

features of the objects. To address this limitation, this thesis investigates the effect of geometry-

aware sampling on the performance of the CPD method in matching objects with local features. In 

geometry-aware sampling, a higher density of points is sampled on local features, which could 

improve the perception of point sets in the registration process. To investigate the effectiveness of 

the approach, a set of two- and three-dimensional synthetic experiments, as well as a set of 

examples of aligning femur cartilages are performed. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

1.1.1 Rebirth of shape analysis in biology 

Biological shape analysis, referred to as morphometrics, is an old topic that studies the size 

and shape of biological structures [1]. A biologist traditionally measured some specific angles, 

distances, and distance ratios between biologically meaningful points, referred to as landmarks, 

and performed statistical analyses on them to quantify the shape or size variances of a biological 

structure within a population or across populations, an approach that is called multivariate 

morphometrics [1]. This approach suffers from two issues: (1) angles, distances, and distance 

ratios cannot capture the entire geometry of biological structures, and (2) it is not possible to 

reconstruct the geometry of a biological structure using discrete measurements, while the reverse 

process is easy to perform [2]. 

A key notion in morphometrics was to retain all of the geometric information contained in 

the data and directly use the coordinates of landmarks, rather than relying on distances and angles 

[2]. This approach is called geometric morphometrics and was started by D’Arcy Thompson’s 

substantial work in 1927, titled “On Growth and Form”. In this work, Thompson studied the size 

and shape variance between species by drawing a regular square grid pattern on one object and 

deforming the grid to lie on the second object (Figure 1-1) [1, 3]. By comparing the original and 

deformed grids, the differences in size and shape among the species were examined [1]. 
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Bookstein categorized the landmarks used in geometric morphometrics into three types: (1) 

points located at the intersection of tissues, (2) points of maximum curvature, and (3) external 

points such as the endpoints of maximum length or breadth [4]. During the initial stages of 

geometric morphometrics, studies involve statistical analysis of Cartesian coordinates of these 

landmarks, which anatomists manually marked on two-dimensional digital images of comparable 

specimens [5]. Despite its robustness, this approach was challenging in terms of repeatability, and 

inter-observer and intra-observer errors were introduced in the process [6]. 

The advent of three-dimensional scanning devices, alongside the theoretical and 

computational developments in shape analysis, led to the rebirth of biological shape analysis and 

its fast growth in many domains [2]. In orthopaedics, three-dimensional scanning modalities such 

as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) describe the shape of 

skeletal elements with dense volumetric representation [6] and computational tools such as 

statistical shape modelling provide a rich and concise model for the shape variability of skeletal 

elements within a population or across populations [6]. 
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(a) (b) (c) 

Figure 1-1: Regular square grid pattern placed on a human skull (a), and the deformed grid 

patterns matched on a chimpanzee’s skull (b) and a baboon’s skull (c) [1, 3] 

 

1.1.2 Applications of statistical shape modelling in orthopaedics 

Statistical shape modelling is a powerful computational approach for analyzing the shape 

variability of biological structures [7]. A Statistical Shape Model (SSM) of a biological entity 

comprises two components: (1) the average shape of the samples, typically represented by a dense 

set of points, and (2) the modes of variation within the samples, represented by Displacement 

Vector Fields (DVFs) defined on the average shape. 

In the last two decades, researchers have employed SSMs to investigate the morphology of 

anatomical structures. The majority of the studies have been focused on the variation of the 

anatomical elements within individuals, referred to as anatomical variation, which proved to be 

highly beneficial in orthopaedics [8-12]. For example, Ahrend et. al. used SSM to study the 

anatomical variation of the pelvis in the Asian population and manufactured generic Asian pelvic 

ABMs (Artificial Bone Models) for educational and research purposes (Figure 1-2 (a)) [8]. In 
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addition to the anatomical variation, studies have investigated the sexual dimorphism of the 

anatomical elements using SSM-based approaches, especially for the pelvis and skull [9, 10, 12, 

13]. As an example, Shui et al. constructed two SSMs for the skull and face using 140 samples of 

3D heads (70 male and 70 female), determined the craniofacial relationship (correlation between 

the skull and face SSMs), and determine sex based on developed SSMs, with the highest sex 

classification rate of 91.43% [13]. Statistical shape modelling has also been used to study the 

asymmetry [14, 15], allometry (the relationship between the shape and size) [16, 17], as well as 

clustering the shape of bones as healthy and pathological [7]. 

A great advantage of SSMs is their generative power. An SSM of an anatomical structure 

could generate numerous plausible shape instances for the structure [18]. Some studies have 

leveraged SSMs as a deformable template to convert the dense three-dimensional images (CT and 

MRI) and sparse two-dimensional images (X-rays) of bone specimens into meshes and point sets 

[19]. Previously, medical image segmentation was performed semi-automatically by anatomists 

who draw contours on 2D slices of the images in modelling software, and then the software 

converted the contours into a mesh. However, such a process was labor-intensive. A novel idea 

was to generate shape instances from an SSM and fit shape instances on the image data of a 

specimen. As an example, Dworzak et al. constructed an SSM for the rib cage using CT scans of 

29 individuals, generated artificial binary projection for the instances of the SSM (from two 

views), and by minimizing distance measures between the silhouettes of (artificial) SSM-based 

projection and real images, reconstructed the 3D geometry and pose (position and orientation) of 

the individual’s rib cage (Figure 1-2 (c)) [20]. Similarly, virtual bone reconstruction has employed 
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SSMs to fit shape instances onto meshes of injured bones, with significant portions of the bone 

being distorted due to degenerative conditions [21-24]. SSM-based virtual bone reconstruction 

provides a plausible model for the native shape of injured bone which could be highly beneficial 

in decision-making over the size and shape of the implant components used to restore the bone. 

SSMs have also shown great potential to incorporate with the Finite Element Human Body 

Models (FE-HBMs) with huge benefits in assessing the risk of injury in scenarios such as motor 

vehicle crashes [25, 26]. The main idea of SSM-based FEM models is to expand the limited 

number of specimens available for the evaluation of injury risk in FM-HBMs to an enlarged set of 

shape instances generated by the SSM. For the mechanical simulation of a shape instance, the 

instance is deformed on the samples of FM-HBMs, and through the computed mapping, the 

boundary conditions and volumetric mesh of the FM-HBMs samples are transformed to the SSM 

instances. Some studies have considered the relationship between the morphology of bones and 

their biomechanics, by applying various types of loading to the modes of variation of anatomical 

SSMs [27-29]. 

Lastly, SSMs could provide more realistic biomechanical simulation for the human bones 

and soft tissues during growth. Nonlinear continuum mechanics is the standard approach to 

modeling biological tissue growth [30]. A promising framework for simulating growth is the 

multiplicative decomposition of the deformation gradient into (1) an elastic component that 

reflects the mechanical response, and (2) a time-dependent biological component (e.g. [30] for 

bulk growth and [31] for surface growth simulation). However, in this framework, identifying an 

appropriate deformation gradient for the time-dependent component is nontrivial [31]. In recent 
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years, SSMs have been combined with multiple linear regression methods to correlate the bone 

geometry with anthropometric variables including age, offering age-specific models for various 

bones (see [11] for the pelvis, [25] for the femur and tibia, and [32] for the ribcage). The age-

related pattern of morphometric SSM could be used as the biological deformation field in the 

constitutive growth laws, enabling more realistic simulations. In addition, the spatiotemporal 

SSMs could be constructed based on the longitudinal datasets of a bone to describe (1) the subject-

specific morphological changes at the unobserved time and (2) the average and main 

morphological changes at a specific time [7]. 

 
  

(a) (b) (c) 

Figure 1-2: Examples of anatomical SSMs being employed in orthopaedics: (a) Manufactured 

artificial bone models for the average male and female models for a pelvic SSM constructed for 

100 Asian adults (left: female, right: male) [8], (b) the comparison of the extreme instances of 

the first three modes of variation (±3SD) for the models built for the face and skull (mode1 to 

mode3 are shown from left to right) [13], (c) Generation of two orthogonal images for a shape 

instance of rib-cage SSM from specific views and the silhouettes of the virtual image (beige) and 

the reference image (red) [20]. 
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1.1.3 Point-set registration methods 

To build an SSM for an anatomical structure, the most challenging step is to establish 

correspondence between the specimens. The establishment of “unfavorable” correspondence 

between the shape samples results in models with artifacts (Figure 1-3) [7]. In the past, the 

correspondence was constructed manually between the samples, during the process of specifying 

the landmarks by anatomists [6]. However, the manual marking process is not feasible for the 

dense representation of shapes. Point-set registration is a computational approach to automatically 

detect the correspondence between two point sets. 

There are various classifications for point-set registration, in which, a single aspect of the 

techniques is considered [33]. For instance, based on the applied transformation, the point set 

registrations are classified into rigid and non-rigid algorithms [33]. For a rigid point set 

registration, the transformation, which deforms the “source” point set to align it on the “target” 

point set, preserves the distance between each two points on the source [33]. Rigid transformation 

includes rotation, reflection, translation, and scaling [33]. It should be noted that, for scaling, the 

ratios of distances, rather than distances, are preserved. 

By comparison, in non-rigid registrations, the relative distances on the source point set are 

not preserved during registration and the point set undergoes stretching and bending. Affine 

transformation is a simple non-rigid transformation in which the point set is allowed to undergo 

anisotropic scaling and skewness [33]. Thin-plate spline transformation (TPS) is a well-known 

non-rigid transformation in which, the source point set is deformed and matched on the target point 
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set while an energy of the Euclidean space, called the bending energy, is preserved at its minimum 

[34].  

 

Figure 1-3: Establishment of unfavorable correspondence between two head samples (the noise 

of the left head is aligned with a point on the cheek of the right head), and the average of two 

heads with artifacts (middle head with two noses) [7]. 

 

The iterative closest point (ICP) algorithm is the classical point set registration [35].  The 

ICP is an iterative algorithm with two steps: (1) for each point on the source point set, the point 

with minimum Euclidean distance on the target point set is found and the points become a 

corresponding pair, and (2) the source point set is parameterized by a rigid transformation and, by 

minimizing the mean squared distance of the corresponding pairs, the transformation parameters 

are calculated. The second step of the ICP algorithm has a direct solution, and therefore, the 

algorithm has low computational complexity. However, the first part of the algorithm, i.e. 

estimation of correspondence pairs, is sensitive to the initial pose of the source and target point 

sets. An unfavorable estimation of correspondence pairs can lead to a situation in which the 

transformed source points would be trapped in a local minimum. 
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The kernel correlation (KC) algorithm, introduced in [36], was the starting point of an 

important class of point set registrations called probabilistic algorithms. Unlike one-to-one 

correspondence in the ICP method, the probabilistic approaches establish soft correspondence 

between the points which allows for partial assignments of points, indicating the likelihood or 

confidence of a match between two points. The correlation techniques are originally used to align 

intensity (gray-level) images. KC algorithm introduces three levels of kernel correlations: (1) 

kernel correlation between two points: for an isotropic Gaussian kernel, the correlation is the 

density at the first point when a Gaussian kernel is centered at the second point (or vice versa); (2) 

kernel correlation between a point set and a single point inside the point set: for Gaussian kernels, 

the correlation is the density at the single point when Gaussian kernels are centered at the rest of 

the points in the point set. This correlation is also referred to as leave-one-out kernel correlation 

and (3) kernel correlation of a whole point set which is the summation of all of the leave-one-out 

kernel correlations. Using the Gaussian kernels, (1) the correlation between two points is 

maximized when the points are located on each other, and (2) the correlation of a whole point set 

is high when the points inside the point set are close to each other and the point set is “compact”. 

KC algorithm treats the registration problem as maximizing the kernel correlation of a point set 

which is the union of the target point set and the parameterized version of the source point set. 

When the source point set is aligned with the target point set, the compactness of the collective 

point set is at its highest level and the kernel correlation of the collective point set is maximum. 

Jian and Vemuri [37] utilized the Gaussian Mixture Model (GMM) version of the KC 

algorithm with TPS transformation in a non-rigid registration method called GMMReg. In 
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GMMReg, the point sets are represented by GMMs, and the distance between the point sets is 

defined as the L2 divergence of the associated GMMs. L2 divergence is a similarity measurement 

between two GMMs. GMMReg treats the registration problem as minimizing the L2 divergence 

between the GMM of the target point set and the GMM of the parameterized source point set. To 

preserve the coherence of the source point set during registration, a regularization term that 

contains the coefficients of the TPS transformation is introduced in the objective function. 

The Coherent Point Drift (CPD) algorithm is a state-of-the-art non-rigid registration 

technique [38]. The CPD algorithm treats the registration problem as a probability estimation 

problem. In this algorithm, the source point set is represented by a GMM, and the target point set 

is considered the dataset. The centroids of the GMM are parameterized by a rigid or non-rigid 

transformation, and by maximizing the likelihood of the GMM given the dataset, the source point 

set is matched on the target point set. The non-rigid transformation of the CPD method is based 

on motion coherence in which, the close points exhibit cohesion, and as the distance between two 

points increases, the cohesion diminishes. To ensure the smoothness of the motion, the CPD 

method uses high-content energy of the displacement field in the Fourier space as a regularization 

term. The CPD method has been widely used in recent years to establish correspondence between 

complex objects such as anatomical elements. 
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1.2 Problem statements 

1.2.1 Consistent Implementation of Hypoelastic Constitutive Equations into Finite Element 

Software Abaqus 

Abaqus allows the user to implement finite-strain constitutive models for biomechanical 

phenomena using the user-material (UMAT) subroutine. However, the implementation of 

advanced constitutive models into Abaqus is challenging. Hypoelasticity plays a central role in the 

structure of the UMAT subroutine. In a hypoelastic constitutive model, an objective stress rate 

such as the Jaumann rate of Cauchy or Kirchhoff stress is related to the rate of deformation by an 

elasticity tensor. The Jacobian matrix (DDSDDE) is a UMAT variable that must be updated at 

each increment. The incorrect update of this variable gives rise to early divergence or slow 

convergence of the model. To correctly update the Jacobian matrix, the constitutive model should 

be expressed as a relationship between the Jaumann rate of the Kirchhoff stress and the rate of 

deformation, i.e. the format of a hypoelastic constitutive model, and the components of the 

elasticity tensor which connects the Jaumann rate of the Kirchhoff stress to the rate of deformation, 

should be used to update the Jacobian matrix. This thesis provides the consistent implementation 

for six hypoelastic constitutive equations and describes the algorithms used for multiple variables 

in the UMAT subroutine. To validate the implementation, the numerical responses for a simple 8-

node brick element (C3D8) under uniaxial extension and simple shear loading conditions are 

compared with the available analytical solutions, and the consequences of using an inconsistent 

Jacobian matrix are illustrated. 
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1.2.2 Morphological study of the pelvic bone using statistical shape modelling 

The pelvis is a complex anatomical structure with multiple components and noticeable 

differences between men and women. Pelvic morphology has been studied in traditional and 

modern morphometrics in terms of anatomical variation (inter-individual), matching asymmetry 

(intra-individual), allometry, and sexual dimorphism [8-12, 39-41]. However, the knowledge 

about the sex-specific inter- and intra-individual variation, especially bilateral asymmetry, 

remained limited. Furthermore, the SSM-based studies have focused on a single type of variation 

in the pelvis, such as the shape-size variation of the hemipelvis [9, 12], or the shape-size variation 

of the entire pelvic structure [8, 10, 11]; By starting with the shape of the hemipelvis and 

systematically incorporating the variations due to the size and then position and orientation of the 

hemipelvis, the current study provides a sex-specific investigation of the left-right hemipelves in 

the pelvic structure at multiple levels. 

 

1.2.3 Quality measures of statistical shape models 

Anatomical SSMs have been characterized in terms of their ability to simulate in-training 

samples and predict unseen samples, respectively called accuracy and generalizability [18]. 

Previous studies have measured the SSM qualities based on comparing the model-derived shape 

instances with a representation of samples that were used in the models [12, 42]. However, the 
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representation of samples in the model is a deformed version of a template being matched on the 

sample and does not “perfectly” match the original representation of a specimen (due to the smooth 

transformation of the registration process). This thesis characterizes and evaluates the quality of 

SSMs for the hemipelvis and talus; the SSM instances are compared with the original meshes of 

the samples, which provides a more realistic evaluation of the models. 

 

1.2.4 Effect of geometry-aware point set sampling on the performance of CPD registration 

method in matching local features 

The CPD method is commonly used to match the point sets of anatomical elements. In 

addition, refinements and extensions have been proposed to improve various aspects of the CPD 

registration method, e.g. estimation of correspondence by adding features [43, 44] or higher 

robustness against noise [45]. Despite the accurate performance of the CPD method in matching 

the global structure of anatomical entities, the CPD method might struggle to match the delicate 

local features of shapes. To address this limitation, this thesis investigates the effect of geometry-

aware sampling on the performance of the CPD method in matching shapes with local features. A 

set of 2D and 3D synthetic experiments are designed which involve aligning simple shapes with 

discernable local features. Using uniform and geometry-aware distribution of points, the 

performance of the CPD registration method is assessed in terms of aligning these local features. 

Furthermore, the effectiveness of the approach is assessed on a set of real examples which involve 
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matching the samples of femur cartilage which is a thin layer with complex geometry on the femur 

bone surface. 

 

1.3 Research objectives and methodologies 

The ultimate goal of this study is: (1) to provide consistent implementation of hypoplastic 

constitutive equations in the finite element software Abaqus, (2) to provide a sex-specific 

assessment of pelvic morphology using statistical shape models, (3) to measure the qualities of 

statistical shape models in modelling the in-training samples and unknown samples for the 

hemipelvis and talus, (4) to investigate the effect of geometry-aware point set sampling on the 

performance of coherent point drift in matching shapes with local features. To accomplish each 

section, the following steps are taken: 

Objective 1: Consistent numerical implementation of hypoplastic constitutive equations into finite 

element software Abaqus. 

a) Identification of algorithms behind the stress and strain variables of the UMAT subroutine 

in Abaqus. 

b) Reformulation of various hypoplastic constitutive equations as a relation between the 

Jaumann rate of the Kirchhoff stress and the rate of deformation. 
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c) Validation of the implementations by comparing the results for a simple eight-node brick 

element C3D8 under simple shear and uniaxial extension with the available analytical 

solutions 

Objective 2: Morphological study of the pelvic bone using statistical shape analysis. 

a) Development of a computational pipeline to convert the CT image dataset of 40 pelves 

(20 male and 20 female) into refined triangle meshes and point sets in correspondence. 

b) Computation of sex-specific DVFs related to anatomical variation and asymmetry, as 

well as the DVF related to sexual dimorphism. 

c) Identification of patterns of anatomical variation and asymmetry using principal 

component analysis. 

d) Local measurement of anatomical variation and asymmetry and identification of areas 

showing high local anatomical variation and local asymmetry. 

e) Assessment of the significance of identified patterns and areas by non-parametric and 

permutation-based statistical tests. 

f) Visualization of significant patterns and areas as color-map animations and plots. 

g) Anatomical interpretation of the significant patterns and areas. 

Objective 3: Quality measurement of anatomical shape models in simulation of training shapes 

and unseen shapes for the hemipelvis and talus. 
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a) Development of a computational workflow to convert the CT images of 40 hemipelvis 

(20 female and 20 male) and 96 talus samples (41 female and 55 male) into golden-

standard refined triangle meshes and point sets in correspondence. 

b) Construction of sex-specific and overall models for the shape and shape-size of the 

bones. 

c) Characterization of the ability of a model in simulating the in-training samples and 

predicting unknown samples (based on goldern-standard meshes). 

d) Evaluation of the qualities of the SSMs constructed for the hemipelvis and talus. 

Objective 4: Investigation of the effect of geometry-aware point-set sampling on the performance 

of the CPD point-set registration in matching shapes with local features. 

a) Construction of synthetic objects with local features in two- and three-dimensions. 

b) Investigation of the effect of geometry-aware and uniform point-set sampling on the 

accuracy of coherent point drift registration algorithm in aligning 2D synthetic objects 

with different local features. 

c) Preprocessing of the femur cartilages (10 subjects with unknown sex). 

d) Repeating step (c) for three-dimensional synthetic objects. 

e) Development of geometry-aware and uniform sampling algorithms for automated point-

set sampling from 3D shapes (real and synthetic). 

f) Investigation of the effect of geometry-aware and uniform point-set sampling on the 

accuracy of the CPD method in matching the femur cartilage samples. 
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1.4 Organization of thesis 

The remainder of the thesis is organized as follows: 

Chapter 2 describes the theoretical and computational aspects of the consistent 

implementation of six hypoplastic constitutive models into finite element software Abaqus. 

Chapter 3 presents the morphological study of the pelvic bone using statistical shape 

modelling, including anatomical variation, asymmetry, and sexual dimorphism. 

Chapter 4 presents the quality measurement of statistical shape models for the hemipelvis 

and talus. 

Chapter 5 investigates the effect of geometry-aware point-set sampling on the performance 

of the CPD registration method in matching synthetic and real shapes with local features. 

Chapter 6 summarizes the contribution of the research work, draws conclusions, and presents 

ideas for future work. The limitations of the current work are provided as well. 
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CHAPTER 2: CONSISTENT NUMERICAL IMPLEMENTATION OF HYPOELASTIC 

CONSTITUTIVE MODELS 

 

This chapter is derived from the published paper: 

Palizi, M., Federico, S., & Adeeb, S. (2020). Consistent numerical implementation of hypoelastic 

constitutive models. Zeitschrift für angewandte Mathematik und Physik, 71, 1-23. 

 

Abstract 

In hypoelastic constitutive models, an objective stress rate is related to the rate of 

deformation through an elasticity tensor. The Truesdell, Jaumann, and Green–Naghdi rates of the 

Cauchy and Kirchhoff stress tensors are examples of the objective stress rates. The finite element 

analysis software ABAQUS uses a co-rotational frame which is based on the Jaumann rate for 

solid elements and on the Green–Naghdi rate for shell and membrane elements. The user 

subroutine UMAT is the platform to implement a general constitutive model into ABAQUS, but, 

in order to update the Jacobian matrix DDSDDE in UMAT, the model must be expressed in terms 

of the Jaumann rate of the Kirchhoff stress tensor. This study aims to formulate and implement 

various hypoelastic constitutive models into the ABAQUS UMAT subroutine. The developed 

UMAT subroutine codes are validated using available solutions, and the consequence of using 

wrong Jacobian matrices is elucidated. 
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Keywords: hypoelastic constitutive equations; ABAQUS UMAT subroutine; stress array update; 

Jacobian matrix update 

 

2.1 Introduction 

Hypoelasticity is a rate form of elastic material model [1], in which an objective stress rate 

is linearly related to the rate of deformation by means of a fourth-order elasticity tensor which, in 

general, is not obtainable from a strain energy density. Originally, Dienes [2] showed that the zero-

graded hypoelastic model, i.e. a hypoelastic model with constant isotropic elasticity tensor, 

exhibits oscillation in simple shear, if it is constructed based on the Jaumann rate of the Cauchy 

stress. However, zero-graded hypoelastic models which are based on the Truesdell or Green–

Naghdi rates do not suffer this problem [3]. We remark that the definition of elements in ABAQUS 

is based on the Jaumann rate for solid elements [4] and on the Green–Naghdi rate for structural 

elements (shells, membranes, beams, trusses) [5, 6], as mentioned in the ABAQUS Theory Manual 

(Section 1.5.3 in [7]). 

This study aims to formulate and implement various hypoelastic constitutive models into the 

ABAQUS UMAT (user material) subroutine. To attain this, it is essential to express the elasticity 

tensor of the hypoelastic model in terms of the elasticity tensor which relates the Jaumann rate of 

the Kirchhoff stress tensor to the rate of deformation. According to Pinsky et al. [8], such relations 

seemed difficult to be constructed for models associated with the Green–Naghdi stress rates; 
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however, the kinematical relations provided in Mehrabadi and Nemat-Nasser [9] enable us to 

establish such connections. 

The study starts with a review of some basic definitions, the concept of objective rate and 

the structure of hypoelastic constitutive models. Next, the relations between the elasticity tensors 

of various hypoelastic models and the elasticity tensor relating the Jaumann rate of the Kirchhoff 

stress to the rate of deformation are constructed. Next, the formulation behind such UMAT-

subroutine variables as the consistent Jacobian (DDSDDE), stress array (STRESS), incremental 

strain array (DSTRAN), and incremental rotation matrix (DROT) is discussed. The understanding 

of the formulation is required to properly update the consistent Jacobian and the Cauchy stress in 

various hypoelastic constitutive models. Various simulations, including simple shear and uniaxial 

extension, are considered in ABAQUS, and the numerical solutions of the hypoelastic models are 

validated through the available solutions. 

The models considered in this study are zero-graded models based on the Jaumann, 

Truesdell, and Green–Naghdi rates of the Cauchy and Kirchhoff stress tensors. However, 

development of UMAT subroutine codes for advanced hypoelastic constitutive equations follows 

the same steps. As an example of such advanced hypoelastic models, we refer the Reader to the 

hypoelasticity theory established by Freed [10], later refined in [11], for modelling the passive 

response of soft biological tissues. 
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2.2 Theoretical background 

The notation follows essentially that traced by Truesdell and Noll [1] and Marsden and 

Hughes [12], but a simplified treatment in Cartesian coordinates is adopted throughout, following 

that by Bonet and Wood [13] or Bonet et al. [14], to which we refer the Reader for detailed 

definitions and proofs. 

 

2.2.1 Basic definitions 

The three-dimensional Euclidean space is denoted 𝒮 and a material body is identified with a 

reference configuration ℬ, which is regarded as an open subset of 𝒮 [12, 15]. The motion of the 

body ℬ is described by the configuration map, which is defined, at each time 𝑡, by 

 𝜙(. , 𝑡): ℬ → 𝒮: 𝑿 → 𝒙 = 𝜙(𝑿, 𝑡) (2-1) 

Where the material point 𝑿 denotes the position of a particle in the reference configuration 

ℬ and the spatial point 𝒙 = 𝜙(𝑿, 𝑡) is the current placement of point 𝑿 at time 𝑡. The placement 

or configuration of the body at time 𝑡 is denoted 

 ℬ𝑡 ≡ 𝜙(ℬ, 𝑡) (2-2) 

The codomain restriction to ℬ𝑡 ≡ 𝜙(ℬ, 𝑡) of the configuration map 𝜙(. , 𝑡) is required to be 

invertible, continuous, and differentiable along with its inverse, i.e. a diffeomorphism. 
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The deformation gradient 𝑭 is a two-point tensor [12], mapping material vectors 𝑴 attached 

at point  𝑿  into spatial vectors 𝒎 = 𝑭𝑴  attached at the spatial point 𝒙  and is defined, in 

components, as 

 𝐹𝑖𝐽 =
𝜕𝜙𝑖

𝜕𝑋𝐽
= 𝜙𝑖,𝐽 (2-3) 

The determinant  𝐽 = det 𝑭 of the deformation gradient  𝑭  describes the local change of 

volume and, due to the requirement of invertibility and regularity of 𝜙, it must be strictly positive. 

Cauchy’s polar decomposition theorem allows to express the deformation gradient 𝑭 as 

 𝑭 = 𝑹𝑼 = 𝑽𝑹 (2-4) 

Where 𝑼 and 𝑽 are symmetric and positive definite tensors and 𝑹 is a proper orthogonal 

tensor. Moreover, the right stretch tensor 𝑼 is completely material, the left stretch tensor 𝑽 is 

completely spatial and the rotation tensor 𝑹 is, like  𝑭, a two-point tensor. The right and left 

Cauchy–Green deformation tensors are completely material and completely spatial, respectively, 

and are defined as 

 𝑪 = 𝑭𝑇𝑭 = 𝑼2, 𝒃 = 𝑭𝑭𝑇 = 𝑽2 (2-5) 

The Eulerian spatial velocity 𝒗 is defined as the vector field such that 

 𝒗(𝒙, 𝑡) = 𝒗(𝜙(𝑿, 𝑡), 𝑡) = �̇�(𝑿, 𝑡) (2-6) 

where  �̇�(𝑿, 𝑡)  is the Lagrangian spatial velocity at  𝒙 = 𝜙(𝑿, 𝑡) . The gradient of the spatial 

velocity field 𝒗 w.r.t. the spatial coordinates 𝑥𝑖, i.e. 
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 𝒍 = grad𝒗 = ∇𝑣 (2-7) 

is called the velocity gradient and has components 𝑙𝑖𝑗 = 𝑣𝑖,𝑗. The symmetric and skew-symmetric 

parts of the velocity gradient are the rate of deformation 𝒅 and the spin or vorticity tensor 𝒘, 

respectively: 

 𝒅 =
1

2
(𝒍 + 𝒍𝑇),   𝒘 =

1

2
(𝒍 − 𝒍𝑇) (2-8) 

The skew-symmetric tensor 

 𝛀 = �̇�𝑹𝑇 (2-9) 

where 𝑹 is the two-point rotation tensor of the polar decomposition in Eq. (2-4) of 𝑭, is called 

rigid spin [6]. Its skew-symmetry can be easily shown by taking the time derivative of 𝑹𝑹𝑇 = 𝒊, 

where 𝒊 is the spatial identity tensor. It can also be shown that the spin tensor 𝒘 and the rigid spin 

tensor 𝛀 are related by (see, e.g. [13] or [14]) 

 𝒘 = 𝛀 +
1

2
𝑹(�̇�𝑼−1 − 𝑼−1�̇�)𝑹𝑇 (2-10) 

There are two cases for which 𝒘 and 𝛀 coincide. The first case is when the motion is rigid 

and  𝑭 = 𝑹,  𝑼 = 𝑰, �̇� = 𝟎  and  𝒍 = 𝒘  (or, equivalently,  𝒅 = 𝟎). The second case is when the 

(normalized) eigenvectors of 𝑼 remain constant during the motion, which implies that �̇� has the 

same eigenvectors and thus commutes with 𝑼. 

The fundamental measure of stress in continuum mechanics is the Cauchy stress 𝝈, which 

linearly relates the unit normal vector 𝒏 at a point on the boundary 𝜕ℛ𝑡 of an arbitrary region 
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ℛ𝑡 ≡ 𝜙(ℛ, 𝑡), subset of the current configuration  ℬ𝑡 ≡ 𝜙(ℬ, 𝑡), to the corresponding surface 

traction vector 𝒕𝑛, i.e. 

 𝒕𝑛 = 𝝈𝒏 (2-11) 

The Cauchy stress 𝝈 is power-conjugated to the rate of deformation 𝒅 (or, equivalently, to 

the velocity gradient 𝒍), in the sense that the internal power (or deformation power) in an arbitrary 

region ℛ𝑡 is given by 

 𝒫𝑖𝑛𝑡 = ∫ 𝝈: 𝒅 𝑑𝑣

ℛ𝑡

 (2-12) 

Another measure of stress, often employed in numerical applications, is the Kirchhoff 

stress 𝝉, which is obtained by pulling the integral in Eq. (2-12) on ℛ𝑡  back to the referential 

region ℛ, subset of ℬ by means of the theorem of the change of variables, i.e. 

 𝒫𝑖𝑛𝑡 = ∫ 𝐽𝝈: 𝒅𝑑𝑣

ℛ

= ∫ 𝝉: 𝒅𝑑𝑉

ℛ

 (2-13) 

From which we obtain the relation 

 𝝉 = 𝐽𝝈 (2-14) 
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2.2.2 Objective stress rates 

The principle of material frame indifference states that the constitutive equations must be 

form-invariant under changes of the frame of reference, i.e. under arbitrary rototranslations [1, 16]. 

The regular substantial time derivative of a spatial measure of stress, such as the Cauchy stress, is 

not frame-indifferent, as we shall briefly show now. Let us denote the substantial time derivative 

by a superposed dot, i.e. 

 �̇� = D𝑡𝝈,   �̇�𝑖𝑗 ≡ D𝑡𝜎𝑖𝑗 = 𝜎𝑖𝑗,𝑘𝑣𝑘 + 𝜕𝑡𝜎𝑖𝑗 (2-15) 

Under a spatial rotation 𝑸, the stress transforms as 

 �̃� = 𝑸𝝈𝑸𝑇 (2-16) 

Therefore, the rate �̇� transforms as (see, e.g. [13, 14]) 

 �̇̃� = �̇�𝝈𝑸𝑇 + 𝑸�̇�𝑸𝑇 + 𝑸𝝈�̇�𝑇 (2-17) 

Which does not preserve the form of the transformation in Eq. (2-16). In contrast, it can be 

shown [13, 14] that the rate of deformation 𝒅 is frame-indifferent. 

Objective stress rates have been introduced precisely to overcome the problem suffered by 

stress rates and are all essentially based on the use of Lie derivatives, as elegantly shown by 

Marsden and Hughes [12]: the Oldroyd rate is precisely a Lie derivative, the Jaumann rate is a 

linear combination of Lie derivatives, the Green–Naghdi rate is modelled after a linear 

combination of Lie derivatives, and finally, the Truesdell rate (of the Cauchy stress) is a Lie 
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derivative involving the volume form (or volume element). In this work, we use the objective rates 

below, in the notation of Bonet and Wood [13]. 

Truesdell Rate of the Cauchy Stress: 

 𝝈o = �̇� − 𝝈𝓵𝑇 − 𝓵𝝈 + (tr𝒅)𝝈 (2-18) 

Truesdell Rate of the Kirchhoff Stress (also called Oldroyd rate [17] and coincident with 

the Lie derivative of the Kirchhoff stress [13]): 

 𝝉o = �̇� − 𝝉𝓵𝑇 − 𝓵𝝉 (2-19) 

Jaumann Rate of the Cauchy Stress: 

 𝝈∇ = �̇� + 𝝈𝒘 − 𝒘𝝈 (2-20) 

Jaumann Rate of the Kirchhoff Stress: 

 𝝉∇ = �̇� + 𝝉𝒘 − 𝒘𝝉 (2-21) 

Green–Naghdi Rate of the Cauchy Stress: 

 𝝈∆ = �̇� + 𝝈𝛀 − 𝛀𝝈 (2-22) 

Green–Naghdi Rate of the Kirchhoff Stress: 

 𝝉∆ = �̇� + 𝝉𝛀 − 𝛀𝝉 (2-23) 

The proof of objectivity and non-objectivity of various kinematic and stress variables can be 

found in Sections 4.15 and 5.6 of Bonet and Wood [13] or Bonet et al. [14]. A more extensive 

discussion is provided in Chapter 1, Box 6.1 of the book by Marsden and Hughes [12], who also 
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make the distinction between objectivity with respect to isometries (i.e. rototranslations), which 

coincides with frame indifference, and objectivity with respect to diffeomorphisms, which 

coincides with the condition of covariance. 

 

2.2.3 Co-rotational frames 

As discussed in Section 2.2.2, the definition of objective rates such as Truesdell, Jaumann, 

and Green–Naghdi is based on the notion of Lie derivative. Here, we show that, in an appropriate 

co-rotational frame, the components of the Jaumann and Green–Naghdi stress rates can be 

expressed as the time rate of the components of the stress (see also Section 1.5.3 of ABAQUS 

Theory Manual [7]). 

A time-dependent basis  {𝒆𝛼}𝛼=1
3  is co-rotational with respect to the spin tensor  𝒘  if it 

transforms following Poisson’s Theorem locally, i.e. according to the value of the spin tensor 𝒘 at 

the point considered: 

 �̇�𝛼 = 𝒘𝒆𝛼 = 𝒆𝛼𝒘𝑇 = −𝒆𝛼𝒘 (2-24) 

Considering that 𝒘 = 𝑤𝜇𝜈𝒆𝜇 ⊗ 𝒆𝜈 and using the properties of the tensor product, Eq. (2-24) 

reads 

 �̇�𝛼 = 𝑤𝜇𝜈(𝒆𝜇 ⊗ 𝒆𝜈)𝒆𝛼 = 𝑤𝜇𝛼𝒆𝜇 = −𝑤𝛼𝜇𝒆𝜇 (2-25) 

In this 𝒘-co-rotational frame, the Cauchy stress 𝝈 (exactly the same considerations can be 

made for the Kirchhoff stress 𝝉) reads 
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 𝝈 = 𝜎𝛼𝛽𝒆𝛼 ⊗ 𝒆𝛽 (2-26) 

And thus its substantial time derivative is 

 

�̇� ≡ (𝜎𝛼𝛽𝒆𝛼 ⊗ 𝒆𝛽)
.
 

= �̇�𝛼𝛽𝒆𝛼 ⊗ 𝒆𝛽 + 𝜎𝛼𝛽�̇�𝛼 ⊗ 𝒆𝛽 + 𝜎𝛼𝛽𝒆𝛼 ⊗ �̇�𝛽 

= �̇�𝛼𝛽𝒆𝛼 ⊗ 𝒆𝛽 + 𝜎𝛼𝛽(𝑤𝜇𝛼𝒆𝜇) ⊗ 𝒆𝛽 + 𝜎𝛼𝛽𝒆𝛼 ⊗ (−𝑤𝛽𝜈𝒆𝜈) 

= �̇�𝛼𝛽𝒆𝛼 ⊗ 𝒆𝛽 + 𝑤𝜇𝛼𝜎𝛼𝛽𝒆𝜇 ⊗ 𝒆𝛽 − 𝜎𝛼𝛽𝑤𝛽𝜈𝒆𝛼 ⊗ 𝒆𝜈 

(2-27) 

where we used Eq. (2-25). Switching indices 𝜇 and 𝛼 in the second term and 𝜈 and 𝛽 in the third 

term, we have 

 (𝜎𝛼𝛽𝒆𝛼 ⊗ 𝒆𝛽)
.

= �̇�𝛼𝛽𝒆𝛼 ⊗ 𝒆𝛽 + 𝑤𝛼𝜇𝜎𝜇𝛽𝒆𝛼 ⊗ 𝒆𝛽 − 𝜎𝛼𝜈𝑤𝜈𝛽𝒆𝛼 ⊗ 𝒆𝛽 (2-28) 

And, solving for �̇�𝛼𝛽𝒆𝛼 ⊗ 𝒆𝛽, we obtain 

 �̇�𝛼𝛽𝒆𝛼 ⊗ 𝒆𝛽 = (𝜎𝛼𝛽𝒆𝛼 ⊗ 𝒆𝛽)
.
+ 𝜎𝛼𝜈𝑤𝜈𝛽𝒆𝛼 ⊗ 𝒆𝛽 − 𝑤𝛼𝜇𝜎𝜇𝛽𝒆𝛼 ⊗ 𝒆𝛽 (2-29) 

On the right-hand side of Eq. (2-29), we recognize the Jaumann rate of the Cauchy stress, 

i.e. 

 

𝝈∇ = (𝝈∇)𝛼𝛽𝒆𝛼 ⊗ 𝒆𝛽 

= (𝜎𝛼𝛽𝒆𝛼 ⊗ 𝒆𝛽)
.
+ 𝜎𝛼𝜈𝑤𝜈𝛽𝒆𝛼 ⊗ 𝒆𝛽 − 𝑤𝛼𝜇𝜎𝜇𝛽𝒆𝛼 ⊗ 𝒆𝛽 

(2-30) 
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Therefore, comparing Eq. (2-29) and Eq. (2-30), we finally obtain that, in this 𝒘 -co-

rotational basis, the components of the Jaumann rate are equal to the (substantial) time derivatives 

of the components of the stress, i.e. 

 (𝝈∇)𝛼𝛽 = �̇�𝛼𝛽 (2-31) 

Analogously, if we define a basis {𝒆𝛼}𝛼=1
3  that is co-rotational with respect to the rigid spin 

tensor 𝛀, in the sense that 

 �̇�𝛼 = 𝛀𝒆𝛼 = 𝒆𝛼𝛀𝑇 = −𝒆𝛼𝛀 (2-32) 

We can show that, in this 𝛀-co-rotational basis, the components of the Green–Naghdi rate 

equal the (substantial) time derivatives of the components of the stress, i.e. 

 (𝝈∆)𝛼𝛽 = �̇�𝛼𝛽 (2-33) 

 

2.2.4 Linearization of the deformation 

Linearization is essential in finite element formulations [13]. The linearization of the 

deformation about a specific configuration map  𝜙  entails the evaluation of the deformation 

gradient  𝑭  and of all derived quantities, after a perturbation is applied to  𝜙 . We call this 

perturbation an infinitesimal displacement, which we denote 𝛿𝓾 when seen as a function of the 

material point 𝑿 and 𝛿𝒖 when seen as a function of the spatial point 𝒙, i.e. 

 (𝛿𝓾)(𝑿, 𝑡) = (𝛿𝒖)(𝒙, 𝑡) (2-34) 
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The perturbed configuration map is thus 

 �̆�(𝑿, 𝑡) = 𝜙(𝑿, 𝑡) + (𝛿𝓾)(𝑿, 𝑡) (2-35) 

The deformation gradient of the perturbed configuration map �̆� is given by (see Section 4.2 

in the book by Marsden and Hughes [12]) 

 �̆�(𝑿, 𝑡) = 𝑭(𝑿, 𝑡) + ∇(𝛿𝓾)(𝑿, 𝑡) (2-36) 

Where  𝑭  is the deformation gradient of the unperturbed  𝜙  and we recall that the large 

nabla, ∇ denotes the gradient performed with respect to the referential coordinates 𝑋𝐼. It is helpful 

to express in Eq. (2-36) as a multiplicative decomposition [19]. Indeed, by definition of inverse, 

we have 

 �̆�(𝑿, 𝑡) = [𝓲 + ∇̅(𝛿𝓾)(𝑿, 𝑡)𝑭−1(𝒙, 𝑡)]𝑭(𝑿, 𝑡) (2-37) 

Then, the transformation rule for the gradient states that 

 ∇̅(𝛿𝒖)(𝑥, 𝑡) = ∇(𝛿𝓾)(𝑿, 𝑡)𝑭−1(𝒙, 𝑡) (2-38) 

Where we recall that the small nabla,  ∇̅ denotes the gradient with respect to the spatial 

coordinates 𝑥𝑖. Therefore, we can write Eq. (2-37) as 

 �̆�(𝑿, 𝑡) = [𝓲 + ∇̅(𝛿𝒖)(𝑥, 𝑡)]𝑭(𝑿, 𝑡) (2-39) 

where 

 (𝛿𝑭)(𝒙, 𝑡) = 𝓲 + ∇̅(𝛿𝒖)(𝑥, 𝑡) (2-40) 
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is the deformation gradient mapping from the configuration  ℬ𝑡 = 𝜙(ℬ, 𝑡)  to the perturbed 

configuration  ℬ̆𝑡 = �̆�(ℬ, 𝑡). Finally, the multiplicative decomposition equivalent to Eq. (2-36) is 

given by Eq. (2-39) and Eq. (2-40) as 

 �̆�(𝑿, 𝑡) = (𝛿𝑭)(𝒙, 𝑡)𝑭(𝑿, 𝑡) (2-41) 

In the following, we shall need to perform the linearization in time, i.e. considering the 

relative infinitesimal displacement between the configuration  ℬ𝑡 = 𝜙(ℬ, 𝑡)  at time  𝑡  and the 

configuration ℬ𝑠 = 𝜙(ℬ, 𝑠) at time 𝑠 > 𝑡. In this case, the perturbed configuration map �̆� and the 

perturbed deformation gradient �̆� are replaced by the configuration map 𝜙(. , 𝑠) and deformation 

gradient 𝑭(. , 𝑠) at time 𝑠 > 𝑡. Thus, we have 

 𝜙(𝑿, 𝑠) = 𝜙(𝑿, 𝑡) + (𝛿𝓾)𝑠(𝑿, 𝑡) (2-42) 

and 

 𝑭(𝑿, 𝑠) = 𝑭(𝑿, 𝑡) + ∇(𝛿𝓾)𝑠(𝑿, 𝑡) (2-43) 

where the subscript 𝑠 emphasizes that the relative displacement (𝛿𝓾)𝑠(𝑿, 𝑡) = 𝜙(𝑋, 𝑠) − 𝜙(𝑋, 𝑡) 

points to 𝜙(𝑋, 𝑠). Passages analogous to those seen above yield 

 𝑭(𝑿, 𝑠) = (𝛿𝑭)𝑠(𝒙, 𝑡)𝑭(𝑿, 𝑡) (2-44) 

where the relative deformation gradient (𝛿𝑭)𝑠(𝒙, 𝑡) is given by 

 (𝛿𝑭)𝑠(𝒙, 𝑡) = 𝓲 + ∇̅(𝛿𝒖)𝑠(𝒙, 𝑡) (2-45) 

We note that this treatment is based on the concept of relative deformation, for which we 

refer the Reader to the treatise by Eringen [20]. 
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2.2.5 Hypoelasticity 

Hypoelasticity describes a class of elastic materials defined in rate-form. Truesdell and Noll 

[1] proved that the general forms of hypoelastic constitutive equations must be given by 

 𝒔∎ = 𝕔: 𝒅 (2-46) 

where 𝒔∎ is an objective rate of a stress tensor 𝒔, which could be either the Cauchy stress 𝝈 or the 

Kirchhoff stress 𝝉, 𝒅 is the rate of deformation and 𝕔 is the fourth-order elasticity tensor, which, in 

general, depends on the stress 𝒔, i.e. 𝕔 = �̂�(𝒔). 

As mentioned in section 2.1, in this study, the hypoelastic constitutive equations are assumed 

to be zero-graded, which means that the fourth-order elasticity tensor  𝕔  is isotropic and 

independent of the stress, i.e. can be expressed as 

 𝕔 = 𝕔0 = 𝜆𝓲 ⊗ 𝓲 + 2𝜇𝓲 ⊗̅̅̅ 𝓲 (2-47) 

where the superscript zero stands for zero-graded material, 𝜆 and 𝜇 are Lame’s constants, 𝓲 is the 

spatial identity tensor with components 𝛿𝑖𝑗 (the Kronecker delta), and the special tensor product ⊗̅̅̅ 

is defined by Curnier et al. [21] and is such that the component representation of Eq. (2-47) is 

 𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑖𝑗𝑘𝑙
0 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 2𝜇 [

1

2
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)] (2-48) 

Given the Young’s modulus  𝐸  and the Poisson’s ratio  𝜈 , the Lame’s constants can be 

calculated via the well-known relations 
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 𝜆 =
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
,   𝜇 =

𝐸

2(1 + 𝜈)
 (2-49) 

 

2.3 Hypoelasticity in ABAQUS user subroutine UMAT 

A clear understanding of variables provided by the UMAT subroutine is essential to properly 

implement constitutive models into ABAQUS. In this section, we shall discuss the essential 

theoretical and numerical aspects of the UMAT-subroutine variables. It should be noted that, also 

for the case of a hyperelastic material, which is described by a strain energy density, the Jacobian 

matrix of the UMAT subroutine DDSDDE should be updated based on a particular rate-form 

equation. In this sense, the treatment below holds for both hyperelastic and hypoelastic models. 

 

2.3.1 UMAT-subroutine variable DDSDDE 

Based on Section 1.1.44 of ABAQUS User Subroutines Reference Guide [7], in order to 

implement a hyperelastic material, for which the Cauchy stress tensor is explicitly expressed in 

terms of the deformation gradient and other kinematic variables, it is necessary to evaluate the 

consistent Jacobian matrix DDSDDE. This is defined as the matrix representing the fourth-order 

tensor 𝔻 featuring in the expression 

 �̇� = 𝐽(𝔻: 𝒅 − 𝝈𝒘 + 𝒘𝝈) (2-50) 
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Eq. (2-50) can be promptly justified by using the definition (14) of Kirchhoff stress 𝝉 to 

eliminate the Cauchy stress 𝝈 and the definition in Eq. (2-21) of Jaumann rate 𝝉∇of the Kirchhoff 

stress, i.e. 

 𝝉∇ = 𝐽𝔻: 𝒅 (2-51) 

If we define 𝕔𝝉∇
 as the fourth-order tensor relating 𝝉∇ to 𝒅, i.e. 

 𝝉∇ = 𝕔𝝉∇
: 𝒅 (2-52) 

Comparison of Eq. (2-51) and Eq. (2-52) yields 

 𝔻 = 𝐽−1𝕔𝝉∇
 (2-53) 

A similar formulation is employed for the Jacobian matrix in hypoelastic materials, i.e. for 

rate-form constitutive models. As we shall show later in Section 2.4, the employment of the 

consistent Jacobian matrix DDSDDE based on Eq. (2-53) results in convergence, while other 

Jacobian matrices may give rise to slow convergence [6, 22] or even divergence. In order to 

implement a hypoelastic model into UMAT subroutine, it is essential to relate the elasticity tensor 

of the hypoelastic model to the fourth-order tensor 𝔻 of Eq. (2-53), represented by the consistent 

Jacobian matrix DDSDDE. Below, we report the tensor 𝔻 that must be used for each choice of 

hypoelastic formulation (proofs and UMAT implementations are provided in Appendix A). 

Truesdell Rate of the Cauchy Stress: 

 𝔻𝑖𝑗𝑘𝑙 = 𝕔𝑖𝑗𝑘𝑙
𝜎o

+ 𝜎𝑖𝑘𝛿𝑗𝑙 + 𝜎𝑗𝑙𝛿𝑖𝑘 (2-54) 

Truesdell Rate of the Kirchhoff Stress: 
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 𝔻𝑖𝑗𝑘𝑙 = 𝐽−1𝕔𝑖𝑗𝑘𝑙
𝜏o

+ 𝜎𝑖𝑘𝛿𝑗𝑙 + 𝜎𝑗𝑙𝛿𝑖𝑘 (2-55) 

Jaumann Rate of the Cauchy Stress: 

 𝔻𝑖𝑗𝑘𝑙 = 𝕔𝑖𝑗𝑘𝑙
𝜎∇

+ 𝜎𝑖𝑗𝛿𝑘𝑙 (2-56) 

Jaumann Rate of the Kirchhoff Stress, i.e. the point of departure, Eq. (2-53): 

 𝔻𝑖𝑗𝑘𝑙 = 𝐽−1𝕔𝑖𝑗𝑘𝑙
𝜏∇

 (2-57) 

Green–Naghdi Rate of the Cauchy Stress: 

 𝔻𝑖𝑗𝑘𝑙 = 𝕔𝑖𝑗𝑘𝑙
𝜎∆

− 𝐵𝑚𝑗𝑘𝑙𝜎𝑖𝑚 + 𝐵𝑖𝑚𝑘𝑙𝜎𝑗𝑚 + 𝜎𝑖𝑗𝛿𝑘𝑙 (2-58) 

Green–Naghdi Rate of the Kirchhoff Stress: 

 𝔻𝑖𝑗𝑘𝑙 = 𝐽−1𝕔𝑖𝑗𝑘𝑙
𝜏∆

− 𝐵𝑚𝑗𝑘𝑙𝜎𝑖𝑚 + 𝐵𝑖𝑚𝑘𝑙𝜎𝑗𝑚 (2-59) 

In the expressions above, we used 

 𝐵𝑖𝑗𝑘𝑙 = ∑
𝜆𝛽 − 𝜆𝛼

𝜆𝛽 + 𝜆𝛼

(𝒃𝛼)𝑖𝑘(𝒃𝛼)𝑗𝑙

3

𝛼,𝛽=1

 (2-60) 

where 𝜆𝛼 are the principal stretches (eigenvalues of the left-stretch tensor 𝑽, so that 𝜆𝛼
2  are the 

eigenvalues of the left Cauchy–Green deformation 𝒃), and 

 𝒃𝛼 = ∏
𝒃 − 𝜆𝛽

2 𝓲

𝜆𝛼
2 − 𝜆𝛽

2

3

𝛽=1,𝛽≠𝛼

 (2-61) 

Are the eigenprojections of the left Cauchy–Green deformation 𝒃, with 𝓲 being the spatial 

second-order identity tensor, as seen earlier. The proof of Eq. (2-54), Eq. (2-55), and Eq. (2-56) 
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can also be found in Wooseok et al. [23] and the proof of Eq. (2-58) and Eq. (2-59) is based on the 

relation. 

 𝛀 = 𝒘 + ∑
𝜆𝛽 − 𝜆𝛼

𝜆𝛽 + 𝜆𝛼
𝒃𝛼𝒅𝒃𝛽

3

𝛼,𝛽=1

 (2-62) 

The derivation of which can be found in Mehrabadi and Nemat-Nasser [9], and also Zhou 

and Tamma [24]. 

 

2.3.2 UMAT-subroutine variables DSTRAN and DROT 

The UMAT-subroutine variables DSTRAN and DROT contain the components of the 

incremental strain and incremental rotation, respectively, between the configuration  ℬ𝑛 =

𝜙(ℬ, 𝑡𝑛) at time 𝑡𝑛 and the configuration ℬ
𝑛+

1

2

= 𝜙 (ℬ + 𝑡
𝑛+

1

2

) at time 𝑡𝑛+1. 

The incremental deformation is evaluated following the procedure outlined in Section 2.2.4 

and employs a midpoint formula [25] considering the configuration ℬ
𝑛+

1

2

= 𝜙 (ℬ, 𝑡
𝑛+

1

2

) at time. 

 𝑡
𝑛+

1
2

= 𝑡𝑛 +
1

2
(𝛿𝑡)𝑛 = 𝑡𝑛 +

1

2
(𝑡𝑛+1 − 𝑡𝑛) (2-63) 

where 𝑡𝑛 is the time at the beginning of the increment and (𝛿𝑡)𝑛 = 𝑡𝑛+1 − 𝑡𝑛 is the increment 

from 𝑡𝑛 to 𝑡𝑛+1. Our goal here is to determine the relative displacement gradient, the midpoint 

displacement gradient, the midpoint velocity, and the midpoint velocity gradient. From the 
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midpoint deformation rate, symmetric part of the midpoint velocity gradient, we shall derive the 

incremental strain DSTRAN. 

The deformation gradient at time 𝑡𝑛+1 is obtained as a function of the relative deformation 

gradient and of the deformation gradient at time 𝑡𝑛, following Eq. (2-44), as 

 𝑭(𝑿, 𝑡𝑛+1) = (𝛿𝑭)𝑛+1(𝒙, 𝑡𝑛)𝑭(𝑿, 𝑡𝑛) (2-64) 

With the relative deformation gradient as in Eq. (2-45), i.e. 

 (𝛿𝑭)𝑛+1(𝒙, 𝑡𝑛) = 𝓲 + ∇(𝛿𝒖)𝑛+1(𝑥, 𝑡𝑛) (2-65) 

where we use the subscript 𝑛 + 1 in place of 𝑡𝑛+1 in (𝛿𝑭)𝑛+1(𝒙, 𝑡𝑛) and (𝛿𝒖)𝑛+1(𝒙, 𝑡𝑛). 

Now, we approximate the displacement between  𝑡𝑛  and  𝑡
𝑛+

1

2

 as half the displacement 

between 𝑡𝑛 and 𝑡𝑛+1: 

 

(𝛿𝒖)
𝑛+

1
2

(𝒙, 𝑡𝑛) = 𝜙 (𝑿, 𝑡
𝑛+

1
2

) − 𝜙(𝑿, 𝑡𝑛) 

≃
1

2
(𝛿𝒖)𝑛+1(𝒙, 𝑡𝑛) =

1

2
[𝜙(𝑿, 𝑡𝑛+1) − 𝜙(𝑿, 𝑡𝑛)]. 

(2-66) 

Using again Eq. (2-45) for the relative deformation gradient between 𝑡𝑛  to 𝑡
𝑛+

1

2

 with the 

displacement in Eq. (2-66), we have 

 (𝛿𝑭)
𝑛+

1
2

(𝒙, 𝑡𝑛) = 𝓲 +
1

2
∇̅(𝛿𝒖)𝑛+1(𝒙, 𝑡𝑛) (2-67) 

Which, together with Eq. (2-65), yields the alternative expression 
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 (𝛿𝑭)
𝑛+

1
2

(𝒙, 𝑡𝑛) =
1

2
[𝓲 + (𝛿𝑭)𝑛+1(𝒙, 𝑡𝑛)]. (2-68) 

Similarly, we approximate the displacement between 𝑡
𝑛+

1

2

 and 𝑡𝑛+1 as 

 

(𝛿𝒖)𝑛+1 (𝒙′, 𝑡
𝑛+

1
2

) = 𝜙(𝑿, 𝑡𝑛+1) − 𝜙 (𝑿, 𝑡
𝑛+

1
2

) 

≃
1

2
(𝛿𝒖)𝑛+1(𝒙, 𝑡𝑛) =

1

2
[𝜙(𝑿, 𝑡𝑛+1) − 𝜙(𝑿, 𝑡𝑛)], 

(2-69) 

where  𝑥′ = 𝜙 (𝑿, 𝑡
𝑛+

1

2

)  and it is understood that the displacement 
1

2
(𝛿𝒖)𝑛+1(𝒙, 𝑡𝑛)  must be 

parallel translated from  𝑥 = 𝜙(𝑋, 𝑡𝑛)  to  𝑥′ = 𝜙 (𝑋, 𝑡
𝑛+

1

2

) . The corresponding incremental 

deformation gradient is 

 (𝛿𝑭)𝑛+1 (𝒙′, 𝑡
𝑛+

1
2

) = 𝓲 +
1

2
∇̅′(𝛿𝒖)𝑛+1(𝒙, 𝑡𝑛) (2-70) 

where ∇̅′ denotes the gradient operator at 𝒙′ = 𝜙 (𝑿, 𝑡
𝑛+

1

2

), as opposed to the gradient operator ∇̅ 

at 𝒙 = 𝜙(𝑿, 𝑡𝑛). 

Using the incremental deformation gradients  (𝛿𝑭)𝑛+1(𝒙, 𝑡𝑛) and  (𝛿𝑭)𝑛+1 (𝒙′, 𝑡
𝑛+

1

2

) , we 

can write the multiplicative decomposition 

 𝑭(𝑿, 𝑡𝑛+1) = (𝛿𝑭)𝑛+1 (𝒙′, 𝑡
𝑛+

1
2

) (𝛿𝑭)
𝑛+

1
2

(𝒙, 𝑡𝑛)𝑭(𝑿, 𝑡𝑛), (2-71) 

Which, comparing with Eq. (2-64) and using Eq. (2-67) and Eq. (2-70), yields 
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(𝛿𝑭)𝑛+1(𝒙, 𝑡𝑛) = (𝛿𝑭)𝑛+1 (𝒙′, 𝑡
𝑛+

1
2

) (𝛿𝑭)
𝑛+

1
2

(𝒙, 𝑡𝑛) 

= [𝓲 +
1

2
∇̅′(𝛿𝒖)𝑛+1(𝒙, 𝑡𝑛)] [𝓲 +

1

2
∇̅(𝛿𝒖)𝑛+1(𝒙, 𝑡𝑛)] 

(2-72) 

The midpoint displacement gradient ∇̅′(𝛿𝒖)𝑛+1(𝒙, 𝑡𝑛) is evaluated from Eq. (2-72), 

considering Eq. (2-68), as 

 ∇′(𝛿𝒖)𝑛+1(𝒙, 𝑡𝑛) = 4(𝛿𝑭)𝑛+1(𝒙, 𝑡𝑛)[𝑖 + (𝛿𝑭)𝑛+1(𝒙, 𝑡𝑛)]−1 − 2𝓲 (2-73) 

The velocity in the configuration 𝔹
𝑛+

1

2

 is approximated by the midpoint discrete derivative 

 𝒗 (𝒙′, 𝑡
𝑛+

1
2

) = �̇� (𝑿, 𝑡
𝑛+

1
2

) ≃
𝜙(𝑿, 𝑡𝑛+1) − 𝜙(𝑿, 𝑡𝑛)

(𝛿𝑡)𝑛
=

𝛿𝒖𝑛+1(𝒙, 𝑡𝑛)

(𝛿𝑡)𝑛
, (2-74) 

where, again, the parallel translation from 𝑥 = 𝜙(𝑋, 𝑡𝑛) to 𝑥′ = 𝜙 (𝑋, 𝑡
𝑛+

1

2

) is understood. Based 

on this approximation, the velocity gradient in the midpoint configuration 𝔹
𝑛+

1

2

 is given by 

 𝓵 (𝒙′, 𝑡
𝑛+

1
2

) = ∇̅′𝒗 (𝒙′, 𝑡
𝑛+

1
2

) ≃
1

(𝛿𝑡)𝑛
∇̅′(𝛿𝒖)𝑛+1(𝒙, 𝑡𝑛), (2-75) 

With ∇′(𝛿𝒖)𝑛+1(𝒙, 𝑡𝑛) given by Eq. (2-73). The corresponding deformation rate and spin 

are 

 𝒅 (𝒙′, 𝑡
𝑛+

1
2

) ≃
1

2(𝛿𝑡)𝑛

[∇′(𝛿𝒖)𝑛+1(𝒙, 𝑡𝑛) + [∇′(𝛿𝒖)𝑛+1]𝑇(𝒙, 𝑡𝑛)], (2-76 a) 

 𝒘 (𝒙′, 𝑡
𝑛+

1
2

) ≃
1

2(𝛿𝑡)𝑛

[∇′(𝛿𝒖)𝑛+1(𝒙, 𝑡𝑛) − [∇′(𝛿𝒖)𝑛+1]𝑇(𝒙, 𝑡𝑛)]. (2-76 b) 
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The infinitesimal strain increment 𝛿𝜖𝑛 is the tensor corresponding to the UMAT-subroutine 

variable DSTRAN and is obtained from the midpoint deformation rate (2-76a) by multiplying by 

the time increment (𝛿𝑡)𝑛: 

 𝛿𝝐𝑛 ≡ 𝒅 (𝒙′, 𝑡
𝑛+

1
2

) (𝛿𝑡)𝑛 =
1

2
[∇′(𝛿𝒖)𝑛+1(𝒙, 𝑡𝑛) + [∇′(𝛿𝒖)𝑛+1]𝑇(𝒙, 𝑡𝑛)] (2-77) 

The midpoint spin Eq. (2-76 b) is instead used to calculate the incremental rotation tensor 𝑸𝑛 

corresponding to the UMAT-subroutine variable DROT, according to the Hughes–Winget 

algorithm (see Hughes and Winget [26] and Section 14.10.6 of Neto et al. [25]), as 

 𝑸𝑛 ≡ [𝓲 −
1

2
(𝛿𝑡)𝑛𝒘 (𝒙′, 𝑡

𝑛+
1
2

)]
−1

[𝓲 +
1

2
(𝛿𝑡)𝑛𝒘 (𝒙′, 𝑡

𝑛+
1
2

)], (2-78) 

The usage of which will be explained in the Section 2.3.3. 

 

2.3.3 UMAT-subroutine variable STRESS 

The stress array STRESS is the key UMAT-subroutine variable that provides the user with 

the components of the Cauchy stress tensor at the beginning of an increment. The user is, then, 

required to update the STRESS array with the components of the Cauchy stress tensor at the end 

of the increment. In some cases, such as that of hyperelastic constitutive models, the user can easily 

utilize the deformation gradient at the end of the increment, i.e. UMAT-subroutine variable 

DFGRD1, to calculate the Cauchy stress components. However, for rate-dependent constitutive 

equations, updating the STRESS array requires careful consideration on part of the user. 
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ABAQUS uses the Hughes–Winget algorithm to integrate the rate-form constitutive 

equations and update the STRESS array (see Section 3.2.2 of ABAQUS Theory Manual [7]). 

Based on the Hughes–Winget algorithm, the stress update reads [26] 

 𝝈𝑛+1 = 𝑸𝑛𝝈𝑛𝑸𝑛
𝑇 + 𝕔𝑛

𝜎∇
: 𝛿𝜺𝑛, (2-79) 

where  𝝈𝑛  and  𝝈𝑛+1  are the Cauchy stress tensor at time  𝑡𝑛  and  𝑡𝑛+1 , respectively,  𝑸𝑛  is the 

incremental rotation tensor and  𝕔𝑛
𝜎∇

is the elasticity tensor relating the Jaumann rate  𝝈∇  of the 

Cauchy stress to the rate of deformation 𝒅 (see Eq. (A-14)). By defining 

 �̃�𝑛 = 𝑸𝑛𝝈𝑛𝑸𝑛
𝑇 , (2-80) 

We can write Eq. (2-79) in the form 

 𝝈𝑛+1 = �̃�𝑛 + 𝕔𝑛
𝜎∇

: 𝛿𝜺𝑛. (2-81) 

The tensor �̃�𝑛 is the quantity corresponding to the UMAT-subroutine variable STRESS (see 

Section 1.1.44 of the ABAQUS User Subroutines Reference Guide [7]). Based on Eq. (2-56), 

relating 𝕔𝑛
𝜎∇

 to the consistent Jacobian 𝔻, we have 

 𝕔𝑛
𝜎∇

= 𝔻𝑛 − 𝝈𝑛 ⊗ 𝓲,   (𝕔𝑛
𝜎∇

)
𝑖𝑗𝑘𝑙

= (𝔻𝑛)𝑖𝑗𝑘𝑙 − (𝝈𝑛)𝑖𝑗𝛿𝑘𝑙 , (2-82) 

Where 𝔻𝑛  and 𝝈𝑛  are the consistent Jacobian and the stress at the beginning of step 𝑛, 

respectively. Using Eq. (2-82), we can write Eq. (2-81) in terms of 𝔻𝑛 as 

 𝝈𝑛+1 = �̃�𝑛 + (𝔻𝑛 − 𝝈𝑛 ⊗ 𝓲): 𝛿𝝐𝑛. (2-83) 
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The form of the consistent Jacobian 𝔻𝑛 depends on the selected hypoelastic model, see Eq. 

(2-54) to Eq. (2-59). 

 

2.4 Results and discussion 

Four simulations are performed in ABAQUS to validate the update procedure of the Cauchy 

stress array STRESS and the Jacobian matrix DDSDDE for the hypoelastic constitutive equations. 

Each model consists of only one eight-node brick element C3D8 with unit dimensions L = 1 

(Figure 2-1). The models are divided into displacement-based models and force-based models. 

The displacement-based models are used to check the correctness of the updated Cauchy stress 

tensor. In these models, the iterative procedure is not involved and, thus, the Jacobian matrix does 

not affect the material response. In contrast, in the force-based models, the implementation of the 

correct Jacobian matrix plays a crucial part in the convergence of the analysis. Employing the 

force-based models serves to validate the Jacobian matrices used in the hypoelastic constitutive 

equations and to show the consequences of using a Jacobian matrix that does not correspond to 

that required by the element type (for solid elements, that related to the Jaumann rate). 

In ABAQUS, the Static-General step employs the Newton-Raphson method for the iteration. 

For the force-based models, the incrementation type is set to automatic, and, for the displacement-

based models, the fixed incrementation type is used. For automatic incrementation, the initial 

increment size is selected 100 times smaller than the maximum increment size and the minimum 

increment size is chosen 100 times smaller than the initial increment size. The hypoelastic 
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constitutive equations used in these four models are based on: (1) the Jaumann rate of the Cauchy 

stress, (2) the Jaumann rate of the Kirchhoff stress, (3) the Truesdell rate of the Cauchy stress, (4) 

the Truesdell rate of the Kirchhoff stress, (5) the Green–Naghdi rate of the Cauchy stress, and (6) 

the Green–Naghdi rate of the Kirchhoff stress. The constitutive equations are all zero-graded. The 

Young’s modulus 𝐸 and Poisson’s ratio 𝜈 are, respectively, set to 20 (with consistent units) and 

0.2. We verified analytically that, for the cases studied, the material parameters E and ν appear 

linearly in the expressions of the Cauchy stress and, therefore, varying their magnitude does not 

introduce any further nonlinearity. Therefore, the conclusions drawn in this section are valid for 

arbitrary (and, naturally, physically admissible) values of the Young’s modulus and the Poisson’s 

ratio. In the first model (Figure 2-1 (a)), the nodes located on the bottom surface of the element are 

fixed in all directions, the nodes on the upper surface are fixed in 𝑥2  and 𝑥3  directions and a 

displacement equal to 5 is applied at the upper nodes in 𝑥1 direction. This model is a displacement-

based model subjected to simple shear. Using the zero-graded hypoelastic constitutive equations 

in this model, the numerical Cauchy stress tensors can be checked with the analytical counterparts 

provided in [2, 3] (see  

Figure 2-2 for the analytical solutions of the zero-graded hypoelastic constitutive equations 

under simple shear). 

In simple shear, the local volume does not change (i.e. 𝐽 = 1) and, thus, the Kirchhoff stress 

tensor coincides with the Cauchy stress tensor. Therefore, the hypoelastic constitutive equations 

based on the Kirchhoff stress tensor are equivalent to those based on the Cauchy stress tensor. 

Figure 2-3 compares the analytical solutions (CASE 4) with the numerical ones, considering the 
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fixed increment size as 0.1 (CASE 1), 0.01 (CASE 2), and 0.001 (CASE 3). For all hypoelastic 

constitutive equations, the numerical solutions corresponding to the increment size of 0.001 lie on 

the analytical solutions. For the hypoelastic models associated with the Jaumann and Green–

Naghdi rates, the convergence occurs at the increment size of 0.01 (CASE 2). 

  

(a) Displacement-based, simple-shear (b) Displacement-based, uniaxial-extension 

  

(c) Force-based, simple-shear (d) Force-based, uniaxial-extension 

Figure 2-1: ABAQUS models for checking the correctness of the Cauchy stress array STRESS 

and the Jacobian matrix DDSDDE 
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Figure 2-2: Analytical solutions of the Cauchy stress tensor in a material body subjected to 

simple shear; zero-graded hypoelastic constitutive equations based on: the Jaumann rate of the 

Cauchy stress (CASE 1); the Truesdell rate of the Cauchy stress (CASE 2); and the Green–

Naghdi rate of the Cauchy stress (CASE 3) 

 

 

(a) Jaumann rate of the Cauchy or Kirchhoff stress tensors 

 

(b) Truesdell rate of the Cauchy or Kirchhoff stress tensors 
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(c) Green-Naghdi rate of the Cauchy or Kirchhoff stress tensors 

Figure 2-3: The Cauchy stress components in the displacement-based model subjected to simple 

shear; zero-graded hypoelastic constitutive equations based on various rates (a–c); numerical 

solutions with fixed increment sizes of 0.1 (CASE 1), 0.01 (CASE 2), and 0.001 (CASE 3) in 

comparison with the analytical solutions (CASE 4) 

 

In the second model (Figure 2-1 (b)), the nodes on the back surface are fixed in all directions; 

the nodes on the front surface are fixed in 𝑥2 and 𝑥3 directions and a displacement equal to 5 is 

applied in 𝑥1 direction. This model is a displacement-based model subjected to uniaxial extension, 

which we use to double-check the update procedure of the Cauchy stress tensor for the zero-graded 

hypoelastic constitutive equations. In uniaxial extension, the eigenvectors of the right stretch 

tensor 𝑼 remain constant during the motion and thus the eigenvectors of �̇� coincide with those 

of 𝑼. Consequently, U and �̇� commute and the spin tensor 𝒘 reduces to the rigid spin 𝛀, as can be 

seen from Eq. (2-10). Accordingly, in uniaxial extension, the hypoelastic constitutive equations 

based on the Jaumann rates show the same mechanical behaviour as those based on the Green–

Naghdi rates. Figure 2-4 represents the numerical solutions considering the fixed increment size 

as: 0.1 (CASE 1), 0.01 (CASE 2), 0.001 (CASE 3), and 0.0001 (CASE 4). For all hypoelastic 

constitutive equations, the increment sizes of 0.01, 0.001, and 0.0001 result in the same responses. 
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In the third model (Figure 2-1 (c)), the bottom nodes are fixed in all directions; by defining 

a rigid body constraint, the upper nodes are rigidly constrained to a reference point located at the 

center of the upper surface and a concentrated force in the 𝑥1-direction is applied to the reference 

point. The reason behind the employment of the rigid constraint is that the application of equal 

concentrated forces at the upper nodes does not produce simple shear deformation. This is a force-

based model, used to check the correctness of the Jacobian matrix for the zero-graded hypoelastic 

constitutive equations. In this model, the applied force is in equilibrium with the shear Cauchy 

stress component, i.e. 𝜎12 (Figure 2-1 (c)). Noting that the iterative procedure, i.e. the Newton–

Raphson method, is unable to pass the critical points (e.g. snap-through), for each hypoelastic 

constitutive equation, the value of the applied force must be selected based on the shear stress 

response in the displacement-based model under simple shear. Based on Figure 2-3 (b) and Figure 

2-3 (c), for the hypoelastic constitutive equations associated with the Truesdell and Green–Naghdi 

rates, the shear stress is increasing in the course of the simple shear motion and its maximum value 

occurs at  𝑢1 = 5. Nevertheless, for the hypoelastic constitutive equations associated with the 

Jaumann rates, the maximum shear stress occurs at a critical point located at 𝑢1 = 1.57 (Figure 

2-3 (a)). Employing the zero-graded hypoelastic constitutive equations and the corresponding 

applied force values into the model, in Figure 2-5, a comparison is provided between the analytical 

solutions (CASE 4) and the numerical solutions using the automatic incrementation with 

maximum increment sizes as: 0.1 (CASE 1), 0.01 (CASE 2), and 0.001 (CASE 3). For all 

hypoelastic constitutive equations, the maximum increment size of 0.001 (CASE 3) provides 

numerical solutions which are located on the analytical solutions. For the hypoelastic constitutive 
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equations based on the Jaumann and Green–Naghdi rates, even the numerical solutions associated 

with the maximum increment size of 0.1 lie on the analytical counterparts (Figure 2-5 (a) and 

Figure 2-5 (b). 

For the fourth model (Figure 2-1 (d)), the nodes in the back surface are fixed in all directions, 

the nodes in the front surface are restricted in 𝑥2 and 𝑥3 directions and, in the remaining degrees 

of freedom (DOFs), i.e. DOFs in 𝑥1 direction at the nodes in the front, equal concentrated forces 𝑓1 

are applied. This model is a force-based model subjected to uniaxial extension, used to double-

check the correctness of the Jacobian matrix for the zero-graded hypoelastic constitutive equations. 

 

 

(a) Jaumann or Green-Naghdi rate of the Cauchy stress tensor 
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(b) Jaumann or Green-Naghdi rate of the Kirchhoff stress tensor 

 

(c) Truesdell rate of the Cauchy stress tensor 

 

(d) Truesdell rate of the Kirchhoff stress tensor 

Figure 2-4: The Cauchy stress components in the displacement-based model subjected to 

uniaxial extension deformation; zero-graded hypoelastic constitutive equations based on various 

rates (a–d); comparing numerical solutions with fixed increment sizes as: 0.1 (CASE 1), 0.01 

(CASE 2), 0.001 (CASE 3), and 0.0001 (CASE 4) 

 

 

(a) Jaumann rate of the Cauchy or Kirchhoff stress tensors 
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(b) Truesdell rate of the Cauchy or Kirchhoff stress tensors 

 

(c) Green-Naghdi rate of the Cauchy or Kirchhoff stress tensors 

Figure 2-5: The Cauchy stress components in the force-based model subjected to simple shear; 

zero-graded hypoelastic constitutive equations based on various rates (a-c); numerical solutions 

using automatic incrementation with maximum increment sizes of 0.1 (CASE 1), 0.01 (CASE 2), 

and 0.001 (CASE 3) in comparison with analytical solutions (CASE 4) 

 

 

(a) Jaumann or Green-Naghdi rate of the Cauchy stress tensor 
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(b) Jaumann or Green-Naghdi rate of the Kirchhoff stress tensor 

 

(c) Truesdell rate of the Cauchy stress tensor 

 

(d) Truesdell rate of Kirchhoff stress tensor 

Figure 2-6: The Cauchy stress components in the force-based model subjected to uniaxial 

extension deformation; zero-graded hypoelastic constitutive equations based on various rates (a–

d); using automatic incrementation with the maximum increment sizes of 0.1 (CASE 1), 0.01 

(CASE 2), 0.001 (CASE 3), and 0.0001 (CASE 4) 
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(a) Jaumann or Green-Naghdi rate of the Cauchy stress tensor 

 

(b) Jaumann or Green-Naghdi rate of the Kirchhoff stress tensor 

 

(c) Truesdell rate of the Cauchy stress tensor 
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(d) Truesdell rate of the Kirchhoff stress tensor 

Figure 2-7: Cauchy stress components in the force-based model subjected to uniaxial extension 

based on: the correct Jacobian 𝔻n, based on the Jaumann rate of the Kirchhoff stress from Eq. 

(2-57) (CASE 1), and the incorrect version of the Jacobian, based on the Jaumann rate of the 

Cauchy stress 𝕔n
σ∇

= 𝔻n − 𝛔n ⊗ 𝓲 from Eq. (2-56) (CASE 2). The zero-graded hypoelastic 

constitutive equations based on various rates (a–d); using the automatic incrementation with the 

maximum increment size of 0.001. Note how the simulation based on the incorrect Jacobian 

𝕔n
σ∇

= 𝔻n − 𝛔n ⊗ 𝓲 fails to converge (the red dot indicates where the simulation stops) 

 

In this model, the sum of the concentrated forces, i.e. 4𝑓1, is in equilibrium with the normal 

Cauchy stress component  𝜎11(Figure 2-1 (d)). Thus, for each hypoelastic constitutive equation, 

the value of  𝑓1  must be selected based on the response of the stress component  𝜎11  in the 

displacement-based model subjected to uniaxial extension (Figure 2-4). As is clear from Figure 

2-4 (b), for the hypoelastic constitutive equations based on the Jaumann or Green–Naghdi rates of 

the Kirchhoff stress tensor, a critical point (snap-through) exists at 𝑢1 = 1.71, whereas the stress 

component 𝜎11 is increasing during the uniaxial extension motion in other constitutive equations 

(Figure 2-4 (a), Figure 2-4 (c), and Figure 2-4 (d)). In Figure 2-6, employing the zero-graded 

hypoelastic constitutive equations alongside the proper values of 𝑓1, the numerical solutions for 

the maximum increment sizes of 0.1 (CASE 1), 0.01 (CASE 2), 0.001 (CASE 3), and 0.0001 
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(CASE 4) are compared. It is clear from Figure 2-6 that, for all of the hypoelastic constitutive 

equations, the numerical solutions corresponding to the maximum increment sizes of 0.01 to 

0.0001, i.e. CASE 2 to CASE 4, are the same. For the hypoelastic constitutive equations associated 

with the Jaumann or Green–Naghdi rates, even the first case, i.e. the numerical solutions with the 

maximum increment size of 0.1 are the same as the rest of the numerical solutions. 

The elasticity tensor 𝕔𝑛
𝜎∇

 describes the relation between the Jaumann rate of the Cauchy 

stress and the rate of deformation (see Eq. (A.14)) and is related to the consistent Jacobian 

𝕔𝑛
𝜎∇

= 𝔻𝑛 − 𝝈𝑛 ⊗ 𝓲 via Eq. (2-56). Since 𝕔𝑛
𝜎∇

 is used in the Hughes–Winget algorithm [26] to 

update the stress (Eq. (2-79)), a possible coding error is to use 𝕔𝑛
𝜎∇

 in place of the consistent 

Jacobian  𝔻𝑛  (Eq. (2-57)). Figure 2-7 compares the numerical solutions based on the correct 

Jacobian 𝔻𝑛 (CASE 1) and the incorrect Jacobian (CASE 2) for the force-based model subjected 

to uniaxial extension. 

Figure 2-7 shows how using the wrong Jacobian matrices results in non-convergence of the 

analyses at the early stages of the loading. Nevertheless, before the simulation fails to converge 

and stops (which is indicated by the red dots in the CASE 2 plots in Figure 2-7), the Cauchy stress 

components are identical in both cases of the correct and incorrect Jacobian matrices. Therefore, 

the correctness of the Jacobian matrix is crucial for the convergence of the analyses, but has no 

effect on the correctness of the updated Cauchy stress tensor. 
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2.5 Chapter conclusion 

In this study, we implement various hypoelastic constitutive models into the finite element 

analysis software ABAQUS through the user subroutine UMAT. For the formulation of the 

consistent Jacobian, i.e. the matrix DDSDDE, ABAQUS uses the elasticity tensor relating the 

Jaumann rate of the Kirchhoff stress to the rate of deformation for solid elements and the elasticity 

tensor relating the Green–Naghdi rate of the Kirchhoff stress to the rate of deformation for shell 

elements. Therefore, it is essential to relate the elasticity tensor of various hypoelastic constitutive 

models to the elasticity tensor associated with the consistent Jacobian. In regard to the importance 

of the consistent Jacobian, it is shown that the usage of wrong Jacobian matrices would give rise 

to the non-convergence of the analyses in the early stages of loading.  

Additionally, in order to update the Cauchy stress in the various hypoelastic models 

presented, the comprehension of ABAQUS co-rotational framework and UMAT-subroutine 

variables such as STRESS, DSTRAN, and DROT is essential, and this is why they were all 

described in detail. The correctness of the stress array STRESS and Jacobian matrix DDSDDE in 

the zero-graded hypoelastic constitutive equations is checked using displacement-based and force-

based models subjected to simple shear and uniaxial extension. This work is aimed at providing a 

step-by-step guide to the implementation of hypoelastic materials in ABAQUS, but the procedures 

shown can be adapted to the modelling of hyperelastic materials as well. 
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CHAPTER 3: MORPHOLOGICAL STUDY OF THE PELVIS USING STATISTICAL 

SHAPE MODELS: ANATOMICAL VARIATION, ASYMMETRY, AND 

SEXUAL DIMORPHISM 

 

This chapter is derived from the paper in prepration: 

M. Palizi, M. S. Ead, J. L. Jaremko, L. Westover, S. Adeeb, Quantitative assessment of pelvic 

morphology using statistical shape modelling. 

 

Abstract 

The human pelvis is a complex anatomical structure with geometric variability due to the 

shape, size, location, and orientation of its components. Statistical shape modelling describes 

anatomical variation in compact mathematical form, called statistical shape models (SSMs). This 

study uses the dataset of 40 pelves (20 male and 20 female) to construct SSMs for the hemipelvis 

at three different levels and quantify inter- and intra-individual, as well as sexual dimorphism. Our 

study included the following structures: the hemipelvic shape, the hemipelvis with actual size, and 

the left-right hemipelves in the pelvic girdle structure. In addition to the patterns, anatomical 

variation and asymmetry are measured locally. Non-parametric statistical tests and permutation-

based analyses are utilized to assess the significance of the observations. The results show that (1) 

change of size is the first mode of anatomical variation for both hemipelvis and pelvis with higher 
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dominance within the male group, (2) the dominant mode of anatomical variation on the 

hemipelvis shape involves changes in iliac breadth for both groups, (3) Anterior Superior Iliac 

Spine (ASIS) exhibits the highest anatomical variation in all three structures for both male and 

female groups, with its lateral-medial movement being a significant pattern of anatomical variation 

in all studied structures, (4) the main pattern of bilateral asymmetry for both the male and female 

groups was linked to the arrangement/orientation of the left-right hemipelves (an 

elevation/depression for the male group, and an oblique rotation for the female group), and (5) for 

the hemipelvic shape, the male average model displayed a narrower sciatic notch and upright ilium, 

while the female group exhibited a curved and shorter ilium with longer and thinner superior pubic 

and ischiopubic rami. This study is relevant to implant design companies, preoperative planning 

of unilateral pelvic injuries, and assessment of anatomical restoration following pelvic surgeries 

and difficult childbirth. Additionally, there are potential applications in educational contexts. 

Keywords: statistical shape modelling; pelvic morphometrics; inter-individual variation; 

matching asymmetry; bilateral asymmetry; sexual dimorphism. 

 

3.1 Introduction 

The pelvis is a complex anatomical structure that consists of two innominate bones, the 

sacrum, and the coccyx [1]. Each innominate bone, referred to as the hemipelvis, is made up of 

three parts: the ilium, ischium, and pubis. These components are initially separated at birth but 

merge by the end of puberty, forming the complete hemipelvis [1]. The variation in pelvic 
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morphology (or geometry) arises from the differences in the shape, size, position, and orientation 

of its components. Furthermore, pelvic morphology has significant differences between men and 

women [2]. The sexual dimorphism of the pelvis is related to childbirth which exerted evolutionary 

pressure on the female pelvis [2]. 

Morphometrics is an old topic in biology that quantifies the morphology (or geometry) of 

bones, organs, and anatomical structures [3]. Traditional morphometric studies typically employed 

statistical analyses on sets of distances, angles, and/or distance ratios [3]. The distances and angles 

were defined between a set of anatomically meaningful points that were common and 

distinguishable within samples, referred to as landmarks [3]. Despite insightful findings of 

traditional morphometrics, analyses of these discrete measurements failed to represent the 

complete three-dimensional geometry of bones [4]. To overcome this limitation, geometric 

morphometrics (GM) emerged as a promising approach for the analysis of bone geometry. The 

key idea of GM was to directly analyze the coordinates of the landmarks, instead of distances and 

angles [4]. With advancements in 3D medical imaging and shape analysis, GM expanded its scope 

from analyzing a limited number of landmarks to a dense set of features [4]. 

Statistical Shape Model (SSM) is one of the promising tools in modern GM to quantify bone 

morphology [5]. An SSM provides a concise yet comprehensive representation of the average 

geometry of a bone and its main types of variation [5]. In the last decade, researchers have 

employed SSMs to investigate various aspects of pelvic morphology. The majority of the studies 

have been focused on the anatomical variation of the pelvis within European and Asian 

populations, which proved to be highly beneficial in orthopaedics [6-10]. As an example, Artificial 
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Bone Models (ABMs) are widely used to teach fracture management principles, explore the 

biomechanics of the human skeletal system, and evaluate implant component efficiency through 

mechanical experiments [7]. However, the commercially available ABMs were limited to the 

European population [7]. To address this limitation, Ahrend et. al. used SSM to study the 

anatomical variation of the pelvis in the Asian population and manufactured a generic Asian pelvic 

ABM for educational and research purposes [7]. 

In addition to the anatomical variation, some studies have investigated the sexual 

dimorphism of the pelvis using SSM-based approaches [6, 8, and 10]. Arand et. al. created an 

overall (male and female) pelvic SSM for 50 Japanese adults, and alongside anatomical variation, 

they compare the average models for the male and female groups [8]. Veldhuizen et al. created an 

overall SSM for the hemipelvis, using a database of 100 men and 100 women in a Caucasian 

population, and compare the scores of the male and female groups in each SSM mode [10]. 

Asymmetry of the pelvis is another area where SSM-based approaches have been proposed 

[6, 11]. Handrich et al. created pelvic SSMs for male and female adults in Asian and European 

populations (four models) and identified the patterns of asymmetry within the modes of anatomical 

variation using visual judgment [11]. Assessing pelvic asymmetry is highly valuable for the 

preoperative planning of unilateral pelvic injuries, where the pelvic morphology of the intact side 

serves as a template for decision-making regarding the treatment and implant component selection 

[11]. 
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In this study, we present a comprehensive SSM-based approach to investigate pelvic 

morphology in terms of anatomical variation, asymmetry, and sexual dimorphism. Unlike previous 

studies which have assessed either the entire pelvic structure or the hemipelvis, we analyze the 

pelvis geometry at different levels. Our study includes the following structures: (1) the hemipelvis 

without size, referred to as the hemipelvic shape hereinafter, (2) the hemipelvis at its actual scale, 

referred to as the hemipelvis, and (3) the left-right hemipelves within the pelvic structure, called 

the pelvis, hereinafter. The multi-level analysis provides a deeper understanding of pelvic 

morphology. Furthermore, we analyze the anatomical variation and asymmetry in the male and 

female groups separately to explore the similarities/differences between the two groups. Despite 

the extensive studies on pelvic morphology, the knowledge about the differences/similarities of 

the anatomical variation and specially asymmetry between the male and female pelvis is limited. 

The remaining sections of this study are structured as follows: section 3.2 presents the 

computational pipeline to construct the models and assess the significance of the findings. In 

section 3.3, we present the significant patterns and areas related to anatomical variation, 

asymmetry, and sexual dimorphism. Section 3.4 discusses the findings of the study, compares 

them to other studies, and explores the potential applications of the study. 
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3.2 Materials and methods 

The computational pipeline of the study included two major steps: (1) conversion of the 

image database into the samples of the studied structures, and (2) multivariate analyses. Figure 3-1 

illustrates these steps in detail. 

 

 

(a) Conversion of the image database into the samples. 
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(b) Multivariate analyses. 

Figure 3-1: Computational pipeline to study the pelvic morphology using SSM 

 

3.2.1 Image dataset, triangle meshes, and point sets 

The study used Computed Tomography (CT) images of the pelvic regions of 40 individuals 

(20 men, 20 women) with ages ranging from 18 to 25 years (average age: 21.3 years). The 

difference between the average age of the male and female groups was non-significant (𝑃 = 0.912, 

two-sided Mann-Whitney test). Approval to use the database was obtained from the Health 

Research Ethics Board at the University of Alberta with a waiver of consent. The study was 

conducted in line with the Declaration of Helsinki [12]. 

The CT scans were converted into triangle meshes using a semi-automated segmentation 

method [13]. Each segmented mesh represented the left or right hemipelvis of an individual. These 

original meshes contained geometric and topological noises. The screened Poisson surface 
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reconstruction technique [14] was used to convert each original mesh into a watertight mesh. Each 

watertight mesh was then smoothed using the Taubin method [15]. 

A template was required to establish correspondence as well as visualization purposes, for 

which one of the smoothed meshes was selected. Using a parameterization technique [16], the 

template mesh was converted into a mesh with optimal tessellation quality, i.e. uniform vertex 

distribution and equilateral triangles. 

A dense uniform point set was sampled on each smoothed mesh and the template. To achieve 

uniform point distribution, the Poisson-disk point-set sampling method [17] was used to sample 

well-distributed points on the meshes. Then, the uniformization technique proposed in [18] was 

used to further homogenize the point distribution over the meshes. 

 

3.2.2 Correspondence 

The point sets (representing the hemipelves and the template hemipelvis) were coarsely 

aligned w.r.t. translation, scaling, and rotation. Each point set was first translated such that its 

centroid was moved to the origin of a global coordinate system. Next, each point set was scaled to 

have a unit centroid size. Afterward, each point set was rotated such that its principal axes aligned 

with the axes of the global coordinate system (see [19] for the computation of the centroid, centroid 

size, and principal axes of a point set). To align the right and left hemipelvic point sets, the point 

sets of the left hemipelves underwent an additional reflection. 
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After normalization, a parallelized groupwise registration scheme [20] was used to establish 

correspondence between the hemipelvic point sets. The scheme was an iterative process with two 

main steps: (1) the rigid alignment of the hemipelvic point sets on an average point set, and (2) the 

non-rigid alignment of the average point set on the hemipelvic point sets. Initially, the template 

point set served as the average point set, and after each iteration, the average point set was updated 

[20]. Convergence of the average point set was achieved in two iterations. The Coherent Point 

Drift (CPD) method [21] was used for the rigid and non-rigid registration tasks in the scheme. 

Using this parallelized registration scheme [20], we obtained a set of point sets in correspondence 

that represented the hemipelves in a common high-dimensional space (as the deformed versions 

of the template). 

 

3.2.3 Samples 

3.2.3.1 Hemipelvic-Shape Samples 

The point sets in correspondence had unit centroid size. Using these point sets, the geometry 

of the hemipelvic shape was investigated. To facilitate the comparison between the hemipelvic 

shape and the structures with actual scale, all of the point sets in correspondence were scaled using 

the average centroid size of the hemipelves. Generalized Procrustes Analysis (GPA) was then 

employed to remove the redundant rigid transformations within the set [22].  
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3.2.3.2 Hemipelvic Samples 

The point sets in correspondence were rigidly transformed to their actual scales. Next, GPA 

was applied to remove the redundant rigid transformations within the set. 

 

3.2.3.3 Pelvic Samples 

The point sets in correspondence were first transformed to their original location, orientation, 

and scale in the image dataset (using the computed parameters of the rigid registrations and 

normalization). Next, the left and right hemipelvic point sets belonging to each subject were 

combined into a single point set, representing the pelvis. In addition, the average of the left-right 

hemipelvic point sets was computed for each subject, which depicts a planar point set mirroring 

the contralateral (opposite) hemipelves. For each subject, the pelvic point set was reflected w.r.t 

to its sagittal plane; the sagittal plane was defined using the centroid and the smallest eigenvector 

of the planar point set. GPA was then applied on the planar point sets to remove the rigid 

transformation within the set. 

 

3.2.4 Displacement Vector Fields (DVF) 

For each structure, the Displacement Vector Field (DVF) between the samples and their sex-

specific average point sets was used to study the anatomical variation. For the hemipelvic shape 
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and the hemipelvis, the DVF between the left-right point sets belonging to each subject was used 

to investigate the matching asymmetry of the hemipelvis (with and without size) [6]. For the pelvis, 

the DVF between the actual and reflected pelvic point sets was used to study the bilateral 

asymmetry on the pelvis [23, 24]. Lastly, the displacement between the male and female average 

point sets was used to characterize sexual dimorphism. 

 

3.2.5 Multivariate analyses 

Principal Component Analysis (PCA) is a dimension-reduction technique that identifies the 

main modes of variation within a dataset  (see [22] for a description of PCA). In PCA, the modes 

of variation, referred to as the principal components (PCs), are arranged sequentially based on 

their contribution to the total variance within the dataset [22]. PCA was used to identify the main 

modes of anatomical variation and asymmetry in all of the studied structures, using the associated 

DVFs. The significance of the principal component analyses was assessed using a permutation-

based statistical test proposed by [25]. In this test, firstly, the overall significance of the PCA was 

assessed by two statistics, ensuring the correlational structure exists in the DVFs [25]. Next, the 

PCs of valid variation were distinguished from the PCs reflecting the random noise [25]. 

In addition to the PCA, the anatomical variation and asymmetry were assessed locally. To 

measure the local anatomical variation on each structure, the distance between each sample and 

its sex-specific average model was recorded (i.e. the Euclidean norm of the DVFs related to 

anatomical variation). At each point, the average of such distances was measured as the local 



 

76 

 

 

anatomical variation. Similarly, the local asymmetry was measured at each point as (1) the average 

of the distance between the left-right hemipelvic samples (for the matching asymmetry of the 

hemipelvis, with and without size), and (2) the average of the distance between the pairs of actual-

reflective pelvic samples for the bilateral asymmetry. It should be noted that PCA shows the main 

patterns of variation which explain the anatomical variation or asymmetry, while the local 

measures exhibit variance at each point on the structures. 

To assess the statistical significance of the local measure at each point, we assumed that no 

significant difference exists between the local measure at that point and the overall average value 

over the whole structure (separate values for the male and female groups). The Wilcoxon signed-

rank test [26] was then employed to assess this hypothesis by comparing the distance records at 

the point with the overall average value. To address the issue of multiple comparisons and control 

the false-positive rate [27], the threshold of considering the points as significance locations were 

considered as 1e-5 [27]. 

To model the sexual dimorphism on each structure, the DVF between the average male and 

female models was computed, intensified, and visualized. To determine the statistical significance 

of the sex-related DVF for each structure, the displacement field between the samples and the 

overall average model was projected on the sex-related DVF, and using the Mann-Whitney test, 

the difference between the projections for the male and female was assessed. 
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3.3 Results 

3.3.1 Significant regions of anatomical variation 

Figure 3-2 shows the color map plots for the local anatomical variation on each structure. 

The plots for the male and female groups are presented separately. Table 3-1 reports the overall 

statistics of the local anatomical variation. The p-values of the statistical tests on the significance 

of the local anatomical variation are plotted in Figure B-0-1 in Appendix B. 

For all structures, the male group showed higher variation in comparison with the female 

group (Table 3-1 and Figure 3-2). The maximum variation for all of the structures was located 

around the Anterior Superior Iliac Spine or ASIS (red dots in Figure 3-2). For the hemipelvic 

shape, the variation around the ASIS reached 9.2 mm for the male group and 7.5 mm for the female 

group (Figure 3-2 and Table 3-1). In addition, the posterior side of the ilium, the pubic symphysis, 

and the ischial tuberosity (only for the male group) exhibited high variation (Figure 3-2 and Figure 

B-0-1). 

For the hemipelvis, the local anatomical variation around the ASIS reached 10.7 mm for the 

male group and 8.2 mm for the female group (Figure 3-2 and Table 3-1). High variations were also 

observed at the top and bottom of the hemipelvis (Figure 3-2 and Figure B-0-1). 

For the pelvis, both groups showed high variation around the ASIS, with the maximum local 

anatomical variation of 15.5 mm for the male group and 12.9 mm for the female group (Table 3-1 

and Figure 3-5). For the pelvis, the variations in other regions were non-significant (Figure B-0-1). 
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Figure 3-2: Color map plots for the local anatomical variation on the studied structures. The red 

dot shows the location of the maximum local anatomical variation. The black dots show the 

locations where each sample has the maximum distance from its sex-specific average model. The 

hemipelvis is visualized from lateral (top-left), medial (top-right), posterior (bottom-left) and 

anterior views (bottom-right). The views of the pelvis include anterior (top-left), posterior (top-

right), inlet (bottom-left) and outlet (bottom-right). 

 

Table 3-1: Statistics of the local anatomical variation for the studied structures 

Structure Sex 
Mean 

(mm) 

SD 

(mm) 

Min 

(mm) 

Max 

(mm) 

Hemipelvic Shape 
Female 3.4 0.9 2.0 7.5 

Male 3.6 1.0 2.0 9.2 

Hemipelvis 
Female 4.5 1.4 2.2 8.2 

Male 5.3 1.7 2.4 10.7 

Pelvis 
Female 6.2 1.9 3.1 12.9 

Mala 7.0 2.0 4.1 15.5 

 

3.3.2 Patterns of anatomical variation 

Table 3-2 presents the results of PCA analyses and permutation-based tests for the 

anatomical variation on each structure. In Figure 3-3 to Figure 3-5, the first three modes (principal 

component or PC) of the anatomical variation are depicted for each structure. Each PC is shown 

within the range of ±3 Standard Deviation (SD), encompassing 99.7% of the instances represented 

by that PC (see [22] for a description of PCA and the shape instance associated with a SD). The 

permutation-based tests showed significant correlational structure in all of the datasets (P-value 
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for the psi and phi statistics [25], Table 3-2). In addition, at least the first three PCs were 

meaningful modes that explain the anatomical variation (and not random noise) (Table 3-2). 

For the hemipelvic shape, the first PC accounted for 31.0% of the total variance for the male 

group and 22.1% in the female group (Table 3-2). In both groups, PC1 mainly influenced the iliac 

breadth. For the male group, an increase in the iliac breadth was accompanied by a lateral 

movement of the ASIS, and the rotation of the pubis and ischium as a unit (Figure 3-3, PC1-Male). 

For the female group, an increase in the iliac breadth was associated with notable movements at 

the ASIS and PSIS (Posterior Superior Iliac Spine) and the elevation of the pubis and ischium as 

a unit (Figure 3-3, PC1-Female). 

The second PC explained 12.2% of the total variance in the male group and 13.0% in the 

female group. For the male group, PC2 mainly influenced the curvature of the gluteal surface and 

iliac fossa, alongside notable movements at PSIS, ASIS, and ischium (Figure 3-3, PC2-Male). For 

the female group, PC2 mainly affects the posterior side of the ilium (sacroiliac or SI joint surface) 

as well as the acetabulum (Figure 3-3, PC2-Female). The third PC accounted for 10.0% of the total 

variation for the male group and 11.1% in the female group. For both groups, PC3 represents a 

movement at the ASIS in the anteroposterior direction (Figure 3-3, PC3-Female and Male). 
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Figure 3-3: The first three PCs for the anatomical variation on the hemipelvic shape. The PCs are 

presented within the range of ±3 SD. The color mapping shows the distance between the extreme 

instances (associated with ±3SD) and the average model. The red dot shows the location of the 

maximum distance. 
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For the hemipelvis, the first PC primarily represented changes in size, accounting for 61.1% 

and 52.1% of the total variance in the male and female groups, respectively (Table 3-2 and Figure 

3-4, PC1-Female and Male). For PC1, the maximum displacement was located on the ischium for 

the male group and the iliac crest for the female group (Figure 3-4, PC1-Female and Male). For 

both groups, PC2 shared the same traits as those in PC1 for the hemipelvic shape (Figure 3-4). 
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Figure 3-4: The first three PCs for the anatomical variation on the hemipelvis. The PCs are 

presented within the range of ±3 Standard Deviation (SD). The color mapping shows the 

distance between the extreme instances (associated with ±3SD) and the average model. The red 

dot shows the location of the maximum distance. 

 

For the pelvis, the first mode dominantly showed differences in size; PC1 accounted for 

53.9% and 55.0% of the total variance in the male and female groups, respectively (Table 3-2 and 

Figure 3-5, PC1-Female and Male). The second mode described 19.2% of the variance in the male 

group and 16.2% in the female group (Table 3-2). PC2 was dominantly the lateral-medial 

movements of the left-right ASISs (Figure 3-5, PC2-Female and Male). For the male group, the 

lateral movement of the ASIS was accompanied by an increase in the transverse diameter of the 

pelvic inlet and outlet (Figure 3-5, PC2-Male). For the female group, as ASIS moved laterally, the 

transverse dimension of the inlet did not change and the transverse diameter of the outlet decreased 

(Figure 3-5, PC2-Female). The modal contribution of the third PC was 5.6% for the male group 

and 7.2% for the females (Table 3-1). For the male group, PC3 was the lateral-medial movement 

of the left-right ischium (Figure 3-5, PC3-Male). For the female group, PC3 represents the lateral-

medial movement of the posterior side of the ilium (Figure 3-5, PC3-Female). 
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Figure 3-5: The first three PCs for the anatomical variation on the pelvis. The PCs are presented 

within the range of ±3 SD. The color mapping shows the distance between the extreme instances 

(associated with ±3SD) and the average model. The red dot shows the location of the maximum 

distance. 
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Table 3-2: The results of the principal component analyses for the anatomical variations. For the 

first five PCs, the modal contribution as well as the average and maximum distance between the 

average model and the extreme instance (associated with ±3SD) are reported. In addition, the 

total variance is reported (normalized). Furthermore, the results of the permutation-based tests 

are reported, which include the p-value of two statistics of the correlation matrix (Psi and Phi, 

one-tail t-student test), the number of valid PCs, and their cumulative contribution. 

Quantity PC 

Hemipelvic 

Shape 
Hemipelvis Pelvis 

Female Male Female Male Female Male 

Modal 

Contribution (%) 

1 22.1 31.0 52.1 61.1 53.9 55.0 

2 13.0 12.2 11.8 10.2 16.2 20.0 

3 11.1 10.0 5.9 5.2 7.2 5.6 

4 9.2 7.0 5.1 3.9 4.1 3.8 

5 7.2 5.6 4.1 3.0 3.7 2.9 

Average 

Distance (mm) 

1 4.8 5.9 10.3 14.3 14.5 18.3 

2 3.7 4.0 4.7 5.3 7.6 9.4 

3 3.3 3.5 3.3 4.0 5.6 5.4 

4 3.2 3.1 3.1 3.2 4.0 4.3 

5 2.9 2.7 2.8 3.2 3.7 3.7 

Maximum 

Distance (mm) 

1 14.5 20.8 20.4 27.1 33.2 32.9 

2 11.6 11.6 13.9 18.2 24.0 36.9 

3 12.9 14.9 11.1 12.0 13.3 15.0 

4 7.9 7.1 10.2 16.1 13.5 14.1 

5 7.0 7.2 8.7 7.0 13.3 16.0 

Total Variance 0.0 0.24 0.36 0.58 0.74 1.00 

Psi, P-value 0* 0 0 0 0 0 

Phi, P-value 0 0 0 0 0 0 

Nr. of Significant PCs 10 9 6 5 3 3 

Cumulative Variance (%) 80.7 80.0 82.4 83.4 77.3 80.7 

* Less than machine epsilon 

 

3.3.3 Significant regions of asymmetry 

Figure 3-6 shows the color map plots for the local asymmetry on the studied structures. The 

overall statistics of the local asymmetry are reported in Table 3-2. The color map plots for the 

statistical significance of the local asymmetry are presented in Figure B-0-2. 
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The matching asymmetry of the hemipelvic shape was at the same level for the male and 

female groups, with an average value of 1.1 mm for both groups (Table 3-3). For the female group, 

the local asymmetry reached the maximum value of 2 mm at the iliac tuberculum, and for the male 

group, the maximum value was equal to 1.9 mm at the ASIS (Figure 3-6, and Table 3-3). In 

addition to the ASIS and iliac tuberculum, (1) the posterior side of the ilium, (2) the pubic tubercle, 

and (3) ischial tuberosity (only for the male group) showed significant asymmetry (Figure 3-6). 

For the hemipelvis, the patterns of local asymmetry were similar to those for the hemipelvic shape 

(Figure 3-6). Comparing the hemipelvic models with and without size, the location of the 

maximum distance between the left-right samples did not change noticeably (black dots in Figure 

3-6).   

For the pelvis, the average value for the local (bilateral) asymmetry was 1.7 mm for the 

female group and 1.6 mm for the male group (Table 3-3). For the female pelvis, the local 

asymmetry reached the maximum value in the neighborhood of PSIS (Figure 3-6). For the male 

group, the maximum asymmetry was located on the bottom of the ischium (Figure 3-6). Other 

regions did not show significant local asymmetry (Appendix B). 
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Figure 3-6: Color map plots for the local asymmetry of the studied structures: matching 

asymmetry on the hemipelvic shape, matching asymmetry on the hemipelvis, and the bilateral 

asymmetry on the pelvis. The red dot shows the location of the maximum local asymmetry. The 
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black dots show the locations of the maximum distance between the paired samples (left-right 

samples for matching asymmetry of the hemipelvis and actual-reflective samples for bilateral 

asymmetry of the pelvis). The hemipelvis is visualized from lateral (top-left), medial (top-right), 

posterior (bottom-left) and anterior views (bottom-right). The views of the pelvis include anterior 

(top-left), posterior (top-right), inlet (bottom-left) and outlet (bottom-right). 

 

Table 3-3: Statistics of the local asymmetry on the studied structures (mm). 

Structure Sex 
Mean 

(mm) 

SD 

(mm) 

Min 

(mm) 

Max 

(mm) 

Hemipelvic Shape 
Female 1.1 0.3 0.6 2.0 

Male 1.1 0.2 0.6 1.9 

Hemipelvis 
Female 1.1 0.3 0.6 2.0 

Male 1.2 0.3 0.6 2.0 

Pelvis 
Female 1.7 0.3 1.1 2.8 

Mala 1.6 0.3 0.9 2.6 

 

3.3.4 Patterns of asymmetry 

Figure 3-7 and Figure 3-8 presents the first three PCs for the asymmetry of the hemipelvis 

and pelvis, in the range of ±3 SD. The PCs for the asymmetry of the hemipelvic shape were similar 

to the patterns in the hemipelvis and not reported here. The results of the PCA analyses and 

permutation-based tests are provided in Table 3-4. Based on the tests, correlational structure exists 

in all of the datasets, and at least, the first three PCs represented significant patterns of asymmetry 

in the datasets (Table 3-4). 

For the matching asymmetry of the hemipelvis, the first mode explained 17.1% of the total 

variance for the male group and 16.8% in the female group (Table 3-4). For the male group, PC1 

showed comparable traits to those observed in PC1 for the anatomical variation on the hemipelvic 
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shape, i.e. the lateral-medial movement of the ASIS and the rotation of the ischio-pubic unit 

(Figure 3-7, PC1-Male). For the female group, PC1 included (1) the elevation/depression of the 

pubic symphysis, (2) a change in the curvature of the iliac crest, and (3) a notable movement on 

the ilio-pubic eminence (Figure 3-7, PC1-Female). In PC1 for the female group, as the pubic 

symphysis moved downward, the S-shaped pattern on the iliac crest became more pronounced 

(Figure 3-7, PC1-Female). 

The second mode contributed to 12.3% of the total variance in the male group and 15.3% in 

the female group (Table 3-4). For the male group, PC2 affected the innominate length by the 

opposite elevation/depression of the iliac crest and ischio-pubic unit (Figure 3-7, PC2-Male). For 

the female group, PC2 influenced the iliac breadth, with notable movement at the iliac tubercle 

and PSIS (Figure 3-7, PC2-Female). The third mode explained 8.8% and 9.9% of the total variance 

in the male and female groups, respectively (Table 3-4). For the male group, PC3 included a 

noticeable movement on the medial border of the ilium that separates the iliac fossa from the 

posterior side of the ilium (Figure 3-7, PC3-Male). For the female group, PC3 affected the 

innominate length with an elevation/depression of the iliac crest; unlike PC2 for the male group, 

we did not observe a notable movement on the ischium and pubis in this mode (Figure 3-7, PC3-

Female). 
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Figure 3-7: The first three PCs of the matching asymmetry of the hemipelvis. The color mapping 

shows the distance between the average model and the extreme instances associated with ±3 SD. 

Only the extreme instances are drawn for each PC. The red dot shows the location of the 

maximum displacement for each PC. 
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For the bilateral asymmetry of the pelvis, the first PC contributed to 28.7% and 37.6% of the 

total variance in the male and female groups, respectively (Table 3-4). For the male group, PC1 

was the elevation/depression of the left-right hemipelves in opposite directions (Figure 3-8, PC1-

Male). For the female group, PC1 was the rotation of the left-right hemipelves around the oblique 

axes (Figure 3-8, PC1-Female). The second mode contributed to 18.9% of the total variance in the 

male group and 21.2% in the female group. For the male group, PC2 included a lateral-medial 

movement of the ischium (Figure 3-8, PC2-Male). For the female group, PC2 showed lateral-

medial movements on the ischium and iliac crest (Figure 3-8, PC2-Female). The third mode 

explained 12.1% of the variance in the male group and 11.8% in the female group. For the male 

group, PC3 was the lateral-medial movement of the ASIS with noticeable changes on the sacroiliac 

(SI) joint surface (Figure 3-8, PC3-Male). For the female group, PC3 was the anteroposterior 

movement of the ischium (Figure 3-8, PC3-Female). 
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Figure 3-8: The first three PCs for the bilateral asymmetry of the pelvis. The color mapping 

shows the distance between the average instance and the extreme instances associated with ±3 

SD. The red dot shows the location of the maximum movement on each PC. 
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Table 3-4: The results of the principal component analyses for the asymmetry (matching and 

bilateral). For the first five PCs, the modal contribution as well as the average and maximum 

distance between the average model and the extreme instance (associated with ±3SD) are 

reported. Furthermore, the results of the permutation-based tests are reported, which include the 

p-value of two statistics of the correlation matrix (Psi and Phi, one-tail t-student test), the number 

of valid PCs, and their cumulative contribution. The total variance is also reported (normalized). 

Quantity PC 

Hemipelvic 

Shape 
Hemipelvis Pelvis 

Female Male Female Male Female Male 

Modal 

Contribution (%) 

1 18.8 16.6 17.1 16.8 37.6 28.7 

2 15.6 11.6 15.3 12.3 21.2 18.9 

3 8.1 8.9 9.9 8.8 11.8 12.1 

4 7.3 8.0 7.9 7.8 5.4 6.5 

5 5.8 6.5 6.4 6.8 4.0 4.5 

Average 

Distance (mm) 

1 1.5 1.3 1.4 1.4 3.5 2.8 

2 1.3 1.1 1.3 1.3 2.6 2.1 

3 1.0 1.0 1.1 1.0 1.9 1.6 

4 0.9 0.9 1.0 1.0 1.2 1.3 

5 0.8 0.9 0.8 0.9 1.1 1.1 

Maximum 

Distance (mm) 

1 4.8 4.2 4.2 4.6 6.1 5.0 

2 4.4 3.9 3.6 3.4 5.6 6.4 

3 2.8 3.8 2.7 3.9 4.0 5.2 

4 3.1 2.5 2.6 2.8 4.3 3.8 

5 2.8 2.7 2.9 3.0 3.6 2.6 

Total Variance 0.40 0.38 0.40 0.42 1.00 0.83 

Psi, P-value 0.0 0.0 0.0 0.0 0.0 0.0 

Phi, P-value 0.0 0.0 0.0 0.0 0.0 0.0 

Nr. of Significant PCs 5 6 5 6 4 4 

Cumulative Variance (%) 55.7 57.2 56.6 58.4 75.9 66.3 

 

3.3.5 Sexual dimorphism 

In Figure 3-9, the DVF between the male and female average models is intensified and 

visualized for each structure. The results of the sex-related DVFs and Mann-Whitney tests are 

presented in Table 3-5. For all three structures, the displacement field was significant (Table 3-5). 
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For the hemipelvic shape, the maximum distance between the male and female average models 

was 8.0 mm, located on the posterior Inferior Iliac Spine or PIIS. For the male group, the PIIS was 

located at a lower position, and the sciatic notch was narrower (Figure 3.9). For the average male 

model, the ilium was upright, while the average female model had a curved and shorter ilium in 

comparison (Figure 3.9). The superior pubic and the ischiopubic rami were longer and thinner for 

the female group (Figure 3.9). 

For the hemipelvis, the maximum distance between the male and female average models was 

12.3 mm, located on the ischium (Figure 3.9). The average male model was larger than the model 

of the female group and the differences in the ilium, pubis, and ischium followed the same patterns 

as those described for the hemipelvic shape (Figure 3.9). 

For the pelvis, the maximum distance between the male and female average models was also 

located on the ischium, 12.8 mm. The average pelvis for the male group was larger than the average 

female pelvis. The subpubic angle, which is formed by the inferior pubic rami was wider for the 

female group. Despite the smaller size of the average female pelvis, the pelvic inlet and outlet were 

wider for the female group. 

Table 3-5: The average and maximum distance between the male and female average models; the 

P-value for the Mann-Whitney tests on the projection of the DVFs defined between the samples 

and the overall average with the DVF defined between the male and female samples. 

Structure 

Average 

Distance 

(mm) 

Maximum 

Distance 

(mm) 

P-value 

Hemipelvic Shape 2.7 8.0 9.69e-15 

Hemipelvis 5.3 12.3 2.34e-8 

Pelvis 5.9 12.8 2.34e-5 
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Figure 3-9: The intensified DVF between the male and female average models for the studied 

structures. The color mapping shows the distance between the sex-specific average model 
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(female or male). The red dot shows the location of the maximum distance between the average 

models. 

 

3.4 Discussion 

The traditional pelvic morphometrics was limited to the assessment of discrete 

measurements, which did not fully capture the complex 3D geometry of the pelvis [4]. The 

emergence of GM and advancements in 3D data acquisition and computations facilitated the 

morphological study of the entire pelvic geometry [4]. In the last two decades, SSMs have been 

employed to assess various aspects of pelvic morphology [6-11]. 

The objective of this study was to investigate the anatomical variation, asymmetry, and 

sexual dimorphism of the male and female pelvis, using statistical shape modelling. We analyzed 

the pelvis geometry at three different levels: the hemipelvis with normalized size (hemipelvic 

shape), the hemipelvis with actual size (hemipelvis), and the left-right hemipelves in the pelvic 

structure (referred to as the pelvis). Using a computational pipeline, the CT image database from 

40 subjects (20 male, 20 female) was transformed into tangible representations in correspondence 

(triangle mesh with high-quality tessellation). Using the GPA, we extracted DVFs related to 

anatomical variation, asymmetry, and sexual dimorphism. PCA was then employed to identify the 

dominant patterns of anatomical variation and asymmetry. Using local measurements of the DVFs, 

the areas of significant anatomical variation and asymmetry were identified. Sexual dimorphism 

was also investigated using the intensified DVF between the male and female average models. The 
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models for the local anatomical variation, local asymmetry, and patterns of bilateral asymmetry 

on the pelvis were novel contributions of this study. 

Our results regarding anatomical variation showed that the Anterior Superior Iliac Spine 

(ASIS) was the location of highest anatomical variation in all three structures for both male and 

female groups (Figure 3-2). ASIS movement, especially the lateral-medial movement, was among 

the main patterns of anatomical variation in all three structures. This pattern has been reported in 

previous studies, e.g. PC2 for an overall pelvic model for 50 Japanese subjects (male and female) 

[8]. The most dominant mode of anatomical variation for the hemipelvis and pelvis was related to 

changes in scale, which has been reported by previous studies [6-10]. 

The analyses of pelvic asymmetry revealed that ASIS, iliac tuberculum, pubic tubercle, the 

posterior side of the ilium, and ischial tuberosity (only for men) were areas of significant matching 

asymmetry. Our results for the matching asymmetry of the hemipelvis were in line with a study 

by Audenaert et. al. [6], in which the insertion sites of muscle groups were reported as the areas of 

high matching asymmetry (the ASIS attached to the sartorius, iliac crest to abdominal muscles, 

pubis to adductor muscles, and ischium to hamstrings). 

The dominant mode of bilateral asymmetry for both the male and female groups was related 

to the positioning/orientation of the left-right hemipelves (an elevation/depression for the male 

group and an oblique rotation for the female group). Our models for the bilateral asymmetry of the 

pelvis included traits reported by Handrich et. al. [11] who identified six distinct asymmetry 

patterns based on the visual inspection of 4 pelvic models for anatomical variation (European and 
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Asian, male and female) [11]. These regions included the sacrum, iliac crest, pelvic brim, pubic 

symphysis, inferior pubic ramus, and acetabulum, all of which showed high asymmetric 

movements in our study as well (with exception fo the sacrum which was not included in our 

study). 

Our results for the sexual dimorphism of the pelvis were in line with the distance color plots 

presented in Aarand et. al. [8]. Furthermore, our models exhibited similar traits as those 

extensively explained in traditional morphometric studies [27]. 

For all structures, the male group showed higher anatomical variation in comparison with 

the female group (statistics of the local anatomical variation in Table 3.1, total variance of the 

anatomical variation in Table 3.2). For the structures with actual size, the change of size was more 

dominant in the male group (modal contribution of PC1 in Table 3.2). 

The matching asymmetry was at the same level for the male and female groups, while the 

bilateral asymmetry was slightly higher for women (statistics of the local asymmetry in Table 3.3, 

total variance of asymmetric patterns in Table 3.4). 

When incorporating the pose of the hemipelvis to its shape-size, the average local anatomical 

variation increases by 32% for the male group and 37% for the female group (Table 3.1); 

comparing the bilateral asymmetry of the pelvis and matching asymmetry of the hemipelvis, the 

average local asymmetry increases 33% for the male group and 54% for the female group (Table 

3.3). 
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This study had two limitations: first, we did not have access to the sacrum and coccyx in our 

database; second, the sample size was limited to 20 male and 20 female individuals. The adequate 

sample size to cover the entire variation within a population is suggested to be around 200 for the 

lower-limb bones and the pelvis [6]. Admittedly, there could be patterns of anatomical variation 

or asymmetry which were not covered in this study. Nevertheless, using the statistical tests, we 

demonstrated that the reported patterns represented meaningful features within the pelvic bone. 

Our models for the patterns of anatomical variation could be of interest to implant design 

companies to generate artificial bone models and provide better-fitting implants for patients 

requiring implant surgeries. Our asymmetry analyses are relevant to unilateral surgeries of the 

pelvis, in which the intact side of the pelvis serves as a reference for surgical planning. In addition, 

our computational pipeline to assess asymmetry could be used as a quantification tool for the 

follow-up of pelvic surgeries.  The significant patterns of anatomical variation, asymmetry, and 

sexual dimorphism are animated, providing informative sources for the medical community in 

general. 

 

3.5 Chapter conclusion 

This study used SSM to investigate the female and male pelvic morphology in terms of 

anatomical variation, asymmetry, and sexual dimorphism. We analyzed the pelvis at three levels 

including the hemipelvis (with and without size) and the pelvis (without sacrum and coccyx). For 

each structure, the significant patterns of anatomical variation and asymmetry, as well as 
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significant areas, were identified. This study provides beneficial models for implant-design 

companies and is informative for unilateral surgeries related to the pelvis and educational purposes 

in general. 
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CHAPTER 4: QUALITY MEASURES OF STATISTICAL SHAPE MODELS FOR 

HEMIPELVIS AND TALUS 

 

This chapter is derived from the paper in preparation: 

Palizi, M. & Adeeb S. (2023). Quality measurement of anatomical shape models in simulation of 

training shapes and unseen shapes (hemipelvis and talus). 

Abstract 

Statistical shape models describe geometric variations on anatomical structures and facilitate 

orthopaedic applications such as image segmentation, virtual bone reconstruction, and the design 

of implant components. The present study aims to measure the quality of statistical shape models 

in simulating the in-training samples (accuracy) as well as predicting unseen samples 

(generalization ability) for two bone structures, the hemipelvis, and the talus. Our study 

distinguishes between the original and registered representations of the shape samples and 

evaluates the accuracy and generalization ability by comparing the SSM instances with the original 

representations of the samples. Coherence point drift (CPD) is employed to establish 

correspondence between the training samples. Principal component analysis (PCA) is used to 

create 12 models (hemipelvis/talus, shape/shape-size, male/female/overall). The model properties 

including compactness, accuracy, and generalizability are characterized and evaluated. Our results 

show that (1) the accuracy of the models, when all of the PCs are included, is in the range of 0.23-
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0.26 mm for the talus and 0.69-0.71 mm for the hemipelvis (shape/shape-size, 

male/female/overall), (2) the accuracy of the average shape models and the shape-size models with 

PC1 is in the range of 0.58-0.68 mm for the talus and 1.72-2.04 mm for the hemipelvis 

(male/female/overall), (3) the generalizability of sex-specific models with full capacity is in the 

range of 0.37-0.41 mm for the talus and 1.26-1.47 mm for the hemipelvis (shape/shape-size), and 

(4) the incorporation of the male and female datasets into overall models improves the 

generalization ability, 0.28-0.32 mm for the talus and 1.03-1.18 for the hemipelvis (shape/shape-

size). 

Keywords: statistical shape models; talus; pelvis; compactness; accuracy; generalization ability. 

 

4.1 Introduction 

Statistical shape models (SSMs) describe geometric variations on anatomical structures in a 

computational format. Statistical models of shape have a wide and growing range of clinical 

applications. Medical imaging (MI) technologies such as computed tomography (CT) and 

magnetic resonance imaging (MRI) scan the shape of human organs and skeletal structures in 3D 

images. Conversion of such images into more tangible shape representations such as triangle 

meshes is highly demanding; SSM-based approaches have been developed to facilitate the 

automation of such clinical routines (see [1] for a survey on the application of statistical shape 

models in image segmentation). SSMs and their average models have been employed in 

reconstructing the shape of bones with defects [2-5]. Statistical models for 3D shapes have been 
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used in morphological studies of human bones and organs, upgrading such studies from 

investigating discrete measurements based on landmarks to 3D morphometric analyses [6-9]. 

SSMs and their augmented version such as statistical shape and appearance models (SSAMs) have 

been incorporated into finite element (FE) simulation of skeletal structures to evaluate the risk of 

bone injuries [10] and reveal the connection between geometry and biomechanics [11-12]. 

A key factor in the performance of SSM-based algorithms is the plausibility of the generated 

instances by the SSM. Davies et. al. initially quantified the ability of an SSM to generate “valid” 

shape instances using measures such as compactness, accuracy, and generalizability [13]. 

Compactness measures the model’s ability to explain the majority of the geometric variance with 

the smallest number of modes [13]; accuracy measures the quality of the model in explaining the 

training samples [13]; and, generalizability evaluates the model’s performance in predicting 

unknown samples [13]. 

Based on the medical application of an anatomical SSM, certain measures become more 

important. For example, morphological studies favor compact models which capture the majority 

of geometric variation with the smallest number of modes, possible. Accuracy is relevant to the 

design of implant components; implant-design companies are in the pursuit of static anatomical 

templates, scalable templates, and SSMs with only a limited number of modes that model an 

anatomical entity for a population within a specific distance error threshold. Generalization ability 

is essential for an accurate fitting of SSMs on image datasets or meshes with missing parts. When 

the generalizability of a model is close to its accuracy, indicates that the SSM adequately represents 

the sample population. 
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This study aims to evaluate the compactness, accuracy, and generalizability of SSMs for two 

bone structures: the hemipelvis and talus. We develop an automated workflow to construct various 

types of SSMs (sex-specific and overall models, models with and without size) for the CT image 

database of 40 pelves (20 male and 20 female) and 96 tali (41 female and 56 male). For these two 

bone structures, previous studies have measured the SSM qualities by comparing the SSM 

instances with a representation of the shape samples that were used to construct the SSM [2, 3, 4, 

6]. However, the registered representation of the shape samples is computed by a deformable 

registration process which introduces a deviation from the original geometry of the shape samples. 

Our study distinguished between the original and registered representations of the shape samples 

and evaluates the accuracy and generalization ability of the models by comparing the original 

representation of the shape samples, referred to as the ground truth hereinafter, with the SSM 

instances. 

The remainder of this study is organized as follows: Section (4.2) presents the computational 

pipeline to convert the image dataset of two bone structures into various types of SSMs as well as 

the characterization of quality measures. Section (4.3) presents the assessments of the quality 

measures. In section (4.4), we discuss the findings of the study and compare our results with 

previous research. 
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4.2 Materials and methods 

Figure 4-1 presents the computational pipeline of the study in detail. The computational 

process included: (1) conversion of the image dataset into refined triangle meshes and uniform 

point set, (2) establishment of correspondence, and (3) construction of various models and quality 

measurements 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4-1: Computational pipeline to build 12 anatomical models. In (a), the main steps to build 

models are presented for the hemipelvis (starting from the CT images). In (b), the refinement of a 

segmented mesh is shown around the acetabulum of a hemipelvis. In (c), the coarse alignment of 

a hemipelvic sample and the schematic diagram to establish correspondence are shown. In (d), 

the alternatives to generate different training sets and models are presented 
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4.2.1 Image datasets, refined meshes, and point sets 

The study used computed tomography (CT) images of 40 pelvises (20 male and 20 female, 

age range 18-25 years) and 96 tali (55 male and 41 female, age range of 12-65 years). The approval 

to use the CT images was obtained from the Health Research Ethics Board at the University of 

Alberta with the waiver of consent. The images were obtained from different scanning devices; 

the in-plane pixel length for the images was in the range of 0.44-0.93 millimetre (mm) for the 

pelvis and equal to 0.39 mm for the talus; the thickness between the image slices was in the range 

of 1.00-3.00 mm for the hemipelvis and equal to 0.60 mm for the talus. 

The CT images of the two bone structures were converted into three-dimensional triangle 

stereolithography (STL) meshes in two previous studies ([14] for the hemipelvis, and [7] for the 

talus). Using a parameterization technique [15] and Taubin smoothing [16], the original triangle 

meshes were converted into watertight meshes with high-quality tessellation. The number of 

vertices on each refined mesh was approximately 20,000. The resulting refined meshes served as 

the golden standard or ground truth for measuring the accuracy and generalizability of the SSMs. 

Using a Poisson-disk point-set sampling algorithm, equipped with uniformization, a uniform point 

set with 10,000 points was sampled on each refined mesh. The left-right hemipelves belonging to 

each individual were similar and to avoid introducing bias in the generalizability evaluation, only 

the information for the left hemipelves was used in the study. In addition, the initial training set of 

the talus includes 97 subjects; a male subject was removed from the dataset due to local 

abnormalities (visual inspection of the samples). 
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4.2.2 Establishment of correspondence 

For a set of homologous shape samples, finding invertible and plausible mappings between 

the shape samples is a crucial step to construct an SSM. By finding such mappings, called 

correspondence, the samples are described in a common space. To establish correspondence 

between the samples, firstly, the uniform point sets were coarsely aligned; next, correspondence 

was established between the coarsely aligned (or normalized) point sets using a groupwise point-

set registration method [17]. 

For the coarse alignment of samples, the centroid, centroid size, and principal axes of 

uniform point sets were computed (see [18] for the definition of these global descriptors of a point 

set). The point sets were then normalized w.r.t. translation, scaling, and rotation such that: (1) all 

of the point sets were centered at the origin, (2) they all had unit centroid size, and (3) their 

principal axes (ordered from largest to smallest) were aligned with XYZ axes of a global 

coordinate system. The shape samples for the talus represented the left or right bone for each 

individual, and an additional reflection was required to align them. 

After coarse alignment, the groupwise point-set registration algorithm [17] was performed 

to establish correspondence between the samples. The groupwise registration algorithm was an 

iterative process in which (1) each normalized point set was rigidly registered on the average point 

set, and (2) the average point set was non-rigidly registered on the normalized point sets. Initially, 

the average point set was selected as the normalized point set with the minimum distance from 
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other point sets (average point-to-point Euclidean distance between two point sets). Through the 

non-rigid registration step, the average point set was transformed to capture the geometry of the 

samples. After each iteration, the arithmetic average of the transformed versions was computed as 

the updated average point set. For both bone structures, two iterations were sufficient to achieve 

convergence for the average point set. The transformed versions of the average point set 

represented the shape samples in correspondence; these point sets are referred to as the point sets 

in correspondence. For the rigid and non-rigid registration tasks, the Coherent Point Drift (CPD) 

registration method [19, 20] was used. The parameters of the CPD registration method were 

adjusted as ω=0,β=2, and λ=2 (see Appendix (3) for a detailed description of the CPD registration 

method). 

The converged point set and the normalized point set which was used as the initial average 

point set were in correspondence and had a dense set of paired points. Using these corresponding 

pairs and the thin-plate spline transformation [21], the refined mesh for the normalized point set 

was converted into a mesh representing the average point set, called the average mesh. In a similar 

process, the average mesh was converted into a mesh representing each one of the shape samples, 

referred to as the simulated mesh. 

Therefore, each shape sample had two meshes: (1) the ground-truth mesh which was 

extracted from the image dataset and refinement process, and (2) the simulated mesh which was 

computed in the registration process. During the process of establishing correspondence, the point 

set for the shape samples underwent a series of rigid transformations (coarse alignment and rigid 
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registrations). For each sample, these rigid transformations were applied to the ground-truth mesh 

as well. 

 

4.2.3 Construction of SSMs and quality measures 

Using principal component analysis (PCA), six models were constructed for each bone 

(talus/hemipelvis), including male, female, and overall models for the shape and shape-size of the 

bone. In a shape model, the geometric information regarding the size of the samples was removed. 

In comparison, the shape-size models encompass the geometric information regarding the shape 

as well as the size of the samples. To build a shape model, the point sets in correspondence were 

considered as the training samples; these point sets shared unit centroid size. To construct shape-

size models, the actual size of each sample was restored by scaling, using the original centroid size 

of the sample. Sex-specific models refer to the models in which only the male or female dataset 

was used. These models only consider the geometric variation of an anatomical structure within 

the male or female groups. In comparison, the overall models include all of the samples (regardless 

of their sex) and describe the modes related to sexual dimorphism (if exists) of a bone as well as 

the inter-individual variations. 

After preparing each training set, the Generalized Procrustes Analysis (GPA) was performed 

to remove the redundant rigid transformation due to translation and rotation from each training set. 

To build SSM for each training set, the XYZ coordinates of each sample were arranged into a 

single vector [13]: 
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 𝒙𝑖 = [𝑥𝑖
(1)

𝑦𝑖
(1)

𝑧𝑖
(1)

… 𝑥𝑖
(𝑛𝑃)

𝑦𝑖
(𝑛𝑃)

𝑧𝑖
(𝑛𝑃)]

𝑇
,   𝑖 = 1, … , 𝑛𝑆 (4-1) 

 

in which, 𝑛𝑃 is the number of points on a single sample, and 𝑛𝑆 is the number of samples, referred 

to as the training size. The average of the sample vectors, denoted by  𝝁, and the (centered) 

covariance matrix of samples vectors, denoted by 𝚺, were computed as follows [13]: 

 𝝁 =
1

𝑛𝑆
∑ 𝒙𝑖

𝑛𝑆

𝑖=1

 (4-2) 

 𝚺 =
1

𝑛𝑆
∑(𝒙𝑖 − 𝝁)(𝒙𝑖 − 𝝁)𝑇

𝑛𝑆

𝑖=1

 (4-3) 

The rank of the covariance matrix  𝚺 , denoted by  𝑛𝑀 , was noticeably lower than the 

dimension of a sample vector, i.e.  3𝑛𝑃, and equal to 𝑛𝑆 − 1. Using a standard technique for the 

low-rank real symmetric matrices [22], the covariance matrix was decomposed into its 

eigensystem [13]: 

 𝚺 = ∑ 𝜆𝑚𝒗𝑚𝒗𝑚
𝑇

𝑛𝑀

𝑚=1

 (4-4) 

 𝒗𝑚
𝑇 𝒗𝑛 = 𝛿𝑚𝑛  ,   𝑚, 𝑛 = 1, … , 𝑛𝑀 (4-5) 

in which, 𝜆𝑚 and 𝒗𝑚 are mth  eigenvalue and (normalized) eigenvector of the covariance matrix 

and 𝛿𝑚𝑛 is the Kronecker delta. The eigenvectors 𝒗𝑚 are referred to as the Principal Components 

(PCs). Using the set of orthonormal PCs, each sample vector 𝒙𝑖 was expressed as follows [13]: 
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 𝒙𝑖 = 𝝁 + ∑ 𝑏𝑖𝑚𝒗𝑚

𝑛𝑀

𝑚=1

  ,   𝑖 = 1, … , 𝑛𝑆 (4-6) 

in which, 𝑏𝑖𝑚 is the score of the ith sample vector on the mth PC [13]: 

 𝑏𝑖𝑚 = (𝒙𝑖 − 𝝁)𝑇𝒗𝑚 (4-7) 

Next, the total variance, denoted by 𝑉𝑎𝑟, was computed as follows [13]: 

 𝑉𝑎𝑟 =
1

𝑛𝑆
∑(𝒙𝑖 − 𝝁)𝑇(𝒙𝑖 − 𝝁)

𝑛𝑆

𝑖=1

= ∑ 𝜆𝑚

𝑛𝑀

𝑚=1

 (4-8) 

The modal contribution of the mth PC and the cumulative modal contribution of the first m 

PCs were computed as follows [13]: 

 𝑀𝑜𝑑𝑎𝑙 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑚) =
𝜆𝑚

𝑉𝑎𝑟
   ,   𝑚 = 1, … , 𝑛𝑀 (4-9) 

 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑀𝑜𝑑𝑎𝑙 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑚) =
∑ 𝜆𝑖

𝑚
𝑖=1

𝑉𝑎𝑟
   ,   𝑚 = 1, … , 𝑛𝑀 (4-10) 

Compactness was defined as the minimum number of PCs required to reach 90% of the 

cumulative modal contribution. Using the first m PCs, a sample vector 𝒙𝑖 was approximated as 

follows [13]: 

 �̂�𝑖(𝑚) = 𝝁 + ∑ 𝑏𝑖𝑗𝒗𝑗

𝑚

𝑗=1

 (4-11) 

in which,  �̂�𝑖(𝑚) is the approximation of 𝒙𝑖 using the first m PCs and 𝑏𝑖𝑛 is computed in Eq. (4-

2). Denoting the mesh associated with the approximation of ith shape vector by �̂�𝑖(𝑚) and the 
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ground truth mesh of the sample by 𝑀𝑖, the accuracy was defined w.r.t. the number of included 

PCs, 𝑚, as follows: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑚) =
1

𝑛𝑆
∑ �̂�𝑖(𝑚)

𝑛𝑆

𝑖=1

 (4-12) 

 �̂�𝑖(𝑚) =
1

2
[𝒹 (𝑀𝑖 , �̂�𝑖(𝑚)) + 𝒹(�̂�𝑖(𝑚), 𝑀𝑖)] (4-13) 

in which, 𝒹 (𝑀𝑖, �̂�𝑖(𝑚)) was the average of the Euclidean distances between the vertices of 𝑀𝑖 

and the nearest points on the triangles of the mesh  �̂�𝑖(𝑚). The distance measure 𝒹  was not 

commutative, i.e. 𝒹 (𝑀𝑖 , �̂�𝑖(𝑚))  and  𝒹(�̂�𝑖(𝑚), 𝑀𝑖)  were not necessarily equal, while �̂�𝑖(𝑚) 

provided a commutative distance measurement between two meshes [23]. 

Finally, the generalizability of each SSM was computed by a set of leave-one-out tests [13]. 

In each test, (1) a new training set was created by excluding an individual sample from the original 

training set, (2) an SSM was constructed for the new training set, and (3) the excluded shape 

sample was predicted using the model for the new training set. Similar to the characterization of 

accuracy, denoting the ground-truth mesh of the ith sample by 𝑀𝑖 and the mesh associated with the 

prediction of the excluded shape by �̃�𝑖, the generalization ability was defined as follows: 

 𝑔𝑒𝑛𝑒𝑟𝑙𝑖𝑧𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

𝑛𝑠
∑ �̃�𝑖

𝑛𝑆

𝑖=1

 (4-14) 

 �̃�𝑖 =
1

2
[𝒹(𝑀𝑖 , �̃�𝑖) + 𝒹(�̃�𝑖, 𝑀𝑖)] (4-15) 

in which, 𝒹 has the same definition as in Eq. (4-7). 
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Lastly, the comparison of compactness between the two SSMs was meaningful only if the 

models shared the same training size. To compare two models with different training sizes, the 

same number of samples was randomly selected from the training sets of two models, the random 

selection was repeated 100 times, SSMs were constructed for the randomly-selected training sets, 

and the compactness was compared between the random SSMs (with fixed training size). 

 

4.3 Results 

4.3.1 Compactness 

Figure 4-2 presents two types of plots: (1) the cumulative modal contribution w.r.t. the 

number of included PCs for 12 models (talus/hemipelvis, male/female/overall, and shape/shape-

size); and (2) the maximum-minimum range of the cumulative modal contribution for the 

randomized models, referred to as the range plots. In the range plots in Figure 4-2, the randomized 

models have 15 samples for the talus and 30 samples for the hemipelvis (male/female/overall, 

shape/shape-size). To draw each plot, the random selection was repeated 50 times. Each range plot 

compares the compactness between the sex-specific and overall models for a structure 

(talus/hemipelvis, shape/shape-size). In Figure 4-3, the range plots compare the compactness of 

the shape/shape-size models for the two studied bones; each range plot is based on 50 experiments, 

and in each experiment, 30 samples were selected from the overall training sets (shape/shape-size, 

hemipelvis/talus). 
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(a) Talus, shape (b) Talus, shape-size 

  

(c) Hemipelvis, shape (d) Hemipelvis, shape-size 

  

(e) Talus, shape (random) (f) Talus, shape-size (random) 
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(g) Hemipelvis, shape (random) (h) Hemipelvis, shape-size (random) 

Figure 4-2: Cumulative modal contribution w.r.t. the number of included PCs for 12 models (a-

d) and the maximum-minimum range of cumulative modal contribution for models constructed 

by random selection of training samples (e-h). The number of randomly-selected samples is 30 

for the talus (e and f) and 15 for the hemipelvis (g and h). The random selection was repeated 50 

times for each range plot (e-h). In each plot, the models for the male, female, and overall training 

sets are compared for a structure (shape/shape-size, hemipelvis/talus) (a-h). 

 

 

Figure 4-3: Range plots to compare the overall models for the structures (shape/shape-size, 

hemipelvis/talus). For each structure, 30 samples are randomly selected and the process is repeated 

50 times. 
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In Table (4.1), the model properties such as (1) the total variance, (2) the modal contribution 

of PC1, (3) the number of PCs required to explain 90% of the total variance, and (4) the average 

centroid size of the training samples are reported. The total variance of an SSM is reported in two 

formats: (1) Total variance: the values are only normalized w.r.t. the largest value. (2) Total 

variance (Norm.): the average centroid size is firstly used to normalize the values of total variance 

for each model (w.r.t scale), and afterward, all values are normalized w.r.t. the largest value. Based 

on Eq. (4.3), when all of the training samples of a model are scaled by a single factor, the total 

variance is proportional to the squared value of the scaling factor. Table (4.1) also reports the 

number of PCs required to explain 90% of the total variance for the random models (with the same 

training size), providing a measure of the compactness. 

 

Table 4-1: Total variance, the modal contribution of PC1, the number of PCs required to achieve 

90% of the total variance, the average centroid size for 12 models, and the compactness of 

randomly-selected models. 

Bone 
Size 

included? 
Sex 

Training 

size 

Total 

variance 

 

Total  

variance 

 

(Norm.) 

Modal 

contribution 

of PC1 

(%) 

Nr. of 

PCs 

explaining 

90% 

variance 

Average 

centroid 

size 

(mm) 

Talus N F 41 0.00 0.43 18.18 19 1.00 

  M 55 0.00 0.43 14.24 24 1.00 

  F/M 96 0.00 0.43 14.24 29 1.00 

 Y F 41 0.06 0.61 31.75 16 20.4 

  M 55 0.08 0.66 36.94 19 22.6 

  F/M 96 0.10 0.92 52.15 18 21.6 

Pelvis N F 20 0.00 0.38 23.66 11 1.00 

  M 20 0.00 0.44 31.61 11 1.00 

  F/M 40 0.00 0.47 20.58 17 1.00 

 Y F 20 0.64 0.68 51.33 9 63.6 

  M 20 1.00 0.93 59.37 7 68.6 

  F/M 40 1.00 1.00 58.43 10 66.2 
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Talus N F/M 30 - - 14.6-21.8 15-17 - 

Talus Y F/M 30 - - 39.4-60.9 10-14 - 

Pelvis N F/M 30 - - 18.4-24.8 14-15 - 

Pelvis Y F/M 30 - - 54.4-63.6 8-10 - 

 

Figure 4-2 shows that the larger training size of the overall models, in comparison with the 

sex-specific models, is accompanied by the larger number of PCs required to achieve 90% of the 

total variance (with exception for talus shape-size, Figure 4-1 (a)-(d)); however, when the effect 

of training size is nullified by considering random models with the same training size, no specific 

pattern of compactness is observed between the sex-specific and overall models for the hemipelvic 

shape, hemipelvic shape-size, and talus shape (Figure 4-1 (e) (g) and (h)). The only exception was 

the talus shape-size, for which the overall model was more compact (Figure 4-1 (f)); even with the 

initial training size of 96, 18 PCs are required to achieve 90% of the total variance in the overall 

model of talus shape-size, while the number of required PCs is 19 for the associated male model 

(Table 4.1). 

For both bones, the male samples were on average larger than the female samples, e.g. the 

average centroid size of the hemipelvis was 68.6 mm for the male group and 63.6 mm for the 

female group (Table 4.1, average centroid size). For all of the shape-size models, the first PC was 

dominantly a change of size. For the hemipelvis, the size was more dominant for the male group 

in comparison with the females (59.37% for men and 51.33% for women, Table 4.1). 

Comparing the associated shape and shape-size models (male/female/overall) shows that the 

shape-size model required a smaller number of PCs to achieve 90% of the total variance; for 
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example, for the female talus, the shape model needs 19 PCs to achieve 90% of the total variance, 

while the shape-size model only requires 16 PCs (Table 4.1). 

Figure 4-3 shows a pattern of compactness between the random models created from the 

overall dataset for the shape/shape-size of the hemipelvis and talus; the models for the shape-size 

of the hemipelvis have higher compactness in comparison with the shape-size of the talus; 

similarly, the model for the shape of the hemipelvis is more compact compared to the shape model 

for the talus.  

 

4.3.2 Accuracy 

The accuracy of a model is characterized as the average of the (average) distances  �̂�𝑖 

between the simulated and ground-truth meshes (Eq. 4-7). In Figure 4-4, the statistics of the 

distances �̂�𝑖, including the maximum, median, minimum, 25th, and 75th percentile, are shown 

w.r.t.the number of included PCs. Table (4.2) presents the accuracy of models w.r.t the number of 

included PCs as well as the maximum distance record �̂�𝑖. For the shape models, the distance �̂�𝑖 

between each simulation and its ground truth are scaled using the centroid size of the sample.  
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(a) Talus, shape 

 

(b) Talus, shape-size 
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(c) Hemipelvis, shape 

 

(d) Hemipelvis, shape-size 

Figure 4-4: Accuracy evolution plots for 12 models. In each plot, the black line shows the 

minimum-maximum range of the distances �̂�𝑖;; the red lines represent the interval between the 

25th and 75th  percentile, and the blue line shows the evolution of the median as more PCs are 

included in the model. In each plot, the models for the female, male, and overall training sets are 

shown from left to right. 

 

Table 4-2: Accuracy of 12 models in millimeters (mm). The accuracy, i.e. the average of the 

distances �̂�𝑖 are reported for the cases in which 0, 1, 5, 10, 15, and all of the PCs are included in 
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the simulation of the samples. The maximum distance �̂�𝑖are also documented for the extreme 

cases in which none/all of the PCs are included. 

   Accuracy (Avg.) Max Avg. 

   Number of Included PCS Nr. PCs 

SSM Size? Sex 0 1 5 10 15 all 0 all 

Talus N F 0.58 0.55 0.47 0.39 0.33 0.23 0.80 0.29 

  M 0.68 0.65 0.52 0.45 0.39 0.26 1.00 0.34 

  F/M 0.64 0.62 0.52 0.45 0.40 0.25 1.00 0.34 

 Y F 0.80 0.59 0.49 0.40 0.34 0.24 2.00 0.29 

  M 0.97 0.68 0.54 0.46 0.40 0.26 1.92 0.34 

  F/M 1.14 0.65 0.54 0.47 0.41 0.25 2.95 0.34 

Pelvis N F 1.83 1.65 1.18 0.89 0.76 0.71 3.07 1.12 

  M 2.04 1.71 1.29 0.99 0.81 0.72 3.88 1.29 

  F/M 2.04 1.84 1.41 1.13 0.99 0.71 4.10 1.29 

 Y F 2.14 1.72 1.20 0.87 0.75 0.69 4.82 1.10 

  M 2.49 1.95 1.31 0.98 0.80 0.70 7.14 1.26 

  F/M 2.61 1.95 1.44 1.13 0.97 0.70 6.11 1.26 

F: female 

M: Male 

 

For all 12 SSMs, the accuracy evolution plots show a similar pattern (Figure 4-3); as the first 

few PCs are added to the models, the distance error between the simulated and ground-truth meshes 

rapidly decreases and then converges to a specific value. The accuracy, for the case in which all 

of the PCs are included in the models, is in the range of 0.23-0.26 mm for the talus and 0.69-0.72 

mm for the hemipelvis (male/female/overall, shape/shape-size, Table 4.2). 

For the cases in which none of the PCs are included in the model, the records are simply the 

distance 𝒟𝑖 between the average model of an SSM and the training samples; the values for the sex-

specific models of the talus shape show that, given the size of a sample, the male and female 

average models for the talus shape could serve as a template to simulate a sample with less than 1 

mm distance error, 0.58 mm for women and 0.68 for men (Table 4.2). For the talus shape-size, the 
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inclusion of the first PC in the models results in the same accuracy, 0.59 mm for the women and 

0.68 mm for men (Table 4.2); interestingly, for the hemipelvis, the inclusion of the first PC in the 

shape-size models shows slightly better performance in simulating the samples compared to the 

average model of the shape models, which is possibly due to the effect of Allometry in the 

hemipelvic models (Table 4.2). 

4.3.3 Generalizability 

Similar to the accuracy of a model, generalizability is defined as the average of the 

distances  �̃�𝑖  between the predicted meshes and the ground-truth meshes. In Figure 4-5, the 

statistics of such distances �̃�𝑖 are reported for various models which are used to predict the male 

and female samples. For the leave-one-out experiments on the shape models, the centroid size of 

each sample is used to scale the computed distance �̃�𝑖 between the prediction and the ground-truth 

representation.  In addition, the generalization ability of the models is assessed at two levels: (i) 

the case in which all of the PCs are included, and (ii) the case in which the included PCs explain 

90% of the total variability. In Table (4.2), the average of the recorded distances  �̃�𝑖 , i.e. the 

generalizability, as well as the maximum distance �̃�𝑖 are reported for the cases in which the sex-

specific or overall models are employed in a leave-one-out setting to predict the male or female 

samples. 

 

Table 4-3: Assessment of the generalization ability of the SSMs. 

    Var = 100 % Var = 90% 
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    Nr. 

of 

PCs 

Avg. Nr. 

of 

PCs 

Avg. 

Bone 
Size 

included? 

Training 

size 

Predictor 

model 

Mean 

(mm) 

Max. 

(mm) 

Mean 

(mm) 

Max. 

(mm) 

Talus N F F 40 0.37 0.5 18-19 0.44 0.58 

   F/M 95 0.28 0.35 29 0.37 0.49 

  M M 54 0.39 0.53 23-24 0.46 0.66 

   F/M 95 0.31 0.43 29 0.43 0.63 

 Y F F 40 0.38 0.51 16-17 0.47 0.63 

   F/M 95 0.28 0.37 18-19 0.42 0.56 

  M M 54 0.41 0.53 19 0.49 0.73 

   F/M 95 0.32 0.43 18-19 0.48 0.71 

Hemipelvis N F F 19 1.26 1.57 11 1.33 1.74 

   F/M 39 1.06 1.26 16-17 1.24 1.55 

  M M 19 1.45 1.95 10-11 1.53 1.98 

   F/M 39 1.18 1.43 16-17 1.39 1.65 

 Y F F 19 1.28 1.73 8-9 1.51 2 

   F/M 39 1.03 1.27 10-11 1.37 1.73 

  M M 19 1.47 1.94 7-8 1.69 2.4 

   F/M 39 1.17 1.43 10-11 1.5 1.87 

 

 

 

(a) Talus, shape (b) Talus, shape-size 
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(c) Hemipelvis, shape (d) Hemipelvis, shape-size 

Figure 4-5: The statistics of the SSM generalizability for the shape and shape-size of the 

hemipelvis and talus. In each plot, the male/female training sets are predicted by the associated 

sex-specific as well as the overall model. In addition, the generalizability of each model is 

evaluated for the full-capacity model and its compact version associated with 90% of the total 

variance. For each assessment, the black dots show the minimum-maximum range of the 

distances  �̃�𝑖; the red dots exhibit the 25th and 75th percentile, and the blue dot shows the 

median of the distances. 

 

Table 4-3 shows that the generalization ability of the sex-specific models for the talus with 

the full capacity (shape/shape-size, all PCs included) is in the range of 0.37-0.41 mm; 

consideration of the whole datasets (male and female) into total models reduces the average 

distance error between the prediction and ground truth to the range of 0.28-0.32 mm (Table 4-3). 

For the talus models (shape/shape-size), the ability of the models in predicting the male and female 

subjects (0.28-0.41 mm, Table 4-3) is comparable to the in-plane pixel size of the images, i.e. 0.39 

mm. The compact version of the talus models (associated with 90% of total variance) uses a 

considerably lower number of PCs to predict the samples, while their generalizability is still 

comparable with the image sizes, i.e. the range of 0.37-0.49 mm. 
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Similarly, for the hemipelvis, the incorporation of the male and female datasets into total 

models (form/form-size) reduces the average distance error �̃�𝑖 between the ground-truth meshes 

and their predictions. For example, the prediction of the female hemipelvic shape with the whole 

dataset (compared with the associated model constructed only by female samples) decreases the 

average distance error  �̃�𝑖 from 1.26 mm to 1.06 mm (Table 4-3). Figure 4-5 shows the effects 

related to the enlargement of the training set and the employment of the compact version of the 

models on the generalizability of the models. 

 

4.4 Discussion 

Statistical shape models (SSMs) are beneficial computational tools to describe the geometric 

variation of anatomical structures in a compact form. The anatomical SSMs have been successfully 

employed in a wide spectrum of clinical applications such as medical image segmentation [1], 

virtual bone reconstruction [2-5], morphological studies of the bones [6-9], and finite element (FE) 

simulations of skeletal structures and joint biomechanics [10-12]. Davies originally quantified the 

SSM's ability to model the in-training samples and predict unknown samples which is highly 

beneficial in applications of anatomical SSM [13]. 

The objective of the current study was to (i) create various types of SSMs (form/form-size, 

sex-specific/total) for two anatomical structures (hemipelvis and talus), (ii) to evaluate the 

important properties of the models (compactness, accuracy, and generalizability) and determine 

the capacity of the models in simulating the in-training and unseen samples. The study used CT 
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images of the talus for 96 subjects (41 female and 55 male) (a male talus is removed due to local 

abnormalities) and the pelvis for 40 subjects (20 male and 20 female).   

 A difference between our work and the related studies on the quantification of SSM's ability 

to represent anatomical shapes (with [2-4] or without [6] artificial defects) is the usage of ground 

truth meshes. In the previous studies [2, 3, 4, 6], the dense correspondence established between 

the samples is considered the gold standard in the SSM quantification, i.e. when all of the PCs are 

included in a model, the accuracy of the model is equal to zero. However, during the non-rigid 

registration tasks, a template point set does not perfectly match the sample point sets and a distance 

exists between the transformed point sets and the original point set representing the samples. To 

evaluate the accuracy and generalizability of the models, we tracked the rigid transformations that 

occurred in the computational workflow for each sample and applied the same rigid transformation 

to the ground-truth meshes; this approach allowed us to evaluate the accuracy and generalizability 

of a model more realistically, independent of the established correspondence. 

To compare the shape and shape-size models, we used (1) the average centroid size of each 

training set to compare the total variance of the models and (2) the centroid size of individual 

samples to compare the accuracy and generalizability measures. Due to the different training sizes, 

the direct comparison of the compactness between the models was not suitable and the selection 

of random SSMs with a fixed sample size was necessary. 

Our results for the total variance and modal contribution of the models show that the talus 

shape has the same level of variance for the male and female groups, while the hemipelvic shape 
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shows higher variations for the male group; the shape-size of the talus/hemipelvis shows 

slight/noticeable higher geometric variance for the male group; and the size is more dominant for 

the male group in both anatomical structures (Table 4-1, Total Variance Norm.). 

Based on the accuracy measurements, the sex-specific average model for the talus shape 

have an average distance error of 0.58 and 0.68 mm in simulating the female and male training 

samples (Table 4-2), while the associated values for the hemipelvic model are 1.83 and 2.04 mm 

(Table 4-2). The inclusion of all of the PCs in the sex-specific models decreases the accuracy 

distance errors to 0.23/0.26 mm for the talus (female/male) and 0.71/0.72 mm for the hemipelvis 

(female/male) (Table 4-2). 

For the shape-size SSMs, the average distance between the sex-specific average model and 

the samples is 0.97 mm for the male tali, 0.80 mm for the female tali, 2.14 mm for the female 

hemipelvis, and 2.45 mm for the male hemipelvis (Table 4-2). The inclusion of the first PC in the 

talus models results in the same accuracy as the average model of the shape models (Table 4-2). 

The created models in the current study have a generalizability of 0.28/0.32 mm for the 

female/male talus and a generalizability of 1.03/1.17 mm for the female/male hemipelvis (average 

error, point-to-plane distance, 100% variance, Table 4-3). 

The quantification of the accuracy and generalizability of the constructed SSMs are of great 

importance for the preoperative planning of bilateral injuries around the pelvis and the talus. For 

unilateral bone injuries, the researchers have demonstrated that the intact contralateral bone could 

serve as a reliable patient-specific template for surgical planning, referred to as mirroring virtual 
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reconstruction (see [14] for the pelvis and [24] for the talus). The segmentation of 3D medical 

image data sets was previously manual, subjective, and time-consuming. Researchers have 

developed semi-automatic and automatic algorithms to facilitate the medical image segmentation 

tasks involved in the mirroring reconstruction algorithms (e.g. see [14] for semi-automatic 

segmentation of the CT scans around the pelvic area and [25] for an SSM-based automatic 

segmentation of the lower-limb anatomy). However, the mirrored template is unavailable for 

patients with bilateral bone injuries and virtual reconstruction workflows for surgical planning of 

bilateral injuries are highly demanding. Using 3D shape analyses, scalable templates have been 

developed and validated to restore the morphology of an injured bone within a specific error 

threshold (see [7] for the talus and [14] for the pelvis). Our results for the accuracy of the average 

shape model (i.e. the accuracy of the shape models with no PC included) and the accuracy of the 

shape-size models with only the first PC quantify the expected distance error for the virtual bone 

reconstruction based on such templates. Our results for the generalization ability quantified the 

capability of the models to simulate a new shape through a cross-validation procedure. 

 

4.5 Chapter conclusion 

The current study developed a workflow to measure the quality of statistical shape models 

in simulating the in-training and unseen shapes for two anatomical datasets (hemipelvis, and talus). 

We used the CPD algorithm to establish correspondence between the shapes and PCA was used to 

combine the established correspondence into linear models. The compactness, accuracy, and 
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generalizability of the constructed models were evaluated using the representation of samples 

before the registration process and the effects related to the training size, the shape/size of the 

bones, as well as the sexual dimorphism were investigated by comparing the properties of various 

models. 

 

Reference 

[1] Heimann, T., & Meinzer, H. P. (2009). Statistical shape models for 3D medical image 

segmentation: a review. Medical image analysis, 13(4), 543-563. 

[2] Vanden Berghe, P., Demol, J., Gelaude, F., & Vander Sloten, J. (2017). Virtual anatomical 

reconstruction of large acetabular bone defects using a statistical shape model. Computer 

methods in biomechanics and biomedical engineering, 20(6), 577-586. 

[3] Krol, Z., Skadlubowicz, P., Hefti, F., & Krieg, A. H. (2013). Virtual reconstruction of pelvic 

tumor defects based on a gender-specific statistical shape model. Computer aided surgery, 

18(5-6), 142-153. 

[4] Plessers, K., Berghe, P. V., Van Dijck, C., Wirix-Speetjens, R., Debeer, P., Jonkers, I., & 

Vander Sloten, J. (2018). Virtual reconstruction of glenoid bone defects using a statistical 

shape model. Journal of shoulder and elbow surgery, 27(1), 160-166. 

[5] Ead, M. S., Palizi, M., Jaremko, J. L., Westover, L., & Duke, K. K. (2021). Development and 

application of the average pelvic shape in virtual pelvic fracture reconstruction. The 

International Journal of Medical Robotics and Computer Assisted Surgery, 17(2), e2199.  



 

134 

 

 

[6] Audenaert, E. A., Pattyn, C., Steenackers, G., De Roeck, J., Vandermeulen, D., & Claes, P. 

(2019). Statistical shape modelling of skeletal anatomy for sex discrimination: their training 

size, sexual dimorphism, and asymmetry. Frontiers in bioengineering and biotechnology, 7, 

302. 

[7] Liu, T., Jomha, N. M., Adeeb, S., El-Rich, M., & Westover, L. (2020). Investigation of the 

average shape and principal variations of the human talus bone using statistic shape model. 

Frontiers in Bioengineering and Biotechnology, 8, 656. 

[8] Arand, C., Wagner, D., Richards, R. G., Noser, H., Kamer, L., Sawaguchi, T., & Rommens, P. 

M. (2019). 3D statistical model of the pelvic ring–a CT‐based statistical evaluation of 

anatomical variation. Journal of Anatomy, 234(3), 376-383. 

[9] Brynskog, E., Iraeus, J., Reed, M. P., & Davidsson, J. (2021). Predicting pelvis geometry using 

a morphometric model with overall anthropometric variables. Journal of biomechanics, 126, 

110633. 

[10] Frazer, L., Nicolella, D. P., & Southwest Research Institute San Antonio United States. 

(2020). Human Response to High Rate Loading. 

[11] Campbell, J. Q., & Petrella, A. J. (2016). Automated finite element modelling of the lumbar 

spine: using a statistical shape model to generate a virtual population of models. Journal of 

biomechanics, 49(13), 2593-2599. 

[12] Clouthier, A. L., Smith, C. R., Vignos, M. F., Thelen, D. G., Deluzio, K. J., & Rainbow, M. 

J. (2019). The effect of articular geometry features identified using statistical shape modelling 

on knee biomechanics. Medical engineering & physics, 66, 47-55. 



 

135 

 

 

[13] Davies, R. H., Twining, C. J., Cootes, T. F., Waterton, J. C., & Taylor, C. J. (2002). A 

minimum description length approach to statistical shape modelling. IEEE transactions on 

medical imaging, 21(5), 525-537. 

[14] Ead, M. S., Westover, L., Polege, S., McClelland, S., Jaremko, J. L., & Duke, K. K. (2020). 

Virtual reconstruction of unilateral pelvic fractures by using pelvic symmetry. International 

Journal of Computer Assisted Radiology and Surgery, 15, 1267-1277. 

[15] Pietroni, N., Tarini, M., & Cignoni, P. (2009). Almost isometric mesh parameterization 

through abstract domains. IEEE Transactions on Visualization and Computer Graphics, 16(4), 

621-635. 

[16] Taubin, G. (1995, June). Curve and surface smoothing without shrinkage. In Proceedings of 

IEEE international conference on computer vision (pp. 852-857). IEEE. 

[17] de Giessen, Martijn, Frans M. Vos, Cornelis A. Grimbergen, Lucas J. van Vliet, and Geert J. 

Streekstra. "An efficient and robust algorithm for parallel groupwise registration of bone 

surfaces." In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012: 

15th International Conference, Nice, France, October 1-5, 2012, Proceedings, Part III 15, pp. 

164-171. Springer Berlin Heidelberg, 2012 

[18] Laga, H., Guo, Y., Tabia, H., Fisher, R. B., & Bennamoun, M. (2018). 3D Shape analysis: 

fundamentals, theory, and applications. John Wiley & Sons. 

[19] Myronenko, A., & Song, X. (2010). Point set registration: Coherent point drift. IEEE 

transactions on pattern analysis and machine intelligence, 32(12), 2262-2275. 

[20] Myronenko, A., Song, X., & Carreira-Perpinan, M. (2006). Non-rigid point set registration: 

Coherent point drift. Advances in neural information processing systems, 19. 



 

136 

 

 

[21] Bookstein, Fred L., and William DK Green. "Thin-plate spline for deformations with 

specified derivatives." In Mathematical Methods in Medical Imaging II, vol. 2035, pp. 14-28. 

SPIE, 1993. 

[22] Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4, 

No. 4, p. 738). New York: springer. 

[23] Aspert, N., Santa-Cruz, D., & Ebrahimi, T. (2002, August). Mesh: Measuring errors between 

surfaces using the hausdorff distance. In Proceedings. IEEE international conference on 

multimedia and expo (Vol. 1, pp. 705-708). IEEE. 

[24] Islam, K., Dobbe, A., Komeili, A., Duke, K., El-Rich, M., Dhillon, S., ... & Jomha, N. M. 

(2014). Symmetry analysis of talus bone: a geometric morphometric approach. Bone & joint 

research, 3(5), 139-145. 

[25] Audenaert, E. A., Van Houcke, J., Almeida, D. F., Paelinck, L., Peiffer, M., Steenackers, G., 

& Vandermeulen, D. (2019). Cascaded statistical shape model based segmentation of the full 

lower limb in CT. Computer methods in biomechanics and biomedical engineering, 22(6), 644-

657. 

 

  



 

137 

 

 

CHAPTER 5: EFFECT OF GEOMETRY-AWARE SAMPLING ON THE 

PERFORMANCE OF THE COHERENT POINT DRIFT 

REGISTRATION METHOD 

 

This chapter is derived from the paper in preparation: 

Palizi, M. & Adeeb, S. (2023). Effect of geometry-aware sampling on the performance of the 

coherent point drift registration method. 

 

Abstract 

Point-set registration is the process of aligning two or multiple point sets by finding a 

transformation that optimizes a similarity measure between the point sets. Coherent point drift 

(CPD) is a probabilistic point-set registration method. A limitation of the technique is the 

alignment of areas of high curvature. Due to the high amount of energy required for local areas, 

the method might struggle to match the shapes accurately. In this study, we investigate the effect 

of geometry-aware point-set sampling on the performance of the CPD method. Firstly, we design 

a set of 2D and 3D synthetic shapes with one or two local features. The shapes have the same 

global structure and their difference is the location and/or scale of the local features. By 

manipulating the degree of dissimilarity in these local features, we evaluate the performance of the 

CPD method in matching shapes with local features. Each experiment is performed using uniform 
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and geometry-aware point-set sampling. In addition to the synthetic experiments, a set of real-

world examples which involve aligning the femur cartilages are considered. For the uniform and 

geometry-aware sampling in 3D, two automated algorithms are developed that sample point sets 

from triangle meshes. Our results for the synthetic experiments show that the geometry-aware 

point set sampling enhances the performance of the CPD method in finding the true 

correspondence between the local features. Similarly, for real-world experiments, geometry-aware 

sampling improves the accuracy of alignments. 

Keywords: correspondence; probabilistic point-set registration; coherence point drift; point-set 

sampling; geometry-aware sampling 

 

5.1 Introduction 

Point-set registration is the process of aligning two or multiple point sets by finding a 

transformation that optimizes a similarity measure between the point sets [1]. Point-set registration 

problems frequently arise in practical applications of computer vision, robotics, and medical 

imaging [1]. Early methods such as Iterative Closest Point (ICP) [2] were equipped with rigid body 

motions and used Euclidean distance for similarity measurement. These early methods are 

beneficial in applications such as scene reconstruction, in which multiple point sets extracted from 

the same scene are integrated to reconstruct the entire scene [3]. 
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However, many applications require point-set registration with more advanced 

transformations. For example, 3D modelling of anatomical structures during growth or disease 

progression needs registration of a sequence of scans with non-linear deformation [3]. Formulating 

non-rigid point-set registration started with the pioneering work of Bookstein [4], which 

introduced the Thin-Plate Spline (TPS) transformation to simulate flexible deformation within 

biological entities. The TPS transformation used a set of control points to flexibly warp one point 

set onto another while minimizing an energy function called the bending energy of a thin plate [4]. 

Point-set registration problems have also been modelled in probabilistic estimation 

frameworks [3]. Probabilistic registration methods are based on the concept of establishing soft 

correspondence [5]. Unlike one-to-one correspondence in the ICP method [2], which assigns each 

point in one set to a point in the other set, soft correspondence allows for partial assignments, 

indicating the likelihood or confidence of a match between points [5]. Gaussian Mixture Model 

Registration (GMMReg) [6] and Coherent Point Drift (CPD) [1, 7] are two probabilistic methods 

that register point sets in the presence of complex deformation, occlusion, noise, and outliers. 

GMMReg models two point sets as isotropic Gaussian Mixture Models (GMMs) and 

minimizes the L2 divergence between these two GMMs [6]. The CPD method represents one point 

set as centroids of an isotropic GMM with unknown variance, treating the other set as observed 

data points [1, 7]. An Expectation-Maximization (EM) algorithm is then used to maximize the 

likelihood of the GMM given the data points [1, 7]. In recent years, refinements and extensions 

have been proposed to improve various aspects of the probabilistic methods. For example, Saval-

Calvo et al. incorporated color information alongside point coordinates to enhance the estimation 
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of correspondence in the CPD method [8]. Peng et al. introduced the Shape Context (SC) into the 

correspondence estimation of the CPD method [9]. Gao et al. proposed an EM algorithm to 

iteratively evaluate the outlier ratio in the CPD method [10]. 

One limitation of the probabilistic registration methods, which is relatively unexplored, is 

relevant to equal treatment of points in the point sets. The areas of high curvature in a point set, 

referred to as the geometric features hereinafter, usually require more intricate transformations to 

match their counterparts during a registration process. However, due to the equal treatment of all 

points and the high content of energy demanded, probabilistic methods might struggle to align the 

geometric features accurately. 

To address this, we explore the possibility of enhancing this aspect of the CPD method, i.e. 

the accurate alignment of geometric features, by using geometry-aware point-set sampling. In 

geometry-aware sampling, a higher point density (the number of points per unit length/area) is 

considered on the geometric features which could improve the perception of the point sets in the 

registration process and increase the accuracy of aligning geometric features.  

We first conducted a set of 2D and 3D synthetic experiments that involve registering shapes 

with different types of local dissimilarities. A measure of true correspondence was defined 

between these shapes to evaluate the accuracy of the CPD method. In each experiment, two cases 

of geometry-aware point-set sampling were compared with uniform sampling in terms of 

registration accuracy. In addition to the synthetic experiments, a set of real experiments was 

examined which involves the registration of femur cartilage. Our results for both the synthetic and 
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real examples demonstrated that using geometry-aware sampling improves the performance of the 

CPD registration method in matching complex geometric features. 

The rest of the study is organized as follows: Section (5.2) explains the synthetic 

experiments, covering the geometry of the synthetic shapes, different types of local dissimilarities, 

a measure of true correspondence, and the adopted point-set sampling strategies. In Section (5.3), 

we present the preprocessing of the femur cartilage samples, the distance measurements, and the 

point-sampling cases. The results for both the synthetic and real examples are presented in section 

5.4. Section 5.5 discusses our experimentations on the enhancement of the CPD method using 

geometry-aware sampling and possible extensions. Lastly, in Appendix A, a summary of the CPD 

registration method is presented. 

 

5.2 Synthetic experiments 

5.2.1 Synthetic Shapes 

A series of experiments were performed on synthetic shapes in two and three dimensions to 

investigate the effect of geometry-aware point-set sampling on the accuracy of the CPD method. 

In each test, a source object was registered on a target object. The source and target share the same 

global structure, a rectangle or a box. One or two local features were considered on the source and 

target. In 2D experiments, the local features were semi-circular, and in 3D experiments, 

hemispheres were used. The location and/or size of these local features were the source of 
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dissimilarity between the source and target objects. In general, four types of objects were used in 

the study, including a box or rectangle with one or two local features. Figure 5-1 shows the 

dimensions of these objects and the parameters characterizing their geometries. In all of the 

experiments, the local features of the source had a unit radius and fixed location (Figure 5-1). The 

radius and location of the local entities on the target varied within the experiments (Figure 5-1). 

 

 

(a) Rectangle with one local feature (b) Rectangle with two local features 

 

(c) Box with one local feature (d) Box with two local features 

Figure 5-1: Dimensions and characterizing parameters of the synthetic objects. The source and 

target objects shared identical global shapes (rectangle or box) and their dissimilarity was the 

location and/or the size of the local features. The local features are semi-circular for 2D objects 

and hemispherical for 3D objects. The source object is shown in blue and the target object in red. 

 

Figure 5-2 and Figure 5-3 show the source and targets in the single-feature and double-

feature experiments. In each experiment, the local features undergo translation and/or scaling 

(expansion or shrinkage). Each test was performed at five levels of difficulty by changing the 
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degree of deformation between the local features of the source and target. This allowed us to 

monitor the registration accuracy under varying degrees of complexity and assess the efficacy of 

using geometry-aware point-set sampling in challenging scenarios. Table 5-1 reports the location 

and radius of the local features on the target for both single- and double-feature experiments. 

 

 

(a) 2D experiments 
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(b) 3D experiments 

Figure 5-2: Source and target objects in single-feature experiments. The experiments include the 

translation and/or scaling (expansion or shrinkage) of a local feature. Each experiment was 

performed at five levels of difficulty by increasing the degree of deformation between the source 

and target features. For each test, the source is shown in blue and the targets are shown in red. 



 

145 

 

 

 
 

(a) 2D experiments (b) 3D experiments 

Figure 5-3: Source and target objects used in double-feature experiments. Each experiment was 

performed at five levels of difficulty. The source is shown in blue and the targets are shown in 

red. 
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Table 5-1: The location and radius of the target feature in single-feature and double-feature 

experiments. The same parameters are used for the target in 2D and 3D experiments. The 

location and radius of target local features are denoted by x and r in single-feature experiments. 

To differentiate the local entities in double-features experiments, subscripts 1 and 2 are used for 

the parameters. 

Experiment 
Nr. of 

Levels 

Target Parameters Parameter 

Range* 𝒙 𝒓 

O
n

e 
F

ea
tu

re
 Translation 5 𝛼 1 𝛼: 1.0-2.0 (0.25) 

Expansion 5 0 1+𝛼 𝛼: 0.5-1.5 (0.25) 

Shrinkage 5 0 1−𝛼 𝛼: 0.1-0.5 (0.1) 

Translation & Expansion 5 𝛼 1+𝛼 𝛼: 0.5-1.5 (0.25) 

Translation & Shrinkage 5 −𝛼 1−𝛼 𝛼: 0.1-0.5 (0.1) 

Experiment 
Nr. of 

Levels 

Target Parameters Parameter 

Range* 𝒙𝟏 𝒓𝟏 𝒙𝟐 𝒓𝟐 

T
w

o
 F

ea
tu

re
s 

Translation I 5 4 + 𝛼 1 −4 + 𝛼 1 

𝛼: 1.0-2.0 (0.25) Translation II 5 4 + 𝛼 1 −4 − 𝛼 1 

Translation III 5 4 − 𝛼 1 −4 + 𝛼 1 

Scaling I 5 4 1 + 𝛼1 −4 1 + 𝛼1 
𝛼1: 0.5-1.5 (0.25) 

𝛼2: 0.1-0.5 (0.1) 
Scaling II 5 4 1 − 𝛼2 −4 1 − 𝛼2 

Scaling III 5 4 1 + 𝛼1 −4 1 − 𝛼2 

Translation & Scaling I 5 4 + 𝛼1 1 + 𝛼1 −4 − 𝛼1 1 + 𝛼1 
𝛼1: 0.5-1.5 (0.25) 

𝛼2: 0.1-0.5 (0.1) 
Translation & Scaling II 5 4 − 𝛼2 1 − 𝛼2 −4 + 𝛼2 1 − 𝛼2 

Translation & Scaling III 5 4 + 𝛼1 1 + 𝛼1 −4 + 𝛼2 1 − 𝛼2 

* Start-End (Increment) 

 

5.2.2 Measure of true correspondence 

In a desirable registration in 2D experiments, each part of the source (straight segment or 

semi-circle) is transformed on the associated part of the target. Subsequently, the points at the 

intersection of each two parts on the source will be aligned with the associated points on the target. 

These points are easily discernable on each object and are referred to as landmarks, hereinafter. 

The landmarks were utilized to measure the registration accuracy in identifying the true 
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correspondence between the source and targets. Similarly, landmarks were defined on 3D objects. 

In Figure 5-4, the location of the landmarks, as well as two examples of desirable mapping in 2D 

problems, are illustrated. 

To assess the registration accuracy in each test, the following distance was computed 

between the registered version of the source and the target: 

 𝑑𝑅𝑀𝑆 = √
1

𝑛𝐿
∑ 𝑑𝑖

2

𝑛𝐿

𝑖=1

 (5-1) 

Here, 𝑑𝑖 is the distance between the ith landmark on the registered source and the target, 𝑛𝐿 

is the number of landmarks, and 𝑑𝑅𝑀𝑆 is the Root Mean Square (RMS) distance error between the 

landmarks. The number of landmarks 𝑛𝐿 was equal to 7 for the rectangle with one feature, 10 for 

the rectangle with two features, 13 for the box with one feature, and 18 for the box with two 

features. 

 

 

(a) Rectangle with one local feature (b) Rectangle with two local features 
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(c) Box with one local feature (d) Box with two local features 

Figure 5-4: Defined landmarks on synthetic shapes and examples of desirable transformation 

between 2D synthetic objects. The black dots show the landmarks on the source and target 

objects. These points were located at the intersection of distinctive portions of the objects. In (a) 

and (b), the desirable mapping between the source and target objects was applied to a uniform 

point set on the source object and a regular grid of points which is shown in gray. 

 

5.2.3 Point-set sampling 

Three point-set sampling cases were used to investigate the effect of point distribution on 

registration accuracy. The first case was uniform sampling in which the same number of points 

were uniformly sampled from the source and target. The other two cases were geometry-aware 

sampling in which a higher point density was considered on the geometric features of the source 

and target. The geometric features include the semi-circles and corners for 2D objects and 

hemispheres and edges for 3D objects. 

The difference between the geometry-aware sampling cases was the ratio of the nearest 

neighbour distance (NND) on the geometric features and the remaining parts. In the first case, the 

NND on thegeometric features was half of the NND on the remaining parts. For the second case, 

this ratio was equal to a quarter. Regardless of the sampling case (uniform or geometry-aware), 
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the total number of sampled points was equal to 300 and 450 for 2D objects with single and double 

features, and 4000 and 6000 for 3D objects with single and double features. 

For uniform and geometry-aware sampling of 2D objects, each object was manually divided 

into geometric features and straight segments (using the characterizing parameters of the object in 

Table 5-1). Each segment was then sampled to achieve uniform point distribution or a specific 

NND ratio over the object. 

The sampling of 3D objects was performed by automated algorithms. For the uniform 

sampling on 3D objects, firstly, a Poisson-disk sampling method [11] was used to sample well-

distributed points on the triangle meshes, while maintaining a minimum distance between the 

neighbouring points. Then, the uniformization technique proposed by [12] was used to further 

homogenize the distance between the neighbouring points. 

The geometry-aware sampling of 3D objects included two steps: identification of the 

geometric features and point-set sampling on each division. Using the formula proposed by [13], 

the mean and Gaussian discrete curvatures were first determined on each triangle of the mesh. The 

principal curvatures were computed using the mean and Gaussian discrete curvatures. The 

maximum of the absolute values of the principal curvatures was recorded for each triangle as a 

measure of curvature. Each triangle was then labeled geometric feature if its curvature measure 

exceeded the threshold of 0.4 
1

𝑚𝑚
 (the threshold is selected based on the characterizing parameters 

of 3D objects in Table 5-1). After identifying the geometric features of an object, the surface areas 

of the geometric features and the remaining parts were computed. The surface areas were then 
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used to determine the number of points on each section to achieve a specific NND ratio. The 

sampling on each section was performed using the uniform sampling algorithm. Figure 5-5 shows 

the resulting uniform and geometry-aware sampling cases on 2D and 3D objects. 

 

 

Figure 5-5: Point-set sampling of the synthetic objects in two- and three-dimensions. The first 

row shows the uniform point-set sampling. The second and third rows show geometry-aware 

cases, in which, the NND on the local features was half and a quarter of the NND on the 

remaining parts, respectively. 

 

5.2.4 Registration parameters 

For all of the experiments, we used specific values for the registration parameters: β=2, and 

λ=2. The selected values showed the highest registration accuracy for the uniform sampling case. 

The number of iterations was set to 100, for which the width of the mixture model σ reached a 
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constant value in all of the experiments (see Appendix A for a description of the CPD method and 

the parameters involved in it). 

 

5.3 Real experiments 

5.3.1 Preprocessing 

The real experiments include the registration tasks within a dataset of femur cartilage 

belonging to 10 individuals. The dataset of the femur cartilages was obtained from MR images of 

the Osteoarthritis Initiative (OAI) database [14]. The images were manually segmented into 

triangle meshes. The triangle meshes were further processed into smooth meshes with high-quality 

tessellation, using Taubin smoothing [15] and parameterization technique [16]. The discrete 

curvature operator was applied on each mesh and the geometric features were identified as the 

triangles with the curvature measure exceeding the threshold of 0.5 
1

𝑚𝑚
. For all of the samples, the 

selected threshold separated the edges of the cartilages as the areas of high curvature from the 

remaining parts of the samples. Figure 5-6 shows the color map plots of the curvature measure 

using the mentioned threshold. 
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Figure 5-6: Color map plots for the curvature measure on all of the femur cartilage samples. 

 

Using the Poisson-disk point set sampling [11], a sparse point set with only 1,000 points was 

sampled on each mesh. Using the centroid and centroid size of the sparse point sets [3], all of the 

samples were normalized w.r.t. scaling and translation. Before performing each registration task, 

the source was rigidly aligned on the target using the rigid CPD method [7] and the sparse point 

sets. 

 

5.3.2 Distance measurement 

In each experiment, the distance between the registered source and the target was measured 

using the RMS distance error and the Hausdorff distance [3]. The distances were measured using 

the vertices of the meshes rather than the point sets, ensuring a consistent measurement approach 
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for comparing the results of various point-set sampling cases. The Hausdorff distance is a widely-

used distance measure between two shapes (mesh or point set) which is defined as follows [3]: 

 𝑑𝐻(𝑃, 𝑄) = max (max
𝑝∈𝑃

min
𝑞∈𝑄

𝑑(𝑝, 𝑞) , max
𝑞∈𝑄

min
𝑝∈𝑃

𝑑(𝑝, 𝑞)) (5-2) 

Here, 𝑃 and 𝑄  are the sets of mesh vertices (representing the registered source and the target 

meshes), 𝑝 represents a vertex on 𝑃, 𝑞 denotes a vertex on 𝑄, and 𝑑(𝑝, 𝑞) is the Euclidean distance 

between the points 𝑝 and 𝑞. The Hausdorff distance shows the maximum distance between the 

closest points on two shapes. 

The RMS of the distances was also defined as follows: 

 𝑑𝑅𝑀𝑆(𝑃, 𝑄) = √
1

𝑛𝑃 + 𝑛𝑄
(∑ min

𝑝∈𝑃
𝑑(𝑝, 𝑞)2

𝑞∈𝑄

+ ∑ min
𝑞∈𝑄

𝑑(𝑝, 𝑞)2

𝑝∈𝑃

) (5-3) 

in which, 𝑃 and 𝑄 are the sets of mesh vertices, 𝑛𝑃 is the number of vertices on 𝑃, 𝑛𝑄 is the number 

of vertices on 𝑄, and 𝑑(𝑝, 𝑞) is the Euclidean distance between the points 𝑝 and 𝑞. 

 

5.3.3 Point-set sampling cases 

Similar to the synthetic experiments, three cases of point-set sampling were considered for 

the femur cartilages. The first case was the uniform point-set sampling and the other two cases 

were geometry-aware sampling. In the first geometry-aware sampling case, the distance between 

neighboring points (NND) on geometric features was half of the NND in the remaining areas. For 
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the second case, the NND ratio was reduced to 1/4. The uniform and geometry-aware sampling 

was performed using the same algorithms as those described for 3D synthetic objects (section 

5.2.3). Figure 5-7 presents the point-set sampling cases for all of the femur cartilage samples. 

 

   

(a) (b) (c) 

Figure 5-7: Point-set sampling of the femur cartilage samples: (a) Uniform point-set sampling, 

(b) Geometry-aware point-set sampling with the NND ratio equal to 1/2, and (c) Geometry-

aware point-set sampling with the NND ratio of 1/4. 
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5.3.4 Registration parameters 

In all of the experiments, the registration parameters β and γ were respectively set to 1 and 

2 Similar to the synthetic experiments, each registration task was iterated 100 times, for which the 

sigma value became constant. 

 

5.4 Results 

5.4.1 Synthetic experiments 

Table 5-2 presents the measured distances in the single-feature and double-features 

experiments. The reported values are the RMS of the distance between the landmarks of the 

transformed source and the target (Eq. 5-1).  In all 70 experiments (25 single-feature, and 45 

double-feature experiments), the geometry-aware sampling improved the performance of the CPD 

method in matching shapes with local features (Table 5-2). Furthermore, between the two 

geometry-aware sampling cases, the one with higher point density on the geometric features 

showed better registration accuracy (Table 5-2). 

For the experiments with low degrees of local differences, the registration with both uniform 

and geometry-aware sampling found the desirable transformation; however, the accuracy was 

higher for the geometry-aware sampling cases (Table 5-2). For the experiments with high degrees 

of local transformation, the registration with geometry-aware sampling was mainly successful in 
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identifying the suitable mapping, while the registration with uniform sampling failed, i.e. non-

homologous parts between the source and target were aligned mistakenly. 

Figure 5-8 provides examples of the performance enhancement at high levels of difficulty, 

comparing the registered source for the uniform sampling and the geometry-aware sampling with 

higher point density on the geometric features (Type II). For the translational experiments at high 

levels, the registration with uniform sampling failed to recognize the association between the 

source and target features, and instead of translating the source features, these features were 

matched on the straight segments of the targets (Figure 5-8 (a)). For the experiments with intense 

local expansion or shrinkage, the registration with uniform sampling failed to scale the source 

features onto its target counterparts, resulting in bell-shaped features in expansion and flattened 

features in shrinkage (Figure 5-8 (b)). Similarly, for the experiments with high degrees of both 

translation and scaling, by increasing the number of points on the geometric features of the source 

and target objects, the matching became more accurate (Figure 5-6 (c)). Lastly, upon visual 

inspection, the edges of the registered source were distorted when uniform sampling was used, 

while for the geometry-aware cases, the edges were preserved as straight segments (Figure 5-6). 
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Table 5-2: The registration accuracy in single-feature and double-feature experiments. The registration 

accuracy was measured as the RMS of the distances between the associated landmarks on the registered 

source and the target. The sampling cases include uniform sampling (1), geometry-aware sampling with 

the NND ratio of 1/2 (2), and geometry-aware sampling with the NND ratio of 1/4  (3). The accuracy 

measures are shaded from lightest (0 mm) to darkest (1.5 mm). 

Experiment 
Sampling 

Case 

Level (2D) Level (3D) 

1 2 3 4 5 1 2 3 4 5 

S
in

g
le

-F
ea

tu
re

 

Translation 

1 0.0 0.0 0.0 0.9 0.9 0.2 0.2 0.2 0.3 1.0 

2 0.0 0.0 0.0 0.0 0.8 0.1 0.1 0.1 0.1 0.1 

3 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.1 

Expansion 

1 0.1 0.1 0.1 1.3 1.6 0.3 0.5 0.7 1.0 1.3 

2 0.1 0.1 0.1 0.1 1.4 0.2 0.3 0.4 0.8 1.0 

3 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.2 0.3 0.9 

Shrinkage 

1 0.0 0.1 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.3 

2 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.2 0.2 

3 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.1 

Translation 

& 

Expansion 

1 0.1 0.1 0.6 1.2 1.4 0.3 0.4 0.8 1.1 1.3 

2 0.1 0.1 0.1 0.9 1.3 0.2 0.3 0.5 1.0 1.2 

3 0.0 0.0 0.1 0.7 1.1 0.1 0.1 0.2 0.7 1.1 

Translation 

& Shrinkage 

1 0.1 0.1 0.1 0.2 0.4 0.1 0.2 0.2 0.3 0.4 

2 0.0 0.0 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.3 

3 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 

D
o

u
b

le
-F

ea
tu

re
s 

Translation I 

1 0.0 0.0 0.0 1.1 1.2 0.2 0.2 0.4 0.4 1.1 

2 0.0 0.0 0.0 0.0 1.2 0.1 0.1 0.2 0.2 0.2 

3 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 

Translation 

II 

1 0.0 0.0 0.0 1.0 1.1 0.2 0.3 0.4 0.5 1.2 

2 0.0 0.0 0.0 0.0 1.0 0.1 0.1 0.1 0.2 0.1 

3 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 

Translation 

III 

1 0.0 0.0 0.0 0.0 1.2 0.3 0.2 0.3 0.3 1.2 

2 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.3 

3 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 

Scaling I 

1 0.1 0.1 0.1 1.3 1.8 0.3 0.5 0.8 1.2 1.5 

2 0.0 0.1 0.1 0.1 1.5 0.3 0.4 0.7 0.9 1.3 

3 0.0 0.1 0.0 0.0 1.0 0.2 0.2 0.3 0.3 1.1 

Scaling II 

1 0.0 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.3 0.4 

2 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.3 

3 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.1 

Scaling III 

1 0.1 0.1 0.1 1.2 1.6 0.2 0.4 0.6 0.9 1.1 

2 0.1 0.1 0.1 0.1 1.0 0.2 0.3 0.5 0.6 0.9 

3 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.5 0.7 

Translation 

& Scaling I 

1 0.1 0.1 0.5 1.4 1.7 0.3 0.6 0.9 1.3 1.5 

2 0.1 0.1 0.1 1.2 1.5 0.3 0.4 0.7 1.1 1.4 

3 0.1 0.0 0.1 1.1 1.5 0.1 0.2 0.3 0.9 1.3 

Translation 

& Scaling II 

1 0.1 0.1 0.1 0.2 0.4 0.1 0.2 0.2 0.3 0.5 

2 0.0 0.0 0.0 0.0 0.3 0.1 0.1 0.2 0.2 0.3 

3 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 

Translation 

& Scaling 

III 

1 0.1 0.1 0.6 0.9 1.2 0.3 0.4 0.7 0.9 1.1 

2 0.1 0.1 0.1 0.7 1.0 0.2 0.2 0.5 0.8 1.0 

3 0.0 0.1 0.1 0.6 0.8 0.1 0.1 0.2 0.6 0.9 
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(a) Translation 

  

(b) Scaling 

  

(c) Translation and scaling 

Figure 5-8: Examples of the improving effects of geometry-aware point-set sampling on the 

registration accuracy in experiments with high levels of translation and/or scaling. 
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(a) (b) (c) (d) 

Figure 5-9: Examples of performance enhancement in registering the femur cartilage samples, 

comparing the uniform sampling with the geometry-aware sampling with higher density (Type 

II). Each row shows the results of an experiment including (a) the source mesh, (b) the mesh and 

point set for the registered source, alongside the vertices of the registered source mesh and the 

target mesh for the uniform sampling, (c) similar items as 2 for the geometry-aware sampling 

(Type II) and (d) the target mesh. The areas of notable distance error are shown with black 

circles. 

 

5.4.2 Real experiments 

A total number of 90 experiments were performed on the dataset, registering each sample on 

the rest of the samples. After each registration task, the computed transformation was applied to 

the source mesh, and the RMS and Hausdorff distances between the registered source and target 
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were obtained. Table 5-3 presents the measured distances between the registered source and the 

target for all of the experiments. The results showed that the CPD method performs better in 

aligning the cartilages using geometry-aware sampling in comparison with uniform sampling. 

With uniform sampling, there was a notable distance error in matching the edges of the cartilages, 

while by sampling a larger proportion of points in these areas of high curvature, more accurate 

alignment was achieved. Figure 5-9 provides some examples of such performance enhancement. 
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Table 5-3: RMS and Hausdorff distance between the registered source and target for the registration tasks between 10 samples of femur 

cartilage. In each cell, the first row shows the measured distance for the uniform sampling case, the second row represents the distance for the 

first type of geometry-aware sampling, and the third row shows the distance for the second type of geometry-aware sampling. The RMS 

distances are shaded from lightest (zero) to darkest (1 mm). The Hausdorff distances are shaded from the lightest (zero) to the darkest (7 mm). 

  Target – RMS Distance Target – Hausdorff Distance 

  1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

S
o
u

rc
e 

1 

0.00 0.26 0.26 0.27 0.35 0.29 0.36 0.31 0.30 0.37 0.0 2.2 2.2 2.0 3.5 2.7 3.3 2.7 3.1 3.9 

0.00 0.20 0.21 0.20 0.24 0.24 0.25 0.23 0.22 0.27 0.0 1.1 1.4 1.3 2.7 1.9 2.2 1.4 2.0 3.2 

0.00 0.22 0.22 0.22 0.24 0.26 0.26 0.25 0.22 0.23 0.0 0.9 1.0 1.2 1.6 1.2 1.3 1.2 1.0 1.2 

2 

0.27 0.00 0.31 0.19 0.28 0.24 0.22 0.22 0.23 0.23 2.5 0.0 4.5 1.6 2.9 1.8 1.7 1.7 3.1 2.1 

0.21 0.00 0.21 0.17 0.20 0.21 0.18 0.19 0.19 0.19 1.1 0.0 3.2 1.1 2.2 1.1 1.0 1.0 2.8 1.1 

0.24 0.00 0.18 0.20 0.20 0.24 0.20 0.21 0.19 0.21 0.9 0.0 0.9 1.0 1.2 1.4 0.9 0.9 1.6 1.0 

3 

0.43 0.31 0.00 0.25 0.33 0.39 0.25 0.21 0.32 0.28 6.4 4.7 0.0 2.6 3.3 5.4 2.0 2.0 4.0 3.3 

0.29 0.23 0.00 0.18 0.22 0.26 0.19 0.18 0.21 0.22 4.3 3.3 0.0 1.3 2.5 2.9 1.2 1.1 2.3 2.9 

0.23 0.18 0.00 0.19 0.23 0.27 0.22 0.21 0.22 0.22 1.1 1.0 0.0 1.0 1.2 1.2 1.2 1.0 1.6 1.4 

4 

0.43 0.37 0.25 0.00 0.47 0.43 0.30 0.25 0.42 0.31 4.8 3.5 3.4 0.0 6.2 4.7 3.5 1.8 4.0 3.7 

0.25 0.22 0.21 0.00 0.29 0.33 0.23 0.24 0.22 0.25 2.3 2.2 2.7 0.0 3.6 3.2 2.6 1.9 2.0 2.9 

0.26 0.21 0.21 0.00 0.26 0.31 0.22 0.26 0.23 0.25 1.1 1.4 1.2 0.0 1.5 1.7 1.2 1.8 1.3 2.1 

5 

0.36 0.30 0.32 0.25 0.00 0.31 0.32 0.28 0.46 0.41 3.4 2.8 3.2 2.4 0.0 3.4 3.1 2.7 3.9 4.4 

0.24 0.20 0.22 0.20 0.00 0.20 0.21 0.21 0.21 0.24 2.2 2.1 2.0 1.7 0.0 1.6 1.9 1.7 2.0 2.3 

0.23 0.18 0.21 0.22 0.00 0.22 0.23 0.24 0.20 0.22 1.2 1.1 1.2 1.0 0.0 1.6 1.2 1.1 1.1 1.5 

6 

0.77 0.80 0.63 0.42 0.38 0.00 0.71 0.26 0.85 0.90 6.6 7.6 5.6 4.5 3.8 0.0 6.5 2.3 7.7 7.1 

0.44 0.63 0.44 0.31 0.19 0.00 0.49 0.21 0.55 0.58 4.6 6.6 4.1 3.3 1.5 0.0 4.5 1.4 5.7 4.9 

0.22 0.20 0.22 0.24 0.20 0.00 0.25 0.24 0.19 0.21 1.0 1.1 1.4 1.5 1.0 0.0 1.3 1.4 1.0 1.3 

7 

0.41 0.22 0.26 0.19 0.50 0.26 0.00 0.20 0.38 0.26 4.3 2.1 3.0 1.9 5.3 2.2 0.0 1.6 4.4 2.1 

0.25 0.16 0.18 0.17 0.31 0.23 0.00 0.20 0.21 0.19 2.4 0.9 1.5 1.5 3.8 1.3 0.0 1.3 2.4 1.5 

0.23 0.18 0.18 0.19 0.22 0.25 0.00 0.22 0.19 0.21 1.3 1.0 1.2 1.4 1.3 1.3 0.0 1.2 1.0 1.5 

8 

0.49 0.44 0.28 0.22 0.63 0.46 0.41 0.00 0.56 0.42 5.2 5.5 2.7 1.8 7.0 4.1 5.3 0.0 6.1 4.8 

0.30 0.18 0.18 0.17 0.48 0.24 0.19 0.00 0.32 0.30 3.9 1.1 1.9 1.4 5.9 2.2 0.9 0.0 4.1 3.6 

0.22 0.19 0.18 0.19 0.23 0.25 0.21 0.00 0.21 0.21 1.2 0.9 1.0 1.2 1.5 1.3 1.0 0.0 2.3 1.1 

9 

0.24 0.22 0.24 0.22 0.26 0.24 0.22 0.24 0.00 0.24 2.0 2.6 2.4 2.2 2.4 1.9 2.2 3.1 0.0 1.9 

0.23 0.17 0.22 0.20 0.22 0.22 0.21 0.22 0.00 0.22 1.3 2.0 2.1 1.7 1.7 1.4 2.0 2.5 0.0 1.7 

0.26 0.20 0.23 0.23 0.23 0.25 0.24 0.24 0.00 0.24 1.1 1.3 1.6 1.2 1.2 1.3 1.3 2.1 0.0 1.3 

10 

0.29 0.31 0.26 0.26 0.46 0.30 0.27 0.26 0.32 0.00 3.0 3.4 3.1 2.7 4.4 2.9 2.1 1.8 3.6 0.0 

0.24 0.20 0.24 0.22 0.30 0.25 0.23 0.24 0.23 0.00 1.8 1.2 2.5 2.2 2.6 1.2 1.4 1.5 2.1 0.0 

0.27 0.22 0.24 0.24 0.26 0.29 0.25 0.26 0.24 0.00 1.1 1.0 1.6 1.3 1.6 1.4 1.1 1.4 1.0 0.0 



 

163 

 

 

In all 90 experiments, the RMS distance for the first case of geometry-aware sampling was 

lower than the distance associated with the uniform sampling. In addition, the second case of 

geometry-aware sampling outperformed the uniform sampling in 80 experiments as measured by 

the RMS distance. Considering the Hausdorff distance as the accuracy measure, both geometry-

aware sampling cases achieved better results in 89 experiments in comparison with uniform 

sampling. Furthermore, between the two cases of geometry-aware sampling, the first case 

performed better in terms of RMS distance (63%, 57 out of 90 experiments), while the second 

case, i.e. the case with higher density on geometric features, had better performance in terms of 

Hausdorff distance (93%, 84 out of 90 experiments).  

 

5.5 Chapter Discussion 

Despite the improvements and refinements proposed for various aspects of the probabilistic 

registration method, the effect of point distribution on the performance of the Coherent Point Drift 

(CPD) registration method in matching geometric features is relatively unexplored. This study 

presented an experimental investigation into the effect of geometry-aware sampling on the 

performance of the CPD in aligning shapes with various geometric features. The objective of the 

study was to explore the possibility of enhancing registration accuracy by increasing the point 

density at salient areas of high curvature. Synthetic experiments were designed in 2D and 3D, 

involving source and target objects with the same global shape, but local dissimilarities. A set of 

landmark points were considered on the synthetic shapes, and a measure of true correspondence 
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was defined and utilized to evaluate the registration accuracy. Two cases of geometry-aware point-

set sampling were compared with uniform sampling in terms of registration accuracy. 

In addition, real examples involving the alignment of femur cartilages were examined. 

Similar to the synthetic experiments, each test compared uniform and geometry-aware sampling 

cases in terms of registration accuracy. However, unlike the synthetic experiments, no measure of 

true correspondence existed for these real shapes. Instead, widely-used measures such as RMS and 

Hausdorff distances were utilized to assess the registration accuracy quantitatively. In addition, 

the registered source and the target were visually inspected in all of the experiments. 

The results of the synthetic experiments showed that the geometry-aware sampling improved 

the performance of the CPD method in matching geometric features. In high degrees of local 

deformation, the CPD method with uniform sampling usually failed to identify the desirable 

mapping between the synthetic objects and matched non-homologous parts; while using geometry-

aware sampling increased the range for which true correspondence was established between the 

synthetic objects. In addition, the geometry-aware sampling with higher point density on geometric 

features (Type II) outperformed the case with the lower density in terms of registration accuracy. 

Similarly, for the real examples, the geometry-aware sampling cases performed better than 

uniform sampling in terms of accuracy measures (RMS and Hausdorff).  The alignment of 

cartilages was notably better on the edges when the second case of geometry-aware sampling was 

used and the Hausdorff distance was drastically lower for this case of sampling. However, in terms 

of the RMS distance, the first case of geometry-aware sampling, i.e. the case with lower point 
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density (Type I)performed slightly better than the case second. To address this, we argue that in 

the synthetic experiments, areas apart from the geometric features were line segments or planes, 

and even a sparse set of points in these regions was sufficient to achieve a desirable match (as long 

as the coherency of the deformation was preserved). However, for the femur cartilages, the curved 

surface of the cartilage required a higher density of points in these areas to achieve accurate 

alignment 

Overall, by increasing the proportion of points in the geometric features of complex 

biological entities, the EM algorithm in the CPD method is “encouraged” to match the intricate 

features, despite the high-level energy of the complex deformations. Conversely, in uniform 

sampling, it may not be worthwhile to undergo complex deformations (with a high amount of 

energy) solely to align a few Gaussian Mixture Model (GMM) components on a few points.  

In a previous study, Saval-Calvo et. al. developed an extension of the CPD registration 

method in which color information was used in estimating correspondence. In their study, 

alongside the main comparisons between their method and the CPD method, they evaluated the 

registration accuracy for uniform and color-based sampling. Using a face model with large elastic 

deformation on the eyebrow and lip (colored features of the face), they showed that their extension 

provides more accurate registration with color-based sampling. Similar to this study, our 

experiments showed that, for large local deformations, sampling a higher proportion of points on 

the geometric features could enhance the perception of the point sets and improve the registration 

accuracy. 
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CHAPTER 6:CONCLUSIONS 

 

6.1 Summary of research work 

This doctoral thesis is in the pursuit of accomplishing four objectives in statistical shape 

modelling and computational mechanics, all offering advantages for orthopaedics. 

Chapter 1 presents a consistent implementation of the hypoelastic constitutive equations into 

the user-material (UMAT) subroutine in Abaqus. The chapter reviews the concept of objectivity 

and objective stress rates. Furthermore, the structure of hypoelastic constitutive models and 

algorithms related to several UMAT variables are covered. To implement a constitutive equation 

in UMAT, it is essential to reformulate the model as a relationship between the rate of deformation 

and the Jaumann rate of Kirchhoff stress. This reformation is derived for six hypoelastic 

constitutive equations and the correctness of the updated Jacobian matrix DDSDDE and the stress 

matrix STRESS is validated by modelling a solid element under the simple shear and uniaxial 

extension. 

Chapter 2 provides an SSM-based assessment for pelvic morphology. Employing an 

automated pipeline, the CT image dataset of 40 pelvis (20 men and 20 female) is segmented into 

smoothed meshes and uniform point sets. A registration procedure is used in which one of the 

point sets is morphed on the rest of the point sets to establish correspondence. Various 

Displacement Vector Fields (DVFs) are extracted from the point sets in correspondence: the DVFs 
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are derived for anatomical variation (sample to sex-specific average), asymmetry (left-right 

sample), and sexual dimorphism (male to female average). Principal Component Analysis (PCA) 

identifies the dominant patterns within fields, with their significance assessed via permutation-

based statistical tests. The norm of DVFs at each point is measured for all samples and the 

significance of point-wise variations is determined by comparing records to the overall average 

value across all points. 

Chapter 3 evaluates the ability of anatomical SSMs in predicting unknown samples and 

modelling in-training samples by comparing refined triangle meshes of the samples with the mesh 

of SSM instances. Similar to the computational algorithm in Chapter 2, twelve SSMs are 

constructed for the hemipelvis and talus (sex-specific and overall models with and without size). 

The key difference in Chapter 3 is the employment of a mesh-tessellation optimization technique 

to enhance triangle mesh quality for each sample, as these meshes serve as the ground truth for 

accuracy and generalizability assessments. Additionally, the compactness of the models is assessed. 

Various models are compared with each other in terms of compactness, accuracy, and 

generalization ability. 

Chapter 4 presents an experimental study on the effect of geometry-aware point-set sampling 

on the accuracy of the Coherent Point Drift (CPD) registration method. The motivation is to assess 

the accuracy of the CPD method in registration tasks that requires pronounced local 

transformations. Using rectangles and boxes with one or two local features, the accuracy of the 

CPD method is evaluated for uniform and geometry-aware point-set sampling. The geometry-

aware approach samples a higher point density at the areas of high curvature. In addition, a group 
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of 10 femur cartilage samples is registered on one another using uniform and geometry-aware 

sampling, and the accuracy of the registrations is measured by two metric distances. 

6.2 Conclusions of research work 

The consistent implementation of a constitutive law requires the user to reformulate the 

constitutive model as a relationship between the rate of deformation and the Jaumann rate of 

Kirchhoff stress. In addition, if the user is employing the DSTRAN, which is the incremental rate 

of deformation based on midpoint integration, the constitutive model is required to be reformulated 

as a relationship between the rate of deformation and the Jaumann rate of Cauchy stress. A 

potential mistake in implementing a constitutive equation is using the latter form to update the 

Jacobian matrix. Simple examples of incorrect implementation (for uniaxial extension) 

demonstrate that this coding error leads to the divergence of the analyses. 

For all of the assessments of pelvic morphology, the significant patterns are greater or equal 

to three. Local measurements also reveal significant areas of anatomical variation. The Anterior 

Superior Iliac Spine (ASIS) stands out as a focal point of anatomical variation; particularly the 

lateral-medial movement of ASIS represents a dominant mode of variation in both sexes. In both 

the hemipelvis (size included) and pelvis, PC1 primarily indicated size change, with more 

dominance in the male group. Notably, significant matching asymmetry occurred at the insertion 

sites of muscle groups on the pubis, ischium, and ilium. Regarding bilateral asymmetry, females 

exhibited an oblique rotation of the left-right hemipelves, while males demonstrated 

elevation/depression of hemipelves. The DVF between the average male and female models was 
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significant in terms of separating the male and female samples and displays recognizable features 

like the larger size, narrower sciatic notches and subpubic angles, upright ilia, and thicker rami in 

men, attributes frequently used in forensic sex determination. 

The quality measurements of SSMs show that the talus shape displays the same level of total 

variance for both male and female groups, while the total variance of talus shape-size is slightly 

higher for the male group. The size dominance is also more pronounced on the male talus. The 

“static” sex-specific models (average shape-size) could simulate the training samples with an 

accuracy of 0.97 mm for the female talus and 0.80 mm for the male talus. The “dynamic” sex-

specific models (shape-size model with PC1 and average shape with scaling) could simulate the 

samples with an accuracy of 0.58 mm for the female group and 0.68 mm for the male group. The 

generalizability of the overall models (shape, shape-size) was 0.28 mm for the female talus and 

0.32 mm for the male talus, which is less than the average in-plane dimensions of the image dataset. 

The shape and shape-size of the hemipelvis exhibit higher variance within the male group. For the 

hemipelvis, the static sex-specific models (average shape-size) have an accuracy of 1.83 mm for 

the female hemipelvis and 2.04 mm for the male hemipelvis. As the dynamic sex-specific model, 

the shape-size model with PC1 is a better choice than the average shape with scaling, which could 

be due to the allometry in the pelvic bone. For the overall shape-size models, the generalizability 

is 1.03 mm for the female hemipelvis and 1.17 mm for the male hemipelvis. 

The synthetic experiments in 2D and 3D demonstrate the advantageous impact of geometry-

aware sampling on enhancing the performance of the CPD method in matching local features. 

Particularly, under high degree of local deformation, uniform sampling often fails in establishing 
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desirable mappings between synthetic objects, while employing geometry-aware sampling notably 

increases the range of dissimilarity for which favorable correspondences could be identified. 

Similarly, for the matching of femur cartilages, geometry-aware sampling consistently surpassed 

uniform sampling in accuracy metrics (RMS and Hausdorff). Specifically, when the second 

geometry-aware sampling approach (with denser point distribution on the local features) is used, 

the cartilage alignment along edges shows improvement. The consideration of higher point density 

on local features of objects guides the EM algorithm in the CPD method to prioritize the alignment 

of local features; on the contrary, with the uniform sampling, the CPD might not engage in high-

content energy required for complex deformations, solely to align a few Gaussian Mixture Model 

(GMM) components on a limited number of points. 

 

6.3 Research contributions and highlights 

The reformulation of the Green-Naghdi hypoelastic model into the UMAT subroutine was 

challenging and the kinematical relations were employed to develop such connections. In addition, 

the reformation of the Truesdell hypoelastic models could be employed for the simulation of soft 

biological tissues (hyperelasticity).   

The knowledge about the sex-specific anatomical variation and asymmetry of the pelvis at 

multiple levels was limited, which is addressed by this research. The computational algorithm 

employed to model bilateral asymmetry serves as a valuable tool for quantifying anatomical 

restoration after pelvic surgeries and difficult childbirth. The animated patterns of anatomical 
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variation offer a valuable educational resource for medical students. The measurement of the 

significance of the displacement field between the average male and female models, a contribution. 

The assessment for the matching asymmetry of the hemipelvis provides valuable insights for 

unilateral pelvis surgeries. 

The effect of geometry-aware point-set sampling on the non-rigid registration method is 

relatively unexplored. This research provides an experimental set-up to evaluate the possible 

enhancement of the CPD method in matching local features. Lastly, the accurate alignment of the 

femur cartilage through geometry-aware sampling is beneficial for more accurate biomechanical 

simulation of the knee joints. 

 

6.4 Limitations and recommendations 

To study a lower-limb bone and the pelvis, the adequate size of the training set to cover the 

whole geometric variations within a population is reported as 200. However, the morphological 

study of the pelvic bone only had access to 20 samples for each sex-specific assessment which 

might not cover the entire variations in the male and female populations. 

For a future study, the established correspondence between hemipelves could be isolated at 

important anatomical regions, and SSM could be constructed for these regions. As an example, a 

regional SSM describing only the geometric variation of the acetabulum could be a beneficial tool 

for the patient-specific implant designs of total hip replacement. 
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The training size is an important factor in the ability of anatomical structures to predict 

unknown shapes. The training size of an SSM could be expanded by generating artificial samples. 

Using the established correspondence between each two samples, a nonlinear path between the 

samples could be identified and artificial samples could be constructed along this path. This 

augmentation of the training set could enhance the predictive ability of the models. 
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APPENDIX A: DERIVATION OF CONSISTENT JACOBIANS AND UMAT 

IMPLEMENTATIONS 

 

For deriving the consistent Jacobian of a hypoelastic model in ABAQUS, the constitutive 

equation must be expressed in terms of the Jaumann rate of the Kirchhoff stress. 

The constitutive equation of a hypoelastic model based on the Truesdell rate of the Cauchy 

stress is 

 𝝈o = �̇� − 𝝈𝓵𝑇 − 𝓵𝝈 + (tr𝒅)𝝈 = 𝕔𝜎o
: 𝒅, (A-1) 

In which the elasticity tensor 𝕔𝜎o
 is given. Considering the expression of the time derivative 

of the volume ratio, i.e. 

 𝐽̇ = 𝐽 tr𝒅 (A-2) 

Multiplying Eq. (A-1) by 𝐽 and employing Eq. (2-8), Eq. (2-14), and Eq. (2-21) result in: 

 𝝉∇ = �̇� + 𝝉𝒘 − 𝒘𝝉 = 𝐽𝕔𝜎o
: 𝒅 + 𝐽𝝈𝒅 + 𝐽𝒅𝝈 = 𝕔𝜏∇

: 𝒅. (A-3) 

Now, representing the last equality in index notation, i.e. 

 𝐽𝕔𝑖𝑗𝑘𝑙
𝜎o

𝑑𝑘𝑙 + 𝐽𝜎𝑖𝑚𝑑𝑚𝑗 + 𝐽𝑑𝑖𝑚𝜎𝑚𝑗 = 𝕔𝑖𝑗𝑘𝑙
𝜏∇

𝑑𝑘𝑙 , (A-4) 

Rewriting 𝐽𝜎𝑖𝑚𝑑𝑚𝑗 as 

 𝐽𝜎𝑖𝑚𝑑𝑚𝑗 = 𝐽𝜎𝑖𝑘𝛿𝑗𝑙𝑑𝑘𝑙, (A-5) 

And 𝐽𝑑𝑖𝑚𝜎𝑚𝑗 as 
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 𝐽𝑑𝑖𝑚𝜎𝑚𝑗 = 𝐽𝜎𝑗𝑙𝛿𝑖𝑘𝑑𝑘𝑙, (A-6) 

The following expression will be achieved: 

 (𝐽𝕔𝑖𝑗𝑘𝑙
𝜎o

+ 𝐽𝜎𝑖𝑘𝛿𝑗𝑙 + 𝐽𝜎𝑗𝑙𝛿𝑖𝑘)𝑑𝑘𝑙 = 𝕔𝑖𝑗𝑘𝑙
𝜏∇

𝑑𝑘𝑙. (A-7) 

Now, based on Eq. (2-53), we can finally write 

 𝕔𝑖𝑗𝑘𝑙
𝜎o

+ 𝜎𝑖𝑘𝛿𝑗𝑙 + 𝜎𝑗𝑙𝛿𝑖𝑘 = 𝔻𝑖𝑗𝑘𝑙 , (A-8) 

Which coincides with Eq. (2-54). 

For a hypoelastic model associated with the Truesdell rate of the Kirchhoff stress, the 

constitutive equation is 

 𝝉o = 𝕔𝜏o
: 𝒅. (A-9) 

Considering Eq. (2-14), Eq. (2-18), Eq. (2-19), and Eq. (A-2), we can easily obtain the 

expression 

 𝝉o = 𝐽𝝈o, (A-10) 

Which, substituted into Eq. (A-9), yields 

 𝝈o = 𝐽−1𝕔𝜏o
: 𝒅 = 𝕔𝜎o

: 𝒅, (A-11) 

And, therefore: 

 𝐽−1𝕔𝑖𝑗𝑘𝑙
𝜏o

= 𝕔𝑖𝑗𝑘𝑙
𝜎o

. (A-12) 

Now, employing the above relation into Eq. (A-8) leads to, 
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 𝐽−1𝕔𝑖𝑗𝑘𝑙
𝜏o

+ 𝜎𝑖𝑘𝛿𝑗𝑙 + 𝜎𝑗𝑙𝛿𝑖𝑘 = 𝔻𝑖𝑗𝑘𝑙, (A-13) 

i.e. Eq. (2-55). 

For a hypoelastic model based on the Jaumann rate of the Cauchy stress, the constitutive 

equation is 

 𝝈∇ = �̇� + 𝝈𝒘 − 𝒘𝝈 = 𝕔𝜎∇
: 𝒅. (A-14) 

Multiplying Eq. (A-14)) by  𝐽, adding (𝐽 𝒕𝒓𝒅)𝝈 to both sides of the equation and employing 

Eq. (2-14) and (2-21), we obtain 

 𝝉∇ = �̇� + 𝝉𝒘 − 𝒘𝝉 = 𝐽𝕔𝜎∇
: 𝒅 + (𝐽 tr𝒅)𝝈 = 𝕔𝜏∇

: 𝒅. (A-15) 

Now, expressing the last equality in index notation 

 𝐽𝕔𝑖𝑗𝑘𝑙
𝜎∇

𝑑𝑘𝑙 + 𝐽𝜎𝑖𝑗𝑑𝑚𝑚 = 𝕔𝑖𝑗𝑘𝑙
𝜏∇

𝑑𝑘𝑙, (A-16) 

Rewriting the term 𝐽𝜎𝑖𝑗𝑑𝑚𝑚 as 

 𝐽𝜎𝑖𝑗𝑑𝑚𝑚 = 𝐽𝜎𝑖𝑗𝛿𝑘𝑙𝑑𝑘𝑙 , (A-17) 

And eliminating 𝑑𝑘𝑙 from both sides of Eq. (A-16), we obtain 

 𝐽𝕔𝑖𝑗𝑘𝑙
𝜎∇

+ 𝐽𝜎𝑖𝑗𝛿𝑘𝑙 = 𝕔𝑖𝑗𝑘𝑙
𝜏∇

. (A-18) 

Finally, considering Eq. (2-53), the elasticity tensor 𝕔𝜎∇
 of the hypoelastic model, which is 

known, could be related to the tensorial version of the consistent Jacobian, i.e. 

 𝕔𝑖𝑗𝑘𝑙
𝜎∇

+ 𝜎𝑖𝑗𝛿𝑘𝑙 = 𝔻𝑖𝑗𝑘𝑙 . (A-19) 
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Which coincides with Eq. (2-56). 

The constitutive equation of a hypoelastic model based on the Green–Naghdi rate of the 

Cauchy stress is 

 𝝈∆ = �̇� + 𝝈𝛀 − 𝛀𝝈 = 𝕔𝜎∆
: 𝒅. (A-20) 

Based on Eq. (2-62), we have 

 �̇� + 𝝈 (𝒘 + ∑
𝜆𝛽 − 𝜆𝛼

𝜆𝛽 + 𝜆𝛼
𝒃𝛼𝒅𝒃𝛽

3

𝛼,𝛽=1

) − (𝒘 + ∑
𝜆𝛽 − 𝜆𝛼

𝜆𝛽 + 𝜆𝛼
𝒃𝛼𝒅𝒃𝛽

3

𝛼,𝛽=1

) 𝝈 = 𝕔𝜎∆
: 𝒅, (A-21) 

From which, rearranging the terms, 

 

𝕔𝜎∆
: 𝒅 − 𝝈 ( ∑

𝜆𝛽 − 𝜆𝛼

𝜆𝛽 + 𝜆𝛼
𝒃𝛼𝒅𝒃𝛽

3

𝛼,𝛽=1

) 

+ ( ∑
𝜆𝛽 − 𝜆𝛼

𝜆𝛽 + 𝜆𝛼
𝒃𝛼𝒅𝒃𝛽

3

𝛼,𝛽=1

) 𝝈 = �̇� + 𝝈𝒘 − 𝒘𝝈. 

(A-22) 

Now, using Eq. (2-20) and Eq. (A-14) and index notation, we obtain 

 

𝕔𝑖𝑗𝑘𝑙
𝜎∆

𝑑𝑘𝑙 − 𝜎𝑖𝑚 ( ∑
𝜆𝛽 − 𝜆𝛼

𝜆𝛽 + 𝜆𝛼

(𝑏𝛼)𝑚𝑘𝑑𝑘𝑙(𝑏𝛽)
𝑙𝑗

3

𝛼,𝛽=1

) 

+ ( ∑
𝜆𝛽 − 𝜆𝛼

𝜆𝛽 + 𝜆𝛼

(𝑏𝛼)𝑖𝑘𝑑𝑘𝑙(𝑏𝛽)
𝑙𝑚

3

𝛼,𝛽=1

) 𝜎𝑚𝑗 = 𝕔𝑖𝑗𝑘𝑙
𝜎∇

𝑑𝑘𝑙 . 

(A-23) 
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Employing Eq. (2-60) and eliminating 𝑑𝑘𝑙 from both sides, we get 

 𝕔𝑖𝑗𝑘𝑙
𝜎∆

− 𝜎𝑖𝑚𝐵𝑚𝑗𝑘𝑙 + 𝜎𝑗𝑚𝐵𝑖𝑚𝑘𝑙 = 𝕔𝑖𝑗𝑘𝑙
𝜎∇

, (A-24) 

And, finally, based on Eq. (A-19), we obtain Eq. (2-58) 

 𝕔𝑖𝑗𝑘𝑙
𝜎∆

− 𝜎𝑖𝑚𝐵𝑚𝑗𝑘𝑙 + 𝜎𝑗𝑚𝐵𝑖𝑚𝑘𝑙 + 𝜎𝑖𝑗𝛿𝑘𝑙 = 𝔻𝑖𝑗𝑘𝑙 . (A-25) 

For a hypoelastic model based on the Green–Naghdi rate of the Kirchhoff stress, the 

constitutive equation is 

 𝝉∆ = �̇� + 𝝉𝛀 − 𝛀𝝉 = 𝕔𝜏∆
: 𝒅. (A-26) 

Using Eq. (2-14), Eq. (2-21), and Eq. (A-2), we obtain 

 𝕔𝑖𝑗𝑘𝑙
𝜎∆

= 𝐽−1𝕔𝑖𝑗𝑘𝑙
𝜏∆

− 𝜎𝑖𝑗𝛿𝑘𝑙, (A-27) 

Substituting which into Eq. (A-25) yields Eq (2-59): 

 𝐽−1𝕔𝑖𝑗𝑘𝑙
𝜏∆

− 𝜎𝑖𝑚𝐵𝑚𝑗𝑘𝑙 + 𝜎𝑚𝑗𝐵𝑖𝑚𝑘𝑙 = 𝔻𝑖𝑗𝑘𝑙 . (A-28) 

 

C ZERO-GRADED HYPOELASTIC CONSTITUTIVE MODEL BASED ON THE 

JAUMANN RATE OF THE CAUCHY STRESS  

C PROPS(1) -> YOUNG'S MODULUS 

C PROPS(2) -> POISSON'S RATIO 

C 
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C Ee      = YOUNG'S MODULUS 

C Nu      = POISSON'S RATIO 

C Lambda  = LAME'S CONSTANT 

C Mu      = LAME'S CONSTANT 

C IDEN    = KRONECKER DELTA 

C STRESS  = UMAT-SUBROUTINE STRESS ARRAY 

C STRESSV = VECTOR VERSION OF "STRESS" 

C STRESSM = MATRIX VERSION OF "STRESS" 

C DSTRAN  = UMAT-SUBROUTINE INCREMENTAL STRAIN ARRAY 

C DSTRANV = VECTOR VERSION OF "DSTRAN" 

C DSTRANM = MATRIX VERSION OF "DSTRAN" 

C C1      = FOURTH-ORDER ELASTICITY TENSOR 

C DDSDDE  = UMAT-SUBROUTINE CONSISTENT JACOBIAN ARRAY 

C C2      = FOURTH-ORDER TENSOR VERSION OF "DDSDDE" 

C============================================================== 
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      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

     1 RPL,DDSDDT,DRPLDE,DRPLDT, 

     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 

     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 

     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,JSTEP,KINC) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      CHARACTER*80 CMNAME 

      DIMENSION STRESS(NTENS),STATEV(NSTATV), 

     1 DDSDDE(NTENS,NTENS), 

     2 DDSDDT(NTENS),DRPLDE(NTENS), 

     3 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 

     4 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3), 

     5 JSTEP(4) 
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C 

      INTEGER :: i,j,k,l     

      REAL*8 :: Ee,Nu,Lambda,Mu 

      REAL*8, DIMENSION(NTENS) :: STRESSV,DSTRANV 

      REAL*8, DIMENSION(3,3) :: IDEN,STRESSM,DSTRANM 

      REAL*8, DIMENSION(3,3,3,3) :: C1,C2 

      PARAMETER(ZERO=0.D0,ONE=1.D0,TWO=2.D0) 

C 

      Ee=PROPS(1) 

      Nu=PROPS(2) 

      Lambda=Nu*Ee/((ONE+Nu)*(ONE-TWO*Nu)) 

      Mu=Ee/(TWO*(ONE+Nu)) 

C 

      DO i=1,3 

      DO j=1,3 
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      IF (i.EQ.j) THEN 

      IDEN(i,j)=ONE 

      ELSE 

      IDEN(i,j)=ZERO 

      ENDIF  

      END DO 

      END DO 

C 

      STRESSV=STRESS 

      STRESSM(1,1)=STRESSV(1) 

      STRESSM(2,2)=STRESSV(2) 

      STRESSM(3,3)=STRESSV(3) 

      STRESSM(1,2)=STRESSV(4) 

      STRESSM(2,1)=STRESSV(4) 

      STRESSM(1,3)=STRESSV(5) 



 

186 

 

 

      STRESSM(3,1)=STRESSV(5) 

      STRESSM(2,3)=STRESSV(6) 

      STRESSM(3,2)=STRESSV(6) 

C 

      DSTRANV=DSTRAN       

      DSTRANM(1,1)=DSTRANV(1) 

      DSTRANM(2,2)=DSTRANV(2) 

      DSTRANM(3,3)=DSTRANV(3) 

      DSTRANM(1,2)=ONE/TWO*DSTRANV(4) 

      DSTRANM(2,1)=ONE/TWO*DSTRANV(4) 

      DSTRANM(1,3)=ONE/TWO*DSTRANV(5) 

      DSTRANM(3,1)=ONE/TWO*DSTRANV(5) 

      DSTRANM(2,3)=ONE/TWO*DSTRANV(6) 

      DSTRANM(3,2)=ONE/TWO*DSTRANV(6) 

C 
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      DO i=1,3 

      DO j=1,3 

      DO k=1,3 

      DO l=1,3                       

      C1(i,j,k,l)= 

     1 Lambda*IDEN(i,j)*IDEN(k,l)+ 

     2 Mu*IDEN(i,k)*IDEN(j,l)+ 

     3 Mu*IDEN(i,l)*IDEN(j,k) 

      END DO 

      END DO 

      END DO 

      END DO 

C 

      DO i=1,3 

      DO j=1,3 
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      DO k=1,3 

      DO l=1,3 

      STRESSM(i,j)=STRESSM(i,j)+C1(i,j,k,l)*DSTRANM(k,l) 

      END DO 

      END DO 

      END DO 

      END DO 

C 

      DO i=1,3 

      DO j=1,3 

      DO k=1,3 

      DO l=1,3 

      C2(i,j,k,l)=C1(i,j,k,l)+STRESSM(i,j)*IDEN(k,l) 

      END DO 

      END DO 
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      END DO 

      END DO 

C 

      STRESS(1)=STRESSM(1,1) 

      STRESS(2)=STRESSM(2,2) 

      STRESS(3)=STRESSM(3,3) 

      STRESS(4)=STRESSM(1,2) 

      STRESS(5)=STRESSM(1,3) 

      STRESS(6)=STRESSM(2,3) 

C 

      DO i=1,3 

      DDSDDE(i,1)=C2(i,i,1,1) 

      DDSDDE(i,2)=C2(i,i,2,2) 

      DDSDDE(i,3)=C2(i,i,3,3) 

      DDSDDE(i,4)=C2(i,i,1,2) 



 

190 

 

 

      DDSDDE(i,5)=C2(i,i,1,3) 

      DDSDDE(i,6)=C2(i,i,2,3) 

      END DO 

      DDSDDE(4,1)=C2(1,2,1,1) 

      DDSDDE(4,2)=C2(1,2,2,2) 

      DDSDDE(4,3)=C2(1,2,3,3) 

      DDSDDE(4,4)=C2(1,2,1,2) 

      DDSDDE(4,5)=C2(1,2,1,3) 

      DDSDDE(4,6)=C2(1,2,2,3) 

      DDSDDE(5,1)=C2(1,3,1,1) 

      DDSDDE(5,2)=C2(1,3,2,2) 

      DDSDDE(5,3)=C2(1,3,3,3) 

      DDSDDE(5,4)=C2(1,3,1,2) 

      DDSDDE(5,5)=C2(1,3,1,3) 

      DDSDDE(5,6)=C2(1,3,2,3) 
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      DDSDDE(6,1)=C2(2,3,1,1) 

      DDSDDE(6,2)=C2(2,3,2,2) 

      DDSDDE(6,3)=C2(2,3,3,3) 

      DDSDDE(6,4)=C2(2,3,1,2) 

      DDSDDE(6,5)=C2(2,3,1,3) 

      DDSDDE(6,6)=C2(2,3,2,3) 

      RETURN 

      END 

C============================================================== 

C ZERO-GRADED HYPOELASTIC CONSTITUTIVE MODEL BASED ON THE 

JAUMANN RATE OF THE KIRCHHOFF STRESS 

C============================================================== 

C PROPS(1) -> YOUNG'S MODULUS 

C PROPS(2) -> POISSON'S RATIO 

C 
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C Ee      = YOUNG'S MODULUS 

C Nu      = POISSON'S RATIO 

C Lambda  = LAME'S CONSTANT 

C Mu      = LAME'S CONSTANT 

C IDEN    = KRONECKER DELTA 

C DFGRD1  = UMAT-SUBROUTINE DEFORMATION GRADIENT AT THE END OF 

THE INCREMENT 

C Ffin    = MATRIX VERSION OF "DFGRD1" 

C Jfin    = DETERMINANT OF "Ffin" 

C STRESS  = UMAT-SUBROUTINE STRESS ARRAY 

C STRESSV = VECTOR VERSION OF "STRESS" 

C STRESSM = MATRIX VERSION OF "STRESS" 

C DSTRAN  = UMAT-SUBROUTINE INCREMENTAL STRAIN ARRAY 

C DSTRANV = VECTOR VERSION OF "DSTRAN" 

C DSTRANM = MATRIX VERSION OF "DSTRAN" 
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C C1      = FOURTH-ORDER ELASTICITY TENSOR 

C DDSDDE  = UMAT-SUBROUTINE CONSISTENT JACOBIAN ARRAY 

C C2      = FOURTH-ORDER TENSOR VERSION OF "DDSDDE" 

C============================================================== 

      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

     1 RPL,DDSDDT,DRPLDE,DRPLDT, 

     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 

     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 

     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,JSTEP,KINC) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      CHARACTER*80 CMNAME 

      DIMENSION STRESS(NTENS),STATEV(NSTATV), 

     1 DDSDDE(NTENS,NTENS), 
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     2 DDSDDT(NTENS),DRPLDE(NTENS), 

     3 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 

     4 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3), 

     5 JSTEP(4) 

C 

      INTEGER :: i,j,k,l     

      REAL*8 :: Ee,Nu,Lambda,Mu,Jfin 

      REAL*8, DIMENSION(NTENS) :: STRESSV,DSTRANV 

      REAL*8, DIMENSION(3,3) :: IDEN,STRESSM,DSTRANM,Ffin 

      REAL*8, DIMENSION(3,3,3,3) :: C1,C2 

      PARAMETER(ZERO=0.D0,ONE=1.D0,TWO=2.D0) 

C 

      Ee=PROPS(1) 

      Nu=PROPS(2) 

      Lambda=Nu*Ee/((ONE+Nu)*(ONE-TWO*Nu)) 
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      Mu=Ee/(TWO*(ONE+Nu)) 

C 

      DO i=1,3 

      DO j=1,3 

      IF (i.EQ.j) THEN 

      IDEN(i,j)=ONE 

      ELSE 

      IDEN(i,j)=ZERO 

      ENDIF  

      END DO 

      END DO 

C 

      Ffin=DFGRD1 

      Jfin= Ffin(1,1)*(Ffin(2,2)*Ffin(3,3)-Ffin(2,3)*Ffin(3,2))+ 

     1      Ffin(1,2)*(Ffin(2,3)*Ffin(3,1)-Ffin(2,1)*Ffin(3,3))+ 
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     2      Ffin(1,3)*(Ffin(2,1)*Ffin(3,2)-Ffin(2,2)*Ffin(3,1)) 

C 

      STRESSV=STRESS 

      STRESSM(1,1)=STRESSV(1) 

      STRESSM(2,2)=STRESSV(2) 

      STRESSM(3,3)=STRESSV(3) 

      STRESSM(1,2)=STRESSV(4) 

      STRESSM(2,1)=STRESSV(4) 

      STRESSM(1,3)=STRESSV(5) 

      STRESSM(3,1)=STRESSV(5) 

      STRESSM(2,3)=STRESSV(6) 

      STRESSM(3,2)=STRESSV(6) 

C 

      DSTRANV=DSTRAN       

      DSTRANM(1,1)=DSTRANV(1) 
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      DSTRANM(2,2)=DSTRANV(2) 

      DSTRANM(3,3)=DSTRANV(3) 

      DSTRANM(1,2)=ONE/TWO*DSTRANV(4) 

      DSTRANM(2,1)=ONE/TWO*DSTRANV(4) 

      DSTRANM(1,3)=ONE/TWO*DSTRANV(5) 

      DSTRANM(3,1)=ONE/TWO*DSTRANV(5) 

      DSTRANM(2,3)=ONE/TWO*DSTRANV(6) 

      DSTRANM(3,2)=ONE/TWO*DSTRANV(6) 

C 

      DO i=1,3 

      DO j=1,3 

      DO k=1,3 

      DO l=1,3                       

      C1(i,j,k,l)= 

     1 ONE/Jfin*Lambda*IDEN(i,j)*IDEN(k,l)+ 
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     2 ONE/Jfin*Mu*IDEN(i,k)*IDEN(j,l)+ 

     3 ONE/Jfin*Mu*IDEN(i,l)*IDEN(j,k)-                

     4 STRESSM(i,j)*IDEN(k,l)                  

      END DO 

      END DO 

      END DO 

      END DO 

C 

      DO i=1,3 

      DO j=1,3 

      DO k=1,3 

      DO l=1,3 

      STRESSM(i,j)=STRESSM(i,j)+C1(i,j,k,l)*DSTRANM(k,l) 

      END DO 

      END DO 
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      END DO 

      END DO 

C 

      DO i=1,3 

      DO j=1,3 

      DO k=1,3 

      DO l=1,3 

      C2(i,j,k,l)= 

     1 ONE/Jfin*Lambda*IDEN(i,j)*IDEN(k,l)+ 

     2 ONE/Jfin*Mu*IDEN(i,k)*IDEN(j,l)+ 

     3 ONE/Jfin*Mu*IDEN(i,l)*IDEN(j,k)  

      END DO 

      END DO 

      END DO 

      END DO 
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C 

      STRESS(1)=STRESSM(1,1) 

      STRESS(2)=STRESSM(2,2) 

      STRESS(3)=STRESSM(3,3) 

      STRESS(4)=STRESSM(1,2) 

      STRESS(5)=STRESSM(1,3) 

      STRESS(6)=STRESSM(2,3) 

C 

      DO i=1,3 

      DDSDDE(i,1)=C2(i,i,1,1) 

      DDSDDE(i,2)=C2(i,i,2,2) 

      DDSDDE(i,3)=C2(i,i,3,3) 

      DDSDDE(i,4)=C2(i,i,1,2) 

      DDSDDE(i,5)=C2(i,i,1,3) 

      DDSDDE(i,6)=C2(i,i,2,3) 
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      END DO 

      DDSDDE(4,1)=C2(1,2,1,1) 

      DDSDDE(4,2)=C2(1,2,2,2) 

      DDSDDE(4,3)=C2(1,2,3,3) 

      DDSDDE(4,4)=C2(1,2,1,2) 

      DDSDDE(4,5)=C2(1,2,1,3) 

      DDSDDE(4,6)=C2(1,2,2,3) 

      DDSDDE(5,1)=C2(1,3,1,1) 

      DDSDDE(5,2)=C2(1,3,2,2) 

      DDSDDE(5,3)=C2(1,3,3,3) 

      DDSDDE(5,4)=C2(1,3,1,2) 

      DDSDDE(5,5)=C2(1,3,1,3) 

      DDSDDE(5,6)=C2(1,3,2,3) 

      DDSDDE(6,1)=C2(2,3,1,1) 

      DDSDDE(6,2)=C2(2,3,2,2) 
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      DDSDDE(6,3)=C2(2,3,3,3) 

      DDSDDE(6,4)=C2(2,3,1,2) 

      DDSDDE(6,5)=C2(2,3,1,3) 

      DDSDDE(6,6)=C2(2,3,2,3) 

      RETURN 

      END 

C============================================================== 

C ZERO-GRADED HYPOELASTIC CONSTITUTIVE MODEL BASED ON THE 

TRUESDELL RATE OF THE CAUCHY STRESS 

C============================================================== 

C PROPS(1) -> YOUNG'S MODULUS 

C PROPS(2) -> POISSON'S RATIO 

C 

C Ee      = YOUNG'S MODULUS 

C Nu      = POISSON'S RATIO 
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C Lambda  = LAME'S CONSTANT 

C Mu      = LAME'S CONSTANT 

C IDEN    = KRONECKER DELTA 

C STRESS  = UMAT-SUBROUTINE STRESS ARRAY 

C STRESSV = VECTOR VERSION OF "STRESS" 

C STRESSM = MATRIX VERSION OF "STRESS" 

C DSTRAN  = UMAT-SUBROUTINE INCREMENTAL STRAIN ARRAY 

C DSTRANV = VECTOR VERSION OF "DSTRAN" 

C DSTRANM = MATRIX VERSION OF "DSTRAN" 

C C1      = FOURTH-ORDER ELASTICITY TENSOR 

C DDSDDE  = UMAT-SUBROUTINE CONSISTENT JACOBIAN ARRAY 

C C2      = FOURTH-ORDER TENSOR VERSION OF "DDSDDE" 

C============================================================== 

      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

     1 RPL,DDSDDT,DRPLDE,DRPLDT, 
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     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 

     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 

     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,JSTEP,KINC) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      CHARACTER*80 CMNAME 

      DIMENSION STRESS(NTENS),STATEV(NSTATV), 

     1 DDSDDE(NTENS,NTENS), 

     2 DDSDDT(NTENS),DRPLDE(NTENS), 

     3 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 

     4 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3), 

     5 JSTEP(4) 

C 

      INTEGER :: i,j,k,l     



 

205 

 

 

      REAL*8 :: Ee,Nu,Lambda,Mu 

      REAL*8, DIMENSION(NTENS) :: STRESSV,DSTRANV 

      REAL*8, DIMENSION(3,3) :: IDEN,STRESSM,DSTRANM 

      REAL*8, DIMENSION(3,3,3,3) :: C1,C2 

      PARAMETER(ZERO=0.D0,ONE=1.D0,TWO=2.D0) 

C 

      Ee=PROPS(1) 

      Nu=PROPS(2) 

      Lambda=Nu*Ee/((ONE+Nu)*(ONE-TWO*Nu)) 

      Mu=Ee/(TWO*(ONE+Nu)) 

C 

      DO i=1,3 

      DO j=1,3 

      IF (i.EQ.j) THEN 

      IDEN(i,j)=ONE 
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      ELSE 

      IDEN(i,j)=ZERO 

      ENDIF  

      END DO 

      END DO 

C 

      STRESSV=STRESS 

      STRESSM(1,1)=STRESSV(1) 

      STRESSM(2,2)=STRESSV(2) 

      STRESSM(3,3)=STRESSV(3) 

      STRESSM(1,2)=STRESSV(4) 

      STRESSM(2,1)=STRESSV(4) 

      STRESSM(1,3)=STRESSV(5) 

      STRESSM(3,1)=STRESSV(5) 

      STRESSM(2,3)=STRESSV(6) 
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      STRESSM(3,2)=STRESSV(6) 

C 

      DSTRANV=DSTRAN       

      DSTRANM(1,1)=DSTRANV(1) 

      DSTRANM(2,2)=DSTRANV(2) 

      DSTRANM(3,3)=DSTRANV(3) 

      DSTRANM(1,2)=ONE/TWO*DSTRANV(4) 

      DSTRANM(2,1)=ONE/TWO*DSTRANV(4) 

      DSTRANM(1,3)=ONE/TWO*DSTRANV(5) 

      DSTRANM(3,1)=ONE/TWO*DSTRANV(5) 

      DSTRANM(2,3)=ONE/TWO*DSTRANV(6) 

      DSTRANM(3,2)=ONE/TWO*DSTRANV(6) 

C 

      DO i=1,3 

      DO j=1,3 
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      DO k=1,3 

      DO l=1,3                       

      C1(i,j,k,l)= 

     1 Lambda*IDEN(i,j)*IDEN(k,l)+ 

     2 Mu*IDEN(i,k)*IDEN(j,l)+ 

     3 Mu*IDEN(i,l)*IDEN(j,k)+ 

     4 STRESSM(i,k)*IDEN(j,l)+ 

     5 STRESSM(j,l)*IDEN(i,k)- 

     6 STRESSM(i,j)*IDEN(k,l)              

      END DO 

      END DO 

      END DO 

      END DO 

C 

      DO i=1,3 
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      DO j=1,3 

      DO k=1,3 

      DO l=1,3 

      STRESSM(i,j)=STRESSM(i,j)+C1(i,j,k,l)*DSTRANM(k,l) 

      END DO 

      END DO 

      END DO 

      END DO 

C 

      DO i=1,3 

      DO j=1,3 

      DO k=1,3 

      DO l=1,3 

      C2(i,j,k,l)= 

     1 Lambda*IDEN(i,j)*IDEN(k,l)+ 
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     2 Mu*IDEN(i,k)*IDEN(j,l)+ 

     3 Mu*IDEN(i,l)*IDEN(j,k)+ 

     4 STRESSM(i,k)*IDEN(j,l)+ 

     5 STRESSM(j,l)*IDEN(i,k) 

      END DO 

      END DO 

      END DO 

      END DO 

C 

      STRESS(1)=STRESSM(1,1) 

      STRESS(2)=STRESSM(2,2) 

      STRESS(3)=STRESSM(3,3) 

      STRESS(4)=STRESSM(1,2) 

      STRESS(5)=STRESSM(1,3) 

      STRESS(6)=STRESSM(2,3) 
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C 

      DO i=1,3 

      DDSDDE(i,1)=C2(i,i,1,1) 

      DDSDDE(i,2)=C2(i,i,2,2) 

      DDSDDE(i,3)=C2(i,i,3,3) 

      DDSDDE(i,4)=C2(i,i,1,2) 

      DDSDDE(i,5)=C2(i,i,1,3) 

      DDSDDE(i,6)=C2(i,i,2,3) 

      END DO 

      DDSDDE(4,1)=C2(1,2,1,1) 

      DDSDDE(4,2)=C2(1,2,2,2) 

      DDSDDE(4,3)=C2(1,2,3,3) 

      DDSDDE(4,4)=C2(1,2,1,2) 

      DDSDDE(4,5)=C2(1,2,1,3) 

      DDSDDE(4,6)=C2(1,2,2,3) 
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      DDSDDE(5,1)=C2(1,3,1,1) 

      DDSDDE(5,2)=C2(1,3,2,2) 

      DDSDDE(5,3)=C2(1,3,3,3) 

      DDSDDE(5,4)=C2(1,3,1,2) 

      DDSDDE(5,5)=C2(1,3,1,3) 

      DDSDDE(5,6)=C2(1,3,2,3) 

      DDSDDE(6,1)=C2(2,3,1,1) 

      DDSDDE(6,2)=C2(2,3,2,2) 

      DDSDDE(6,3)=C2(2,3,3,3) 

      DDSDDE(6,4)=C2(2,3,1,2) 

      DDSDDE(6,5)=C2(2,3,1,3) 

      DDSDDE(6,6)=C2(2,3,2,3) 

      RETURN 

      END 

C============================================================== 
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C ZERO-GRADED HYPOELASTIC CONSTITUTIVE MODEL BASED ON THE 

TRUESDELL RATE OF THE KIRCHHOFF STRESS 

C============================================================== 

C PROPS(1) -> YOUNG'S MODULUS 

C PROPS(2) -> POISSON'S RATIO 

C 

C Ee      = YOUNG'S MODULUS 

C Nu      = POISSON'S RATIO 

C Lambda  = LAME'S CONSTANT 

C Mu      = LAME'S CONSTANT 

C IDEN    = KRONECKER DELTA 

C DFGRD1  = UMAT-SUBROUTINE DEFORMATION GRADIENT AT THE END OF 

THE INCREMENT 

C Ffin    = MATRIX VERSION OF "DFGRD1" 

C Jfin    = DETERMINANT OF "Ffin" 

C STRESS  = UMAT-SUBROUTINE STRESS ARRAY 
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C STRESSV = VECTOR VERSION OF "STRESS" 

C STRESSM = MATRIX VERSION OF "STRESS" 

C DSTRAN  = UMAT-SUBROUTINE INCREMENTAL STRAIN ARRAY 

C DSTRANV = VECTOR VERSION OF "DSTRAN" 

C DSTRANM = MATRIX VERSION OF "DSTRAN" 

C C1      = FOURTH-ORDER ELASTICITY TENSOR 

C DDSDDE  = UMAT-SUBROUTINE CONSISTENT JACOBIAN ARRAY 

C C2      = FOURTH-ORDER TENSOR VERSION OF "DDSDDE" 

C============================================================== 

      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

     1 RPL,DDSDDT,DRPLDE,DRPLDT, 

     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 

     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 

     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,JSTEP,KINC) 

C 
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      INCLUDE 'ABA_PARAM.INC' 

C 

      CHARACTER*80 CMNAME 

      DIMENSION STRESS(NTENS),STATEV(NSTATV), 

     1 DDSDDE(NTENS,NTENS), 

     2 DDSDDT(NTENS),DRPLDE(NTENS), 

     3 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 

     4 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3), 

     5 JSTEP(4) 

C 

      INTEGER :: i,j,k,l     

      REAL*8 :: Ee,Nu,Lambda,Mu,Jfin 

      REAL*8, DIMENSION(NTENS) :: STRESSV,DSTRANV 

      REAL*8, DIMENSION(3,3) :: IDEN,STRESSM,DSTRANM,Ffin 

      REAL*8, DIMENSION(3,3,3,3) :: C1,C2 
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      PARAMETER(ZERO=0.D0,ONE=1.D0,TWO=2.D0) 

C 

      Ee=PROPS(1) 

      Nu=PROPS(2) 

      Lambda=Nu*Ee/((ONE+Nu)*(ONE-TWO*Nu)) 

      Mu=Ee/(TWO*(ONE+Nu)) 

C 

      DO i=1,3 

      DO j=1,3 

      IF (i.EQ.j) THEN 

      IDEN(i,j)=ONE 

      ELSE 

      IDEN(i,j)=ZERO 

      ENDIF  

      END DO 
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      END DO 

C 

      Ffin=DFGRD1 

      Jfin=Ffin(1,1)*(Ffin(2,2)*Ffin(3,3)-Ffin(2,3)*Ffin(3,2))+ 

     1     Ffin(1,2)*(Ffin(2,3)*Ffin(3,1)-Ffin(2,1)*Ffin(3,3))+ 

     2     Ffin(1,3)*(Ffin(2,1)*Ffin(3,2)-Ffin(2,2)*Ffin(3,1)) 

C 

      STRESSV=STRESS 

      STRESSM(1,1)=STRESSV(1) 

      STRESSM(2,2)=STRESSV(2) 

      STRESSM(3,3)=STRESSV(3) 

      STRESSM(1,2)=STRESSV(4) 

      STRESSM(2,1)=STRESSV(4) 

      STRESSM(1,3)=STRESSV(5) 

      STRESSM(3,1)=STRESSV(5) 
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      STRESSM(2,3)=STRESSV(6) 

      STRESSM(3,2)=STRESSV(6) 

C 

      DSTRANV=DSTRAN       

      DSTRANM(1,1)=DSTRANV(1) 

      DSTRANM(2,2)=DSTRANV(2) 

      DSTRANM(3,3)=DSTRANV(3) 

      DSTRANM(1,2)=ONE/TWO*DSTRANV(4) 

      DSTRANM(2,1)=ONE/TWO*DSTRANV(4) 

      DSTRANM(1,3)=ONE/TWO*DSTRANV(5) 

      DSTRANM(3,1)=ONE/TWO*DSTRANV(5) 

      DSTRANM(2,3)=ONE/TWO*DSTRANV(6) 

      DSTRANM(3,2)=ONE/TWO*DSTRANV(6) 

C 

      DO i=1,3 



 

219 

 

 

      DO j=1,3 

      DO k=1,3 

      DO l=1,3                       

      C1(i,j,k,l)= 

     1 ONE/Jfin*Lambda*IDEN(i,j)*IDEN(k,l)+ 

     2 ONE/Jfin*Mu*IDEN(i,k)*IDEN(j,l)+ 

     3 ONE/Jfin*Mu*IDEN(i,l)*IDEN(j,k)+ 

     4 STRESSM(i,k)*IDEN(j,l)+ 

     5 STRESSM(j,l)*IDEN(i,k)- 

     6 STRESSM(i,j)*IDEN(k,l) 

      END DO 

      END DO 

      END DO 

      END DO 

C 
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      DO i=1,3 

      DO j=1,3 

      DO k=1,3 

      DO l=1,3 

      STRESSM(i,j)=STRESSM(i,j)+C1(i,j,k,l)*DSTRANM(k,l) 

      END DO 

      END DO 

      END DO 

      END DO 

C 

      DO i=1,3 

      DO j=1,3 

      DO k=1,3 

      DO l=1,3 

      C2(i,j,k,l)= 
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     1 ONE/Jfin*Lambda*IDEN(i,j)*IDEN(k,l)+ 

     2 ONE/Jfin*Mu*IDEN(i,k)*IDEN(j,l)+ 

     3 ONE/Jfin*Mu*IDEN(i,l)*IDEN(j,k)+ 

     4 STRESSM(i,k)*IDEN(j,l)+ 

     5 STRESSM(j,l)*IDEN(i,k) 

      END DO 

      END DO 

      END DO 

      END DO 

C 

      STRESS(1)=STRESSM(1,1) 

      STRESS(2)=STRESSM(2,2) 

      STRESS(3)=STRESSM(3,3) 

      STRESS(4)=STRESSM(1,2) 

      STRESS(5)=STRESSM(1,3) 
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      STRESS(6)=STRESSM(2,3) 

C 

      DO i=1,3 

      DDSDDE(i,1)=C2(i,i,1,1) 

      DDSDDE(i,2)=C2(i,i,2,2) 

      DDSDDE(i,3)=C2(i,i,3,3) 

      DDSDDE(i,4)=C2(i,i,1,2) 

      DDSDDE(i,5)=C2(i,i,1,3) 

      DDSDDE(i,6)=C2(i,i,2,3) 

      END DO 

      DDSDDE(4,1)=C2(1,2,1,1) 

      DDSDDE(4,2)=C2(1,2,2,2) 

      DDSDDE(4,3)=C2(1,2,3,3) 

      DDSDDE(4,4)=C2(1,2,1,2) 

      DDSDDE(4,5)=C2(1,2,1,3) 
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      DDSDDE(4,6)=C2(1,2,2,3) 

      DDSDDE(5,1)=C2(1,3,1,1) 

      DDSDDE(5,2)=C2(1,3,2,2) 

      DDSDDE(5,3)=C2(1,3,3,3) 

      DDSDDE(5,4)=C2(1,3,1,2) 

      DDSDDE(5,5)=C2(1,3,1,3) 

      DDSDDE(5,6)=C2(1,3,2,3) 

      DDSDDE(6,1)=C2(2,3,1,1) 

      DDSDDE(6,2)=C2(2,3,2,2) 

      DDSDDE(6,3)=C2(2,3,3,3) 

      DDSDDE(6,4)=C2(2,3,1,2) 

      DDSDDE(6,5)=C2(2,3,1,3) 

      DDSDDE(6,6)=C2(2,3,2,3) 

      RETURN 

      END 
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C============================================================== 

C ZERO-GRADED HYPOELASTIC CONSTITUTIVE MODEL BASED ON THE 

GREEN-NAGHDI RATE OF THE CAUCHY STRESS 

C============================================================== 

C PROPS(1) -> YOUNG'S MODULUS 

C PROPS(2) -> POISSON'S RATIO 

C 

C Ee                = YOUNG'S MODULUS 

C Nu                = POISSON'S RATIO 

C Lambda & Mu       = LAME'S CONSTANTS 

C IDEN              = KRONECKER DELTA 

C DFGRD1            = UMAT-SUBROUTINE DEFORMATION GRADIENT AT THE END 

OF THE INCREMENT 

C Ffin              = MATRIX VERSION OF "DFGRD1" 

C Bfin              = LEFT CAUCHY-GREEN DEFORMATION AT THE END OF THE 

INCREMENT 
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C LAM1, LAM2 & LAM3 = PRINCIPLE STRETCHES AT THE END OF THE 

INCREMENT 

C B1, B2 & B3       = EIGENPROJECTIONS OF "Bfin" 

C h12, h23 & h13    = SCALARS USED IN CALCULATION OF "B1", "B2" & "B3" 

C B12, ..., B32     = MATRICES USED IN CALCULATION OF "B1", "B2" & "B3" 

C STRESS            = UMAT-SUBROUTINE STRESS ARRAY 

C STRESSV           = VECTOR VERSION OF "STRESS" 

C STRESSM           = MATRIX VERSION OF "STRESS" 

C DSTRAN            = UMAT-SUBROUTINE INCREMENTAL STRAIN ARRAY 

C DSTRANV           = VECTOR VERSION OF "DSTRAN" 

C DSTRANM           = MATRIX VERSION OF "DSTRAN" 

C C1                = FOURTH-ORDER ELASTICITY TENSOR 

C DDSDDE            = UMAT-SUBROUTINE CONSISTENT JACOBIAN ARRAY 

C C2                = FOURTH-ORDER TENSOR VERSION OF "DDSDDE" 

C CSTAR             = FOURTH-ORDER TENSOR USED IN CALCULATION OF "C1" & 

"C2" 
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C TERM1             = SCALAR USED IN CALCULATION OF "C1" & "C2" 

C============================================================== 

      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

     1 RPL,DDSDDT,DRPLDE,DRPLDT, 

     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 

     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 

     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,JSTEP,KINC) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      CHARACTER*80 CMNAME 

      DIMENSION STRESS(NTENS),STATEV(NSTATV), 

     1 DDSDDE(NTENS,NTENS), 

     2 DDSDDT(NTENS),DRPLDE(NTENS), 

     3 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 
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     4 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3), 

     5 JSTEP(4) 

C 

      INTEGER :: i,j,k,l,m 

      REAL*8 :: Ee,Nu,Lambda,Mu, 

     1 LAM1,LAM2,LAM3,TERM1,h12,h23,h13 

      REAL*8, DIMENSION(3,3) :: IDEN,AN,STRESSM,DSTRANM, 

     1 Ffin,Bfin,B12,B21,B13,B31,B23,B32,B1,B2,B3 

      REAL*8, DIMENSION(6) :: STRESSV,DSTRANV,V 

      REAL*8, DIMENSION(3) :: PS 

      REAL*8, DIMENSION(3,3,3,3) :: C1,C2,CSTAR 

      PARAMETER(ZERO=0.D0,ONE=1.D0,TWO=2.D0) 

C 

      Ee=PROPS(1) 

      Nu=PROPS(2) 
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      Lambda=Nu*Ee/((ONE+Nu)*(ONE-TWO*Nu)) 

      Mu=Ee/(TWO*(ONE+Nu)) 

C 

      DO i=1,3 

      DO j=1,3 

      IF (i.EQ.j) THEN 

      IDEN(i,j)=ONE 

      ELSE 

      IDEN(i,j)=ZERO 

      ENDIF  

      END DO 

      END DO 

C 

      Ffin=DFGRD1 

      Bfin=MATMUL(Ffin,Transpose(Ffin)) 
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      V(1)=Bfin(1,1) 

      V(2)=Bfin(2,2) 

      V(3)=Bfin(3,3) 

      V(4)=Bfin(1,2) 

      V(5)=Bfin(1,3) 

      V(6)=Bfin(2,3) 

      CALL SPRIND(V,PS,AN,1,NDI,NSHR) 

      LAM1=PS(1)**(ONE/TWO) 

      LAM2=PS(2)**(ONE/TWO) 

      LAM3=PS(3)**(ONE/TWO) 

      IF (PS(1).EQ.PS(2)) THEN 

      B12=IDEN 

      B21=IDEN 

      ELSE 

      B12=ONE/(PS(1)-PS(2))*(Bfin-PS(2)*IDEN) 
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      B21=ONE/(PS(2)-PS(1))*(Bfin-PS(1)*IDEN) 

      h12=(LAM2-LAM1)/(LAM1+LAM2) 

      END IF 

      IF (PS(2).EQ.PS(3)) THEN 

      B23=IDEN 

      B32=IDEN 

      ELSE 

      B23=ONE/(PS(2)-PS(3))*(Bfin-PS(3)*IDEN) 

      B32=ONE/(PS(3)-PS(2))*(Bfin-PS(2)*IDEN) 

      h23=(LAM3-LAM2)/(LAM2+LAM3) 

      END IF 

      IF (PS(1).EQ.PS(3)) THEN 

      B13=IDEN 

      B31=IDEN 

      ELSE 
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      B13=ONE/(PS(1)-PS(3))*(Bfin-PS(3)*IDEN) 

      B31=ONE/(PS(3)-PS(1))*(Bfin-PS(1)*IDEN) 

      h13=(LAM3-LAM1)/(LAM1+LAM3) 

      END IF 

      B1=MATMUL(B12,B13) 

      B2=MATMUL(B21,B23) 

      B3=MATMUL(B31,B32) 

C 

      DO i=1,3 

      DO j=1,3 

      DO k=1,3 

      DO l=1,3 

      CSTAR(i,j,k,l)= 

     1 h12*B1(i,k)*B2(l,j)-h12*B2(i,k)*B1(l,j)+ 

     2 h13*B1(i,k)*B3(l,j)-h13*B3(i,k)*B1(l,j)+ 
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     3 h23*B2(i,k)*B3(l,j)-h23*B3(i,k)*B2(l,j)              

      END DO 

      END DO 

      END DO 

      END DO 

C 

      STRESSV=STRESS 

      STRESSM(1,1)=STRESSV(1) 

      STRESSM(2,2)=STRESSV(2) 

      STRESSM(3,3)=STRESSV(3) 

      STRESSM(1,2)=STRESSV(4) 

      STRESSM(2,1)=STRESSV(4) 

      STRESSM(1,3)=STRESSV(5) 

      STRESSM(3,1)=STRESSV(5) 

      STRESSM(2,3)=STRESSV(6) 
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      STRESSM(3,2)=STRESSV(6) 

C 

      DSTRANV=DSTRAN       

      DSTRANM(1,1)=DSTRANV(1) 

      DSTRANM(2,2)=DSTRANV(2) 

      DSTRANM(3,3)=DSTRANV(3) 

      DSTRANM(1,2)=ONE/TWO*DSTRANV(4) 

      DSTRANM(2,1)=ONE/TWO*DSTRANV(4) 

      DSTRANM(1,3)=ONE/TWO*DSTRANV(5) 

      DSTRANM(3,1)=ONE/TWO*DSTRANV(5) 

      DSTRANM(2,3)=ONE/TWO*DSTRANV(6) 

      DSTRANM(3,2)=ONE/TWO*DSTRANV(6) 

C 

      DO i=1,3 

      DO j=1,3 
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      DO k=1,3 

      DO l=1,3 

      TERM1=ZERO 

      DO m=1,3 

      TERM1= 

     1 TERM1+ 

     2 CSTAR(i,m,k,l)*STRESSM(m,j)- 

     3 STRESSM(i,m)*CSTAR(m,j,k,l) 

      END DO 

      C1(i,j,k,l)= 

     1 TERM1+ 

     2 Lambda*IDEN(i,j)*IDEN(k,l)+ 

     3 Mu*IDEN(i,k)*IDEN(j,l)+ 

     4 Mu*IDEN(i,l)*IDEN(j,k) 

      END DO 
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      END DO 

      END DO 

      END DO 

C 

      DO i=1,3 

      DO j=1,3 

      DO k=1,3 

      DO l=1,3 

      STRESSM(i,j)=STRESSM(i,j)+C1(i,j,k,l)*DSTRANM(k,l) 

      END DO 

      END DO 

      END DO 

      END DO    

C 

      DO i=1,3 
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      DO j=1,3 

      DO k=1,3 

      DO l=1,3 

      TERM1=ZERO 

      DO m=1,3 

      TERM1= 

     1 TERM1+ 

     2 CSTAR(i,m,k,l)*STRESSM(m,j)- 

     3 STRESSM(i,m)*CSTAR(m,j,k,l) 

      END DO 

      C2(i,j,k,l)= 

     1 TERM1+ 

     2 Lambda*IDEN(i,j)*IDEN(k,l)+ 

     3 Mu*IDEN(i,k)*IDEN(j,l)+ 

     4 Mu*IDEN(i,l)*IDEN(j,k)+ 
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     5 STRESSM(i,j)*IDEN(k,l)                   

      END DO 

      END DO 

      END DO 

      END DO 

C 

      STRESS(1)=STRESSM(1,1) 

      STRESS(2)=STRESSM(2,2) 

      STRESS(3)=STRESSM(3,3) 

      STRESS(4)=STRESSM(1,2) 

      STRESS(5)=STRESSM(1,3) 

      STRESS(6)=STRESSM(2,3) 

C 

      DO i=1,3 

      DDSDDE(i,1)=C2(i,i,1,1) 
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      DDSDDE(i,2)=C2(i,i,2,2) 

      DDSDDE(i,3)=C2(i,i,3,3) 

      DDSDDE(i,4)=C2(i,i,1,2) 

      DDSDDE(i,5)=C2(i,i,1,3) 

      DDSDDE(i,6)=C2(i,i,2,3) 

      END DO 

      DDSDDE(4,1)=C2(1,2,1,1) 

      DDSDDE(4,2)=C2(1,2,2,2) 

      DDSDDE(4,3)=C2(1,2,3,3) 

      DDSDDE(4,4)=C2(1,2,1,2) 

      DDSDDE(4,5)=C2(1,2,1,3) 

      DDSDDE(4,6)=C2(1,2,2,3) 

      DDSDDE(5,1)=C2(1,3,1,1) 

      DDSDDE(5,2)=C2(1,3,2,2) 

      DDSDDE(5,3)=C2(1,3,3,3) 
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      DDSDDE(5,4)=C2(1,3,1,2) 

      DDSDDE(5,5)=C2(1,3,1,3) 

      DDSDDE(5,6)=C2(1,3,2,3) 

      DDSDDE(6,1)=C2(2,3,1,1) 

      DDSDDE(6,2)=C2(2,3,2,2) 

      DDSDDE(6,3)=C2(2,3,3,3) 

      DDSDDE(6,4)=C2(2,3,1,2) 

      DDSDDE(6,5)=C2(2,3,1,3) 

      DDSDDE(6,6)=C2(2,3,2,3) 

      RETURN 

      END 

C============================================================== 

C ZERO-GRADED HYPOELASTIC CONSTITUTIVE MODEL BASED ON THE 

GREEN-NAGHDI RATE OF THE KIRCHHOFF STRESS 

C============================================================== 



 

240 

 

 

C PROPS(1) -> YOUNG'S MODULUS 

C PROPS(2) -> POISSON'S RATIO 

C 

C Ee                = YOUNG'S MODULUS 

C Nu                = POISSON'S RATIO 

C Lambda & Mu       = LAME'S CONSTANTS 

C IDEN              = KRONECKER DELTA 

C DFGRD1            = UMAT-SUBROUTINE DEFORMATION GRADIENT AT THE END 

OF THE INCREMENT 

C Ffin              = MATRIX VERSION OF "DFGRD1" 

C Jfin              = DETERMINANT OF "Ffin" 

C Bfin              = LEFT CAUCHY-GREEN DEFORMATION AT THE END OF THE 

INCREMENT 

C LAM1, LAM2 & LAM3 = PRINCIPLE STRETCHES AT THE END OF THE 

INCREMENT 

C B1, B2 & B3       = EIGENPROJECTIONS OF "Bfin" 
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C STRESS            = UMAT-SUBROUTINE STRESS ARRAY 

C STRESSV           = VECTOR VERSION OF "STRESS" 

C STRESSM           = MATRIX VERSION OF "STRESS" 

C DSTRAN            = UMAT-SUBROUTINE INCREMENTAL STRAIN ARRAY 

C DSTRANV           = VECTOR VERSION OF "DSTRAN" 

C DSTRANM           = MATRIX VERSION OF "DSTRAN" 

C C1                = ELASTICITY TENSOR 

C DDSDDE            = UMAT-SUBROUTINE CONSISTENT JACOBIAN ARRAY 

C C2                = FOURTH-ORDER TENSORORIAL VERSION OF "DDSDDE" 

C============================================================== 

      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

     1 RPL,DDSDDT,DRPLDE,DRPLDT, 

     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 

     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 

     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,JSTEP,KINC) 
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C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      CHARACTER*80 CMNAME 

      DIMENSION STRESS(NTENS),STATEV(NSTATV), 

     1 DDSDDE(NTENS,NTENS), 

     2 DDSDDT(NTENS),DRPLDE(NTENS), 

     3 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 

     4 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3), 

     5 JSTEP(4) 

C 

      INTEGER :: i,j,k,l,m 

      REAL*8 :: Ee,Nu,Lambda,Mu,Jfin, 

     1 LAM1,LAM2,LAM3,TERM1,h12,h23,h13 

      REAL*8, DIMENSION(3,3) :: IDEN,AN,STRESSM,DSTRANM, 
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     1 Ffin,Bfin,B12,B21,B13,B31,B23,B32,B1,B2,B3 

      REAL*8, DIMENSION(6) :: STRESSV,DSTRANV,V 

      REAL*8, DIMENSION(3) :: PS 

      REAL*8, DIMENSION(3,3,3,3) :: C1,C2,CSTAR 

      PARAMETER(ZERO=0.D0,ONE=1.D0,TWO=2.D0) 

C 

      Ee=PROPS(1) 

      Nu=PROPS(2) 

      Lambda=Nu*Ee/((ONE+Nu)*(ONE-TWO*Nu)) 

      Mu=Ee/(TWO*(ONE+Nu)) 

C 

      DO i=1,3 

      DO j=1,3 

      IF (i.EQ.j) THEN 

      IDEN(i,j)=ONE 
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      ELSE 

      IDEN(i,j)=ZERO 

      ENDIF  

      END DO 

      END DO 

C 

      Ffin=DFGRD1 

      Jfin=Ffin(1,1)*(Ffin(2,2)*Ffin(3,3)-Ffin(2,3)*Ffin(3,2))+ 

     1     Ffin(1,2)*(Ffin(2,3)*Ffin(3,1)-Ffin(2,1)*Ffin(3,3))+ 

     2     Ffin(1,3)*(Ffin(2,1)*Ffin(3,2)-Ffin(2,2)*Ffin(3,1)) 

      Bfin=MATMUL(Ffin,Transpose(Ffin)) 

      V(1)=Bfin(1,1) 

      V(2)=Bfin(2,2) 

      V(3)=Bfin(3,3) 

      V(4)=Bfin(1,2) 
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      V(5)=Bfin(1,3) 

      V(6)=Bfin(2,3) 

      CALL SPRIND(V,PS,AN,1,NDI,NSHR) 

      LAM1=PS(1)**(ONE/TWO) 

      LAM2=PS(2)**(ONE/TWO) 

      LAM3=PS(3)**(ONE/TWO) 

      IF (PS(1).EQ.PS(2)) THEN 

      B12=IDEN 

      B21=IDEN 

      ELSE 

      B12=ONE/(PS(1)-PS(2))*(Bfin-PS(2)*IDEN) 

      B21=ONE/(PS(2)-PS(1))*(Bfin-PS(1)*IDEN) 

      h12=(LAM2-LAM1)/(LAM1+LAM2) 

      END IF 

      IF (PS(2).EQ.PS(3)) THEN 
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      B23=IDEN 

      B32=IDEN 

      ELSE 

      B23=ONE/(PS(2)-PS(3))*(Bfin-PS(3)*IDEN) 

      B32=ONE/(PS(3)-PS(2))*(Bfin-PS(2)*IDEN) 

      h23=(LAM3-LAM2)/(LAM2+LAM3) 

      END IF 

      IF (PS(1).EQ.PS(3)) THEN 

      B13=IDEN 

      B31=IDEN 

      ELSE 

      B13=ONE/(PS(1)-PS(3))*(Bfin-PS(3)*IDEN) 

      B31=ONE/(PS(3)-PS(1))*(Bfin-PS(1)*IDEN) 

      h13=(LAM3-LAM1)/(LAM1+LAM3) 

      END IF 



 

247 

 

 

      B1=MATMUL(B12,B13) 

      B2=MATMUL(B21,B23) 

      B3=MATMUL(B31,B32) 

C 

      DO i=1,3 

      DO j=1,3 

      DO k=1,3 

      DO l=1,3 

      CSTAR(i,j,k,l)= 

     1 h12*B1(i,k)*B2(l,j)-h12*B2(i,k)*B1(l,j)+ 

     2 h13*B1(i,k)*B3(l,j)-h13*B3(i,k)*B1(l,j)+ 

     3 h23*B2(i,k)*B3(l,j)-h23*B3(i,k)*B2(l,j)              

      END DO 

      END DO 

      END DO 
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      END DO 

C 

      STRESSV=STRESS 

      STRESSM(1,1)=STRESSV(1) 

      STRESSM(2,2)=STRESSV(2) 

      STRESSM(3,3)=STRESSV(3) 

      STRESSM(1,2)=STRESSV(4) 

      STRESSM(2,1)=STRESSV(4) 

      STRESSM(1,3)=STRESSV(5) 

      STRESSM(3,1)=STRESSV(5) 

      STRESSM(2,3)=STRESSV(6) 

      STRESSM(3,2)=STRESSV(6) 

C 

      DSTRANV=DSTRAN       

      DSTRANM(1,1)=DSTRANV(1) 
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      DSTRANM(2,2)=DSTRANV(2) 

      DSTRANM(3,3)=DSTRANV(3) 

      DSTRANM(1,2)=ONE/TWO*DSTRANV(4) 

      DSTRANM(2,1)=ONE/TWO*DSTRANV(4) 

      DSTRANM(1,3)=ONE/TWO*DSTRANV(5) 

      DSTRANM(3,1)=ONE/TWO*DSTRANV(5) 

      DSTRANM(2,3)=ONE/TWO*DSTRANV(6) 

      DSTRANM(3,2)=ONE/TWO*DSTRANV(6) 

C 

      DO i=1,3 

      DO j=1,3 

      DO k=1,3 

      DO l=1,3 

      TERM1=ZERO 

      DO m=1,3 
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      TERM1= 

     1 TERM1+ 

     2 CSTAR(i,m,k,l)*STRESSM(m,j)- 

     3 STRESSM(i,m)*CSTAR(m,j,k,l) 

      END DO 

      C1(i,j,k,l)= 

     1 TERM1+ 

     2 ONE/Jfin*Lambda*IDEN(i,j)*IDEN(k,l)+ 

     3 ONE/Jfin*Mu*IDEN(i,k)*IDEN(j,l)+ 

     4 ONE/Jfin*Mu*IDEN(i,l)*IDEN(j,k)- 

     5 STRESSM(i,j)*IDEN(k,l) 

      END DO 

      END DO 

      END DO 

      END DO 
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C 

      DO i=1,3 

      DO j=1,3 

      DO k=1,3 

      DO l=1,3 

      STRESSM(i,j)=STRESSM(i,j)+C1(i,j,k,l)*DSTRANM(k,l) 

      END DO 

      END DO 

      END DO 

      END DO    

C 

      DO i=1,3 

      DO j=1,3 

      DO k=1,3 

      DO l=1,3 
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      TERM1=ZERO 

      DO m=1,3 

      TERM1= 

     1 TERM1+ 

     2 CSTAR(i,m,k,l)*STRESSM(m,j)- 

     3 STRESSM(i,m)*CSTAR(m,j,k,l) 

      END DO 

      C2(i,j,k,l)= 

     1 TERM1+ 

     2 ONE/Jfin*Lambda*IDEN(i,j)*IDEN(k,l)+ 

     3 ONE/Jfin*Mu*IDEN(i,k)*IDEN(j,l)+ 

     4 ONE/Jfin*Mu*IDEN(i,l)*IDEN(j,k) 

      END DO 

      END DO 

      END DO 
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      END DO 

C 

      STRESS(1)=STRESSM(1,1) 

      STRESS(2)=STRESSM(2,2) 

      STRESS(3)=STRESSM(3,3) 

      STRESS(4)=STRESSM(1,2) 

      STRESS(5)=STRESSM(1,3) 

      STRESS(6)=STRESSM(2,3) 

C 

      DO i=1,3 

      DDSDDE(i,1)=C2(i,i,1,1) 

      DDSDDE(i,2)=C2(i,i,2,2) 

      DDSDDE(i,3)=C2(i,i,3,3) 

      DDSDDE(i,4)=C2(i,i,1,2) 

      DDSDDE(i,5)=C2(i,i,1,3) 
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      DDSDDE(i,6)=C2(i,i,2,3) 

      END DO 

      DDSDDE(4,1)=C2(1,2,1,1) 

      DDSDDE(4,2)=C2(1,2,2,2) 

      DDSDDE(4,3)=C2(1,2,3,3) 

      DDSDDE(4,4)=C2(1,2,1,2) 

      DDSDDE(4,5)=C2(1,2,1,3) 

      DDSDDE(4,6)=C2(1,2,2,3) 

      DDSDDE(5,1)=C2(1,3,1,1) 

      DDSDDE(5,2)=C2(1,3,2,2) 

      DDSDDE(5,3)=C2(1,3,3,3) 

      DDSDDE(5,4)=C2(1,3,1,2) 

      DDSDDE(5,5)=C2(1,3,1,3) 

      DDSDDE(5,6)=C2(1,3,2,3) 

      DDSDDE(6,1)=C2(2,3,1,1) 
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      DDSDDE(6,2)=C2(2,3,2,2) 

      DDSDDE(6,3)=C2(2,3,3,3) 

      DDSDDE(6,4)=C2(2,3,1,2) 

      DDSDDE(6,5)=C2(2,3,1,3) 

      DDSDDE(6,6)=C2(2,3,2,3) 

      RETURN 

      END 
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APPENDIX B: SIGNIFICANCE OF LOCAL ANATOMICAL MEASURES AND 

LOCAL ASYMMETRY 
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Figure B-0-1: Color map plots for the statistical test on the significance of local anatomical 

variation. The color mapping represents the negative logarithm of the p-values. The hemipelvis 

is visualized from lateral (top-left), medial (top-right), posterior (bottom-left) and anterior views 

(bottom-right). The views of the pelvis include anterior (top-left), posterior (top-right), inlet 

(bottom-left) and outlet (bottom-right). 
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Figure B-0-2: Color map plots for the statistical significance of local asymmetry. The color 

mapping represents the negative logarithm of the p-values. The hemipelvis is visualized from 

lateral (top-left), medial (top-right), posterior (bottom-left) and anterior views (bottom-right). 

The views of the pelvis include anterior (top-left), posterior (top-right), inlet (bottom-left) and 

outlet (bottom-right). 
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APPENDIX C: NON-RIGID COHERENT POINT DRIFT METHOD 

 

The CPD method approaches the point-set registration problem as a probability estimation 

problem with regularization. In the CPD method, one point set represents the centroids of an 

isotropic Gaussian Mixture Model (GMM) and the other point set is considered as the data points, 

observed from the GMM. The first point set is referred to as the source point set and the second 

point set is called the target point set. In addition to the GMM components, a uniform distribution 

is added to the mixture to handle noise and outliers. Denoting the source point set by  𝒀 =

{𝒚1, … , 𝒚𝑀} and the target point set by 𝑿 = {𝒙1, … , 𝒙𝑁}, the mixture model in the CPD method 

takes the form: 

 𝑝(𝒙) = ∑ 𝑃(𝑚)𝑝(𝒙|𝑚)

𝑀+1

𝑚=1

=
𝜔

𝑁
+

1 − 𝜔

𝑀
∑ 𝑝(𝒙|𝑚)

𝑀

𝑚=1

, (C-1) 

 𝑝(𝒙|𝑚) =
1

(2𝜋𝜎2)𝐷/2
exp {−

‖𝒙 − 𝑇(𝒚𝑚, 𝜃)‖2

2𝜎2
}  for 𝑚 = 1, … , 𝑀 (C-2) 

Here, 𝜔 is a weight parameter between 0 and 1 to handle outliers and noise; all of the GMM 

components share the same width 𝜎 and the same membership 𝑃(𝑚); and, the centroids of the 

GMM components, denoted by  𝑇(𝒚𝑚, 𝜃) , are parameterized by a set of transformation 

parameters 𝜃. An important quantity in the CPD method is the posterior or assignment probability 

of a GMM component to a data point, which is computed based on Baye’s theorem: 
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 𝑝(𝑚|𝒙𝑛) =
𝑝(𝒙𝑛|𝑚)𝑃(𝑚)

𝑝(𝒙𝑛)
. (C-3) 

The method minimizes the expectation of the mixture model for all of the data points: 

 ℒ(𝜎, 𝜃) = ∏ 𝑝(𝒙𝑛)

𝑁

𝑛=1

, (C-4) 

or equivalently, minimize the negative log-likelihood of the mixture: 

 𝐸(𝜎, 𝜃) = − ln ℒ(𝜎, 𝜃) = − ∑ ln 𝑝(𝒙𝑛)

𝑁

𝑛=1

. (C-5) 

However, taking the derivative of the negative log-likelihood function 𝐸 w.r.t. its parameters 

leads to a set of highly nonlinear coupled expressions. To overcome this, an expectation-

maximization (EM) algorithm is employed to optimize the function 𝐸(𝜎, 𝜃). The EM algorithm 

initializes the parameters 𝜎 and 𝜃, and iteratively updates them to decrease 𝐸. The parameters at 

the start of each iteration are called old parameters and the updated parameters are referred to as 

the new parameters. Using the posterior probability for the old parameters and Jensen’s inequality, 

the EM algorithm minimizes the following function at each iteration: 

 𝑄(𝜃, 𝜎2) = − ∑ ∑ 𝑃𝑜𝑙𝑑(𝑚|𝒙𝑛)

𝑀+1

𝑚=1

ln(𝑃𝑛𝑒𝑤(𝑚)𝑝𝑛𝑒𝑤(𝒙𝑛|𝑚))

𝑁

𝑛=1

. (C-6) 

This function is an upper bound for 𝐸𝑛𝑒𝑤 = 𝐸(𝜎𝑛𝑒𝑤, 𝜃𝑛𝑒𝑤) (after dropping the terms which 

only depend on the old parameters) and its minimization in terms of the new parameters will 

necessarily decrease the negative log-likelihood function. 
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The non-rigid motion in the CPD method takes the form  𝑇(𝒚, 𝑣) = 𝒚 + 𝑣(𝒚), where  𝑣 

represents the velocity (or displacement) of each point on the source point set. The smoothness of 

the velocity function 𝑣 is measured using the high-frequency energy of the motion as follows: 

 𝜙(𝑣) = ∫
|�̃�(𝑠)|

�̃�(𝑠)ℝ𝐷

𝑑𝑠, (C-7) 

in which, �̃� is the Fourier transform of the velocity function, �̃� is selected as a Gaussian kernel 

function with the width 𝛽 (acting as a high-pass filter), and 𝑠 is a frequency domain variable. The 

smoothness measure of the velocity function, i.e. 𝜙(𝑣), is incorporated as a prior probability into 

the likelihood function: 

 ℒ̅(𝜎, 𝑣) = ℒ(𝜎, 𝑣) × exp (−
𝜆

2
𝜙(𝑣)), (C-8) 

in which,  𝜆  is a trade-off parameter that highlights the importance of smoothness relative to 

alignment. Similar to the derivation of Eq. (C-6), an upper-bound function is defined for the 

likelihood function (with prior knowledge of the smoothness): 

 �̅�(𝜎, 𝑣) = 𝑄(𝜎, 𝑣) +
𝜆

2
𝜙(𝑣). (C-9) 

Computing the functional derivative of �̅� w.r.t. 𝑣, the velocity function takes the form: 

 𝑣(𝒚) = ∑ 𝒘𝑚𝐺(𝒚, 𝒚𝑚)

𝑀

𝑚=1

, (C-10) 
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 𝐺(𝒚, 𝒚𝑚) = exp (−
‖𝒚 − 𝒚𝑚‖2

2𝛽2
), (C-11) 

which is a set of isotropic Gaussian basis functions with equal width 𝛽, located on the source point 

set. Computing the Fourier transform of the velocity function, the high-frequency energy is 

measured as follows: 

 𝜙(𝑣) = ∑ 𝐺(𝒚𝑖, 𝒚𝑗) 𝒘𝑖. 𝒘𝑗

𝑀

𝑖,𝑗=1

 (C-12) 

Lastly, taking the derivatives of �̅� w.r.t. the parameters 𝜎 and 𝜃 = {𝒘1, … , 𝒘𝑀}, a set of 

decoupled equations is obtained for updating the unknown parameters. In each iteration, the 

posterior probability is computed based on the old parameters (called the expectation step or E-

step), and then the parameters are updated based on the decoupled equations (called the 

maximization step or M-step). 

 


