National Library

e Bibllothéqup “nationale
_pf Cana

du Canada”

.~Canadian Theses Service Services des !

Ottawa, Canada ;
K1A ONd4 -

.

<

B ,
-

“~

.CANADIAN THESES

‘ . NOTICE

'fhe quality of thns mucroﬁche is heavily dependent upon the
quality of the original thesis submitted for microfilming. Every
effort has been made 1o ensure the highest quality of reproduc-
tion possmte

lf pages are missing. contact the university which granted the
degree.

P

Some pagés may have indistinct print especially if thé’original
péges were typed with a poor typewriter ribbon or if the univer-
sity sent us an inferior photocopy.

: Prevnously copyrighted materials (Journa| articles, published
tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the
Canadian Copyright Act, R.5.C. 1970, c. C-30.

THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

NL-339(r.86/06) - -

ses ganadiennes

y;

THESES CANADIENNES

AVIS

La qualité de cette microfiche dépend grandement de la qualité
de la thése soumise au microfiimage. Nous avons tout fait pour- ..
assurer une qualité supérie_ure de reproduction.

S'il manque des pages, veuiliez communuquer avec l'univer-
sité qui a conféré le grade.

La qualné d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylographiéeg-
a l'aide d'un ruban usé ou si I'université nous a fait parvenir:
une photocopie de qualité inférieure. '

Les documents qui font déja 'objet d'un droit d'auteur (articles
de revue, examens publiés, etc:) ‘ne sont pas microfiimés.

< e
La reproduction, méme partielle, de ce microfiim est soumise
4 la Loi canadienne sur ie droit d'auteur, SRC 1970, ¢. C-30..

B 4

LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L'AVONS RECUE

-

N

THE UNIVERSITY OF ALBERTA

*

;o
A \
Ay

L

\ . e ' ‘
DECODING REED-SOLOMON CODES WITH‘A,SIGNAL4PROCESSOR
S : :
T by

/. DAVID J. PETERSON -

7

'

A THESIS .
SUBMITTED TO THE FACULTY, OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILMENT OF THE RéQUIREMENTS‘FOR THE DEGREE

¢

OF MASTER OF SCIENCE

DEPARTMENT ‘OF ELECTRICAL ENGINEERING

EDMONTON, ALBERTA

SPRING 1887 |

(

. v

Permission has been granted

to the National Library of

Canad:, to microfilm this
thesis and to lend or sell
copies of the film.

The ‘author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

-

ISBN 0-315-37794_;

& . . & ’ > ’
L'autorisation a éte accordee

A la Bibliothéque nationale

du Canada de microfilmer
cette thése et de prétler ou
de vendre des exemplaires du
film.’

“L'auteur (titulaire du droit

d'auteur) se réserve les
autres droits de publication;

ni la thése ni de longs

extraits de celle-ci ne
) ~ » . »

doivent etre ,1mprimes Ou

autrement reproduits sans son
autorisation écrite. -

§

\\
N]
THE UNIVERSITY OF ALBERTA
- RELEASE FORM
NAME OF AUTHOR . ~DAVID J. PETERSON C
TITLE OF THESIS DECODING REED-SOLOMON CODES WITH A
'SIGNAL PROCESSOR *

i
DEGREE FOR WHICH THESIS WAS PRESENTED MASTER OF SCIENCE
YEAR THIS DEGREE GRANTED SPRING 1987
| - Permissioh is hereby granted to THE UNIVERSITY OF
ALBERTA LIBRARY to reproduce single copies of this- '
‘thesis and to lend or sell such copies for pfivate,,w
scholarly or scientific research purposes only.
| The author reserves other publication righfs, and
neither the thekis nor extensive extracts from it may
be printed or otherwise reproduced without the author's
" written permission. o -3 o
) ’ ' (SIGNED) W»M//f/'wdw/
PERMANENT ADDRESS:
Ay T e

v et :of‘:b;""o . t-/-‘o’/ot/:k e e o 00 v e

Edrn o, Al o

e LSRLEHT

’

DATED ...H472.. . 2{......1987

’-

-

» THE UNIVERSITY OF ALBERTA '

FACULTY OF GRADUATE STUDIES AND RESEARCH

Thevundersigned certify that they have read, and
recommend to the Faculty of‘Graduate Studies and Research,
for acceptance, a thesis entitled DECODING RQEPfSOLOMON
CODES WITH A SIGNAL PROCESSOR submitted by DAVID J. PETERSON

in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE. o "
\ ~ Co- superv1sor :

\x,
® 00 s e s s oolol

Co- superv1sor

T e s - /,' - f//) X rh

DR R AR I SO A

Date........... A)b"«vé /98?

Abs;ract |

This thesis considers the iﬁpiementation of a‘decodér for-
certain types of Reéd;Solomon codes. A relatively simple;.
implementation based on the Texas Instruments TMS32010
signal processof chip is shown to proQade performance com-
parable to that of more complex bit slice designs. Secondly,
a synchroniza;ibn technique based on the Viterbi Algorithm
is preéénted an@ analyzed. This technique providgi character

r
and frame synchronization without relying on-a phase locked

loop or related analog circuitry.

iv

r’ ’ N
Preface

The Reed- Solomoanodes are a powerful class of error correc-
ting codes that have found recent applmcat1on in audio
_ compactldlsks {1], CD-ROM dev1ces,[2], space communications
[3,4], and high speed text transmission [5]. While the
design of Reed-Solomon encoder hardware is relatively
straightferwerd, the design of decoders involves several
critical issues. four basic decoder’archdteetures‘hade been
’ extens1vely studzed to date-' |
(a) microprocessor-based designs [16,17];
(b) microprogrammed/bit slice CPU [16,17];
- (c) microp:egrammed/discrete logic CPU [16,17,37]);
(d) custom VLSI [17,36,38].) |
‘fhé speeds of these;implementatioﬁs vary dramatically. The
bit slice design provides a throughput over ten times higher
than that of an_'80%6-based decoder .. In turn, the discrete
logic and custom VLSI designs are roﬁghly an order of magni-
tude faster than the bit sliée design.
The a;ithmetic used in the processing offReed—Selomon
codes takes place in a Galois field and is quite different
ffom the familié; integer or complex arithmetic. In fact,
/the 1mplementat10n of Galois field multiplication is a major
ssue in the design of decoders. The m1croprocessor decoder
mentioned above requires many machine cycles to carry out a

multiplication while the other designs implement Galois

‘field multiplication with a large custom circuit.

It is well kndﬁn that the arithmetic of prime Galois
fields can be routingly¢implementqﬂ with standard integer
_ hardware. Unfortunately, the unavailability of fast economi -
“ cal integer processors seems to have made this approach to
Reed-Solomon coding unattractive to earlier designers. In
fact, all of the designs mentioned above are based on a
Galdis field of characteristic 2, which is quite different
from a prime field. However, the recent ih@c@ipftlon of the

Texas Instruments TMS$32010, a 5 MIP 16 bit signal processor R

chip, suggests that the use of prime fields should be inves-
tigated further. In this thesis, it will be shown that the
darithmetic of certain types of prime Galois fields can be
implemented very efficieptly with the TMS32010.

The major topics of the thesis are the following:

(1) The relationships between several versions of the

Reed-Solomon decoding algorithm are examined in Chapter 1.

(2) A TMS32010 impiementation of a décoding algorithm
is presented in Chapter 2. The performance of this system 1is
compared to that of earlier implementations based on mic;o—’
proceésors and bit slice components. The '32010 is shown to
provide a throughput close tQ'that of the more cumbersome /
bit slice design mentioned in (b) above. The replacement of
the '32010 wjth reéently introduced—signal processor devices .

such as the TMS320C25, the Motoro¥a DSP56000, or the

TMS320C30 would increase the throdghput by a.factor of two

vi

to more than four. Whilé a decoder based on one of these
powerful signal processors would still be several times
slower than the discrete logic (c) or custom VLSI (d)
decodérs, it would be more flexible and‘convenient than the

latter designs.

(3) Any implementation of an error correcting code
requires the encoder and decoder to be synchronized. This 1is
typically doné?with a combination-of analog and digital
techniqﬁes. A method of inserting timing information into
the encoded data and recovering it at the decoder without
any analodfprocéssing is presented and its performance is
analyzed in Chapter 3. Theoretical analysis of the timing
recovery technique yields interesting upper bounds on the
probability of synchronization failure for soﬁe types of
multilevel (ie: noﬁbinary) communication channels. A '32010v

implementation of this technique for the binary channel is

also discussed in Chapter 3.

(4) ‘A TMS32010-based hardware system is designed and
built as part of this thesis. The programming and operation
of the system is detailgd in a separate report [39]. The
approach taken in this thesis is to develop and analyze
general algorithms and to make reference to [39] for the
machine code used to implement these algofithms. The running

time of any time-critical routine is also discussed.

v

vii

Chapter P;ge
1. The Decoding‘of Reed-Solomon Codescoveeeaeann A
1.1‘Aﬁ introduction to Reed-Solomon codes 1
1.1.1 The field GF(11) ... erriienrorasdonsoccnnns 1
1.2 A single error correc;ing code over
el I I T
1.2 Reed-Solomon codes over arbitrary fields5
1.2.1 On the choice of the field e 8
1.2.2 The key equation Ve eane «e..10
1.2.3 Solving the key equation R K
1.2.4 REMALKS ., eveveseoccscnnns ce e v... 19
1.2.5 Speeding up the solutlon of the key
eQUALION t.iivseerranrarserecassograassnasas 21
2. A Microprocessor-Based Reed-Solomon Decoderf:...25
2.1 Overview of decoder hardware ... ,....ccvveeienene 25
| 2.1.1 TMS32010 Digital Signal ProcesSOr 25
2.1,2 Peripheral Address Decoder 30
2,1.3 Buffer A and the Auxiliary Address
Registercceoeeas Cee e e e 32
2.1.4 Program MemOIY ...eeeeoeenns e ee et .36
2.1.5 Data Extension Memory Che e 37
2.2 Programming the Reed-Solomon decoder40
2.2.1 The evaluation of polynomials i.41
2.2.2 REMAIKS o evrvsstnsesvsosscnnsesonsnancnnaessd]
2.2.3 Implementing the Berlekamp-Massey
Algorithm ,.....cc00evenns P - 3
2.2.4 REMATKS «avevenronnsroroseosesoasnnnnsonnss52
2.2.5 Decoder performancCeceeeceeooeeeessessdl
3. Synchronization;..............:..........60

Table of Contents

! .

viii

’

E3
b

3.1 An approach to the synchronization problem .

0 e o

60

3.1.1 The Viterbi Algorithmcceievieievea..62

3.1.2 Performance analysis of the Viterbi Algo-
g T o o | T R ... 10
3,1.3 Examples ..veveeransereen e e P A
3.1.4 On the probability of frame loss ceas 16
3.1.5 REBMATIKS . ivvueeransaesnsoncassoatocsannnnns 78
3.2 An implementation of the synchronization scheme .79
3.2.7 AN OVEIVIOW .4vseesssesoesocssscncasonnssas 79
3.2.2 Deséription and performancec0000n 81
3.2.3 Remarks cennae T 87
4. Summary and Conclusionscvevueenes N . .90
Bibliogrgphy Ceeeee . .94
AppendiXx 1iiiiiieiinii e R EERRREE e Y
AppendiX 2 ... ieiiiiriaein sttt Cete e 107
AppendiX 3 . i.iiciii ittt et e et e e 108
AppendiX 4 ...ttt e . RE
ApPPendiX 5 ittt ittt 115
AppendiX 6 . .iiieiiiieiiii e . e essaeae s 121

ix

¥

Table'1

Table 2

List of Tables

page 59
89

List of Figures

Figure 2.1 Decoder Har@ware page 27
Figure 2.2 Peripheral Address Decoder 33
Figure 2.3 Buffer A and Auxiliafy Address Register 34
Figure 2.4 Program Memory 38
Figure 2.5 Data Extension Memory 39
Figure 2.6 Stack storage format 50
Figure 3.1 Sample storage format 65
Figure 3.2 Examples of frame losses 72
Figure 3.3 Details of frame slip _ 77
Figure 3.4 D5 kit modifications 82
Figure 3.5 TMS32010 interface hardware) 83
\

xi

~ tion hold.

. Chapter 1 _ i

The Decod1ng of Reed Solomon Codes

The Reed-Solomon codes were. dev1sed by Reed and Solomon in

1960 [6]. Since the inception of these codes, much research
has been devoted to the problem of decodlng ‘them in the pre=-
sence of errors. While thg Reed-Solomon codes are optimal in
a certain theoretlcal sense [7,Chap.11], the main 3ust1f1ca-{

tion for thelr use in pract1cal .systems 1s the relative ease

”Wlth which they can be decoded. In this chapter, Reed=Solo-

mon codes are defined and a sl1ght variant of Berlekamp S

b

algor1thm for”decoding them [8,Chaps.7, 10] is presented.

“Some modifications of this algorlthm are also dlSCUSSEd.

1.1 An introduction to Reed—SoIomon codes

1.1 The fleld GF(11)

‘The concepts of fleld and prlmltlve root of unity are
the most fundamental concepts underlying Reed—Solomon codeero
and algebralc codlng theory in general Probably the most
succinct descrlptlon of a f1e1d to be found anywhere in the

literature appears in [9,p. 674]

"Field: An algebraic system admitting addltlon,
subtractlon, multiplication, and d1v151on.

Some technlcal details are m1551ng from or h1dden in th&s

definition. For “example, a fiel alwaysncontalns an_addltave Ty
.)) . B4 . . :

identity 0 and, a multiplicative identity 1, and the usual

associative® and commutative laws of multiplication and addi-

The most pervasive example of a field is the set of
complex numbers with the usuél addition, subtraction, multi-
pl(‘gi}on, and division Operation~. A less familiar example
is the set of integers (0,1,2,..{,10) with addition (*e")

and multiplication ("®") defined as follows:

- -
~ asp = remainder oh&ained when a+b
is divided by 11;
va®b = remainder obtained when axb

is divided@ by 11.
. ™

-

® and ® are called modulo 11 (mod 11) addition and multipli-
cation. For any two integers a and b, one writes a = b mod
11 if 11 is a divisor of a-b. | | ~ /
Note that 566 ; 0, 599 = | (6 is the additive inverse//
of 5 and 9 iSJthe multiplicative invers;.of 5). In gengrgi}
any integer between 1 and 10 has a multiplicative inve;ée
and én additive invef§9;Which also lies between | an§/10.
Hence ‘the integers {0,1,2,...,10} form a field Undgé4mod 1
additidn‘and multiplication, This field is called/; Galois
Field of order 11 and is written as GF(11).

The first ten powers of 2 in GF(11) are:
| 1

2 =2
22 = 2gp = ¥ 25 = 10 28 -3
- 23 - 2%2 - 8 26 = 9 2% = ¢
24 - 232 = 5 27 =7 210

Hence, every nonzero element of GF(11) can be represented as
a power of 2. For this reason, 2 is called a primftive'
element of GF(11). This pfoperty of the number 2 will prove

to be gquite useful.

1.1.2 A single error correcting code over GF(11)

Suppose one wishes to transmit a seven number message
over an unreliable channel (for example, a telephone number
"transgitteq; by word‘of?mouth).,How can the message be
protected against errors?. ' | ‘

" Consider the message 4323848. This messa@ekcén.be‘
represented as the first seven coefficients §f‘é Codeﬁord
polynomial C(x): < ‘ |

7 C{x) = 4x8+3x7+2x6+3x5+8x4+4x3+8x2+a§}b

) . o~ o ‘ *
where integers a and b are chosen so that E

C(2) = Cc(4) = 0 mod 11.

Hence, a = 6, b = 1. The nine coefficients 432384861 6%$E(x)

afe‘then transmitted over the channel. | |
Suppose a single error occurs'during transmission. For

example, suppose the receiver obtains the message 432334861.

N »

Writing the.received message as a polynomialyR(x):

A

8¥327+2x6+3x

3 2

R(x) = 4x 5+3x4+4x +8x"+6x+1,

the receiver can compute the syndromes

* R(2)

8 mod 11,

R(4) 7 mod 11.

It will now be shown how the syndromeslcan be used to cor-
BN

4 [»
4ol I’

rect the error. -

S th

When a.single error affecting the.i™ coefficient of

C(x) occurs, the received message R(x) can be written as

R(x) = C(x) ® Ex!,

where E € GF(11), E # 0. Hence,

c(2)elEe2]

w.
N}
i

E®2° mod 11,

c(a)®[E®4] mod 11.

el
>
I

E®4

These mod 11 equations imply that

21 = r(4)@Rr(2) 7 mod 11,

E = R(2)%0R(4)”" mod 11.
In the case under considerafion, the first of the latter

equations implies

and the results of 1;1.1 in turn imply that i = 4. The

second equation implies

Now that i and E have been found, the receiver recovers the

original codeword C(x) by subtracting Ex' from R(x):

C(x) = 432334861 - 000060000 = 432384861 mod 11,

¥
The recovery of C(x) from R(x) is called decoding.

}

The set of all polynomials =

with coefficients in GF(11;/i2E/yhich satisfy C(2) = C(4) =
0 mod 11 is called a single& error %or'r*’ecting Reed-Solomon
code of.block Jength 9 over GF(11). In the remainder of this

chapter, the definition and decoding of multiple error cor-

recting Reed-Solomon codes over arbitrary fields is dis-

cussed.

“1.2 Reed-Solomon codes overFEQSit;ary fields‘

The example of 1.1.1 sho;E/Ehét fields neea not -have an

infinite number of elements. In genéral; any field ﬁaving a
finite number of elements g is called a Gaiois field of

order q and is represented by the symbol GF(q). The number

S
~

."',
¥

_call?d a pPimitiVe n

Y | 6

of elements q in a Galois field must always be a power of a

prime number [8,p.102]). The pfime number is‘célled the char-

" acteristic of the field.

Let n be a positive integer. A field element « is

th root of unity if n is the smallest

positive integer for which a"=1. expl27ri/n] is a primitive
~th

'n root of unity in the field of compiex numbers. Unlike

the complex fizld, a Galois field does not contain primitive
nt? roots of\uﬁify for every poéitive integer n. Specifi-
cally, GF(g) contains a primitive nt root of unity if and
only if n is a divisor of g-1 [8,pp.88-90]. The primitive
q—1th roots of unity in GF(g) are called the primitive field
elements of GF(q). It has already been demonstrated that "2
is a primitive field eiement'of GF(11).

Le# F be a field containing a primi£ive nth root of ¢
unity at For any .positive integer t < n/2, the set of poly-
nomials C(x) having coefficients in F and which satisfy

(i) deg c(x) < n,
(ii) Cla)=Cla®)= . . . =C(a?%)=0,
is called a t error correcting Reed-Solomon code of block
Iengéh n over F. The polynomials C(x) satisfying (i) and
(iij are calied the codewords of the code. The special code-
wogd |
/’ g(x)=(x-a)(x—a2) L. (x-a?h)

i's called the generator polynomial of the code. Every code-

werd is a polynomial multiple of g(x). ~ .
~

Thé reference to error correction is motivated by the
following cohmunication exémple. It is desired to transmit a
sequence f,, ST fn—2t—1 of symbols in F to some
receiver. The prospec;ive communicators have access to a.
communication channel capable of transmitting symbols in F,
but the‘channel occésionally changes a transmitted symbol f
to.some other symbol fi_in F by the time it reaéhes the
receiver. The communicators can alleviate this probleW by
k‘agreeing that the transmitter wizl compute the Reed-Solomon
~codeword

\ n—Zt—1f.xi+2t +2tﬂ—1p.xi,
o ! i=0 " ?
where the Py terms are chdsgn so that C(x) satisfies condi-
tion (ii) above. The transmitter then/sends the coefficients
of.C(x) over the channel. The computatioﬁ of C(x) is called
encoding and paﬁvbe iﬁplemented with a simple shift register
circuit [8,Chap.5], [13,Qhap.6]. The f terms are called the
informat ion symbols,of'tpekcodgword. fhe p; terms are called
parity symbols. '

Some of the coefficients of C(x) might be received in
error due to the channel, so the receiver will obtain a
polynomial R(x) = C(x) + E(x), where the number of nonzero
coefficienté of E(x) is equal to the number of channel
errors. In this section it wili be shown that if no more
than t errors occur, the receiver can determine the error
polynomial E(x) from the knowledge of R(x) alone. After E(x)

has been so determined, it can be subtracted from R(x) to

B N °

give C(x). The receiver can then rqad\\af first n-2t coeffi-

cients of C(x) to obtain the original sequence f,, f,, . .
. fn—2t-1' The recovery of the original transmitted

sequence from the received word R(x) is called decoding.

1.2.1 On the' choice of the field

| Thé typical communication channel is a binary channel,
so the elements of the field F over which the Reed-Solomon
code is defined must be.represehted as a finite sequence‘of
binary digité. This can be conveniently done by using a
field of the form 6F(2™). Each element of this field can be
represented as an m bit symbol. Another motive for restric—
ting F to be a Galois field is that there is no such thing
as round-off error in a Galois field computer. The effect of
round-off error on the décoding of a Reed-Solomon code over
the complex numbé:s or any other infinite field dées not
appear to have been studied. Nonetheless, Reed-Solomon codes
over certain infiﬁite fields have/been proposed for encoding
two-dimensional data arrays [18] and for‘impulse.noise_can-
cellation [19]. |

Reed-Solomon codes over GF(2¥) are useful for binary

chanhelé on which the noise manifests itself as intermittent
bursts of bit errors. For example, a burst 6f m consecutive
bit efrors will affect at most two consecutive characters of
a codeword. Hence, it will be treated as only a single or '
double charaéter error. Reed-Solomon codes ar; often concat- -

enated vwith less Sophisticated codes to take advantage of

this property [4],[51,(13,Chap.7],[16,Chap.3). The charac—
ters of several consecutive Reed-Solomon codewords can also
.be Inteﬁ7eaved for further protection against very long
burst errors [1],[3]1,[37]. This technique is used in the
system described at the end of Chapter 3.

The arithmetic of the'fields GF(2™) is quite different
from integer arithmetic or complex arithmetic [8,Chaps.2,
4]. However, arithmetic in some of the fields GF(thI),
where 2™*1 is prime, can be implemented fairly easily with

hY
standard integer hardware. This will be demonstrated in

Chapter 2 with 2™*1 = 127 and 257.

The use of GF(2™*1) can present some inconveniences.
The information to be encoded ié typically a séream of
binary data. The encoder must segment this stream into
information symbols and encode consecutive blocks of symbols
into codewords. Suppose a field of the form GF(2™-1) is
used. If the encoder segments the binary data stream into
symbols of 1 bitg, one must have 1 < m-1 to guarantée that
all possible information symbols can be represented as field
elements. However, the parity symbols added by the enéoder
may take any value in GF(2™-1) and will requiré m bits each.
Similarly, when GF(2™+1) is used, any m bit sequence is
allowed as an information symbol, buf the resulting parity
symbols may require m+1 bits. In the latter case, the
vproblem can bg eliminated by using a sifiple method due to

Solomon [20]. This method ensures that the parity symbols of

any codeword can be represented as m bit characters. For

10

reasonably small values of t, it involves a modest increasé
in the cohplexity of the encoder. Solomon's méthod reduces
the number of information symbols in the codeword,’y:one,

but each of the remaining information symbols may 3@ke ény

4
one of 2" possible values. No modifications of theflccom—

panjing GF(2™+1) decoding algorithm are requiredff
ing the t error correcting code of length 2™ oVerin
in this way, one obtains a coée théi is virtu 1y{y

to the t error correcting code of length

1.2.2 The key eguation
If 8o, 8qs 8y, -+ v - belong to a field F, the expres-

sion

is called a generating function over F. '1f A(z) and B(z) are
generating functions, their sum is defined as

A(z) + B(z) =
1

ne1e
o

(ai+qi)zi, | (1.1)

and their product is defined as

It is clear that any polynomial f(z) over F can be regarded
as a generating function with finitely many nonzero coeffi-

cients, and that (1.1) and (1.2) coincide with polynomial

.modify-.

"»/

11

addition and multiplication if A(z) and B(z) are polynom-
ials.
1t can be shown that if a; *# 0, then there exists a

unique generating function I(z) such that [8,p.73]
A(z)1(z) = 2z~ + 0z + 022 + . . . = 1.

1(z) is called the multiplicative inverse of A(z) and is

written ag 1/A(z). It is easy to verify that

1/(1:52) = 1 + az + azz2 + ... (1.3)

for any a belonging to F.
& f the generating functions A(z) and B(z) agree in the

. . . + .
first n coefficients, one writes A(z) = B(z) mod 2" 1. It is

straightforward to verify that if A(z) = B(z) mod zn+1, then

C(z)a(z) = C(z)B(z)_mod znH

for any generating function C(z).

The generating function idea caﬁ be applied to the com-
muﬁication example described at the beginning of sec. 1.2 as
follows [8,pp.218-221). Suppose that errors occur during
transmission‘of the i1th, izth, ey ieth coefficients c;

of the codeword C(x)s Then the error polynomial can be

written as ' /

12

E(x) = Y. x'V + v.x'2 + _ . . + ¥ xle
i 2 e
where the Yi terms, called the error magnitudes, are non-

zero. Define the syndromes S, of E(x) as

th

where o« is the primitive n root appearing in the defini-

tion of the Reed-Solomon codes. Then

where Xj = «'J for each j.
Defining the geﬁerating function S(z) = £ S

previous expression for Sy implies

1+ S(z2)

it
+
I ar k']

e
= 1+ L vY.X.z/(1-%.2),
=1 17 / L3

from (1.3). Now defining the polynomial

)
and multiplying both sides of the previous equality by o(z),
)

13

one has

e -
[1 + S(z)]o(z) = o(z) + L Y.X.z2 Il (1-sz). (1.6)
j=1 3) kej

The polynomial o(z) is called the error locator polynomial.
The polynomial appearing on the right hand side of (1.6) 1s
called the error evaluator polynomial and is written as
wlz).

The,receiver can compute the first 2t syndromes from

the received word R(x):

_ ky _ k
Sk~E(a)-R(a),1Sk32t,‘
because C(ak) = 0 for these values of k. From (1.4) and
(1.6),
2t
(1 +k2'.1skzk)o(z) = w(z) mod 227, (1.7)

-

It will be shown in 1.2.3 that the receiver can use (1.7) to
determine the polynomials o¢(z) and w(z) from the syndromes

S S if the number of errors e satisfies e <

1020 o SZt
t. Once the receiver has found o(z), 1t can determine{the
error locations 11, i2, . e e, ie by evaluating §(a—i) for
each 0 €S i < n-1 and saving the i's for which o(afi) = 0.
From (1.5), 1 is an error location if and only if ola™l) =

0. This search procedure is known as the Chien search._

N

Finally, the receiver can compute the error magnitudes Y. .

from w(z) and the newly determined xi's as follows. From the

14

expression for w(z) in (1.6),

-1 e -1
) = o(X,) + L XX,y M (1-X

-
X.)
=1l) Jkej L

u

0+ Y. N (1-X x?),

.. lkei k
implying that
= (g ! / - -1
Yi = u)()!(.1)/kgi(l XkXi). (1.8)

)
Thi# completes the determination of the error polynomial

E(x). '

Equation (1.7) is called the key equation [8,p.179].
The solution of the key equation for o(z) and w(z) given the
Si's is discussed from various perspectives in [8,Chaps.7,
10], [10]), [11]1, [12), [13,Chaps.7-9], [14], and [15, Chap.
8)]. A simplified version of Berlekamp's algorithm for
solving the key eguation [8,Algorithm 7.4) is presented
below. The derivation of this algorithm is somewhat differ-
ent from the derivation of Berlekamp's Algorithm 7.4, so it

is given in full detail 1in Appendix 1.

1.2.3 Solving the key equation ~

A polynomial of the form f(z)=zm+fm_1zm‘1+ ces +f12*fo

(ie: a polynomial having leading coefficient 1) is called a

monic polynomial. The greatest common divisor (gcd) of two

polynomials A(z) and B(z) is the monic divisor of both A(z)

15

{ .

~and B(z) havifig largest degree. The gcd of A(z) and B{z) is
written as -(A(z),B(z)). The Eucl idean Algorithm [8,pp.25;27]
aﬂ“be uéed fo\compute ﬁhe'gcd of two polynomials. An occa-
51ogﬁ%§y useful conseq%ence of this algor1thm is that there
.exls%’polynomlals a(z), b(ﬁg such that a(z)Aa(z) + b(z)B(z) =
(a(z), B(z)).

Ty0'polynomiél§ A(z), B(z) are said to be relatively
:pPime if (A(z),ﬁ(z))=1.'Consider thq;polynomialé 0(z), w(z)

introduced in 1.2.2. Any polynomial divisor of ¢(z) hav1ng
poéipive degree must have one of the XET terms as a root.
From (1.8), w(X;1).¢ Q¢ for every X., so thi§ divisor of d(z)
© cannot also be a @ivisor of w(z). It follows that any poly-
nomial divisor of both o(z) and w(z) must have degree zero,
implying jhaﬁﬂo(z) and w(z) are felatively prime.

The follo;ing result is a straightforward variation of
{10,Théoreh 1) and is stated and éroved as Claim 2 of Appen-
dix 1. . | o “ - '

Claim: Let S(z) be;a generating function 6ver_avfield Fiv
such that S(0) = 0. Suppose polynomiéls o(z) and w(z) over F
‘satisfy |

o (1) (1 + S;% = w mod ép(_
C (2)000) = 1,

(3) (o,0) =1,

for some positive integerdp (note that the generating func-

tion S(z) and the polynomials o(z), w(z) introduced in 1.2.2

N 16

satisfy these conditions for every p).

-

1

Suppose nonzero polynomials o'(z), w'(z) can be found (by
e

whatever means possible)lsuch‘thét
(1") (1 + S)o" = w' qu,zp,. o 8
(2') o'(0) = 1,

(3") max [deg o', deg w'] $,max[deg o, deg w].

Then if max[deg o, deg w] < »/2, we have o' = 0 and w' = w.|j

Suppose S(z), o(z), w(z), and p are ds described in the

first part of the presious claim. We now present an algo-

{

rithm that, when applied to s(z), produces a sequence of

polynomials oo(z), wo(z), al(z),‘wl(z), ...,\05_1(J;5
@p_1(z) such that for each.0 < k < p-1: ‘

(a) (1 + S)ok = W mod-zk+1,‘

(b) 0,(0) = 1, - -

(c) max[deg o, deg wk] < max[deg o, deg w].

If maxtdpg oi deg QJ < p/2, the claim implies 0p—1(23 = g(z)
and wp;1(z) = w(z).'The reievance’of this to ﬁhe decoding of
Reed-Solomon codes is seen by considering the decoding of a
noisy received word R(x) = C(x) + E(x), where C(x) is a

codeword of a t error correcting Reed-Solomon code. Taking

and p = 2t+1, where S1, 52, .oy SZt are the first 2t syn-
dromes of E(x), the key equation (1.7) implies that condi-
tions (1), (2), (3) of the claim are satisfied when o(z) is
~the error locator polynomial and w(z) is the error evaluator
polynomial. Furthermore, it is evident that if é errors
occur, then \
max[deg o, deg w] - e.
e

Therefore, if e < t, then

r
11

w
max[deg o, deg w] < (2t+1)/2 = p/2.

It follows that the application of this algorithm to S(z)
will yield 02t(i) = o(z) and wzt(z) = w(z), thereby solviné

the key equation.

s

Berlekamp’s Iterative Algorithm:

(‘1) Set 0y = 1, wy

s 1 Ty T 14 Yo ='0, D(0) = 0, k = 0,
(2) 1f ' = p-1, stop, Otherwise, define
Tper = Ok TOBRZTy
Oper T O T BRZT
k+1

where Ak is the roefficient of z in the product

[1 N §@2)]ok(z).

(3) .1f &, = 0 or if D(k) 2 (k+1)/2, put D(k+1) = D(k) and

define

"

T+ 27y

Y41 T Vg

18

BJ& if A, # 0 and D(k) < (k+1)/2, put D(k+1) = k+1-D(k) and

k

define

)
%4
Q

Tr+1 T Pk

- 0%
Y}<+1 - Pk %k VS,

(4) Increment k and return to (2).

' The fact that the polynomials produced by this algorithm

satisfy (a), (b), and (c) is proved in Appendix 1.

19

1.2.4 Remarks

(1) Berlekamp's Iterative Algorithm is a simpler ver-
sion of Berlekamp's Algorithm 7.4 [8,p.1§4]. Both algorithms
produce polynomials Opr @pr Tyr Yyo 0 £ k <'p-1, such that
o = 0 and w . = whenever

p-1 p

max[deg o, deg w] < p/2.

However, simple examples show that the intermediate polynom—’
ials Tpr Wy Tyr Ygo k < p-1, produced by the two élgorithms
do not -always agree.

By rehoving the calculations involving“wk and Tk from
Berlekamp's Iterative Algorithm, one obtains the algorithm
.presented by Massey [11]. Blahut [13,p.180] calls the latter
algorithm tﬁe Berlekamp-Massey Algorithm. This algorithm
computes o(z) by working throdéh the 9y and Tk polynomials
alone. After execution, the coefficients of w(z) can'be com-
puted from the‘original mod zP equapion

(1 + S(zf]a(z) = w(z) mod 2P

Tﬁis approach is slightly faster and more memory efficient
than the approach involviné all the O r @pr Ty Yy polynom-
ials. An implementation of the Berlekamp-Massey Algorithm is
discussed in 2.2.3 below.

(2) 1f max[deg ¢, deg w] 2 p/2, the behavior of these

~algorithms is difficult to predict. If more than t errors

20~

4

occur during the transmission of a codeword of the t error
correcting Reed-Soicmon code, it cannot be said with cer-
tainty whether or not the polynomials O2pr Woy produced by
Berlekamp's Iterative Algorithm coincide with the error
locator polynomiél o and the error evaluator polynomigl w.
Hence, the ideal response to such An error pattern wo:§5 be
for the receiver to indicate "decoding failure" and to
either accept the received word R(x), as bad as it is, or to
ask the transmitter to send the codeword again. While such a
response cannot be quaranteed for all large error patterns
(consider the case where the error polynomial E(x) is a
nonzero codeword), Berlekamp's Iterative Algorithm has two
easily recognized "failure modes":
(i) if D(k) exceeds t for some k, then eguation

(1.19) of Appéndix 1 implies that more than t errors

have occurred.

(i1) if

°2t(2) doesn't have D(2t) distinct roots of

the form a—l, 0 €£i < n-1, then (1.19) implies that

more than t errors have occurred.

Thus, by monitoring the size of theeD(k) terms during execu-
tion of the algorithm and by counting the number of roots
obtained during the Chien search, some incorrectable error

patterns can be recognized,

21

(3) Berlekamp's Algorithm 7.4 and its variations des-
cribed above are not the only known methods of solvipg the
key‘gghqtgogmj1.7). By applying the Euclidean Algorithm to
the polynomials

2t 2t-1 2t-2

z"", S,.2 + S

2t *

2t -1% . .

1

;ﬂé'obtajns finite sequences of polynomials o&(z), wk(z)
convergfag to o(z) and w(z), respectively, whenever no more
than t channel errors occur. This method is described in
[7,sec.12.8,i2.9], [14], and [15,Chap.8]. In fact, according
to [7,p.369],

", . . decoding using the Euclidean Algorithm is’
by far the simplest (method) to understand.”

Whether or not this is true, implementations of the Euclid-
ean Algorithm tend to be slower than implementatioﬁs of the
Berlekamp-Massey Algorithm [7,p.369), [15,p.261], [16,

Apﬁendix Al. . . -

"1.2.5 Speeding up the solution of the key equation
It has been shown that the key equation (1.7) can be
solved by applyihg Berlekamp's Iterative Algorithm to the
generating function |
2t 7

S(z) = ZS.z
i=11

i

with p = 2t+1. If fewer than t errors occur in the received

word, it is.possible to terminate the algorithm before k

22

reaches 2t. Specifically, if o is the error locator polynom-

ijal, w 1s the error evaluator polynomial, and'e s t errors

occur, then
max{deg o, deg w] = e < (2e+1)/2.

By the claim of 1.2.3, this implies
4

2e T %2e41 T v 0t T O2¢ = ¢

and

2e ~ “e+ = Wy T W

- Hence, the algorithm could have been stopped anytimé after

the 2eth

iteratioﬁ, saving execution time if e < t. Chen
[12] givés a condition ensuring an exit from the Berlekamp-
Massey Algorithm after t+e iterations., It is shown in Appen-
dix 2 ‘that the same exit condition stops Berlekamp's Itéra-
tive Algorithm after t+e iterations.

Chen's exit condition can be stated as follows. The
replacement of the original exit qudition

A

- "If k = 2t, stop"
in Berlekamp's Iterative Algorithm with the exit condition

"1f D(k) = k-t or if k = 2t, stop".

23

will ensure the correction of any pattern of -up to t errors
and an exit after exactly t+e iterations of the algorithm,
where e,fs the éctual number of errors. As already noted in
1.2.4, the Berlekamp-Massey Algorithm is a "subalgorithm" of
Berlekamp's Iterative Algorithm, so this condition will
cause an early exit from the Berlekamp-Massey Algorithm as
well. This was first proved by Chen [12].

The number of computations involved in the kth itera-
tion of any of these algorithms is p;oportiénal to k. There-
fore, the use of this "early exit" modification reduces the

total computational load by the factor
t
Lk /Lkz= (t+e)(tre+1)/(2t)(2t+1).

HenCe, if e is small compafed to t, the modified algorithm
computes ¢ and w in approximately one quarter of the time
reqﬁired by the original algorithm.

The following potential problem with this speedup tech-
nigue is not mentioned in [12]:'for any errortpattefn of e
érrors, e S t, there is a different error pattern of at most
t+e+1 erfors such that the two pattergs have the same syn-

dromes

1, 2, . . . ’ St+e-

This "aliasing" property is proved in Appendix 3. Its signi-

_ ficance is that when the second error pattern occurs, the

24

use of the early exit condition_will cause the production of
the error locator polynomial ¢ and the error evaluator poly-
nomial w corresponding to the first error pattern. The sub-
sequent steps in the decoding procedure then erroneously
compute the error positions and error magnitudes of the
first error pattern and subtract the corresponding error
polynomial from the received word. The resulting "corrected"
word has as many as t+2e+1 errors. However, if the original
version of Berlekamp's Iterative Algorithm was used, there
is a chance that one of the failure modes mentioned in 1.2.4
would occur and the received word would at least be recog-
nized as being beyond repair. Considering the special cass e
= 0, this argument says that there are error patterns of t+1
errors that an early exit - modified algorithm will mistake
for the zero error condition. The only nonzero error pat-
terns that Berlekamp's Iterative Algorithm could mistake for
the zero error condition are themselves keed-Solomon code-
words, which always have at least 2t+1 nonzero componehts
{(13,pp.9,10]. R
The design of a microprocessor-based decoder for the
six error correcting Reed-Solomon code of block length 63
over GF{127) is discussed in Chapter 2. This early exit
technique is not used there because the execution of the
original Berlekamp-Massey Algorithm constitutes less than
/20% of the running time of the entire decoding procedure.
Over 70% of the running time is devoted to the calculation

of the syndromes S1, 52,..., 512 and to the Chien search.

Chapter 2

A Microprocessor—-Based Reed-Solomon Decoder
The purpose of this chapter is to give a detailed descrip-
tion of a Reed-Solomon decoder design based on the Texas
Instruments TMS32010 Signal Processor chip. The design is
intended for codes over certain Galois fields of the form
GF(2™*1), where 2™+1 is a prime number. Attention will be
restricted to the fields GF(127) and GF(257). In section
2.1, the major hardware compmnents 6f the decoder system are
described. Section 2.2 covers he programming of the decoder
systém. Some of the hore technical hardware details are
contained in [39). It will be seerMthat this system has a
codeword throughput rate comparable to that of a more cum-
bersome design bééed on a microprogrammed bit slice archi-

gLy -
tecture [16,Chap.7]. .

2.1 Overview of decoder hardware

The decoder hardware can be represen£ed as shown 1in
fig. 2.1, The function and structure of each component shown
in figf 2.1 except for Boot ROM and Buffer B is described
below.fBoot ROM, Buffer B, and the user interface circujtry
are detailed in [39]). Devices connected to the external data

buses will be described in Chapter 3.

2.1.1 TMS32010 Digital Signal Processor
The major features of the TMS32010 chip are the follow-

ing:

25

26

200 ns machine cycle;

16 bit instruction and data words;

(3) single machine cycle 16 by 16 bit multiplier;
(4) 0-15 bit barrel shifter;

(5) 32 bit ALU and accumulator;

(6) 144 16 bit data registers DATO - DATI143.

The program to be executed by the '32010 is stored in
Boot ROM and transferred to Program Memory before the '32010
is activated. Given that a program is resident in Program
Memorf, the '32010 executes the instruction stored at
address A ("instruction A") by placing A on the Address Bus
and reading the resulting Program Memory output from the "
Data Bus into an internal 16 bit instruct{gn register. The
instruction register contents then drive the '32010's inter-
nal circuitry (such as thé components described in (3)-(6)
above) as spécified by instrﬁction A. The only instructions
requiring more than a single machine cycle are branches,
data transfers to and from external deyices on the Data Bus,
and subroutine calls aﬂﬁ»feturns. The execution sequence 15§
halted by applying a low voltage (0.0 - 0.8 V) to the
device's RS (reset) pin. Once the voltage on the RS pin
returns to the high state (2.0 - 5.0 V), the '32010 begins ..
execution at Program Memory address 0.

The 16 by 16 bit multiplier circuit is capable of mul-

tiplying two 16 bit two's complement operands and storing

the result in a 32 bit P (product) register in a single

—

deerAl

ol 2

Lout

FTXNC

RS

Uluce
SHL

fx
[~
fa.
fa
o

.
e

r

woiddiid

e

feadLid

28

machine cycle. One of the operands 1s always obtained from a
register called the T register. The source of the other
operand depends on the instruction. The "MPY DATi" instruc-
tion specifies that the other operand i% the entry of data
register DATi, while the "MPYK c" instruction specifies that
"the other bperand is the number c embedded within the MPYK
instruction word.

The barrel shifter circuilt is used in conjunction with __

;
addition, subtraction, and accumulator initialization
instructions. It al}ows a data register entry to be shifted
left by 0 to 15 bits prior to adding it to or subtracting it
from the present accumulator entry, or prior to storing EE
in the accumulator. For example, the "ADD DATi, x" 1nstruc-
tion specifies that the contents of DATi are to be shifted
left by x bits and that the shifted term 1s to be added to
the present accumulator entry. The "LAC DATi, x" instruction
specifies that the contents of DATi are to be shifted left
by x bits and that the shifted term is to be loaded into the
accumulator; The barrel shifter is useful for fast flcating
point arithmetic operations, but it will also prove to be
valuable for arithmetic operations in the types of Galois
fields mentioned in the introduction to this chapter.

The ALU is capable’éf applying standard arithmetic and
logic dperations ("ADD", "SUB", "AND", "OR", “XOR"™) tol 32
bit operanas~from the accumulator, the barrel shifter, or
the P register. The result of an ALU operation is stored in

the accumulator. Any ALU operation is executed in a single

3

29

machige cycle.

The data registers DATO - DAT143 provide the T gegis—
ter, multiplier, and barrel shifter with opefands. Data is
supplied to the data registers from the accuﬁu}ator.or from
eff—chip devices. For example, the "SACL DATi" instruction
steres the 16 least significant bits of the accumulator in
DATi. Writing the 32 bit accumulator entry as 216-yx1 * X,
where 0 < x, < 21%—Y-1, the "SACH DATi, y" instrﬁction
stores the 16 least significant bits of x,71n DATi. The only
‘ values of y for which the latter 1nstruct1on is defined- are
y # 0, 1, or 4. The SACH, DAT1; 4 1nstruct10n is part of the
fast polynomial evaluation routine over GF(127) or GF(257)
_described in 2.2.1 below. -

The DATi entry can be placed on the Data Bus with the
"OUT DATi" instruction. An external device (such as. Data
Extension Memory) can then read DATi from the Data Bus.
ConQe:sely, a value placed on the Data Bus by an external
device Ean‘be loaded into DATi'with the "IN DATi" instruc-
tion. Both the :IN and OUT instructions reguire two machine’
eycles. Thus,”fn the interest of speed, prog?ams should be
designéd ao that frequently used operands are stored in the
data registers DATO —DAT143 rather than in devices exterhal
to the '32010. The significant effect of these 1/0 instruc-
tions on the"32010's FFT execution speed is’illustrated in
211

Further detalls on the TMS32010 hardware will be pre-

]

sented when they are required. Full details on the dev1ce

b _' | - 30

ﬁ%gg given iﬁ‘%ZZ].

4

2.1.2 Peripheral Address Decoder

: +
‘As explained above, the '32010 communicates with exter-

nal devices. (other than Program Memory) by using IN and OUT

instructions. The Peripheral Address Decoder is used to

)

control ‘the device with which the '32010 exchanges data
¥

during the execution of.one of these I/0 instructions,

The '32010 is capable of communicating with 8 input

devices and 8 output devices. Each device is assigned & 3 o
bit port address which is specified in ény 1/0 instruction
involving communication with that device. Fo{ éxample, in .

‘ o the OUT DATi instruction used to tfansferADAfi {5 the output
device at port j, 3 of the ;6 bits in the instruétion are -
reserved for j and the instruction is written as "OUT DATi,
PAj". During the first machine éycle of an I/0 instruction,
the instructibn fetch process described at the beginning of
2.1.1 is carried out. Once the instruction has been loaded
inﬁb the instrpctioh register, it will be recognized as an
1/9 instruction By the end of the machine cycle. At the
beginning of the second machine cycle, the '32010 places the -
port address specified in the struction on address lines
ADDRO-ADDR2 and holds all othe: address lines in the low
voltage state. The second machine cycle is compleied &s
follows: | ‘

(i) On an IN DATi, PAj instruction, the '3201% drops

its DEN (data enable) pin from the high state to the

3

low state.-DEN returns to the high voltage state and
i the '32010 reads the Data Bus at the end of the

second machine cycle.

(ii) On an OUT pATi, PAj instruction, ghe '32010
drops its WE (write enable) pin frdm the high state
to thé low state and places the DATi entry on ﬁhe
Data Bus. WE returns éo the high voltage state and
the '32010 stops driving the Data Bus at the end of

the second machine cycle.

The '32010 fetches the next instruction in'the pfogram
during the next-machine cycle.

fﬁe Peripheral Address Decoder converts the voltage(
e sconditions -on t?e Address Bus and the WE, DEN lines into a

g
' signal directed toward the desired 1/0 device. A realization

‘of the Peripheral Address Decoder "is suggested in [22] and
is reproduced‘in fig. 2.2. ‘ ‘

At the start of the second machiné~cycle of the OUT
DATi, PAj instruction, jJ ears on the A0-A2 pins of the
LS138 devices apd the Eq ins are in th? high Voltage‘state.
The subsequent voltage trgnsition on WE causes_pin'E2 of
LS138(1) to go log. The Oj v'n of'thig device responds by

“falling to the low voltage state while all the other Qi pins
remain high. Thus, by terminating Oj to the output device

with port address j, a voltage pulse is transmitted to this

device on the second cyéie of the instruction. The device
. -5 . x '

o
, b

32

must be Aesigned to read the Data Bus in response to this
voltage pulse, thereby 2ompleting the data transfer. Simi-
larly, input deQices are activated by voltage pulses from
LS138(2) and must be designed to drive the Data Bus in
response to these pulses.

" The circuitry driving the E, p}ns.is required for the
execution of the "TBLW" (table write) and "TBLR" (table
read) instructions. These instructions, involving data
transfer between the '32010 and Progbam Memory, are avoided
because they each require 3 machine cyclés. Full details on
TBLW and TBLR are glven in [22]. The operation of the cir-
cuitry driving the E3 p1ns should be fairly obvious once an
understanding of these instructions is obtained.

2.1.3 Buffer A and the Auxiliary Address Registe;
Buffer A and the Auxiliary Address Re'r'are shown

in fig. 2.3. Whenever any of ghe Aw, E;, F or H lines

W' W
" from the Peripheral Address Decoﬁer are pulsed low by an OUT
instruction, the Data Bus yoltages are momentarily repro—'
duced on External Data Bus A. The output device specified in
the OUT instruction reads External Data Bus A at this time.
The buffer is required bécauseikhe "32010. is physically
incapable of driving the Data Bus if all of the 1/0 Qeviceé.
are directly connected to it [22]. The B/T? l%ne is used.for

the test purposes described «in [39]. This line is held in

the high voltage state during. program execution.

33

HAIALIAd $Sdd4ddVY "IVddHd Laidd .
¢ NAd

913
amn
gdddv - cwmaeu.:_l (UdduVv = 01dUdv) snd ss3Hddv
cmao.,\ - CaldVv udddy - gddayv
¥ or - 2v = d » ov - Z¥
s - o g e ds .
(¢)yse s 1)8€151
9 F L 19 (L
. [T LA T 4] L 6 o It » S/
NRRRERE T
N o ! A / 1 J
@ ay agody . Foel oy ?,w :rw Zm :<
’ g TSl Ud - /
,, , ,
“,, BB b oyt _ 08 4B nE (P
AN ~\

d0L0dG o0 Wls vy Lo

34

~

@dlSIds SS44QGV A:VITINGY / Vo oedddld
¢ T3is (V¥ =L VYY) Sild Ssdauey AavITINIY
N | o
UNV T e VY TR SR UA 3VY = OGIVV
_
AF VH [) h _
' D adlbludy Suldudy AaViTIAN .
]]
" oq.nq o . " -QL‘O o 4 t 00160 g
w?m, # U s Y-4 4 T s Y-5 9
(1onTe (2)11e (Lrels’ (&)eolyt (£)euls
< < .
Uva T oLvd BVa T oﬂ<; . LL/y
z - Vd VA = Lvd gvd - TIVd
v V (UVI=5TVU)
N] L - L i ek iNggrase
vii-cld imd uvlL 4 Lyl svil i IV v osid VLVA IVIRCILX
. .
SULOINLUU NTIa nY G :J. 05
() ULy 7
‘g - 38 . 18 -88
e-gl 6! v -8y Vvoadddild
5 (Lysnddi)
A (YT N R 5 meﬁ_
(Ud — STU) Yid vavd

|

35

The Auxiliary Address Register is a 12 bit storage reg-
ister. It is an output device and is assigned the port
address 0. The OUT DATi, PAO instruction causes the 12 least
significant bits of the DATi entry to be written into thev
register.

The Auxiliary Address Register‘has two major functions:

it is used in the transfer of a program from Boot ROM to

' Program Memory prior to execution, and it is used to address

Data Extension Memory during execution. The first of these
functions is not essential to the present discussion and is
described in [39]. Concérning the second, the 11 least sig-
nificant bits of the registerfaddress the 2kx16 Data Exten-
sion Memory. The most significant bit is used to determine
the next state of the register after the '32010 reads from
or writes to Data Extension Memory. If this bit is a zero,
the register is automatically incremented‘ét the end of a
Data Extension Memory access, while if the bit is a one, the
register is decremented. The,purposevngthese "autoincre-
ment" and "autodeérementf features ys to eliminate the need
for time consuming OUT instructions to port address O when‘
Data Extension Memory locations are accessed seguentially.
The Auxiliary Address Register can be manipulated
directly by the user via the B/T3 and TEST2 iines. This
apability is useful for testing Program Memory and Data
E:lension Memory and is described in [39]. Duriﬁg execution
the TEST2 line is held in the high voltage state while the

B/T3 line is held low.

36

2.1.4 Program Memory
Program Memory consists of two MCM2016H-55 2kx8 static

RAM chips [23] and a small number of discrete logic circuits
as shown in fig. 2.4. These high speed memdry components are
used because of the stringent timing requirements of the
TMS32010 [22]. The Program Memory address has fwo possible
soﬁ?ﬁes: tﬁe Address Bu; or the Auxiliary Address Register.
The Address Bus addresses Program Memory during program exe-
"cution while the Auxiliary Address Register addresses Fhe
memory during the transfer of a program from Boot ROM éo
Program.Memory prior to execution. As mentioned in 2.1.3,
the details of the latter situation are discussed in [39].
The functions of the TESTI and BOOT1 lines are also des-
cribed in [39]. During execution these lines are maintained
in.the high voltage state. |

" The flow of instructions from Program Memory to the
'32010. instruction register along the Data Bus is regulated
by the signal on the '32010 MEN (memory enable) pin; The
signal on MEN is reproduced (with a time delay) at the E
(chip enable) and G (output enable) pins of the Program
Memory chips. The ‘MEN pin is in the high voltage state at
the beginning of each machine cycle, causing the Program %
Memory chips to be disabled. During an instruction fetch,
the '32010 puts MEN into the low voltace state early in the
machine cycle and the resulting low voltage on the E and G
pins activates the Program Memory chips. The memory chips

_ then drive the Data Bus with the memory entry corresponding

37

to the present state of the address lines. I1f an instruction
fetch is not to be carried out during the machine cycle (for
example, during the second cycle 6f an 1/0 instruction), MEN
is held in the high §oltage state for the duration of the
cycle. The Program Memory chips remain in the disabled staté
for the entire machine cycle, thereby freeing the Data Bus
for communication between the '32010 and external devices.
The LS32 gate and the two lower ASO8 gates in fig. 2.4
are activated during the TBLW instruction. As mentioned in
2.1.2, this is of no concern here because TBLW will never be
used. The operation of these components should be clear from

the description of TBLW .given in [22].

2.1.5 Data Extension Memory

Data Extension Memory, like Program’Memory; consists of
two MCM2016H-55 2kx8 static RAMs and a small number of
discrete logic circuits as shown in fig. 2.5. Data Extegsion
Memory is both an iﬁput device and an output device and is
assigned the port address 1. Thus the OUT DATi, PAI instruc-
tion writes DATi into the Data Extension Memory location
addressed by the Auxiliary Address Register. IN DATi, PA1
lééds DATi with the Data Extension Memé}y entry addressed by
~ the Auxiliary Address Register. As indicated in 2.1.3, the
Auxiliary Address Register is automatically incremented or

decremented at the end of each such Data Extension Memory -

access.

38

5 Ao oan s Vanuad
Ly N0 Tol
Cﬂﬂfwfud. : ') ’ Lacuv CNWQFH.(
h Sild SSH¥dUY
G IV L R R R AVAVE IVA Y
, Sild addVv XAV
To/u
CNE TS LT e dd
§ 7 £ M 9 S 2 Nl £ 7T £ ¥ 2 5 O Y
’ (£)LSTST ' (2)L51s71 7
s/ 2 ‘ I3 &y k4 4 6
ULV 2
6 o}
(1)ce s
- dy-0 _ o
i) ﬂ Q(.\ DV\ //Q\
m
(') L (i) s
. Y R S TDBUSY
ST S R Sy Tl
’ ,\:‘,. v:_ i
.- i E4 IOW ~
o7 -taa Dt - =l ¥
r s m—— —
» .
LS4
[V A O\ = H,M.r Lo
| |
i Vi N

39

Sunaddy

LaVITTIAnV

[

OTVV T 0Vvy

Adukiiy RulolidiXd vdvd

oY -

oy - av

§'¢ "9T3

1

2
5

(i) o
SY-HITGL

Vil

L

-4

sd = Stu

|

stid V.1vd

(T)8US1

by

0

[SRRREN

dls

40

2.2 Programming the Reed-Solomon decoder

In this section, the programming of the decoding proce-
dure described in 1.2.2 for the six error correcting Reed-
Solomon code of block length 63 over GF(127) is discussed.
The two most important data structures in the program are
explained in 2.2.1 and 2.2.3 and the throughput of the
decoder is compared to that of other decoder designs [16,17]
in 2.2.5. ‘

The basic structure of the decoding procedure 1s as
follows. The coefficients of the received word R(x) are
stored in sequential Data Extension Memory addresses: The
'32010 first computes the twelve syndromes 51, 52, e SA2
of t+he received word. This involves the evaluation of R(x)
at twelve separate points of GF(127). The efficient evalua-
tion of polynomials is discussed in 2.2.1. After the syn-
dromes are obtained, the Berlekamp-Massey Algorithm is used
to obtain the error locator and error evaluaﬁor polynomials.
The programming of this algorithm is discussed in 2.2.3.
After the error locator and error evaluatc polynomials a?e
found, the Chien search is executed, which 1nvolves more
polynomial evaluation. Then the, error magnitudes are com-
puted and subtracted from the appropriate coefficients of

the received word. The failure modes described in 1.2.4 are

easily incorporated into the program.

2.2.1 The evaluation of polynomials

The most frequent operation in this Reed-Solomon
decoder 1s the eValuation of a polynomial at a point in
GF(127). The evaluation of polynomials is the basis of the
syndrome computation ‘and the Chien search.

Consider a polynomial f(x) = fnxn+£n,1xn_1+...+f0. We
wish to determine f(a) for some a. The Horner's rule repre-
sentation

Ja+...)a+f

f(a) = (...((fna+fn_1)a+f

n-2 0

[9,p.467) suggests the following approach:

Polynomial evaluation routine:
(1) Initialize: S « fn' I +« n,
(2) Test 1: If I « 0, stop [with S « f(a)].
(3) Update S: S « aS + fI—l‘
(4) Update I: I « I-1,

(5) Return to (2).

The multiply and add operation in step 3 is called the pro-
totypical inner loop [17}. An efficient method of implemen-
ting this routine for polynomials over ,GF(127) using the
TMS32010 is discussed below. ’

Two integers i, j are said to be mod 127 representa-
tions of each other if i-j is a multiple of 127. It is

fairly easy.to see that any .integer i has a unique mod 127

representation r(i) in the range

., 62, 63}.

It can be shown that for any nonzero i in R there is a
unigue nonzero i' in R éuch that r(ii') = 1, Hence, defining
the product of i and j in R to be r{ij), any nonzero element
of R has a unique multiplicative inverse in R. In fact, if
we define the sum [difference] of 1 and j in R to be r{i+j)
(r(i-j)), R is a field under this type of arithmetic. Hence-

forth, the symbcl "GF(127) 211 denote this particular

field structure,
Suppose 1 is stored j of the TMS32010 (recall
that the data registers, being 16 bits wide, can accomodate

15 15_1).

any integer between -2 7 and 2 Also suppose that .the

binary number 0000 1111 1111 1111 (= 212~

1) is stored in
DATk, 64 is stored in DATl, and 127 is stored in DATm. Then

r(i) can be computed and stored back in DATj as follows:

r(i) routine:
(1) LAC DATj, 5
(2) SACH DATjJ, 4
(3) AND DATK
(4) ADD DATj, 5
(5) SACH DATj, 4
(6) AND DATk v

(7) ADD DATJ, 5

(8) SUB DAT1l, 5

(9) BLz (11) .
(10) SUB DATm, 5

(11) ADD DAT1, 5

(12) SACL DATj

(13) LAC DATj, 11 -

SACH DATj, O

43

All of the instructions appearing here are described in

2.1.1 except. for the "BLZ (11)" instruction at step (39},

This instruction causes a branch to step (11) if the accumu-

lator entry resulting from-step (8) is less than zerc. Oth-

-
~

erwise, execution continues at step (10).

It is straig-tfor-

ward and somewhat tedious to-prove that this routine actu-

ally produces r(i), so ao proof is given. The main feature

worth noting about the r(i)~routine is its substantial

length. L

Only 7 bits are required to represent any element of

GF(127), which is an apparent waste of the "32010's 16 bit

data handling capability. However, the 16 bit capabili}y

does allow many different mbd‘127 representations of an

~1247, .-612, -104, 150, 658,

~ element of GF(127)._For example, 23 has the representations

\

1293, 7.

each of which can be-formatted as a 16 bit two's complemen;'

number.

=

»

*

44

The use of certain types of mod 127 represehtétions
makes it unnecessary to 1nc1ude the time consuming r(i)
routine in the prototyp1ca1 inner loop of a polynomial eval-
vation. The r(i) routine need only be executed once at the
end of the polynomial evaluation. With this in mind, the

— AN
following simple claim is presented.

Fl

Claim: 1f the integer i = i1212_+ 12,‘0 < iz < 212-1,
Ceit o 20 18] 5. o _
satisfies [i| < 2°° + 27, then i, + 271, is a mod 127 rep
resentation of i and Ifz + 2511| <24 -
Proof : 4
12 . 5% 7 . 5.
i = 112 + i, = 2 ;1(2 -1) + 1, + 2 i,

so i - (12 + 25i1) is a multiple of 27-1 = 127. Furthermore,

2?|i2 2%,] = 20 2 E:
< |71\,.+ i, o+ 2712
.) 220‘ L 18, 512, 519
. < 220 4 19 L 519 _ 521
This completes the proof of the claim. B i

This result suggests a reasonably efficient '32010

45

implementation of the prototypical inner loop:

Given that « € GF(127) is stored in the T register and
\ |
paTj « s, |s| < 2™,

DATn « A, ~2'2 < A < 227,

DATK « 0000 1111 1111 1111,;

a mod 127 representation of aS + A having magnitude less

than 2% can be'computéd and’ stored back in DATj as follows:

(1) MPY DATj. This insgruction computes S and loads the .

product into the P register. The product has magnitude less

than (26X(2‘4)\= 220,

»

(2) PAC. This ifstruction transfers the P register contents
to the acclmulator.

(3) ADD DATn. Now «S + A is stored in the accumulator. This

term has magnitude less than 220 + 215, 5o the previous

claim can be used to reduce aS + A to.a mod %27 representa-

tion having magnltude smaller than 2 4

o

(4) SACH DATj, 4. Writing aS-+ A = i = i1212 + 12,

ﬁ 0 ; . . . i
operation stores i ‘4n DATj as explalned in 2.1.:1.

this

- (5) AND DATk This 1nstruct10n computes the loglcal AND of

the 16 lea%ﬁ§s1gn1ﬁlcant bzts of the. accumulator and the

contents® o&mDATk, storlng the result back in the 16 least

IS

significant accumulator p051t10ns. The upper 16 b1ts of the

T accumulator are zeroed by this 1nstruct10n. Wlth the gzven

Cﬁé -,

a6
value of DATk, the execution of this instruction leaves i2
stored in the accumulator.
(6) ADD DATj, 5. At the end of this instruction, i2 + 2511
is stored in the accumulator. This is a mod 127 representa-
tion of aS + A hav1ng ‘magnitude less than 214

(7) SACL DAT]. iz + 2511‘15 stored back in DATj by this

&

instruction.
Jﬂb' e
When ‘this 7 step ﬁmocbtqplcal inner loop is used in the
polynomial evaluatloq routine, the successive values of §

always have magnitude less than_214. When the routine is

complete, a mod 127 representation of f(a) having magnitude
vgless than 21 s stored in DATj. This resuit can be reduced
_to its mod 127 reprgsenfation,in GF(127) -by applying the it
r{i) routine to it.

I1f one insists on reducinéveach of the intermediate
values of(S to its mod 127 representation in GF(127), it is
necessary to include the 14 step r(i) routine in the proto-
typical inner loop. The resulting polyﬁaﬁ&al evaluation
routine would require roughly_three times as much execution
time even for polynomialE_Pf small degree.

Réturning to the six ertor correcting Reed-sélomon code
of block length 63 over GF(127), the evaluation of the syn-
dromes S1; 52' ey 512 can be programmed in about 140 1inés,

of '32010 code. The number of machine cycles the program

requires to compute j .syndromes is approximately

‘) 47

66 + 62(75 + &) + 183.

initialization j polynomial evaluations '

j mod 127 reductions

Hqgce, the evaluation of 12 syndromes requires about 5738

maéhine cycles. This result will be used in 2.2.5 to esti-

!

mate the maximum throughput of the decoder.

2.2.2 Remarks

d

- »
(1) 9 is a primitive 63 root of unity in GF(127) so

the codewords of the six error ;orrecting_code of\length 63
ovdr GF(127) can be chbsen to have root§“9, r(92), r(93),
oo, r(g'?),

(2) The syndréme evaluation program appears in [39].
‘Aside from thevprototybical inner loop and the final reduc-
tion to GF(127) repreé%ﬁtations, the prggram is f;érly
trivial. The aufoincrement feature of gﬁé Auxiliary Addrgss
Register is used during the reading of the coefficients 6f
R(x) from Data Extension Memory.

(3) The set {-128, -127, ..., 0, ..., 127, 128} can be
given.a field structure via a mapping r'() analogous to the
mapping r{) used in 2.2.1. Let GF(257) denote this field
structure. The mapping r'(i) can be implemented with a

routine very similar to the r(i) routine of 2.2.1. Further-

more, a GF(257) version of the probotypical inner loop is

(1) MPY DATj (where DATS « s, |s| < 2'%)
- (2) PAC

(3) ADD DATn (where DATn « A, -2'2 < A < 2'°)
(4) SACH DATj, 4 » |
(5) AND DATk (where DATK « 0000 1111 1111 1111,)
(6) SUB DATj, 4
(7) SACL DAT]

which differs from the GF(127) prototyé{cal inner loop only

in the sixth instruction. The updated value of S”produced by
14

. the GF(257) version always has magnitude smaller than 2

2.2.3 Implementing the Berlekamp-Massey Algorithm
Introducing new variables p(k), 4, and Ark(z) and eli-
minating the computations involving Wy and Yy Berlekamp's
_Iterative Algorithm for the decoding of t error cérrecting

codes can be rewritten as follows:

(2) If kK = 2t, stop. Otherwise define \

-1
o, - 4,A z{ATk(z)},

Og+1

k+1

where Ak is the coefficient of z in the product

[4 + S(z)]ak(z).

49

(3) 1f A, = 0 or if D(k) 2 (k+1)‘/2, put D(k+1) = D(k) and

k
define L

0

AT = zArk,

k+ 1
p(k+1) = p(k)-1.

But if &, * 0 and D(k) < (k+1)/2, put D(k+1) = k+1-D(k) and

‘define
BTpsr = % 4
p(k+1) = p(k),
A
A =4,. . |) g
(,

(4) Increment k and return to (2). : -

Except for the term p(k), this is the Berlekamp-Massey Algo-
rithm mentioned in 1.2.4. The polynomial T, can be obtained
from ar, through the formula Tk(z) = A_1{A7k(z)}. The most

important feature of this algorithm is that the bulk of step
&

3 can be carried out with simple updates of p, D, and A and
with a single conditional pointer register swap. All of the
Galois field arithmetic appears?in step 2.

Consider the storage forszt depicted in fié. 2.6. Here

we have
TN~

\ =
ak(z) - z°,

~——\

™ ar, (z) = Z A7
. 1

N
~
Ay
N

50

Iviki0d dovihpas Aovas

3¢ TET;

¢ AJYLS [AJVLs

SACHIY (A)d Sduudy (4)d

R X e T
¢ LS LUdd . SHdLST Y

.

JuVdOLs ¢++¢ N dJuvdouls C+3c

O

ddavo Lo liod R fdves un vl e =
- c e . L AT | J
.
-

Each‘of stacks 1 and 2 is assumed to be‘composed of 2t+2
sequential memory locations embedded within a larger common

_memory. In addition to these stacks, there are two pointer
registers R1 and RZ, where Ri contains the memory address of
the lowest register in stack i, i=1,2. Stack { is said to be
addﬁessed by Ri. It is not obvious that a stack of depth
2t+2 is large enough to accommodate p(k) zeroes and D(k)+1
coefficients of ;k(z) or that it is large enough to accommo-
date p(k) zeroes and k-D(k)+1 coefficients of ar, (z). It is
shown in Appendix 4 that p(k)+D(k) < 2t+1 and ﬁ(k)+k-D(k) <
2t+1 for all 0 £ k € 2t, implying that these stacks are suf-
ficiently large.

k;and Ok;1 have been compuged in step 2, step 3

can be executed.as follows:

After A

(3.1) If A, # 0 and D(k) < (k+1)/2, go to (3.3).

k
Otherwise continue.

(3.2) D(k+1) = D(k), p(k+1) = p(k)-1. Go to (3.4).

(3.3) D(k+1)

k+1-D(k), p(k+1) = p(k), A = A, Swap
R1 and R2 entries (stack 1 becomes stack 2 and vice
versa). |

(3.4) Leéve p(k+1) zeroés in the bottom of the stack
addressed by R1. Store the first D(k+1)+1 coeffi-

cients of ak+1(z)'above these zeroes.

It can be verified that the execution of (3.1)-(3.4) will

set up the memory conditions of fig. 2.6 with k replaced by

52
W
k+1. When decoding with the TMS32010, the two stacks can be

situated somewhere within the 144 data registers DATO -

DAT143. The four:steps (3.1) - (3.4) are quite easy to pro-

gram,

2.?.4 Remarks

(1) A technigue similar to the use of stacks and
pointer registers is discussed in [16,pp.139-141]. However,
the issue'of‘stack size is not addressed there.

(2) The ‘'t=6 GF(127) version of the algorithm diécussed
in 2.2.3 caﬁ;be ﬁfogrammed in approximately 160 '32010
instructiddg; This program appears'in [39]. The following
upper bound on its execution time holds.

Let N be the actual Qumber of machine cycles required

to execute the program. Then

N € 139 +
initialization

11
Z {4 + 4k+34 + 27

test/increment k compute Ak compute Ak/A

+ 23 + 9(k+1-D{(k))+20

compute D(k+1) and test compute 0,
~for decoding failure .

+ 14 + 4D(k+1)+13} + 4

register swap update stack 1 exit

1 11
= 143 + L 13(k+1) + L [4D(
k=0 k=0

53

k+1)-9D(k)] + 12(131)

< 143 + 13(6)(13) - 9D(0) + 4D(12) + 12(131)

< 2753 machine cycles.

(3) The multiplicative inversion occurring at step (2)

of the Berlekamp-Massey algorithm is accomplished by reading

the inverse of A from a look-up
occurring in the computation of

carried out in the same way.

2.2.5 Decoder performance

After the Berlekamp-Massey

table. Subsequent inversions

the error magnitudes are

Algorithm is executed, 1t

remains to do the Chien search and the error magnitude com-

putation. For the six error correcting code of block length

63 over GF(127), the Chien search involves up to 63 evalua-

tions of a polynomial of degree
of 2.2.1 can be used to prbduce
Chien search program. The basic
look up the powers 90, 97!, 9—2,
Data Extension Memory, evaluate

store the values of i for which

time of the program is

< 6 over GF(127). The ideas
a simple (98 lines) TMS32010
idea of the program is to

62 in a table in

v, 9
012(2) at these powers, and

012(9_1) = 0. The running

54

16 + 63(7D(12) + 30) + 14D(12)

initialization 63 evaluations of 012(2)

< 4636 machine cycles.

The error magnitude computation is based on equation
(1.8) of Chapter 1. The error evaluator polynomial w(z) must
first be generated from 012(2) via the key egquation (1.7) as
explained in 1.2;4. This can be programmed in 35 lines of
TMS32010 code. Then the magnitudes are computed from (1,8)
and subtracted from the correspondiﬁg coeffici~ of thé
received word. This requires 150 lines of code e totai
running time of these two programs is bounded above by 164!
machine cyclesx

Recalling the cycle counts from 2.2.1 and 2.2.4, the
entire decoding procedure for one word cf the six error cor-
recting code takes at most 5738 + 2?53 + 4636 + 1641 =
14,768 machine cycles. Hence, the maximum throughput of the

decoder 1is at least

(=7 bits/symbol) (63 symbols/codeword)"

14,768 x 200x10”2 seconds/codeword

= 149 kbit/sec.

, 55

As mentioned in 2.2.2, polynomials over GF(257) can be
evaluated as easily as polynomials over GF(127) using the
TMS32010. In fact, all of the operations of Reed~Solomon
decoding can be done just aé easily in GF(257) as they are
done in GF(127). Accordingly, a decoding routine for the six
error correcting code of length @56 over GF (257) has also
been programmed on the '32010. This decoder has a max imum
throughput of at least 225 kpit/sec. In ﬁhis case, almost
90% of the decoding time is spent on the syndrome computa-
tions ana on the Chien search, emphasizing the importance of
efficient polynomial evaluation.

The main motivation for the choice of the six error
correcting code is that a decoder implemeﬁtation for the six
error correcting code of length 255 over GF(256) is dis-
cussed in [16,Chap.6]. This implementation, Sased énéthe

Intel 8086 microprocessor f24,Chap.5}, has a maximum

throughput of only 18.5 kbit/sec. Although‘itfﬁS{es%iméte :

o

that an implementation of the same decoder using the

P

Motorola MC68000 [24,Chap.7] running at 24 Mhz d0u13'93§é'é’;j

throughput of 110 kbit/sec [16;p.90], this~i§\§;ili;ié§é§? :‘
than half the rate at which the TMS32010 can‘Q?cdae?fﬁe -
-

i3

& 1 T
length 256 code over GF(257). Since the two c? £ in ques- .
]

tion are virtually identical (recall 1.2.1) a
sent versions of the '68000 are limited to 1§'
is a clear advantage to be had-by using GF(Zg

T™S32010.

56

The arithmetic of GF(256) ig quite different from that
of GF(257). The elements of GF(256) can be represented as 8
bit symbols in such a way that the sum of two symbols is
obtained as their exclusive OR. Computing the product of two
symbols is more difficult., In [16,Chap.6] the elements of
GF(256) are represented as powers of a fixed primitive ele-
ment and a product is obtained by adding the exponents of
the two operands. This approach involves some difficulties.
For example, the zero element of GF(256) 1sn't a power of a
primitive element and requires special treatment., It 1s
doubt ful that a TMS32010 implementation of GF(256) arithme-
tic would be any more efficient than a 24 Mhz '68000 imple-
mentation.
* The design oé a decoder for the eight error correcting
code of length 255 over GF(256) is considered from several
standpoints in [16,Chap.7]. Thyee gfsigns baded on the
AM2900 family of bit slice compoheﬁts [24,Chap.8] are dis-
cussed. A "basic" design consisting of approximately 30
SSI1/MSI /memory chips and 3 bit slice CPU components 1s
capable of a 200 kbit/sec throughput. By comparison, the
TMS32010 design can decode the eight error correcting code
of length 256 over GF(257) at a rate of 175 kbit/sec (In
this case, 89% of the decoding time is devoted to the syn-
drome computation and the Chien search).

The throughput of the basic bit slice design can be

3
%
I

doubled by doubling the amount of hardware and finally

raised to 650 kbit/sec by adding still more hardware. The

57
o7

latter design involves about 100 SSI/MSi/memdfy chips and 6
bit slice components [16,p.167]. A similar speed improvement
can be obtained by adding hardware to the TMS3§010 design.
However, the replacement ofithe '32010 with more receﬁt '
siqnal processor devices offers significant speed improve-.
ments without increasing the pafts count of’ the decoder.

Since'the introduction. of the TMS32010 in 1983, some
significantly more powerfel signal processor devices have
becen developed. The TMS320C25, intreduced in 1986 [25]: has
all the functional capabilitieé of the TM532010 and operates

at twice the '32010 s execution speed (ie: 100 ns machine

cycle). Therefore, the processor provides twice the through-

put of the '32010. The ‘Motorola SP56000, alsp introduced in
1986, works with 24 bit data words and has a 97.5 ns machine
1cyele.‘Based on preliminary information [26], it is esti-

mated that this device could decode the eight error correc-

ting Reed—Soéomon code of length 256 over GF(257) at a rate
near 500 kbi@/sec.

* The most promising development in signal ppocessor'

‘‘technology is the announcement of-the Texas Instruments

TMS320C30 [40]. It boasts a 60 ﬁg machine cycle, 32“brt
words, and up to 33 million floating point operations. per
second. It is roughly estimated that this device could

decode Reed- Solomon codes four to six times faster than the
Cy

- TMS32010. Tbe actual_throughpux realized wlth this device

will decend heavily on how wedl its internal parallelism is

used. The '320C30 also has several on-chip features that |

L

v\

, *

58

reduce ezternal logic requirements (2kx32 RAM, serial ports,
timers, etc.). . ' .-
In summary, these later generation processors provide

throughput rates near those of the fastest

of [16]. However, a signal processor systs “(Wuires only 10

to 30 ICs,' a substantial improvement over the 100+ IC count

»

of the fastest bit slice design; The comparisoﬁ between tﬁe
eight error correcting designs considered in [16] and some
eight error correcting designs based on signal processors is
summarized in Table 1. _ »
"g”Tﬁe 24 bit '56000 chip and the 32’bit '320C30 will
. likélj admi t efficient implementations of multiplicaﬁion,

addition, and subtraction over GF(216+1). However, multipli-

cative inversion in this large field is not straightforward."

The storage of inverses of each of the 246 nonzero ekements

in a look-up table would require 1 Mb of memory. An alterna-
tive inversion method- .based on the Euclidean Algorithm for
ihtegefs [8,pp.21-25] would eliminate the need for the

I .

‘look-up table, but would require a significant amount of
computation time.

'The decoder system designed as part of this thesis contains
41 1Cs [39). 17 of these ICs form a user interface, which
allows the programming and testing bf the system, Onte a
program has been debugged, this interface is no longer
needed. The program could be burned into ROM, which perma-
nently replaces Program Memory, and_the user interface cir-
cuitry removed. This leaves a 24 chip system.. -

4 g

W 1

R

59

S¥d000dd HOWOTOS~Addd 9NILI 74dUd d0dud LHOII 40 dONVWI0d¥Ad

SIS :
T d'Idvi A

. : . *SOTWOLO[DA) . JO xmemGpr e ST zkﬁuc (£)-

"PI3}ONAISUOD JOU - PIJPWIIST ()
"(ZHW LT - aBoTouyoal jussodd) 1O ZHW hg Saunssy . (1)

A I-b= u (4)
(€) Tod 0y¢e S/AW § . 4s8¢ 91 z¢pr -
(£) 101 00¢ S/AW ¢ 95¢ 9T TT49
(2) T+d40 WL - 400¢L LS¢ STseyld STUL W 0€20¢¢E
(2) -00T+d0y 059 95¢ . 9T - 006¢
(2¢) ST+4n 00S - LS5¢ - STSaYY STY]L 00096
() , ST+dn 00h LS¢ STSayl STYHL ©5200¢¢
(¢) ’ ' 09+dny , 00h 96¢ " 9T 006¢
0€+dne voe 952 ‘9T . 006¢
0c+dn SLT LS¢ _ STsayy STyl 0TO0CE
() (1), 0C+dn 05 C 98¢ 91 00089
ST+dn s/d94 ST C 98¢ L9917 49T 9808
SwION iuncy 01 psadg A.vr LOANog A3oTouyoay],
. , & *
| _ : .
m - ==

N
i

Chapter 3

Synchronization
In any digital communication system the transmitter and the
receiver must be synchronized. The receiver must know when
and how often the channel should be‘sampled’to recover the
data stream produced by the transmitter. Secondly,'it the -
transmitted data consists of a sequence of codewords of some
error éotrecting code, the receiver must know ‘when each
codeword ends and a new one begins. The first level of syn-

chronization is called character synchronization. A few well

established methods of .analog processing can be applied to

_the data sequence to acheive character syﬁchronization [29],

[30,p.193]. The second level ogqsynchrdhization is caaled

frame synchronization. Some general methods of obtaining

frame syhchronizatioh,areudiscussed in [31]. In this chap~'

ter, a method of obtaining both character synchronization
and frame synchronizatiop without using any analog proces-

sing is presented and analyzed. ‘

3.1 An approach to the synchronization problem

Supposé that the data symbols used by the transmitter

and receiver belong to some f1n1te alphabet F (F may be ény

finite set). Let SO' 51, SZ' ... be-a sequence of symbols in

v

LF that is known to. both the trauﬁmltter and the receiver, If

[« 3

the transmitter produces the ¢

,symbols DO’ Dl' T UREE

and inserts consecutive Si terms before every\nth data sym-
/ N ’ .

bol, one obtains the seguence P -~

¥ % !

60

KT - o 61

oo, D S (S

0 n=1 nt =vr Dopoqr S eee

Suppose that the symbols of this sequence are transmitted
over the channel at a rate of 1/T symbols per second. If the
receiver samples the channel every T' seconds, where T' < T,

it will obtain a sample of every term in the seqguence. It

By

imust determine which of these samples correspond to the data
.§ymbols Di' |
In addition to the possible timing discrepancy between
tne transmitter and receiver, channel noise may cause an
occa51ona1 ﬁﬁmpl1ng error at the receiver. However, if the
n01se sn' tvtoo severe, EDE_Eece1ver will be able to recog-
nlze‘many of the Si terms within the sequence of samples. It
is eeéy to see that if
B
_ n/(n+1) <T'/T S 1, G
L "

v

et

then ‘samples of consecutive S; terms are separated by either

n or. n+i sampfes“vHenceforth, (3.1) will be assumed to hold.

~ In 3.1.1, it is shown how the Viterbi Algorithm can make use

v

of tnis property to estimate ‘the position of each s; term in
the sequence of samples. The positions of the data samples
can then be estimated. The performance of the V1terb1 Algo—
rlthm is analyzed in 3 1. 2 and 3 1.4. '

“{VWhen T'/T < 1, the receiver observes an occasional
"extra" data symbol between consecutive S; terms. The extra
character arises‘because the receiver is sampling the data

o

~

62

stream too fast: two samples of a single transmitted charac-
ter sometimes occur. Thus, the extra character is statisti-
cally dependent ‘on an adjacent character. This dependence
makes any analysis of the system very difficult. For th;s
reason, attenticn is restricted to the simpler (but very
similar) mathematical model described in 3.f.1;

The motivation for this technique is that it does not
require the transmitter and the recéiver to have a common
timing reference, thereby eliminating the need for a phase
locked loop and related analog circuitry [29], (30,p.193].
The only reqguirement is that condition (3.1) be satisfigd;
T' and T may even vary with time as long as they neQer o

violate the limits specified in (3.1).

3.1.1 The Viterbi Algorithm
For the reasons outlined above, the following model is
considered.

The transmitter sends a sequence -of the form
equenc :

p

Sgr Dgr +++r Dpoyqs S{'T"' Dy «vvr Dypiqr Spu ven (3.2)

where Sy Sy» S,y .,{fE?e synch symbols known to both the

transmitter andkiiikkeceiver. The terms of sequence (3.2)

L 4 ~

are independent F-valued random variables (RVs). Each D has

the distribution e

Pr{Di=x}

“depend on thg'subscrin:&._

63

while each'si has the distribution

. Pr{Si=x} = S(x).
oy
The channel inserts independent F-valued RVs into the

sequence (3.2), producing a new sequence
X, X cee, Xoy e (3.3)

Each X, is either a.synch syﬁboi,”é data symbol, or one of
the RVs inserted by the channel. The inserted RVs are called
insertion errors and ‘are assumed to have the same distribu-
tion D(x) as the data symbols. It is assumed that no more
than one insertion error appears between any two consecutive
syndh symbois. »

Supéose that tﬁe receiver obtains exactly one sample Y.
of each RV X, in sequence (3.3) [instead of occasionally
obtaining two samples of a single RV in sequence (3.2)]. The
samples are themselves F-valued‘RVs and)are assumed to be
independent of each other. Y, is also assumed to be indepen-
dent” of xj if 1 # 3. Furthermof;, for each x,y in F, the

condit ional probability

t ply|x) = Pr{y =y, X,=x}/Pr{X=x}

0
]

L Y.
is assumed to be a known channel parameter that does not.

, R 2, - o o " P

. B R Y . e e ﬁ,/‘ . KA
1} o LW o C e e : R
& B . t L TR EERRRESS e ! - «’,\l{&

64

By loatdfng the Y, RVs int‘uecessive'columns of a
depth-n+1 memory, the storage format of fig. 3.1 is
obtained. The shaded squares represent the locations of sam-
ples of the synch sequence (synch samples). X
| For simplicity, let "[k,j]" denote the memory location

h

in thetjtb row of the k" column of fig. 3.1. Define a path

of~lengtﬁvl to be any sequénce
(kg dg), Dhyodqds eey [hy 3y

of memory locations satisfying k0=j0=0 and either

(n+1)ki+ji—{(n+1)ki_1+ji_1} = n+1, (3.4a)
or

(n+1)kif?if£€?+1?%i_1+3i_1} = n+2 - (3.4b)
for every i = 1,2,...,1. The memory locations

(R Igds [Ky3yd, eee, [Ky,9,1}
Y
occupied by the first 1+1 synch samples iform & path of
length 1. |
Let p(lesi) be the RV taking the value p(y|x) when

Yj=y and Si=x. 1f the channel noise isn't too bad, the RV

65

U MOd

LVHdGd duVaulys J1AWYS
T°¢ "381y

N
A\

N
%R

#7.

.
g

66

J

should have a high probability of exceeding the RV

wﬁaﬁ

.

1
igop(y(h*‘)ki*jilsi)

associated with any other path

{lkgidgls +ver LRy 3p0)

of length 1. Heﬁge, by assigning the metric

1
[

1 - . , ey
1ni20p(y(n+1)ki+ji|si) =

—

S:)

L ln‘p(Y(nH)kiw‘j‘l| i

1=0 "

to each path of length 1, the path formed by the synch sam-

ples will likely have the highest metric. This heuristic
argument also applies to the more general metric

3

1
Z [1n p(Y

S.) + RI],
I |s. ‘

n+1)ki+jq
where R is any fixed real number. From this standpo;nt, the
receiver will obtain a good estimate of the positions of the
first 1+1 synch samples by selecting the path of length 1
having the largest metric. However, since there are.21 paths
of length 1, a brute force search is impractical.

The decoding of Convolutional codes can be described ip
terms of‘pafhs and metrics similar to these [32,pp.227-381];
The Viterbi Algorithm is a computationally efficient method

of finding the paths having the largest metric. This

67

algorithm can be modified to suit our purposes as follows:
Notation:

1f P = {[ky,3gl, -0 [ky_y,3,.4]} is a path of length 1-1
and kl, jl satisfy conditions (3.4a) or (3.4b) for i=1, then
the symbol

P*[kl,Jl]

denotes the path
) {[ko'jO]' .0 o, [ki_1rjl_1]r [klljll}
of length 1.

Viterbi Algorithm:

L J
(1) Initialize:
(Py,my,1ly) ([0,0], 1n p(YOISO) + R, 0);
(P_1,m_1,1_1) « (@, -=, 0); .

P'I Il r %y 0 ’ 153 < '
(jom; J) « (O) j <n

(2) Temporary storage:

68

(ﬂlulk) « (Pn,m ’ln)l

n

(3) Update existing paths:

For each 0 € j < min{k+1,n}, define -

s g = mj + 1n p(Y(n+1)(k+1)+j|Sl§*1) + R,

uy g T mj_1 + 1n p(Y(n+1)(k+1)+j|Slj-1+1) + R.
or if 7 = k+1,

3.0

P.,m.,1.) « (P._, % k+1,3), .
(Pyimy,ly) « (Py gl 3. uy,

Otherﬁise,
P.,m.,1.) P.x{k+1,3), m. A, 1.%+1).
(pymy 150« (Pyxl 31, kg or 14*T)
(4) Update (9_1,m_1,1_1):
(P_1,m;1,l_1) « (m,u,N).

4

(5) k « k+1. Return to (2).

The behavior of this algorithm 1s summarized as a claim:
4

Claim: For each 0 < j < min{k+1,n;, the object Pj existing

VA_6Q . R ‘:.“

\

S

after the k+1tP iteratiop of steps (2)-(5) is a path of
length'lj with metric mj and having endpoint [k+1,9). It is .
called the survivor ending at [k+1,3]. No path of 1ené§h 1j

having endpoin£ [k+1,7] has metric exceeding m . B

The proof of this claim is a straightforward induction on k.
Step (1) ensUres that the stated conditions hold for k=0.
Each iteration of steps (2)-(5) of the Viterbi Algo-

rithm advances the path search by one column of memory loca-

¢
h iteration is proportional

to min{k+1,n}+1 s n+1, If the entire transmitted sequence

tions. The complexity of the kt

contains N+1 synch symbols, the algorithm is stopped as
follows: When any lj reaches N, save Pj ahd mj..Then replace
rnj with ~». As soon as all lj's equal or exceed N, stop.
Search the set of saved path—met{ic pairs for the one with

the laréest metric. Write the associated path as

x * X
{[KO'JO] ’ [K1IJ1] r * e [KNIJN] }-

kth synch sample

The receiver estimates the position of the
) .
to be [Kk'Jk] .

Once this estimate of the synch sample positions is
obtained, the receiver may assume that the first n samples
immediately following [Kk,Jk]* correspond to the data sym-
bols |
(3.5)

D "D

kn’ “kn+1’ *°°’ “kn+(n-1)°

70
]

If [Kk,Jk]* is the actuaf-,‘liocation of @he k"

"synch sample,
the only way for this assumption to be wrong is to have an
insertion error bgkween § and Dyn+(n-1)° Hence, this deci-
sion strategy will work well if insertion errors are rare
(ie: if T ~ T). However, if the kth‘synch position estihmate
is incorrect, the entire data segment (3.5) will likely be
miéaligned. An upper bound on the probability of such a syn-

- . . 13 ’
chronization error is presented in 3.1.2.

3.1.2 Performance analysis of the Viterbi Algorithm
R -
Le?;}{KQ'JQ]' [K,,3,], ..., [Kg,Jgl} be the memory
LoCatiohsvconﬁaﬁning the synch samples of the entire trans-
. o

, mitted séqﬁence.ﬂThis path is called the correct path and

.th

Q[Ki,gi] d;wcélled the 1 node of the correct path. A path

a

”i[kO’jél” [}1,j]], ...} satisfying

‘%igm’ . ‘ [km(jm] = [Km'Jm]'

o, . [k J# [Rpeydpeqds

m+1'ji1.1+1

3o

is sbidyto'divergé from the correct path at node m. It
{ . ; -

Femeﬂées'with ‘the éprrect path at node m+p 1if

P

[] # IR, 3

1 m+i]' 0 <1 <p

m+i’ Im+i

[k] = [K J 1.

n+p Imep m+p’' m+p

' ‘i_,;CondItlon (1) holds is, upper bounded by

N

Suppbse that each of the paths produced by the Viterbi

'Algorfthm never sl Ip§ or advances by n+1 samples relative to

" the correct path (see fig. 3.2). It will be shown in 3.1.4

that such &n event called a frame loss, has a low probabi-
ity of occurrence in cases of interest. Under this hypothe-

s1s, we w1sh to estlmate the probab111ty of a synchronrza-

tlon error at ;he k h synch p051t10n, O < k £ N,
’ ¢ The only way for a synch error to occur at the k th
pos1t1on is for the path {[KO,JO]*, [K J] ...,»[K }*}

, produced by the‘V1terb1 Algorlthm to dlverge from the cor-

rect path at some node m, where m < K. Th1s path can then do

‘ome of two things: -

> ;
J
6

« (1) it can remerge with the correct path at some

node’ m*+j, where k < m+j S N, °

or ,
o . - L : T
.. #R) it may never remerge with the correct path.
Define =)
.+ 2= L S(s) Z R p(yl)[p(y1|s)p(y‘|s§]%.
,_sEF y1EFy2€F 4¢ -

. : "

7 S - - . - . A
@ ! A

In Appendlx Sv1t is shown ‘that the. probablllty that .

N Sk
.

i k;lﬂ N-m
., . b z .
. L . m=0 j= k+1 m

o -,

422)Tﬂ‘ ool ;(

e

22 1{(2;)") g 1—(22)“’7*)/_4(1-2232,

S

7M1

Y

R

72

N\

Y

7, I
//

4

7
7

EINAN

— i

*

Mo 4

’ *

¥

(a) Fath slipring by n+l samples relative to correcta\\‘

»* path’ (n=u).

- o
Bkl

N A"If‘:‘j
MET ¥
TN\ n{;ﬁ*
5 "4;-
: PPN

R
.
-4

v |

' N

\)

%%

% ,

.

\\~
hd

o o . \' - ‘,’i‘_,

.. (b). Path advaneing tv n+l Sampleé'refatiyq‘%o_cogrect‘

path‘(n:u).

'
R N
. g
' CRY "“-—;ﬁa“}
' =& ."g':'.l
—~ ., -) 4 ,w a‘” %ﬁ‘g .
ir. 2.2 . T .
N ATy T - o Y Rt
ENAMILES OF FRAME LOSSES L e

. ﬁg;‘

.

. {,%;_’?‘fﬁ .

73
>
and that the probability that (2) holds is upper bounded by

o (2pNm
m=0

- N Mook /-2,

”f“ [. .o . .
Thus, the total probability of a synch error at any position

k is upper‘bounded by the sum of these two expressions. This

sum is given by

N+1-ky (4 (22)K) /(1-22)°

Y ¢
< 22/(1-22)%, 22 < 1.

1f 7 is.very small, this provides a useful upper bound on-

the probability of a synchronization'e}ror. oo~

;3.1;3”Examp1es S . o ’

Z can be expressed as

Z = Z S(s)f(s),
s€tF
where Co .

£(s) = Z & _plyIply,|s)ply,ls) 1"
y1€Fy2€F . ~ -
) . L3 » . rd\" . | .
It is clear that Z is minimized by choosing the distribution
S(x) of the synch characters as follows:
S , -
s(x) = 1 if f(x) < £(x') for all x' # %,

g2
4

74

’

= 0 otherwise. v

()
*

, This means that 2 is minimized by finding the‘xoéF at which
| f(x) takes its smallest valge anq setting Si = xb, i =
0,1,2,... Practically speakgng, this is a welcome result,

~ The transmitter and receiver\phlylhave to remember x

instead of a complicated sequence of RVS.

Example 1: Suppose the alphabet F has size Q, D(x) is the -

uniform dlstrlbutlon on F, and the channel is noiseless (1e:u“

gthe QxQ matrix- [p(y|x)]- 1s the 1dent1ty matrlx) Then f(s) =

. D(s) = Q ' for every s(f and 7 = Q’1 for every ch01ce of
J}D,K
e %ke the synch ‘etror upper bound in

the dlstrlbutlon S(x)v=.¢

P AN
this case is _ /

. 20 07(1-207H %, 0 > 2.

Q mﬁgi’be very large for this bound to be of any use. Fu&g
thermore, the bound will likely be even vorse for ndisy
channels:

Example 2: Suppese the data\symbols and-insertion errors

“never take some value sofF [ie: D(sy)=01. Define:

L1}

111f X = SO; - o

S(x)
| Ouotherwise.‘

e

[ie:'S, ='sy, i = 0,1,2,...]. With this choice of S(x), one

‘has

zZ = L z p(y1)[p(y1is)p(y2|s) 1%,
(Fy2€F

\

It is easy (but messy) to verify that

>~z s [max p(solx) + I p(yls Y[+ Z p(yls)]
X#S, VA Sg y*#8,

in thlS case. Hence, as the channel approaches the n01seless
condition, % approaches zero,,lmplylng that the synch error
i probab1l1ty also approaches zero. Thu& by choosing the

sp sympols S .to be some fixed .symbol lying outs1de of
{h Set of data or Lnsgrtlon sympols, the synch error proba—
i b1l1ty can be made és Qm?ll as desired by uslng a suffi=s
@

c1ently good ‘channel. T%1sans 1ntu1t1vely reasonable.
. - . - \n-.' ;o' "
7

Example 3: 1f F = {0,1}, D(0) = D(1) = 1/2, and B&gé}lne
p(1]0) = P,, then | ‘

- - Y2 N

z = 1/2 +;[Pe(1 Py)]
for all ch01ces of the dlstrlbutlon S(x) Hence, 22 2 1,
N

implying that the~22/(1—2z)‘ bound is 1nvalld in this case.
In spite of the fact that the results of thls.sectlon say
nothing useful about’thiskexample} the synchronization:
scheme will be implementéd'fo} a binary channel. This system

and its observed performance are discussed in section 3.2.:

UPRES %O%did by

i

76

3.1.4 On the probability of frame loss " i
A frame loss, introduced in 3.1.2, occurs when the |

Viterbi Algorithm produces a survivor P of leﬁgth p-1 or p+1

that ends at megmoty location [Kp,Jp] of the correct’path,

The former case is called a frame advance and corresponds t‘o‘

‘an advance of n+1 samples éelatiVé to the correct path (fig..:

'-[Kp'Jp] are shown in.fig. 3.3.

3.2b). The latter case is called a f rame slip and corre-

sponds to a s];,ip of .n+1 se;‘mples (fig. 3.2a). Wéﬁ;{ﬂikf esti-
mate the vprobabil,ity that ‘the'fir‘st ffame cgﬁ&t
memory location‘ﬁi{Kp,}jﬁﬂ. The case of é fra‘ : f-‘onsi-
de’redqfirst‘% B e o

Write the survivor P gy

B . R AV s
’ [K1,J*:~. n’-, [Kp+1]Jp+‘1] }'

S

By hypothesis,: [Kp+1’Jp'+1] = [Kp,Jp]. The possible erienta-

tiqns .Of the memory locations [KP';,,JE?];?““P""JP”],' énd

In Appendix 6, it is show»n@that the probabi\l'/ity that

the Viterbi Algorithm produces a survivor of the form P is

I3
¥ -
at

 e”R(2z)“+‘/({—2z)

whenever 22 < 1, Hence,

O ' U
L

P (p) = Pr{The Eirst fra.me. loss is a fram’ev_slxp at [Kp,Jp]}

’

. . ;\ u
E 2 ‘\" {"w,
%r‘“
Y
D

L [x ,J}j, ROV O

LA

! "
P
-$
%,
ROW n
5%
i
e
2 “
FRAME SLI .

L

i < e"R(22)" " /(1-22) E

-

whenever 27 < 1,

-

‘\‘\ n o,
A similar argument shows that the probability

Pr{The first frame loss is

kg
LN

Pa(g)

a frame advance at [K ,Jp]}

p

satisfies

Rw%.éﬁ%} L
PO At ! m a7 e Ky

id 8
I I * “
- - L Lt

p_(p) < e R(22)™ 1/ (1-22)

' i

-~ - R SR . . a | an R EIVSN
P ; e EEE NG
e B T -

whenever 2Z < 1.°'Hence the total_probabilitymPs(p) + ﬁa(p)

"that the first frame loss pccUrs at [Kp,Jp) satisfies

&

L o WR. -1 el ’
Pl Fal® ("Rre ™Ry (220" 1/ (1-22)

whenever 22 < 1.
Obviou!ly if 2 is reasonacly small and n is moderately -
large, .this probability is véry small. The upper bound is
\:} B f

minimized by'the choice R = 0, where it takes the value

* | 2(22)"" 1/ (1-22).

3.\.5'Remarks

kjfvThé performance analysis bf a_gecoder for‘certain,A
convolutional éodes can ﬁe carried out +in a manner similar L
to the analysis of Apbendicés 5 and 6 [32,p.242-258). One

\

79

obtains upper bounds oa the probability of a decoding error
that are similar to the upper bounds given in 3.1.2 and

3'1.4.

(2) The version of the Viterbi Algorithm proposed in

-

3.1.1 is similar to an algorithm of Ungerboeck [33]. The

latter algorithm is used to reduce phase jitter in synchro-

o+

nous AM/FM systems.

(3) It 19 1mpl1c1t in the prev1ous analysis that the

recelver“ ﬁys exactly when the transmitted sequence starts.
L

z%ewwWhe fmame synchr631zatlon methods described in [31] can be

L L& v

used to engage this. Although these methods are ‘based on the
a55umptlohf&h£¥ some form of cha;acter synchron1zat1on has

been achaeveﬁ they appear to be adaptable to "slightly

unsynchfdﬁﬁiéd" channels [ie: systems satisfying condition

ol - .

,f,-gnﬁ . ' '
;3. 2,€? ma&fmcptatxon of the sygsyf6hzzation scheme

In this sectlon, the 1mplekentatlon of the preceding

-
NN Y S

Synchronlzatxon scheme for tthe binary channel is discussed,

o
) v
d .

3.5.1_An overview
téupgose ehat the information to be trensmitted to ihe ,
receiver is fo;matted as a sequence of 7 bitvsymbols. By
‘appehding a known synch bit to each of these symbol%, one
obtains the transmiseion format of sectioh 3.1 with F =

{0,1} and n=7. 1f the resulting data stream is sampled at

more ‘than twice the data rate, then at least two samples of

-

80

each transmitted bit is obtained. This.contrasts with the
previous‘sampling method, which only guarantees that one
sample of each transmitted symbol is obtained.‘The purpose
of the higher éampling rate is to provide samples tﬁat are
takqg’near;the centre of each consecutive bit. If the sam-
ples‘aré storéd in’a memory as shown in fig, 3.1 with n=15
and the sampling rate is sufficiently closevto tdfce the
transmitted bit rate,kﬁonsecutive synch samples are sepa-
rated by either 15 or. 16 intermediate samples. Hence, the

':

positions of the synch samples can be estlmated by applying

the Viterbi Algorithm with n=15. In the absence of knowledge

about the channel noige, it is intuitively reasonable to

assign the metric ,

.
Y

to the path {[kb,jO], ce e, [kn,jn]}f where "®" denoteé
exclusive OR.
The memory can be conveniently realized as.a pair of

2kx8 static RAMs. This of course constrgins the 1ength,ofi

- the transmitted message to less than 2048 8 bit bytes. A

message length of 504 bytes will be used. ¥

»

Each survivor {[k 0,]0] R n,qn]}, produced by the

viterbi'Algorithm can be represented as a binary sequence

s, 62,... 5n}, where §. ;=0 if equation (3. 4a) holds and & =1

if (3.4b) holds. It is obviously more etfxcxent to sbore

.sequences of this type than to store the parame;ers*[kl,ji]

81

of each node of every survi$:;\MWhen the path with the
highest metric is selected at the end of the‘Viterbiiﬁlgo—
rithm, it can be reconstructed from its (known) endpoint and
the associated & sequence. The recéiverwcan then assume that

the an, 4th, ceny 14th samples immediately following the

ith node of the path correspond to the bits of the ith sym-
bol.
As mentioned in 3.1.5, the receiver must know exactly

wheh the transmitted sequence begins. The egsiest way to

endute this conditio® is to use a "handshake"” format in

which the.receiver requests the transmission‘pf the message

via a feedback line. A format of tris type is described

below. ' |
) :] :

3.2.2-Description and performarice

The Dg'miqrocomputer kit is a versatile but relatively
slow system based on the Motorola MC6802 microprocessor
‘ 1Y
[34]). For the present purposes, it is used to accept and

store 8 bit words generated by the TMS32010, after yhich 1t

retransmits them serially to the '32010. This application

. requires the minor hardware modifications shown in fig. 3.4.

The TMS32010 buffer memory and D5 interface hardware are

-

shown in fig. 3.5.. ¢

o

82

~

4

L

9lhL
by ~ O

&
Lv\

L

13 Q 4
HU STl &
2
sl
£ T !
s - -

U

(5°c¢ °
nJgs'i
Al
7 p——
s
£
¥
Vnl S
of S/
1

. wr
M
= £
@ i ‘¢
- CLHUATTD
. Javiidavi JdovVaAddLiD olo e L .
- .. A ol 3L ~ . . « i
. Gy cET, 3 ,
AS
- Uld
H.?_.:FE Siit —
VS TAUVId VLvd
5] T - 2 4
. 9o—ds * [[yiiTlxn .
i ‘ «

‘. .

Eel N ﬂ . R -s‘
wdlig dulid . 1 J
- |)

. L R UUIUREL
7~ zu LG THdTIvdYd V4

Sl

}__»-

L

r~
o

- z
g1 (1)vudlsl) mw
deaad] . -
© 11T Y et grb— —LikLilI
o z: . >, . . TUAHRVHO
% //#/mu O. . |
(e kit g + (H)8 £ .
- 9T 7 0:a

T g Sitd VLVA| ‘iviiadlxd VoLuw VLV TTVIdELXU
.) . g o

v
o : . 84

Operat fon: yﬂg‘ o
; .

(1) The fMSBZO\O éenerates B codewords of the six error
cortecting Reed¥§olomonkcode of length 63 over GF(127).
Symbols in GF(127) are reptesented as integers between -63
and 63 and require 7 bits. Each codeword is contructed as
follows. The '32010 generates a Sequence of 441 bits of a

length 216

—l PN sequence {35]). This sequence is then seg- ‘
mented into 63 7 bit integers, each of which is reduced to
its mod 127 equivalent in GF(127). Twelve of these symbols
are then erased [8,sec.10.4) and are replaced with parity
symbols. Full details on this erasure method appear in
[8,sec.10,4] and [13,eec.9.2].

Once the codewords are generated, the '32010 adds a
synch‘bit to each of the 7 bit symbols. The resulting 63x8
array of 8 bit symbols is.transmitted to the D5 kit for
storage in memory. The D5 is coafigured to receive data
through PIA port A [34,sec.9.5), which is driven by the
v'33010's parallel output port. The '32010 transfers each 8
bit symbol in the array to tbé D5 kit by writing it into the
parallél output port. This int& operation.causes a falling
voltage transition on the. Data Request llne In respoqse to

»

the resultlng voltage transmt1on on the CA) pin, the D5 kit oy

e
' *»r61585¢thg CAZ pin ‘to’ the . hlgh voltage state and reads PIA

’port A into memory When the read is complete, CA2 ‘falls
back to the low voltage state Meanwhlle, the '32010 moni-

tors CA2 via the BIO pin. When it observes a complete low -

”~
~

N - ‘ R - /{/ .)
hlgh - low tran51t10n on CA2, it raises/the Data Request'
\“ line h1gh aga1n. It then wrltes the next byte of the array
into the parallel output port
 (2) After recei&ing the entire array through EEA port
} E‘A, ‘the D5\1s ready to return it to the '32010 through PIA
port B. When the '32010 1a\ready to receive the data,. it
sets Data'Request low. In.response, the Data Ready line
‘\' (fig. 3.4) falls from the high voltage state to the low
voltage state exactly one half" bit t1me before the first b1t
of the message is transmlttedra¥he 35610 detects this tran-

51t10n on the BIO pin and beglns sampling the channel when

the first bit is transmltted

!

s
L

" The circuitry of fig. 3.4 converts the data on PIA port
B to serial format.'The serial data is.clocked out of the
- 174165 shift register by thef%xternalvclock signal. The
o 2external/¢iock signal can be éupplied by any TTL compatible
| pulse generator (such'as the Wavetek 178). The allowable
frequency range of the exterhal clock signal is discussed in
the next paragraph. | ' 5
(3) The '32010 eamples the'channel.at 100 kHz. A new
chanhel sample 1s loaded into the rightmost storage cell of

the LS299(2) shift: register with every "IN, PA4" 1nstruc-;

tlon. The two LS299 shift registers are read after every

“

-~
‘

16th channel sample w1th the "IN, PA3" instruction. The exe- .

cution of this instructiocn causes the 16 bit shift reg1ster

W

o . 86

; ' . - T |
entry tq be written into the 2kx 16 buffef'memory. The buffer
memory address register is autdmaticalfy incremented at thed
end of each such write operatlon. - '

Ir§ order for the Viterbi Algorithm to work, the clock
drivfngrthe D5 transmitter must have a frequency of no more
than one half tke receiver's sampffng rate. Hénce, the
transmittefrclock has an'upper‘limit‘of 50 kHz; 1t is fairly
easy to derive a lower frequency limit by u51ng an argument
51m1lar to that of equation (3,1) in sectlon 3. Howevet,

gince we chodse to work wit transmltter frequencies very

close to the 50 kHz upper 1IENt, the»derivation is omitted.

v"(4) Once the D5 has transmitted all 504 nyteeuin’the
array, it.waits for the '32016 to generate and send a new
array as explained in (1) above. E
! When the '32010 has collected 511x16 = 8176 channel
samples, it appl1es the Vlterbf Algorithm to the buffer
memory contents to estimate the nositions ef:the synch sam-
ples. It then estlmates the transmltted data symbols by
applylng the decision rule mentioned in 3. 2 1. F1nally it

~—applies the Reed-Solomon decoding algorltnm to each of the 8
~words in the resulting,array. The '32010 compares the
‘received symbole to the transmitted symbols before and after
decoding and ,counts the number of EEEQrs. These error counts
are stored and a new array of codewords is generated as des-

‘cribed in (1). steps (1) - (4) can be repggted as many times

as desired. The PN sequence produces a different array

£ ~ .
?A \

-

~

#
I

87

"almost every time" (The arrays repeat ‘at every nth itera-
tlon, where h is the smallest 1ntege{ such that n+8- 441 is a
mu1t1ple of 216] = 3+5- 17 +257. Hence, n = 517257 =

21845). ' -~

E4

The test 5e%ults\of Table 2 are obtained with 213 =

8192 {tefat{ons of the preceding four steps (ie: 8192-504 =
4X1O by*es). In spite of the fact that the channel is
n01seless, the synchronlzatlon method 1ntroduces a 51gn1f1~

cant number of errors (refer, to the "symbol error rate prior

& . .
to decoding" column). . ' ' T

3.2.3 Remarks | !

(1) The sequence of 504 synch bits embedded in each
message consists of 8 copies of a length 63 PN eequence.
This type of sequence is expected to reduce'the,probability
of a frame loss,vdescribed,in.5.1.4. The metrics of paths
involving frame losses}should decrease rapidly as the
Viterbi Algorithm progresses due to the highly‘peaked auté—
correlation function of the PN sequence [35]. The error‘pat-
terﬁs observed in the tests indicate that frame losses actu-
ally never occur. -

The pre—decodihg error petterns are observed to occur
in bursts concentrated around the nodes where 6i=1. The
codewords of each message are interleaved [3] to reduce the

‘effect of these errors on theipost-decoding error rate.

L
- X

' | 88
v L | ',,; | .
(2) The Viterbi Algorithm can be programmed in about
240 TMS32010 instructions. The subsegquent estimation of the -

data symbols requireS'fzd_inSt;uctions}.The total running
time of the two routines is upper bounded by 995, 000 machine
cYC;FS' which corresponds to.a maximum'throughput of

-

(7 bits/symbol) (504 symbols/message)

995,000 x 200 ns

- - _ =1j.3 kbit/s.
Thus, tﬁese two-reutinés constitute a significant processihg
bottleneck (whee compared ‘to the séeed of the Reed—Solemon
decoding algorithm). Loosely speaking, the main difficulty
with thlS approach is that a great deal of data (16 binary
sequences {61,...,6 } of Qength up to 504 bits, together
/fz«\tﬁFNtransmltted message) must be packed into the limi-
ted memoyy resources of the system. A slgnlflcant amount of
processing time is required to "pack" and unpack" this data

as the Viterbi Algorithm progresses.

N

-

transmitter
frequency

49,99 kHz

¢

49.97 kHz

~

¢
49.95 kHz

149.93 kHz

" TABLE 2

«

symbol —

error rate
prior to
decoding

1.15x10 2

1.67x10 2

1.91x10

2.40x 10

symbol
A
ertror rate
after

' decoding

no errors

(< 2x1077)

no errors

(< ZX1O—7)

2.37x10°°

3.92x10°

‘89

Chapter {‘
s .:y‘and Conclusiq‘f’
The purpose of this fhesis is‘twoféld; Eirst, to investigate
the impleméntation of Reed-Solomon decoders with the N
TMS32010 signal ﬁrocessor chip, and second, to present a
‘synchronization technique that makes no use of phase locked
loops.

The construction and -decoding of Reed;Solomon‘codes is
illustrated Qith an example of a single error correcting
code over GF(11). Multiple %rro; correcting Reed—Solomon
codes over arbitrary fields are then introduced and their
deéoding is discusseai}A slight variation of Berlekamp's
algorithm for solving the key equétion is'developed and a
 method of accelerating Berlekamp's éigorithm due to Chen is
discussed. It is shown thaf the use of Chen's method
involves a greater'chance’oﬁ miscorrecting large error
patte:ns than does Berlekamp's algorithm. |

The implementation of Galois field arithmetic on the
TMS32010 is considered: it is shown that the 16 bit data
handling capabflity of the '32010 can be used to implement
fairly éfficient mathematical operations in the fields
GF(127) and GF(257). Based on these results, the programming
of the Reed-Solomon decoding algorithm for codes over these
fields is discussed. Codes over GF(127) are most efficiently
applied. when an alphabet of 127 symbols is used (ie: ASCIIF
less a character). Furthermore, as shown by Solomon, an

“

(n,k) Reed-Solomon code over GF(257) contains a (ncnlineariA'

90

e
(n,k-1) subcodg over GF(ZS?)—{O}; allowing the use of eight
bits per transmltted s#mbol For hxgh code rates, an encoder
for the subcode can be\ggallzed as a practical modification
of the usual Reed-Solomon encoder. Thus, codes Qver these
prime fields may be applied to binary systems almost as
eaS1ly as codes over fields of characteristic two,

A stack storage format for decoding is presented and
ana'lyzed. The results of Appendix 4 show how large these
stacks must be. While similar decoding methods have been
proposed elsewhere by Cohen, the issue of stack size is not
addressed there. i : ‘

A Reed-Solomon deéoder based on the TMS32010 is.
de51gned and built as part of this thesis. Full detalls on
this hardware system are presented in a separate report. It
is demonstrated that the throughput of the '32010-based
~decoder for codes over GF(257) is comparable to that of a
more complicated bit-slice design intended for codes over
GF(256) . .

Cohen has shown that it is possible to improve the per-
formance ofV;EE\Bitzsgice Reed-Solomon decoder by adding a
large amount of hardware. However, the performance of the
'32010-based decoder caﬁ be improved to an even greater
extent by replacing the TM§32010 with a more powerful signal
processor such as the TM§320C30. This replacement would
likely involve a reduction of the decoder parts count due to

the increasing sophistication of the more recent signal pro-

cessor chips. For example, it is estimated that a 10 chip

-

92

1320C30-based decoder for the (256,240) Reed-Solamon code
over GF(257) would provide a throughput h1gher than that
obtained with a 100 chip bit-slice decoder for the (255,239)
code over GF(256). Thus, the present trend towards more
powerful signal processor devices allows the constructlonﬂof
relatively cheap decoders that are faster and far more
compact than bit-slice designs.

A method of 1nsert1ng timing information into a‘arans—
mitted data stream and recovering it at the redeavqybylthout
relying on well-known timing recovery techniques is pre-
sented. The receiver uses a version of the Viterbi Algo-
rithm, which is more commonly used in the decoding of‘convo-
lutional codes. While the direct analysis of the technique
appears to be difficult, the study of an idealized model
(the independent insertion channel) yields interesting upper
bounds on synchronization error and frame loss probabili-
ties.

A '32010 implementation of this technique on a binary
channel provides a throughput of over 17 kbit/s; It is felt
that the throughput obtained with this technigue could be
significantly increased by adding a form of memory to the
receiver. The fsynch path" traced by the receiver during‘the
first data block mxght be used in subsequent data blocks to |
help e11m1nate many unllkely paths that the V1terb1 Algo-
rithm would otherwise search. Furthermore, the use of this
synchronization technique with multilevel signals is

expected to provide better error performance than that

obtdined in the binary case. Whatever the application may
be, a special purpose hardware architecture would provide

much higher throughput than that obtained with the '32010.

w ' ‘ Bibliography

[1] H. Hoeve, et al, "Error correction and concealment in
the compact disk system,” PhTllIps Techhical Review,
vol. 40, pp. 166-172, 1982. ‘

[2] P. Chen, "The compact disk ROM: how it works,” IEEE
Spectrum, vol. 23, no. 4, pp. 44749, 1986.

"[3] E. R. Berlekamp, "Bit-serial Reed-Solomon encoders;”
IEEE Trans. Inform. Theory, vol. 28; pp. 869-874,
1982. '

{4) IEEE Information Theory Group Newslettef,rspfing 1986,
p. 8. ‘

[5] B. C. Mortimer, et al, "A high performance error-
correcting’ scheme for the canadian broadcast Telidon

, system based on Reed-Solomon codes," presented at
Thirteenth Biennial Symposium on Communicat ions,
Kingston, ON, June 2-4%, 1986. ‘

(6] I. S. Reed and G. Solomon, "Polynomial codes over
certain finite fields," J. SIAM, vol. 8, pp.
300-304, 1960.

[7] F. J. MacWilliams and N. J. A. Sloane, The Theory of
Error Correcting Codes. Amsterdam: North-Holland,
1977. '

L4
(8] E. R. Berlekamp, Algebraic Coding Theory. Laguna Hills:
Aegean Park Press, 1984.

[97 D. E. Knuth, The Art of Computer Programming, vol. 2,
Seminumerical Algorithms. Reading: Addison-Wesley,
1981. ‘

[10] N. Patterson, "The algebraic decoding of Goppa codes,”
- 1EEE Trans. Inform. Theory, vol. 21, pp. 203-207,
1975. _

[11) J. L. Massey, "Shift-register synthesié-ﬁnd BCH
decoding," IEEE Trans. Inform. Theory, vol. 15, pp.
122-127, 1968.

[12] C. L. Chen, "High-speed decoding of BCH codes," IEEE
Trans. Inform. Theory, vol. 27, pp. 254-256, 1981.

[13] R. E. Blahut, Theory and Practice of Error Control
Codes. Reading: Addison-Wesley, 1983.

' _ 94 . .

[14]

[15]

[16]

(17]

(18]
[19]
[20]
(21)

[22]
(23]
[24]

[25]
[26]

\o»

(28]
[29]

95

L. R. Welch and R. A, Scholtz, "Continued fractions and
Berlekamp's algorithm," IEEE Trans. Inform. Theory ,
vol. 25, pp. 19-27, 1879.

R. J. McEliece, The Theory of Information and Coding.
Reading: Addison-Wesley, 1977. ’

E. T. Cohen, On the Implementation of Reed-Solomon
Decoders. Ph.D. dissertation, University of
California, Berkeley, 1983.

E. T. Cohen, "Special purpose digital hardware," in The
Impact of Processing Techniques on Communications.
J. K. Skwirzynski, ed. The Netherlands: Martinus
Nijhoff, 1985.

R. E. Blahut, "Algebraic fields, signal processing, and
error control," Proc. IEEE, vol. 73, pp. 874-893,
1985.

J. K. Wolf, "Redundancy, the Discrete Fourier
Transform, and impulse noise cancellation," IJEEE
Trans. Comm., vol. 31, pp. 458-461, 1983.

G. Solomon, "A note on alphabetic codes and fields of
computation,” Inf. and Control, vol. 25, pp.
395-398, 1974.

. R. Morris, "Good FFT software stretches processor
performance,” IEEE Micro, vol, 6, no. 2, pp. 4-5,
1986. T :

TMS32010 User’s Guide. Texas Instruments, 1985.
Motorola Memory Data. Motorola, 1984.

A. Osborne and G. Kane, Osborne 16-Bit Microprocessor
Handbook . Berkeley: Osborne/McGraw-Hill, 1981.

Details on Signal Processing, Texas Instruments, Issue
7, 1986..

"Motorola's sizzling new signal processor,”
Electronics, pp. 30-33, March 10, 1986.

W. 1. Fletche®, An Engineering Approach to Digital
Design. New Jegsey: Prentice—Hall, 1980.

Motorola Schottky TTL Data. Motorola, 1983.
IEEE Transact ions on Communicat ions spegial issue on

synchronization. vol. 28, Aug. 1980.

>

(

[30]

L)

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

J.

96

g

G. Proakis, Digltal Communications. New York:
McGraw-Hill, 1983.

A. Scholtz, "Frame synchronization techniques, " IEEE
Trans. Comm., vol. 28, pp. 1204-1213, 1980.

J. Viterbi and J. K. Omura, Principles of Digital
Communicat ion and Coding. New York: McGraw-Hill,
1979. ‘

. Ungerboeck, "New application for the Viterbi

Algorithm: Carrier phase tracking in synchronous
data transmission systems," in Proc. Nat. Telecomm.
Conf., 1974, pp. 734-738. :

Bishop, Basic Microprocessors and the 6800. New
Jersey: Hayden, 1979.

L. Pickholtz, et al, "Theory of spread-spectrum
communications - a tutorial,"” in Spread-Spectrum
Communicat ions. Cook, et al, ed. New York: IEEE
Press, 1983.

L. Johnson, "Design and hardware implementation of a
versatile transform decoder for Reed-Solomon codes,”
in The Impact of Processing Techniques on
Communicat ions. J. K. Skwirzynski, ed. The
Netherlands: Martinus Nijhoff, 1985.

R. Berlekamp, "The technology of error correcting
codes," Proc. IEEE, vol. 68, pp. 564-593, 1980,

M. Shao, et al, "A VLSI design of a pipelined Reed-
Solomon decoder," IEEE Trans. Computers, vol. 34,
pp. 393-403, 1985.

Peterson, "TMS32010 Hardware Manual,” Technical
Report, U. of A. Department of Electrical
Engineering, 1987.

Deta'ils on Signal Processing, Texas Instruments, Issue

10, 1987,

Appendix 1

Berlekamp's Iterative Algorithm

The following basic result on relatively prime polynom-

ials will prove to be useful:

Claim 1: Let A(z), B(z) be relatively prime polynom-
ials. Suppose A'(z), B'(z) are nonzero polynomials satisfy-
ing

A'(z)B(z) = A(z)B'(z). (1.9)

Then A(z) is a divisor of A'(z), B(z) 1s a divisor of B'(z),
and
max[deg A', deg B'] > max[deg A, deg B]. (1.10)

1{ equality holds in (1.10), then
\
i

deg A = deé A’ aq@ deg B = deg B'.

Proof : Choose polynomials alz), b(z) such that al(z)A(z)
+ b(z)B(z) = 1. Multiplying this equality through by A'(z),

one obtains

Alz)a(z)A'(z) + b(z)a'(z)B(z) = A'(z),

implying
97

Alz)[a(z)A'(z) + b(z)B'(2)] = A'(2),
N ‘ A
using (1.9). Hence, A(z) is a divisor of A'(z). The same
reasoning shows that B(z) is a divisor of B'(z). Conse-

xg“quentiy,

deg A < deg A',
and. ;

deg B < deg B'. s
Furthermore, (1.9) implies‘ |

deg A' - deg A = deg B' - deg B. .= (1.12)

_*grom*(1.12}, if deg B = deg B', thenideg A = deg A','énd
equality holds in (1.10). The proof will be. completed by
éhéW'ng thaf the condition deg B 4 deg B' implies strict
-ineQ§ality in (1.i0). .

Suppose, “then, that deg B < deg B'. By (1.12),

"deg A = [deg B - deg B'] + dég_ﬁi,€ deg A'.
Thus, deg B < deg B' and deg A < deg A', implying strict

inequality in (1.10). . ' o i

2 ’ Thme L
s

‘The next result is a variation of [103Theorémf1].

F such tH%¥ i(O) = 0. Suppose polynomiaZf o(z) and w(z) over

o 99
" Claim 2:_Ee£ S(z) be a generating function over a field

. F satisfy

(1) (1 + S)o = w mod zP,

(2) o(0) = 1,
(3) (0w) = 1,

for some positive integer p.

————

. A

Suppose nonzero polynomials 0'(z), w'(e) can be found (by
whatever means possible) such that

——

(1ff (1 + S)o' = w' mod zP,
(2') o' (0) = 1,
(3') max{deg o', deg w'] < max(deg o, deg w].

N

Then if max[deg o, deg w] < p/2, we have o' =0 and o' = w.

- 11

el

T

'Proof : Multiplying (1) by o' gives ‘ /
0'(1 + S)o = 0'w mod-zp.

Applying (1'), gpis becomés
ow' = ¢'w moa zP.

Now»

Y
v

o ; 100

AN
"deq o + deg ' $ 2(max[deg o, deg w]) < p,
and

deg o' + deg w < 2(max[deg o, deg w]}) < p.
Hence, the pr?vious mod zP equality. is a true equality:

By Claim 1 and (3'), © is-a divisor of o' and deg o = deg -

o'. It follows that o' is a field multiple of o. By (2) and

(2'), this field multiple must be 1, i@plying o' = 0.
Puttﬁng this result into the equality ow' = 0'w givés.wﬂg:'
w. This completes the proof of Claim 2. ‘v'ff'p,} N |

. v
suppose S(z), o(z), w(z), and p are as described in the
first part of Claim 2. We now construct an algorithm that,
when applied to S(z), produces a sequence of polynomials

(z) such

oé(z), wo(z), 01(2), w1(i)f Coe e Oy b-1

that for each 0.2 k < p-1:

(a) (1 + S)oy, = w mod zk+1,

> (b) ok(O) = 1, N
(c) max[deg‘ok, deg wk] < max[deg o, deg wl.
: Y
1f max[deg o, deg w] < p/2, Claim 2 implies op_1(z) = o0t(Z) ——

and wp—1(2) = w(z).

. suppose that

\

Unt i1 further notice, let s(z), o(z), w(z), and p be as
described in the first part of Claim 2, andilet k be an

integer satisfying 0 < k < p-1.

Suppose ok(z) and wk(z),Satisfy (a) and (b). Also

. (d) deg'wk?z) < k.
Then ’

(1 + S)ok ='wk + Akzkr1 mod zk+2

| 14
) .. - k+1
Ak being the coefficient of z

I1f we can find polynomials Tk(Z) and yk(z) such that

»

(e) (1 + S)Tk =y, t z* mod zk+1

!

(f) deg v, < k,

then defining

9y —‘Akzrk, (1.

- ———

Tx+1

Oger T Ok T BRETk ’ -

(a), (b), and (d) are satisfied with k replaced by k+I1

in the proéuct (1 + S)ak

101

[8,p.181]. Thus, (1.13) and (1.14) can be used to generate

polynomials oo(z), wo(z), 01(2), w1(z), (z),

! ap_1

w (25 such that (a) and (b) hold for each value of k. We

p-1
next show how condition (c) can also ‘be guaranteed} After

102 -

this, the actual choice of Ty and i will be discussed.

The gcd (ak,wk) of o, and w, satisfies (ak,wk)(O) # 0
because it is a divisor of o, and ok(O) = 1. Multiplying
both sides of (a) by the generating function 1/(ak,wk), we
obtain |

(1 + S)ok‘ = wk' mod zk+1,

where ak'.= ak/(ak,wk), and wk' = wk/(ok,wk). Hence, if)
and w, are not relatively prime,‘okL7 wk‘ are lower degfee
solutions of "(a). These can be multipiieq by some field
element (if necessary) to get ok'(O) = 1, Then the primed
polynomials satisfy (a) and (b) and have lower degree than
the original polynomials.

In view of condition (c), we are interested in finding
solytions o) and w, of (a) having degrees.as'small as possi-
ble. Hence, it would be desirable to have 0 and Wy rela-
tively prime in the first place. The next claim gives a

‘simple condition under which (ok,wk) = 1.

\ , o .
~Claim 3: Suppose 0y, W, Ty, and v, satisfy (a), (b),

(d), (e), and (f). Then if

deg W, * deg Tk < Kk,
and

deg o, * deg Ty < k,

rd

we have (ok,wk) = 1. -

- 103

Proof : Multiplying'(e),by oy and using (a) gives

k k+1
T @y = ok(yk + z°) mod 2z .
By (b),
ak(z)zk = zk mod zk+1,
implying :
k +1
9% = TxYk +.2 mod 2z

By the hypotheses.of the claim, deg 7 ,wy <"k and deg 0,7, 3
k. Hence, the previous mod zk+1 equality is an actual equal-

ity:

According to this formula, any common monic divisor of o,
. ,'*J

R k . . P .

and Wy must be a dpv1sor of z". Hence, this divisor 1s a

power of z. Since

ok(O) # 0, the divisor must be zO = 1,
implying that (okfwk) = 1. This proves Claim 3. | |

/

By Claim 3; if there is an integer D(k). such that

/
/
/
/

/ 0 < D(k) < Kk, (1.15)
jmax[degvok, deg wk] < D(k), .- (1.16)
 fmax[deg o deg yk] < k-D(k), (1.17)

S

then xok,wk) = 1, as desired. The exl;&gﬂce of such a D(k)

also implies the following result.-

104

Claim 4: Suppose (a), (b), (d), (e), and (f) hold and *

suppose polynomials o¥(z), w¥(z) satisfy

(1 + s)o* = w* mod zk+1, ' (1.18)

o*(0) = 1.

Then if (1.15), (1.16), and (1.17) hold, we have

max[deg a*, deg w¥] 2 Bé&).

1

Proof : Multiplying (e) by o¥ and using (1.18) gives

yg + zk) mod zk+1,
= o*yk + zk mod zk+1.

* *(
‘rkw = 0

% * + . . R
Hence, T,w =~ O yk’= z 1 which implies

k

, . .
Sy : deg{rkw -0 yk} > k.

," It is clear that deg{rkw* - o*yk} < max[deg rkw*, deg o*yk]

< k - D(k) + maxldeg o, deg w*1. Hence,

k < k - D(k) + max[deg o*J deg w1,
implying

D(k) s max[deg o, deg w¥]. : |

105

From (a), we can take of = L Wt o= wk.\iéy(:ENS),
.,
i

(1.16), and (1.17) hold, Claim 4 and (1.16) imply that

max[deg o, , deg wk] = D(k). (1.19)
We can also take 0¥ = o, ¥ = w. 1f (1.15), (1.16), and

(1.17) hold, then Claim 4 implies

max[deg o, deg wk] = D(k) < max[deg o, deg w].

-—

Hence, condition (c) is satisfied.

Summarizing the previous results,
Suppose 0y, W Ty y;'sat}gfy (a), (b), (d), (e),
and (f). If there is ah integer D(k) such that
(1.15), (1.16), and (1.17) hold, then oy and wy are
relatively prime, (ff19)‘holds, and condition (c) is

satisfied.

It is easy to construct o,, wy, Tgr Ygo and D(0) such that
(a), (b), (@), (e), (£), (1.15), (1.16), and (1.17) hold for
k = 0:

ao(z) = 1, wo(z)'= 1, TO(Z) =1, yo(z) = 0, D(0) = 0.

(1.13) and (1.14) show how to construct o, and Wy from

Opr Wpr Tyor and Yy We now define

106

.D(k+1) = D(k),
(z)

"

Tk+1 zry (2],

7k+1(2) = ZYR(Z),

v

when A, = 0 or D(k) (k+1)/2, and define
D(k+1) = k+1-D(k),
(z)

(z) = A_1 (z);

"
>

=
Q

-
N
S

Tk+1

Ti+1
when 4, # 0 and D(k) < (k+1)/2. It. is straightforward to
verify that if (a), (b), (@), (e), (£), (1.15), (1.16), and
(1.17) hold for k, then they also hold with Kk replaced by

k+1. Hence, and w, 4. are relatively prime and condition

Tg+1
L,(c) holds with k replaced by k+1.

l}

Thls iterative constructlon is summarized in Berle-

Lamp's Iterative Algorithm, presented in 172.3.

Appendix 2

Chen's exit condition

IA

Suppose e t errors occur. Claim 2 of Appendix | .

implies Orve = O and Wi ye = W, SO by (1.19),
D(t+e) = max{deg o, , deg wt+e]
= max[deg o, deg w]
= e. — t

in other words, D{(k)=k-t for k=t+e. Conversely, if D(k)=k~t\
for some t S k £ 2t, then for all k' > k, D(k')=D(k) (Other-
wise, since the D(i)'s form a nondecreasing sequence, there
exists k' > k such that D(k) = D(k'-1) < D(k'). This implies

D(k")

k'-D(k'-1) > k-D(k) = t. However, Claim 4 implies
D(k') < maxldeg o, deg w] = e < t. This is a contradiction).
In particular,

D(k) D(2t)

= max[deg o, , deg th]

= max[deg o, deg w]

107

- , 108
implying that k-t=e, or k=t+te.

This argument shows that the replacement of the origi-

»

nal exit condition

"Tf k 2t, stop"

A

in Berlekamp's Iterative Algorithm with the exit condition

"1f Q(k) = k-t or if k = 2t, -stop”

will ensure the correction of any pattern of up to t errors

and an exit after exactly t+te iterations of the algorithm,

where e is the actual number of errors.

«

Appendix 3

Proof of the aliasing property

Consider an error polynomial of the form

where e < t. The first t+e syndromes corresponding to this

error pattern are given by

f; =

€ ki
g = I a My 1 € k S t+e.
k m=1 m

Select 0 < j0 < n-1 such that jO * o1 for any ' s m S e,

< n-1 such that jk 3

Then select 0 < J; < Jy <0 e S I +e

for any | € k < t+e. The t+e by t+e matrix

Jo

kim
(o]1Sk,mst+e

is nonsingular [13,Theorem 7.2.1]. Hence, there is a unique

vector {21, Lorenns Zt+e} such that

" t+e .
S, - K30 JTr g KImg 1 s ko< tee.
m= 1 m v

But then {
o / t+te .
S, = L KImz 1< k< tee,
m=0 m
'\
109

110

where 2, = 1. It follows that the error polynomial

E'(x) = xjo + lej' +

jt+e
. .t Zt+ex _

has the same first t+e syndromes as E(x). Obviously E'(x) #

E(x) and E'(x) has at most t+e+]

nonzero coefficients.

Appendix 4

Oon the size of the stacks

It wiTT now be shown that p(k)+D(k) < 2t+} and that

p(k)+k-D(k) < 2t+1, as claimed in 2.2.3.

Claim: (a) Let 0 < k < 2t, It Ak # 0 and D(k) <«
(k+1)/2, then

max[deg z7,, deg zYk] = D(k+1).

(b) max[deg zp(k)r

(c) p(k)+D(k) < 2t+1,

(@) p(k)+k-D(k) = 2t+1.

Proof :

(a): From (1.13), (1.14), and (1.19) of Apggpdix 1,

= 0

Q
1

k+1 kT BTy

kel T 9% T Bk
and
max[deg o, deg wk] = D(k)

< D(k+1) = max[deg LAY deg wk+1]‘

Property/(a) follows immediately.

1

¢V'<_ : /{

112

(b): The stated result is obviously true for k = 0. Suppose

it holds for 0 < k < 2t.

o
=0 or D(k) 2 (k¥1)/2, then

zp(k+1)r b zp(k)—121 = zp(k)r

k+1 | k k*
.Similarly; zp(kH)Yk+1 = ip(k)ykivﬂence,
- k+1) 2 k+1
mag[deg'zp(1)Tk+1, deg zp()7k+1]
= max[deg zp(k)rk, deg zp(k)yk]
P ‘ ! .

< 2t, '
by the inductivechypothesis. &

.

(ii) 1f 5, # 0 and D(k) < (k+1)/2, then by (a),
max [deg zp(k)rk, deg zp(ET;;E—:—p(k)-1+D(k+1)f

n

Hence, the fnductive hypothesis implies

p(k)=1+D(k+1) < 2t.

| Now
_p(k+1) _-1_plk+1)
zv T+l = Ak z qk

and

! deo

(2.

113

‘ zp(k+1) . A—1zp(k+1)w

T+ k k'

A
implying

" e
R

ey

plk#1) p(k+1)
max[deg z | T+l deg z 7k+1]

~.
LI A
i

= p(k+1)"+ max[deg Oy deg wk] .

= p(k)+D(k) | -
< p(k)+D(k+1)-1

< 2t,

where the last ‘inequality follows from (2.1). This proves

(b) by induction.

(cL.and (d): Both of these inequalities are obviously true

for k = 0., Suppose both hold for 0 < k < 2t.

(i) 1f A, = 0 or D(k) 2 (k+1)/2, then

p(k+1)+ﬁ(k+1) p(k)—1+D(k) < 2t+1, .

»~~

and

plk+1)+k+1-D(k+1)

p(k)-1+k+1-D(k) < 2t+1,
by the inductive hypothesis.

(ii) 1f A, # O and D(k) < (k+1)/2, then

—_—

114

+

p(k+1)+k+1-D(k+1)

p(k+1)+D(k)
- p(k)+D(k) < 2t+1.

Furthermore,

o(k+1)+D(k+1) = p(k)+D(k+1) L

= max{deg ngk)rk, deg zp(k)yk] + 1 < 2t+1,

o

where the second equality follows from (a) and the subse-

quent inequality follows from (b). This proves (c) and (d)

M

by induction and completes the -proof of the claim. B |

Appendix 5

A bound on, synch error probability

Suppose 1t condition (1) of 3.1.2 holds. Since

)

*
[Km,dm] = m], the sequence

* * * ‘
.{[KO,JO] A SIS R [Km,Jm] A 6 ST S PR

. . * .
is a path. Since [Km+j’Jm+j] _‘[Km+j'Jm+j] , it has the same
endpoint as the path v
¥ * %
([Ry,3p) (K31, ey [Km+j,Jm+j] }.

0

Let'Yi be the RV stored at [Ki'Ji] and let Y: be the RV

stored at [Ki,Ji]*. Since the latter path is the survivor

’

with endpoint [K J 1%, the claim following the Viterbi

m+3 " Ime)

Algorithm in 3.1.1 implies that the metric

D n pet]s) ¢ "E 1n p(¥%]s,) + (mritTIR
n Y.) F n Y:[{S.) + (m+3+
i=0 Py i=m+ 1 PPTi1%y)
qa-:\
‘g:?};
of the first path does not exceed the metric.
m+j 1 x 1)
. . +
iz=:0 n p(Y;[s;) + (m+J+1)R
N«“.

of the second one. Hence, either

15

116

m+j-1 0 m+j-1 *)
I 1 YY|s.) < I 1n p(Y{]|S;),
i=m+1 n P lsy) i=m+1 p(Y;]s;
or
m - * : .
iE In pl¥ [s;) = -=,
or ‘
- . o
1n p(Ym+j|Sm+j) = 1n p(Ym+j|Sm+j) = -,

Since 1n p(Y?ISi) = -» with probability zero for all i and
, _
since

x m 0
ln_p(YiISi)‘Z iEoln p(Y,|s;)

nt™3
o

J i
by the claim following the Viterbi Algorithm, the latter two

events have probability zero.
. ‘
Applying the Chernoff bound [32,p.122], the probability

m+j-1 0 m+3j-1 "
pr{ & 1n p(¥Y]s.) < T 1n p(¥. |S.)]
i=m+1 1t i=m+1 1t

of the first event is upper bounded by

i

m+j—1 = « m+3j-1 0
E exp »{ L In p(Y:|s,) - & 1n p(Yy]s.)}
— i=m+1 1h1 i=m+1 17
!
m+ -1 . 0
- %
= E i=2+1 [p(Yilsi)/p(Yi|Si)] ,

where E denotes expectation. This expectation is given by

117

' o
m+j-1
s, Y/ Y 1=m
m+j-1 ‘
l [p(yf|5->/p(y9|s.)]h, (3.6)
i=m+1 11 1 1 ’

I3
where the sum varies over all possible elements

s = (Sm+1""’sm+j—1)'
* _ * * |
Y - ym+1l"°rym+j_1 '

0 0

0 .
y = (ym+1lu--,ym+j__1)

of FxFx...xF = FI71,
By hypothesis, no Yz RV coincides with a Y? RV if

m+1 € i,1 € m+j-1. Hence,

m+3j-1 . ‘ 0 0
pro 0 (85=sy YTy ¥i=y;)
m+3j-1 £ x 0 0

= I privymyylPris =s;, ¥i=y;}
A}
. m+j-1 * ' 0
= i=2+1 p(yi)s(si)p(yilsi),

where p(y) = L p(y|x)D(x). (3.6) can then be written as
- x€F '

\N// - 118

m+j-1

% * 0 Y2
L 0 i=g+1 p(yi)S(si)[p(yilsi)p(yilsi)]
s$,Y,Y
m+j -1 * < * 0 Y2

i=m+ 1 s, €F y:EF y?GF

-
\4 - Zj_-"
where
z= £ S(s) £ L p(y1)[p(y1|s)p<y2|s>]""z. (3.7)
s€F y1€F'y26F)
Summarizing,
m+3j-1 0 m+j-1 N —_
pr{ £ 1n p(¥Y|s,) < L 1n p(Y |S)} 237,
i=m+1 101 i=m+1 1t

Now there are at most 2371 possible choices for the set of

* * * : j-1
RVs Ym+1' Ym+2’ ooy Ym+j-1 because there are at most.2

: . . b 3
possible choicés for the set of nodes [Km+1’Jm+1] , ey

[K 1*. Applying the union bound [32,p.61]), we

m+j=17Im+3-1
_conc}ude that the probability that the path produced by the
Viterbi Algorithm diverges from the correcf path at node m
and remerges at node m+j is upper bounded by 23" 15371,

One more application of the union bound shows that the
probability that condition (1) holds is upper boﬁnded by
k=1 N—ﬁ

- oz (22)37
m=0 j=k+1-m

1

= 2z<1—(2z)f)(1-(2z)N'k)/(1—22)2. (3.8)

119

Now suppose that condition (2) of 3.1.2 holds. The
survivor with endpoint [KN,JN] must have length N. If it had
any other length, this would contradict the hypothesis that
no path slips or advances by n*1 samples relative to the
cofrect path. Hence,_this‘survivor and its metri;}will be
saved by the stopping procedure at the end of th; algorithm.
Write this survivor as

* X

TCPPEIS LD U U0 L PRPUPRR S NP S b B (3.9)

N’"N

By hypothesis,
Hence, the sequence

- * * *
{[Ko‘y.Jo] ' [K1,J1] P ey [Kmer] 12 [Km+1,Jm+1]r o 00y

is a length N_path ending at [KN,JN]** = [K J. By the

N’JN
claim following the Viterbi Algorithm, the metric of this

path does not exceed the metric of the survivor (3.9). In
turn, the metric of the survivor (3.9) does not exceed the
metric of the survivor

/

—~

* * X
([Rg, g%, (K307 e DK O 1T

We conclude that

120

 np(r*|s) + L 1 pyds) + (N4DR
n : : n . : +
i=0 PHEi1ey i=m+1 PIi1%4 "

N *
Z 1n p(Y.|s;) + (N+1)R,

m
s I . .
= 1=m+1 1

*
i In p(Y;[S;) +

0

implying that

0 *
1=§+%n p(Y;|s;) < =g+%n p(Y;[s;),
or
m *
iz=:01n p(y, |s;) = -=

As before, the second of these events has probability zero.
Applying the Chernoff bound to the first event, then apply-
ing union bounds as before, the probability that condition
(2) holds is upper bounded by
k-1

r (22
m=0

)N_m

= (2z)N”k+1(1-<2z)k)/(1-2z). (3.10)

Appendix 6

A bound on frame loss probability

Recalling the notation of 3.1.4, we write the survivor

S
{[KO,JO] , [K

s s

1IJ1] ! * vy [Kp+1lJp+_1] }‘
. S _

By hypothesis, [Kp+1'Jp+1] = [Kp,Jp].

The survivor P' ending at memory location [Kp—1’Jp—1]
must have length p-1. Otherwise, the first frame loss would
have occurred at [Kp;1,Jp_1] or at an earlier memory loca-
tion. Let g bz the largest integer such that [Kq,Jq]S =

K _,J_]. Then .
(q q]

S S
(K 9p17, (K347 ey

S -
[Kq,Jq] , [Kq+1’Jq+1]’ cey [Kp—J'Jp-1]} (3.11)

is a path.

Let Y? be the RV stored at [Ki,Ji]S, Y? the RV stored
at [Ki'Ji]' By the claim following the Viterbi Algorithm,
the metric of the path (3.11) is no larger than the metric
of P'. In turn, the metric oiﬁP'*[Kp,Jp] is no larger than
the metric of P. Otherwise, P'=*[K ,Jp] wquld be the survivor

1%

ending at [Kp,Jp] instead of P. Putting these two inequali-

ties together gives:

121

122

9 s P 0
£ 1n p(¥S|s.) + _ I ln p(y:|s,) + (p*r1)R
1=0 1 1 i=q+1 1 1
p+1 s
< L 1n p(Y7|S;) + (p*+2)R,
i=0 R .
implying
p 0 p+1 . s
L 1n p(Y?]s,) s & 1n p(¥7[s;) *+ R,
i=q+1 17 i=qt1 1701
or :
9 S
i2=:Oln p(YiISi) = -,
By the usual argument, the second .! these events has proba-

bility zero. The first event impi.~n

S
L 1n p(¥lls;) < I ln p(Y7[sy) + R,
1=q+1 1 1 1=q+1 1l 1
since 1ln p(Yg+1|Si) < 0. Applying the Chernoff bound as in
v ooy

Appendix 5, the probability

P 0 P s
pr{ L ln p(Y']S,) < I ln p(¥7|s.) + R}
3 1 1 = +1 1 1l .

i=q+1 . 1 i=q
Jvﬂ -
is upper bounded by
e‘/szp—q)
where Z is given in (3.7) of Appendix 5. . Ly

There are at most 2P 4 possible choices for the path
.segment

S S
{[Kq+]qu+1] [L A A [Kper] }I

123

so there are at most 2P™@ hoices for the set of RVs Y3+1,
)

“:i re, since this path segment must slip by

> n+1 or q € p-n-1. Applying these results and the union

bound,
Ps(p) = Pr{The first frame loss is a frame slip at [Kp,Jp]l
-n-1
FTp gPTdRgP,
q=0
Setting j = p-g, the previous sum can be rewritten as
1, p 5
eR oz (22))
j=n+1
< e® © (22)3
J:n+1

whenever 2Z < 1,

