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Abstract 

The lower Cretaceous Falher Member within west-central Alberta consists of five 

stacked successions of coarsening-upward storm-dominated sandstones and 

conglomerates. Using detailed core descriptions the Falher ““D” member is subdivided 

into five facies associations: lower shoreface and distal delta-front (FA1), upper 

shoreface and foreshore (FA2), proximal delta-front (FA3), lower delta-plain (FA4), and 

non-marine coastal plain (FAS). 

A detailed investigation of the Falher “D” reveals a number of along-strike trends. 

Typical strandplain deposits (FA2) are present in the western portion of the study area, 

while wave-dominated deltaic deposits (FA3) dominate the central region and lagoonal 

lower delta-plain deposits (FA4) dominate the eastern region. This distribution of 

depositional environments is interpreted to represent an asymmetrical wave-dominated 

delta. Additional evidence includes the presence of stacked fluvial deposits, depressed 

ichnological intensities and diversities, and the distribution of conglomerate within the 

upper shoreface and foreshore. Comparisons with modern asymmetrical wave-dominated 

deltas support this interpretation. 



-@lunitinh saitih-phule i sete wae “CP vA ad ane ma fe 

Waris eBiibe seth doo ered ye mata oth vir siete one (DAML antec Wit 

lotowant bin ctolae Hobie olf seineauias (£44) ‘alleles an ohh haus-ooen a ae 

1, ene tiiellnt ih eT noe ovat ott mantel ObAND) aia coh tat watt ne 

bawivirtede uv laobikosii yan th foueraen i Ey Dd 

lyoeeepmynly atiodrril (aivall Lesduaie ie avigauig will antuitani <cupohelires trent 

oily nidive oteitmdytiey We instal wil lite coimerit) bun esienalay intiigt ) 

been iemabeoene lahaicdtavie ravine iw? vnnenedonepnere > cores esenet hea exon teri Saga “ - 

Te eronqual al dite Progigste aeihs i 7 : 



Acknowledgements 

I wish to thank my supervisors, Dr. Murray Gingras and Dr. George Pemberton, 

for both their guidance during the course of this project and for introducing me to 

concepts that have broadened my focus and contributed to my development as a 

geologist. They were the best supervisors anyone could ever hope for. This project 

would not have been possible without their excellent supervision. I would also like to 

thank my thesis defense committee, Dr. Murray Gingras, Dr. George Pemberton, Dr. Ben 

Rostron, and Dr. Doug Craig for their advice. 

Special thanks to the Ichnology Research Group at the University of Alberta, in 

particular Curtis Lettley, Lynn Dafoe, Marilyn Zorn, John LaMothe, Kevin Balshaw, 

Zaki Abdel-Fattah, Sarah Gunn, Tyler Hauck, and Ryan Lemiski, for their friendship. I 

would also like to thank past IRG members Michelle Spila, Scott Reid, and Michael 

Hearn for welcoming me to the IRG. Curtis Lettley, Lynn Dafoe, and Dr. Murray 

Gingras need special acknowledgement for their contribution in preparing this thesis. 

I am grateful to the Natural Sciences and Engineering Research Council of 

Canada and the University of Alberta for both personal financial support and project 

funding. NSERC provided financial support through my Canadian Graduate Scholarship. 

The Shallow Water Research Consortium including CN Resources, Talisman Resources, 

ConocoPhillips, Nexen, and Devon Petroleum provided generous financial support for 

the Falher Member project. All financial support received was matched by an NSERC 

CRD Grant (Dr. George Pemberton). 

Finally, I'd like to thank my family for their constant love and support over the 

years. And last but certainly not least I'd like to thank my future wife, Angie Paulson, for 

her continuous support and understanding while working on this thesis. 



ai ebest A: tiv yuna tlt thd 90 gut iene PEK AD - 

Anvakalah (ire A oct ARS dale oa OF anlar atv 

Fine weit st Asli pe Loew aonb he aml darwin ub 
READE fa vp 100252 aT atl hall, xgo win SMT pension = 
gah wine stetheng! (oltin) eftay 2 (VM AR Meant jolew olen vet meh 

abiesi athe qerbendiereny ork Cpt gees vice) WT nioquehetyqualin iniege bene ange 

We liaanel) Avie qeinivomeeT bis sortie? no oii 

. Segnitllinn nigqueiitartil laveyay din wt apradl iow hbmeeenenel ik ben lament 

i aaa sunita naib? ‘em idpaiea Wt Pemapeyaid hash atom. timbers “WAT 

aironwnadh merisilsT, sei dyinndyl Wd yotholond wrirmvan'D anal wpe 

a magia telnet) sucrenag didhiseriy nusbpnty't erANT bythe nse pop heen 

“AN ca et Les stim cuay bavhearn Wewfpheie hhiventenet te _ajruy extend eet silt 

‘eovsepetionht einen) 0 tna mE! 

Pee ert er ne rr ee 

pained ay tt Qt An eth 1 fvdinh acct wlitiecreare antl coe tne aban, 

set ih os ice wluby qutitnusdtadsaas ly menaas epemiiona ted 



Table of Contents 

Chapter One: Introduction 

CED Eat COCUC Olean cane sete ener erate Mrs este eee eee eee or toacn steer tree eee ee ee 1 

NPA Fes HUG RO Ce aca eR i ik Aas ie ER UNE a rv NR pcr Fed an mat 3 

ES ODIECU Ves ANC Nl CtOUOLOO Var nar causes ae. aster tosearresccces octet ta ten eaten ee 7 

IEA eS CMUCTUAL SOLU es ccen eae cea ate crdttaan ars fren tren saeeercuste socievecisuene on seeonte ee met eeeat ree 8 

(1.5) Regional Stratigraphy and Paleogeography of the Lower Cretaceous in northwestern 

PNET cl ten eeeeee rere Seance ccna ee rota. 02" fiaeccass utmee qanees dnokien toon tadeates Saves ee eee erseni emote eee eae 1] 

GIG IETe VIOUS Ay Ol Kereree seksta renee irene ong eae ats nen eek ccen cette tac ote cere em ask cer rree 16 

Chapter Two: Facies Descriptions and Interpretations 

Cp baciese ta BiOul Dated ollt-lcir MUG StOie yc ceeseseco cere os oat eeeeee a ee teeeseenece nee near: 20 

(22 aciess 1 b> Unburrowed: silt-tichMUdStOnes <ayccccsscces-seceeacateee uc ssnes ce seee ees coscee 26 

2a OCICS 2 YS ONCY nSIUSLOME «cea sreatin ar nny enn eenceee Secs ese ae Gen a ore 29 

(2.4) Facies 3a - Bioturbated Interbedded Mudstone and Fine-grained Sandstone.......... 32 

(2.5) Facies 3b - Non-bioturbated Interbedded Mudstone and Fine-grained Sandstone ..39 

(2.6) Facies 4a - Very fine-grained Hummocky Cross Stratified Sandstone (HCS/SCS) 42 

(2.7) Facies 4b — Sporadically Bioturbated Very fine- to fine-grained Trough Cross- 

DEC CLEC SAU SLONEG one -taianc cers cc sere nee eae asa easaceaen nce aracednnt dee cay pastes ds Sots as-cast d tase assess sanaaeee ae) 

(2.8) Facies 4c - Very fine-grained Planar Laminated Sandstone ..................eesseseeeseees 59 

(2.9) Facies 5 - Fine- to Coarse-grained Trough Cross-bedded and Planar Laminated 

SS ATICOS EOL Sse aees eras sea eck ct cce Lestat es Utes Pat ceT Ma a aateceavieg ap Se ceecies aURSe rece ona eo eevee Reece 62 

(2:10) Facies 6 — Very Coarse-srained Sandstone... 1.0. ccsc-ws.a.eyonudeonsscucsacvoncsusice someseorss 65 

(2.11) Facies /— Interbedded Sandstone and Conglomerate ....--0-.00.0.:-.022-4s serosa seseueossees 68 

(2.12) Facies 8a - Unimodal Chert Granule Conglomerate and Very Well Sorted Coarse- 

TALC AMUSLOMOS 54,5. cettes teat ecancee see. mune cne ania uno facta sectandor center Wee: tecenet eer areata cea 72 

(ely racles 6b = bimodal @ hertCOng OMerAtG nc. .ccc-caccccoe-sssaedenncecsecnceecyesessncesesemecenets 75 

(214) Facies ce Poly modal Chert Conglomerate .scs.dccsscsevacranccgnsaconen caaneancesnerseneuertex 78 

(2:15) Facies 9- Organic-rich Shale and interbedded Coal oo cisac.ccciccsssessccotessacesteenceascos 81 



f sire 

Sag loriesort wana 

tu. ee ae ac aa greremnerten 

FOP ann Sr, Spe ee ene een ye «A gyrltps tener (he) 

wil ab merch pote ben te 

BE i aksitae netelagebionets this sp yeuelaaeseniaeiiin se DS 

| eet sneer 

8 eeuecsisnpiotenwoersconspvatorarvbnarsvsoney-ose anseaa/th aytoetllis anpatioohyiAt:= yt andanhl (1.8) 

_ Wb sesoaseeneaisaeistvnernsnanycoaine AaNGIMAMIME Aha ATR hetinrnati\? ~ OF alte 18.5) 

= BE eseoteenm “io disecscrbcadthieslagpuitinvatiisnaterssesee MORO yet» Samia FES) 

i Beis nO i so ea boo hari@ratollh » of onic L) 

SA RHONA DAN) went Area ps0) vierewrnabh inning ont vib - od gonbalt (0) 

sisaemnemanied eed yf Heaton iting | i antahlet.S) 

| Bh nene SI REO EL 0 see sponte nan gy lnnar Aoaieabanad 

aw. een wits bates thai me ag cov 7 onunt (ty 

sae foci enaae vaio ord} ot a - & moe SD 

: iy ee bigest enbrh nme +m phd en ahapsemiutivaaa Gaming «Abbe te mennn> 25% si . sergeant? 

| re esrsnssry reenter catalan el: acme 
ible tatanlannts helenatagan: - ~ T spkawl 4 DLS) 

| Cy SINEAD Lebwenin) ih waeah HES) 

eet ee i Ua SVS nahh nde | pacts, bebe 

eh mulls sbiatt- (G8 cok UEL Sy 

fh ee ee 

ea | tween omits int nett eh ink bonsai dt wit (ER) 



Chapter Three: Facies Associations and Depositional Model 

(3. EY) HAGles ASSOCIATIONS erccn cere tee eee eee eee ee ne ae 85 

* Facies Association One (FA1) — Storm-Dominated Lower Shoreface/ Distal 

Delta-Fronttsc.© cccmee mentee mre miesccee etn, na rr eee ee Le RIE AERTS 93 

©” Descripuonand Hacies' Relationships). eee 94 

eT ENE VITO LLED CNN Groen eh oe eer rere oe re rma noha arr annes isin mente neenletemnem 97 

¢ Facies Association Two (FA2) — Wave-Dominated Upper Shoreface and 

PORG SILC Aiecce cerns tee tas ats earner arta specie aac ete APU eee cee ate nee 101 

o Description and Facies Relationships...............0.0......ccccccccceeeeseeeeeees 101 

OMEN vironment eee ER coos vcssocedsuavesscdnthaneasosseacnsonsta 105 

Gee Discussions Reservoir, Potential c3.0. @eccatesnch set fee atk onesie ani ses 107 

¢ Facies Association Three (FA3) — Wave-Dominated Proximal Delta-Front...... 108 

o Description and Facies Relationships................0.0.0.0.ccccccccccccceeeseeseees 108 

SMRLUEN VAT OTUNMON Lo ccon terete, olcrn tet ee cecr ee la ns cnear ese aaeasaat i enone Renan ee ame eae [lal 

¢ Facies Association Four (FA4) — Lower Delta-Plain and Marginal-Marine 

Brackish Water be NVILOOIMCNCS orem. otreses sence caccrne ns careeny eveseacnsc tae enanceenenen ee cea 114 

o Description and Facies Relationships...............00000.ccccccceceeeeeeeeettees his 

SE VILOMIMCNL Pe tee Me nonte cask oe. Pete cite cceohene ceases saeaceata nanos iG i! 

«Discussion: Asymmetrical Deltas ...2).<..cscc1. cv coresccasoceccorscsvantensaas ta ceane 120 

¢ Facies Association Five (FAS) — Coastal Plain and Upper Delta-Plain ............. IFA 

o Description and Facies Relationships..................0....:eeeeeeceeeeeeenteeees 121 

garam ECTD YUN OO TITRA ONG cise ee es errs. bc scees 2 ca sassuoewnu ne unveuc dence oseeeneetasuecee 122 

(3.2) Depositional Model: The Presence of Wave-dominated Deltas along Storm-/Wave- 

AOMIN ated Coa SUITS eters dass. a Mn Anremer tere wn aache saeepel A teat Manas actence occas noses aseseoseaaenns 125 

¢ Typical Vertical Succession and Along-strike Transition ..............:..ssssssseer 125 

¢ Discussion: Wave-Dominated Deltas vs. Strandplains ..................--.-0.-sseseseee 128 

Seno HAraCtenistics And | GCOMICUNY <..cccccerre. 5 ionon: toc esses teases seater naan 129 

o Delta Asymmetry and Delta Lobe Abandonment............................ 131 

o Generalized Sedimentology: Wave-dominated Deltas vs. Strandplains 



oh hditat dy pao ah baby 1 Y 
, elev acmpinininhel”_sauinanaentiiany

 wi buye aol eede 

a. anegansld (all Aap bbe pdubeaeikabias min i nn ane a ie a 

¥ . £ A} | 

a rn eee + 

RE Ie At ae 

oe aan ereaisies at a tet ; 

OM a oisso)siyesisanladeneeis\erneceagiinentes ieaieeal naan . © 

BO)... demi atfott sain Shaikan lh inn nallgeeter sans at * 

a 

renee ep adine 64 GO) ee O60 04 (pha ig 2084 11000 PATI OME t 

WOU oon cecsejorne-com toes ROT esbnh't ha wnuighodl 

iit... td ee 

“seal Aslipetiecietl Wet (Or oe latent Ont, 

I a scevsopeearend) spel indies pry cA) aren ORE BOON fort 

Bape herttcnerrppitoren oes eae bes nied med bie ining 

WAY iis vied cater ssa reer vraiment enters cD ol tarietla nan wit . 7 

Folens thal itl seit en ats ints) (02M) Pt enimoonty eat 3 ks . 

PED rbeimrieiriinnsiter nein sont ol let raat hid PE 

Fee Satine say eh oat eeice Pe ee : 

“quar ys itaiaiiwié iy wonganrt atl ota ites BA ; 

BE vie sudesppivtdrest noma asec ata ips eoké sof aeieeanel pL _ 

+... ih teenadiae shih tae age iin abil aay - w. 

MEN eer IPR ed Heme bo GP Hs Hee see ae! austen ee mite 

; : 

ABU idarsatveronintesenemertytoe ae rt 

t oe. ' My rT) 

- mn b 1" 3 : me 

as ; a a 7 : 



my ¢Prodeltaiwt oe cer 0, Siete, follios inn Sve gmeconyus, LYRE 141 

EA SITE Finer ahit se 2 alate ea Nr Oe PR Oy Sms emer eT? 142 

PDS tee PET Pee tee ae Ne OR va patios Sc dawovinethloevnscdeawncavs we Bbadaden 143 

o Generalized Ichnology: Wave-dominated deltas vs. Strandplains... 144 

BOP Ode laws Bint: So wre aie 298 Now. | tree tion! Na lee OER™ 145 

BL el Ca Pit eee ater er6' oc ceric Sp esta heyaatestuou teases elas eons ee 146 

IMG bait tiigrarteere eco ene ae a owae tke aihte ac ek eatin santos ceaeace eee 147 

eee SUTLUDL AE Vr soeec ere eet etree God. eN RGN terete ea Aaa aer nda atta eee Cesc te 149 

Chapter Four: Stratigraphic cross-section analysis, depositional 

mapping, and sequence stratigraphic modeling 

(4.1) Important Stratigraphic Surfaces and Sequence Stratigraphic Model................... 150 

Se OC VCC SUE LACES eres eeuraeet ee Aateee rec ee ud aN a ne ene ee rar OS Re Pee RN na cae [52 

See NUCOCY CIC SULTACES coatahan-<ceteree st npaatnvesecancescar tonvacaancdusctevestaunetueacasracerce cena eee 158 

CON. AEN E OVE O2 1 geen en ee Ne PPE Waa Sacer AMOR yeh reat ARTO OES ett cr mR ane 159 

(42) Crass-secuiOn Descmpuonrand Interpretation a .ccteecarcaccneses tensa eee ete eee 59 

yee) DAUIEENE Be rete neen ene ae sc eu gate aa bona te oe Gouels canna Pet ou ga taean ena ae needa baw eae nae abate Sect 162 

Om Cioss-seclioneA-A 1 W Panic strand plain geen cctesseceteepe ees ee eee eee 162 

Oe Cross-section 5-b — Delta-Pront and Delta-Plain 22), .cc.eseeeseereesee eee nee 166 

@, Cross-section C-C. = Downdritt Del atr aes sete saesenceee-poeccraeneresanensedeoces-beteas fect 168 

GI GLOSS=SeCLIOM IaL) =A LOMO -SUIK Ge acsreeecusexsvuus sasacenosty ededetentonetoeco seer seas sees Vf 

Gos UTIL AR Vins neta oa ie eee cachet aes aceaione usted ats saa fa wadavuat cose aoennere smaeicace vaca yaenet 173 

(43) itholosical and ‘Ichnolosical, Mapping: cw. .urat-c soe cectecadet mena. stearate nee: 174 

CL SOMRC LIRIAS sie tc ort sear MOEN si vent nce co peasatess bas uaa suat nM ren ehy das Coen teacece teats 174 

o Conglomerate Thickness, Characteristics, and Distribution...............:c:cceeeees 179 

em Biotwrbation Viapping (Diversity) A DUNnGaNCE) 3.4.4.22-2510--sesoortencsoveentaveatecayusuees 181 

Cea IGUAL yong cc see eee ea oo tc deans en eae vones ae ses reds sactct tatet sea nnee tee secu sen eete 184 

(Ar iPalegceoetap nical Wap PING csr cs corsa, ots sas tsa cumesesavaseetesstanccPenreetes an ar ennnee ee 185 

Der titicn a Upper Palen sy wraveires-cccts a. sa sacocesectteessteeecoereer+ seer ece ete cere ectreaeanes 185 

o Time 2: Early Progradation of D1 Shoreface following Transgression (TSE1). 187 



7 Bi we ab 
us ee sas pen (s) : A i ae 

Ret... RSRN eeeev Shc be Aaa potas bmi oan i 7 

BY owsstletesnnaseeseiniSinai
issinesionscisiionss Umea aa ue 

BEE esate snenniatafviiinatenat
e 6 bbs CrtvO.00 19 12 Gort tee e+ youn’ js bee 0b iE ates 

4 _ 

pt en ere reer TTT Re ee a 
‘* 

apne stancgjanran secon ea 

OD its ae eave mRNAs Abin socas eae hits oa # 

GPIB snot carne mca batho ahh gmeerecntt secu ning mse 

Ie idaddes clstman i areinen estates ee ae 

a ne eres Lelpadinas geese 

nT ree «eee iactens ain ‘Ti @ieaseaa’d 

DBE vsiiwivesierimmerrcorrsioocoriorntpesemeen eines ep "> Rae em 

IPED, rctescctsetinascitm: — + soncmandyanpesnrnasis: se SUPA ~ 1A lee sa 6 

agenesis scsicrsonssernstinonaafianeatipencints er 

DY tester ssnsoyomcssvivantivanare ‘en ee ee 

ee sfep§sl Raps Traian iPh mee 116.0409 shentese ep dhamgead a * 

CS ee ere eee 

PAB sion sons amos ini eae aie neoaehaadle Qs 
Ca a a wr 

Sar 

[ae 

% oes 

ee ee 

: ante teriE 6 Sn ee — 



o Time 3: Early progradation of the D2 shoreface following Transgression (TSE2) 

Be roe ne he Noes cal ome see ee naa 14 piu AP vAde cos dabenaea sue purse ipuatnae ne wmetas 189 

©) lime 4) Progradation of the middie 12 Shoretace s...tercr-caceve-ssaneseedeeeec-ceereneseee 19] 

Gm line 5) FLoetadation of the leatew) 2, Sorelace er-iez.--ce--<seseanessees eae eer ees 193 

o Time 6: Forced Regression and Aggradation of the Uppermost Falher “D” 

GLE CUA EU ee renteratee setae cet oer ear ce eee arm aaa oe one erie eee rc SAN OP crate 195 

(Zod EG Map tetys UNNI AL Vaart net ar te neta eet ees eahere aie oa eae ch caves cemmoranaee cin 196 

Chapters <2 © ONCIUSIONS (rae ee eer eh ner ee eee en rem er 198 

References. &), eAthena OE a BO, cos 200 

EXD DEUGIX@ ATS OLe OGG oe eee ieee ee 217 



on Hine yes an 
- a 2 

| ; 
_ PEER ae ARR 

‘ I 

- OA ess cinciah center omairy peer saad 
A f 

: 

7 * 

| DID ic cchessevhdivaresessitnescnsinipaerbitdicnt-rervesonyenesuuess cali ities ieee 

7 ; : ; iy 

a | ’ , ’ : ood 

7" ' mec. pohasvinprs odes ily peeve wriggs wena sell tateye seems i ewer! 

: 4 

7 ; A 4 

PDS hacia gpck bcovenes Wits aupptinn shee mene eepaee edd tel atonal Cys ice imet bowtie eqn ae oh ibang 

; : i 

oe 

’ - 

tS. 

7 7 

_ 

7 
as at 7 . ; - 



List of Figures 

Chapter One 

Fig. 1.1 — Lower Cretaceous stratigraphic nomenclature of Alberta.......0.......csccceeeeeeeeeee Ms 

Fig. 1.2 — Map illustrating the location of core within the study area ............cccceeeeeeeeeeee 4 

Migs 3 oc allomon sud yaabea witli Denta sae: se ce cctaren cites cers ona eecee es e en 6 

Fig. 1.4 — Isopach map of the Upper Mannville of Alberta and Saskatchewan............... 10 

Fig. 1.5 — Distribution of the morphogeological belts of the Cordilleran (Modified from 

Mon semaine ELUtCiISOtie | 0) dh) cares stares wenn cneen nner tee aeyiaie sere ease teacee th nacre enced eee ik? 

Fig. 1.6 — Map of North America illustrating the extent of the Boreal and Gulfian 

Seaways during the Falher Member time (early Albian) (modified from Williams and 

PS Ge) Led Seas BS ips fad Vel S60 Wad eo: 9 ee A ee MIR eae npn rh es ager ee ae Ris Wn en 13 

Fig. 1.7 — Generalized facies of the Falher Member (Modified from Cant, 1995 and Casas 

COU cl CIEL OO 1) trtercemtestcty syste arcoceancs canst crsuanen Menace trees ane vendees tun tCe eam CS ne mn Toe eet 15 

Chapter Two 

Fig. 2.1 — Selected examples from Facies 1a — Bioturbated Silt-rich Mudstone ............. 24 

Fig. 2.2 — Selected examples from Facies 1b — Unburrowed Silt-rich Mudstone............ 28 

Fig. 23 — Selected examples from Facies 2 — Sandy SiltStone .......0:c<-cesss0c0ecnescaeetaneeeess 3] 

Fig. 2.4 — Selected examples from Facies 3a — Bioturbated Interbedded Mudstone and 

Pine-eramed Sandstone: (MON-deltaic))s ayvee necees sous eos sees can ee eee een eee 34 

Fig. 2.5 — Selected examples from Facies 3a — Bioturbated Interbedded Mudstone and 

ine-grained Sandstone (deltaic INtWCNCEd) jrc.ccesecsctstuts ve Reneteaaecodecees tet swcnse esos her ee eee 36 

Fig. 2.6 — Selected examples from Facies 3b — Non-bioturbated Interbedded Mudstone 

ANG: PINC= Caine: oS ANUStOME tse ccesescocntcsreseeceeso = sctesvs tes veo esa aaewenacnone aedtcescestett etc oMes fc ccenate 4] 

Fig. 2.7 — Selected examples of physical sedimentary structures from Facies 4a — Very 

fine-grained Hummocky Cross Stratified Sandstone (HCS/SCS) ........:cccceesseesceeeteeeeeeees 44 

Fig. 2.8 — Selected examples of bioturbation from Facies 4a — Very fine-grained 

HUIMINOC KY Cross suratiticd o anustone (LIC o/ SC) .c. ccc ccceensrarreecarceenn Ceceses tere Ueeeeeeene 47 

Fig. 2.9 — Selected examples of Paramacaronichnus from Facies 4a and Facies 4b....... 51 



— rahe alia ier akiibyironttion i icp hniaryh oie tai “Ade ct 
Dsiretbotoe a 

: Ph iipaasskcarsbhasabing ite ts aloes it Ati ators lor roetticanyt eal Pee Te ut 

ormtlA aidivr aie Shute tap ease aed 4a 
th | Bprbenranoaneeshagensnoterntonentresiiakerarbimets 

an 

7 | BE iceseasesun ‘cian dam arortht. lo heed ugg oh! ho patte tianefont, wih t - 

ie cuncvid tyr ibeen ve) sent Tideren: gilt hs eid tor yotiwemertirninn vole hey ancahimaetl ytd BR a: 

" BB csccceyosessmmomnsdotinesntnnsionaseeneattsericiygstis rail CA init anh tela t ‘ 

7 mail? baw lave ot te ies al aesbrev email NANA vipaeset Yue new he ¢ Aly 7 an 

| | Lovins noni! mest! b Toi) eA, eft) Heels eedncths dled Gill worn queue 

: . Ba sesacceauhss avai ele veived seeibaalaas panne Wheii=> aveppersees _., Che pada “Ary cil Ye 

| sane) nk 200) inn) cedett er abA) vortioss weelin’l enh) 1s cca? ONgete? ~ Tell ht 

a “Tay eee ceprny vyevmen aren vier ae i a - 

_— 7 | _ 

awl “vangait> - 

WE cea. Sia dehy balntivrsih bi estct thn poiqviads hivhahet 

| 

_ a aneointa heratie® epee) a) bate) cnt snliinmeet) (atunloP. £2. 

f 
va 

aly A cc oduasdetrvnsiviO leap nihsuesy . renege, vner~ 5 cone cet saldenaat bietuadye - (ft, 

Lyrics soncatibnst i feabisdvomil upidinient af enue mutt ohimad olathe he ; ae i 

; BF og iSeuas sellin Whivij er ethspo}! Gladapieeanvranwubes (uidj'abinei) bese behing 9 - 

‘has snAehiM tybbed oi beat a yun’) nyutt a Ayinurs babe’ ei oe i 

7 BE ccs Rin raewenen eek oi04 41 sh 00H FE AN | celeeerneny semen A 8s . ory multi anebahi) everson, bis ; - 

hnvnbuld bbe siaieiiacn: ~ aerial ial afoligeaennp | ivatsinlts - a 

i) ee rh seat pemn bnew entlnt LNKD Ge somap: «de? shod vpbesss aster haben’ os RS jut esti n 

gna ae nibs ie — pm ‘as - 
J ang ; eS : 

Sad ae _ aeeihneranihas 4 Po 

uy a9 



Fig. 2.10 — Idealized sketch of a Palaeophycus - Paramacaronichnus burrow system 

(Greated.by «Lomas atinders)is.@ Seren! Pantene s. war eahc in nih ete: eo meen eee. ay 

Fig. 2.11 — Selected examples of physical sedimentary structures from Facies 4b — 

Sporadically Bioturbated Very fine- to fine-grained Trough Cross-bedded Sandstone ...55 

Fig. 2.12 — Selected examples of bioturbation from Facies 4b — Sporadically Bioturbated 

Very fine= to fine-grained Trough Cross-bedded Sandstones.:.:/..1...c...:...s0cecoseseoeeoeneoees a7 

Fig. 2.13 — Selected examples from Facies 4c — Very fine-grained Planar Laminated 

Salis ton ete. Sienest teens rg ee Some see Aone, 4th te, A, a oe en 61 

Fig. 2.14 — Selected examples from Facies 5 - Fine- to Coarse-grained Trough Cross- 

bedded andtPiananmleaminatedsS andstome weer arrest oases Meeaeeeae os. ene. Ahem 64 

Fig. 2.15 — Selected examples from Facies 6 — Very Coarse-grained Sandstone. ........... 67 

Fig. 2.16 — Selected examples from Facies 7 - Interbedded Sandstone and Conglomerate 

PO ah oe A Oe meh a ere el shel. Puttnom. fence let unl aliens d catty. SURI ES cs 74 

Fig. 2.18 — Selected examples from Facies 8b - Bimodal Chert Conglomerate. ............. va 

Fig. 2.19 — Selected examples from Facies 8c - Polymodal Chert Conglomerate. .......... 80 

Fig. 2.20 — Selected examples from Facies 9 - Organic-rich Shale and interbedded Coal. 

Chapter Three 

Fig. 3.1 — Schematic ichnological-sedimentological model of shoreface deposition based 

on the Cretaceous Western Interior Seaway (modified from MacEachern et al., 1999). .88 

Fig. 3.2 — Legend of symbols and abbreviations utilized in this study..........0..0.cceee 89 

Fig. 3.3 — Paleogeographical overview of the along-strike variations in the Falher “D”’. 91 

Fig. 3.4 — Generalized cross-sectional profile of the nearshore zone, illustrating the 

principal zones of wave activity, strandplain environment terminology, and deltaic 

CNY WOMEN ULELININOLO Dye terete tere tt trometer any yeaa res sashascestesesssvctccrecest tens gncrresmecnrnn eee enae oF 

Fig. 3.5 — Strandplain succession from the Falher “D” illustrating the coarsening-upward 

succession from storm-amalgamated HCS sandstone (FA1) to trough cross-bedded 

BTN GUC een ee eae cee HR cE SY, 5k cu sy waggle bu BMS TOA De EM Ee aoe L cna OEE Crees 95 



ae - oats f heh ian vimemnn tay ———anoaaeanvocs 
| < : 

ry 
nish wn 
a, pee 

e..00 mead ypeeowree cat at Sel ( 

enti a | ies car : 
ai eis erent aposen tiie ee “4 pepiiess imme 

tei adel bialieeas | 

Ye a a eee sieaeee : 

| paar oo daeiu4 ment olqdeal bee ~ 2k 

prorers meanembeseitl * chp et event fo metcacht s 

i adeeepeeiih eens sasseitleshias et ¥; -0h a ahiae sharp eae 

ae a ee ts af tipi aan « aati iia 2 

BA coc lshscemociniovs ‘ests Spears aisenith-orecdvbvepesse aptcasharneennsee ish steams 

EE oocccoencoe theme rept) Taleg hl . AM aucun’ 1 eetnent aye tegigt 3 | 

te nlaaseen wstualee > 

ida tighiynelanies hank SAAR Movecalfiny A) - © vontual? tore aati Samael 

Kseatd auihibdeenpesly iat tertcattn: Len Mppoetiay Lcaitecst ests vnnettyay. borg oh anal ak oan pM = 

OE AWW dy te ieitaw aed ainda bentinhenn | vin et contgedinl aieenngl? ta 

ee phage aaa 10 DANA etvlioi neds Gonatw ange tee leans = & 

W vi ah * w ihosare tiie geo ant te wsierret Uertga anneal: ER 
it 

ad? qoueeriaclls aus spt PT ny a inated | 

siadbods damn emcbenatenrsanttaagiliaged ves rhndepbandate Aeon Sew? Wee 

ieee = 105.4.06 10 6006 61.975 1660 9606 Fis) UOTE Dene 06 @ o¢e 



Fig. 3.6 — Distal succession from the Falher “D” illustrating deltaic influence (FA1). ...96 

Fig. 3.7 — Core log illustrating a typical Falher “D” succession with very fine-grained 

lower shoreface deposits sharply overlain by the well-sorted upper shoreface and 

BoteshOre CepOsies,( FA.) sand As es to weateieasere® Sige se baco Reece EN eee net ewe co 102 

Fig. 3.8 — Strandplain succession from the Falher “D” illustrating trough cross-bedded 

sandstones overlain by unimodal and bimodal conglomerates (FA2). .........cccccccceeeeeeees 104 

Fig. 3.9 — Core log illustrating a typical proximal delta-front environment with the 

proximal delta-front tending to be a poorly sorted mix of sandstone and conglomerate. 

Fig. 3.10 — Core log illustrating typical lower delta-plain deposits with bioturbated silt- 

rich mudstones in-between fining-upward channel deposits...............cccccccccccceessseeceeeees 116 

Fig. 3.11 — Idealized diagram illustrating the development of beach-ridge strandplains on 

a wave-dominated coast undergoing relative sea level fall (modified after Walker and 

EBT 1 2) soca he ernst Mt etn eel SO As Nair cone Sire, ha ee te Mae cathe, sot d dg eset 126 

Fig. 3.12 — Tripartite classification of delta types (modified after Galloway, 1975).. ... 130 

Fig. 3.13 — Comparison of delta front successions in river-dominated vs. wave-dominated 

successions modified after Bhattacharya and Walkers 1992): sz s.0ccaecencs ous epezeee-cepeseey -.- 132 

Fig. 3.14 — Range of wave-dominated delta net sandstone geometries ranging from lobate 

tesstrikezclonpate (modinied: alten Wy e1ses. O80) ten. sgvaresos. fentenaue Se, oe een Soseeteeee es oe 133 

Fig. 3.15 — Paleogeographic reconstruction of the Falher D2, shoreline at the maximum 

northward progradation of the D2 unit, illustrating the asymmetrical geometry of the 

Tsai cfr) eet s tae eutectic se ian tet oce sho: cetuestawne cu sevors cetusnsustan ve veces eammucmeeranunsne testa 134 

Fig. 3.16 — Deltaic influenced succession located on the downdrift portion of a wave- 

dominated delta at0.82% icc and ee keenenpind vate recanted Sole Teepe 136 

Fig. 3.17 — Strandplain succession located within the updrift portion of a large wave- 

GopiiMated delta na nccvsewstcubuew athrccccwactitnnstieanve yedicebans vend gts Pew hgane Feet deberon enon: deh beauatee 13 7 

Fig. 3.18 — Line drawing of the Brazos Delta, Texas (after Rodriguez et al., 2000). This 

illustrates the morphology of a modern asymmetrical delta (Bhattacharya and Giosan, 



DOA vie ee spd ey rs A ry 

se pie io = ni tat Haney 

ne oer Te Tony jus visoyevnt) tts Saap anata ll 

A adn i oo ae rei ee eee 

BI sos tinnaitiei fe .,ullbeeingaly Vox Kyra equ Agi ycrneeerh arta halla 

solaaieabmasbahipeighabiaiaitors ont gyitticclt ntcoyeh teribeelal PILE agit 

Kapa toualls see fesibesh sine vgn gy tyaclentgaenbiatey Arby’ traecnierci-eovaenni: 

I... er porn diana enpelislab ty reliaytiicadty cnet = te 

Daddnieneb-sene er sbabinilinmibrovie af molanescue ini eable er muchtogene) — Ee 

PRY vicir thi certiem, «ARON dW iu aidan bain) onilaegiape 

qancded mer sin iia asirs@hiteyie Sued wiliite these linrents erviee® en Sone te gt 

BB pita eestictvavennscicss nara . (AE, col teats tnd bf oeie Silgit a pnRa 

maar 8 Yo sntouyile . oxy sel) ile Wey ml ydrwaraniens wipengoayealyl AG ght 

SAO To“cienesy, Liririacnrrngan vibe geivnettentl( tina SC onlt lo abebsebaeagerig inewdlinnn 

BN ia casa arctivactiecseines cli dmignpsemnds sie’ ere a 

al mini peat aed nierssoye alae Ana + 4 

WD gs ccvsivnyoss—uvinhebtanpadius vggpenms (ante «fis ie 

ver sgtal 4 sabe eT Wii Nalemo) dade cae = wig 

BEB ssnnivnnsepy: seu abennnimnny rcnsenedat Dh esparn & o covhah trtamnnal, 

se -Shl Jion inland sara oanret 

uenmnniiineeniiin oreo > geen iE 

Sen os beh bedenspeavehap asqPras (> OF fh Ve Satie hives ttly om 1 iposinumy 

fo 



Chapter Four 

Fig. 4.1 — Selected examples of important stratigraphic surfaces within the Falher ““D” 

SECS GOS (0D haar A Ar ie AT CAE REC EE EPS pes RRR RPE RPO PREM ORE re E e 154 

Fig. 4.2 — Sequence stratigraphic model proposed for the Falher “D” succession. ....... 156 

Fig. 4.3 — Deltaic succession from the Falher “D” containing both the D1 and D2 

TIRTS EW ag at cer 2 ease soe orece eae wh asian EN se ake Sete eee ecg sues ok sedate oa dg to R EEE AOS ey 

Fig. 4.4 — Map illustrating the location of cross-sections within the study area............ 161 

Fig. 4.5 — North-south trending, dip-oriented cross-section A — A’.......ccccccccessceeseeeeeees 163 

Fig. 4.6 — North-south trending dip-oriented cross-section B — B’. .........cccccccccceesseeeeees 167 

Fig. 4.7 — North-south trending dip-oriented cross-section C — C’. ......ccccsecccesssseeeeseees 169 

Fig. 4.8 — East-west trending strike-oriented cross-section D — D?.........cceeeeeseeeeeeeeees 172 

Fig. 4.9 — Isopach map of the Falher “D” sandbody within the study area. .................. 176 

Fig. 4.10 — Isopach map of the Falher D1 sandbody within the study area. .................. 177 

Fig. 4.11 — Isopach map of the Falher D2 sandbody within the study area................... 178 

Fig. 4.12 — Map illustrating the relative thickness, sorting, and interpreted environment of 

deposition for conglomeratic intervals within individual core across the study area. .... 180 

Fig. 4.13 — Map illustrating the relative overall bioturbation intensities in core from 

ECTOSS ELC S (UG Al Cate cens et rcnaceeccances set etspetatune onyeceebaCoNt canines states sae wuanec Ue eaten cage tae ee 183 

Fig. 4.14 — Paleogeographic reconstruction of the upper Falher “E” (Time 1). ............ 186 

Fig. 4.15 — Paleogeographic reconstruction of the Falher D1 shoreline following the 

initial transgression of the Falher E Member and subsequent progradation of the D1 

SIO LE LACE: CLIC ED.) See stan sakes sea satalen cane oes snc Nic sates a uayee de caees sun aad «tevin semareae ene ecioua e ceueerere cea eeen 188 

Fig. 4.16 — Paleogeographic reconstruction of the early Falher D2 shoreline following the 

transgression of the D1 unit and subsequent early progradation of the D2 unit (Time 3). 

Fig. 4.17 — Paleogeographic reconstruction of the middle Falher D2 shoreline following 

delta lobe abandonment and alongshore reworking of sediment eastward (Time 4). .... 192 

Fig. 4.18 — Paleogeographic reconstruction of the late Falher D2 shoreline at the most 

northward position of the D2 umit (Time 5). ...........sccssccssccsereeseeeesetesssesresonssessesonseennes 194 



«Nh 

7 

| : aig amt @, 7 “1 it deal | 

ieee 2 = clipe tocar a tnt 
a os j oT ‘ av ( 

: is - Se : a 7 = 

7 ‘Der baw 41. | . Salat att meet 

yl. ta poe oat a 00 vee DGreTy® aban Ail) bain) tea? Parte windy og eee i i i 

: fai coon Ss ts Tr ae concer ep iar pA 

ney MMe et Sr 

7 tal.. Gnd nadns 1 44f tre oere=- 4 "eti
c onam tant at -Aba i 

; GE cacccokior oars aaron 2 Parco toring baoniccathe gine Aime RIE 

oF4G.-—i. A Glyphs bein salate Gailaane tegen aaadl = ae 

4 eres :: ibe aban apes “Gr ule wu-te quam dnecgpael = CT 

| | WH scsscncicans., sete loc ot ailiben elastbnds 12 walt te nme Mnenpatl = or ae 

| Pia. sie fore siemmibin dentine CO-eMthA amVIO gee tamil 

ineihinieh einai acelin seanahttl weitabes 24 qntierrmalili mATA ee 

Ct... cnriie vionti al sop 90S Wintiyiiite vitae errant: Pere te ae 

conant sctiessa8 shaped thee wher ied HA Ddenetven cr ttictoen ott arth nanvnns dD quae ae se 

| ae be ee 

Wen iu, COI ‘sshd dinate catty Ti aerate 4 JAvaoapant 

smiilinaalinela MPyedli'L 0G W awirertionnc ms elyonpragt 

fe Gaby >} cmeamnnienll ie cahehh 4 Al a GaN i 

ne eee Oo en ole nee ile 
smipovenis soho teenies Phe MR 

ae 

ee eee cites ody aatene Kins hoy (i A Tee 

i 

amt. oivinas pet eames joel: ones atte fie og bhGu apis 

aa i _ 
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Chapter | — Introduction 

(1.1) Introduction 

The focus of this study is the Lower Cretaceous (Albian-age) Falher “D” 

Member, Spirit River Formation, Fort St. John Group of west-central Alberta. 

Subsurface data, including core and petrophysical log analyses, will be used to improve 

our understanding of coarse clastic shoreline successions containing considerable along- 

strike variation. The Falher “D” is one of several major northward prograding shoreline 

successions present within the Falher Member (Fig. 1.1). Each Falher cycle, A through 

E, is defined by marine and marginal-marine deposits of one cycle overlying coastal plain 

coals and mudstones from another cycle throughout most of the region. These cycles 

represent a series of transgressive-regressive sequences, with each succession overall 

regressive in nature separated by transgressions. In addition, a number of parasequences 

and allostratigraphic units have been defined within individual Falher cycles (e.g. Arnott, 

1993; Casas and Walker, 1997; Rouble and Walker, 1997; Armitage et al., 2002; Caddel, 

2002). These shoreline successions trend east west and are laterally continuous, 

extending 240km eastward of the foothills (Leckie, 1986). The cycles more or less stack 

vertically one top of one another from Township 65 to Township 75 and consist of storm- 

dominated shoreline deposits, truncated by wave-reworked deltaic deposits along the 

coastline. In the Elmworth/Wapiti field area, the Falher cycles are generally composed of 

coastal plain deposits in the south, wave-dominated shoreline and deltaic complexes in 

the center, and offshore deposits in the north. 

The purpose of this study is to integrate the sedimentology, ichnology and 

stratigraphy of the Falher “D” in order to describe and interpret the facies succession and 

paleogeographic evolution of the study area. Detailed examination of cored intervals of 

the Falher “D” will provide the ichnological-sedimentological data necessary to describe 

and model depositional environments present within the succession. The along-strike 

variability and inter-relationship of these depositional environments will be the focus of 

this study. Subsequent understanding of the paleogeography and lateral variability of the 
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Gamma-ray (GR) and sonic log responses to the right from well 10-1-70-11W6, Elmworth field, 

Deep Basin. (modified from Armitage et al., 2004 and Smith et al., 1984) 
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Falher “D” will not only enhance future exploration and production strategies in the 

Falher Member, but also in similar clastic shoreline successions worldwide. 

(1.2) Study Area 

The area selected for this study is located in northwestern Alberta, just southwest 

of the city Grande Prairie, Alberta (Fig. 1.2). This area encompasses Townships 67-69 

and Ranges 8W6—13W6 within Alberta. Within this region, roughly 1,000 wells penetrate 

the Falher Member and approximately 35 of those contain cored intervals relevant to this 

investigation (Fig. 1.2, Table 1.1). The greatest well/core control is concentrated within 

Township 68 hence this will be the focus of this study. Gamma ray and sonic log profiles 

will be used to depth correct core control and construct cross-sections. However, the best 

data is in the form of the cored intervals that presents essential sedimentological and 

ichnological information and allows the calibration of the geophysical well log data. 

Trending east-west, the study encompasses most of the Wapiti field and the 

southern most portion of the Elmworth field (Fig. 1.3). These fields have been attractive 

exploration targets since their discovery in 1976 with over 2000 producing wells 

developed from 10 principal reservoir units (Stockmal et al., 2001). Most production 

from the Falher “D” occurs from the Falher “D1” pool located in the western half of the 

study area (Arnott, 1994). However, there are also a number of other smaller pools 

located throughout the study area. This portion of the Western Canadian Sedimentary 

Basin (WCSB), referred to as the Deep Basin, contains substantial hydrocarbon 

exploration and production from a number of stratigraphic intervals. The Deep Basin 

includes the Mesozoic section of the WCSB that thickens dramatically along the 

Cordillera (Masters, 1979). Increased accommodation space resulting from rapid tectonic 

subsidence during the Mesozoic produced sedimentary fill in excess of 4,000 m (Masters, 

1979; Wright et al., 1994; Monger and Price, 2002). Current gas reserves within the 

Deep Basin are around 77 Trillion Cubic Feet (TCF) with another 25 TCF expected to be 

recovered with future exploration (Stockmal et al., 2001). However, Masters (1979) 

originally calculated ultimate resources of up to 400 TCF. It is apparent that the region 

contains vast quantities of gas and will continue to be an important exploration target for 

years to come. 
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Fig. 1.2 - Location of study area within west-central Alberta. Cores logged are represent 

by round black dots. Table | contains the location, interval described, and length of each 

core. 
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Well Location Core Interval [ie 
Length (m 

1865.6 1884 
1982.4 2000.2 
1758.1 1797.3 

9 1709.5 1730.5 

13 2365.4 2391.6 
9 1870.0 1901.9 
8 1857.8 1863.0 

2546.6 2565.5 

2674.3 2682.8 

Irregular 

250162 2010.5 

201273 2590.9 

2433.6 2454.6 

2490.5 2515.4 

2427.0 2444.0 

2205.4 2224.8 

2351163 2332.0 

2264.6 2286.0 

2400.7 2413.5 

PNOSt 2176.0 

2203.0 222312 

2198.0 2216.0 

2240.3 2258.9 

2301.0 2311.0 

2196:2 2173.6 

2196.3 2207.9 

2239.1 2249.2 

2263.6 2284.2 

22210 Pap asa (es 

2043.2 2061.8 

2201.6 

Table 1.1 - Table showing the location of cores logged during this study. The length and 

interval logged is also shown. All cored intervals contain detailed descriptions and are 

presented in Appendix A. 
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(1.3) Objectives and Methodology 

The main objective of this study is to describe and interpret the lateral viability of 

the Falher “D” succession within northwestern Alberta. This will be accomplished 

through a series of chapters including the description of cored intervals, grouping of 

related facies into environmentally significant units, and detailed mapping of these units. 

The overall aim is to increase our knowledge of the Falher Member and therefore 

enhance potential exploration and recovery strategies within the Deep Basin. An 

introduction to the Falher “D”, including the structural setting, regional paleogeography, 

and previous work, is necessary in-order to provide a framework or regional perspective 

for understanding the study of the Falher *D” within a relatively small study area. 

Chapter Two contains detailed descriptions of the 35 cored wells, by grouping 

rocks with similar lithological, sedimentological, and ichnological characteristics into 

facies. In this study 15 facies were identified and each will contain a description of the 

physical and biogenic sedimentary structures as well as an overall interpretation. Trace 

fossil abundances will be shown in the following form: rare (r), common (c), moderate 

(m), and abundant (a). Grain sizes are shown as: very fine-grained lower (vfL), very 

fine-grained upper (vfU), fine-grained lower (fL), fine-grained upper (fU), medium- 

grained lower (mL), medium-grained upper (mU), coarse-grained lower (cL), coarse- 

grained upper (cU), very coarse-grained lower (vcL), very coarse-grained upper (vcU). 

These facies will then be grouped, in Chapter Three, into genetically related packages 

referred to as facies associations. Each of the five facies associations identified in this 

study will include a description and a discussion on their environmental significance. 

Facies associations will include multiple facies and represent a particular depositional 

environment present with the Falher “D”. Using these environmental interpretations, a 

depositional model is described. This model identifies and interprets the substantial 

along-strike variability of depositional environments present within the Falher “D”. 

The spatial distribution of the five facies associations is the focus of Chapter Four. 

This will be accomplished through cross-sections and isopach, lithological, ichnological, 

and paleogeographical maps. Both core descriptions and petrophysical log are used to 

generate the various maps and cross-sections. As well, key stratigraphic surfaces present 

within the Falher Member will be identified and described. Using these surfaces the 
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Falher “D” will be subdivided into two parasequences. Each parasequence is described 

and correlated using a series of strike- and dip-oriented cross-sections. Lastly, this 

information is incorporated with the depositional model from Chapter Three to produce a 

series a paleogeographical maps illustrating the evolution of the Falher “D” within the 

study area. Through these means, it is hoped that a greater understanding of the Falher 

“D” succession, and wave-dominated clastic shorelines in general, can be accomplished. 

(1.4) Structural Setting 

The Western Canada Sedimentary Basin is the result of the accretion of 

allochthonous terrains onto the western margin of North America in the late Early 

Jurassic (Monger and Price, 2002). The consequences of these events were the transition 

of the formally passive margin to an active one. Tectonic uplift commenced and created 

the present day Rocky Mountains. As a result of this uplift, an associated foreland basin 

formed to the east. The immense loading of the North American Craton triggered the 

depression and flexure of the craton and formed the foreland basin (Wright et al., 1994). 

The WCSB is characterized by eastward-moving deformation as uplift continued and lies 

between the Cordilleran Belt and the Precambrian Shield. Erosion of the newly uplifted 

source occurred and westerly-derived clastics were deposited into the subsiding basin 

(Monger and Price, 2002). 

The foreland basin sequences form a thick (up to 4000m) elongated band of 

sediment parallel to the orogeny. The thickest sedimentary fill occurs nearest the western 

margin, where it was closest to the tectonic loading. It is continuous with the Western 

Interior Basin in the United States. In Canada, the basin in divided by two large 

basement structures, the Peace River Arch and the Sweetgrass Arch, both of which 

originated in the Paleozoic. These basement features have moved upward and downward 

through time and thus affect sedimentation in the Cretaceous. 

The orogenic event that created the foreland basin began in the middle Jurassic 

while the accretion of much smaller terrains occurred as early as the Carboniferous (Cant, 

1989; Monger and Price, 2002). Significant amounts of clastic material were not 

deposited into the basin until the middle to late Jurassic. The sediment filling the basin is 

largely terrigenous and contains primarily three grain sizes: shale, fine- to medium- 
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grained sandstone, and granule to fine-pebble conglomerate (Cant, 1989). Most of the 

sandstones in the Mesozoic section of the basin are lithic and have source areas from the 

Main Ranges and western Front Ranges (Price and Mountjoy, 1970; Price, 1994). 

However, sediment derived from Proterozoic strata in the Canadian Shield is responsible 

for quartzose sandstones in the eastern part of the basin. 

The major stratigraphic packages/wedges of the Foreland basin include the Upper 

Jurassic, Lower Cretaceous, Upper Cretaceous, and Tertiary clastic wedges. The lower 

most sediment of the WCSB is grouped into the Upper Jurassic clastic wedge, which is 

only preserved in the western part of the basin. Unconformably (sub-Cretaceous 

unconformity) overlying this is the Lower Cretaceous clastic wedge, which is known in 

the subsurface as the Mannville Group and the Blairmore Group in outcrop. The sub- 

Cretaceous unconformity formed during the Early Cretaceous as a result of minimal 

subsidence combined with a lack of sediment input, that lead to erosion across the 

interior. The unconformity is angular in nature, however the angular discordance between 

the Cretaceous and underlying strata is very gentle. 

Most of the Mannville Group strata are sandstones and shales with minor amounts 

of conglomerate and limestone. The sediments of the lower Mannville Group that in-fill 

topography on the sub-Cretaceous unconformity are referred to as the Cadomin and 

Gething formations, from bottom to top, in northwestern Alberta. Sediments deposited in 

the middle Mannville are referred to as the Bluesky Formation and represent a marine 

transgression. The upper Mannville Group (Fig. 1.4) represents the subsequent 

regression following the middle Mannville transgression. The Spirit River Formation is 

part of the Fort St. John Group, which is equivalent to the Upper Mannville. A more 

detailed description of the paleogeography of the Lower Cretaceous is found below. 

After the deposition of the Mannville Group, dramatic changes in sedimentation occurred 

within the Alberta and Colorado groups, which were dominantly shale with minor 

sandstones (Cant, 1989; Monger and Price, 2002). The Upper Cretaceous and Tertiary 

clastic wedges will not be discussed here but interested readers are referred to Leckie 

(1989). 

The provenance of the Gates Formation (Falher equivalent) sediment is the 

subject of a study by Leckie (1985) using detailed petrographic descriptions of the Gates 
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Scale 1:5,000,000 

100 200 300 Kilometres 

100 200 Miles 

Saskatchewan 

@ Grande Prgirie 

22: 

Edfmonton 

Saskatoon 

Fig. 1.4 - Isopach map of the Upper Mannville of Alberta and Saskatchewan. The Upper 

Mannville includes the Bluesky, Wilrich, Falher, Notikewin, Harmon, Cadotte, and Paddy 

members. Strata thickens toward the foredeep and the Peace River arch regions, where 

subsidence is the greatest (modified from Hayes et al., 1994). 
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sandstones. He found that Moosebar-Gates sandstones are predominantly litharenites 

with some feldspathic litharenites with a mixed source of clastic and carbonate 

sedimentary rocks, acidic to intermediate plutonic and volcanic igneous rocks, and 

metamorphic rocks (Leckie, 1985). The regionally extensive source area extended well 

into the Omineca Crystalline Belt and eastern margins of the Intermontane Belt (Fig. 1.5). 

Using sole markings on sediment gravity-flow deposits, he extrapolated the paleoflow 

direction to be 332 degrees. Therefore, the regional paleoslope dipped toward the north- 

northwest. At the time of Moosebar-Gates deposition, the Tenakihi Group of the 

Omineca Crystalline Belt was to the south of the Gates shorelines and could have 

provided sediment. Further information on the petrology and tectonics of the Gates 

Formation are referred to Leckie (1985). 

(1.5) Regional Stratigraphy and Paleogeography of the Lower Cretaceous in northwestern 

Alberta 

Subsidence of the Foreland basin in the early Albian allowed the intrusion of 

marine waters into the interior of North America (Fig. 1.6). This formed a shallow 

epicratonic sea, which collected sediment during the various periods of uplift/erosion of 

the cordillera. The first such event in the Cretaceous resulted in the formation of an 

alluvial and braid plain along the western edge of the basin, which are represented by the 

Cadomin Formation. These alluvial fans expanded from their source and eventually 

formed a single widespread alluvial plain covering much of western Alberta. The 

alluvial-plain deposits are comprised of poorly sorted, sandy chert conglomerates (Stott, 

1984). The Fox Creek Escarpment, a gentle range of hills, marks the Cadomin 

Formation’s eastern limit. This paleographic high is identified in the subsurface by an 

absence of the Cadomin, overlain by a thin Gething Formation. Continued subsidence 

and accumulation of sediments formed fluvial and delta-plain deposits of the Gething 

Formation. In the Peace River area, the Gething Formation forms extensive delta-plain 

deposits, which grade northward into marine sandstones, siltstones, and mudstones (Stott, 

1984). South of the Peace River, the Gething gives way to alluvial and floodplain 

deposits. In middle Gething Formation time, the Fox Creek Escarpment became buried as 

the fluvial deposits expanded eastward. With no local constraints, the drainage plain 
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the Cordilleran (Modified from Monger and Hutchison, 

1971). 
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Gulfian Sea 

Fig. 1.6 - Map of North America illustrating the extent of the the Boreal and Gulfian 

Seaways during the Falher Member time (early Albian) (modified from Williams and 

Skelck, 1975; Jackson, 1984). Study area location shown in red. 
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expanded randomly forming a low-lying, swampy plain with numerous lakes and became 

heavily forested (Smith et al., 1984). 

During the early Aptian the Boreal Sea intruded into the continent, drowning the 

Gething fluvial deposits and depositing coastal and shallow-marine sandstones of the 

Bluesky Formation. The overall transgressive Bluesky Formation contains numerous 

coarsening-upward regressive cycles due to an essentially continuous sediment supply. 

Most of the regressive cycles consist of barrier bar sequences that prograded northward 

capped by lagoonal and bay sediments. As the Clearwater Sea continued to transgress 

southward along the Mackenzie River Basin (Stelck, 1975), the shallow marine deposits 

of the Bluesky Formation are overlain by the marine shales of the Wilrich Member 

(Moosebar Member equivalent) were deposited. The Clearwater Sea flooded most of 

Alberta and may in fact have reached into Montana (Stelck, 1975). 

Late-early Albian time signals a definitive change in the system, with increased 

tectonism of the Cordillera (continued Columbian Orogeny). This resulted in 

sedimentation rates exceeding relative sea-level rise, as it did during the Cadomin and 

Gething time. Under these conditions, a series of northward prograding clastic wedges 

formed. The Spirit River Formation represents the regressive infilling of the seaway after 

the transgression of the Boreal Sea (Smith et al., 1984). The overall regressive Falher 

Member is subdivided into five cycles, Falher A through Falher E Members, each 

separated by rapid transgressions. Marine sediments overlying coastal-plain coal 

deposits signal the transgression in core. The Falher Member is age equivalent to the 

following stratigraphic units; lower Gates Formation is the central foothills, Grand 

Rapids B Member in northeastern Alberta, Beaver Mines Formation in the southern 

foothills, and Clearwater Formation in northern Alberta. The Falher Member within 

Townships 64 to 78 consists of thick sequences of shoreface marginal marine deposits. 

North of this area the Falher Member consists of dominantly marine deposition with non- 

marine deposition dominant in the south (Fig. 1.7). Fluvial channels punctuate the 

shoreline deposits along the length of each Falher coastline (Cant, 1983). The Falher 

Member’s shorelines are strongly wave-dominated, resulting in a linear east west 

trending coastline with deltaic lobes reworked. The Notikewin Member is another 

regressive cycle, which overlies the Falher “A” Member. Similar to the Falher Member, 
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the Notikewin contains prograding shoreline deposits in Townships 65 to 80 trending east 

west and offshore deposits to the north. 

A second major transgression followed with the Boreal Sea again intruding into 

the continent. This time the Boreal Sea advanced farther southward and eventually 

connected with the Gulfian Sea to produce a continuous intercontinental sea (Cant, 1989). 

The marine shales of the Hulcross/Harmon/Joli Fou (northern Alberta, northern B.C, and 

southern Alberta/Saskatchewan respectively) Members represent this. This transgression 

lasted until the end of the Albian time and was the result of a major global rise in sea 

level (Cant, 1989). Within this overall transgressive period, the regressive Paddy and 

Cadotte members were deposited as a result of continued sediment input. 

(1.6) Previous Work 

The Spirit River Formation, especially the Falher Member, has been the subject of 

many geological studies in recent years due to its large hydrocarbon reserves. However, 

Lower Cretaceous aged rocks have been studied as early as the late 1800’s. In 1877, 

Alfred Selwyn published “a Report on Exploration in British Columbia” in which he 

described shales outcropping along the Peace River. Dawson (1881) later named these 

shale outcroppings as the Fort St. John Shales, due to their proximity to the town of Fort 

St. John, British Columbia. He also recognized that the sediments making up the 

Cretaceous shorelines in that region most likely originated west of the Rocky Mountains. 

McLearn (1918, 1923) also described exposures in northeastern British Columbia, where 

he identified the sandstones of the Gates Formation and the underlying shales of the 

Moosebar Formation. In 1950, McLearn & Kindle summarized previously collected data 

on the Lower Cretaceous and produced early paleogeographic maps. Their work was 

incomplete due to a lack of subsurface data at that time. 

The Alberta Study Group (1954) extended, with the use of newly acquired 

subsurface data, the correlation of Lower Cretaceous strata eastward from the previously 

established stratigraphic framework of the foothills in northeastern British Columbia. At 

the same time, Badgley (1952) was also involved in the correlation of these rock units 

into the subsurface and was the first to formally study the Falher Member. In the Peace 

River plains regions, the Fort St. John Group was subdivided into the Spirit River 
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Formation, the Peace River Formation, and the Shaftesbury Formation. The Alberta 

Study Group (1954) further subdivided the Spirit River Formation into the Wilrich 

Member, Falher Member, and Notikewin Member. Stott (1968, 1982) discussed the 

regional geology of the Fort St. John Group in northeastern British Columbia and 

northwestern Alberta as well. He interpreted the Gates Formation (Falher Member 

equivalent) as deltaic and flood plain deposits, also suggesting a southwestern source of 

sediment and a north-south transition from coastal plain to shallow marine environments. 

With the discovery of the Deep Basin Elmworth gas field in 1976, geological 

studies of the highly gas-charged Spirit River Formation were of the utmost importance. 

In particular, the sedimentology and stratigraphy of coarse-grained reservoir units within 

the Deep Basin were of interest. Outcrop of equivalent units in the foothills of 

northeastern British Columbia provided an excellent database to compare to subsurface 

data from the Deep Basin. Leckie & Walker (1982) produced a depositional model of the 

Gates Formation based on this outcrop. In doing so, they differentiated between fluvial 

and beach conglomerates and added that the model could be used to predict their 

reservoir distribution in the adjacent Deep Basin. McLean (1979) dealt with the 

relationship between conglomeratic units of the foothills to those of the Deep Basin. He 

examined tectonic influences and the reservoir composition of the Falher Member. In 

1979, Masters described the Deep Basin’s reservoir characteristics, including their low 

porosity and low permeability nature. 

In recent years, many excellent sedimentological and stratigraphic studies of the 

various Falher Members have been completed due to the wealth of subsurface data that is 

now available. Cant (1984) identified eight major transgressive-regressive cycles within 

the Spirit River Formation. With the use of core, Cant (1984) describes the 

sedimentology of the Falher and Wilrich Members. He observed coarsening-upward 

sequences within the Spirit River Formation, which he correlated in a 140 km long north- 

south cross-section. Leckie (1985, 1986) through a series of studies in the foothills of 

northeastern British Columbia discussed the stratigraphy of the Moosebar and Gates 

Formations (Wilrich and Falher equivalents respectively). In these studies, he identifies 

seven major transgressive-regressive cycles and suggested that the lateral extent of the 

cycles may be related to the Peace River arch. Jackson (1984) and Smith et al. (1984) 
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briefly discussed the paleogeography of the Lower Cretaceous Mannville Group of the 

Elmworth field area in northwestern Alberta and northeastern British Columbia. 

Several studies have used the petrographic analysis of cored intervals to reveal 

important information on the porosity and permeability of the Falher Members (Cant 

1983, Cant & Ethier 1984, Rahmani 1984). Most of the studies listed above focus on the 

Elmworth field area due to the large gas resources. The Spirit River Formation has 

undergone significance diagenesis to alter the reservoir potential of any deposits in the 

Deep Basin. Tilley’s (1988) thesis and Tilley & Longstaffe (1989) studied the diagenesis 

and porewater evolution of the Cretaceous of Alberta. Tilley & Longstaffe (1989) 

identified four stages of diagenesis and porewater evolution including: deposition and 

burial, maximum burial and relief, uplift and erosion, and maximum generation of 

methane from interbedded coals. 

Rouble & Walker (1997) produced a detailed facies analysis and allostratigraphic 

framework for Falher Members A and B. In this study, the authors divided the Falher 

Members A and B into four allomembers, Al, A2, BI, and B2. Ina similar study Casas 

& Walker (1997) produced a detailed facies analysis and depositional history of the 

Falher Members C and D. They subdivided the Falher “C” Member into six sub- 

members, Cl to C6, and the Falher “D’’ Member into five sub-members, D1 to DS. Their 

interpretations differed greatly from those of Arnott (1993) who studied the 

sedimentology and sequence stratigraphy of the Falher “D” pool. He subdivided the 

Falher “D’ Member into four sub-members, D1 to D4. His study also discussed the 

importance of changes in relative sea level in relation to the distribution of reservoir 

units. Caddel (2000) and Caddel & Moslow (2004) studied the sedimentology and 

stratigraphy of the Falher ““C’” Member from outcrop in the Bullmoose Mountain area of 

the foothills of British Columbia. They described the facies distribution in terms of 

reservoir quality and reservoir potential. Using their stratigraphic framework created 

from the foothills outcrop data, they extended their model into the subsurface toward the 

east. Wadsworth et al. (2003) detailed the stratigraphy of coal and non-marine strata of 

the Falher (Gates equivalent) Formation. This study extended the body of knowledge to 

the continental areas of the Falher Formation. Wadsworth et al. (2003) used coal 



gh iy yh ATC ae i 
AAO by ofintemeenst ah yell sanetlés Yy Wiroomerat > ol Wo nuteahive wohawcwnel, bmn 

bv indtiorignk ycibalire naunove otoHAy Tih aaveEwn De thr geen a -bollinaatil 

Yo weblivisien countehae tien , noieets bax Sle altars fwite owed qe Jeb 

iti “iets fosalivttcaen) rnc penny 

pidlyhagh mee hin, bts wi etistcns ola aml nal A Geen oirary | wT el aah 

tall OA) Dobivi> «iit ott vtinte, riled 6 ba F ensapineaita! olla WO) Yael - 

wan J etiiap wihieein ok Ober bt GA les eradmenaits turk vane AR Soe a ered 

48-16 sewhelt Tse engl bith ed glnite ahaa Halvavtl a Syoormshap TEED yoHew & 

tive id i vorrei walt hawk) idee yout. OL haw 7 ecat eth 

tint? 201.07 10) .ecdeenedyr oon obit lin AE eaihae ild liga OF 9 (0) eredacngin 

oy tanituie ant (0000) dines Te genet “unot)> yen feet: Ue 

ait) bobbvitelya bbY tong. Cl seth adiato Jsloiterahinant soupe: bow Qoiokeiine 

wit) lepocini ts Mali alnity ail! erin 14. peradifaedinn eet oot adm “O" toda, 

| tevioies Wy ‘ofiwilinieth Ajit wi Hoitalod Ai Tavs! tig (vitor mi Rey Va Cnn rorgtont 

liye eaatzdantcibor ail habere CA yubalk % isola) bon CMS) tole .crtade. 

Horner tednnergesbd? onsite Leh ibe ost pores aed vacterea4-°")° valle ath Ye gbiaentgtineton 

— Seetnen nh webieoe) vara on deatitivub yon cadetinala Siecle aflitiosit ode 

Te ie Ce Re oe Te sprint Licht ahenty sieatement’ been YHeNips Sarena 

walt Lmver oottinieitann att vin LS ahs wa et fe igetiingy Abi AMteoinp cath reat 

Ae ane ese (ns Inca Hg ee 

eapoggirobereanl sh hill tty ptt agentur haan: ase ene tt 
feiieen conten agate Wet) 4 ste amin set 



19 

compositional characteristics to provide information involving their stratigraphic position 

and the stratigraphic behavior of surrounding strata. 

More recently, Armitage (2002) completed a thesis studying the sedimentology, 

ichnology, and allostratigraphy of the Falher “C” Member. He sub-divided the Falher C 

Member into four units, Cl to C4, through the recognition of key allostratigraphic 

surfaces. Facies associations FA2 and FA3, wave-dominated upper shoreface and 

foreshore and tidal inlet deposits respectively, were shown to contain facies successions 

of the greatest reservoir potential. Armitage et al. (2004) considered the facies 

distribution, stratigraphic occurrence, and paleogeographic extend of conglomeratic 

shorelines of the Falher “C’” Member. The reservoir quality coarse-grained sandstones 

and conglomerates, contained within their parasequences C2, were deposited along 

shorelines during a relative lowstand and a period of increased sediment supply coeval 

with a forced regression. Hobbs (2004) presents a studied on the along-strike variations 

of ichnological, sedimentological, and sequence stratigraphic characteristics of the upper 

Falher and the Notikewin Members. The influence of basement faulting and reef-induced 

topography on the formation of the Falher “F” conglomerate trend was address by 

Nodwell (2004) and Nodwell and Hart (2004, 2006). These authors hypothesized that the 

longshore extent, geographical location, and lithologic composition of the Falher “F” 

conglomerate trend is controlled by syn-depositional accommodation development and 

paleobathymetry. An enhanced shore-normal sorting processes influenced by a 

paleobathymetric feature resulting from differential compaction of the northern edge of 

the underlying Devonian Gold Creek reef trend was established in order to explain the 

Falher “E” conglomeratic trend. 
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Chapter 2: Facies Descriptions and Interpretations 

Detailed sedimentological and ichnological descriptions of 42 cores within the 

study area (Fig. 1.2) permits the subdivision of the Falher “D” into 15 facies. These 

facies are determined based upon recurring lithologies, physical and biogenic 

sedimentary structures, and ichnological characteristics. The facies are described in order 

of increasing (inferred) energy and/or grain size. Individual facies can be present within 

more than one depositional environment due to internal variability. These descriptions 

and interpretations provide the basis for recurring facies associations that are used for 

depositional modeling and mapping. 

(2.1) Facies la - Bioturbated Silt-rich Mudstone 

Physical Sedimentary Structures - Facies 1a contains siltstone, silty mudstone, and rare 

very fine-grained sandstone forming a wide variety of sedimentary structures. The most 

abundant structures include pin-striped planar parallel laminated to oscillation-rippled 

(i.e. combined flow ripples) siltstone beds generally not exceeding Scm in thickness. 

Combined flow ripples and climbing current-ripples are also common and may show 

minor rhythmic bedding. Some strongly current rippled siltstones and sandstones have 

erosional bases. Other prominent sedimentary structures include wavy through lenticular 

bedding, which generally contains abundant syneresis cracks and minor mudcracks (Fig. 

2.1b/c). Convolute laminations are locally abundant and deformation occurs in localized 

zones less than 10 cm in thickness (Fig. 2.1a). Organic-rich laminae and siderized 

intervals are common but not abundant. Rooted and coal-rich horizons are present 

locally and can be relatively abundant. 

Biogenic Sedimentary Structures - Facies 1a contains common bioturbation throughout 

and localized intervals that are completely reworked. Typical trace fossils within Facies 

la include Teichichnus (c-a), Planolites (c-m), Chondrites (c), Thalassinoides (ct), 

Diplocraterion (r-c), and Skolithos (r). Of these trace fossils Teichichnus, Planolites, and 

Chondrites burrows are the most common and are frequently found together. 

Teichichnus burrows appear in cross-section as a vertical series of concave-up crescentric 
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Facies 

la 

Lithology 

Bioturbated Silt- 

Rich Mudstone 

Physical 

Structures 

Planar to wavy 

lenticular siltstone 

laminae, current- 

rippled 

Biogenic 

Structures 
Pl(c), Te(c), 

Ch(c), Di(r), Th(r) 

pA 

Depositional 

Environment 
Lagoon, 

Interdistributary 
Bay 

Lagoon, 

Interdistributary 

Bay, Delta-Plain, 

Floodplain, Bay- 
Fill 

Fluvial Overbank 

Upper Offshore to 
Distal Lower 

Shoreface, 

Lagoon 

Prodelta to Distal 

Delta-Front, 

Lagoonal, Delta- 
Plain 

Distal to Proximal 

Lower Shoreface, 

Distal Delta-Front 

lb Unburrowed Silty | Planar to wavy Pl(r), Th(r), 
Mudstone and lenticular siltstone | Bivalve Shells(r) 
Massive Shale laminae, 

syneresis cracks, 
deformation, 

pyrite nodules 
2 Sandy Siltstone Massive, None 

convolute 
laminations, large 

angular mudstone 

rip-up clasts 

3a Bioturbated Planar/sub-planar | Th(c), Ch(m), 
Interbedded sandstone Pl,(m), Chic), 
Mudstone and laminations, Hm(r), Te(c), 
Very Fine-Grained | bioturbated Pa(c), Op(r), Di(r), 
Sandstone mudstone Rh(r), Sch(r), fu(c) 

3b Non-bioturbated Wavy to current- Pl(r),; Te(r) 
Interbedded rippled lenticular 
Mudstone and laminae, planar to 
Fine-Grained massive 
Sandstone mudstone, rare 

bioturbation 

4a Very Fine-Grained | Planar parallel to Pa(c),Paramac(c), 
Hummocky Cross- | sub-planar (HCS) | Op(r), Co(r), 
Stratified VWS sandstone, Sch(r), Di(r), 
Sandstone rare organic Te(r), Th(r), As(r), 
(HCS/SCS) laminae, rare thin | Cryptic (a) 

Cgl beds 
4b Sporadically Trough cross- Pa(m), Di(r), 

Bioturbated Very bedded, MS-WS, | Op(r), St 
Fine- to Fine- common pebble Co(r), Ra(r), fu(r), 
Grained Trough stringers, Sch(r), Th(r), 

Cross-Bedded common thin PS Ma(r) 

Sandstone |_Cgl beds 

Table 2.1 — Facies summary from Chapter Two. 

Distal to Proximal 

Upper Shoreface, 
Proximal Delta- 

Front 
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Facies Lithology Description Biogenic Depositional 

Structures Environment 
Very Fine- VWS-MS, massive | None Upper Shoreface 

Foreshore, Fluvial, 

Backshore 

Grained Planar to planar, rare 

Fluvial Channel Fill 

Laminated pebbles, upper 

Sandstone portions rooted 

Fine- to Coarse- | PS-WS, massive to 

Grained Trough | cross-bedded, 

Cross-bedded large angular mst 

and Planar rip-up clasts, coal 
Laminated lenses, fining- 

Sandstone upward trend 
Very Coarse- VWS, cL-vcU Reworked Delta- 

Grained planar to sub- Front, Foreshore, 

Sandstone planar sandstone, Upper Shoreface 
rare cross-beds 

Interbedded vfL-fU trough Upper Shoreface, 
Sandstone and cross-bedded Proximal Delta- 
Conglomerate sandstone, pebble Front, Delta-Plain, 

stringers, VPS-WS, Fluvial 

matrix-rich Cgl 

5 

6 

Unimodal Chert | VWS, no matrix, Reworked Delta- 

Granule granule - small Front/ Delta-Plain, 

massive, rare 

imbrication 

Conglomerate pebble, mostly Foreshore 

Bimodal Chert 
Conglomerate 

Bimodal, ~30% 

vfL-fU matrix, 1- 

2cm well rounded 

pebbles, massive 

to cross-bedded 

imbrication 

VPS-MS, ~35% 

vfU matrix, well 

rounded, massive 

to cross-bedded 

imbrication 

Thin planar 
siltstone laminae, 

rooted, coal lenses, 

pyrite nodules, 

deformed 

Upper Shoreface, 

Foreshore 

Proximal Delta- 

Front, Delta-Plain, 

Fluvial 

Polymodal Chert 
Conglomerate 

Coastal Plain, 

Floodplain, Swamp 
Pedogenic 
Alteration 

Organic-rich 
Shale with 

Interbedded 

Coal 

Table 2.1 — Facies summary from Chapter Two continued. 
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Fig. 2.1 - Selected examples from Facies 1a — Bioturbated Silt-rich Mudstone: (A) 

Convoluted silt-rich mudstone with Teichichnus (Te) and Chondrites (Ch) burrows (06- 

10-68-10W6, 2241.5m); (B) 2.5 cm thick siltstone bed with abundant desiccation cracks 

(MC) encased in a silt-rich mudstone containing common siderite-rich bands and 

Chondrites (Ch) burrows (07-14-68-13W6, 2506.7m); (C) Finely interlaminated siltstone 

and mudstone with common syneresis cracks (Syn) and Planolites (Pl) and Chondrites 

(Ch) burrows (07-01-68-12W6, 2430.7m); (D) Wavy current-rippled silt-rich mudstone 

with abundant Teichichnus (Te) burrows. This monospecific Teichichnus assemblage has 

completely reworked the upper 6 cm of this unit (06-10-68-10W6, 2247.7m). 
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laminae cross-cutting interbedded sand and shale beds (Pemberton et al., 2007). The 

burrow diameter tends to be less than | cm and the length is generally less than 10 cm in 

length. Planolites and Chondrites burrows are circular to elliptical in cross-section and 

are less than | cm and | mm in diameter respectively. Both vertical and horizontal 

burrows are common throughout. Ichnogenera are relatively small in size and generally 

have very low diversities. Intervals of abundant reworking by only one ichnofossil (e.g. 

Teichichnus) are abundant and represent the most common form of bioturbation. 

Therefore, even though trace fossil diversities tend to be very low, bioturbation intensities 

can be locally very high. 

Interpretation — The overall fine-grained nature of this facies indicates low-energy 

conditions (Pemberton and Wightman, 1992). Thin rippled siltstones and sandstones 

represent intermittent periods of weak wave and current activity in a generally quiet 

environment. These sedimentary structures indicate both common uni- and multi- 

directional flow. Uni-direction flow can occurs as a result of increased fluvial input, tidal 

activity, and storm surges. Multi-directional flow indicates weak wave influence within 

the quiet water sheltered conditions. Rare, however locally common, rhythmically 

bedded combined flow rippled siltstone units, indicates a weak tidal influence. The 

presence of syneresis cracks indicates frequent fluctuating salinity conditions, most likely 

resulting from large influxes of freshwater (Burst, 1965; Plummer and Gostin, 1981). 

Syneresis cracks are normally associated with siltstone and/or sandstone beds, and 

therefore and interpreted to be associated with the deposition of slightly coarser sediment 

(Pemberton and Wightman, 1992). The trace fossil assemblage is a low diversity mixed 

Skolithos-Cruziana ichnofacies (MacEachern and Pemberton, 1992). The presence of 

thoroughly reworked intervals by one ichnogenera indicates a stressful environment 

(Pemberton and Wightman, 1992). This assemblage likely indicates a shallow, subtidal 

environment and the relatively low ichnological diversity implies the environment was 

restricted (Ekdale et al, 1984; Beynon et al., 1988). This trace fossil suite represents an 

impoverished marine suite with no non-marine traces identified. Environment stresses, 

such as salinity, temperature, oxygen content, and turbidity, are a result of fluctuating 

environment conditions associated from variations in the amount of freshwater input 
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from rivers and run-off from land, rainfall, evaporation, tidal range and salinity of ocean, 

morphology of coastal areas, and differences in wind direction and velocity (Pemberton 

and Wightman, 1992). This ichnological suite is dominated by opportunistic (r-selected 

behavior) trophic generalists (Pemberton and Wightman, 1992) typical of an organism in 

a stressful environment. These characteristics are consistent with previously described 

brackish-water ichnological assemblages (e.g. Wightman et al., 1987; Beynon et al., 

1988; Beynon and Pemberton, 1992; Pemberton and Wightman, 1992; MacEachern, 

2000; Pemberton et al., 2001). Considering the sedimentological and ichnological 

information present above, Facies la is interpreted to represent localized backshore and 

interdistributary bay deposits including lagoonal, tidal flat, marsh, and protected bay 

environments (e.g. Pemberton and Wightman, 1992; Pemberton et al., 2001). Therefore, 

this facies potentially represents a wide variety of brackish-water depositional 

environment within the marginal marine realm. 

(2.2) Facies 1b - Unburrowed Silt-rich Mudstones 

Physical Sedimentary Structures - Facies 1b contains physical sedimentary structures 

very similar to Facies la, but is rarely burrowed. This facies also contains a higher 

proportion of massive mudstone and very rare oscillation-rippled siltstone (Fig. 2.2a). 

Wavy lenticular bedding is common in Facies 1b. Abundant syneresis cracks are 

commonly observed (Fig. 2.2d)._ Combined flow ripples and climbing current-rippled 

siltstones are very common within Facies 1b and also contain common micro faults Fig. 

2.2c). Rhythmic bedding is more common than with Facies la but still only rarely 

present. Soft sediment deformation is localized into 5-15 cm intervals. Intervals with 

massive mudstone contain pyrite-rich nodules and laminae, and siderite. Organic detritus 

is commonly associated with locally abundant rooted and coaly intervals. 

Biogenic Sedimentary Structures - This facies contains very little bioturbation, with only 

very rare Planolites and Thalassinoides present. Rare bivalve shells are also present 

within the muddiest intervals and are associated with the presence of pyrite nodules. 
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Fig. 2.2 - Selected examples from Facies 1b — Unburrowed Silt-rich Mudstone: (A) 

Nearly massive mudstone with siderite-rich laminations ranging in thickness from pin- 

striped to 1.5 cm (06-10-68-10W6, 2257.9m); (B) Planar laminated silt-rich mudstone 

with abundant pyrite-rich laminae and small pebbles (13-17-68-10W6, 2210.5m); (C) 

Combined flow ripples and climbing-ripples in a silt-rich mudstone. Current ripples 

appear bi-directional and regularly spaced indicating a tidal environment (06-10-68- 

10W6, 2249.5m); (D) Planar laminated and oscillation rippled silt-rich mudstone with 

abundant syneresis cracks (Syn) (06-10-68-10W6, 2240.7m). 
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Interpretation — As with Facies la, the overall fine-grained nature of the facies indicates 

low-energy conditions. The presence of uni-directional sedimentary structures, such as 

current-ripples and combined flow-ripples, indicate periodic current activity and the 

presence of rare oscillation ripples implies relatively weak wave activity. Climbing 

current ripples and soft sediment deformation indicate episodic increases in the rate of 

deposition (Bhattacharya and Walker, 1992). The restricted ichnological expression of 

Facies 1b indicates a relatively more stressful environment than Facies la (Pemberton 

and Wightman, 1992). This is likely due to extreme environmental stresses tied directly 

to salinity fluctuations as a result of increased fluvial input (Pemberton et al., 2001). 

Increased fluvial input would lead to an overall freshening of the water column with more 

numerous and greater salinity variations. Due to the sedimentological similarities with 

Facies la, this facies is interpreted to represent similar marginal-marine brackish-water 

environments. However, the reduced diversity and abundant of trace fossils indicates a 

highly stressful environment (Pemberton and Wightman, 1992; MacEachern, 2000; 

Pemberton et al., 2001; MacEachern et al., in press). Facies 1b is interpreted to represent 

primarily interdistributary bay-fills located within the delta plain, central bay-fill within 

sheltered lagoonal environments, and to a lesser extent floodplain depositional 

environment (Pemberton and Wightman, 1992; Reinson, 1992). 

(2.3) Facies 2 - Sandy Siltstone 

Physical Sedimentary Structures - Facies 2 is defined by massive siltstone and more 

rarely very fine lower to fine lower sandstone with interbedded organic-rich wavy to 

deformed mudstone beds (Fig. 2.3). Large angular mudstone clasts, 0.3 cm - 10 cm in 

size, are locally abundant and common within facies 2 (Fig. 2.3b/d). These mudstone 

clasts are generally massive, organic-rich, and deformed themselves. Soft sediment 

deformation is locally common and tends to be associated with intervals of pedogenic 

alteration (rooting). Siltstone and sandstone beds that are not massive or deformed 

generally include planar parallel to current-rippled laminations. Sandstone/siltstone dykes 

and coal lenses are rare to locally abundant. 
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Fig. 2.3 - Selected examples from Facies 2 — Sandy Siltstone: (A) Planar laminated to 

oscillation rippled muddy siltstone with minor soft sediment deformation and possible 

sandstone dyke (SD) (13-17-68-10W6, 2222.1m); (B) Massive sandy siltstone containing 

large organic-rich mudstone clast (13-17-68-10W6, 2218.8m); (C) Convoluted muddy 

siltstone with common coal lenses (06-21-67-10W6, 2461.6m); (D) Massive sandy 

siltstone with abundant angular mudstone clasts ranging in size from 0.5cm to greater 

than 6 cm in diameter. This is interpreted to represent bank collapse associated with 

fluvial channels (13-17-68-10W6, 2220.6m). 
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Biogenic Sedimentary Structures - Facies 2 is not bioturbated but does contain abundant 

rooting, which leads to pervasive pedogenic alteration. 

Interpretation - This facies is interpreted to represent proximal fluvial overbank deposits 

within the upper delta plain and coastal plain (Bhattacharya and Walker, 1991; 

MacEachern, 2000). This interpretation is supported by the lack of bioturbation, which 

indicates freshwater conditions, and by its close association with sandy fluvial channel- 

fill deposits (Facies 5). The massive siltstone beds with abundant large angular mudstone 

clasts are interpreted to be the result of bank collapse within the channel margins. 

Penecontemporaneous soft sediment deformation is common and forms as a result of 

pedogenic alteration (Wadsworth et al., 2003). Although not volumetrically significant, 

this facies generally indicates the presences of large fluvial channels in the vicinity. 

(2.4) Facies 3a - Bioturbated Interbedded Mudstone and Fine-grained Sandstone 

Physical Sedimentary Structures - Facies3a consists of interbedded very fine-grained 

sandstone and silty mudstone (Fig. 2.4a). This facies is present within two very distinct 

depositional environments and therefore contains very different sedimentary structures. 

The most distal expression of facies 3a consists of sharp erosionally based sub-planar to 

planar parallel laminated sandstones. These sandstone beds generally increase in 

thickness upward from roughly 3 cm until there are no intervening mudstone beds, 

thereby grading into facies 4a. These structures are interpreted as hummocky cross- 

stratification (HCS) formed during storm deposition (Harms et al., 1975; Walker et al., 

1983; Arnott and Southard, 1990). Rare mudstone rip-up clasts and organic-rich 

laminations are locally abundant. The mudstones contain thin planar to wavy, and rare 

lenticular, sandstone laminae. Siderite is locally common and forms 1-3 cm bands as 

well as large clasts (Fig. 2.5). Sedimentary structures are generally difficult to observe 

within the muddier intervals due to the high degree of biogenic reworking. 

The proximal expression of facies 3a comprises of a sandy version of facies la 

and shares many of the same characteristics (Fig. 2.4d). Combined flow ripples and 

planar laminations are common in the sandstone beds. The interbedded silt-rich 

mudstones are generally planar laminated however combined flow ripples as also 
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Fig. 2.4 - Selected examples from Facies 3a — Bioturbated Interbedded Mudstone 

and Fine-grained Sandstone (non-deltaic): (A) Planar laminated muddy sandstone 

containing Teichichnus and Cylindrichnus burrows interpreted to be present within the 

distal lower shoreface (10-31-68-10W6, 2166.0m); (B) Plan view of bedding surface 

containing greater than 20 vertical sand-filled Diplocraterion burrows (06-25-68-11W6, 

2209.8m); (C) Diplocraterion, Planolites, and Chondrites burrows in a moderately 

bioturbated interbedded mudstone and sandstone (06-19-68-12W6, 2433.6m); (D) Finely 

interlaminated mudstone and sandstone with common soft sediment deformation and rare 

Chondrites burrows (07-26-69-09W6, 1879.9m); (B-D) Interpreted to have formed 

within a lagoonal brackish-water environment. 
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Fig. 2.5 - Selected examples from Facies 3a — Bioturbated Interbedded Mudstone 

and Fine-grained Sandstone (deltaic influenced): (A) Planar laminated and oscillation 

rippled muddy sandstone with Teichichnus burrows and siderite-rich beds (07-26-69- 

09W6, 1888.5m); (B) Oscillation-rippled interbedded mudstone and sandstone with rare 

Thalassinoides burrows (07-26-69-09W6, 1899.8m); (C) Interbedded mudstone and 

sandstone with minor siderite clasts and bioturbation including Teichichnus, Planolites, 

and unidentified vertical mud filled burrows (07-26-69-09W6, 1886.3m); (D) 

Interbedded oscillation rippled mudstone and sandstone containing soft sediment 

deformation and minor bioturbation including Teichichnus, Planolites, Palaeophycus, 

and Chondrites (07-26-69-09W6, 1894.7m); (A-D) Interpreted to have formed within the 

distal delta front due to the increased amount of mud and silt, presence of convolute 

bedding, and overall stressed ichnological suite. 
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common. They contain common syneresis cracks as well as locally abundant rooting and 

micro faulting. Soft sediment deformation is also present however not abundant. 

Biogenic Sedimentary Structures - There are two distinct ichnological assemblages 

present within facies 3a that correspond to the two distinct depositional environments 

present within this facies. The first assemblage is present within the HCS sandstones and 

intervening mudstones and includes Planolites (m), Chondrites (c), Helminthopsis (c), 

Thalassinoides (r), Palaeophycus (c), Schaubcylindrichnus (r), Diplocraterion (tr), 

Teichichnus (rt), Ophiomorpha (r), and fugichnia (c). Muddy sandstones are typically 

intensely burrowed with the greatest diversity of trace fossils. Thicker laminated 

sandstones tend to be unburrowed or weakly burrowed. However, bioturbation intensity 

and diversity can be highly variable. Overall, this suite represents the fully marine 

proximal Cruziana ichnofacies (MacEachern and Pemberton, 1992). 

The second assemblage observed within facies 3a consists of Planolites (c), 

Chondrites (c), Thalassinoides (1), Teichichnus (m), and Diplocraterion (r). Ichnogenera 

tend to be relatively small in size and generally have very low diversities (Fig. 2.4c). 

Ichnological suites tend to be dominated by single form as illustrated by monospecific 

Teichichnus and Diplocraterion assemblages (Fig. 2.4b). This suite represents a low- 

diversity stressed Cruziana ichnofacies similar to that of Facies la (Pemberton and 

Wightman, 1992). 

Interpretation — Interbedded HCS sandstones and thoroughly bioturbated mudstones are 

typical of the distal lower shoreface (MacEachern and Pemberton, 1992). This 

interpretation is supported by the presence of a relatively diverse proximal Cruziana 

assemblage (MacEachern and Pemberton, 1992; Pemberton et al., 1992e; Pemberton et 

al., 2001). The distal lower shoreface lies just above fair-weather wave base. The 

presence of thick storm amalgamated HCS sandstones indicates a strongly storm- 

dominated environment (Harms et al., 1975; Walker et al., 1983; MacEachern and 

Pemberton, 1992; Walker and Plint, 1992; Saunders et al., 1994). Within this 

environment two very different sets of depositional processes are at work at any given 

time. The first is high-energy storm deposition. High-energy storms, such as hurricanes, 
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result in the basinward movement of large quantities of sand and mud (Reading, 1989; 

Walker and Plint, 1992). These storms also typically result in the erosion of previously 

deposited fair-weather sediments. Thick sharp-based HCS sandstone beds are the 

recognized product of such storm deposition (Leckie and Walker, 1982; Walker et al., 

1983; Walker and Plint, 1992). Post-storm biological reworking occurs as opportunistic 

organisms exploit the newly deposited sand and mud (MacEachern and Pemberton, 

1992). In shallower water, a greater number of storms, which are more powerful, result 

in the amalgamation of storm beds leaving no preserved record of fair-weather conditions 

(Facies 4a). The second set of sedimentary processes are coupled to fair-weather or inter- 

storm sedimentation. This consists of mostly mud deposition from post-storm suspension 

fall-out and under oscillatory wave action (fair-weather waves) (MacEachern and 

Pemberton, 1992). Under these conditions bioturbation tends to be intense due to the 

replacement of opportunistic communities by deposit-feeding organisms from an 

equilibrium community better suited to the ambient environmental conditions (Pemberton 

et al., 1992c; Pemberton and MacEachern, 1997; MacEachern et al., 2005). The 

interbedding of the fair-weather bioturbated mudstones (“scram”) and the generally non- 

bioturbated HCS sandstones (“lam’’) 1s referred to as “lam-scram” (Pemberton et al., 

1992c). In the case of the Falher D Member, pervasively bioturbated mudstones are not 

generally visible due to the fact that most cored intervals contain no deposits interpreted 

to have accumulated below storm wave base. 

This facies contains a second ichnological assemblage consisting of relatively 

smaller traces with a low-diversity stressed Cruziana suite (Pemberton and Wightman, 

1992). Sedimentary structures associated with this trace fossil assemblage include 

syneresis cracks, combined flow ripples, soft sediment deformation, and rare rooting. 

The ichnology and sedimentary structures are consistent with the brackish-water 

environment described in Facies la (Pemberton and Wightman, 1992). The brackish- 

water deposits of Facies 3a are a sandier version of Facies la and share a number of 

characteristics. Hence they will not be described again. 
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(2.5) Facies 3b - Non-bioturbated Interbedded Mudstone and Fine-grained 

Sandstone 

Physical Sedimentary Structures - Facies 3b consists of interbedded very fine-grained 

sandstone and non-bioturbated silt-rich mudstone. This facies contains a number of 

characteristics similar to those of Facies 3a. Facies 3b is different from Facies 3a only in 

the amount and type of bioturbation, which will be described below, and the relative 

proportion of mudstone. The most common sedimentary structures include current- 

rippled and planar parallel laminations with lesser amounts of lenticular bedding and 

oscillation-ripples (Fig. 2.6b-d). Deformation is also very common, affecting 2 cm to 20 

cm thick intervals (Fig. 2.6d). The very fine-grained sandstones also contain common 

organic-rich laminae as well as rare mudstone rip-up clasts. Oscillation-rippled to planar 

laminated mudstone comprise a much greater proportion of Facies 3b than Facies 3a. 

These mudstone beds also contain common siderite-rich intervals 1-4 cm in thickness. 

Biogenic Sedimentary Structures - This facies contains very little bioturbation, with only 

very rare Planolites, Thalassinoides, and Teichichnus burrows present. Biogenic 

reworking 1s generally confined to the muddier intervals. However, most mudstone beds 

tend to be non-bioturbated. The thicker sandstone beds may contain rare cryptic 

bioturbation. 

Interpretation — The increased concentration of organic-rich laminae, mudstone rip-up 

clasts, siderite, syneresis cracks, presence of locally common soft sediment deformation, 

and reduced diversity and intensity of bioturbation indicate a deltaic setting (Reading, 

1989; Bhattacharya and Walker, 1991; Bhattacharya and Walker, 1992; MacEachern and 

Pemberton, 1992; Gingras et al., 1998, Coates and MacEachern, 1999; Coates and 

MacEachern, in press). Silty convoluted mudstones tend to be nearly unique to deltaic 

successions and are related to high sedimentation rates (e.g. Bhattacharya and Walker, 

1992; Coates and MacEachern, in press). Organic-rich laminae may represent 

“phytodetrital pluses” associated with increased river discharge accompanying storm 

events (Raychaudhuri and Pemberton, 1992; MacEachern 1994; Saunders et al., 1994). 

Syneresis cracks represent salinity fluctuations most likely related to fresh-water input 
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Fig. 2.6 - Selected examples from Facies 3b — Non-bioturbated Interbedded 

Mudstone and Fine-grained Sandstone: (A) Current and oscillation rippled mudstone 

and sandstone interpreted to have formed in a lagoonal brackish-water environment (15- 

21-68-08W6, 2052.3m); (B) Planar laminated and oscillation rippled mudstone and 

sandstone with common siderite-rich beds (07-26-69-09W6, 1894.0m); (C) Massive to 

planar laminated muddy sandstone with siderite-rich beds, minor soft sediment 

deformation, and small angular mudstone rip-up clasts (07-26-69-09W6, 1895.3m); (D) 

Strongly convoluted sandstone and mudstone unit (07-26-69-09W6, 1891.4m); (B-D) 

Interpreted to have formed within the distal delta front due to the increased mud content 

as well as the lack of bioturbation. 



; pe 

seme or rie sothiliatian heute a 

urviatell cnn beoeygi 1M | r lene ORA ‘alll 

20 amamtnayy tn4 th Tn aw . 

hea onli bani nly 

cimeeh nlal os a i aon er 
baaelipes ee wait saiesh foe awe 4 i il Vin a on oe 

MR) ch 2or AM IE TOS geo a atl tas Wot, TLE , Se 

oe Tt kee ag rane 
oo! — 

imation’ baager beseech’ aft. aaa 



4] 

esearch 

aes BAAS 





42 

from river discharge (Pemberton and Wightman, 1992). The extreme reduction of the 

intensity and diversity of bioturbation is likely due to extreme environmental stresses, 

tied directly to salinity fluctuations as a result of freshwater input (MacEachern et al., 

2005; Coates and MacEachern, in press). This will produce thin non-bioturbated 

mudstone beds, which would in a normal shoreface environment, be moderately to 

extensively bioturbated. The complete lack of suspension-feeding structures in the 

sandier intervals is also marked departure from non-deltaic successions. This is 

especially true for the distal and proximal delta front environments. This is a result of 

high-suspended loads in the water column near the bed associated with high water 

turbidity (Gingras et al., 1998; Coates and MacEachern, in press). Fluvial point sources 

will also supply large quantities of sand and mud to the system. Therefore thicker sand 

and mud accumulations can be tentively associated with deltaic systems. In general, 

most sedimentological and ichnological differences between Facies 3a (non-deltaic) and 

Facies 3b (deltaic) are tied directly to fluvial influence. A proximal prodelta to very 

distal delta front environment 1s selected for Facies 3b. This is roughly equivalent along- 

strike to the distal lower shoreface deposits of Facies 3a. Therefore, Facies 3b is 

interpreted to be the deltaic equivalent of Facies 3a. 

This facies is also formed within proximal brackish-water lagoonal and delta plain 

environments. This would correspond to a sandier version of Facies 1b. Since these 

environments are described in detail within other facies descriptions (i.e. Facies la and 

1b), they are not discussed again. 

(2.6) Facies 4a - Very fine-grained Hummocky Cross Stratified Sandstone 

(HCS/SCS) 

Physical Sedimentary Structures - Facies 4a is defined by planar to sub-planar (less than 

10 degrees) parallel laminated very fine-grained sandstone (Fig. 2.7). This stratification 

forms low angle, convex up and down curvilinear laminations in 10 cm - 50 cm thick 

beds, which tend to have basal erosional surfaces. This is interpreted to represent 

hummocky cross stratification (HCS) and in the case of only convex downward 

laminations swaley cross-stratification (SCS) (Harms et al., 1975; Leckie and Walker, 

1982: Walker and Plint, 1992). In most cases these structures are only visible as sub- 
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Fig. 2.7 - Selected examples of physical sedimentary structures from Facies 4a — 

Very fine-grained Hummocky Cross Stratified Sandstone (HCS/SCS): (A) 

Cryptically bioturbated hummocky cross-stratified very fine-grained sandstone. Surfaces 

illustrating truncation are shown with a dashed line (09-16-68-10W6, 2207.0m); (B) 

Organic detritus concentrated along 1-3 cm bands within a massive to weakly sub-planar 

laminated sandstone. Thalassinoides burrow and possible cryptic bioturbation also 

present (06-15-68-11W6, 2327.1m); (C) Thin 0.5-3 cm thick poorly sorted conglomerate 

beds sharply overlying sub-planar laminated (HCS) sandstone (10-31-68-10W6, 

2171.8m); (D) Cryptically bioturbated swaley cross-stratified sandstone. Surfaces 

illustrating truncation are shown with a dashed line and arrows (14-09-68-09W6, 

2278.9m). 
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planar laminations that change angle abruptly. These sandstones tend to be very well 

sorted with only very rare randomly dispersed pebbles. Cross-bedded sandstones are 

rarely interbedded with erosionally based thin poorly sorted conglomerate beds. Thin 

mudstone and organic-rich laminae, mudstone rip-up clasts, and wood fragments are 

uncommon but locally abundant (Fig. 2.7c). Other less common sedimentary structures 

include oscillation ripples, massive bedding, combined flow-ripples, and planar parallel 

laminations (not interpreted as HCS/SCS). This facies contains very little mudstone and 

any that is present occurs near the base of this facies where overlying Facies 3a/3b. 

Overall facies 4a forms a coarsening upward succession with increasing conglomerate 

and pebbles upward as well as increasing storm amalgamation. 

Biogenic Sedimentary Structures - Bioturbation within this facies is extremely variable in 

diversity and intensity (Fig. 2.8). A typical assemblage includes cryptic bioturbation (m- 

a), Para-Macaronichnus (c-m), Macaronichnus segregatis (c), Palaeophycus (c), 

Macaronichnus simplicatus (t), Ophiomorpha (1), Conichnus (1), Schaubcylindrichnus (r- 

c), Teichichnus (r), Diplocraterion (r), Thalassinoides (r), Asterosoma (r), and fugichnia 

(r). This trace fossil suite represents a mixed Skolithos-Cruziana ichnofacies, reflecting a 

mix of suspension-feeding and deposit-feeding structures (MacEachern and Pemberton, 

1992). Trace fossils are commonly preserved along 3 cm - 15 cm intervals where 

subsequent storm event bed deposition has not resulted in complete erosion. This results 

in a sandy version of “lam-scram”, as discussed above, with very little “scram” (1.e. 

bioturbation) (Pemberton et al., 1992c). 

Interpretation - Facies 4a is dominated by amalgamated HCS/SCS storm beds preserved 

within the lower and middle shoreface and equivalent distal to proximal delta front 

(MacEachern and Pemberton, 1992; Pemberton et al., 1992c; Walker and Plint, 1992). 

Frequent storm deposition has eroded most fair-weather or inter-storm deposits in this 

facies due to the shallow water depths and abundance of high-energy storms (Saunders et 

al., 1994). Under these conditions it is theorized that only deeply penetrating burrows 

would survive erosion. This may explain the lack of a typical shoreface assemblage. The 
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Fig. 2.8 - Selected examples of bioturbation from Facies 4a — Very fine-grained 

Hummocky Cross Stratified Sandstone (HCS/SCS): (A) Paramacaronichnus, 

Palaeophycus, Teichichnus, and Schaubcylindrichnus burrows (09-16-68-10W6, 

2208.3m); (B) Large Schaubcylindrichnus burrows within a planar to sub-planar 

laminated sandstone with small mudstone rip-up clasts near the base (06-25-68-11W6, 

2222.0m); (C) Siderized Ophiomorpha burrows within a massive to completely 

bioturbated sandstone. Possible Palaeophycus and Paramacaronichnus burrows are also 

present (06-25-68-11W6, 2221.6m); (D) Large 12-15 cm long Conichnus burrow is 

shown with the dashed line (06-15-68-11W6, 2331.7m); (E) Pervasively bioturbated 

sandstone including Conichnus, Paramacaronichnus, and Palaeophycus burrows. (?) 

Macaronichnus burrows are also present (14-31-67-08W6, 2315.5m). 
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abundance of Para-Macaronichnus may be due to an increased burrow depth or possibly 

do to preservation potential (i.e. presence of a “burrowed zone” as discussed below). 

Storm influence becomes most prominent in the most proximal expressions of this 

facies where storm amalgamated SCS beds dominate (Leckie and Walker, 1982). This 

produces a conundrum due to the fact that the greatest inter-storm preservation occurs as 

thinly bioturbated intervals of Para-Macaronichnus, Palaeophycus, and Macaronichnus 

segregatis near the top of the storm amalgamated zone. One would expect this zone to 

contain a very low preservation potential, however this is not the case. This is consistent 

with the “burrowed zone” described by Saunders et al., 1994 with one notable 

discrepancy. The “burrowed zone” in the Falher D member contains no Rosselia. The 

authors gave two possible contributing factors to this zones preservation; (1) A flat 

shoreface gradient and the formation of several storm-built bars protected the “burrowed 

zone” from the erosion energy of storms; (2) Rapid accretion of landward adjacent bars 

buried the inter-storm beds before the next storm occurred (Saunders et al., 1994). This 

hypothesis is supported by the fact that the internal stratification of Facies 4a within the 

“burrowed zone” is either planar laminated or weakly oscillation-rippled and is not 

interpreted as HCS/SCS. The presence of Macaronichnus within the lower shoreface is 

most likely the result of an “oxygen window” that occurs as a post-storm phenomena 

(Saunders et al., 1989; Pemberton et al., 2001). Within the foreshore, where the presence 

of Macaronichnus is most recognized, oxygenated surface waters circulate several meters 

into the substrate, carrying with it considerable volumes of organic-matter (Pemberton et 

al., 2001). These conditions produce a stable environment with an abundant food supply, 

well below the zone of surface wave influence. This scenario may also be present with 

the lower shoreface of highly wave-dominated shorelines as well. Another possible 

explanation is that the trace-making organism may be exploiting a zone of nutrient 

convergence, with nutrients being supplied from both the landward and seaward sides 

(Saunders et al., 1994). What is clear is that Macaronichnus is present not only in the 

foreshore but the upper and proximal lower shoreface as well. 
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Discussion: Para-Macaronichnus 

Para-Macaronichnus is the most common trace fossil present in Facies 4a and 

represents a trace that shares characteristics similar to that of Palaeophycus and 

Macaronichnus segregatis (Fig. 2.9). It should be noted that the trace fossil referred to as 

Para-Macaronichnus in this thesis has been referred to as Macaronichnus simplicatus is 

most publications. Saunders et al., 1994 described a form of Macaronichnus, similar to 

what I am referring to as Para-Macaronichnus, in the Cadotte Member as “commonly 

taking on unusually large (>1 cm) and heavily mantled proportions”. Para- 

Macaronichnus forms 5 to 15 mm wide, 3 to 8 mm high circular shaped horizontal to 

sub-horizontal (less than 15 degrees) unlined burrows. Burrows display minor grain 

segregation, far less than typical Macaronichnus segregatis burrows, with a concentration 

of dark mafic grains around the burrow margin. Comparisons between burrowed and un- 

burrowed sediment show a slightly increased concentration of quartz within the burrow. 

Burrows generally tend to form in clusters of 2 to 5 individuals burrows with multiple 

burrows close or interpenetrating. When observed in plan view the burrows appear to be 

branching and commonly cross-cut older burrows. The clustered nature and close 

proximity of other burrows supports the proposed branching behavior. Para- 

Macaronichnus burrows are generally closely associated with Macaronichnus segregatis. 

These two trace fossils are commonly observed together. Within bioturbated intervals 

where both ichnogenera are present, Macaronichnus segregatis tends to decrease 

upwards with the highest concentrations occurring near the base, while Para- 

Macaronichnus burrows tend to increase upwards with the highest concentrations 

occurring near the top (Fig. 2.9c). In these cases, the lower 2 to 5 cm of a bed tend to 

have no Para-Macaronichnus burrows and the upper 5 to 10 cm tend to have greatly 

reduced to no Macaronichnus segregatis burrows. 

As previously stated, Para-Macaronichnus shares a number of similarities with 

both Palaeophycus and Macaronichnus segregatis (Fig. 2.10). The branching behavior 

and size of the burrows are characteristic of Palaeophycus burrows (Pemberton et al., 

2007). However, the large number of burrows present within a given interval, the lack of 

a mucus lining, and grain segregation are characteristics not present with typical 

Palaeophycus burrows (Pemberton et al., 2001). The grain segregation and mantling of 
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Fig. 2.9 - Selected examples of Para-Macaronichnus from Facies 4a and Facies 4b: 

(A) Plan view of bedding plane illustrating possible branching behavior (shown with 

black arrows) of Para-Macaronichnus burrows (06-13-68-11W6, 2280.5m); (B) 

Macaronichnus and Para-Macaronichnus burrows tend to be associated with the 

Macaronichnus burrows transitioning upwards into Para-Macaronichnus burrows (06-15- 

68-11W6, 2330.0m); (C) Abundant Macaronichnus burrows in the lower half of the 

photo with abundant Para-Macaronichnus and possible Palaeophycus burrows in the 

upper half. Some of the Para-macaronichnus burrows appear to be siderized (06-15-68- 

11W6, 2328.7m); (D) Macaronichnus burrows and cryptic bioturbation within the lower 

shoreface (14-3 1-67-08W6, 2317.8m). 
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Composite Burrow System 
Palaeophycus - Paramacaronichnus 
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Fig. 2.10 - Idealized sketch of a Palaeophycus - Para-Macaronichnus burrow 

system (Drawn by Tom Saunders). 
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burrows with mafic grains as well as the large number of burrows present are 

characteristics shared by Macaronichnus segregatis (Clifton and Thompson, 1978; 

Saunders, 1989; Pemberton et al., 2001). However, Macaronichnus burrows do not 

display branching geometries and grain segregation is much lower than one would expect 

within a typical burrow network (Fig. 2.9a). It is theorized that both traces are produced 

by the same organism, most likely some form of polychaete. In this instance the 

Macaronichnus segregatis burrows would be produced by the juvenile forms of the 

species, while the adult forms would produce the much larger Para-Macaronichnus 

burrows (Personal communication Tom Saunders, 2007). This would explain the close 

association between the two ichnogenera as well as the size differences. The reduced 

grain segregation in Para-Macaronichnus burrows may be a function of increased 

efficiency with age (Personal communication Tom Saunders, 2007). 

(2.7) Facies 4b — Sporadically Bioturbated Very fine- to fine-grained Trough Cross- 

bedded Sandstone 

Physical Sedimentary Structures - Facies 4b contains very fine upper to fine lower trough 

cross-bedded sandstone with common to abundant dispersed pebbles (Fig. 2.11). The 

grain size and the occurrence of pebbles increase upwards. Trough cross-stratified beds, 

generally 3 cm - 10 cm thick, reflect migration of subaqueous 3-dimensional dunes. 

Most beds are sharp-based and display significant erosion. This results in the formation 

of erosionally amalgamated beds with cross-bedding oriented in multiple directions. 

Interbedded medium to coarse sand stringers and thin conglomerate beds are common 

and generally increase upward. Sorting of the sandstones generally varies from 

moderately to poorly sorted and most clasts are subrounded to rounded. Organic detritus, 

coal fragments, and wood fragments are all locally common and found along bedding 

planes. Oscillation-rippled sandstones are rare and decrease upwards. Intervals of planar 

to sub-planar parallel laminations are common and tend to be found near the top of the 

facies. Current-rippled sandstones are locally common. 

Biogenic Sedimentary Structures - Bioturbation in facies 4b is sporadically distributed 

and contains low diversities of ichnogenera (Fig. 2.12). Typical biogenic sedimentary 
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Fig. 2.11 - Selected examples of physical sedimentary structures from Facies 4b — 

Sporadically Bioturbated Very fine- to fine-grained Trough Cross-bedded 

Sandstone: (A) Trough cross-bedded sandstone containing Para-Macaronichnus burrows 

overlain by a moderately sorted conglomerate (09-02-68-13W6, 2588.1m); (B) Pebbly 

trough cross-bedded sandstone with medium-grained sand to pebble sized stringers (01- 

10-68-09W6, 2242.8m); (C) Planar laminated to cross-bedded fine- to medium-grained 

sandstone (01-10-68-09W6, 2244.7m); (D) Fine-grained trough cross-bedded sandstone 

with large randomly dispersed pebbles and a 2 cm thick sharp-based normally graded 

conglomerate bed (1 1-07-68-12W6, 2505.5m). 
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Fig. 2.12 - Selected examples of bioturbation from Facies 4b — Sporadically 

Bioturbated Very fine- to fine-grained Trough Cross-bedded Sandstone: (A) 

Pervasively bioturbated very fine-grained sandstone containing abundant Macaronichnus 

burrows. Rare organic-rich mudstone clasts are also present (09-02-68-13W6, 2588.5m); 

(B) Abundant Macaronichnus and Para-Macaronichnus burrows within a fine-grained 

sandstone. Rare organic-rich mudstone clasts and pebbles are also present (11-07-68- 

12W6, 2508.6m); (C) Pervasively bioturbated sandstone containing large Para- 

Macaronichnus and small Diplocraterion burrows sharply overlain by a planar laminated 

very fine-grained sandstone (06-25-68-11W6, 2218.0m); (D) Multiple vertical 

Diplocraterion burrows within a pebbly fine-grained sandstone (14-09-68-09W6, 

2270.6m). 
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structures present include cryptic bioturbation (r-c), Palaeophycus (c), Ophiomorpha (rt), 

Macaronichnus simplicatus (r), Para-Macaronichnus (a), Diplocraterion (r), Skolithos (r), 

Conichnus (r), and fugichnia (r). Para-Macaronichnus is the most abundant trace fossil 

present within Facies 4b. This trace fossil is normally found within the lower sections of 

the facies near the contact with Facies 4a. Other common traces include Palaeophycus 

and Ophiomorpha. This trace fossil suite represents a low diversity expression of the 

Skolithos ichnofacies (Fig. 3.1) (MacEachern and Pemberton, 1992). 

Interpretation — Abundant multidirectional trough cross bedding and the overall 

coarsening upward nature indicate a typical upper shoreface environment and/or wave- 

dominated proximal delta front. The trough cross-stratification within this facies is a 

result of current-generated migrating subaqueous dunes generally found within the surf 

zone (Reineck and Singh, 1980; Elliott, 1989). These features are formed by wave- 

forced currents directed onshore and along shore (Boggs, 2001). The presence of low- 

angle bidirectional cross-beds may indicate deposition under strong longshore currents 

(Reinson, 1992). Evidence of high-energy storm events is mostly erosional and is 

characterized by sharp-based well to poorly sorted conglomerate beds (Walker and Plint, 

1992; MacEachern, 2000). The coarse nature of the sediment as well as the low diversity 

Skolithos ichnofacies also indicates a high-energy environment (MacEachern and 

Pemberton, 1992; Walker and Plint, 1992). Suspension-feeding, dwelling and passive 

carnivore structures are all common and result from a rapidly shifting sandy substrate, 

high-energy nature of environment, and fact that most food would be kept in suspension 

(MacEachern, 2000; Pemberton et al., 2001). The low intensity, diversity, and sporadic 

distribution of bioturbation also support the interpretation of a high-energy environment. 

The specialized feeding strategy of Para-Macaronichnus and Macaronichnus that occurs 

below the sediment-water interface protects these organisms and increases their 

preservation potential. Other common traces include Pa/aeophycus and Ophiomorpha, 

both of which stabilize their burrows by lining their walls with fecal pellets or mucus. 

Most traces are dominated by heavily lined, vertical, and deeply penetrating burrows in 

order to cope with the high-energy setting. 
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Increased concentrations and thicknesses of conglomeratic material indicate 

proximity to a deltaic point source as well as fluvial input (Bhattacharya and Walker, 

1992). The proximal delta front tends to be largely similar to the upper shoreface and is 

dominated by trough cross-stratified and current rippled sandstones. Storm events result 

in erosional surfaces and also transport conglomeratic material from the foreshore into 

the shoreface. Delta front deposits tend to have relatively lower concentrations of 

suspension feeding structures (Gingras et al., 1998; Coates, 2001; MacEachern et al., 

2005). This is attributed mainly to high water turbidity and possible post-storm mud 

deposition resulting from fluvial input (MacEachern, 2000; Coates and MacEachern, in 

press). However, it is generally difficult to distinguish between storm-dominated upper 

shoreface and a wave-dominated proximal delta front (Elliott, 1989; Bhattacharya and 

Walker, 1992; MacEachern, 2000). Differentiating deltaic and strandplain environments 

will be discussed in greater detail in Chapter Three. 

(2.8) Facies 4c - Very fine-grained Planar Laminated Sandstone 

Physical Sedimentary Structures — Facies 4c consists of very fine-grained, with rare 

medium to coarse, sandstones (Fig. 2.13). These sandstones are either poorly to 

moderately sorted or very well sorted. The dominant stratification types include planar 

parallel to low angle laminations and less commonly massive, apparently structureless, 

intervals. Locally abundant organic-rich and heavy mineral laminations are common. 

The uppermost sections of Facies 4c are generally rooted and contain abundant coal 

lenses and organic detritus. Soft sediment deformation and angular mudstone rip-up 

clasts are only locally abundant and are characteristic of the fine to medium grained 

poorly to moderately sorted sandstones. 

Biogenic Sedimentary Structures - This facies is generally not bioturbated with the 

exception of rare intervals of Macaronichnus segregatis (r) and cryptic bioturbation (r-c). 

Interpretation — This facies occurs in a number of different depositional environments. 

The planar to low angle lamination is characteristic of the upper flow regime and may be 

associated with shallow surging waters of the foreshore (Reineck and Singh, 1980; 
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Fig. 2.13 - Selected examples from Facies 4c — Very fine-grained Planar Laminated 

Sandstone: (A) Fine-grained planar laminated sandstone interpreted to have formed 

within a fluvial channel (06-10-68-10W6, 2251.5m); (B) Planar to sub-planar laminated 

sandstone with pebble stringers (06-13-68-11W6, 2279.7m); (C) Cryptically bioturbated 

planar laminated sandstone (06-30-69-13W6, 2371.4m); (D) Planar laminated sandstone 

sharply overlain by a well sorted conglomerate bed (06-25-68-11W6, 2214.3m); (B-D) 

Interpreted to have formed within a high-energy foreshore environment. 
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Elliott, 1989). Very well sorted sandstones are also characteristic of high-energy 

foreshore deposits. This beach environment occurs between high and low tide and is 

dominated by swash and backwash, which generates seaward dipping low angle 

laminations (Reading, 1989). Thin lenticular sets of low-angle laminae may be formed 

from antidune migration during backswash (Boggs, 2001). Rare horizons of locally 

abundant Macaronichnus segregatis occur within the foreshore. This represents a 

selective deposit feeding behavior below the sediment-water interface and is typical of 

very high-energy environments (Pemberton, 2001). This is consistent with previous 

interpretations (Clifton & Thompson 1978, Saunders et al., 1994 and Pemberton et al., 

2002). 

The planar to low angle laminated poorly to moderately sorted sandstones occur 

within the backshore environment. The horizontal laminations are a product of surging 

waves during unusually high water conditions (Reineck and Singh, 1980). Intermittent 

storm-wave deposition and eolian sand transport are the dominant processes affecting the 

backshore (Boggs, 2001). Heavy mineral placers are common and result from the 

relative sorting by water during storms (Reineck and Singh, 1980). Root traces are 

locally common and may extend down into the underlying foreshore deposits. The planar 

laminated to massively bedded sandstone with common mudstone rip-up clasts and soft 

sediment deformation is generally found within fluvial channel fill deposits (Elliott, 

1989). These deposits are generally associated with the fining-upward sandstones from 

Facies 5. 

(2.9) Facies 5 - Fine- to Coarse-grained Trough Cross-bedded and Planar 

Laminated Sandstone 

Physical Sedimentary Structures — Facies 5 forms a fining-upwards succession of very 

fine- to coarse-grained sandstone with rare pebble sized grains (Fig. 2.14). Grain sizes 

most commonly only range from fine- to medium-grained and are poorly to moderately 

sorted. The typical internal stratification types include abundant trough cross-bedding 

and planar parallel laminations. Apparently massively bedded intervals containing 

numerous large angular mudstone rip-up clasts are also quite common (Fig. 2.14b). The 

mudstone rip-up clasts range in size from 0.5 cm to greater than 10 cm and are elongated. 
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Fig. 2.14 - Selected examples from Facies 5 - Fine- to Coarse-grained Trough Cross- 

bedded and Planar Laminated Sandstone: (A) Massive to weakly cross-bedded fine- 

to medium-grained sandstone containing abundant coal lenses and organic-rich mudstone 

clasts (09-16-68-10W6, 2211.0m); (B) Massive fine- to coarse-grained sandstone with 

large angular mudstone rip-up clasts. Some of the larger mudstone clasts show planar 

laminations, contorted bedding, and possible bioturbation (09-16-68-10W6, 2212.5m); 

(C) Weakly cross-bedded scoured fine-grained sandstone containing angular mudstone 

rip-up clasts (09-16-68-10W6, 2212.8m); (D) Fine- to very coarse-grained weakly planar 

laminated sandstone (06-10-68-10W6, 2252.6m); (A-D) Interpreted to have formed 

within a tidal or fluvial channel system. 
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Other common internal stratification types include current ripples and sub-planar parallel 

laminations. Organic detritus and coal lenses are also common and increase upwards 

through facies 5 (Fig. 2.14a). The basal contacts are sharp and erosional, where as the 

upper contacts are gradational with overlying mudstones. 

Biogenic Sedimentary Structures - Facies 5 does not exhibit visible bioturbation. 

Interpretation — Medium-scale trough cross-bedding, the presence of angular mudstone 

rip-up clasts, and the overall fining-upward tend indicate a fine to coarse-grained channel 

succession (Coleman and Prior, 1982; Galloway and Hobday, 1996). The upward 

transition from trough cross-stratified coarser-grained sandstones into rippled laminated 

finer-grained sandstones is common within distributary channels and channels in general 

(Elliott, 1989). The overall fining-upward trend is a result of either lateral migration of 

the channel or channel abandonment (Coleman and Prior, 1982). Angular mudstone rip- 

up clasts suggest current transport of mudstone fragments from bank collapse into the 

channel possibility during flood conditions (Reineck and Singh, 1980; MacEachern, 

2001). A fully non-marine interpretation is supported by the complete lack of 

bioturbation, which suggests dominantly freshwater conditions (MacEachern and 

Pemberton, 1992). Channel fill successions are also present within the lower and upper 

delta plain as well as within lagoonal environments. Facies 5 can also be present within 

tidal channels cutting through barrier bars along the coast. These environments are 

however extremely rare within prograding wave-dominated environments. In all likely 

hood, tidal channels would only form temporarily during beach and barrier bar overwash 

during large storms (Elliott, 1989). This will be discussed further in Chapter Three. 

(2.10) Facies 6 — Very Coarse-grained Sandstone 

Physical Sedimentary Structures — Facies 6 consists of well to very well sorted medium- 

to very coarse-grained sandstones (Fig. 2.15). The sandstones tend to coarsen upwards. 

Finer sediment such as fine sand, silt, and interstitial clay is very rare to absent. 

Individual beds range in thickness from 5-20 cm with common, subtle grain size 

variations throughout. Overall most of facies 6 appears massively bedded however the 
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Fig. 2.15 - Selected examples from Facies 6 — Very Coarse-grained Sandstone: (A) 

Planar to gently dipping parallel laminated very coarse-grained sandstone (06-19-68- 

13W6, 2675.9m); (B) Planar laminated very well sorted very coarse-grained sandstone 

with rare pebbles (06-19-68-13w6, 2675.6m); (C) Massive coarse- to very coarse-grained 

sandstone (06-19-68-13W6, 2675.3m); (D) Gently dipping medium- to very coarse- 

grained sandstone. Note the numerous grain size variations, however each bed 1s still 

well to very well sorted (07-14-68-13W6, 2514.1m); (A-D) Interpreted to have formed 

within a foreshore beach environment. 
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contacts between individual beds are planar to gently inclined (Fig. 2.15c). Weak planar 

to sub-planar parallel laminations are also common throughout. There are also rare 

examples of low angle cross-bedding, internal irregular scoured contacts, and randomly 

distributed chert pebbles and granules. The sand grains are very well rounded and 

generally spherical with only very rare examples of elongated grains. This facies is very 

similar to Facies 8a with regard to physical sedimentary structures. 

Biogenic Sedimentary Structures — Facies 6 does not exhibit visible bioturbation. 

Interpretation — The overall very well sorted nature of this facies combined with the 

dominance of planar parallel to gently inclined laminations indicates a high-energy 

foreshore beach environment (Elliott, 1989; MacEachern and Pemberton, 1992). This is 

interpreted to represent swash zone cross-stratification forming within the beach swash 

zone (Boggs, 2001). The complete lack of finer sediment and high degree of sorting 

indicate constant reworking and removal of such sediment. This is accomplished through 

constant wave action within the beach environment between high and low tide (Reineck 

and Singh, 1980). Continuous breaking waves with swash and backwash within this zone 

physical sort the sediment and produces the planar to gently inclined laminations 

common in this facies (Walker and Plint, 1992). The extremely well sorted nature of this 

facies limits the possible environment of formation to the foreshore. The fact that 

shoreface and foreshore conglomerates tend to be better sorted than fluvial conglomerates 

supports this claim (Clifton, 1973; Hart and Plint, 1995). However, high- energy storm 

events may transport coarser sediment into the shoreface. 

(2.11) Facies 7 - Interbedded Sandstone and Conglomerate 

Physical Sedimentary Structures - This facies consists of interbedded conglomerate and 

very fine- to fine-grained sandstone (Fig. 2.16). The sandstone contains abundant 

pebbles and coarse sand stringers as well as randomly dispersed pebbles. Sorting ranges 

from very poorly to well sorted but generally displays moderate sorting. Internal 

stratification includes trough cross stratification and less commonly planar parallel 

lamination. Organic-rich laminations are rare. The pebbles comprising the 
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Fig. 2.16 - Selected examples from Facies 7 - Interbedded Sandstone and 

Conglomerate: (A) Trough cross-bedded fine-grained sandstone with abundant pebbles 

and rare Skolithos burrows (06-15-68-11W6, 2319.7m); (B) Well sorted planar laminated 

very fine-grained sandstone with overlying poorly sorted conglomerate. Note the 

interesting contact between the two lithologies where the pebbles appear to “sink” into 

the sandstone (09-16-68-10W6, 2202.7m); (C) Interbedded trough cross-bedding 

sandstone and well sorted planar laminated conglomerate (15-12-68-09W6, 2200.35m); 

(D) Planar laminated sandstone with very coarse-grained sand stringers gradationally 

underlying a moderately sorted conglomerate (06-25-68-11W6, 2220.1m); (A-D) 

Interpreted to have formed within the proximal upper shoreface or proximal delta front. 



pease
 ne 

pelecs
den vd a) 

Ao 7 

weveliioe, dhemyirancas Aian -gncestata 
gts 

tonsvctisnte retuite ven fhe ( 
| 

walt ance stingy 

a Solo la 

geitd.2an> rc i be 
AHREIUOES. SMP AO eH) aad a 

Blosicitabag, esugninne bine be 
ser a seo 

(ak) Gn WOES HWA aasae dairaitils oh ak ieee 
| | . PRR RA? eae 

ot dalek Sjcoexing vo oestrone egegn anne ' mb ovat at b 

ev, me Teun) pe 

ig iodo | 

hen einaso sate notin ingen Oe | 

mp i ae ‘ 
higudiaadain Ee, eee 

f 

ian on) 

Al Ti 

a 



70 



hi i ales ab 
rs a)’ yea Cian tS 

; x : a) tical yf ae) 

nr e Wich je 

We 

Lg ep ee eee nS SE ey hae TT Ae <img 



qd 

conglomerates within Facies 7 vary dramatically in grain size, sorting, and stratification 

type. Most conglomerates are clast-supported with very poor to moderate sorting, with 

only rare examples of very well sorted varieties. Matrix, when present, ranges in grain 

size from very fine- to medium-grained with only rare examples of interstitial clay. Clast 

sizes range from coarse upper to 3 cm pebbles, which are subrounded to well rounded 

and have low to moderate sphericity. Beds range from 2 cm to 40 cm in thickness and 

display abundant trough cross-stratification with lesser amounts of planar parallel 

laminations and massive bedding. Contacts between beds are generally sharp and contain 

significant erosion. However, rare examples of gradational and sharp non-erosive 

contacts are also present. This facies generally has a sharp erosional basal contact with 

underlying facies (facies 4a or 4b). 

Biogenic Sedimentary Structures - Facies 7 contains very little bioturbation and where 

present ichnofossils are only found within the sandy intervals. The only trace fossils 

observed within this facies are very rare Thalassinoides, Skolithos, and cryptic 

bioturbation (Fig. 2.16a). 

Interpretation — The overall coarse-grained nature of this facies coupled with the 

presence of trough cross-stratification as the dominant physical sedimentary structure 

indicates an upper shoreface or delta front environment (Bhattacharya and Walker, 1992; 

Hart and Plint, 1995). Facies 7 is most commonly found within the proximal upper 

shoreface and delta front above the sandstone-rich Facies 4b and below the 

conglomerate-rich Facies 8a, 8b, and 8c. Proximal upper shoreface deposits tend to have 

thinner conglomerate beds and less fine sediment (very fine-grained sand, silt, and clay) 

than delta front deposits. Increased concentrations of conglomerate indicate possible 

proximity to distributary channels (Arnott, 1991), which are interpreted to be the source 

of most conglomeratic material. Thick intervals of Facies 7 may therefore indicate 

possible deltaic point sources. Less frequently, Facies 7 is present within the lower 

portions of distributary channels. These successions are generally overlain by the fine- to 

coarse-grained fining-upward sandstones of Facies 5. These deposits tend to have lower 

degrees of sorting and increased concentrations of organic material and fine sediment 
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(Clifton, 1973). The rounding and sphericity of grains is also noticeably lower than those 

described above. 

(2.12) Facies 8a - Unimodal Chert Granule Conglomerate and Very Well Sorted 

Coarse-grained Sandstones 

Physical Sedimentary Structures — The very well sorted conglomerates of Facies 8a are 

clast-supported with very little to no clay or sand sized grains (Fig. 2.17). Clast sizes 

range from 2 mm — 10 mm and are well rounded. The clast sizes for Facies 8a are 

considerably smaller than the other 3 conglomerate-rich facies (Facies 7, 8b, and 8c). 

Internal stratification includes planar parallel and low angle (less than 10 degrees) 

laminations interpreted to represent swash zone cross-stratification. However, most 

stratification is difficult to observe and therefore appears massively bedded. Bedding 

ranges in size from 5 cm — 35 cm and includes moderate grain size variations between 

individual beds, however each bed 1s still very well sorted. As in Facies 6, most grains 

are very well rounded, spherical, and overall very mature. 

Biogenic Sedimentary Structures — Facies 8a contains no visible bioturbation. 

Interpretation — The extremely high sorting and planar to low angle laminations indicate 

a high-energy foreshore environment (Clifton et al., 1971; Coleman and Prior, 1982). 

The presence of planar swash zone stratification implies an intertidal beach environment 

(Elliott, 1989). The high levels of sorting indicate a large degree of winnowing of finer 

sediment and support this interpretation. The coarse-grained nature of this facies points 

toward the presence, at least locally, of a gravel-dominated foreshore beach (Hart and 

Plint, 1995). The very low levels of bioturbation are a result of the high physico- 

chemical stresses associated with a high-energy foreshore setting (MacEachern et al., 

2005). Foreshore beach environments also occur within the delta front, however a lower 

degree of sorting would be expected. As well, thicker intervals would be expected within 

deltaic environments. The reduced clast size compared to other conglomeratic-rich facies 

may indicate prolonged reworking by wave action or lateral displacement by longshore 

drift (Arnott, 1991; Hart and Plint, 1995). The downdrift fining develops in response to 
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Fig. 2.17 - Selected examples from Facies 8a - Unimodal Chert Granule 

Conglomerate: (A-D) Granule to small pebble very well sorted conglomerate. These 

units appear massive however gently dipping laminations are commonly observed. Most 

grains are spherical, very well rounded and composed of chert. Interpreted to have 

formed in a high-energy foreshore beach environment from the reworking of previously 

deposited delta front and delta plain deposits; (A) 07-01-68-12W6, 2437.1m (B) 06-19- 

68-13 W6, 2678.2m (C) 07-01-68-12W6, 2435.9m (D) 07-14-68-13W6, 2513.5m 
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preferential longshore transport of finer grains, with smaller clasts transported farther 

than larger ones (Carter, 1988; Arnott, 1991; Pattison and Walker, 1992; Hart and Plint, 

1995). This could occur through the reworking of older more poorly sorted deltaic 

deposits after channel avulsion and a reduction in sediment input. This will be discussed 

further in Chapter Three. As in Facies 6, it is also possible than high-energy storms 

events may transport coarser sediment into the shoreface. During fair-weather 

conditions, coarser sediment would be reworked landward, however appreciable volumes 

may be preserved in the shoreface (Carter, 1988; Hart and Plint, 1995; Galloway and 

Hobday, 1996). 

(2.13) Facies 8b - Bimodal Chert Conglomerate 

Physical Sedimentary Structures — The conglomerates of Facies 8b have an obvious 

bimodal grain size distribution (Fig. 2.18). These conglomerates are clast-supported 

however they do include a significant proportion of fine sandy matrix (roughly 30-40%). 

The grain size of the matrix ranges from very fine- to fine-grained and 1s completely 

lacking in interstitial clay. The clast size varies dramatically between each different bed, 

from about 0.2 cm to 2.5cm. However, the clast size distribution of each individual bed 

is very low. The clasts are always very well rounded but do show common to abundant 

dissolution of grains (pressure solution). The sphericity of the clasts within Facies 8b is 

very variable with a mix of spherical and elongated. A general trend shows that the large 

clast sizes (0.5 cm and greater) tend to be more elongated than the smaller clasts (0.2-0.5 

cm). The internal stratification of Facies 8b appears to be primarily massively bedded 

due to its bimodal nature. However upon further investigation Facies 8b shows abundant 

high angle cross bedding, trough cross-stratification, and planar parallel laminations (Fig. 

2.18a,c-d). This facies is generally interbedded with or occurs just below the very well 

sorted unimodal conglomerates of Facie 8a. Facies 8b is also generally found directly 

above the interbedded sandstones and conglomerates of Facies 7. 

Biogenic Sedimentary Structures - Facies 8b shows no visible bioturbation. 
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Fig. 2.18 - Selected examples from Facies 8b - Bimodal Chert Conglomerate: (A) 

Bimodal conglomerate with 0.4-0.8 cm pebble clasts and a very fine-grained sand matrix. 

Cross-bedding is common however it is difficult to observe due to the bimodal nature 

(11-07-68-12W6, 2499.8m); (B) Sharp apparently non-erosion contact between a 

bimodal conglomerate and a gently dipping fine-grained sandstone (06-19-68-13W6, 

2680.5m); (C) Bimodal conglomerate with 0.5-1.5 cm pebble clasts and a fine-grained 

sand matrix. Weak cross-bedding is commonly observed (06-19-68-13W6, 2678.8m); 

(D) Very small pebbles clasts within a very fine-grained sand matrix. Weak cross- 

bedding is shown with dashed line (06-19-68-13W6, 2678.2m); (A-D) Note, in 

comparison with conglomerates from facies 8a, a greater proportion of elongated very 

well rounded grains instead of spherical very well rounded grains. 
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Interpretation — Facies 8b appears to represent a transitional facies between the very well 

sorted conglomerates of Facies 8a and the more poorly sorted conglomerates of Facies 

8c. This facies may also represent a “hybrid” between the interbedded sandstone and 

conglomerate Facies 7 and the well-sorted conglomerate Facies 8a. This would explain 

the seemingly well-sorted matrix and clasts as well as the internal stratification. The 

considerable increase in clast size compared to Facies 8a may indicate that the sand was 

able to infiltrate the larger pore throats of the coarser pebbles but not the more restricted 

openings between the smaller granules or fine pebbles (Hart and Plint, 1995). A 

proximal upper shoreface to proximal delta front depositional environment is proposed 

based to the abundance of cross-stratification and the proximity to Facies 7, 8a, and 8c 

(Elliott, 1989; Orton and Reading, 1993). 

(2.14) Facies 8c - Polymodal Chert Conglomerate 

Physical Sedimentary Structures — The conglomerates of Facies 8c are clast-supported 

and very poorly to moderately sorted (Fig. 2.19). The finer-grained matrix comprises 

between 20-50% and ranges in grain size from very fine- to coarse-grained. The clast 

sizes range from very coarse to 5 cm pebbles and are always very well to well rounded. 

The clasts sphericity varies between spherical and elongated. The internal stratification 1s 

dominated by trough cross stratification and planar tabular cross stratification with less 

common massive bedding and planar parallel laminations. Bed thicknesses range from 5 

cm to 50 cm and thicken near the middle of the study area. These trends will be 

discussed further in Chapters Three and Four. Organic rich laminae and mudstone rip-up 

clasts are present locally. 

Biogenic Sedimentary Structures — Facies 8c shows no visible bioturbation. 

Interpretation — The decreased sorting compared to other conglomeratic-rich facies, the 

lateral distribution of the facies, and the dominance of trough and planar tabular cross 

stratification point to a deltaic environment. A proximal delta-front and corresponding 

distributary channel network environment is proposed for Facies 8c. The poorly sorted 

nature of the conglomerates indicates higher sedimentation rates and less reworking by 
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Fig. 2.19 - Selected examples from Facies 8c - Polymodal Chert Conglomerate: (A) 

Very poorly sorted conglomerate sharply overlain by a planar laminated sandstone (06- 

25-68-11W6, 2213.9m); (B) Very poorly sorted weakly cross-bedded clast-supported 

conglomerate. Clast size varies from medium sand sized to large 3 cm pebbles (1 1-7-68- 

12W6, 2502.2m); (C) Deformed poorly sorted conglomerate with coal and organic-rich 

laminae (09-16-68-10W6, 2198.6m); (D) Moderately sorted conglomerate gradationally 

overlain by a massive to weakly planar laminated sandstone (07-14-68-13W6, 2516.2m); 

(A-D) Note, in comparison with conglomerates from facies 8a and 8b, a greater 

proportion of elongated grains and an overall lower rounding of grains. This unit is 

interpreted to have formed in distributary channels and mouth bars within the delta plain 

as well as within the delta front. 
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waves than other more well sorted facies (i.e. Facies 8a). Facies 8c is better developed 

near identified distributary channels and grades laterally into thinner, finer-grained, and 

well-sorted facies such as Facies 7 and 8a. This is consistent with other conglomeratic 

bodies including the Cardium Formation (Arnott, 1991). Matrix-supported 

conglomerates found on the landward margin of more dominantly distributed clast- 

supported conglomerates, were interpreted to have been deposited in the vicinity of 

fluvial distributary mouths (Arnott, 1991; Pattison and Walker, 1992; Hart and Plint, 

1995). Clifton (1973) suggested that rapid deposition of sand and gravel in fluvial 

deposits would produce pebbly sands, whereas prolonged reworking by waves will tend 

to segregate the two. Reworking by waves would transport finer grain sizes offshore and 

coarser grains landward (Reading, 1988; Hart and Plint, 1995) producing a noticeable 

coarsening upward profile. The overall thickness of this facies also decreases 

dramatically along-strike as the distance from the distributary mouth increases. Facies 8c 

is therefore interpreted to represent the along-strike source of gravel for other 

conglomeratic-rich facies. Abandoned delta lobes consisting of large volumes of facies 

8c may also provide a source of sediment for adjacent strandplains as they are reworked 

into very well sorted conglomerates of Facies 8a (Arnott, 1993). This hypothesis will be 

discussed further in Chapter Three. Facies 8c is also found sporadically within the upper 

and lower shoreface. However these deposits tend to be slightly better sorted and contain 

less of the finer sand grain sizes. 

(2.15) Facies 9 - Organic-rich Shale and interbedded Coal 

Physical Sedimentary Structures — Facies 9 consists of organic-rich mudstone and 

siltstone with interbedded coal (Fig. 2.20). The mudstones tend to be massive with 

common thin planar parallel laminated siltstone and less common very fine-grained 

sandstone laminae. Abundant rooting results in thorough pedogenic alteration. Coal 

lenses and 10 cm to 50 cm coal beds are interbedded throughout and increase upwards 

through the facies. Soft sediment deformation and siderized internals are abundant but 

generally do not exceed 10-15cm in thickness. This facies is commonly interbedded with 

facies 5. 
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Biogenic Sedimentary Structures — Facies 9 shows no visible bioturbation. 

Interpretation — The high organic and coal content, abundant rooting, fine-grained nature, 

and absence of bioturbation indicate a non-marine floodplain environment (MacEachern, 

2000; Wadsworth et al., 2003). This facies is also present within the laterally equivalent 

upper delta plain. Extensive pedogenic alternation and abundant rooting imply extended 

periods of subaerial exposure. Thick well-developed coaly intervals are generally found 

directly above sandy foreshore deposits. This is consistent within wave-dominated 

settings where the high water table results in large swampy regions, prefect for coal 

development, very near the to shoreline (Cant, 1995; MacEachern, 2000; Wadsworth et 

al., 2003). The channel-fill deposits of Facies S commonly erode into Facies 9 and are 

associated with sandier intervals. As well, backshore lagoonal deposits from Facies la 

and |b can also be interbedded with Facies 9 near the coastline. 
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Fig. 2.20 - Selected examples from Facies 9 - Organic-rich Shale and interbedded 

Coal: (A) Mottled silt-rich mudstone with possible pedogenic alteration (04-34-67- 

O08 W6, 2209.8m); (B) Rooted pedogenicly altered silt-rich mudstone containing common 

pyrite nodules (04-34-67-08W6, 2208.4m); (C) Abundant rooting within an organic-rich 

silty mudstone grading upward into a coal-rich mudstone (06-10-68-10W6, 2255.7m); 

(D) Organic-rich mudstone overlying a rooted siltstone (04-34-67-08W6, 2208.0m). 
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Chapter 3: Facies Associations and Depositional Model 

Chapter two included detailed descriptions of the sedimentology, ichnology, and 

interpreted depositional environments of the fifteen facies observed from core (Table 

3.1). This chapter builds on this information by placing these facies into recurring, 

genetically related packages, which will be spatially mapped and correlated in numerous 

cross-sections in Chapter Four. These packages are referred to as facies associations 

(FA), which are defined as a “group of facies genetically related to one another and 

which have some environmental significance” (Collinson, 1969). 

Chapter Three describes five facies associations observed within the Falher “D” 

succession within the study area. These facies associations are described, based on the 

interpreted depositional environment, in a roughly distal to proximal arrangement (Fig. 

3.1, 3.2). Each facies association will include an overall description, facies relationships, 

and environmental significance. The five facies associations are as follows; FAI — 

Lower Shoreface/Distal Delta-Front, FA2 — Upper Shoreface and Foreshore, FA3 — 

Proximal Delta-Front, FA4 — Lower Delta-Plain/Brackish-Water Environments, FAS — 

Coastal Plain/Upper Delta-plain (Table 3.2). 

(3.1) Facies Associations 

The primary objective of this study, as discussed in chapter one, is to identify and 

interpret sedimentological, ichnological, and stratigraphic variations along depositional 

strike. Analysis of the facies succession within the Falher “D”, suggests a depositional 

system that varies considerably along-strike and includes elements of both shoreface and 

deltaic environments (Fig. 3.3). Within wave-/storm-dominated settings, substantial 

overlap exists between facies that occur in shoreface and deltaic environments (Fig. 3.4). 

Conversely, a number of facies associations will include both environments, while some 

will possess lateral equivalents. Figure 3.4 illustrates the strandplain and deltaic 

environment terminology utilized in this study. Facies Association One encompasses the 

distal elements of both shoreface and deltaic systems, including the distal lower to middle 

shoreface and laterally equivalent prodelta to distal delta-front environments. Facies 

Association Two, on the other hand, encompasses only the proximal elements of 
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Lithology 

Bioturbated Silt- 

Rich Mudstone 

Physical 

Structures 
Planar to wavy 

lenticular siltstone 

laminae, current- 

rippled 

Biogenic 

Structures 
Pl(c), Te(c), 

Ch(c), Di(r), Th(r) | Interdistributary 
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Depositional 

Environment 

Lagoon, 

Bay 

Unburrowed Silty 
Mudstone and 

Massive Shale 

Sandy Siltstone 

Bioturbated 

Interbedded 

Mudstone and 

Planar to wavy 

lenticular siltstone 
laminae, 

syneresis cracks, 
deformation, 
pyrite nodules 

Massive, 

convolute 

laminations, large 

angular mudstone 
ip-up clasts 

Planar/sub-planar 

sandstone 

laminations, 

Th(c), C 

Pl(r), Th(r), 
Bivalve Shells(r) Interdistributary 

Lagoon, 

Bay, Delta-Plain, 

Floodplain, Bay- 
Fill 

Fluvial Overbank 

h(m), Upper Offshore to 
Pl,(m), Ch(c), 
Hm(r), Te(c), Shoreface, 

Distal Lower 

Mudstone and 

Fine-Grained 

Sandstone 

Very Fine-Grained 
Hummocky Cross- 

Sandstone 

(HCS/SCS) 

Sporadically Trough cross- Pa(m), Di(r), Distal to Proximal 
Bioturbated Very bedded, MS-WS, __| Op(r), ou : Upper Shoreface, 
Fine- to Fine- common pebble Co(r), Ra(r), fu(r), | Proximal Delta- 

Grained Trough stringers, Sch(r), Th(r), Front 

Cross-Bedded 

Sandstone 

laminae, planar to 

massive 

mudstone, rare 

bioturbation 

Cgl beds 

Planar parallel to 

sub-planar (HCS) 
Stratified VWS sandstone, | Sch(r), 

rare organic 
laminae, rare thin 

common thin PS Ma(r) 

Cgl beds 

Table 3.1 — Facies summary from Chapter Two. 

Prodelta to Distal 

Delta-Front, 

Lagoonal, Delta- 
Plain 

Very Fine-Grained | bioturbated Pa(c), Op(r), Di(r), | Lagoon 
Sandstone mudstone Rh(r), Sch(r), fu(c) 

3b Non-bioturbated Wavy to current- Pl(r), Te(r) 
Interbedded rippled lenticular 

Pa(c),Paramac(c), | Distal to Proximal 

Op(r), Co(r), Lower Shoreface, 

Di(r), Distal Delta-Front 

Te(r), Th(r), As(r), 

Cryptic (a) 





Description 

VWS-MS, massive 

to planar, rare 

pebbles, upper 
portions rooted 

Lithology 

Very Fine- 

Grained Planar 

Laminated 

Sandstone 

Fine- to Coarse- | PS-WS, massive to 

Grained Trough | cross-bedded, 
Cross-bedded large angular mst 
and Planar rip-up Clasts, coal 
Laminated lenses, fining- 
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Biogenic Depositional 

Structures Environment 

None Upper Shoreface 

Foreshore, Fluvial, 

Backshore 

Fluvial Channel Fill 

Granule 
Conglomerate 

granule - small 

pebble, mostly 

massive, rare 

imbrication 

Bimodal, ~30% vfL- 

fU matrix, 1-2cm 

well rounded 

pebbles, massive 

to cross-bedded 

Bimodal Chert 

Conglomerate 

imbrication 

Polymodal Chert | VPS-MS, ~35% vfU 

Conglomerate matrix, well 
rounded, massive 

to cross-bedded 

imbrication 

Y) Organic-rich Thin planar 
Shale with siltstone laminae, 

Interbedded rooted, coal lenses, 

pyrite nodules, 

deformed 
Coal 

Sandstone upward trend 

Very Coarse- VWS, cL-vcU None Reworked Delta- 
Grained planar to sub- Front, Foreshore, 
Sandstone planar sandstone, Upper Shoreface 

rare cross-beds 

Interbedded vfL-fU trough cross- | Pa(r) Upper Shoreface, 
Sandstone and bedded sandstone, Proximal Delta- 

Conglomerate pebble stringers, Front, Delta-Plain, 

VPS-WS, matrix- Fluvial 

rich Cgl _ | 
Unimodal Chert | VWS, no matrix, None Reworked Delta- 

Front/ Delta-Plain, 

Foreshore 

Upper Shoreface, 

Foreshore 

Proximal Delta- 

Front, Delta-Plain, 

Fluvial 

None 

Coastal Plain, 

Floodplain, Swamp 

Pedogenic 
Alteration 

Table 3.1 — Facies summary from Chapter Two continued. 
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Shoreface Model 
Cretaceous Western Interior Seaway 

Dominant Structures Ichnological Assemblages 
| // A P | . 

ST onichnus ; 

fluvial __eolian Ichnofacies High 
Multi-Genetic 

tidal —> Swash-Zone 

Cross-Stratification 
Macaronichnus Tide 

Assemblage Low 

Tide 

Foreshore 
Kaves 

Trough 

Cross-Stratification 

SCS +/- HCS 

+/- Burrowed 

Sandstone 

Upper 

Shoreface wave-forced 
currerts 

mainly erpsinal) 
storm 

Skolithos 

Middle Ichnofacies 

Shoreface suspenbion feeding * 
er aves 

Lower Proximal 

plortace Cruziana Fair-weather 

wave base 

HCS, Wave Ripples 

+/- Burrowed Muddy 

Sandstone 

fair-weat 
oscillatory 

<_< —- Transition 

(erosional & deposjtional) 

Archetypal 

Burrowed Sandy Cruziana 

Mudstone Upper 
fe a(S Offshore 

deposit feeding +/- Wave Ripples 

Ichnofacies 

Distal 

Lower Cruziana 

Offshore 

Burrowed Silty 

Mudstone 

+/- HCS 

+/- Wave Ripples 

storm waves 

(decreasingly erosional) 

Storm 

wave base 
Burrowed Mudstone 

+/- rare HCS Zoophycos 
+ Storm-Induced Ichnofacies 
Wave Ripples 

grazing & foraging 

Dominant Processes Dominant Behaviors 

Subordinate Processes Subordinate Behaviors 

Minor Processes Minor Behaviors 

* Many tube dwellers are passive carnivores rather than suspension feeders. 
Fair-weather suites are subenvironmental indicators, event suites are not. 

Fig. 3.1 - Schematic ichnological-sedimentological model of shoreface deposition based 

on the Cretaceous Western Interior Seaway (modified from MacEachern et al., 1999). 
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Physical Structures Other Biological Strucutres 

Rip-up clasts 4¥ |Chondrites (Ch) 

Mud clasts 

Random Pebbles 

Convolute lamination Pebble Stringer/Lag 

Load casts Thin Sandstone Beds 

(Wie mic. vc) 

Synaeresis cracks 
Conichnus (Co) 

Soft sediment deformation 
Cylindrichnus (Cy) 

Fugichnia (Fu) 

Helminthopsis (He) 

Wavy bedding 
Organic Material Macaraonichnus (Ma) 

Ripple Laminations (wave) Shale Laminae Ophionterpin (Op) 

Gas TSK Ripple Laminations (current) Graded Bedding Palaeophycus (Pa) 

Stylolite Planolites (Pl) Climbing Ripples 

Pyrite Nodul i i 
Low angle cross-stratification ae aren Rhizocoralliam (Rh) 

Siderite Root Traces 

Hummocky Cross-stratification 
Gastropod Schaubcylindrichnus (Sch) 

Planar cross-stratification Bivalved pelecypod Skolithos (Sk) 

Trouugh cross-stratifictaion Wood/Leaves Teichichnus (Te) 

Photo Taken Thalassinoides (Th) 
Planar bedding 

O@r=-=—C7ENS >pallona Sample collected Zoophycos (Zo) bp Soca e? Scour (SCS/HCS?) 

Scour and Fill Glossitungites Surtace ico + as Wncontormity 

~~~~v~~ Discontormity 

Combined Flow Ripple Sorting wwe Scoured 

Sharp contact 
Sandstone Dyke ; 

Gradational Contact 

Coal Lenses 

Organic laminae 

Lithology 

Conglomerate Silty/Sandy Mudstone 

:: Sandstone Mudstone 

Interbedded Sandstone and Shale eee | Coal 

Siltstone 

Fig. 3.2 - Legend of symbols and abbreviations utilized in this study. 
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shoreface settings, including the distal upper shoreface to foreshore environment. 

Consequently, the proximal deltaic environments, including the proximal delta-front 

environment, are located in Facies Association Three. Marginal-marine environments, 

including the lower delta-plain and other brackish water settings, are incorporated into 

Facies Association Four. All non-marine environments, including the coastal plain and 

upper delta-plain, are discussed in Facies Association Five. These settings are described 

in a roughly distal to proximal arrangement, beginning with the distal lower shoreface 

and prodelta to distal delta-front environments. 

Facies Association One (FA1) — Storm-Dominated Lower Shoreface/Distal Delta- 

Front 

Facies Association One represents the most distal depositional environments 

encountered within the study area and includes the distal lower to middle shoreface and 

corresponding prodelta to distal delta-front environments within adjacent wave- 

dominated deltas (Bhattacharya and Walker, 1992; MacEachern and Pemberton, 1992). 

Ideally, offshore/shoreface deposits and prodelta/delta-front deposits would be in 

separated into different facies associations. However, a limited number of cored intervals 

within these environments has greatly restricted the sedimentological and ichnological 

data available. The storm-dominance of the Falher “D” succession compounds this 

problem with the erosional amalgamation of distal delta-front sandstone beds. This 

produces nearly identical proximal lower shoreface and distal delta-front deposits within 

strandplains and wave-dominated deltas respectively. This issue will be discussed in 

greater detail below. 

Three of the facies described in Chapter Two are included within FA1: Facies 3a, 

3b, and 4a. Of these, Facies 4a makes up the majority of the observed FA1 due to the 

lack of cored intervals in the distal regions of the study area. The facies making up FAI 

are found throughout the Falher “D” within the study area except the extreme south. In 

general FAI occupies the basal portion of the Falher “D” succession and erosively 

overlies non-marine deposits of the Falher “E”. In the northern half of the study area, 

FAI can often constitute the entire volume of the Falher “D” marine succession 
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Description and Facies Relationships 

Facies 3a is typically composed of sharp-based very fine-grained sandstone beds 

displaying planar to sub-planar laminations interbedded with bioturbated silt-rich 

mudstones. Combined flow and planar laminations are common in the muddier intervals 

however physical sedimentary structures are difficult to observe due to the high degree of 

biogenic reworking. A proximal Cruziana assemblage dominates intervening mudstones 

beds, while a mixed Skolithos-Cruziana assemblage dominates the upper portions of 

sandstones beds (see Chapter Two) (MacEachern and Pemberton, 1992; Pemberton et al., 

2001). The intensity of biogenic reworking and the diversity of trace fossils is relatively 

high compared to other facies. Rare mudstone rip-up clasts and organic-rich laminae are 

common locally. Sandstone beds generally thicken upwards from roughly 3 cm until 

there are no intervening mudstone beds. 

The interbedded sandstones and mudstones of Facies 3a eventually grade upward 

into the very fine-grained sandstones of Facies 4a. Facies 4a consists of sharp-based 10 

cm — 50 cm thick sandstone beds displaying low-angle convex-up and —down curvilinear 

laminations (Fig. 3.5). Bioturbation intensities within Facies 4a are relatively low as a 

result of the erosional amalgamation of sandstone beds. However, the overall diversity of 

trace fossils appears reasonably high (see Chapter Two). These sandstone beds tend to be 

very well-sorted with very rare randomly dispersed pebbles. Thin erosionally based 

poorly sorted conglomerate beds are rare. Thin mudstone and organic-rich laminae, 

mudstone rip-up clasts, and wood fragments are uncommon but locally abundant. Other 

less common sedimentary structures include oscillation ripples, massive bedding, 

combined flow-ripples, and planar parallel laminations. Facies 4a coarsens-upwards 

from very fine-grained lower to fine-grained lower with thin conglomerate beds and 

randomly dispersed pebbles also increasing upwards. 

In some localities, Facies 3a is replaced with the interbedded very fine-grained 

sandstones and sparsely bioturbated mudstones of Facies 3b (Fig. 3.6). The sharp-based 

sandstone beds display a similar low-angle sub-planar laminated character as compared 

to Facies 3a. The intervening mudstone beds are sparsely bioturbated with current- 

rippled, combined-flow rippled, and planar laminated siltstone laminae. Oscillation- 

ripples and lenticular bedding is less common. Intervals of abundant organic-rich muds, 
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convolute bedding, and siderite are common. Bioturbation is typically of low intensity, 

sporadically distributed, and of very low diversity (see Chapter Two). 

Environment 

This facies association represents a shoaling upward sequence with fair-weather 

deposited muds interbedded with storm-emplaced sands within a storm-dominated lower 

shoreface environment (MacEachern and Pemberton, 1992; Walker and Plint, 1992; 

MacEachern and Hobbs, 2004). The low-angle convex-upward and —downward 

curvilinear sub-planar laminated sandstone beds within Facies 3a, 3b, and 4a are 

interpreted as hummocky cross-stratification (Harms et al., 1975; Walker and Plint, 

1992). The low-angle sub-planar convex-downward laminations found in the upper 

portion of Facies 4a are interpreted as swaley cross-stratification (SCS). Hummocky 

cross-stratification forms during storm sedimentation with sediment suspension fallout 

reworked into hummocks and swales by strong wave oscillation (Harms et al., 1975; Dott 

and Bourgeois, 1982). Storms rework the sediment through storm-generated long-period 

oscillatory-dominant combined flows generated by shoaling swell waves propagating 

onshore (Leckie and Walker, 1982; Myrow and Southard, 1996; Dumas et al., 2005). 

Swaley cross-stratification has a similar origin. However, it forms in a higher energy 

shallower water environment, with the hummocks eroded off by subsequent storms 

(Leckie and Walker, 1982). During these storms, sediment is transported into the lower 

shoreface and by offshore directed, geostrophic flows (Myrow and Southard, 1996). This 

is responsible for the emplacement of thin conglomerate beds in the lower shoreface (i.e. 

Facies 4a). The exact formation of HCS still remains controversial but will not be 

discussed further in this thesis. 

In more distal regions (i.e. Facies 3a), these tempestites are interbedded with 

thoroughly bioturbated mudstones. A typical succession includes thoroughly bioturbated 

mudstones overlain by sharp-based hummocky cross-stratified sandstones containing 

escape structures, a bioturbated upper portion of the sand bed, and finally thoroughly 

bioturbated mudstones again (Pemberton and MacEachern, 1997). In this succession 

sandier intervals were emplaced by storms, while the bioturbated mudstone beds were 

deposited during fair-weather conditions (Walker and Plint, 1992; Pemberton and 
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MacEachern, 1997). The fact that the bioturbated mudstone beds are preserved and not 

eroded by the next storm event indicates extended periods of fair-weather deposition, 

reduced erosional capability, and greater water depths compared to other higher-energy 

facies (i.e. Facies 4a) (Pemberton and Frey, 1984; Saunders et al., 1994; Pemberton and 

MacEachern, 1997). Facies 3a contains two distinct trace fossil assemblages associated 

with varying energy conditions, pre-storm and post-storm (Pemberton and MacEachern, 

1997). The post-storm assemblage consists of trace fossils with characteristics of the 

Skolithos Ichnofacies (MacEachern and Pemberton, 1992). These characteristics include 

ichnogenera with primarily vertical burrows and are dominated by suspension feeding 

behaviors. This trace fossil suite represents opportunistic (r-selected behaviors) 

organisms burrowing the uppermost portion of each storm-generated sandstone bed 

(Pemberton and MacEachern, 1997; MacEachern, 2000; Pemberton et al., 2001). 

Opportunistic communities are quick to colonize the new uninhabited post-storm 

substrates (MacEachern, 2000). These communities are gradually replaced by normal 

fair-weather equilibrium (k-selected behaviors) suites and represent the pre-storm, or fair- 

weather assemblage (Pemberton and MacEachern, 1997; Pemberton et al., 2001). This 

assemblage shares characteristics with the Cruziana Ichnofacies and represents a stable 

benthic community with a high degree of bioturbation. Facies 3a represent deposition 

within a storm-dominated distal lower shoreface environment (Moslow and Pemberton, 

1988; MacEachern and Pemberton, 1992). 

The interbedded storm-emplaced sandstones and fair-weather mudstones of 

Facies 3a transition upward into the storm-amalgamated sandstone beds of Facies 4a. At 

shallower water depths (i.e. above fair-weather wave base) high-energy storms have 

significant erosion associated with the deposition of thick HCS sand packages (Leckie 

and Walker, 1982). This produces a set of amalgamated HCS sandstone beds with no 

intervening fair-weather mudstone beds preserved (Fig. 3.5). The fact that these 

sandstones contain very little bioturbation indicates rapid deposition and that the 

uppermost, likely burrowed, portion of the previous sandstone bed was most likely 

eroded. Based on these trends, FAI is interpreted to represent shallowing upward 

deposition from the distal lower shoreface to the middle shoreface and lies progressively 

higher above fair-weather wave base (Massari and Parea, 1988; Moslow and Pemberton, 
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1988). This is supported by the upward increase in grain size, randomly dispersed pebble 

content, and occurrence of conglomerate beds. The shallowing upward trend within 

Facies 4a is evident in the upward transition from HCS (proximal lower shoreface) to 

SCS (middle shoreface) as well as the erosional amalgamation of sand beds (Leckie and 

Walker, 1982; Myrow and Southard, 1996; Dumas et al., 2005). As sandstone beds 

continue to amalgamate in progressively higher-energy (i.e shallower water) settings the 

hummocks (convex-upward) are eroded off and only the swales (convex-downward) are 

preserved (Leckie and Walker, 1982). The pre- and post-storm subdivision does not apply 

in the proximal lower shoreface due to the erosional amalgamation of successive beds. In 

this case only deeply penetrating vertical burrows and escape structures are preserved 

(Pemberton et al., 1992c). In the proximal lower shoreface, bioturbation is generally only 

found within thin para-Macaronichnus, Palaeophycus, and Macaronichnus segregatis 

burrowed intervals near the top of FAI. This interval has been referred to as the 

“burrowed zone” by other authors (e.g. MacEachern, 1994; Saunders et al., 1994) and is 

discussed in detail in Chapter Two. This extensive amalgamation of HCS/SCS 

sandstones within Facies 4a indicates the presence of frequent high-energy storm events. 

This also indicates that storm events have occurred with some regularity in order to 

produce consistent amalgamation. Hurricanes, along with intense high-frequency winter 

storms occurring on a yearly basis are interpreted to be the cause (Saunders et al., 1994). 

This interpretation is supported by paleoclimatic models, which indicate a relatively 

heightened potential for winter storms in the Cretaceous Interior Seaway (Barron, 1989; 

Erickson and Slingerland, 1990). 

Facies Association One also represents the proximal prodelta/distal delta-front 

environment considering differentiating it from the upper offshore/lower shoreface in 

wave-/storm-dominated settings is difficult (Moslow and Pemberton, 1988; Gingras et 

al., 1998). Similar wave- and storm-generated physical structures occur in both 

environments, which produce similar successions. However, the presence of Facies 3b 

and thicker muddier successions may indicate a deltaic environment (Fig. 3.6). The 

presence of abundant organic-rich muds, convolute bedding, syneresis cracks, and 

siderite are also preliminary indicators for deltaic environments (Moslow and Pemberton, 

1988; MacEachern, 1994; Gingras et al., 1998; Coates, 2001; Bann and Fielding, 2004; 
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Coates and MacEachern, in press). Dark organic-rich mudstones can be associated with 

river-flood events following prolonged storms (Leithold, 1989; MacEachern, 1994). Also 

associated with river-flood discharge is the mantling of storm beds with increased 

concentrations of plant debris washed seaward from the delta-plain (Raychaudhuri and 

Pemberton, 1992; Saunders et al., 1994). Convoluted bedding is reasonably distinctive of 

deltaic environments and is indicative of increased sedimentation rates (Bhattacharya and 

Walker, 1992; MacEachern, 1994; Coates, 2001). Syneresis cracks generally indicate 

fluctuating salinities associated with freshwater input (Burst, 1965; Plummer and Gostin, 

1981; Pemberton and Wightman, 1992). And increased sideritic intervals are produced 

by the degradation of increased quantities of organic-material by bacterial action 

(Coleman, 1993). Ichnology can be the most useful tool in distinguishing between the 

two settings due to the environmental stresses introduced by deltaic point sources 

(Moslow and Pemberton, 1988; Gingras et al., 1998, Coates, 2001). Non-bioturbated or 

sparsely bioturbated mudstones in these settings can indicate a stressful environment in 

which bioturbation was not present or was greatly suppressed during fair-weather time. 

Facies 3b is therefore interpreted to represent a prodelta to distal delta-front environment 

where fluvial influences result in freshwater and sediment input, thereby greatly 

decreasing the abundance and diversity of bioturbation (MacEachern et al., 2005). 

Differentiating these environments becomes even more difficult in the distal 

delta-front (Moslow and Pemberton, 1988). In this setting most of the distal delta-front 

environment is dominated by the storm-amalgamated very fine-grained sandstones from 

Facies 4a. Without intervening fair-weather mudstone beds to illustrate the different 

ichnological suites present, proximal lower and middle shoreface deposits are 

sedimentologically very similar to their deltaic counterparts. Wave-dominated delta front 

deposits when protected from frequent storm erosion, can show some of the most diverse 

trace fossil assemblages (Gingras et al., 1998; MacEachern et al., 2005; Gani et al., 

2007). However, due to significant storm-bed amalgamation and a general lacking of 

trace fossils, ichnology cannot be used to its full potential in this case. In these settings, 

the low trace fossil abundance may be a reflection of the high-energy and high frequency 

of sediment reworking along the delta-front during storms (MacEachern, 1994; Saunders 

et al., 1994; Gingras et al., 1998; MacEachern et al., 2005). Therefore, delta-front and 



tate 
a 

beso ne ty uA) 

" 
binguarinlia | 

sche amine ase Pa ee 
“kine sovsman tOOn ani oewnleo? dhiw baminores anitiniles petal 
bieratiuoney oom shnnnant 9 y H9hK? aeale egon stg ox ote 1801 

moiton laresodt yd Lilpsharaoldhgigr Wo tion hopystieasi tor weabaibergeb ody 

it), cempeaaed uaelebabingrninetts 1H fide) athe aise om geal AERO) namie) 

secre iantyq? DK Ababs. ¥e frioeocetvey Abed sonny Uvatenawrntaes hy ents wynidion av) 

yw Hdkgioidealy >. POF ectay BB nt celignity 06) teenies) fre weakeolvl) 

vi siisigneaviie elaeate & stent edith aynkiioe angi so asenehi batedhwitond. etneanign o 

acre) qeelaienye pial aia) outage iy ake Re Tema beeen normticcid doikw 

manneai tes Inisciict toni or uilshberyy «inepahter ot Lankan autem: et de cael 

Uiturny celdvatly auiyct meomnltoyt toe canmdetiaaa i tenes ancaimednt Salyer 
AAMAS’. Lb by Live peated emmianehtstnl ine grlinaelly bn somabinare ae anieasaeh 

jaa) od i ab om lieve xem arranges eal gaging: 

uuviateb loti adi te een gellar skp 400) cote tae woleol) seonvallsb 

HHO) eoltedalinuse Leonemnge yeh eine Pommngeonm- ings ode ud howtabmols pi Mesenatrives 

jmdad sy onveywh of abode soowhen! wettinow-id peter pedi ...62 doet 

wi dhe coterie sibhior br alee lied tran, eather Inoigalondai 

af athe oerractiernat-ane YF emieapro indy ghushoh abate op uilinnia yew Aa oigolnmitbes 

sri fire. oat io sie veotienes Lnbitons ofc niaypart med keaton ashe atinoqab 

ode te ind? (200k te to nation MOP) de io argent)! sogeleingene leat oon 

ti uscd haynes 4 tow oeitamaglat Quah owes owaltingia oF gab sevawokl, {TO0C 

dyriitton weotht ot sure eld i baineraty Hah ott at beats sh one ygetondol allesdt som 

Ynnnepe staid ben ogroma-siyict alt Ia rabonlio & od que apne tarot seas wol-ond 

ProhnEe ORL wer oR BAUD tivstl-athit wl) gros yanbowen tnaeniben io 
biene Hertioslisds coothorealT 200%, dura erento RRO ta 36 amet OS lade 



101 

lower/middle shoreface deposits are very difficult to distinguish in wave-/storm- 

dominated settings due to similar process acting on both environments. An extended 

discussion focusing on differentiating proximal prodelta/distal delta-front deposits from 

upper offshore/lower shoreface deposits is included within the depositional model section 

below. 

Facies Association Two (FA2) — Wave-Dominated Upper Shoreface and Foreshore 

Facies Association Two represents the distal upper shoreface to foreshore 

environment (Clifton et al., 1971; MacEachern and Pemberton, 1992). This is 

volumetrically the most dominant facies association present in core intervals within the 

study area. There are seven facies present within FA2. These include, in a distal to 

proximal arrangement, Facies 4b, 7, 8a, 6, and 4c. They generally occur in a predictable 

coarsening-upward trend with Facies 4b at the base and Facies 8a, 6, and 4c at the top 

(Fig. 3.7). In most cases Facies 4b sharply overlies deposits of FA] in a commonly 

erosional relationship. Facies 8a and 4c are then overlain by muddier facies from FA4 

and/or FAS. The component facies of FA2 generally comprise the uppermost portion of 

the Falher “D” sandbody and form a coarsening upward succession. Locally, FA2 can 

make up the entire Falher “D” marine succession. The vertical and lateral variability of 

FA2 is greater than any other facies association in regards to grain size, thickness, and 

facies variability. Due to the increased grain size compared to the other facies 

associations, rock within FA2 constitutes the greatest reservoir potential. Coarse-grained 

sandstones and conglomerate of FA2 host the Falher “D” pool located in the west-central 

portion of the study area (Arnott, 1994). As such, the greatest core control occurs within 

these regions. 

Description and Facies Relationships 

The very fine- to fine-grained trough cross-bedded sandstones of Facies 4b 

represent the most distal facies present within FA2. This facies sharply overlies the 

HCS/SCS sandstones from Facies 4a. Organic detritus, coal fragments, and wood 

fragments are all locally common and found along bedding planes. Interbedded mL-cU 
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DEPOSITIONAL 

ENVIRONMENT 
METERS 

SEDIMENTARY STRUCTURES 

07-01-68-12W6 
0 API 150 

goon 

1b 

FAS] Coastal Plain Falher D 

Foreshore 

Falher E 

Upper Shoreface 

Lower Shoreface 

Fig. 3.7 - Typical Falher “D” succession. The very fine-grained lower shoreface is 

sharply overlain by the well-sorted upper shoreface and foreshore. Location: 07-01-68- 

12W6, 2427.1m - 2443.8m. 
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sand stringers, randomly dispersed pebbles, and thin conglomerate beds are common and 

generally increase upward. Bioturbation is very sporadically distributed and contains 

relatively low diversities. Burrows are generally dominated by vertical structures with 

the exception of para-Macaronichnus. The trace fossil suite present within Facies 4b 

represents a low diversity expression of the Skolithos Ichnofacies (Pemberton and 

MacEachern, 1992). 

Facies 4b grades upward, continuing the coarsening upward profile, into the 

interbedded sandstones and conglomerates of Facies 7. Sandstone beds contain abundant 

randomly dispersed pebbles and coarse sand stringers. Sorting ranges from very poorly 

to well sorted but generally displays moderate sorting. Internal stratification includes 

trough cross stratification with less common planar lamination.  Intervening 

conglomerate beds are clast-supported with poor to moderate sorting. Matrix, when 

present, ranges in grain size from vfL-mU sand. Clast sizes range from cU sand grains to 

3 cm pebbles, which are subrounded to well rounded and have low to moderate 

sphericity. Beds range from 2 cm to 40 cm in thickness and display abundant trough 

cross-stratification with lesser amounts of planar laminations and massive bedding. Most 

conglomerate beds are generally sharp-based and contain significant erosion. The 

thickness of conglomerate beds generally increases upward through facies. 

In the western portion of the study area (R12W6-R13W6) Facies 6, 8a, and 8b 

erosively overlie Facies 7. Facies 8a includes well to very well sorted clast-supported 

small pebble conglomerates (Fig. 3.8). Clast sizes range from 2 mm — 10 mm and are 

well rounded. Internal stratification includes planar parallel laminations, low angle (less 

than 10 degrees) laminations, and apparently massive bedding. Facies 8b consists of 

bimodal clast-supported conglomerates. Clasts are comparatively large ranging from 0.5 

cm to 3 cm and generally very well rounded. These conglomerates are clast-supported 

however they do include a significant proportion of very fine sandy matrix (roughly 30- 

40%). The grain size of the matrix ranges from vfL—fL sand. The internal stratification 

of Facies 8b appears to be primarily massively bedded due to its bimodal nature. 

However upon further investigation Facies 8b shows abundant high angle cross bedding 

and trough cross-stratification. Facies 8b is interbedded locally within the lower part of 

Facies 8a or lies directly below. Facies 6 consists of well to very well sorted medium- to 
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very coarse-grained sandstones. Overall most of this facies appears massively bedded 

however the contacts between individual beds are planar to gently inclined. Weakly 

defined planar to sub-planar laminations are also common throughout. There are also 

rare examples of low angle cross-bedding, internal irregular scoured contacts, and 

randomly distributed chert pebbles and granules. Facies 6 is present above Facies 8a in 

most of the western portion of the study area however in some localities Facies 6 

completely replaces Facies 8a. In some locations very fine- to fine-grained planar 

laminated sandstones from Facies 4c cap FA2. These sandstones are very well sorted 

with locally abundant heavy mineral laminations. The uppermost sections of Facies 4c 

are generally strongly rooted and contain abundant coal lenses and organic detritus. 

In the central portion of the study area (RIOW6) FA2 is replaced with thicker, 

more poorly-sorted facies including Facies 7 and 8b. This region will be discussed 

within FA3. Facies Association Two in the eastern portion of the study area (R8W6- 

R9W6) is noticeably absent of conglomerate-rich facies. Very fine-grained trough cross- 

bedded sandstones from Facies 4b and fine-grained planar laminated sandstones from 4c 

dominate FA2. In this region Facies 7 is very rare, and Facies 8a and 8b are absent. 

Environment 

The upward coarsening succession in FA2 from the trough cross-stratified 

sandstones of Facies 4b to the planar laminated conglomerates and sandstones of Facies 

8a and 4c respectively, indicate a wave-dominated upper shoreface to foreshore 

succession (Clifton et al., 1971; MacEachern and Pemberton, 1992). The trough cross- 

bedded fine-grained sandstones of Facies 4b are interpreted to have formed in a distal 

upper shoreface environment (Hunter et al., 1979; Massari and Parea, 1988). As 

incoming waves approach the shoreface (i.e. above fair-weather wave base) they make 

contact with the substrate and become steeper (Reading, 1989; Walker and Plint, 1992). 

These shoaling fair-weather waves produce oscillation-ripples or, in the presence of weak 

currents, combined flow ripples (Dott and Bourgeois, 1982; Dumas et al., 2005). 

Eventually, the waves become over-steepened and break within the breaker zone. 

Through wave breaking, oscillatory wave motion is converted into wave-forced currents 

in the surf zone (i.e. upper shoreface) (Dumas et al., 2005). When fair-weather wave 
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approach the shoreline at oblique angles, along shore directed wave-forced currents are 

produced (Komar, 1977; Reineck and Singh, 1980). This results in a portion of the wave 

being deflected laterally parallel to shore. These currents are referred to as longshore 

currents and result in the formation of trough cross-stratification (Harms et al., 1975). 

Longshore currents are important in redistributing sediment along-strike due to their high 

velocities and lateral displacement of water (Komar, 1977). However, the overall effect 

of such transport has been interpreted to be relatively small (Reineck and Singh, 1980). 

Rip-currents are formed when longshore currents return seaward as narrow near-surface 

currents. The sharp contact between Facies 4a and 4b, and hence between FA2 and FAI, 

is attributed to the migration of rip-channels cutting through the longshore bar (i.e base of 

the distal upper shoreface) (Reading, 1989). This represents an erosional surface as the 

coarser-grained upper shoreface progrades over the underlying middle and lower 

shoreface. These offshore-directed rip-currents result in the deposition of coarser 

material into the proximal lower shoreface. It should be noted that the slope of the 

shoreface controls the width of the surf zone (Komar, 1976). Gently dipping shorefaces 

tend to have very wide surf zones where as more steeply dipping shorefaces tend to have 

very narrow surf zones. The fine-grained sandstones of Facies 4b eventually coarsen 

upward into the interbedded sandstones and conglomerates of Facies 7. These deposits 

represent deposition within the proximal upper shoreface. 

The foreshore occurs within the intertidal portion of the shoreface and directly 

overlies the proximal upper shoreface (Clifton, 1971). In this setting the surf zone 

transitions landward into the swash zone. This zone is affected by rapid swash flow up 

the beachface and is followed immediately by backwash flow down the beachface. This 

results in the formation of very well sorted sediment and seaward dipping (3-12 degrees) 

sub-planar lamination (Clifton, 1971; Massari and Parea, 1988; MacEachern and 

Pemberton, 1992). In this setting the largest clasts are only moved during high-energy 

storm events. This results in the coarser sediment typically sitting higher up in the 

foreshore, above the storm ridge (Leithold and Bourgeois, 1984). Coarse sand and 

conglomerate-rich Facies 6 and 8a would be formed in this environment where storm 

activity would be greatest. Very well-sorted unimodal granule and fine pebble 
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conglomerates would result from the intense winnowing of the finer sediment. This 

occurs due to the constant “back and forth” action that takes place within the foreshore. 

In was proposed in Chapter Two that gravel for Facies 8a and 8b could be sourced 

from nearby deltaic point sources and reworked along-strike by longshore drift. 

Therefore, the poorly sorted conglomerates of Facies 8c (FA3) could be the updrift 

source for better-sorted conglomerates in Facies 6 and 8a (FA2). Longshore drift would 

carry sediment deposited at distributary mouths downdrift and thereby increase the level 

of sorting the farther the sediment is transported. This explains why Facies 6 and 8a tend 

to be significantly finer grained than Facies 8c (see FA3). Another possibility is the in- 

place reworking of delta-front and delta-plain deposits after delta lobe abandonment 

(Arnott, 1994). Subsidence of the delta front and delta-plain would result in the apparent 

“transgression” of that delta lobe even though the overall region is prograding. This 

would result in the formation of well-sorted conglomerates from Facies 6 and 8a near the 

original location of the delta lobe. Longshore drift would undoubtedly rework and 

transport such sediment downdrift, however the displacement of gravel is interpreted to 

be relatively minor (Komar, 1977; Reading, 1989; Hart and Plint, 1995). This issue will 

be discussed in greater detail in Chapter Four. 

Discussion: Reservoir Potential 

The coarse-grained well-sorted conglomerate-rich facies (Facies 6 and 8a) 

represent the greatest reservoir potential due to the high degree of sorting and large grain 

size. A general lack of fine-grained quartz within Facies 8a greatly reduces the formation 

of quartz overgrowths and therefore allows for greater porosity and permeability 

compared to more quartz-rich facies (Cant and Ethier, 1984). As well, the original pores 

were very large due to the increased grain sizes. This results in much higher porosities 

and permeabilities than any other facies within the Falher “D”. However, local carbonate 

and clay cementation has adversely affected reservoir properties (Smith, 1984). In 

general most sandstones (Facies 4a and 4b) have undergone a significant reduction in 

permeability as a result of quartz overgrowth formation, compaction of sedimentary rock 

fragments, carbonate cementation, and clay cementation (Cant and Ethier, 1984). This 

results in “tight sandstones” containing large quantities of gas with very low 
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permeabilities (0.01-1.5 md) (Smith, 1984). However, with the aid of hydraulic 

fracturing methods, significant gas production is possible (Masters, 1979). 

Facies Association Three (FA3) — Wave-Dominated Proximal Delta-Front 

Facies Association Three represents the proximal delta-front and is the lateral 

deltaic equivalent of FA2 (Fig. 3.9) (Bhattacharya and Walker, 1991; MacEachern, 

2000). In general, the proximal delta-front is largely similar to the upper shoreface and 

foreshore due to the fact that both environments are subjected to similar marine 

processes. However, due to the deltaic influence, FA3 contains a number of significant 

variations from FA2 and justifies a separate facies association. It should be noted that 

FA2 and FA3 can be separated as a result of the excellent core control present within the 

proximal locations of the study area as compared to more distal regions (i.e. FA1). This 

is the primary reason for the prodelta to distal delta-front and distal lower shoreface to 

middle shoreface environments being included within the same facies association and the 

reason why upper shoreface/foreshore and proximal delta-front environments are not. 

However, both FA2 and FA3 do contain similar facies and a similar facies succession. 

The facies present within FA3, in a distal to proximal arrangement, include Facies 4b, 7, 

8c, and 5. These facies gradationally replace the facies from FA2 along-strike within the 

central portion of the study area. 

Description and Facies Relationships 

The facies and facies succession present within FA3 shares a number of 

sedimentological and ichnological characteristics with those of FA2. However, a number 

of important differences do occur and this is the rational for separating these associations. 

The very fine- to fine-grained Facies 4b forms at the base of the FA3 succession and 

again has a sharp erosional contact with the underlying deposits from Facies 4a (Fig. 3.9). 

Facies 4b contains a strong coarsening-upward profile with interbedded coarse mL-cU 

sand stringers, randomly dispersed pebbles, thin conglomerate beds, and the overall 

grain-size increasing upward. In general, Facies 4b is coarser-grained and contains more 

randomly dispersed pebbles and thin conglomerate beds in FA3 as compared to FA2. 

Internal stratification is dominated by trough cross-stratification with lesser amounts of 
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current-ripples and planar laminations. Organic detritus, coal fragments, and wood 

fragments are all locally common and found along bedding planes. Bioturbation is 

generally very sparse with most intervals unburrowed. In FA3, Facies 4b tends to be 

relatively thin and is quickly overlain by the interbedded sandstones and conglomerates 

of Facies 7. In some locations, Facies 4b is absent and Facies 7 directly overlies Facies 

4a (i.e. FA1). 

Sandstone beds from Facies 7 contain abundant randomly dispersed pebbles, 

coarse sand stringers, and thin conglomerate beds. Grain sorting is generally poor with 

only rare examples of moderate to well sorting. Internal stratification includes trough 

cross stratification and less common planar lamination. Overall, the segregation of 

sandstone and conglomerate is much less distinct for Facies 7 in FA3 as compared to 

FA2. This is evident with the sandstone beds containing abundant conglomeratic 

material and conglomerate beds containing an abundant poorly sorted sandy matrix. 

These intervening conglomerate beds are clast-supported with very poor to moderate 

sorting. Matrix ranges in grain size from vfL-cU and clast sizes range from cU to 3 cm 

pebbles. Beds range from 2 cm to 40 cm in thickness and display abundant trough cross- 

stratification with lesser amounts of planar laminations and massive bedding. Most 

conglomerate beds are generally sharp-based and contain significant erosion. The 

thickness of conglomerate beds generally increases upward through the facies. The 

thickness of the conglomerate beds as well as the overall thickness of Facies 7 contains 

considerable lateral variation. Facies 7 is thickest in the center of the study area (Range 

10W6) and thins rapidly in both eastward and westward directions. 

The conglomerate-rich beds of Facies 7 generally thicken upward and 

amalgamate to form Facies 8c. In some locations, Facies 8c completely replaces Facies 7 

and sits sharply above Facies 4b (Fig. 3.9). Facies 8c is very similar to the conglomerate 

beds present within Facies 7. Conglomerates are clast-supported and very poorly to 

moderately sorted. The finer-grained matrix comprises between 20-50% and ranges in 

grain size from vfU-cU. The clast sizes range from vcL to 5 cm pebbles and are 

generally well rounded. The clasts sphericity varies between spherical and elongated. 

The internal stratification is dominated by trough cross stratification and planar tabular 
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cross stratification with less common massive bedding and planar laminations. Organic 

rich laminae and mudstone rip-up clasts are present locally. 

In a number of locations, the fining-upward sandstones of Facies 5 have replaced 

portions of Facies 4b, and/or 7, and/or 8c. Facies 5 contains fine- to very coarse-grained 

sandstones with common randomly dispersed pebbles and thin poorly sorted 

conglomerate beds. Sorting is generally moderate however poor to well sorting does 

occur locally. The dominant internal stratification types include trough cross-bedding 

and planar laminations with lesser amounts of current ripples and sub-planar laminations. 

Mudstone rip-up clasts are common and generally found associated with coarser grain 

sizes. The basal contact of Facies 5 is sharp and erosional, where as the upper contacts 

are typically gradational. 

Environment 

A coarsening-upward profile similar to FA2 combined with the increased 

thickness and amount of conglomeratic-material, decreased sorting, and association with 

channelized facies indicates a proximal delta-front environment within a wave-dominated 

delta (Bhattacharya and Walker, 1992; Orton and Reading, 1993; Hart and Plint, 1995). 

The proximal delta-front is separated from the underlying distal delta-front and prodelta 

by a sharp erosional surface created during progradation. As the delta-front progrades 

over the distal delta-front, migration of rip-channels, created as longshore currents return 

seaward, erodes the underlying deposits (Reading, 1989). This is similar to the contact 

between the upper shoreface and the lower shoreface (see FA2). However, distributary 

channels are present within the proximal delta-front and serve to erode and redistributed 

sediment across this surface. 

Overlying this erosional surface are the trough cross-bedded interbedded 

sandstones and conglomerates (Facies 4b, 7, 8c) of the proximal delta-front. These facies 

undergo reworking by waves, wave-induced currents, longshore drift, and storm scour 

similar to FA2 (Orton and Reading, 1993). They therefore have a remarkable similarity 

to those facies deposited within the upper shoreface and foreshore. However, these facies 

contain four primary differences from their FA2 counterparts: (1) an overall increase in 

facies thicknesses and increased thickness of conglomerate-rich beds; (2) dramatically 
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decreased sorting; (3) increased grain sizes (i.e. larger pebbles); (4) reduced sand and 

gravel segregation. Other than these key differences, the proximal delta-front is formed 

by similar processes as discussed in FA2 and will not be elaborated further here. The 

differences listed above are highlighted in the lateral variability of Facies 8a/8c with the 

replacement of the well-sorted small pebble conglomerates of Facies 8a (FA2) with the 

poorly sorted large pebble conglomerates of Facies 8c (FA3). These differences are 

attributed primarily to the close proximity and association with distributary channels. 

Distributary channels erode underlying deposits and supply sediment to the shoreline. As 

sediment is deposited at the river mouth, wave processes serve to redistribute it along 

depositional strike (Bhattacharya and Walker, 1992). Due to this input of clastic material, 

the Falher “D” succession along with Facies 7 and 8c, tend to be thickest near fluvial 

point sources. 

Proximity to distributary channels can result in the deposition of sediment much 

faster than wave processes can redistribute it during flood events (Dominguez, 1994; 

Rodriguez et al., 2000). Increased sedimentation rates limit the time available for wave 

reworking and therefore lead to the preservation of thicker, more poorly sorted deposits. 

This is especially true for conglomerate-rich Facies 7 and 8c. The decreased sorting and 

increased thickness of Facies 7 and 8c supports the assertion of rapid deposition at rates 

faster than can be redistributed along strike by wave processes. This would also explain 

the increased grain sizes of facies present in FA3 compared to their lateral equivalents in 

FA2. Significant lateral displacement of the largest pebbles would not be expected. This 

claim is supported through comparisons of the maximum pebble sizes between Facies 8a 

and 8c, 0.8 cm and 2.5 cm respectively. 

Previous studies on gravelly shorefaces have indicated shoreface conglomerates 

tend to be better sorted than fluvial conglomerates, and that sand and gravel factions tend 

to be better segregated in deposits of shallow marine environments (Clifton, 1973; 

Leithold and Bourgeois, 1984; Orton and Reading, 1993; Hart and Plint, 1995). This has 

been attributed to the fact that rapid deposition would produce pebbly sands, while 

prolonged reworking of sand and gravel would segregate and sort the two constituents 

(Clifton, 1973). This reduced grain size segregation is evident in the Falher “D” with 

thick intervals of matrix-rich very poorly-sorted conglomerate from Facies 8c found 
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directly adjacent to distributary channel successions. The reduced sorting and presence 

of abundant finer grain sizes indicates deposition in a setting where thorough sorting of 

the sediment is not possible. As such, this facies association is interpreted to represent 

the sediment deposited in the immediate vicinity of fluvial sources. The consequences of 

this are thicker, more conglomerate-rich, and more poorly sorted sediment. As the 

distance from distributary channel mouths increases the amount of sediment deposited 

decreases and the ability of wave-related processes to rework the sediment increases. 

This results in a lateral gradation from delta-influenced successions to a typical 

strandplain succession (i.e. FA2). This supports the earlier hypothesis that the well- 

sorted sandstones and conglomerates of FA2 were most likely sourced from updrift 

deposits of FA3, either by longshore drift or through delta lobe abandonment and in-place 

reworking. 

The architecture and geometry of the proximal delta-front of wave-dominated 

deltas is very similar to typical strandplain environments (Weise, 1980; Coleman and 

Prior, 1982; Bhattacharya and Giosan, 2003). In wave-dominated deltas localized mouth 

bars do not normally form and progradation generally involves the entire delta-front 

(Elliott, 1989). Mouth bars would form immediately after large river floods, however 

intense wave action would redistribute the sediment downdrift (Rodriguez et al., 2000). 

This results in a regular shoreline profile (strike-elongated) with very little shoreline 

protuberance and possible deflection of the distributary mouth (Bhattacharya and Giosan, 

2003). Delta-fronts tend to be relatively steep in wave-dominated deltas and 

progradation tends to be much slower than other delta types (Elliott, 1989). As sediment 

is supplied to the shoreline by wide, relatively deep distributary channels, longshore drift 

reworks and carries the sediment downdrift (Coleman and Prior, 1982). Coarser 

sediment is reworked into nearshore bars near the mouth of the channel and finer 

sediment is transported into the distal delta front and prodelta (Giosan, 1998). Once these 

nearshore bars (i.e. barrier bars) received enough sediment they coalesce and become 

emergent (Bhattacharya and Giosan, 2003). The barrier bar is then reworked shoreward 

and downdrift by wave action until the downdrift flank is welded to the shoreline 

(Rodriguez et al., 2000). This will become the new shore or beach of the downdrift flank 

of the delta. Delta evolution is manner can be highly episodic, characterized by rapid 
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phases of sediment influx during major river floods and subsequent rapid delta growth 

(Rodriguez et al., 2000). Slower delta growth, greater reworking, and formation of back- 

bar lagoons (described in FA4) occurs in-between flood events. This process occurs 

repeatedly and results in the formation of an amalgamated beach ridge complex with 

possible intervening lagoons. Fraticelli (2006) expanded on this idea and noted that flood 

events alone cannot explain the formation of channel mouth-bars. He correlated the 

development of emergent channel mouth-bars in the Brazos Delta to large climatically 

induced flood events that follow prolonged droughts. Prolonged droughts removed the 

vegetation cover in the drainage areas of the Brazos River and allowed sediment to be 

eroded that would otherwise be protected. These drought-flooding cycles were linked to 

El Nino-induced floods immediately following La Nina-induced droughts. This 

illustrates the importance of climatic factors on the formation of deltaic beach ridges as 

well as the progradation of deltas in general. In this setting each beach ridge complex 

may contain an intervening lagoon. This appears to be the case in the Falher “D” in the 

eastern half of the study area. These lagoons tend to be filled in by storm-washover and 

more fluvial-dominated processes such as possible bay-head delta formation (see FA4). 

Overall these processes result in the progradation of a sheet-like sandbody, which 

parallels the shoreline. An excellent example of this is the modern wave-dominated delta 

along the coast of Costa de Nayarit, Mexico (Curray et al., 1969). 

Facies Association Four (FA4) — Lower Delta-Plain and Marginal-Marine 

Brackish- Water Environments 

Facies Association Four encompasses all marginal-marine brackish-water 

environments present within the study area. This includes the lower delta-plain as well as 

non-deltaic brackish-water deposits present along the Falher “D” coastline. These 

environments generally fall between the high and low tide (intertidal region) marks along 

the Falher “D” shoreline. However, the lower delta-plain would not include the intertidal 

region along the foreshore. The deltaic equivalent of the foreshore would instead be 

included within the proximal delta-front (FA3) due to the dominance of wave related 

processes. All other marginal-marine environments within deltas would be included in 

the lower delta-plain, including active distributary systems, abandoned distributary-fill, 
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interdistributary bay deposits, intertidal flats, and inter-abandoned barrier-bar lagoons 

(MacEachern, 2000). Both marine and fluvial processes, with varying amounts of each, 

operate within these environments. In general, the facies present in FA4 display a wide 

range of sedimentary structures and lithologies, however they maintain a distinctive set of 

ichnological characteristics. This facies association includes the following facies: Facies 

la, 1b, 3a, 3b, 4c, and 5 (Fig. 3.10). 

Within the Falher “D” succession FA4 is generally underlain by the proximal 

marine sandstones and conglomerates of FA2/FA3 and overlain by the non-marine 

mudstones of FAS. The three regions with the greatest abundance of FA4 are the large 

extensive lagoons within R8W6 and R9W6, the lagoonal and interdistributary bays in 

R10W6, and the brackish-water deposits incased within coastal plain near the top of the 

Falher “D” succession (R13W6). Non-deltaic brackish-water environments are fairly 

uncommon along wave-dominated coasts, however there are significant local 

accumulations. The spatial distribution of FA4 will be discussed further in Chapter Four. 

Description and Facies Relationships 

This facies association is dominated by sand-rich and silt-rich mudstones with 

variable biological reworking. The facies present within FA4 can also be separated into 2 

broad groups based on the amount of biogenic reworking: bioturbated (Facies la and 3a) 

and sparsely-bioturbated (Facies 1b and 3b). The silt-rich mudstones of Facies la and 1b 

are the finest grained facies present in the study and are confined to FA4 and FAS. 

Facies la and 1b are dominated by pin-striped planar laminations and combined flow 

ripples. Other prominent sedimentary structures include current-ripples and wavy 

through lenticular bedding. Massive and rhythmic bedding is also commonly found 

within Facies 1b, as well as pyrite-rich nodules, siderite, and rare bivalve shells. Both 

facies contain abundant syneresis cracks and localized soft sediment deformation. Very 

rare desiccation cracks are found within both facies. Facies la contains a low diversity 

trace fossil suite with Teichichnus, Planolites, and Chondrites burrows the most common. 

Intervals of abundant reworking by only one ichnofossil (e.g. Teichichnus) are abundant 
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and represent the most common form of bioturbation. However, the intensity of biogenic 

reworking can be quite high. Facies 1b on the other hand contains very little bioturbation 

with only very rare Planolites burrows. These facies form gradational contacts with the 

sandier facies (Facies 3a, 3b, and 4c). 

Facies 3a and 3b represent interbedded sandstones and mudstones with varying 

amounts of bioturbation. Combined flow ripples and planar laminations are the dominant 

types of internal stratification. Muddier intervals contain syneresis cracks and locally 

abundant rooting, micro faulting, and soft sediment deformation. These facies are very 

similar to Facies la and 1b except they contain a much greater proportion of sand. Grain 

sizes generally do not exceed fine-grained sand and sandstone beds are not greater than 

10cm thick. Facies la and 3a contain a similar trace fossil suite with Planolites, 

Chondrites, and Teichichnus burrows the most common with lesser amounts of 

Diplocraterion and Thalassinoides. Facies 3b on the other hand contains only very rare 

Planolites and Teichichnus burrows. The planar laminated very fine- to fine-grained 

sandstones of Facies 4c are also present within FA4 but to a much lesser degree than 

those described above. These sandstones are generally moderately to well sorted with 

locally abundant organic-rich laminae and rooting. Other less common stratification 

types include sub-planar laminations and massive bedding. These sandstones tend to 

have gradational contacts with Facies 3a and 3b. 

These facies are also commonly associated with sharp-based fining-upward 

sandstones from Facies 5. Grain sizes vary from very fine to coarse sand sized with 

common small pebbles. The typical internal stratification types include abundant trough 

cross-bedding and planar laminations with less common current-ripples. Massively 

bedded intervals containing numerous large angular mudstone rip-up clasts are also quite 

common. Sandstones from Facies 5 eventually grade upwards into interbedded 

sandstones and mudstone of Facies 3a and 3b, and eventually into Facies la and 1b. 

Environment 

Facies Association Four represents a wide variety of marginal-marine brackish- 

water environments present within back-barrier lagoons, as well as within the lower 

delta-plain (Wightman et al., 1987; Pemberton and Wightman, 1992; Dominguez, 1996; 
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MacEachern, 2000; Pemberton et al., 2001). Non-deltaic brackish-water environments 

are fairly uncommon along prograding wave-dominated coastlines, however there are 

significant local accumulations (Galloway and Hobday, 1998). However, brackish-water 

deposits comprise a considerable portion of the lower delta-plain especially on the 

downdrift side of wave-dominated deltas (Dominguez, 1996; Bhattacharya and Giosan, 

2003). Environments present in FA4 range from storm washover deposits on the seaward 

side, to silt-rich mudstones in the central lagoon, to bay-head delta deposits on the 

landward side. 

Immediately landward of the beach and barrier bar deposits (FA2/3), fine-grained 

planar laminated sandstones of Facies 4c are most abundant and are interpreted as storm 

washover deposits (McCubbin, 1982). Washover fans are lobe-shaped sand units formed 

when large storm waves wash sediment over-top of the barrier bar. These deposits can be 

associated with tidal inlets. Permanent tidal inlets are rare in wave-dominated microtidal 

environments however large storms can create short-lived temporary tidal-inlets (Elliott, 

1989). These channels are cut through the beach face and supply sediment-laden storm- 

waters to the back-barrier environment (Elliott, 1989). Longshore drift and constant 

wave-action quickly seal-off most tidal-inlets however they do migrate quickly and can 

form significant deposits (McCubbin, 1982). The absence of permanent communication 

with the marine realm and episodic storm-influence will produce widely fluctuating water 

salinities. These sandier, wave-/storm-dominated facies transition landward into 

interbedded lagoonal mudstones and sandstones of Facies 3a and 3b. The interbedded 

sandstones and mudstones of Facies 3a and 3b represent an increased accumulation of 

sand sized sediment in the lagoon/bay. The presence of common syneresis cracks among 

interbedded sands and muds indicate that freshwater input may have been associated with 

deposition of the sand (Burst, 1965). The rarity of mudcracks implies that subaerial 

exposure was not common and supports the assertion that this was a microtidal 

environment. As facies are positioned farther landward, marine processes (i.e. 

waves/storms) decrease and fluvial processes increase (Dalrymple, 1992). The wave- 

dominated estuary model with its tripartite distribution of total energy, depositional 

environments, and facies heterogeneity best illustrates this transition (Dalrymple et al., 

1992) 
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Landward of the coastal beaches, the interbedded sands and muds from Facies 3a 

and 3b transition gradationally into the silt-rich mudstones located in the central basin of 

the lagoon. The central basin lagoonal mudstones (Facies 1a and 1b) are characterized by 

planar to current rippled silty mudstones with common syneresis cracks and a 

characteristic ichnological signature consisting of Teichichnus, Planolites, and 

Chondrites (Wightman et al., 1987; Beynon and Pemberton, 1992). Trace fossils present 

within this environment contain a series of similar characteristics that are well 

documented in the brackish-water model (Pemberton et al., 1992). These characteristics 

include: a low diversity trace fossil suite, sometimes dominated by a single ichnogenera; 

predominance of diminutive trace fossils; morphologically simple marine forms 

constructed by opportunistic trophic generalists; vertical and horizontal traces; and 

locally dense ichnofossil populations. The characteristics listed above are best observed 

within the Falher “D” in the monospecific assemblage of Teichichnus, which is readily 

observed within lagoonal mudstones (Wightman et al., 1987). These characteristics are 

all related to the highly physiologically stressful environment resulting from large salinity 

fluctuations (Pemberton and Wightman, 1992). Salinity fluctuations occur due to varying 

amounts of freshwater, from rivers and runoff from land, and saltwater input, from storm- 

washover and tidal inlets. In general, the diversity and abundance of traces fossils will 

increase seaward as salinities increase (Beynon and Pemberton, 1992; MacEachern, 

2000). Therefore facies 1b and 3b, depending on lithology, will dominate regions with 

greater freshwater input and the most stressful environments, where as facies la and 3a 

are more typical of brackish water ichnological assemblages. The relative amount of sand 

and silt also varies depending upon the position within the system (i.e. more sand near the 

active shoreline and fluvial sources with more mud in the in-between). 

On the landward side of the lagoon, fluvial processes are more dominant than 

marine processes (Dalrymple, 1992). Bay-head delta formation would be expected in 

regions with active distributaries (MacEachern, 2000; Pemberton et al., 2001). However, 

that environment was not observed in the core selected for this study. This is attributed 

to a lack of cored intervals within these environments. Bay-head delta formation would 

be expected to form significant deposits within the lower delta-plain especially on the 

downdrift flank of the delta (Rodriguez et al., 2000; Bhattacharya and Giosan, 2003). 
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These fluvial-dominated systems would be expected to “fill-in” the lagoonal 

environments in-between beach ridges. Tidal flats, tidal creeks, or salt marshes may flank 

the margins of lagoonal mudstones (MacEachern, 2000). However, all tidal deposits are 

extremely rare. This is interpreted to support the claim that this is a microtidal setting. 

The lower delta-plain tends to have numerous elongate lagoons existing between 

abandoned shore parallel beach-ridges (Elliott, 1989). Where as typical non-deltaic 

brackish-water environments tend to have one large lagoon located between the barrier 

island (i.e. active shoreline) and the coastal plain (McCubbin, 1982). Lower delta-plain 

environments also differ in that they have abandoned and active distributary networks 

cutting through them. The sharp-based poorly sorted conglomerates of Facies 7 and 8c 

and the fining-upward sandstones of Facies 5 are interpreted as distributary channel fill 

deposits. In wave-dominated settings distributary channels tend to be volumetrically 

minor (Bhattacharya and Walker, 1992), however the main channel tends to be wide and 

deep (MacEachern, 2000). The main channel tends to be relatively stable with much less 

avulsion than seen with river-dominated deltas (Coleman and Prior, 1982). 

Interdistributary bays are also present and are contained in-between distributary channels. 

These bays appear quite similar to lagoons except for greatly reduced biogenic 

reworking. 

Discussion: Asymmetrical Deltas 

The processes described above (FA3/FA4) would produce a series of narrow 

barrier-shoreface sandstones separated by topographically lower areas filled with mostly 

finer-grained sediment on the downdrift side of the wave-dominated delta (Dominguez, 

1996; Bhattacharya and Giosan, 2003). Sediment immediately downdrift of distributary 

mouths would be the least mature texturally within the system. Extensive lagoons or 

lakes would also be expected to form downdrift. In contrast, the updrift regions would 

consist of sheet sandstones/conglomerates representing widespread beach deposits and 

dramatically less clay and silt (see FA2). These deposits would have resulted from 

extensive reworking by longshore drift and in the case of the Falher “D” transport from 

the west. Therefore, the sediment on the updrift flank is not sourced from the immediate 

distributary channel but rather from other sediment sources farther to the west 
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(Dominguez, 1996). Possible sources include older abandoned delta lobes (described 

above), other active deltaic point sources, and other coastal formations. This description 

fits the asymmetrical wave-dominated delta model developed by Bhattacharya and 

Giosan (2003). They predicted considerable river-borne muds and a lower maturity of 

sediment in downdrift areas, and well sorted texturally mature sediment updrift. This 

appears to be the case in the Falher “D” and will be discussed in greater detail below. 

Facies Association Five (FA5) — Coastal Plain and Upper Delta-Plain 

This facies association comprises all non-marine environments present above high 

tide and is the most proximal facies association in this study. This region is dominated 

by fluvial processes and includes the following environments; fluvial channels, channel 

overbank/levees, crevasse splays, floodplains, swamps, lakes, and marshes (Wadsworth 

et al., 2002). These environments exhibit little to no bioturbation and generally include 

high concentrations of organic matter (Wadsworth et al., 2003). Facies present, in order 

of increasing grain size, include, Facies 9, la, 2, 4c, and 5. Within the study area most 

deposits in FAS are interbedded with or closely related to coal deposits. The deltaic 

regions above the high tide mark are referred to as the upper delta-plain. These deposits 

are separated from coastal plain deposits based on associated environments, however 

based upon lithic character alone they are nearly identical (MacEachern, 2000). 

This facies association is present throughout the study area and generally makes 

up the uppermost portion of the Falher “D” succession. Deposits of FA5 tend to either 

directly overlie marine sandstones and conglomerates of FA2/FA3 or the marginal- 

marine sandstones and mudstones of FA4. Facies Association Five is overlain by the 

marine sandstones (FA1) of the Falher “C” succession. High organic content, presence 

of roots, coal-rich horizons, and a complete lack of trace fossils typify this facies 

association. 

Description and Facies Relationships 

This facies association is divided into two subdivisions based on lithology; 

sandstone-dominated and mudstone-/coal-dominated. The first subdivision includes 

sand-rich facies with less common mud and rare conglomerate. These facies form clearly 



sa crete ep eclipse aetna AD 

Reskinenrrneals ah integers add yetbbegel abe esd neitaicenRn: sina buwtieng woot 9d} ei baa shir 

lank: wiesneets eiOl seavcniones yrivotipt att esata lte sozausorg lanult yd 

dreowebelld) katana bas 2aknl angina -eoiigbool yoga samnvers sreidindsane 

abuloni dicmnay bre anton aiet seit iAihee ensiacnivine wet t «(SH08-«leae 

yshieval peng toil CRAOS , lato dence) rete saugan Yo anomirunsone> date 

Iron wien bade ott col 0 tan ok 8 ed) Meola abulsay ose oir griesotani to 

siw@lnh ofl oaigoqail lies oF baeler Wiaente od bobbaceant gui 2A% ai ataoged | 

idiaugab seed T nialqusitoticnsgye od x08 barista sat iam abd dgit 9d) svods anoigin 

erst wanammotives talaizoan no byead exesqoh sinkg Innoo root baie ow 

O00S. ésethadion) ivanell yhse ose pant sonla toromatlo oiitil mequ beaud 

vmlern vileroen Lie dem bine se torques soreewag ab nektnyscemn epiadt aitT. ; 

satitis of baat EAL te reoqut) .coteaoaabe “C" wurblet att To. andren szonmaqgu oi qu 

door of we LAK DAT le ween toe ernqmbane oinam sityowo yloonh 

died mudlywre ai owl aeansionerds walvat SAM bo wormurhaner tne emrottbosa srw 

Aoublong iets cep aaabL enmdevonise “OD” asafhe"d ests te 1144) esdolebase siutteatt 

asiowi ao Cty wtiagod ave Yo deel arvkgany 2 bee .cmastvodl ttath hao ,pipon AO 

Hoitaisosen 

| | sssiiinlbinth notes iiederinalth 

epolodith wy doce andidiwibnine wa-otal bbbieib xi animus esioet 2htT im 

votatlont mieivindvs ed wl bonepionibelwel-ueciebore boa betsnimob-sngmbane 



2 

fining-upward successions with interbedded sandstone and conglomerate (Facies 7 and 

8c) located at the base, grading upward into the sandstones of Facies 5 and 4c, and finally 

into silt- and mud-rich Facies 1b and 9. Facies 7 and 8c are generally only found along 

the bottom 30-40 cm of the succession and are very sharp-based. The fining-upward very 

fine- to very coarse-grained trough cross-bedded sandstones of Facies 5 gradationally 

overlie Facies 7 as the conglomerate-rich beds disappear upward. Facies 5 comprises 

most of the coarser-grained portion of FAS and can form up to 15 m thick intervals. In 

some locations, Facies 5 is overlain by Facies 4c. Facies 4c contains planar laminated 

very fine-grained sandstones. Mudstones rip-up clasts and soft sediment deformation are 

characteristic of Facies 4c in FA5. These sandstone-rich facies form a gradational upper 

contact with the overlying silt-rich mudstones and are often interbedded over 10-30 cm 

intervals. Facies 2 is uncommon within the study area however; it tends to be close 

associated with Facies 5. Facies 2 consists of massive siltstone and more rare very fine- 

grained sandstone with interbedded organic-rich deformed mudstone beds. Large angular 

mudstone rip-up clasts and soft sediment deformation are characteristic of Facies 2. 

The second subdivision within FAS includes the finest-grained facies present 

within the study area: Facies 1b and 9. Facies 1b contains non-bioturbated silt-rich 

mudstones, while Facies 9 consists of organic-rich mudstones with interbedded coal. 

Both facies tend to be massive with common thin planar laminated siltstones and less 

common very fine-grained sandstone laminae. Abundant rooting results in thorough 

pedogenic alteration. Coal beds are common and are interbedded throughout. Facies 1b 

and 9 can comprise most of the Falher “D” succession in the southern most regions of the 

study area with rare fining-upward sandstone-rich bodies eroding into them. 

Environment 

This facies association represents the most proximal environments within the 

study area. This encompasses all non-marine environments located above high-tide and 

includes both typical coastal plain and the upper delta-plain environments. The upper 

delta-plain is only distinguishable from FAS based upon its association with the lower 

delta-plain and delta-front. Therefore, the coastal plain and upper delta-plain will not be 

separated in this study. 
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Based on lithology and environmental interpretations, FAS is divided into two 

subdivisions. These subdivisions correspond to those described above. The first 

subdivision includes the sandstone-dominated facies and include, in order of decreasing 

grain size, Facies 8c, 7,5, 4c, and 2. This facies succession is interpreted to represent 

fining-upward channels and channel margin complexes (Miall, 1992). Facies 2 is 

interpreted to represent fluvial overbank or levee deposits, which tend to be closely 

associated with channels. Common large-scale angular mudstone rip-up clasts are 

thought to represent bank collapse (Pemberton et al., 2001). Fining-upward fine-grained 

sandstone to large pebble conglomerate successions represents lateral accretion of a 

fluvial point bar. Channels incising into floodplain deposits create the sharp erosive base 

of these units. Thickly bedded trough cross-bedded sandstones represent deposition 

within the main channel (Facies 5), while very fine-grained sandstones and siltstones 

represent deposition toward the inner portion of channel (Facies 4c and eventually Facies 

1b) (Galloway and Hobday, 1996). These channels supply sediment to wave-dominated 

deltas along the coast, which in-turn supply sediment to the shoreface. Numerous large 

to small scale fluvial channels are located “behind” the Falher “D” shoreline (T67W6). 

Fluvial channel networks are most commonly found south the wave-dominated proximal 

delta-front complexes (FA3) in RIOW6. These networks run roughly perpendicular to 

the paleoshoreline (i.e. north-south) and correspond to the distributary channels of FA3. 

Wave-dominated deltas are typically limited to one or two distributary channels 

(Bhattacharya and Walker, 1992). Therefore, it is inferred that most of the recognized 

channel deposits come from the same main channel network. These channels play an 

important role in the distribution of sediment along the coast. Channel avulsion can lead 

to delta lobe abandonment and subsequent establishment at another location (Penland et 

al., 1985; Arnott, 1994). There are also a number of recognized channel complexes 

located above the Falher “D” shorefaces. These channels are interpreted as distributary 

channels feeding wave-dominated deltas farther to the north. 

The second subdivision, described above, includes the fine-grained, organic-rich 

mudstones facies from Facies 1b and 9. These facies are interpreted to represent a wide 

variety of non-marine environments including floodplain, swamps, lakes, and marshes. 

This set of environments dominates most of FAS with only localized occurrences of 
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fluvial channels cutting through them. Thick coaly mudstones and extensively rooted 

horizons are generally indicative of swampy environments (Leckie and Kalkreuth, 1990). 

Low-lying areas behind the active shoreline are typically close to the water table, 

resulting in conditions favorable to coal development. Sizeable coal accumulations are 

abundant in the Falher Member/Gates Formation and form significant economic deposits 

in British Columbia. These coals form above the extensive sand sheets produced from 

strandplain and deltaic progradation (FA2/3). In this setting the strandplain would begin 

to subside immediately after deposition and allow ample accommodation space (Leckie 

and Kalkreuth, 1990). The reduced number of distributary channels associated with 

wave-dominated systems creates large areas of coastal plain removed from active 

sedimentation and therefore protected enough to allow significant coal accumulations to 

form (Dissel et al., 2000). Relatively low ash and sulphur contents indicating protection 

from fluvial flooding support this claim (Kalkreuth and Leckie, 1989). However, many 

coals show large amounts of components (ex: inertodetrinite and vitrinite B) that indicate 

sporadic flooding from river and more commonly storm events (Kalkreuth and Leckie, 

1989). Coal-bearing units within the Falher Member can reach up to 12 m in thickness 

and can be traced laterally east-west for over 230 km. This is expected since wave- 

dominated systems, particularly wave-dominated deltas, tend to form regional extensive 

coal horizons near the shoreline (Leckie and Kalkreuth, 1990; MacEachern, 2000). 
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(3.2) Depositional Model: The Presence of Wave-dominated Deltas along a Storm- 

/Wave-dominated Coastline 

The deposits of the Falher “D” within the study area are undoubtedly storm- and 

wave-dominated and consist of extensive linear strandplains. Typical coastlines contain 

numerous fluvial channels terminating along the shoreline and the Falher “D” is no 

different (Fig. 3.11). These channels supply sediment to the shoreline and produce 

localized deltaic point sources. However, due to the strong wave-/storm-climate, marine 

processes rework these deposits and redistribute sediment along the shoreline. This 

results in the formation of strike-elongated wave-dominated deltas. As with all deltas, 

the wave-dominated variety contains a delta-plain, delta-front, and prodelta. These 

environments vary in their similarity to their laterally equivalent strandplains and have 

historically been very difficult to differentiate (Moslow and Pemberton, 1988). Therefore 

long stretches, sometimes greater than a 100 km, of wave-dominated coastline will 

labeled as a continuous strandplain. This is undoubtedly incorrect and has important 

implications in potential exploration and reservoir morphology. There are however a 

number of important characteristics that can be used to differentiate the two. Recently a 

number of authors have attempted to differentiate wave-dominated deltas from typical 

strandplains (e.g. Coastes, 2001; Bhattacharya and Giosan, 2003; Hobbs, 2004; 

MacEachern et al., 2005; Coates and MacEachern, in press) and have made important 

contributions. The following section will describe the along-strike transition from delta 

to strandplain in the Falher “D” succession, the characteristics of wave-dominated deltas, 

and possible methods of differentiating such environments. 

Typical Vertical Succession and Along-strike Transition 

The Falher ““D” succession, based upon the facies associations described above, is 

interpreted to be composed of a wave-/storm-dominated strandplain and laterally 

equivalent wave-dominated deltas. The most distal facies association described in this 

study is the Lower Shoreface/Distal Delta-Front (FAI). This facies association is 

composed of a coarsening-upwards succession of storm-dominated shoreface and delta- 

front environments. Facies 3a and 4a represent distal lower shoreface to middle 

shoreface deposits in strandplains. Laterally equivalent prodelta to distal delta-front 
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deposits contain Facies 3b and 4a. The extremely high storm reworking of all deposits 

within FAl makes the differentiation of these two subenvironments very difficult. 

However, distal delta-front deposits tend to have more mudstone, soft sediment 

deformation, syneresis cracks, organic muds, and reduced ichnological signatures 

compared to its along-strike counterparts (Elliott, 1989; MacEachern, 1994; Gingras et 

al., 1998; MacEachern et al., 2005; Coates and MacEachern, in press). Most fair-weather 

deposition, with rare exceptions, has been eroded by subsequent storm events and 

therefore is not preserved. This indicates the presence of frequent intense storms along 

the entire Falher “D” coastline in the study area (Saunders et al., 1994). 

Sharply overlying FAI are the wave- and storm-dominated upper shoreface and 

foreshore (FA2) or proximal delta-front deposits (FA3). Due to the effects of fluvial 

point sources along the shoreline, the proximal facies associations contain a much greater 

degree of along-strike variability. Associated with these fluvial point sources are wave- 

dominated deltas, which form as sediment from distributary channels 1s deposited at the 

shoreline (FA3). This sediment is then reworked and redistributed by wave action and 

longshore drift in a downdrift direction into deltaic barrier bars that eventually form 

beach ridge complexes separated by intervening lagoons (FA4) (Dominguez, 1996). The 

updrift component of the delta is formed from the along shore transport of sediment from 

the west and closely resembles a typical strandplain (FA2). Deltaic deposits tend to form 

thick coarsening-upward successions, have thicker more poorly sorted conglomerate-rich 

intervals, tend to be located in proximity to fluvial systems, and have a greater proportion 

of organic material, mudstone rip-up clasts, and other characteristics associated with 

fluvial deposition. 

Fluvially influenced deposits grade laterally into purely wave-/storm-dominated 

strandplain systems (FA2). Trough cross-bedded sandstones (Facies 4b) with significant 

pebbles and thin conglomerate beds sharply overlie FA1 and form within the distal upper 

shoreface. These deposits coarsen-upwards into interbedded sandstones and 

conglomerates (Facies 7) formed within the proximal upper shoreface, and eventually 

into thick very well-sorted conglomerates (Facies 8a) formed in the foreshore. Due to the 

extensive reworking by wave action and frequent storm activity in this environment, 

these foreshore beach conglomerates tend to be very well-sorted, planar-laminated, and 
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have good lateral continuity. Deltaic point sources, similar to FA3, supply the sand and 

gravel that will eventually form FA2. This results in an along-strike transition from 

relatively poorly sorted thicker deltaic deposits (FA3) into thinner more well-sorted 

strandplain deposits (FA2). Strandplain and wave-dominated deltaic environments only 

display minor differences and are generally difficult to differentiate. 

Foreshore beaches pass landward into marginal-marine lagoonal environments 

from FA4 and eventually into the non-marine coastal plain environments of FAS. These 

environments represent the most proximal observed within the study area. Brackish- 

water conditions form near the coastline where rare influxes of seawater produce lagoons 

or bays. This commonly occurs within the lower delta-plain, especially on the downdrift 

flank of deltas as described above (Bhattacharya and Giosan, 2003). Non-deltaic 

brackish-water conditions are also present in other locations, however these tend to be 

volumetrically minor. The high water table associated with wave-dominated systems as 

well as the rapid subsidence of the delta-front and delta-plain result in the frequent 

flooding of the lower-lying areas and produces extensive marsh or swamp environments 

(Dissel et al., 2000). Regionally extensive coal and organic-rich horizons result from 

these conditions. These deposits are locally cross-cut by higher-energy fluvial systems 

feeding deltaic deposits along the coast. These fluvial systems tend to form in a north- 

northeast to south-southwest orientation, directly perpendicular to the shoreline. 

Discussion: Wave-Dominated Deltas vs. Strandplains 

Deltas are defined as “discrete shoreline protuberances formed where rivers enter 

oceans, semi-enclosed seas, lakes or lagoons (standing bodies of water), and supply 

sediment more rapidly than it can be redistributed by basinal processes” (Elliott, 1989). 

The morphology of each delta is controlled by two principal factors. The first and most 

important is the relative dominance of river sediment input, wave-energy, and tidal flux 

(Galloway, 1975). The second is the relative density of the river inflow with respect to 

the receiving basin. Where the river outflow is more dense than the standing water body, 

it is referred to as hyperpycnal flow, equally dense is referred to as homopycnal flow, and 

less dense is referred to as hypopycnal flow (Bhattacharya and Walker, 1992). The most 

common classification of deltas, referred to as the tripartite model, is based on the nature 
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of the delta-front regime: fluvial-dominated, tide-dominated, and wave-dominated 

(Galloway, 1975) (Fig. 3.12). Wave-dominated deltas will be examined in greater detail 

in the following sections and will be contrasted with strandplains. 

Strandplains are prograding shorefaces built seaward by waves and currents 

spanning long distances along the coastline (Curray et al., 1969). They are characterized 

by sub-parallel to parallel amalgamated beach ridges, directly connected to the coastal 

plain, that form sand-dominated coarsening-upward successions (Reading and Collinson, 

1996). Strandplains tend to lack extensive lagoonal environments and tidal channels, 

which are more common in transgressive barrier island environments. The best- 

documented example is the Costa de Nayarit strandplain in Mexico (Curray et al., 1969). 

Strandplains lack major fluvial input, as in wave-dominated deltas, however they are 

ultimately fed by longshore drift from fluvial point sources farther along the coast 

(Walker and Plint, 1992). These systems generally form vertical successions that are 

very similar to wave-dominated deltas in many regards. However, the lack of a direct 

fluvial source results in many sedimentological and ichnological differences. The 

purpose of the following section is to highlight these differences and relate them to the 

Falher ““D” succession. 

Characteristics and Geometry 

Wave-dominated deltas normally occur in settings with strong wave climate and 

comparatively weak tides (Galloway, 1975). In general, wave-dominated deltas consist 

of one or two active river mouths, which will produce off-lapping lenses of delta-front 

deposits (Pemberton et al., 2001). However, high-energy wave activity causes rapid 

diffusion and deceleration of river flow. This occurs when fluvial outflow is 

considerably weaker than wave energy. Under these conditions distributary-mouth sands 

are reworked by waves and redistributed along the delta-front by strong longshore drift. 

These processes result in the formation of extensive sandy beaches, barrier bars, and 

delta-front deposits. Any mud present within the system will be confined to marshes and 

delta-plains or winnowed out and transported seaward into the prodelta (Bhattacharya 

and Walker, 1992). The result is an increase in energy upwards within the succession 

and domination by sandy wave-generated structures. The sandy nature of wave- 
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Fluvial 

Fluvial-dominated 

Deltas 

a 8 

Wave-dominated 

6 Deltas 

Tide-dominated 

Deltas 

Wave Tide 

Fig. 3.12 - Tripartite classification of delta types (modified after Galloway, 1975). (1) 

Mississippi Delta (2) Fraser Delta (3) La Fourche Delta (4) Nile Delta (5) Sao Francisco 

Delta (6) Rhone Delta (7) Tiber Delta (8) Niger Delta (9) Mahakarn Delta (10) Senegai 

Delta (11) Copper Delta (12) Fly Delta 
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dominated deltas results in gamma ray log profiles that are commonly smoother than 

those of river-dominated deltas (Van Wagoner, 1990) (Fig. 3.13). 

Although storms and fair-weather waves are distinct processes, wave dominance 

is frequently accompanied by, but not always, a strong storm influence (MacEachern et 

al., 2005). Therefore, in some cases (e.g. Falher “D”) the delta-front can be dominated 

by storm events, resulting in hummocky cross-stratified (HCS) and swaley cross- 

stratified (SCS) dominated successions. These successions tend to be coarsening-upward 

and closely resemble storm-dominated shorefaces (i.e. strandplains). This results in great 

difficulty differentiating strandplains from truly wave-dominated deltas. This is the main 

reason why strandplains as long as 300 km long have been documented. This occurs 

even though no strandplain even remotely close to this length has ever been documented 

in modern environments. 

The geometry of deltas is mainly controlled by the two principle factors discussed 

above. The most important factor is the degree of reworking by marine processes 

(Weise, 1980) (Fig. 3.14). Deltaic environments with very little marine reworking, as in 

river-dominated systems, result in lobate geometries. It is this lobate geometry that is 

generally included in the definition of deltas as “discrete shoreline protuberances”. 

However, strong wave intensities will result in strongly modified lobate depositional 

patterns. This is the case in wave-dominated deltas, where lateral redistribution of sand 

will result in strike-elongated geometries (Fig. 3.14). With increased reworking by 

marine processes, deltas can become very difficult to distinguish from normal shoreface 

successions based on geometry alone. 

Delta Asymmetry and Delta Lobe Abandonment 

Wave-influenced/wave-dominated settings with strong longshore drift will have 

sediment preferentially move downdrift of distributary mouths. This can result in the 

formation of deltas with asymmetric geometries and facies distributions (Bhattacharya 

and Giosan, 2003) (Fig. 3.15). In this model, fluvially derived sediment and associated 

environmental stresses, such as turbid mud plumes and salinity fluctuations will be 

deflected downdrift of the river mouth. Consequently, the downdrift region will exhibit 
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River-Dominated Delta Front Wave-Dominated Shoreface 

Nonmarine Nonmarine 

F hore Sandst 
Proximal Channel pe eee cw 

Mouth Bar ae Se ee 
Upper Shoreface 

Sandstones 

Distal Delta Front ZS | Lower Shoreface 
Heterolithic Facies Bas. Sandstones 

Distal Shoreface 
Prodelta Mudstones Sandstones 

Offshore Mudstones 

Offshore Mudstones 

Fig. 3.13 - Comparison of delta front successions in river-dominated vs. wave-dominated 

successions. The sandy wave-dominated shoreface successions would be more typical of the 

updrift flank of a wave-dominated delta, but could also represent a prograding non-deltaic 

shoreface. The fluvial-dominated succession would be more typical of the downdrift flank of a 

wave-dominated delta (modified after Bhattacharya and Walker, 1992). 
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characteristics illustrating fluvial discharge and the updrift region will not. Under these 

conditions, the updrift region would have sediment sourced not from the nearby fluvial 

channels but rather from the longshore transport of sediment from other sources farther 

updrift. These sources of sediment could include other active deltaic point sources and/or 

abandoned delta lobes. 

On the downdrift side of wave-dominated deltas, one would expect a pronounced 

fluvial-influence on deposition; including increased rates of deposition, salinity 

fluctuations, turbid mud plumes, reduced oxygenation, and water stratification. 

However, the increased wave activity present within wave-dominated deltas serves to 

mediate these stresses (MacEachern et al., 2005). As well, increased storm amalgamation 

reduces the preserved record of fair-weather deposition and hence most fluvial indicators 

(Saunders et al., 1992). In these settings, wave energy is effective at removing clay/silt 

from the substrate and transporting it offshore. This produces a clean sandy substrate 

within most of the delta-front. However, the water column would remain highly turbid 

preventing the formation of suspension-feeding structures (Gingras et al., 1998; 

MacEachern et al., 2005). This would leave high-energy sandy substrates dominated by 

deposit-feeding structures. This distribution is evident in the Falher “D” with a general 

absence of suspension-feeding traces including Diplocraterion, Ophiomorpha, and 

Skolithos. Also, reduced trace fossil abundances and diversities are common on the 

downdrift flank of wave-dominated deltas in the Falher “D” (see Chapter Four). This is 

attributed to salinity fluctuations, turbid mud plumes, and reduced oxygenation linked to 

phytodetrital pluses during river-flood events (MacEachern et al., 2005). In more 

proximal settings, heterolithic successions and brackish-water conditions can form in the 

proximal delta-front and lower delta-plain if lower energy embyaments occur 

(Bhattacharya and Giosan, 2003). This forms a prominent feature in the eastern half of 

the study area in the Falher “D” (Fig. 3.16). 

In contrast, updrift of the river mouth, one would expect very little fluvial 

influence. The updrift part of the delta would consist of a massive amalgamated sand- 

dominated (and conglomeratic if a source was available) beach ridge complex sourced 

from sediment input farther along the coast (Dominguez, 1996) (Fig. 3.17). The 

sedimentary succession in this setting would be very similar to and difficult to distinguish 
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from typical strandplains. This is a marked departure from the classic model of wave- 

dominated deltas where arcuate to cuspate lobes form and all sediment is derived directly 

from the associated river (Bhattacharya and Walker, 1992). However, this model is still 

accurate in settings where the net longshore drift of sediment at the river mouth is minor 

and symmetrical delta geometries would be expected. 

The main requirement in the development of asymmetrical deltas is the presence 

of strong longshore drift (Bhattacharya and Giosan, 2003). The presence of a strong 

longshore drift has been proven true along many shorelines in the Western Canadian 

Sedimentary Basin and is inferred in the Falher “D” succession (Ericksen and 

Slingerland, 1990; Saunders et al., 1994). Another important feature in asymmetrical 

delta formation is the presence of an updrift source of sediment. These can occur in the 

form of another active deltaic system, older abandoned delta lobes, other coastal 

formations, and lowstand shelf sands (Bhattacharya and Giosan, 2003). In the case of the 

Falher “D”, the interpreted source of sediment is an older abandoned delta lobe located 

along the British Columbia — Alberta broader and/or other active deltas. Another 

requirement for asymmetrical delta formation is high levels of fluvial discharge capable 

of exerting a strong groyne effect in order to block sediment drift. This will result in the 

updrift retention of sediment moving along the coast and restrict further along-strike 

movement past the river mouth. If this is not the case then the updrift sediment will 

continue moving along-strike and will result in the deflection of the river mouth parallel 

to the shoreline. 

In a number of recent studies, ancient and modern wave-dominated deltas have 

been reevaluated and interpreted as asymmetrical wave-dominated deltas (e.g., 

Dominguez, 1996; Giosan, 1998; Giosan et al., 1999; Rodriguez et al., 2000; 

Bhattacharya and Giosan, 2003; Hansen and MacEachern, in press). The modern Sf. 

Georghe Lobe of the Danube Delta contains clear asymmetry with sandy amalgamated 

beach ridges on the updrift side (north) and thin sandy ridges encased in muddy delta- 

plain on the downdrift side (south) (Giosan, 1999). The modern Brazos Delta is another 

example with a similar facies distribution as seen in the Sf. Georghe Lobe, Danube Delta 

(Rodriguez et al., 2000) (Fig. 3.18). However, the development of the Brazos Delta is 

strongly controlled by short-term river-flood events. Even the Sao Francisco delta, which 
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has been considered a classic wave-dominated delta for years, contains clear asymmetry 

in facies distribution (Dominguez, 1996). 

All three of these modern deltas listed above contain a similar pattern of facies 

distribution, with a sandstone-dominated updrift region and a heterolithic-dominated 

downdrift region. Each example also contains an updrift source of sediment in the form 

of abandoned delta lobes or other active delta lobes. If delta lobe abandonment occurs in 

a wave-dominated delta, extensive wave reworking would probably obliterate the 

potential lobe and the entire area of the former delta would be transgressed (Elliott, 

1989a). The delta would then transition from a constructive phase into a destructive one. 

Eroded sediment would then be reworked along the shoreline in the direction of 

longshore drift. As mentioned above, this can provide sediment for the updrift regions of 

asymmetrical deltas found farther along the shoreline. This is the case in the modern 

Brazos delta (Rodriguez et al., 2000) as well as the Sf. Gheorghe lobe of the modern 

Danube delta (Giosan, 1998; Giosan et al., 1999). In the Danube delta, the Sulina lobe 1s 

largely abandoned and is being eroded. Sands from this lobe are being reworked 

southward by longshore drift into the updrift flank of the Sf. Gheorghe lobe. In the 

Brazos Delta, river diversion in 1929 resulted in the abandonment of the “Old” Brazos 

Delta. Sands from this lobe were reworked along shore and deposited near the eastern 

(updrift) flank of the “new” Brazos Delta (Fig. 3.18). By 1940, very little of the “old” 

Brazos Delta remained (Rodriguez et al., 2000). This illustrates the importance of 

autocyclic controls (e.g. channel avulsion), particularity in deltaic environments. Overall, 

in terms of geometry, facies distribution, and size the Brazos Delta forms a reasonable 

modern analog for the asymmetrical wave-dominated delta located along the ancient 

Falher “D” coastline. 

Generalized Sedimentology: Wave-dominated Deltas vs. Strandplains 

Both wave-dominated deltas and strandplains form in wave- and storm-dominated 

systems and therefore produce similar successions. However, wave-dominated deltas 

contain distributary channels and are thereby affected by fluvial processes. Higher 

sedimentation rates, river-flood events, and fluvially induced environmental stresses all 

affect the downdrift regions of wave-dominated deltas. These processes produce 
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distinctive characteristics that can be used to differentiate deltas and typical shorefaces. 

Fluvial characteristics are most evident within the prodelta and distal delta-front regions 

where fair-weather deposits are preserved. Increased storm amalgamation within the 

upper distal delta-front results in the erosion of fair-weather deposits and subsequent loss 

of fluvial indicators. Intensely storm-dominated delta-fronts are nearly impossible to 

differentiate from storm-dominated shorefaces since they both produce coarsening- 

upward storm amalgamated sandstone successions (Moslow and Pemberton, 1988). 

Common sedimentological characteristics present in the prodelta, delta-front, and delta- 

plain of wave-dominated deltas will be discussed and contrasted with laterally equivalent 

strandplain environments in the following section. 

Prodelta 

The subaqueous portion of deltas is subdivided into the prodelta, distal delta- 

front, and proximal delta-front. These facies form the platform over which subaerial 

deposits prograde as the delta advances seaward. The prodelta region is the least variable 

subenvironment between the three delta types and the most different from typical 

shoreface environments (MacEachern, 2000). Muddy deposits dominate the succession 

with thin hummocky cross-stratified very-fine sandstones interbedded within the upper 

portion of the prodelta (MacEachern and Pemberton, 1992). These muddier intervals 

within wave-dominated deltas tend to have lenticular to wavy bedding. Other less 

common sedimentary structures include combined flow and current ripples also within 

the upper portion of the prodelta. Distinctive features of the prodelta environment 

include the presence of convoluted mudstones, increased siderite, organic-rich muds, and 

syneresis cracks (MacEachern, 1994; Gingras et al., 1998, Coates and MacEachern, 1999; 

MacEachern, 2000; MacEachern et al., 2005; Coates and MacEachern, in press). This is 

indicative of the higher sedimentation rates and fluctuating salinities associated with 

deltas. Hyperpycnal flows created during river flood events could permit the transport of 

freshwater into the prodelta resulting in the formation of syneresis cracks (Coates and 

MacEachern, in press) and greatly suppressing the ichnological signature (discussed 

below). Also associated with river flood events would be increased concentrations of 

organic material. Increased sideritic intervals could be produced by the degradation of 
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increased quantities of organic-material by bacteria (Coleman, 1993). However, these 

features are less common in wave-dominated systems due to the increased wave activity 

that mediates environmental stresses and reduced sedimentation rates compared to more 

river-dominated systems (MacEachern et al., 2005). This environment is not common 

within cored intervals of the Falher “D” due to reduced core control in the northern half 

of the study area and therefore will not be examined further. Prodelta and laterally 

adjacent offshore deposits would be of great assistance in the differentiation of deltaic 

and shoreface environments. 

Delta-Front 

Delta-front successions are generally sand-dominated and have moderate to high 

biogenic activity. Overall, the delta-front is dominated by wave processes and shows 

little evidence for discrete point sources of sediment input. Intense wave activity keeps 

silts and clays in suspension and transports most into the prodelta region. However, 

during and after river-flood events wave energy can be subdued (Rodriguez and Mehta, 

1998). The distal delta-front is strongly affected by storms in wave-dominated 

successions. Thick hummocky cross-stratified units interbedded with rare dark organic- 

rich shales and massive silty mudstones dominate the lower portion of the distal delta- 

front. These dark organic-rich mudstones are interpreted to represent “phytodetrital 

pulses” associated with river-flood events following prolonged storms (Leithold, 1989; 

Raychaudhuri and Pemberton, 1992). Also associated with river-flood discharge is the 

mantling of storm beds with increased concentrations of plant debris washed seaward 

from the delta-plain. As in the prodelta, convolute bedded mudstones are another 

distinctive feature of delta-fronts, however they tend to be less common in wave- 

dominated deltas. Upward through the distal delta-front, interbedded HCS sandstones 

and weakly to non-bioturbated mudstones transition into erosionally amalgamated SCS 

sandstones with mudstone rip-up clasts (Saunders et al., 1992; Moslow and Pemberton, 

1988; Vossler and Pemberton, 1988). Current and fair-weather wave rippled structures 

are largely absent. This storm imprinting largely eliminates fair-weather deposits and 

hence eliminates most distinctive deltaic characteristics. 
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The proximal delta-front is very similar to and shares a number of characteristics 

with the upper shoreface and foreshore of strandplain settings. This is the result of the 

fact that similar nearshore processes occur in both environments including breaking 

waves, surf zone conditions, and swash-backwash (Reading and Collinson, 1996). These 

processes result in sedimentary structures including trough cross-stratification, current 

ripples, and finally low angle planar laminations. However, distributary channels 

frequently crosscut proximal delta-front deposits. Proximal delta-front deposits tend to 

be thicker, more poorly sorted, and contain a much greater proportion of coarse material 

(see FA3). These characteristics are a direct result of the close proximity to distributary 

channels. However, strong wave action and longshore drift can redistribute this sediment 

along-strike and reduce the expected deltaic signature. 

Delta-Plain 

The subaerial portion of deltas is subdivided into the lower delta-plain and the 

upper delta-plain. The lower delta-plain includes the intertidal portion of the delta and 

consists mainly of abandoned beach-ridges separated by weakly bioturbated sandy 

mudstones (Dominguez, 1996). Other associated environments include lagoons, minor 

tidal flats, rare tidal inlets and tidal deltas, rare distributary channels, and interdistributary 

bays. Lagoons and interdistributary bays are characterized by brackish-water conditions. 

These environments are dominated by heterolithic successions of mudstone interbedded 

with planar laminated and current rippled sandstone and siltstone (MacEachern, 2000). 

Washover sandstones associated with storms are also common. Lagoons may also 

contain tidal rhythmites if the tidal range is sufficient. These environments would not be 

expected with strandplain environments and are typically found within the downdrift 

portion of deltas, especially within strongly asymmetrical deltas (see FA4). The updrift 

portion of asymmetrical deltas will be composed of amalgamated beach-ridges nearly 

identical to typical strandplains and can only be differentiated based on its close 

proximity with distributary channels (Bhattacharya and Giosan, 2003). Adding to the 

complexity, large wave-dominated deltaic systems can therefore contain a number of 

associated strandplains along-strike. 



inenurs nestesitione-enans aye graben! rocuowe eanarniboe nb suet eoenstiong 

chests cumibaeib covewoH seccontoet wamky algew red ogtant? brie asigeit 
ot bed? sthemob teowdieb lamiaot) atingeb wetaleh Lemiamepimerass ybeeupett 

(niveerar soeusecee To moituoeyerny tka sakiath siatie bre \benea yhoo sian yeulsidted 

emitted ba inten seein ott Yo thee eanib exe eobeetvsannds esd? AED 308) 

iranibiee anit anadtiber ase Shed sradegncl bow polls saw grote vovewoH .2isanuda ~ 

wustergte ouctinh borax sy sauder han ealhoe-peols 

7 : 7 ‘etelS-nkie 

wut hom esaly-atidy ieee! af) eam tbivitedes af aati lo. ovine taneedes oP) Oo) 

Lag aah ot © entrees tehinsie ott estulon aisig-eiinh cowol adT  niiq-ntish weqqu 

tue Daudi? tuo ot (atom eeyltiaad tencbaeds Io yisient avetngos 

alr aot! shel amumasdvet hentigown malt (RO) gsegetmoG) eonctsbutn 

yiewitin Mrpent tan atone cuaeatted> were ncile labo bos zien inbie cue 2tall teh 

couitibnie ere otendoaet 9 Gytearmas a ogvtoaeaninnitoennt bra moe aged 

buttooen archon te ewer siiiiveied vd tonic ow Onmmacivas seedy 

(HO, sauce) Somaketlie ieee seiebaas Lotggy seotune time tostntinat semi slaty 

ade yam «eonged cures cal \tme eonmote dite touvtonene eorokhase TovodanW 

uf yn (ew engine aeedT ieesiTe @) equa belalt ob ti eosiencdegths laid migiaos 

Hemnnt  athiw baw) YiiAY fe tay sewanniens aininhaswe dw bemeqre 

riety oD C09 yee) eanbis leer elgaver anti vieeeges ,eetiab To n0mn0g 

riot og he mol paaeiglene te iste od Hie essiod loatsmunryas To notoeg 

sake aH ace doch tnanptaeseetttahe att sends tte pwiniebasets lasigs ot Toviteobi 

wie M aothhe 0008 ae bre cyan success quaudeaeib tree “ginning 

Ta xt 0 dee Gnas atemege cit hetemnh-orew oy \pteolgmnas 
i ae 



144 

The upper delta-plain occurs above the tidal range and is not affected by marine 

processes (MacEachern, 2000). Environments present are similar to those of typical 

coastal plains. These environments include fluvial channels, floodplains, swamps, lakes, 

and marshes. Marshes and swamps tend to be large in size and lead to peat accumulation 

(Diessel et al., 2000). Wave-dominated settings typically have small lagoons and 

extensive swamps and marshes. During progradation marine influence is very limited 

due to active beach-ridge formation (Reading and Collinson, 1996). Under these 

conditions extensive freshwater swamps can form extremely close to the coast. In 

ancient successions this can translate into coal formation directly above delta-front 

deposits and freshwater deposits dominating the delta-plain (Pemberton et al., 2001). 

Generalized Ichnology: Wave-dominated deltas vs. Strandplains 

Wave-dominated deltaic successions generally show a decrease in bioturbation 

upward as well as an increase in grain size and bedding thickness upwards (MacEachern 

and Pemberton, 1992). This upward decrease in trace fossil abundance is due to 

increased sedimentation rates, higher depositional energies, and increased erosional 

amalgamation of beds (MacEachern et al., 2005). Strandplains have a similar vertical 

succession and contain characteristics comparable to those described above. However, 

the lack of direct fluvial influences in strandplains result in lower sedimentation rates, 

dramatically less environmental stress, and considerably less mud, silt, and other fluvially 

derived material (e.g. organic material, mudstone rip-up clasts, and wood fragments). 

These differences form the framework for differentiating wave-dominated deltas and 

adjacent strandplains. Deltaic settings are constantly submitted to direct freshwater input 

and a number of other environmental stresses and strandplains are not (Moslow and 

Pemberton, 1988). Deltaic settings tend to have impoverished diversities, lower 

abundances, and sporadic distribution of trace fossils owing to these stresses. Turbidity 

stresses generally suppress filter-feeding structures, while substrate instabilities and rapid 

sedimentation rates tend to suppress more complex and deposit-feeding structures 

(Gingras et al., 1998; MacEachern et al., 2005). However, wave-dominated deltas 

generally have reduced sedimentation rates as compared to river-dominated deltas. 

Therefore, wave-dominated deltas tend to be dominated by grazing and deposit-feeding 



a : : 

tavinper Yer 

parsing a 

nln aaedn ae 

une eooogul Hime oven’ ytlwaigyh gettin teonnienob-ovnlWt (INC lt: baitalGy 

Latin vow ok suid ind-cninnay anieergory gate aadeuy bat aqeerwe aviinaine i‘ 
oot tebe) (OOO) eenilleD thaw guitendt) noitemact egbinsannd evitoeon rt 
ob wow ott of gels viEtED mM mie eqns reinvest evionaxs enonibnds 

inettcalu svode whowih sebainet Ince emi stolyut nea «id? wnoietooods iosions 

HOME hie: numgee) minlep erled-od) gaimainod etroqab ewes hag adizageb 

rolvehuigd a: senweb & wore ytlveaeg enciezsavur cintlob bomnimob-yra «°° 

corte toatl) dewey envi gothoud bre aviv niztey oi semont ne ex tlow oe buewqy 

vt vile df somebowty Cee wore nl oaeuele taewqe aiff. (000) ,conedms has 

aah bemowel bow .psies nonin galgid! exc notmnnmibse beegeront 

inolrew talked covet snatybres 47MS ia 1 anbeha@oeh) absd Yo noitemegiams 

“yen .ovete. Lodhaedh seo oiieaapees Gaehetanedo aise ban agizessate 

eta wortwtoweibae Hwoli tpt aiaiqhmuene ab esommdtar teivwR snub to oat ont 

vitse ule wile be tie duane eel (imo toe cee bossranodivne ext yibeaianeratyb os 

inrongert boow bie len qhegit Gndlebyin imtnar Gla -y,o) lahsium bevasb 

tye tutiod bercnlocb-womd Qeliknneeihh wi tnanmt cll neot asoaersitib-seslT 

lui iow Lenk! battendus efile op <yniiie: sietieG eniniqhomie invsosiba 

Lie enteoN) ton sw aniniqiaeny haw eoeem> Geeoentenives sodie lo sedmun e:bns 

vewnl calerntile tetenevery Senta tae ayaitor wate (B8CH .nonadinst 

cilarwT execute itll 10 gett alleaei some a ciniudieis ibeacnge bow soomsbeunde 

trigycy bm, eaisiiedaven ettadne An cecestautie yrtitsac-ranlit «esmyquea ‘llorrsnog eseadule 
rouble qutlbut-inngem tite ROMEO tani earuynie od boot agiet nuiminomibss 

soko hunuimobsyen cevawelt NEL Ae te mestocBoeM 200) te to adigult?) 

atioh, Wotan wer od ovecpades am eon nodsinomibse basuben evede ylang 

goilmest- tines: baa Quiveny Ye Catenienay 2 of bast emitol butncimab-ovaw snatinsdT : 

_ — —_ 



145 

structures (MacEachern et al., 2005). Strong wave action within wave-dominated deltas 

will lessen the impact of most of these environmental stresses but will not completely 

eliminate them. Therefore, organisms existing within river-dominated deltas will be 

affected to a much greater degree than organisms within wave-dominated deltas (Coates 

and MacEachern, 1999). Nonetheless, ichnology plays an important role in 

differentiating wave-dominated deltas and strandplains. 

Prodelta 

Ichnological characteristics differentiating deltaic/strandplain environments are 

most noticeable in more distal settings. This is especially true in strongly storm- 

influenced settings. Distal fair-weather deposits contain the most distinct characteristics, 

as they are most affected by fair-weather river-induced environmental stresses. Storm- 

deposition on the other hand, produces similar successions within a number of different 

environments. However, storm-influence with the prodelta is relatively minor compared 

to the delta-front and consequently will demonstrate the greatest biological differences 

from equivalent offshore environments. Prodelta deposits within wave-dominated 

systems are typically represented by a stressed Cruziana assemblage (e.g., Coates and 

MacEachern, 1999; MacEachern et al., 2005). Ichnogenera commonly found within this 

environment include Phycosiphon, Helminthopsis, Zoophycos, Planolites, Teichichnus, 

Terebellina, Chondrites, Cylindrichnus, Asterosoma, and fugichnia. Rare suspension 

feeding structure including Skolithos and Arenicolites are also present. The prodelta 

environment represents the most diverse suite of trace fossils in wave-dominated 

successions, however most ichnogenera are typically diminutive in size, sporadically 

distributed, and low in number (MacEachern, 2000). This moderate to high diversity is 

in contrast to river-dominated deltas, which have very low diversities. 

The moderate to high diversities seen within the prodelta and delta-front is due to 

wave actions ability to mediate various stresses. Wave agitation will result in decreased 

water stratification, well-oxygenated waters, and normal fully marine salinities 

(MacEachern et al., 2005). Some wave-dominated fair-weather prodelta and delta-front 

deposits have even contained up to 21 ichnogenera (Raycjaudhuri and Pemberton, 1992). 

However, strongly storm influenced systems will result in a strong storm overprinting of 
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the high diversity fair-weather deposits. Post-storm opportunistic organisms that would 

typically colonize the upper portions of storm beds are very similar in both deltaic and 

shoreface environments and therefore will be of little use in differentiating them. This is 

the case in many wave-dominated systems including the Falher “D”. Under these 

conditions ichnological deltaic signatures are best identified in more distal environments 

where storm amalgamation is less abundant. Unfortunately cored intervals within the 

prodelta region of the Falher “D” are lacking and consequently distinctive deltaic 

signatures are also lacking. 

Distal Delta-Front 

The distal delta-front contains a greater proportion of storm-amalgamated 

sandstone than the prodelta, however rare fair-weather mudstones are still preserved. 

These mudstones tend to be either weakly bioturbated with low diversities or non- 

bioturbated. Non-bioturbated mudstones are not present within typical shoreface 

succession and are distinctive of deltaic environments. Interpreted to be the result of 

increased river discharge following heavy rains associated with storm events, these 

intervals are referred to as “phytodetrital pulses”. Increased concentrations of terrestrial 

organic material may produce dysaerobic conditions and inhibit colonization. Weakly 

bioturbated horizons with low diversities are the product of fluvial stresses including 

variations in salinity, oxygen level, sedimentation rate, water turbidity and energy, and 

substrate consistency. 

A number of wave-dominated distal delta-front deposits from the modern and 

ancient have been interpreted as a moderately diverse and locally abundant, mixed 

Skolithos-Cruziana assemblage (ex: Dunvegan and Belly River formations; Gingras et 

al., 1998; Coates and MacEachern, 1999). Typical ichnogenera of wave-dominated distal 

delta-front deposits include Helminthopsis, Zoophycos, Phycosiphon, Cylindrichnus, 

Planolites, Teichichnus, Palaeophycus, Thalassinoides, Terebellina, fugichnia, and very 

rare Diplocraterion and Skolithos occurring in storm beds (Coates and MacEachern, 

1999). This trace fossil assemblage represents an equilibrium community generated 

during fair-weather deposition. The relatively high abundances compared to river- 

dominated deltas are a result of heightened wave action that mediates the stresses listed 
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above. However, diversities still tend to be lower than in typical shoreface successions. 

There is also a low diversity Skolithos assemblage present that occurs at the top of storm 

beds. This trace fossil assemblage is characterized by relatively low numbers of 

Ophiomorpha, Diplocraterion and Skolithos, which represent suspension-feeding 

organisms. This will produce an interesting contradiction with sandy substrates with very 

few suspension-feeders (MacEachern et al., 2005). This low abundance of suspension- 

feeding structures is due to higher mud concentrations in suspension (Gingras et al., 

1998). This is in contrast with shoreface successions which tend to have much a greater 

abundance and diversity of suspension-feeders. 

Interbedded fair-weather highly bioturbated zones and nearly non-bioturbated 

HCS sandstones results in a bedding fabric referred to as “lam-scram” (Pemberton et al., 

2001) within shoreface successions. This does not generally occur within wave- 

dominated deltaic succession due to the reduced bioturbation intensities. Within the 

Falher “D”’, the greatest intensities of bioturbation are found within the shoreface are the 

“burrowed zone” described within Chapter Two. The “burrowed zone” is characteristic 

of typical shoreface successions within the study area. In contrast, this bioturbated 

horizon is generally not present within the immediate vicinity of distributary channels or 

on the downdrift flanks of deltas. This may be the result of environmental stresses 

associated with fluvial deposition or a preservational issue related to delta formation 

and/or progradation. 

Proximal Delta-Front 

In general the proximal delta-front within wave-dominated systems is non- to 

weakly-bioturbated with only rare trace fossils present. Typical ichnogenera of wave- 

dominated proximal delta-front include rare Ophiomorpha, Rosselia, Cylindrichnus, 

Skolithos, and Diplocraterion. There are also local intervals of abundant Macaronichnus 

near the top of the proximal delta-front. The lack of biogenic structures is due to the 

masking of most fair-weather ichnological characteristics by storm bed amalgamation. In 

this environment wave action may remove all mud from the substrate. However, the 

water column will still contain significant amounts of mud, which will result in decreased 

suspension feeding structures. This will occur primarily downdrift from the fluvial 
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source (MacEachern et al., 2005). Overall, the proximal delta-front and upper shoreface, 

biologically speaking, are very similar. The proximal delta-front within the Falher 

“D” tends to be dominantly non-bioturbated while the upper shoreface contains sporadic 

concentrations of Palaeophycus, para-Macaronichnus, Macaronichnus simplicatus, and 

Diplocraterion. The overall decrease in bioturbation within the proximal delta-front may 

also be related to increased grain sizes and salinity variations associated with proximity 

to fluvial point sources. 

Asymmetrical Delta Model: Effects on Bioturbation 

The asymmetrical nature of wave-dominated deltas dramatically affects the 

intensities and diversities of bioturbation along the coast. Within these systems, 

fluvially-induced stresses, in the form of turbid mud plumes and salinity variations, are 

deflected downdrift and are nearly absent updrift (MacEachern et al., 2005). Therefore, 

deltaic signatures, such as non-bioturbated mudstones and syneresis cracks, will be 

confined to the downdrift regions. These settings contain decreased diversity and 

abundances of trace fossils as well as a noticeable lacking of suspension-feeding traces 

(Gingras et al., 1998; MacEachern et al., 2005). Emergent barrier bars forming within 

the downdrift regions can permit sheltering and formation of extensive brackish water 

bays/lagoons (Bhattacharya and Giosan, 2003). These environments are characterized by 

heterolithic successions with very low diversity brackish-water trace fossil suites. 

Teichichnus, Planolites, and Chondrites dominate these suites with common horizons 

thoroughly reworked by one ichnogenera (Pemberton and Wightman, 1992). In contrast, 

updrift regions would be expected to contain ichnological suites very similar to typical 

shorefaces. More pervasive bioturbation, increased diversity and the presence of vertical 

dwelling and suspension-feeding traces highlight the differences in the ichnological 

signature between the updrift and downdrift flanks of wave-dominated deltas. The 

spatial distribution of relative bioturbation is mapped and discussed further within 

Chapter Four. 
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Summary 

The lateral variability of sedimentological and ichnological characteristics in the 

Falher “D” succession highlight the along-strike transition in from wave-dominated delta 

to strandplain. Deltas and strandplains are commonly found along wave-/storm- 

dominated coastlines and are often closely associated. The Falher “D” is interpreted to 

contain an asymmetrical wave-dominated delta. Asymmetrical delta models have 

recently been constructed for a number of wave-dominated deltas with “classical” sand- 

dominated strandplains on the updrift portions and more complex heterolithic 

environments on the downdrift. Most criteria used to differentiate these two 

environments are focused around the presence of fluvial input. Strong wave energies 

serve to mediate a number of fluvial effects in wave-dominated deltas and therefore will 

have a much greater degree of similarity to strandplains than river-dominated deltas. 

Sedimentological and ichnological differences include the presence of convolute bedding, 

syneresis cracks, non-bioturbated mudstone beds, organic-rich mantling of storm beds, 

and an overall increase in mud content. More proximal settings will contain thicker 

successions, more poorly sorted sandstones and conglomerates, and possible lagoonal 

deposits. Biological differences include an overall reduction in the diversity and 

abundance of trace fossils and suspension feeding structures. This is a direct result of 

fluvially induced stresses associated with freshwater input from rivers. However, wave- 

dominated deltas tend to have much greater diversities than other delta types due to the 

increased wave activity. Overall, differentiating wave-dominated deltas and strandplains 

is difficult. However this process is extremely valuable and will significantly impact any 

facies interpretations or paleogeographic reconstructions. The following chapter will 

focus on the spatial distribution of a number of important characteristics, facies 

associations, and stratigraphic units. This section is designed to further our 

understanding of the Falher “D” succession and strengthen the interpretations formed 

within this chapter. 
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Chapter 4: Stratigraphic cross-section analysis, depositional mapping, and 

sequence stratigraphic modeling 

The previous chapters have provided detailed descriptions of the sedimentology, 

ichnology, and interpreted depositional environments of the fifteen facies and five facies 

associations observed in core (Table 4.1). This chapter builds upon this foundation 

through analysis of facies distributions of the environmentally-significant units, which is 

exemplified in cross-sections, isopach maps, lithological maps, biogenic maps, and 

paleogeographical maps. The Falher “D” succession will be separated into two 

stratigraphic intervals, D1 and D2, utilizing a number of important stratigraphic surfaces. 

The first step is to determine/define the important bounding surfaces (ex: TSE1 and 

TSE3) for the Falher “D” and within the succession itself (ex: TSE2 and SB). 

(4.1) Important Stratigraphic Surfaces and Sequence Stratigraphic Model 

The Falher “D” succession contains a number of regionally and locally significant 

stratigraphic surfaces, which are allocyclic and autocyclic in origin, respectively. 

Allocyclic surfaces are the result of processes that occur outside the depositional basin 

and result in changes to the supply of energy or sediment into the system (Emery and 

Myers, 1996). According, these surfaces tend to be regionally extensive and separate 

genetically-unrelated depositional systems. Eustatic sea level fluctuations, tectonic 

activity (i.e. uplift), subsidence, and climatic variations are processes that are attributed to 

the formation of allocyclic surfaces (Bhattacharya and Walker, 1992). These regional 

stratigraphic surfaces separate the Falher Member into five separate sub-members (Cant, 

1984). The processes that produce these surfaces play an important role in the overall 

formation of the depositional system and will be described/illustrated with 

paleogeographic maps. 

In contrast to regionally extensive allocyclic surfaces, autocyclic surfaces are 

formed by processes that function within the depositional basin (Emery and Myers, 

1996). Typically, these surfaces have limited stratigraphic continuity; however 

autocyclic processes can be important locally. Delta lobe switching, river meandering, 

and storms are examples of processes that can produce autocyclic surfaces (Bhattacharya 
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| Bey 

and Walker, 1992). Erosional surfaces at the base of distributary channels within the 

proximal delta-front and/or delta-plain are the most common form of autocyclic surface 

found within the Falher “D”. Despite the localized effects of autocyclicity, many 

autocyclic processes tend to be influenced or directly produced by external allocyclic 

controls (Emery and Myers, 1996). 

Allocyclic Surfaces 

Each of the five Falher members is separated above and below by major 

discontinuities (Leckie and Walker, 1982; Cant, 1984; Smith et al., 1984; Leckie, 1986a:; 

Cant, 1995). These discontinuities typically manifest themselves as organic-rich coastal 

plain mudstones and coals sharply overlain by marine sandstones and mudstones (Cant, 

1984; Emery and Myers, 1996). The Falher “D” exemplifies this relationship as the 

marine sandstones sharply overly the coastal plain deposits of the underlying Falher “E” 

(Fig. 4.1). The top of the Falher “D” is also bounded by a major discontinuity: the 

uppermost coastal plain deposits are sharply overlain by marine sandstones of the 

overlying Falher “C” (Arnott, 1993; Casas and Walker, 1997; Armitage, 2002). Both 

discontinuities are characterized by distal facies overlying more proximal facies, which 

signify major relative sea level rises. In other words, these surfaces represent marine 

flooding surfaces that reflect allocyclic changes in sedimentation patterns (Van Wagoner 

et al., 1990). However, these surfaces exhibit significant erosion and demonstrate a 

landward shift of facies; therefore they are referred to as transgressive surfaces of erosion 

(TSE) (MacEachern et al., 1992). Transgressive surfaces of erosion in the Falher “D” are 

characterized by sharp, low relief surfaces commonly overlain by poorly-sorted 

conglomerate beds containing intraformational rip-up clasts (c.f. MacEachern et al., 

1992). The sharp character of these surfaces is attributed to wave and current action 

associated with erosive shoreface retreat (Nummedal and Swift, 1987). These surfaces 

may be demarcated by substrate-controlled ichnological suites such as the Glossifungites, 

Teredolites, and/or Trypanites Ichnofacies depending on the nature of the substrate 

colonized during transgression (MacEachern and Pemberton, 1992; Pemberton and 

MacEachern, 1995; Pemberton et al., 2001). 
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Wei) 

Fig. 4.1 - Selected examples of important stratigraphic surfaces within the Falher 

*“—D” succession: (A) Very fine-grained planar to sub-planar laminated sandstone sharply 

overlying massive mudstone that contains common pyrite nodules and a high organic 

content. This surface represents a transgressive surface of erosion (TSE2) separating the 

D1 interval from the overlying D2 interval (10-31-68-10W6, 2171.1m); (B) Very fine- 

grained sandstone containing Asterosoma and Palaeophycus sharply overlying a massive 

to planar laminated mudstone containing Teichichnus, Thalassinoides, Planolites, and 

Chondrites. The underlying bioturbated mudstones represent preserved transgressive 

deposits (TSE1) from the basal Falher “D” and the overlying sandstones represent marine 

sandstones from the DI interval (06-19-68-12, 2450.4m); (C) Poorly-sorted 

conglomerate lag deposit from the Falher “C”. This surface represents a transgressive 

surface of erosion (TSE3), which separates the Falher “D” from the overlying Falher “C” 

(06-21-67-10W6, 2457.5m); (D) Irregular poorly sorted conglomeratic lag deposit 

encased in massive mudstone. This surface represents a transgressive surface of erosion 

(TSE1) separating the Falher “D” from the underlying Falher “E” (06-20-68-09W6, 

2171 -3m): 
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The Falher “D” is bound above and below by two major discontinuities. The 

surface separating the top of the Falher “E” from the base of the Falher “D” is hereafter 

referred to as TSE1 (Fig. 4.1d) and the contact delineating the top of the Falher “D” and 

the base of the Falher “C” will be referred to as TSE3 (Fig. 4.1c). In some localities, 

these surfaces are overlain by thin poorly-sorted conglomeratic deposits often 

sandwiched between coastal plain mudstones and marine sandstones. In rare cases, 

brackish water deposits are preserved between the Falher “E” coastal plain and the Falher 

“D” marine sandstones (Fig. 4.1b). This brackish strata represents preserved deposits 

formed during the transgression, which often have a very low preservation potential 

(Reading, 1989; Reinson, 1992). The conglomeratic lags are interpreted to have formed 

during the erosion of previously deposited nearshore complexes associated with the 

transgression of the shoreline (Posamentier and Allen, 1999). In other words, coarse 

clastic material that was originally deposited in underlying successions was eroded and 

re-deposited in more distal marine settings. These wave-cut surfaces are also referred to 

as wave ravinement surfaces (Nummedal and Swift, 1987; Walker, 1992). 

Another transgressive surface of erosion, referred to as TSE2, is present within 

the Falher “D”, however it is a higher order stratigraphic surface (Fig. 4.la). Distal 

deposits overlying more proximal deposits also characterize this surface as they do with 

TSE1 and TSE3. However, the juxtaposition of facies along this surface is not as severe 

as those described above and generally comprises lower shoreface deposits overlying 

upper shoreface deposits (ex: 10-31-68-10W6). The presence of a TSE indicates that a 

rise in the relative sea level occurred during the deposition of the Falher “D” sandbody 

(c.f. Walker, 1992; Emery and Myers, 1996). This surface is utilized to separate the 

Falher “D” sandbody into two sub-members, termed D1 and D2 (Fig. 4.2). The D1 unit 

is situated between the TSE! and TSE2 surfaces, while D2 occurs between TSE2 and SB 

(Fig. 4.3). 

Another important stratigraphic surface is only observed in the northern (distal) 

regions of the study area. A sequence boundary (SB) occurs between the upper Falher 

“D” sandbody and the overlying coastal plain deposits (Van Wagoner et al., 1990; 

Walker, 1992). Marine mudstones and sandstones are overlain by coastal plain deposits, 

which indicates that transitional facies are absent (ex: 07-26-69-09w6). This surface 



ant 

aT .2sbiunitncadi soles ews qd wots tas ey ae, 
pee ioteennaas vanlretbpioa=ed stirs: = 

‘cn i oth bo i 
ao 2) oe sh ry 

sok a eae a 

beidecaese} schon eral oon snl nye 7 Bs ot 

sora Woot 8 feet el nner aR” 6S 7 sean 

wit fie patios eaphnele Waadenaen tstienaalh hl 7" ; am 

nt entry, atone ation al Cero ss bn wan 

linn inden: rm cetmeosie ieniane mi 

cot Wain eh cal ASR (ier ppuer SoMT 

hepatoma mie 
nie es oie ts LST rp edith roiaees ta solic gdimengione AE 

deeitt” thi D.gr ates sqrqeace Tabm vetgid & 8 i wyvewod ."O”" sedled oct 

jie 14 Yo UD, ee 

cwrew an vin: clan lip aaa RR > aniahedipnaed ai 
allie herote @hetea eaiiemadle wmeeil spebiyrers Ulenesy hae ov 

sid erweaalt os ere (Part I~ FE-Od a) aches 

sonph a nes eaiaibb aalehom saiaiM pm soul 



156 

(v
ar
e 

Ap
ny
s 

otf
} 

Ur
 

21
00
 

UI
YJ

IM
 

JU
as

ai
d 

yo
u 

a1
OY

s]
JQ

 
1a

MO
T)

 
a1
oy
sQ
 

FL
OY

SL
FO

 

d0
RJ
oI
OY
S 

Ia
MO
oT
 

A
S
T
 

s0
vj
ol
oy
s 

Jo
dd

y 
pu

r 
ss

oy
so

io
q 

A
S
)
 

pu
e 

S
A
 

‘UOISS99NS 
..C,, JOUTey 

oY} 
ule[g 

[eyusUTUOD 
4
 

Jo
} 

po
so

do
id

 
jo

po
ur

 
s1

yd
ei

sy
ey

s 
so

uo
nb

as
 

- 
Z
p
 

“S
I 

Te
gi

eE
 

P
A
S
T
O
R
S
 

C
E
N
 

(
G
S
)
 

[e
uo

rs
or

gq
 

Jo
 

so
vj

in
g 

sa
ts

so
is

su
el

y,
 

Ga hssee Id 

s048syO 
o1OYUs 

Td 

USO 

ds 

caSL—_y 

Jaquiow qj Jauyey 



ae 
ene ae ve “ i se me's) mare : ¥) 

vine f Al Vi alana ai ify! uh 

: ie) an iM iin py ; AA (Bh 

1 eee 
Ve a am 

, 

if : Ht ; 
at : 

Teh - 



iho 

W
L
'
S
L
I
T
Z
-
9
'
E
S
 

T
Z
 

W
o
p
 

“O
MO

I-
89

-L
E-

OT
 

3 
po
ye
oo
y 

[T
am
 

W
o
y
 

Ud
yx
e]
 

so
jo
yd
 

d1
0D
 

“J
Oq

UI
OW

 
FY
 

JO
Y]
e{
 

dy
} 

WI
OI
 

dI
v 

So
UO
}S
pn
ur
 

pu
e 

sT
eo

d 
Po

pp
oq

io
ju

r 
Su

IA
[J

op
uy

) 
“s

yt
so

da
p 

so
vj

or
oy

s 
so

dd
n 

pu
e 

SU
IU
OS
Ie
OO
 

DO
VF
OI
OY
S 

JO
MO

] 
[E
WI
XO
Id
 

SU
TE
JU
OS
 

[R
AI
OI
UI
 

[
O
Y
]
,
 

“
W
O
 

ey
op

 
[e
ut
xo
ld
 

0}
 

JU
OI
 

e}
[D

pP
 

[e
IS
IP
 

W
o
 

Uo
Ts
ss
oo
ns
 

pr
em

dn
 

B 
su
le
jy
uo
o 

yu
n 

7q
 

SY
, 

‘s
[e
AI
oj
Ul
 

7q
 

pu
e 

[q
 

sy
} 

Y
o
q
 

Su
ru

re
yu

Os
 

Jo
qU

IO
W 

|
 

JO
Uy
ey
 

oY
} 

W
o
y
 

UO
TI

Ss
od

oN
s 

oI
eI
OG
 

U
O
]
 

B
I
D
 

JR
UT

XO
Ig

 
‘C
VA
 

WU
OL

] 
BI

9q
 

[e
IS

IG
C 

: [V
A 

2
:
 

S
o
m
e
r
 

WU
p 

cq
 

Jo
ur
ed
 

Cp
 

‘s
ly
 

Bottom of Core 

wuy 1d syle y q 1yres 



i 
” 
> 
oy 
« 
} 

a a 

Ofte oy Bi 

ass Dox jOMet EpPOLeyTCS 

aor sa 

ei Steir. ee 
yy ue 

93-5; 
+ 

- 

hiv COMMS? € 
~ a 

i D3 

a a= | nee m Deu yoo 

+ D vi De ed 

x} ¢ 

£ 

5 i 

mak paw ime 

5 psi 

a 

a 

12] Pees oy pode, gpeets 
= 

wis eR 

Ts 
9 



158 

would correspond too younger coastal plain strata overlying much older coastal plain 

deposits in the southern half of the study area and would be difficult to locate. A rapid 

northward shift in the shoreline position, following a forced regression, is interpreted to 

account for the missing facies (Posamentier et al., 1992; Arnott, 1993). This seaward 

shift in the shoreline is in response to a relative sea-level lowering (Van Wagoner et al., 

1990; Bhattacharya and Walker, 1992; Posamentier et al., 1992). Significant erosion will 

occur along this surface as the higher energy environments located close to the shoreline 

move northward (Swift, 1975; Walker and Plint, 1992). This interpretation will be 

discussed and supported in the following sections. 

Autocyclic Surfaces 

The Falher “D” succession also contains a number of other internal surfaces, 

which are autocyclicly controlled. These surfaces are not as regionally extensive as those 

described above; however, they have important implications on a local scale. Autocyclic 

variations are commonly identified within deltaic regions, and are typically attributed to 

the activity of distributary channels (Bhattacharya and Walker, 1992). Delta lobe 

switching and river meandering within the delta plain can substantially influence the 

associated delta and adjacent strandplains. Within the Falher “D” autocyclic 

discontinuities can be found at the base of distributary channels in the upper and lower 

delta-plain. These discontinuities result in proximal channel-fill deposits sharply 

overlying delta-front successions. 

Coupled with longshore drift, distributary channels are the primary source of most 

sediment supplied to the Falher “D”. At the same time, channel migration within the 

delta-plain results in erosion of older underlying delta-front and delta-plain deposits. 

Channel migration can also result in delta lobe switching and subsequent cut off of 

sediment supply to older delta lobes. Delta lobe abandonment corresponds to 

destructional processes (wave action) that prevail over previously constructive processes 

(fluvial) (Bhattacharya and Walker, 1992). The updrift very well sorted conglomerates of 

Facies 8a are interpreted (Chapter Three) to form this manner. Delta lobe abandonment 

within a number of modern asymmetrical wave-dominated deltas was illustrated in 

chapter three and demonstrates processes similar to those proposed for the Falher “D”. In 
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each case, lobe abandonment was an important mechanism in the redistribution of 

sediment. Accordingly, a wide range of deposits is expected within the deltaic system 

with very well sorted strandplain and more poorly sorted deltaic deposits as end 

members. This lateral variability is exemplified in the Falher “D” with very well sorted 

conglomerates in the west, poorly sorted conglomerates in the central portion of the study 

area, and interbedded sandstones and mudstones in the east (refer to the depositional 

model section of Chapter Three). 

Summary 

Within the study area the Falher Member consists of five cycles that represent a 

series of coarse clastic shoreface successions trending approximately NW-SE along 

depositional strike (Cant, 1984). Each Falher cycle is bound above and below by major 

discontinuities. These surfaces are allocyclic in origin, regionally extensive, and tend to 

manifest themselves as coastal plain mudstones and coals sharply overlain by marine 

sandstones and mudstones. Significant erosion, low relief, common conglomeratic lags, 

and a landward shift of facies along these surfaces indicate that they represent 

transgressive surfaces of erosion (TSE) (Posamentier and Allen, 1999). The surface 

separating the top of the Falher “E” from the base of the Falher “D” is referred to as 

TSE1 and the contact delineating the top of the Falher “D” and the base of the Falher “C” 

is referred to as TSE3 in this study. Another transgressive surface of erosion, referred to 

as TSE2, is present within the Falher “D” itself, however the juxtaposition of facies along 

this surface is not as severe. This surface is utilized to separate the Falher “D” sandbody 

into sub-members, termed D1 and D2. The following section focuses on the lateral 

distribution of facies and environmentally significant units within the stratigraphic 

framework established above. 

(4.2) Cross-section Description and Interpretation 

Fifteen cross-sections were constructed within the study area in order to gather 

additional information on the spatial distribution of the units described in Chapter Three, 

as well as the important stratigraphic surfaces discussed previously. Cross-sections use 

petrophysical well log suites including; gamma ray, resistivity, neutron-density, and sonic 
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logs. Facies associations and stratigraphically significant surfaces were correlated using 

log signatures and detailed core descriptions. For simplicity, only gamma ray signatures 

are displayed on the cross-sections. A series of 8 equally spaced (~6 km apart) north- 

south oriented dip-sections were constructed roughly perpendicular to the Falher D 

paleoshoreline (Fig. 4.4). As well, 7 equally spaced (~3 km apart) east-west strike- 

sections were constructed roughly parallel to the Falher D paleoshoreline (Fig. 4.4). 

Cross-sections do not extend into Township 67 as the Falher “D”, in this region, contains 

entirely non-marine strata that does not contribute to this particular study. 

For practical reasons, all 15 cross-sections are not included and described in this 

thesis. Three key north-south cross-sections and one east-west cross-section is included 

and described in the following section (Fig. 4.4). The north-south cross-sections are 

located such that the stratigraphic relationships of distinct depositional environments are 

displayed. The first cross-section, A-A’, is located in the western portion of the study 

area and displays the facies distributions within the updrift strandplain environment. The 

next cross-section, B-B’, is located in the central portion of the study area and transects 

deposits corresponding to the delta-plain and proximal delta-front settings. The final dip- 

section, C-C’, is located in the eastern portion of the study area and exhibits facies 

relationships within the downdrift lagoonal environments. These three sections coupled 

with the east-west strike-section, D-D’, provide an improved understanding of the along- 

strike variations of the Falher “D” within the study area. 

The stratigraphic succession exemplified within well logs from this study is 

generally consistent and encompass the following. Approximately 10m of the upper 

Falher “E”, which primarily consists of coastal-plain deposits with numerous coal beds, is 

included at the base of the stratigraphic sections. The surface separating the top of the 

Falher “E” from the base of the D1 interval is referred to as TSE1. This surface typically 

manifests itself as upper to lower shoreface deposits of the D1 interval sharply overlying 

thick coals of the Falher “E”. The D1 and D2 intervals are separated by TSE2, which 

typically manifest itself as lower shoreface sharply overlying upper shoreface deposits in 

the study area. Overlying the D2 interval are coastal plain mudstones and coals of the 

upper Falher “D’. The surface separating the top of the Falher “D” and the base of the 

Falher “C” is referred to as TSE3. This surface is overlain by approximately 25m of 



vehi thn Famaekans eve sik in) base: loupe Siltovnind halen 

{ob gid) aoitemeteoplagy Ch rerllel ott of otto, yidtyunn bakeries saw wniotioat 
erdsatencne ovine aad atk “CEM eget oft an Ta sgqidenwo'T fan) beratxe teas Ob ecoisese-euor’) 

ute osttapiauen aint of etudixines yon xb tnd sae ssheeen ro vistiine 

rid! ai Daehoaob baw babubaed tom ont anmisanmons 21 {le ,anoenen lusitoiy 10 

hebahwni a numonedene MINED ono bine salen eune doce cdrom Yea sot Jeldodd | 

“is atoloer rune hoo itien ofl db yy eoltosaynivwollet ett ni -bodinsh bee 

Pie SeINONID Letniged Pia te aiteoiiehn sllgeyiaus oft-2eb vious baal 

vbiuse oeie ka cots wrtiaow sd aibalinal ed AKA Kaloo Nel ed Pcbeyeiqelb: 
wT Irtomenennwas a inlgionunty, Sa wbege ont pivtiw anuituntionch exiae od? eyniqeits bate noe 

coauyest Low ate voode oft jo woke brine add i bemoel of °A2 ,waltosa-eaory ian 

ib lini oT ongetiies atedteatioh aed. vor bin ainkq-erteb ot oF guibnoqeanns misogeb 

sniset viididae ban soi vba, alt Se,aotned aneises odt-al Damool al OD ool 

bulques atobose cent ait 2oxprumayivis lanoogyl febnrwaly unl nisiive ayideqmitolen 

-gnats et tty ghibaetheaiann bawangad ea abiveng “CAC ais aemcdinna re-edit ative 

hora Youle odd aiettiw “CT” rackin art? to anotinimny wallets 

ei viude aids yun eyol Hew matte beltiiqnecy moines viiqarglisue ofl | 

woqqu alt to asfll GemmelanyyyA .qniwollol off eeaqrnoode baa marianoD yiierane 

wh ebod (yoo aed shiw atdegab digig-lanaveto aalenop wliaming dalton, "9" sacle 

add bo qer od? qritcunyoy coulis al'T 2reiaoe caciqingnests silt To oand wild te bebulont 

xllusiqny) eoaiiuse vistS LR2T ve ot howeiion ab lovin 1Cl cil ho-oenel ohh summit A eel 
qnigheve vhypedes lawvard 11 ort Yo atheoge ouattsroda towed tt roqqu ao Noete oredtinaes 

doidw SHBT yd baomqes om alawurnt SO tye 1 ot ae anette at to alnoo “Aoialt 

fi igonsh sostnode wqyu gebyhevo elpate-sontoods wed ne Vewdi seotinamn ylesiggs 

orf? Yo ehioy brn esaenhonn mule leniuis ons Levine SC oth gnighow’ .oomut ybunne eds 

tit I send odt bee °C" welled ath, to. qos ant gabe reqar cova oP," sade aaqqu 



161 

‘[
Ie
JO
p 

Ul
 

po
ql

os
ap

 
SI

 
*.
q 

- 
C 

“U
OT
JO
AS
-a
yL
YS
 

DU
O 

pu
r 

[I
eJ

Op
 

UI
 

po
ql

io
sa

p 
ai

e‘
. 

- 
Q 

p
u
e
.
.
g
-
q
 

‘W
V 

- 
V
 

‘s
uo
ns
es
-d
ip
 

d0
1Y
[,
 

“S
IS
OU
} 

ST
U]

 
UI

YI
IM

 
PO

PN
OU

T 
SU

OT
II

AS
-S

SO
IO

 
JU

DS
AI

da
I 

SO
UT
] 

PO
Y 

‘S
][
9M
 

po
ro
0o
 

Ju
as

oi
da

s 
sa
po
m9
 

PU
L 

SU
OT
]D
IS
-S
SO
IO
 

UI
 

po
sn

 
SS
O]
 

[[
9M
 

JU
OS

oI
do

I 
so

re
Nb

s 
‘k
or
e 

Ap
Ny
s 

dy
} 

UT
YI
IM
 

SU
OT
DI
S-
SS
OI
D 

JO
 

UO
NR

I0
7T

 
- 

pp
 

“B
IF
 

9
M
8
0
E
 

60
a 

Ol
a 

Il
da
 

cl
ad

 
cl
a 



‘ ~G, | Se preraeg @ qemts; 204 oer arpeeeryn’ tp 1h,” epee te eee 

a i 
af 

pelpestany hed SEs ime NING age ant ae” Jmee 

tiie , 

eels gee emp 

“a 

Saas acta wWhotier goy pote omy es 

Bis 

tte 
it ee Oe id ae he perinmte th | labels tt ds 
ghey A i in eee ee 

. will. wt g maw 4 4 nt fe, 

ct “HALT Aa died 
1) eka. ete ravine t 

“TOE 

rR Pett 
a6. Gib aes ee 

75 ~ i mits: — 

Datei siemens! 
2 a8 esl vee 

sense fico ja Puceneerdon! 
aaa inim maa 

a es ++ ae 
gees Na 

PAPUA. 

th cbt hel NH 

Th ah we anin 

_ an t LANA 
ek a 
aelel othe b= oe Eogaeueas 

(ea SReIee | o 

=2 i ee 7 an ™ 
- “Wiet> 2 



162 

marine and non-marine strata of the Falher “C” and rarely 5-10 m of non-marine strata of 

the Falher “B”. The underlying Falher “E” and overlying Falher “C” members are shown 

to view possible structural controls, significant depositional patterns, and illustrate of 

validity of the datum selected. 

Stratigraphic Datum 

A datum is an extensive surface that is roughly horizontal and can be used as a 

reference to construct reliable cross-sections and correlate important surfaces and units 

(Emery and Myers, 1996). The principle datum used in this study is the contact between 

the top of the Falher “D” sandbody and the base of the first regionally extensive coal. 

One advantage of using this contact is that it reflects an interval of time that falls within 

the unit of interest. Also, this datum is easily picked within a large number of cores and 

well logs in the study area. The disadvantage of using this datum is the uncertainly of the 

extent of erosion and potential stratigraphic discontinuity associated with the coal bed. 

The top of the Falher “D” sandbody is a less desirable datum due to inconsistent 

thickness and common localized erosion of the upper portions. A datum commonly use 

in Lower Cretaceous studies is the Harmon Maximum Flooding Surface (e.g., Hayes, 

1988; MacEachern, 1994). This surface is a regional marine flooding surface in the 

Harmon Formation and is distinctly visible on a number of different petrophysical well 

logs. However, this surface is located a significant stratigraphic distance above the 

interval in question; therefore, this surface was judged to be a poor choice for a datum in 

this study. 

Cross-section A-A’ — Updrift Strandplain 

Cross-section A-A’ is a dip-oriented section (Fig. 4.5) that is approximately 

perpendicular to the Falher “D” paleoshoreline (Fig. 4.4). This cross-section is located 

west or updrift of inferred wave-dominated deltaic deposits. The section contains a 

northward predictable proximal to distal transition in facies in the D1 and D2 intervals. 

However, proximal foreshore and upper shoreface deposits predominate the cross-section 

south of Township 69. In other words, this section does not contain distal deposits south 

of Township 69. This is in contrast to the remainder of the study area, which commonly 
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contains distal lower shoreface deposits throughout Township 68. This distribution of 

facies is a function of the proximity to source areas, which are thought to be located west 

and southwest of the study area (Cant, 1984; Jackson, 1984; Smith, 1984; Leckie, 1986a; 

Pate, 1988; Smith, 1994; Caddal, 2000). However, the Falher “D” is clearly thinner 

along this section as compared to sections B-B’ and C-C’. The facies relationships 

observed within the D1 and D2 intervals in A-A’ are discussed below 

D1 Interval 

The most southerly occurrence of the D1 shoreface is near the boundary between 

Townships 67 and 68 (Fig. 4.5). This package thickens basinward to approximately 6 m; 

however, significant erosion of the upper D1 likely occurred during deposition of the 

overlying D2 shoreface. Along this section, the D1 sandbody predominantly consists of 

coarse-grained deposits interpreted to reflect foreshore and upper shoreface deposition. 

However, the paucity of core control within this interval severely limits any 

interpretation. The D1 shoreface extends northward to the lower half of Township 69 

where it pinches out. The DI interval is more consistent in terms of occurrence, 

thickness, and grain-size within this cross-section as compared to other dip- and strike- 

sections. The consistency of D1 in A-A’ is a function of its westerly position and more 

consistent input of sediment from the west (Leckie, 1986; Caddel, 2000; Caddel and 

Moslow, 2004). Other regions encountered eastward, along-strike, may receive reduced 

sediment input and thereby did not form significant thicknesses. 

D2 Interval 

The D2 shoreface is generally comprised of foreshore and proximal upper 

shoreface deposits from FA2. This interval extends southward to the northern half of 

Township 67, and thickens in the basinward direction (Fig 4.5). The deposits of the D2 

interval encompass interbedded sandstones and conglomerates sharply overlain by well to 

very well sorted conglomerates. These coarse clastics correspond to the proximal upper 

shoreface and foreshore beach environments, respectively (Pemberton and MacEachern, 

1992; Caddel and Moslow, 2004). The very well sorted beach conglomerates thicken 

basinward to a maximum of 7m near the middle of Township 68, and subsequently thin 
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rapidly northward to pinchout in the northern portion of Township 68. The origin and 

characteristics of this well sorted conglomeratic body will be discussed further in the 

depositional map sections. Overall, the thickness and characteristics of the Falher “D” 

succession are consistent in this region and correspond to an updrift strandplain 

environment within the asymmetrical delta model (Bhattacharya and Giosan, 2003). The 

deposits observed in this section may also represent reworked deposits from an older 

abandoned delta lobe present along the Alberta-British Columbia boarder (Arnott, 1993; 

Caddel, 2000). Abandoned delta lobes are a common updrift source of sediment in a 

number of modern asymmetrical wave-dominated deltas (Bhattacharya and Giosan, 

2003). 

Distal lower shoreface deposits are not observed south of the Township 68-69 

boundary within this cross-section. Beyond this boundary, the deposits consist of storm- 

amalgamated HCS sandstones from the proximal lower shoreface (c.f. Pemberton and 

MacEachern, 1992). In other words, muddy intervals in the form of distal lower 

shoreface or offshore strata are not observed. This occurrence is in direct contrast to the 

remainder of the study area in which distal lower shoreface and offshore environments 

predominate the succession north of the northern half of Township 68. The paucity of 

muddy strata in the D2 interval of A-A’, is interpreted to be partially associated with the 

proximity to the source area located in the southwest and the along-strike source of 

sediment in the west. The strong groyne effect produced by distributary channels within 

the wave-dominated delta located in Range 1OW6 may also restrict alongshore movement 

of sediment towards the east (Bhattacharya and Giosan, 2003). Nevertheless, the 

pronounced muddying of the Falher D along Township 69 starting at Range 12W6 

corresponds with the presence of a large asymmetrical wave-dominated delta. The 

change in grain size along strike may also be related to the paleoshoreline, which appears 

to change slightly from an east-west trend (most of the study area) to a more northwest- 

southeast trend near the western edge of the study area. This change in the shoreline 

trend likely plays an important role in the regional distribution of the Falher “D”. 

Previous analysis of the Falher “D” shoreline west of the study area documents a 

continued change in the shoreline trend towards a northwest-southeast position (Caddel, 

2000; Caddel and Moslow, 2004). 
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Cross-section B-B’— Delta-Front and Delta-Plain 

Cross-section B-B’ is a dip-oriented section that is approximately perpendicular to 

the Falher “D” paleoshoreline (Fig. 4.6) and lies within the middle of the study area (Fig. 

4.4). This cross-section incorporates 7 gamma-ray well log signatures, many of which 

come from wells with significant cored intervals. This cross-section contains a proximal 

to distal transition in facies northward (i.e. basinward) in both the D1 and D2 intervals. 

As compared to the previous cross-section, B-B’ displays a dramatically thicker D2 

interval and a similar thickness in the D1 interval. This cross-section also exhibits the 

occurrence of distal lower shoreface/distal delta-front deposits northward of the 

Township 68-69 boundary, which contrasts the proximal lower shoreface strata observed 

to the west of B-B’. 

D1 Interval 

The proximal shoreline deposits of the DI shoreface in this cross-section are 

present in the northern portion of Township 68 (Fig. 4.6). The proximal strata consist of 

medium- to very fine-grained moderately sorted sandstone, which is interpreted to 

represent the middle and upper shoreface settings. Basinward, these deposits transition 

into lower shoreface and offshore deposits. Overall, the D1 shoreface never exceeds 5m 

in thickness; however, as mentioned previously, this unit may have undergone significant 

erosion (TSE2). From cored intervals, it is apparent that within most of Township 68 the 

D1 interval is dominated by coastal plain and significant channel deposits. Comparison 

to the previous cross-sections, indicates the presence of a slightly thinner succession as 

well as a northward shift in the occurrence of this interval. The D1 deposits also tend to 

be finer grained with a dramatic decrease in the amount of conglomeratic material. 

D2 Interval 

In section B-B’, the D2 shoreface extends farther southward than the D1 

shoreface and is more pronounced than in other cross-sections (Fig. 4.6). Within this 

region of the study area, the D2 shoreface lies sharply above interbedded coastal plain 

mudstones and coals in the south and marine sandstones of the D1 shoreface in the north. 

The contact between the D1 and D2 intervals can be difficult to identify due to the 



Oil) ie i o il ‘ 
i“? i ny , ht ; _ 7 

a ‘em: 1 a. | 
} n Ja aun I i 

aleorresnmnh 1 Boe FRR ASN HERE! a 
LUD epobesialy: uoimirub © ayalqaily “8 nokrene-aeote kuokveng-ed 9 benaqmon eA 

ait) wiles: onle nateoomenons itd Auwwoted (Celt sth eesti nator bien laneaehd 

ott 10 bawinee ateogab smurt-adioh fadgib\ianleroe: tawel lamb to sonenumoD 

boviowde Gre eodlovarte aewol Ieminog od) xeminoe Moidvr .psbaded 0-82 qidwo'T 

A Ls’ =e 7 
ca 

sw Aeon ein onaltynods tC odp to athengeb snilswide Wanlzorq edt 2° 

1 naANOD ime lhsmigeeRpadT AD.yi) 80 qidkemwo'? Yo Roig mortnom oad) a Insehg 
ot harqueind ab dutiw omeiebaas boner ylutkweboat teming-sait qv or samuitiom 

cnbieuna wivnged pian tuewaieed eyotiean oatamehe roggee hes albbie sit trexenqes 
img aleonay tewod soulaneds TO st Ham) tiaaqoh enable hae saw snode wewol ota 

ath HO elidenwet Yu zane nidhiwe aad nome al clovieund bone mors 4S82T) noluons 

inoeimapne) atively Fonguito nieltingie bur taity Iearao yd beamed 41 favasta’ 1 
ao ooeoone wank algile 6 to saneuump off nodualbier enctigoe-auns suoivesy ort ot 

a8 Laatste icone GD sa deerme ath te wocertiso0 od! as Side bnwdnon nen thew 

Sippeen teenie ni oeueoob vim 0 thw boning yeni od 

Le 

ae SO, 

10 ort nad brmerdtune tobi, abana comtmods LM odt “8-4 wating al oe | 

ald tie (0.6 git} aneitoun-anors veda wt oads baeonurg soUr et bie Santen 

iste Inno babtiodhosn averle hepsi sal soutenore SCI ob yasne bate ade magi 

ana iceland om cpeanannpeR tea Tf (3 

a tvils o : anit ‘ 

a 
: 

ea 
1 e 

ij a 



167 

21
09
 

pu
e 

BO
] 

SI
TU
S 

W
O
 

po
g 

[2
0d
 

po
ly
nu
ep
] 

e 
WO

YS
]J

O/
2d

eJ
os

OY
yS

 
1a

MO
T/

de
Ja

10
ys

 
e
d
d
y
 

e
a
 

[eAtoJUuy [Cd 

(s
ju
n 

or
yd
ei
si
ye
s 

ju
ep

od
ui

t)
 

so
ul

] 
u
o
N
e
[
a
u
o
D
 

—=
 

— 
— 

({
e0

9 
G
y
 

eA
ts
ua
}x
a 

AT
[e
uo
Is
e1
) 

W
I
N
E
 

‘e
VI
O 

3}
 

e
P
U
T
U
L
O
 

= 
T
L
D
 

ade
 

e
n
a
 

(C
Wa

) 
e
1
0
Y
s
e
I
o
a
S
/
y
 

Wa
) 

Br
el

d-
ee

d 
[i

] 
(A
SL
) 

Wo
Is

os
d 

Jo
 

ss
ov
yi
ns
 

DA
IS

so
IS

su
RL

E,
 

A
W
A
 

-O
AR
M 

8 
U
N
U
M
 

UO
Ts
Is
ue
y 

Yy
yN

os
-y

OU
 

oY
} 

so
ye

sn
i[

I 
pu

e 
eo
re
 

Ap
mj

s 
oy

} 
Jo
 

J9
\u
Ua
0 

oy
eu

rx
oi

dd
e 

oy
} 

Y
I
M
 

po
ye
do
] 

SI
 

WO
Nd

9S
-S

sO
I9

 

S
U
L
 

O
M
O
]
 

W
U
P
Y
 

UI
YI
IM
 

9}
e9
0]
 

UO
TI

D9
S-

Ss
OI

9 

po
us

l0
-d

ip
 

Su
Ip

us
y 

YN
OS
-Y
UI
ON
 

- 
O
p
 

“B
I 

>
 

WG
 

/ 
LZ
 

WOSL?E 
[
 

|
 

LHS.L 

Sf 
feast |

 

T
a
p
e
 

S
R
 

on
 

ee
 

y
i
 

‘e
s 

a
e
 

we
 

B 

WSCLE a 
li 

f 

by 

3
 

wg
zi
z 

=
n
 

W
O
O
L
Z
 

i
 

; iS WIC E> WIG T > OT 2 

4 

Boker 

sero). 

=| 

=
a
 

° 
wi
gz
 

Lz
 

s
 

e e q e o 

(€
V4

) 
Wo

1,
-e

I[
9q

 
[e
WI
XO
Ig
/(
Z7
VA
) 

eo
eJ

o1
0Y

s 
1a
dd
yQ
 

i
a
 

s
o
i
n
j
e
a
 

JO
YI

O 
PU

P 
SO
dB
JI
NG
 

S
I
Y
A
R
I
S
H
e
N
S
 

U
e
]
 

(T
Wa

) 
Ww

or
-e

ya
q 

[e
Is

iq
/a

oe
jo

ro
ys

 
J
o
m
o
 

[
|
 

(S
W)

 
we

ld
 

[e
se
oD
 

|
]
 

(T
v)
 

BH
op

or
d/

ez
0y

sy
O 

[
|
 

(p
vd

) 
[e

uo
os

eT
/(

py
_)

 
ur
e[
d-
ey
aq
 

1e
M0

7 
[
|
 

(S
dp
eI
OU
IO
[S
UO
, 

pU
e 

SO
UO
|S
pu
eS
) 

[P
AT

O]
 

CQ
 

So
UO
JS
pN
y]
 

AP
UC

S)
 

UI
eT

Y 
[e
IS
CO
.D
 

..
q.

, 
Jo
ul
e 

UOIJ-P}[9q 

reasiq 

E
A
 

= 

ost 
dv 

0 
a
 

n
f
 

i
 
WE" |

 > 
=
 

. 
A
R
R
 

Sen 
a
i
f
 

9.M01-69-61-90 
ain 

e
c
 

e 
L
T
 
>
 

g 
dV 

0 
(
N
)
 q
d
 

ig 
9MOI-89-8 

I-11 
=
]
 

(a ~ q WOMDNS-SSOID 
..C,, oUTey 

m
Y
 

a 
V
a
 

9MOI-89-0€-11 
a
 

e
y
 

5 

9A\0I-89-80-F0 

woo
iz 

(S
q 

os
l 

dv
 

0 

9M
OI
-8
9-
TE
-O
1 





168 

similarity in grain size, lithology, and physical structures of the D1 and D2 successions. 

The intervals can be discerned based on the juxtaposition of more distal D2 strata above 

more proximal D1 strata. 

The southern most wells in this cross-section are dominated by interbedded 

sandstone, poorly sorted clast-supported conglomerates and rare mudstones from FA3 

(proximal delta-front) and FA4 (lower delta-plain). Basinward, these deposits transition 

into sandstone-dominated delta-front deposits from FA2/3. The most basinward wells in 

this cross-section are dominated by interbedded sandstone and mudstone from FA1, 

which are interpreted to reflect prodelta deposition (MacEachern et al., 2000). This is, 

however, difficult to ascertain with certainty due to a lack of core control within most of 

Township 69. Coastal plain deposits consisting of 2 — 5 m thick organic-rich mudstones 

and coals cap the D2 succession along the entire length of the study area. These 

mudstones and coals are erosionally overlain by lower shoreface deposits of the Falher 

“C”. Cross-section B-B’ transects north-south through an interpreted asymmetrical 

wave-dominated delta. This interpretation is supported by the increased thickness of D2 

compared to the rest of the study area, the presence of distinctive deltaic signatures as 

discussed in chapter three, the presence of thick fluvial deposits landward, and the 

depositional/lithological maps within the following sections. 

Cross-section C-C’— Downdrift deltaic 

Cross-section C-C’ is a dip-oriented section located in the eastern portion of the 

study area (Fig. 4.4) and is nearly perpendicular to the paleoshoreline (Fig. 4.7). 

Included within this cross-section are 7 gamma-ray well log signatures, which come from 

wells with significant cored intervals or are located close to cored wells. This dip-section 

displays a significant decrease in the thickness of the Falher “D” succession and a 

dramatic increase in the amount of mud in the form of heterolithic lagoonal mudstones 

and sandstones. The D1 interval however maintains a fairly consistent thickness and 

lithology throughout the section compared to the variable D2 interval. 
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D1 Interval 

The D1 shoreface displayed in C-C’ appears to be more irregular and thinner than 

the D1 correlated in A-A’. This interval reaches a maximum thickness of approximately 

4.5 m near the top half of Township 68 and decreases in thickness northward (Fig. 4.7). 

The overall irregularity of the D1 shoreface within this region is most likely the result of 

reduced sediment input due to the distance from sediment sources. Another important 

factor is the amount of erosion along the TSE2 surface. The D1 interval within this 

region has extremely poor core control, which reduces the certainty of any 

interpretations. 

D2 Interval 

The D2 shoreface in this region of the study area possesses a reduced thickness 

and finer-grained character in comparison to the rest of the study area. The most 

southerly wells in this cross-section contain trough cross-bedded fine-grained sandstones 

of the upper shoreface and hummocky cross-stratified very fine-grained sandstones of the 

proximal lower shoreface (c.f. Pemberton and MacEachern, 1992). Section C-C’ is 

dominated by an east-west trending 5 m to 12 m thick heterolithic interval interpreted to 

be lagoonal (c.f. Pemberton and Wightman, 1992) (Fig. 4.7). In well 06-23-68-08W6 

these heterolithic lagoonal deposits sharply overlie HCS sandstones from the proximal 

lower and middle shoreface of the lower D2 interval. The lagoonal deposits thicken 

northward into the northern half of Township 68 to comprise the entire D2 interval. 

North of Township 68, these deposits again overlie lower shoreface units of the lower 

D2. The most distal well within this cross-section contains interbedded sandstones and 

mudstones from the distal lower shoreface to upper offshore or corresponding prodelta. 

This cross-section highlights the downdrift portion of an asymmetrical wave-dominated 

delta (Bhattacharya and Giosan, 2003). The increased proportion of mudstone within 

facies is interpreted to be sourced from the distributary channels present within Range 

10W6 (Cross-section B-B’). The decreased abundance of sandstone and complete 

absence of conglomerate is thought to be related to the delta hindering longshore drift 

from the west. 
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Cross-section D-D’ — Along-strike 

Cross-section D-D’ is a stratigraphic strike-oriented section (Fig. 4.8) that is 

nearly parallel to the Falher “D” paleoshoreline (Fig. 4.4). The wells in the western 

portion of the cross-section are located marginally more proximal to the shoreline than 

those in the east. This strike-section corresponds to the area with prominent core control 

and is located roughly 6.5 km basinward from the southern-most position of the Falher 

“D” shoreline. Included within this section are 8 gamma-ray well log signatures that 

predominantly correspond wells with cored intervals. Section D-D’ documents the 

numerous along-strike variations present in the Falher “D” and cross-cuts the dip-sections 

discussed previously. 

D1 Interval 

The D1 shoreface is present in this cross-section as interbedded sandstone- and 

conglomerate-rich foreshore and upper shoreface deposits. In general, the grain-size and 

thickness of the unit decreases eastward. The along-strike variation in depositional 

environments is associated to the irregular shoreline trend that persisted during early 

Falher “D” deposition. The shoreline in the central portion of the study area was farther 

north than in the west due to possible deltaic protrusion, erosion associated with the 

TSE2 surface, and/or reduced sediment supply. Lack of good core control and poor 

preservation of the D1 interval limits the possible information gathered from this cross- 

section. Overall, D-D’ illustrates the irregular nature of the D1 interval in terms of 

thickness and paleoshoreline trend (Fig. 4.8). 

D2 Interval 

This cross-section demonstrates the along-strike variability of the D2 sandbody 

across the study area (Fig. 4.8). The thickness of the D2 interval generally thins towards 

the east, with the exception of the extreme western portion of the study area. This 

corresponds with the asymmetrical delta model including, east to west, updrift 

strandplain, central delta complexes, and downdrift lagoonal environments (Bhattacharya 

and Giosan, 2003). The western portion of the study area consists of well to very well 

sorted conglomerates (Facies 8a, FA2) and interbedded sandstone and conglomerate 
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(Facies 7, FA2/3). These deposits are interpreted to represent a foreshore beach 

environment consisting of reworked deltaic deposits (Pemberton and MacEachern, 1992; 

Arnott, 1993; Caddel, 2000). The central portion of the study area is composed of 

interbedded sandstone, poorly sorted clast-supported conglomerates, and rare massive 

mudstones interpreted to represent delta-front and delta-plain deposits (FA3/4) 

(Bhattacharya and Walker, 1992; MacEachern, 2000). The eastern half of this cross- 

section contains interbedded sandstone and bioturbated silty mudstone (FA4) sharply 

overlying HCS very fine-grained sandstones of the lower shoreface (FAI). These 

deposits correspond to the downdrift lagoonal and delta-front environments 

(Bhattacharya and Walker, 1992; Pemberton and Wightman, 1992; MacEachern, 2000; 

Bhattacharya and Giosan, 2003). This illustrates the complex nature of along-strike 

variations in the Falher “D” member. However, in this instance all three depositional 

environments are interpreted to be subenvironments of one large asymmetrical wave- 

dominated delta (Bhattacharya and Giosan, 2003). 

Summary 

The spatial distribution of important stratigraphic surfaces and environmentally 

significant units was illustrated with three north-south oriented dip-sections and one east- 

west oriented strike-section. The western most dip-section, A-A’, is characteristic of an 

updrift strandplain environment within a large asymmetrical wave-dominated deltaic 

system. The section consists of predominantly interbedded sandstone and conglomerate 

overlain by very well sorted conglomerate interpreted to represent a proximal upper 

shoreface and foreshore environment, respectively. The sediment source for these 

deposits is interpreted to be reworked abandoned delta lobes or other active deltas farther 

westward. The dip-section located in the middle of the study area, B-B’, is characteristic 

of central deltaic complexes. This section is comprises a proximal to distal transition 

from sandstone and conglomerate dominated delta-plain and delta-front deposits to 

sparsely bioturbated interbedded sandstones and mudstones of the prodelta. The eastern 

most dip-section, C-C’, contains a substantially thinner Falher “D” succession and 

displays a dramatic increase in the amount of mud in the form of heterolithic lagoonal 

mudstones and sandstones. These deposits correspond to the downdrift portion of an 
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asymmetrical wave-dominated delta. The east-west trending strike-oriented section, D- 

D’, cross-cuts these dip-sections at their mid-point. This section illustrates the significant 

lateral variability present within the Falher “D” and encompasses elements from the three 

dip-sections described above. This corresponds with the asymmetrical delta model 

including, east to west, updrift strandplain, central delta complexes, and downdrift 

lagoonal environments (Bhattacharya and Giosan, 2003). The following section will 

examine these lateral variations in greater detail with the mapping of important 

lithological, sedimentological, and ichnological characteristics. 

(4.3) Lithological and Ichnological Mapping 

A number of lithological and biological maps were created in order to exemplify 

along-strike variations associated with changes in the depositional environment, more 

specifically the presence of an asymmetrical wave-dominated delta. Isopach maps 

display the overall thickness of the marine succession over the study area (Boggs, 2001). 

Variations in the thickness of the Falher “D” sandbody are common and illustrate 

changes in the depositional system. Likewise, the distribution and characteristics of 

conglomeratic intervals within the study area identify along-strike trends. The grain size, 

sorting, and general occurrence of conglomerate offers vital information on the processes 

affecting the Falher “D” shoreline at the time of deposition. 

The diversity and abundance of trace fossils across the study area was mapped in 

order to identify changes in environmental stresses, such as salinity, water turbidity, 

water energy, sedimentation rate, oxygen level, and substrate coherence (MacEachern 

and Pemberton, 1992). Many of these parameters can only be assessed through the 

identification of biological structures, which are dependant upon the depositional 

conditions (Pemberton et al., 2001). Environmental parameters are particularly important 

in deltas where fluvial input results in physico-chemical stresses that dramatically affect 

infaunal organisms (MacEachern et al., 2005). 

Isopach Maps 

The total thickness of sandstone and conglomerate from the Falher “D” 

succession, D1 interval, and D2 interval are displayed in three separate isopach maps 
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(Fig. 4.9, 4.10, and 4.11). Core and well log data from the study area was utilized to 

construct these maps. Thickness variations can be useful in identifying depositional point 

sources, such as deltas, which generally have pronounced thicknesses compared to 

adjacent strandplains (Bhattacharya and Walker, 1992). However, extensive wave 

activity within wave-dominated deltas can effectively redistributed sediment such that a 

noticeable protuberance may be absent (Bhattacharya and Walker, 1992). 

The overall thickness of the marine coarse clastics of the Falher “D” exemplifies a 

number of important trends (Fig. 4.9). In general, the thickness of the Falher “D” 

decreases towards the east. Although a maximum thickness of approximately 35 m 

occurs near the center of the study area. This region also contains rapid changes in 

thickness over relatively short distances. Variable thicknesses in the central portion of 

the study area are attributed to increased sedimentation rates and internal complexities 

attributed to deltaic deposition. The overall thickness of the Falher “D” decreases rapidly 

east of Range 1OW6. The eastern region contains a noticeably thinner succession and, 

dramatic variations in thickness are common. The average thickness near the eastern 

edge of the study area is around 10 m and represents the thinnest occurrence of the Falher 

“D” succession in the study area. The western portion of the study area comprises 

uniformly distributed coarse clastics that are on average 17 m thick. The southern edge of 

coarse clastics along the Township 67-68 boundary corresponds to the southern limit of 

marine deposition within the D2 interval. The general orientation of thickness variations 

changes from an east-west trend in the east (Ranges 1|0W6 to 8W6) to a northwest- 

southeast trend in the west (Ranges 12W6 and 13W6). This corresponds to the change in 

the Falher “D” paleoshoreline trend discussed above. 

The D1 isopach map was calculated from the base of Falher “D” (TSE1) to the 

base of the D2 interval (TSE2). The D1 interval varies in thickness from zero to just over 

10 m (Fig. 4.10). The southern boundary of the sandbody is very irregular with an 

approximate east to west trend. The three thicker zones (located in or near T68) form 

strike-elongated bodies roughly 4.5 km wide and 12-19 km long. The preserved record of 

the D1 interval within the study area is most likely incomplete due to significant erosion 

that incurred prior to deposition of the D2 shoreface. In addition, the lack of cored 

intervals within the D1 has made interpretations on the D1 shoreface very difficult. 
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The D2 isopach map was calculated from the top of the D1 interval (TSE2) to the 

top of the sandstone or conglomeratic units (usually FA2/3). The D2 thickness is fairly 

consistent across the study area; however, large thickness variations are still present (Fig. 

4.11). The coarse clastics range from less than 5 m to greater than 20 m in thickness, 

with the thickest deposits located in the west-central region. Similar to the overall Falher 

“D” there is a sharp decline in the thickness of the D2 interval from the middle of Range 

10W6 towards the east. This decrease in thickness corresponds to the presence of fluvial 

channels and recognized deltaic deposits. The eastern half of the study area contains an 

increased proportion of mud than its central and western along-strike equivalents. This 

observation is explained with the downdrift heterolithic lagoonal deposits that are visible 

on the isopach map in the east-west trending 3 km wide low in thickness (Ranges 9W6 

and 8W6). Immediately south of this trend, sandstone thicknesses resemble those of the 

western portion of the study area. This indicates that initially, the eastern half of the 

study areas consisted of typical strandplain deposition and that changes in the system 

resulted in lagoonal deposition. This corresponds with delta lobe abandonment in the 

west and delta reestablishment near the center of the study area. In this case, the eastern 

portion of the study would undergo dramatic paleoenvironmental changes and shift to 

downdrift lower delta-plain and delta-front deposition. This will be exemplified within 

the paleogeographical mapping section located at the end of this chapter. 

Conglomerate Thickness, Characteristics, and Distribution 

The distribution of conglomerate throughout the study area provides important 

information on the depositional processes that occurred within a given region (Fig. 4.12). 

Generally, significant accumulations of conglomerate are limited to the D2 interval, with 

only minor conglomeratic lags and thin interbeds present within D1. Previous studies 

have indicated that very little conglomerate is present within the Falher “D” north of the 

study area (Cant, 1984; Smith et al., 1984; Cant, 1995; Casas and Walker, 1997). The 

distribution of conglomerate within the D2 shoreface is generally restricted to Ranges 

13W6 to 10W6 along Township 68, with insignificant accumulations of conglomerate 

present in the eastern region (Fig. 4.12). The sharp decline in thickness of the 

conglomeratic intervals corresponds to the sudden decrease in the overall thickness of the 
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D2 interval. One of the thickest accumulations of continuous conglomerate is present 

within Ranges 13W6 and 12W6, which forms a 3.2 km wide by 18 km long coarse clastic 

body. This conglomeratic body varies in thickness from approximately 7 meters along its 

western edge to less than 4 meters at its eastern termination (Fig. 4.12). The other thick 

accumulation of interbedded sandstone and conglomerate occurs within Range 10W6 and 

varies from 6 to 10 meters in thickness (Fig. 4.12). 

Another important feature of the Falher “D” conglomerates is the degree of 

sorting, which ranges from very well sorted to very poorly sorted. The distribution of 

grain size sorting is an important indicator of the depositional processes that were 

required to physical sort sediment over various periods of time (Reading, 1989; Orton 

and Reading, 1993). Prominent intervals of very well-sorted, clast-supported 

conglomerates (Facies 8a), ranging from 0.5 to 5 m in thickness, are restricted to a 

WNW-ESE trending 3.2 km wide body present in the middle of Ranges 13W6 and 12W6 

(Fig. 4.12). Within this conglomeratic body, the overall grain size generally decreases in 

an eastward direction, with Facies 6 (coarse sand and granules) replacing Facies 8a (small 

pebbles) along-strike. This conglomeratic feature has been interpreted in previous 

chapters as a result of delta lobe abandonment and along-strike reworking by longshore 

drift within an updrift strandplain setting. This will be discussed in the following section 

that deals with the depositional history of the Falher “D”. Poorly to very poorly sorted 

conglomerates are found in the greatest concentration within the central section of the 

study area. These coarse clastics are generally interbedded with pebble-rich sandstones 

and less commonly with massive mudstones. This corresponds with the central deltaic 

complexes discussed previously. East of 10W6, conglomerate is generally absent and 

sandstones are typically well sorted with very low abundances of pebble-sized clasts as 

compared to laterally equivalent deposits in the west. 

Bioturbation Mapping (Diversity/Abundance) 

The diversity and intensity of bioturbation can present important information on 

the environment of deposition (Ekdale et al., 1984; Frey and Pemberton, 1984; 

MacEachern and Pemberton, 1992). Trace fossil distribution can be especially important 

in strata where physical sedimentary structures are not preserved. In general, cored 
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intervals of the Falher “D” possess very low levels of bioturbation. This is partly 

associated to the core control in which cores are often from the coarser-grained proximal 

regions where very little bioturbation would be expected (ex: proximal upper shoreface, 

foreshore, and delta-plain). The paucity of ichnofossils can also be explained by the 

storm dominance exhibited in distal deposits whereby extensive storm amalgamation 

occurred in the lower shoreface. In this cases, the preservation potential of fair-weather, 

most likely bioturbated intervals, is low. The exception to the lack of bioturbation is the 

“burrowed zone” discussed in the previous chapter (Saunders et al., 1994). However, this 

zone is either not present or not preserved in the eastern half of the study area. 

The sporadic distribution of core control and paucity of core within the northern 

half of study area lead to difficulties discerning detailed ichnological variations. 

Notwithstanding, broad trends in the abundance of bioturbation within the lower and 

upper shoreface (or delta-front) exist (Fig. 4.13). This is illustrated in a sharp decrease in 

the amount of bioturbation at the Range 11W6-10W6 border, which occurs in 

conjunction with the abrupt decrease in the thickness of the Falher “D” sandbody and 

abundance of conglomerate. West of this region, thin 5-10 cm thick, sporadically to 

abundantly burrowed zones are common within the uppermost lower shoreface and distal 

upper shoreface. The ichnological suite generally consists of only 2-4 distinct traces, 

however up to 12 are present overall. This suite is characteristic of a low diversity, 

mixed Skolithos-Cruziana ichnofacies present within the upper shoreface and proximal 

lower shoreface (c.f. MacEachern and Pemberton, 1992). This presence of bioturbation 

is in stark contrast to the eastern half of the study area in which the lower and upper 

shoreface are nearly unburrowed. However, the lagoonal strata within the eastern region 

consists of abundant and very low diversity trace fossil suites that are typical to brackish 

water environments (Pemberton and Wightman, 1992). The most diverse and abundant 

trace fossil suites are found north of the Township 68-69 boundary. Within this region, 

deposits are characterized by a proximal Cruziana Ichnofacies found within interbedded 

sandstones and mudstones of the distal lower shoreface to upper offshore and 

corresponding prodelta (MacEachern and Pemberton, 1992). The northern portion of the 

study area also contains common intervals with little to no bioturbation (ex: 07-26-69- 
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O9W6). The paucity of bioturbation is related to fluvially induced stresses within the 

prodelta as discussed in chapter three (MacEachern et al., 2005). 

The abrupt lateral decrease in the abundance and diversity of bioturbation is a 

function of increased environmental stresses, including salinity fluctuations, water 

turbidity, and sedimentation rates, associated with fluvial input within regions of delta- 

influence. In this case, environmental stresses associated with deltaic deposition will be 

deflected downdrift. Therefore, updrift regions will exhibit ichnological characteristics 

typical of strandplain settings, while downdrift regions will reflect deltaic deposition. In 

addition, heterolithic strata consisting of very low diversity trace fossil suites typical to 

brackish water environments are also present within the downdrift region. This 

corresponds to deposition within the lower delta-plain. The spatial distribution of 

ichnological characteristics for the Falher “D” supports the presence of an asymmetrical 

wave-dominated delta. A detailed discussion of the sedimentological and ichnological 

characteristics of wave-dominated deltas is presented within chapter three and will not be 

repeated here. 

Summary 

The lithological and biological distribution maps discussed above all identify 

distinctive along-strike variations that predominantly occur within Range 10W6. This 

locality divides the study area into two distinct regions. The western half contains thick 

accumulations of very-well to very-poorly sorted conglomerate; relatively diverse and 

abundant ichnological suites; and an overall thick succession of sandstone and 

conglomerate. Conversely, the eastern portion of the study area contains virtually no 

conglomerate, sparse bioturbation, and a dramatically thinner shoreface succession. This 

region also contains abundant interbedded mudstone and sandstone that reflect brackish 

water lagoonal deposition. Accordingly, the eastern region contains pronounced mud and 

silt contents compared to the predominance of coarse clastics in the west. 

The data described within this section is consistent with the interpreted presence 

of an asymmetrical wave-dominated delta centered within Range 10W6. The well- 

sorted, texturally mature sandstones and conglomerates of the western region are 

interpreted as the updrift strandplain deposits. The eastern, texturally less mature 
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sandstones and mudstone-rich lagoonal deposits are interpreted as the downdrift flank of 

the delta. The thicker, more poorly sorted interbedded sandstones, mudstones, and 

conglomerates within Range 10W6 are interpreted as delta-front and delta-plain deposits 

associated to landward distributary channels. The morphology of the Falher “D” deltaic 

complex is consistent with previously described modern and ancient asymmetrical deltas 

(ex: Giosan, 1998; Rodriguez et al., 2000; Bhattacharya and Giosan, 2003; Hansen and 

MacEachern, in press). The following section will illustrate the paleogeographical 

evolution of the Falher “D” succession within the study area utilizing the previously 

discussed lithological and biological maps, cross-sections, and depositional model. 

(4.4) Paleogeographical Mapping 

The depositional history and paleogeography of the Falher “D” succession is 

described below using a series of facies maps each representing a particular 

stratigraphic/time interval during deposition of the Falher “D”. Six paleogeographical 

maps ranging from coastal plain-dominated intervals of the upper Falher “E” to the 

coastal plain-dominated intervals of the uppermost Falher “D” display the evolution of 

the Falher D within the study area. The intervals were selected in order to highlight 

particular depositional environments or stratigraphic events that are essential in he 

evolution of the Falher “D”. Variations in relative sea-level and sediment supply are the 

primary factors that affects the paleogeographic evolution of the Falher D. The maps 

included in this section were created primarily using core descriptions along with well 

log profiles to fill in the considerable gaps in the study area. This information was 

combined with cross-section data in order to map the general environment at each well 

during each time interval. Using the paleogeographic maps, the depositional history of 

the Falher “‘D” is discussed below in a chronological order. 

Time 1: Upper Falher ‘*E” 

A reasonable starting point for the discussion on the evolution of the Falher “D” is 

to begin with the end of Falher “E” deposition (Fig. 4.14). At this point, the Falher “E” 

shoreline was situated north of the study area (Smith et al., 1984). Deposits of the upper 

Falher “E” encompass organic-rich mudstones and coals with cross-cutting sandstone- 
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rich fluvial channels that supplied sediment to the Falher “E” shorelines north of the 

study area. A prominent channel network is located in approximately the center of the 

study area (Range 10W6). This coastal plain strata of the upper Falher “E” is easily 

distinguished from the overlying marine deposits of the Falher “D’’, especially where the 

Falher “E” is characterized by thick coal beds. The Falher “E” stratigraphic interval ends 

with the introduction of the sharp-based sandstones and conglomerates of the Falher “D*. 

The surface separating these two members, the TSE1, represents a large-scale increase in 

water depth, which resulted in submergence of the study area. This transgressive surface 

of erosion (TSE1) formed as the shoreline retreated southward resulting in the erosion of 

previously deposited marginal-marine and non-marine strata of the Falher “E”. As in all 

other Falher cycles, these surfaces erode downward until the first major coal bed is 

reached (e.g. Leckie, 1982; Cant, 1984; Smith et al., 1984; Arnott, 1993; Casas and 

Walker, 1997; Rouble and Walker, 1997; Caddel, 2000; Armitage 2002; Hobbs, 2004). 

Erosion ends at the coal beds, as these coal-rich intervals tend to be harder and more 

resistant to erosion (Kalkreuth and Leckie, 1989). Accordingly, each Falher Member is 

separated above and below by a well developed coal-rich unit. 

Time 2: Early Progradation of D1 Shoreface following Transgression (TSE1) 

The southward transgression of the Falher “E” shoreline followed a relative rise in 

sea-level (Leckie, 1986). This resulted in the inundation of the coastal plain deposits and 

flooding of a vast proportion of the study area. The maximum landward position of the 

shoreline during this event was in the lower half of Township 68 (Fig. 4.15). Large 

brackish lagoonal environments possibly dominated the coast with potential wave- 

dominated estuaries forming at the mouths of fluvial channels. Physical evidence for 

transgression occurs in the presence of poorly sorted organic-rich conglomeratic lags, 

which occur along the TSE1 contact. Most transgressive deposits are not preserved and 

may be the result of a rapid transgression or lack of sediment input. 

After transgression of the Falher “E”, the shoreline was reestablished in the lower 

half of Township 68 (Fig. 4.15). During this time, the shoreline was extremely irregular 

with a roughly east-west trend. The most notable shoreline irregularity is the large 5 km 

wide protuberance within Range 1OW6. This region contains large fluvial channels 
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possibly feeding deltaic deposits farther north. East and west of this area, typical 

strandplain deposits predominate the early D1 interval. The D1 succession primarily 

consists of interbedded sandstone and conglomerate reflecting upper shoreface 

deposition. Northward there is a transition into interbedded sandstones and mudstones 

within the lower shoreface and offshore. Based on the available core data, distributions 

of environments within the D1 interval are difficult to ascertain, but appears similar to the 

successive D2 interval. 

Time 3: Early progradation of the D2 shoreface following Transgression (TSE2) 

Deposition of the D1 shoreface ends with a small rise in relative sea-level, which 

floods the nearshore coastal plain and leads to a southward retreat of the shoreline. The 

D2 shoreline is established in the top half of Township 67, which lies farther south than 

the previous DI shorelines (Fig. 4.16). The only preserved deposits of this minor 

transgression are thin marginal-marine mudstones separating marine sandstones from D1 

and D2 (ex: 06-28-68-13W6). A minor transgressive surface of erosion (TSE2) formed 

as the shoreline retreated southward again resulting in the erosion of previously deposited 

marine and marginal-marine strata of the D1 interval. 

During early deposition of the D2 interval, the shoreline was linear as a result of 

effective redistribution of sediment supply. This is the most southerly position of the 

paleoshoreline at any time during Falher “D” deposition within the study area. As the 

rise in relative sea-level slowed and finally ended, sediment supply began to overcome 

available accommodation space and the D2 shoreline prograded northward. A wave- 

/storm-dominated strandplain environment dominated the central and eastern portions of 

the shoreline in the study area. The western edge of the shoreline comprised mainly 

interbedded sandstone and poorly sorted conglomerate interpreted to represent delta-front 

and delta-plain deposits (Fig. 4.16). This regions proximity to the British Columbia — 

Alberta boarder hampers interpretations, as there are few cored intervals west of the study 

area in British Columbia. Other deltaic deposits have been identified in outcrops west 

into British Columbia within stratigraphically equivalent deposits (Gates Formation; 

Leckie, 1986; Caddel, 2000; Caddel and Moslow, 2004). 
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Time 4: Progradation of the middle D2 Shoreface 

As progradation of the D2 shoreface continued, the complexity of the depositional 

systems increased. Progradation during this time resulted from an increase in sediment 

supply, which filled the available accommodation space leading to northward shoreline 

progression. A distinctive feature that appeared during progradation was a wave- 

dominated delta situated within Range 10W6 (Fig. 4.17). Evidence of deltaic deposition 

includes a slight shoreline protuberance consisting of interbedded sandstone, poorly 

sorted conglomerate, and mudstone; thick fining-upward sandstone packages interpreted 

as fluvial channels located south of the protuberance; an overall thickening of the Falher 

“D” within the area; and the sedimentological and ichnological trends mapped above and 

discussed in chapter three. West of the delta, there was also a 3.2 km wide, 22 km long, 

and 3-5 m thick very well-sorted clast-supported conglomerate unit present in Ranges 

13W6 and 12W6. This linear body trends WNW-ESE and is interpreted to represents 

foreshore beach strata due to the extremely well sorted nature of the sediment (Fig. 4.17). 

This well sorted conglomerate body most likely formed from the destruction and 

redistribution of older delta-front and delta-plain deposits. Channel migration or aluvsion 

can terminate the sediment supply to particular delta lobes, which can leave it susceptible 

to erosion by destructional processes such as wave action (Arnott, 1993). Accordingly, 

sediment comprising the proximal delta-front and lower delta-plain is eroded and 

transported along strike by alongshore drift. In the case of the Falher “D”, longshore drift 

could have transported reworked deltaic deposits from west of the study area and 

deposited it as the well-sorted conglomerates. It is feasible that the abandoned delta lobe 

(west of Range 13W6) and the preserved delta lobe (Range 10W6) were fed from the 

same fluvial channel network. This illustrates the importance of autocyclic processes 

within deltaic settings and demonstrates that large paleoenvironmental shifts are not 

necessarily related to allocyclic processes (ex: sea-level fluctuations). 
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Time 5: Progradation of the Late D2 Shoreface 

Approaching the end of D2 progradation, the most basinward position of the D2 

shoreline is located in the northern half of Township 68 (Fig. 4.18). During this time, the 

eastern portion of the study area is dominated by interbedded sandstones and bioturbated 

mudstones sharply overlying HCS very fine-grained sandstones interpreted to have 

formed in the lower shoreface. Based on detailed core descriptions and depositional 

mapping, these heterolithic deposits are interpreted as lagoonal strata sandwiched 

between abandoned beach ridges present in the downdrift portion of an asymmetrical 

wave-dominated delta (Fig. 4.18). These downdrift environments formed primarily due 

to the disruption of longshore drift from the west by the distributary channels present 

within Range 1OW6. The lack of coarse-grained sediment supplied from the west and 

abundance of finer sediment within the downdrift deposits supports this idea. The delta 

provides protection from wave activity and is a source of mud for the downdrift region 

(Bhattacharya and Gisoan, 2003). Emergent barrier bars forming near the distributary 

mouth migrate downdrift to isolate small brackish water lagoons along the coastline. 

This deltaic system corresponds, more or less, with the asymmetrical delta model put 

forward by Bhattacharya and Giosan (2003) and discussed in detail within chapter three. 

This model predicts significant river-borne muds with lower quality reservoir facies in 

the downdrift areas, and higher quality sands in the updrift areas (Bhattacharya and 

Giosan, 2003). This model explains the decrease in thickness, lack of conglomerate, and 

decrease in intensity and diversity of bioturbation on the downdrift side of the wave- 

dominated delta. 

Time 6: Forced Regression and Aggradation of the Uppermost Falher “D” Coastal 

Plain 

Marine deposition within the study area ceases with a drop in the relative sea- 

level during forced regression (Posamentier et al., 1992). This event results in the sudden 

basinward movement of the shoreline north of the study area (e.g. Cant, 1984; Smith et 

al., 1984; Leckie, 1986; Casas and Walker, 1997). Accordingly, the study area 

experienced subaerial exposure and thus formed a sequence boundary (SB). Following 



bresvtsad vetonezue  aakietita Witsoe io leteneynni- ni efloneys.abltosenaet Senet 

sacetsepeaa ds te aabedn dies da ane eed asta 
ont vithowity have ceeiatven tibeweb esd? 804 ait) ailsh sialedaes 

aww etaneninds citntels oth ye teow a8 mont Ain swodegaol Yes mugen ify 

bre teow ot) mont heilyee een honiarganting to soel od. Awol gn’ lett 

viltdy wwiTE cb eeth crnigagire elnaapoti Aiebareweob it sich snenibor ven) Yo sonehouda 

argent Whabriveely sdb wad tran ms wireanne a ad ewe Qaieieae ove mort avkosiong exbivong 

Awadhi tat ine grime? emt wheal anegion’l 42006 not) bax eqatganodth) 

oudtreainy a0 grola enedgel aires stoned Nieern sabe 08 finhawob ssergin dived 

icy bebeet Gils Teor nenenermeiine ‘dt shady eed) We one ehangaonies modega cuted eft 

noiadlh seangaits tinttte few mt beanie bing (CONEY MiieTED eas ancunctomthncllt yo Lnmwraclt 
ai avis vests tiling eee shove obawae uurnodbeapets traabteayia noibay lebon antl 

ben @yaiieeniiit owen Mig ntl ai abiaok eiheirp wxtgid bis age Tabewols ods 

Lino amoseertilaaes Yo doa cagA onnarat abt aniulqae baton aktT (LONE ,:m20i0 

ano ot te otis trleninlh ad> ue eohechureid to Cieeovib bas yenstol si onporaeb 

| ailel betanunrob 

bane ‘odin tonectinpa) alt Ba mtenbarery bre valeoged bowed :8 senl'T 
nial 

won enh wuld nT oy, eer sheisiitas nidtie nbitiangeb sahah 

robin outs ite alle tounge GREE ke oresMrsrCMD Boseesngn barre goivab love 

vo etiane?: ANE 0h a i ld dlhon tellers wl) Yo tamnevors banvenined 

wHW baw werd 282 ods) 280! , te 
| iw stuwegas lnondon beonenaqne 



194 

‘(€QOT ‘URSOTDH pue eAIeYOENeY_) Ino} pue do1y} s1djdeyd Ul possnosip [Opoul eyop [eoLOUW 

-UWIASE 

OY} 

YIM 

JUOISISUOD 

SI 
SIU, 

‘A[OADOdSo_ 

‘sjtsodap 

[euCOse] 

YLIpUMOP 

pue 

Soxd|dUIOD 

oTe]JOp 

Aq 

PoyeUIWOp 

de 

SUOISOI 

UIOsvd pue [eIVUDS dy} OTIYM ‘s}tsodop urejdpuens ylupdn Aq pojyeuruop st wore Apnys oy} JO UOTIOd UIO]SOM OY], “SOSp 

yorog 

Ud9aMjOq 

UI 
s}Isodop 

[eUoOse] 

YUpUMOp 

soonpold 

OAC] 

ISULY 

UIYIIM 

&I[IP 

Po]VUILIOP-dAPM 

9} 

JO 
UOTFepeIsOId 

ponuy 

-u0Dd ‘Wun 7 94} JO UOTTSOd preMY}LIOU JSOUT 9} Je UT[OIOYS ZT IOY]TeA 91e] OY} JO UONONsUOSAI oTydeIsOIBOIe - BI 'p ‘SI 

(QlIpumoq) 
[eucose’T 

R
I
I
 
P
o
e
U
I
W
I
O
p
-
d
A
L
M
 

(
t
u
p
d
y
)
 
urejdpuens 

I
M
8
0
e
 

60
a 

Ol
a 

Il
a 

cl
ad
 

el
d 

(¢
 

O
W
I
)
 

s9
RJ
oI
OY
S 

Z
T
 

Jo
Ye
y 

H
e
y
 

o
u
 

Jo
 

de
py
 

[e
or
yd
es
so
se
g 

A ure] d-eyfaq Joddpyureyg yeyseoD | JUOIJ-P][Oq [PUITXOIg/2oRJa10YS Joddy (el 

ule] [ejseo7) 

% JUOLJ-PI[OQ [eISIG/AdvJo1OYS 1OMOT [=] Py[9polg/S10YSHO [ae 

puoso7y 

i 

uooseT/ 

ule] q-e1[9q JOMOT 

DO
RJ
OI
OY
S 

|I
OM

OT
 

J
U
O
I
-
P
U
[
9
C
 

 [
eI
sT
C 

Y
q
 

s
1
o
y
s
s
u
o
 

7
]
 





195 

‘po1Inds0 
,.d,, Joule] 

oy} JO UoTsodap 
ou} 

0} poyeroosse 
“UOISsoISsUR 

[YUN 
ponuyUod 

UTE] 
[eJsvOd 

9Y} JO UONepeISsSY 
‘wore 

Apnys 
oY} JO Y

O
U
 

OUTTSIOYS 
..d,, Joyey 

oy} 

JO JUDUIYST]QeISO-91 
PUL 

UOISSIIBOI 
PIoIO} 

& SUIMOT[OJ 
,.,, 

JoUey 
jsouuoddn 

oy} Jo uoyonysuodaI 
s1ydess09S80g[e 

- 
6] 'p ‘SIA 

9
M
8
0
e
 

60
u 

Old 

(9 W
I
L
)
 
Ure] g

 [eISeOD 
q
 
J
o
y
e
 
s
o
u
L
I
o
d
d
y
 

ayy 
Jo d

e
y
 
[eorydessooeg 

LOY 

Ulelg [e}UoUTUOD, 

Il
a 

cla 
tla 

ule] g-eyoq 
Iioddsureyg 

[eseog 
e
a
 JUOI4-EIJ9q [eWIXOIg/soRJo10ys 1oddA, al JUOLJ-E}[O [PISIG/PdRJo1OYS 1OMOT (el 

By
op

or
d/

os
04

sH
O 

[
|
 

89.L 

puosey 
A 

oul[aloys q J9y]ey SNOIAdIg 

69.1 

UOISSAISOY Pdo10J Joye vase 

Apnjs 

JO 

you 

ourjaroys 

qq 
Joule 

Y 

ule] JeyUoUTJUOD 





196 

forced regressive deposition, when the relative sea-level began to rise, coastal plain 

aggradation occurred during normal regression, which blanketed the study area (Fig. 

4.19). This manifests itself in the form of a 1-5 m thick coastal plain unit overlying the 

northern half of the study area (ex: 07-26-69-09W6). Evidence of a minor forced 

regression and sequence boundary include the juxtaposition of coastal plain mudstones 

and coals sharply overlying more distal deposits (ex: lower shoreface). Core analysis 

north of the study area indicates that the Falher “D” underwent another minor 

transgression, which brought the shoreline south to the northern edge of the study area 

(Arnott, 1994; Casas and Walker, 1997). Evidence of this minor rise in relative sea-level 

is the presence of marginal-marine lagoonal mudstones encased in coastal plain strata of 

the uppermost Falher “D” in the northernmost part of the study area. However, in the 

remainder of the study area, this transgression would be represented in coastal plain 

overlying coastal plain deposits and would be difficult to discern. Deposition of the 

Falher “D” terminates with the major transgression associated to the deposition of the 

overlying Falher “C” (Casas and Walker, 1997; Armitage, 2002; Armitage et al., 2004). 

(4.5) Chapter Summary 

The previous chapters have provided detailed descriptions of the fifteen facies and 

five facies associations observed in core. This chapter built upon this foundation by 

establishing a stratigraphic framework for the Falher “D” and utilizing this framework in 

order to analyze the spatial distribution of environmentally-significant units identified in 

previous chapters. The Falher “D” is bound above and below by major discontinuities 

exhibiting significant erosion and poorly-sorted conglomeratic lags. The surface 

separating the top of the Falher “E” from the base of the Falher “D” is referred to as 

TSEI and the contact delineating the top of the Falher “D” and the base of the Falher “C” 

is referred to as TSE3 in this study. Another transgressive surface of erosion, referred to 

as TSE2, is present within the Falher “D” itself, however the juxtaposition of facies along 

this surface is not as severe. This surface is utilized to separate the Falher “D” sandbody 

into sub-members, termed D1 and D2. Using this stratigraphic framework, the lateral 

distribution of facies was analyzed with three dip-sections, one strike-section, and a series 

of lithological and sedimentological maps. Each cross-section is located within a distinct 
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depositional environment corresponding with the depositional model established in 

chapter three. The western most dip-section, A-A’, is characteristic of an updrift 

strandplain environment; the dip-section located in the middle of the study area, B-B’, is 

characteristic of central deltaic complexes; and the eastern most dip-section, C-C’, 

corresponds to the downdrift lagoonal environments within an asymmetrical wave- 

dominated delta. 

A number of lithological and biological maps were created in order to exemplify 

along-strike variations associated with changes in the depositional environment, more 

specifically the presence of an asymmetrical wave-dominated delta. Isopach maps 

demonstrated that the D1 and D2 intervals thin eastward. This is exemplified by the 

dramatic eastward thinning of D2 across the Township 10W6-9W6 boundary. The 

spatial distribution of conglomerate illustrated that the western portion of the study area 

consisted of very well sorted small pebble conglomerates, while the central portion 

consisted of poorly sorted larger pebble conglomerates. Conversely, the eastern portion 

contains virtually no conglomerate. Trace fossil distributions illustrated similar trends 

with typical storm-dominated shoreface suites on the western half of the study area and 

very sparse bioturbation on the eastern half. 

The depositional history and paleogeography of the Falher “D” is described using 

a series of facies maps each representing a particular stratigraphic/time interval during 

deposition of the Falher “D”. Utilizing the depositional model established in chapter 

three, as well as the cross-section and mapping data described above, six 

paleogeographical maps illustrate the evolution of the Falher “D”. These maps highlight 

the importance of lateral changes in the local depositional environment and demonstrate 

that all significant facies variations may not be allocyclicly controlled. The presence of 

an asymmetrical wave-dominated delta dominates the Falher “D” succession over most 

of the D2 unit and serves as an explanation for the numerous lateral variations observed 

across the study area. 
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Chapter 5: Conclusions 

. Fifteen facies (Fla to F9) are identified in core within the Falher “D” study area. 

Individual facies are differentiated based upon their lithological, sedimentological 

and ichnological characteristics. The fifteen facies are grouped into five facies 

associations corresponding to fully-marine (FAI to FA3), marginal-marine (FA4) 

and non-marine (FA5) environments of deposition. 

. Analysis of the facies succession within the Falher “D” suggests a depositional 

system that varies considerably along-strike and includes elements of both 

shoreface and wave-dominated deltaic environments. Within wave-/storm- 

dominated settings, substantial overlap exists between facies that occur in 

shoreface and deltaic environments. Conversely, a number of facies associations 

will include both environments, while some will possess lateral equivalents. In 

typical strandplain settings, facies associations are as follows, lower shoreface 

(FA1), upper shoreface and foreshore (FA2), brackish-water environments (FA4), 

and coastal plain (FA5). While, in wave-dominated deltaic settings, facies 

associations are as follows, prodelta and distal delta-front (FA1), proximal delta- 

front (FA3), lower delta-plain (FA4), and upper delta-plain (FAS). 

. The interpreted depositional environments observed within the Falher “D” study 

area are consistent with asymmetrical wave-dominated delta models. The study 

area consists of well sorted sandstones and conglomerates from FA2 in the west, 

poorly sorted interbedded sandstones and conglomerates from FA3/4 in the 

center, and interbedded sandstones and mudstones from FA4 in the east. This is 

consistent with modern and ancient analogs and represents, updrift strandplain 

environments, central deltaic complexes, and downdrift lagoonal deposits 

respectively. 
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Wave-dominated deltas and strandplains are very difficult to differentiate within 

wave-/storm-dominated settings. However, detailed lithological, sedimentological 

and ichnological descriptions and mapping can provide important differences. 

The Falher “D” is bound above, TSE], and below, TSE3, by major transgressive 

surfaces of erosion. Another transgressive surface of erosion, TSE2, is utilized to 

separate the Falher “D” sandbody into two intervals, D1 and D2. These surfaces 

are allocyclic in origin, regionally extensive, and tend to manifest themselves as 

coastal plain mudstones and coals sharply overlain by marine sandstones and 

mudstones. This stratigraphic framework is utilized in order to analyze the spatial 

distribution of the facies associations listed above. 

Six detailed paleogeographical maps (Time | to 6), each representing a particular 

stratigraphic/time interval during deposition, display the evolution of the Falher 

“D” within the study area. These maps highlight the importance of lateral changes 

in the local depositional environment and demonstrate that all significant facies 

variations may not be allocyclicly controlled. The presence of an asymmetrical 

wave-dominated delta dominates the Falher “D” succession over most of the D2 

unit and serves as an explanation for the numerous lateral variations observed 

across the study area. 
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