
University of Alberta

U s i n g A r t i f i c i a l I n t e l l i g e n c e T e c h n i q u e s t o A u t o m a t e S e w e r S y s t e m P l a n n i n g

by

David John O ’Connell

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-33318-1
Our file Notre reference
ISBN: 978-0-494-33318-1

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

This thesis explores the use of computing science algorithms in sewer system automation. Related

research can be separated into two subproblems; design and layout. Design determines pipe proper

ties such as size, depth and slope. Sewer system layout specifies the topology of the pipe network.

Many layout techniques consider only high-level connectivity between key neighborhood points.

This thesis improves the automated layout process by finding detailed pipe and manhole positions.

A set of primitive algorithms for placing a pipeline between two fixed points is developed. These

primitive algorithms are used to develop two algorithms to minimize the entire neighborhood cost.

The first uses a local greedy optimization heuristic to quickly generate high quality solutions. A

second algorithm implements a branch-and-bound search to generate the best layout based on a set

of fixed points. These algorithms are validated within a complete sewer planning prototype using a

third party design module.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 In troduction and M otivation 1
1.1 Problem D e fin itio n ... 1
1.2 Benefits of A u tom ation ... 5
1.3 Challenges of Automation ... 5
1.4 Research C ontribu tions... 6

1.5 Outline of T h e s i s ... 7

2 Engineering Basics, Related W ork and R esearch Context 8

2.1 Overview of Sewer System P la n n in g .. 8

2.1.1 The Engineering P ro c e s s .. 9
2.2 Related W o r k ... 11

2.2.1 Sewer System O p tim iz a tio n ... 11
2.2.2 Design O p tim iza tion ... 13
2.2.3 Edge Selection O ptim ization ... 17
2.2.4 Multi-Objective Sewer System O p tim iz a tio n ... 24

2.3 Integrating Manhole Placement into Sewer System P la n n in g 27
2.4 C o n c lu s io n ... 29

3 R epresenting Neighborhoods using M ultigraphs 30
3.1 Dealing with Raw D a t a .. 30
3.2 Inferring the Multi graph S tru c tu re .. 31
3.3 Cut Location and the Expanded Graph S tructu re .. 33
3.4 C o n c lu s io n ... 35

4 Local Placem ent 36
4.1 Problem D e fin itio n ... 36
4.2 Control Point P la c e m e n t... 37
4.3 Frontier P la c e m e n t... 40
4.4 Local Placement Tests ... 41
4.5 Overview of Computational C o m p lex ity ... 46
4.6 C o n c lu s io n .. 48

5 G lobal M anhole Placem ent 49
5.1 Modeling the Problem .. 49
5.2 Definitions and Basic Functions .. 51
5.3 Traversing the Candidate Manhole Space ... 54

5.3.1 Greedy Sequential Manhole P la c e m e n t ... 54
5.3.2 Branch-and-Bound P la c e m e n t.. 56

5.4 R esu lts .. 61
5.4.1 Solution Q u a l i t y ... 61
5.4.2 Computation T i m e .. 6 8
5.4.3 Branch-and-Bound Algorithm Effectiveness.. 70
5.4.4 Branch-and-Bound and Intersection O rd e rin g ... 74

5.5 Overview of Computational C o m p lex ity .. 77
5.5.1 Future Work .. 78

5.6 C o n c lu s io n .. 79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Sewer Planner Prototype 82
6.1 System Architecture.. 82
6.2 Edge Selection .. 83
6.3 Design S o lv e r .. 84
6.4 Algorithm T esting ... 89

6.4.1 Solver Computation T im e s ... 89
6.4.2 Solution Quality .. 91

6.5 D iscussion.. 94
6 . 6 Future Considerations.. 95
6.7 Conclusion ... 96

7 Conclusion and Limitations 98

Bibliography 102

A Frontier Placement Optimality 104

B Local Placement Test Roads Suite 108

C Local Placement Test Suite Results 110

D Commercial Pipe Sizes and Costs 112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 Example of a two-dimensional sewer system la y o u t .. 2
1.2 Manholes labels and positions for sample sewer p l a n ... 3
1.3 Information for each pipe in the sewer s y s te m ... 4

2.1 Sample neighborhood.. 12
2.2 Multigraph corresponding to sample neighborhood in Figure 2 . 1 12
2.3 Example topology of a sewer sy s te m ... 12
2.4 Pipe layout between two fixed p o in ts ... 13
2.5 a) Example input flow b) Flow with manholes c o in c id in g ... 16
2.6 Swapping the status of branches A and B ... 22
2.7 Four possible edge s t a t e s ... 24
2.8 Typical sewer planner a rc h ite c tu re .. 28
2.9 Proposed sewer planner a rc h ite c tu re ... 28

3.1 Data format for line and arc geometric primitives respectively...................................... 31
3.2 Patterns for cul-de-sacs, three-way and four-way intersections 31
3.3 Sample neighborhood.. 32
3.4 Neighborhood graph structure inferred from the neighborhood in Figure 3.3 32
3.5 Simple neighborhood multigraph for four road l o o p .. 34
3.6 Expanded neighborhood graph for four road l o o p .. 34
3.7 Spanning tree in expanded graph representing a complete edge se le c tio n 35

4.1 Pseudo-code for function placing the largest possible pipe starting at the point cur-
rentm anhole ... 37

4.2 Pseudo-code for function to place a pipeline between two points where the place
ment is guided by control p o i n t s .. 38

4.3 Control points for centerline placement .. 39
4.4 Control points for curbpoint placem ent.. 40
4.5 Pseudo-code for main greedy doubling fu n c tio n ... 41
4.6 Pseudo-code for recursive greedy doubling fu n c tio n .. 42
4.7 Example road segment with five frontiers ... 42
4.8 Real neighborhood straight s t r e tc h .. 43
4.9 Number of manholes in placements for Real Straight R o a d 43
4.10 Test Road B .. 44
4.11 Number of manholes in placements for Test Road B .. 44
4.12 Test Road D .. 45
4.13 Layout computation times in seconds for Test Road D ... 45
4.14 Frontier sampling e x a m p le ... 48

5.1 Fixed nodes and potential co n n ec tio n s ... 50
5.2 Pseudo-code for function to estimate an upper bound on the cost for a ro a d 53
5.3 Pseudo-code for the greedy sequential global placement a lg o r ith m 55
5.4 Pseudo-code for branch-and-bound global placement algorithm 56
5.5 Pseudo-code for the recursive function implementing the branch-and-bound global

placement algorithm .. 57
5.6 Example domination for intersection 0 ... 58
5.7 Domination example where C2 dominates ci and C3 .. 59
5.8 Domination example where the choice of candidate manhole is inconsequential . . 59
5.9 Sub-graph example: Removing R 5 on the left creates two sub-graphs to be solved,

shown on the r ig h t... 60
5.10 Component breakdown for test data ... 61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.11 Neighborhood A .. 62
5.12 N eighborhoodB ... 63
5.13 N eighborhoodC ... 64
5.14 Neighborhood C 2 3 . A subset of neighborhood C with 23 in te rsec tio n s 65
5.15 Number of manholes in layout for Neighborhood A where Random Fixed is aver

aged over twenty-five runs and GS-Random is the lowest cost over twenty-five runs 66
5.16 Number of manholes in layout for Neighborhood B where Random Fixed is aver

aged over twenty-five runs and GS-Random is the lowest cost over twenty-five runs. 67
5.17 Number of manholes in layout for Neighborhood C 2 3 where Random Fixed is av

eraged over twenty-five runs and GS-Random is the lowest cost over twenty-five
runs.. 67

5.18 Pre-processing time + Search time results in seconds for Neighborhood B 68
5.19 Pre-processing time + Search time results in seconds for Neighborhood C 23 69
5.20 Pre-processing time + Search time results in seconds for Neighborhood C 69
5.21 Full enumeration time and tree size for each test neighborhood...................... 71
5.22 Number of nodes searched for branch-and-bound and enhanced branch-and-bound

for Neighborhood B 72
5.23 Pre-processing time + Search time results in seconds for Neighborhood B 72
5.24 Number of nodes searched for branch-and-bound and enhanced branch-and-bound

for Neighborhood C 23 ... 73
5.25 Pre-Processing time + Search time results in seconds for Neighborhood C23 73
5.26 Instances solved using branch-and-bound for random intersection o rdering 75
5.27 Instances solved using domination enhanced branch-and-bound for random inter

section o rd e rin g .. 75
5.28 Example domination for intersection 0 ... 79

6.1 Proposed sewer planner a rc h ite c tu re .. 83
6.2 Test Neighborhood D ... 90
6.3 Discrete solver solution times in seconds.. 90
6.4 Relaxed solver solution times in seco n d s.. 90
6.5 Sewer plan costs for neighborhood D ... 92
6.6 Minimum cost network topology for Neighborhood D ... 93
6.7 Maximum cost network topology for Neighborhood D ... 93
6.8 Sewer plan costs for Neighborhood B ... 94
6.9 Sewer plan costs for Neighborhood C ... 94

A .l Interiors and Frontiers between two p o in ts ... 105
A.2 Path between two points, where each intermediate point lies on a fron tier............... 105

B .l Test Road A .. 108
B.2 Test Road B .. 108
B.3 Test Road C .. 109
B.4 Test Road D .. 109
B.5 Real neighborhood straight s t r e tc h .. 109

C. 1 Number of manholes in placements for Test Road A .. 110
C.2 Number of manholes in placements for Test Road B .. 110
C.3 Number of manholes in placements for Test Road C .. I l l
C.4 Number of manholes in placements for Real Straight R o a d I l l
C.5 Layout computation times in seconds for Test Road C .. I l l

D. 1 Commercial pipe diameters with per unit c o s t .. 112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction and Motivation

With the progression of artificial intelligence research, many tasks requiring skilled human expertise

can now be automated. As well, many tasks can be formulated as optimization problems, often

leading to solutions with costs lower than those produced by human experts. This thesis examines

the application of such techniques to the sewer system planning process.

1.1 Problem Definition

A sewer is a subterranean pipe system. Each pipeline must have manholes either at a specified max

imum distance, or at points where the pipeline changes direction. The sewer system must provide

a path to convey waste or storm water from each manhole to a collection point, referred to as an

outfall. The goal of a sewer system is to convey sewage for a set o f clients.

This problem assumes that each client will be serviced as long as there is a pipeline along the

corridor of each road. For sanitary and storm sewers this is a reasonable assumption. Residential

and industrial sites are typically adjacent to a roadway. Therefore, each of these potential clients

will be able to access the sewer system in the adjacent roadways. In addition, storm water will need

to be drained from each of these roadways, necessitating a storm sewer system along the roads.

Sewer plans are required to have no loops. That is, for each manhole there is only one path to

the outfall. In this thesis, loops will be removed by introducing small gaps, known as cuts, into the

pipeline.

The inputs for the planning problem are:

1. Lines and arcs used for displaying the neighborhood. These delimit the curbs of the roads and

define a corridor for the sewer system.

2. Hydrological information defining the input of sewage for the system.

3. A set of commercially available pipe sizes including costs per unit of length.

4. Maximum distance between manholes in a pipeline.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Construction costs, including factors such as manholes and ground excavation.

A complete sewer plan defines the position of each pipe and manhole. For each pipe, the plan

also defines a diameter, and the upstream and downstream heights specifying how the pipe is buried.

The position of pipes and manholes may be displayed within the two-dimensional neighborhood

map. An example of the two-dimensional layout of pipes and manholes for a neighborhood is

shown in Figure 1.1. In this figure, the dashed lines represent pipelines and the dots manholes. Each

pipe in the figure contains an arrow indicating the direction of flow. Cuts can be seen as gaps at the

end of two of the roads in this figure.

(- 5 60 , 1 0)

■ » -

(4 6 0 , - 3 1 5)

Figure 1.1: Example of a two-dimensional sewer system layout

The complete sewer system plan is typically represented as a table. A complete sewer plan

corresponding to the layout shown in Figure 1.1 is shown in Figures 1.2 and 1.3. For each manhole

in the sewer system, Figure 1.2 specifies the (x , y , z) coordinates and a label. To provide a frame

of reference for the manhole positions in this example, the top left and bottom right coordinates are

labeled in Figure 1.1. Figure 1.3 defines the pipes of the sewer system in terms of the manhole labels

from Figure 1.2.

In this thesis, sewer plans are separated into two components. The layout will refer to the position

of pipes and manholes in the two-dimensional neighborhood map. The neighborhood layout is

shown in Figure 1.1. The design of a sewer will refer to the diameter and upstream and downstream

heights of each pipe. In the solution for the example neighborhood, these quantities are presented in

Figures 1.2 and 1.3.

In addition to automation, cost minimization is another goal of the planning process. The quality

of a sewer plan will be based on its associated costs. The algorithms presented in this thesis will

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Label X y z

1 -549.74 -137.57 0.00
2 -546.62 -287.54 0.00
3 -537.54 -53.38 0.00
4 -449.97 -299.22 0.00
5 -387.57 -50.26 0.00
6 -320.03 -295.17 0.00
7 -300.04 -294.54 0.00
8 -300.00 -144.54 0.00
9 -300.00 -55.48 0.00
10 -280.05 -295.17 0.00
11 -150.11 -299.22 0.00
12 -150.07 -50.79 0.00
13 -50.04 -44.54 0.00
14 -30.66 -0.65 0.00
15 -0.11 -299.89 0.00
16 20.00 0.000 0.00
17 99.89 -49.22 0.00
18 149.89 -299.98 0.00
19 199.96 -294.54 0.00
20 199.00 -144.54 0.00
21 199.00 -55.48 0.00
22 219.95 -295.17 0.00
23 287.39 -50.25 0.00
24 349.89 -299.22 0.00
25 437.36 -53.27 0.00
26 446.45 -287.84 0.00
27 449.72 -137.88 0.00

Figure 1.2: Manholes labels and positions for sample sewer plan

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Upstream manhole Downstream manhole Upstream height Downstream height Diameter

2 1 -2.23 -3.306 1.20
1 3 -3.38 -4.22 1.20
4 2 -1.38 -2.15 1.05
3 5 -4.30 -6.36 1.20
6 4 0.00 -1.30 0.83
5 9 -6.44 -7.91 1.20
7 8 0.00 -4.26 0.68
8 9 -4.34 -7.06 0.83
9 12 -7.99 -10.81 1.35
10 11 0.00 -1.31 0.83
11 15 -1.38 -2.57 1.05
12 13 -10.88 -12.96 1.35
13 14 -13.71 -16.93 1.50
17 13 -10.19 -13.64 1.50
14 16 -17.00 -20.61 1.50
15 18 -2.644 -3.62 1.20
21 17 -7.99 -10.12 1.50
18 19 -3.69 -4.15 1.20
19 20 -4.22 -6.18 1.20
20 21 -6.25 -7.69 1.20
23 21 -6.43 -7.92 1.20
22 24 0.00 -1.31 0.83
25 23 -4.299473 -6.363807 1.20
24 26 -1.381692 -2.151483 1.05
27 25 -3.380001 -4.224473 1.20
26 27 -2.226483 -3.305001 1.20

Figure 1.3: Information for each pipe in the sewer system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

attempt to minimize costs of the generated sewer plans. For the sewer layout, this cost minimiza

tion is achieved by reducing the number of manholes. For the design, the cost of the pipeline and

installation costs are minimized.

The aforementioned problem definition is specific for sewer systems. However, many other pipe

systems, such as irrigation networks, share similar properties. The ideas specified in this thesis may

be applicable to other pipe systems.

1.2 Benefits of Antomation

An automated sewer system planning tool has many benefits. Planning a sewer system requires a

large degree of effort. Many hours of expert labor go into producing a cost effective plan before

construction begins. Automating this process liberates the engineer from this tedious exercise, and

allows these talents to be better utilized in different aspects of the project. In addition, plan quality

depends on the talents and experience of the engineer. Automating this process adds consistency

that is independent of human skill. Oftentimes, the effort to manually produce a sewer system plan

means that only one plan is produced. By automating the planning process, it becomes possible for

an engineer to evaluate multiple plans. A software tool could produce several plans, possibly with

different constraints, allowing the engineer to evaluate these solutions on the basis of additional

criteria such as aesthetics.

1.3 Challenges of Automation

Each sewer system must adhere to a set of guidelines. Some of the basic constraints are as follows.

Pipes must lie underground beneath the roadway corridors. Each pipe in the system has a maximum

allowable length, depending on the diameter of the pipe. Whenever the pipe reaches the maximum

distance or changes direction, a manhole must be installed. There are also constraints on how the

pipe can be buried. For example, pipes must be buried at a minimum depth to prevent damage from

surface pressures and frost.

The constraints presented above are relatively simplistic. The full set of constraints governing a

real-world sewer plan are often more complicated. For example, pipes may not always be straight.

In special cases, slightly curved pipes may be used. Also, it is rare that the neighborhood will require

only a single sewer system. Commonly, a separate system is required to convey storm and sanitary

sew a g e . B oth o f th ese sy stem s are constra ined to lie w ith in the sam e road corridor. H ow ever , care

must be taken to ensure these two systems do not intersect. Additionally, these systems are required

to service a different set of clients, thus the path of these sewer systems may be quite different. In

this case, the planning phase for one sewer system must consider the plan for the other.

A key complication is the lack of uniformity in the constraints. Each municipality has a set of

constraints that a sewer system plan must adhere to. As well, each sewer system project may have

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

differing goals. These factors make it difficult to design a system capable of planning sewers to meet

every constraint for a project.

Despite these difficulties, an automated sewer system planning tool is of great interest. A full tool

would include techniques to solve problems common to each sewer system planning problem. Such

a system may also allow the integration of problem-specific constraints into the solution process.

Even if the results of the system do not perfectly meet the project’s criteria, it provides an initial

plan that can be tuned by hand. This minimizes the amount of work that the engineer has to do.

Designing a system to handle all possible constraints is a difficult task, making the full problem

difficult to solve. Many aspects of the planning process are out o f the scope of this thesis. Rather,

this thesis examines several aspects of the sewer system planning process, and develops algorithms

to solve these sub-problems. The goal is to produce algorithms that may be used as part of a system

that solves the entire complex planning problem.

1.4 Research Contributions

The intent of this study is to explore how computing science techniques can be applied to a civil

engineering problem. The algorithms presented in this thesis do not address all of the engineering

considerations necessary to generate real world sewer plans. Rather, this work provides a set of

computing science techniques useful for engineering research. The hope is that these techniques

will be adopted and supplemented with the appropriate engineering expertise to generate realistic

sewer system plans.

A preliminary step to this research is to represent the neighborhood data in a form conducive to

computation. Techniques to transform the lines and arcs delimiting road curbs into data structures

useful for computation are presented.

A basic sub-problem encountered when planning a sewer system is the placement of a pipeline

between two fixed points. Several algorithms to perform this task are presented. These algorithms

will be referred to as local placement algorithms. Local placement algorithms provide a key primi

tive operation that is used during the layout process.

Layout algorithms from the literature are discussed in Chapter 2. However, these algorithms

mainly deal with the high-level connectivity for the pipe network. The details of how each pipe and

manhole are placed are not considered by these algorithms. Techniques are presented to specify the

location of individual pipes and manholes. This is broken into a two step process. First, a number of

manholes are fixed in key locations of the neighborhood. These manhole positions are determined

by global placement algorithms. Using this set of fixed manholes, the layout is completed using

local placement algorithms to lay the pipeline between adjacent points.

Adding this detail to the sewer planning process has two main benefits. First, the degree of

automation is increased. In handling this finer level of detail, the engineer is relieved of another

planning task. Second, the computer can evaluate many more manhole and pipe placements, possi-

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bly leading to a lower cost sewer plan.

Finally, this research explores how the layout techniques presented can be integrated into a sys

tem that automates both the layout and design processes. The global layout optimization techniques

do not account for flow direction and avoidance of cycles. To address this problem, the integrated

system incorporates the notion of cuts and flow directions. To implement these ideas, this thesis ex

plores the use of spanning trees, each of which defines a unique network topology providing service

from each client to the outfall. This provides a complete two-dimensional layout, which is fed into a

design system to choose pipe diameters and upstream and downstream elevations so as to minimize

the cost. 1 An initial investigation into using this system to minimize the cost of the overall sewer

plan is presented.

This thesis explores algorithms to solve sub-problems of the sewer system planning problem. In

particular, algorithms to specify the placement details of single pipes and manholes are explored.

The intent is for these algorithms to be used as part of a system to automate the sewer system

planning problem.

1.5 Outline of Thesis

An overview of the remainder of this thesis is as follows. Chapter 2 will present a brief overview of

the engineering process related to sewer system planning. Following this, an overview of research

related to several aspects of the sewer system planning process will be presented. In Chapter 3, the

use of real-world engineering survey data is examined. This includes parsing the road layout and

representing it in the graph data structure that is used by the algorithms presented in this thesis. Four

separate local placement algorithms will be presented and evaluated in Chapter 4. These include a

basic approach leading the placement toward the center of the road, two algorithms designed to cut

corners, as well as a frontier approach that attempts to produce optimal solutions. Using the local

placement algorithms presented in Chapter 4, Chapter 5 will present algorithms that place pipes and

manholes for an entire neighborhood. Chapter 6 describes a prototype for a system used to solve

the full planning problem defined in Section 1.1. An implementation using the local and global

placement algorithms, and a sewer system design module are also discussed. Chapter 7 provides

some concluding thoughts for this thesis.

'N ote that the design algorithms used for these tests are considered out o f the scope o f this thesis research. Rather, the
third party design solver, described in Chapter 6, is used to generate designs for the purpose o f evaluating the system as a
whole.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Engineering Basics, Related Work
and Research Context

The engineering process of planning and building a sewer system is a complex task. This chapter

provides a brief overview of the steps involved in this process. The automation of several aspects

of sewer planning has received a considerable amount of research attention. An overview of related

research is presented. From this overview, an architecture is proposed to illustrate how existing

automation algorithms and the planning tools introduced in this thesis can be combined to produce

an automated sewer planning system.

2.1 Overview of Sewer System Planning

A sewer system is a subterranean system used to convey waste to one or more collection points. In

most neighborhoods, there are two different types of sewer systems. The sanitary sewer conveys

industrial and household waste, while the storm sewer prevents flooding by draining surface water

during storms. In rare cases, these two systems are allowed to use the same system of pipes. This is

known as a combined sewer system.

Building or modifying a sewer system can be considered as a four step process [39]. The first

step is preliminary investigation. In this step, the specific goals for the project are defined. Broad

technical and cost issues are contrasted, and a general form for the sewer system is decided. The

next stage is the planning stage. During this stage, the technical details required to build the sewer

system are specified. When multiple firms are bidding on a sewer system project, it is typically the

detailed plan from this stage that is used to tender bids. After the planning stage is the construction

phase, in which the sewer system is built from the detailed plan. Once the sewer system is built

the operation and maintenance phase begins. This involves any tasks that need to be done for daily

operation, as well as routine maintenance required to keep the sewer system in good operating form.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1.1 The Engineering Process

One of the first tasks of the planning process is to define the collection points for the system, com

monly referred to as outfalls. Once the outfalls are known, the sewage flow to be conveyed needs to

be determined. For a sanitary sewer system, the amount of waste water produced by domestic, com

mercial and industrial sources, plus the amount of liquid that will infiltrate the system is estimated.

Usually, this can be estimated by knowing the population of the area and the types of business and

industry in the area.

For storm sewers, the flow is estimated using hydrological analysis. Hydrological analysis is

based on the hydrological cycle, which describes the distribution of water on the surface of the

earth and underground. Evaporation, precipitation, snow meltage and other types of natural water

movement are described by this cycle. When developing a detailed plan for storm sewers, this

type of analysis is used to determine the amount of sewage that needs to be conveyed. The main

considerations are rainfall events. First, the engineer usually sets a return period for analysis. For

this return period, an engineer estimates the probability that a given rainfall event will occur. For

example, a return period of twenty years includes all the rainfall events that are likely to occur at

least once in twenty years, but would not include a rainfall event that is expected to occur once every

one hundred years. Once the return period is set, the engineer collects rainfall data including rainfall

volume per time and duration of the expected rainfall events. This data is used to determine the

flow that the sewer system must handle. Although not as important for sanitary sewers, hydrological

analysis is still used to estimate the amount of storm water that may infiltrate the sanitary sewer

system. PondPack is a software tool that can be used for hydrological analysis [1].

Once this analysis is done, the placement of pipes and manholes can begin. When creating a

sewer system plan, the engineer must consider the horizontal and vertical alignments. The horizontal

alignment specifies where the pipes and manholes are placed within the neighborhood. It is the

horizontal alignment that can be seen on the neighborhood map. Standard engineering practices

usually define a conduit underneath the roadway where pipes are allowed to be placed [23]. To

allow proper maintenance of the sewer system, manholes must be placed at specified intervals along

the pipe. The maximum distance differs amongst the different diameters of pipe. Manholes are also

typically placed wherever the pipe changes direction. For roads with a high degree of curvature, this

can mean many manholes with close spacing. When allowed by the local jurisdiction, it is possible

to use curved pipes to avoid closely spaced manholes. The horizontal alignment will generally be

referred to as the layout in this thesis.

Vertical alignment is concerned with the depth of sewer pipes. There are several factors that

must be considered when determining these depths. First, the pipes must be buried deep enough

to prevent damage from the surface, including pressure from traffic and weather. Second, there is

usually a minimum required separation between the sewer pipes and pipes and cables from other

utilities. For example, underground power cables and clean water distribution systems may also lie

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

underneath the same road corridors as the sewer system.

The other issue that needs to be considered when burying pipes is the slope. Pipe slope affects

both the flow velocity and the pressure within the pipes. The goal of design is to keep the flow

velocity above the minimum self cleansing velocity. If the velocity of the flow is too low, deposits

may build up within the pipe, obstructing the flow. However, if the velocity is high enough these

deposits are prevented, and thus the system is self cleansing. Care must also be taken that the flow

velocity is not detrimental to the integrity of the pipes. Most sewer systems will not always operate

at full capacity. Therefore, the slope should be chosen to maintain an appropriate velocity during

both low and peak flow times.

Sewer systems where the slope of the pipes alone convey the sewage are known as gravity sewer

systems. In some cases, it is not possible to convey the waste using only gravity. In these cases,

pumps can be added to the system to maintain the flow of sewage. However, it is desirable to avoid

pumps whenever possible, as it adds considerable expense to the system. The process of determining

the slope, depth and size of pipes will be referred to in this thesis as the design process.

Before construction, the candidate sewer system must be analyzed to make sure it has the struc

tural integrity to handle the different expected loads. Hydraulic analysis is used to evaluate the force

and movement of the sewage in a sewer system design. Typically, this process estimates the pres

sure at the entrance to each pipe, known as the head pressure. Losses in pressure from friction and

components such as manholes are considered. If the minimum pressure cannot be kept throughout

the sewer system, it may be necessary to add pumps to regulate the pressure.

In practice, a hydraulics evaluation software tool is used to evaluate the system under different

levels of flow and with different failure conditions. Examples of software which can be used for

hydraulic analysis are Storm CAD [2] and Hydra [3].

Much of this thesis deals with sewer system planning. However, many ideas are applicable to

other types of pipe networks as well. One very similar case is that of water distribution networks.

The main difference between these two types of networks is flow direction. In water distribution

networks, the source is analogous to the outfall for a sewer system. Water flows from the source

to each of the nodes in the network. Water distribution networks must be designed such that the

demand at each node is met, and a minimum head pressure must be maintained. Many of the

techniques for planning a sewer system are the same for a distribution system. Therefore, research

related to distribution systems will be considered. Similarly, many ideas produced from the proposed

research w ill b e ap p licab le to water d istribution netw orks.

The process of preliminary investigation, planning and building of a sewer system network has

many more factors than those mentioned above. The introduction in this section was purposely

brief, intending to give an appreciation of the process and considerations of such a project. For more

technical information consult civil engineering texts such as [23] and [39].

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Related Work

A literature review has revealed that the optimization process for sewer system planning can be

separated into the two interrelated problems of design (vertical alignment) and layout (horizontal

alignment). This section will introduce both of these problems and discuss techniques used in the

literature to solve both individually and co-operatively. Layout is further sub-classified as edge se

lection and manhole placement. The relation of the work in this thesis to the existing sewer system

automation literature will be explored. An often overlooked optimization consideration, the place

ment of intermediate manholes, is discussed. A modified framework to solve the complete sewer

system planning problem, including intermediate manhole placement, is presented. Intermediate

manhole placement and its place in the planning process are also discussed.

2.2.1 Sewer System Optimization

In the literature, the main goal o f sewer planning is to produce the plan with the lowest cost, while

meeting the specified engineering constraints defined for the project. Cost considerations may dif

fer between projects, but typically include factors such as infrastructure, excavation, operation and

maintenance costs.

Traditionally, the research community has viewed this planning problem as the two interrelated

problems of design and layout. The predominate goal of the design phase is to determine the depth,

size and slope of each pipe in the sewer system. Techniques to calculate these quantities have

received a large amount o f research attention, see for example [10, 27, 30, 37]. In addition, some

techniques also consider the placement of special facilities such as lift stations, pumps or treatment

plants in the design phase[7, 12, 20],

The layout of a sewer system can be viewed as the portion of the plan represented on a two-

dimensional road map. Positions of outfalls, manholes, pipes and other similar infrastructure com

ponents are expressed in the layout. This thesis explores the generation of layouts using two phases;

edge selection and manhole placement.

The edge selection process defines a high-level network topology for the sewer system. This

network topology specifies the core backbone for the sewer system. The backbone defines the

primary pipelines for the sewer, used to convey both local and upstream flows. Consider a multigraph

G = (V , E), where the term multigraph is used to indicate the potential of multiple edges between

two vertices. The vertices (or nodes) in V represent selected fixed points from the outfalls, manholes

or treatment plants. Edges in the set E represent potential pipelines between nodes. Edge selection

algorithms find a spanning tree in G, which describe the core backbone for the sewer system. Edges

absent from the spanning tree are still part of the sewage network, but will contain a single pipeline

connected to only one of the adjacent vertices, and thus are used to convey local sewage flow only.

Consider the example neighborhood shown in Figure 2.1, where the intersections are labeled

1 to 6. Figure 2.2 shows a multigraph G that corresponds to the neighborhood shown in Figure

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1. This graph represents the case where there is one fixed vertex per intersection and the roads

represent the edges of G. 1 Edge selection algorithms are used to find a spanning tree representing

the core backbone of the neighborhood. This constitutes a directed network, where each edge in the

tree flows toward the outfall. For example, Figure 2.3 is a potential edge selection result, where the

outfall is described at node 6.

Figure 2.1: Sample neighborhood

1 2 3

4 5 6

Figure 2.2: Multigraph corresponding to sample neighborhood in Figure 2.1

Part of the research presented in this thesis will examine the layout of the sewer system in more

minute detail. Consider the edges in Figure 2.2. Each of these edges represents a pipeline between

two nodes. However, this pipeline may be composed of multiple pipes and manholes. For example,

Figure 2.4 represents the details of how a pipeline might be laid between fixed nodes 1 and 2 of

Figure 2.2. How the pipeline is laid between two fixed nodes affects factors such as the number

of manholes needed, and the depth of the pipes used. As a result, the cost of different pipelines

may vary. This thesis examines techniques to minimize the cost of the pipelines between fixed

points. The approach taken is to determine the position for the intermediate manholes that define the

pipeline. This aspect of the layout problem will be referred to as the manhole placement problem.

^ - > f < 3»
\ /

Figure 2.3: Example topology of a sewer system

'Chapter 3 provides more detail on the neighborhood multigraph used for this thesis, and how it is obtained.,

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.4: Pipe layout between two fixed points

Both design and layout are heavily interdependent. To produce an optimal plan, both design and

layout must be considered simultaneously. Consider a simple change in the network topology. Let

Vi denote the vertex i in the topology of a sewer system. In Figure 2.3 consider the pipe V2 V5 . In the

diagram shown, it accepts flow from vertices v\ and V3 as well as local flow. However, if the layout

is modified by removing pipe V2 V3 and adding pipe U3 V6 , then the pipe V2 V5 no longer receives flow

from node U3 . Even though V2 V5 existed in the previous layout, the diameter of this pipe may have

to change to handle the change in flow in a more cost effective manner.

Despite this interaction, much of the literature involves the optimization of the design based

on a fixed layout. This is due to the perceived difficulty of the layout problem. As recently as

2004, Prasad and Park state that “Most pipe optimization methods have not considered the layout

optimization along with the cost due to the extreme complexity involved...” [25]. However, current

research trends examine how both design and edge selection can be optimized in a cooperative

fashion. An overview of solution techniques for both edge selection and design is presented in the

following sections.

2.2.2 Design Optimization

Many design optimization techniques consider the layout as fixed. The main goal o f design opti

mization is to determine pipe slopes and diameters that minimize the cost of the sewer plan. Other

objectives, such as the placement of pumps and treatment plants, may also be addressed during this

optimization.

Design optimization is commonly modeled as a cost minimization problem. The objective func

tion for this problem represents the cost of the network, which may include infrastructure and main

tenance costs. The control variables in this formulation are the diameter and slope of the pipes.

The objective function must be optimized with respect to several constraints dictated by engineering

rules. Although the specific constraints vary between problem formulations, the underlying goals

are often the same. The following describes three categories of constraints commonly used in the

design optimization process.

Diameter constraints govern valid pipe sizes. The most common constraint in this category

ensures solutions are comprised of commercially available pipe sizes. Some formulations impose

a size interval by defining a minimum and maximum pipe diameter [7, 30]. This allows the solver

to consider diameter as a continuous variable, making the problem easier to solve by linear/non-

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

linear programming techniques. However, to be of use, these techniques must define a scheme

to convert continuous pipe sizes to available discrete sizes. This rounding process may lead to a

suboptimal solution. Design solvers generating commercially available pipe diameters have been

developed using techniques such as dynamic programming [10, 20, 37] and genetic algorithms[28].

Sometimes, an additional diameter constraint is included to ensure that each pipe is at least as large

as each of its corresponding upstream pipes. This constraint is based on the assumption that sewer

system designs adhering to this constraint are more likely to handle the required flow at a reasonable

cost.

Engineering principles impose constraints on how pipes can be buried. For design optimization,

these are represented as depth constraints. Most formulations define a minimum depth to avoid

pressure from surface factors such as traffic and snow. As well, in order to ensure the majority of

flow is carried by gravity, a constraint is imposed on pipe elevations. Basically, this states that all

pipes entering a node must do so at an elevation equal to or higher than the outgoing pipe.

Another category of constraints are the flow constraints, which are concerned with flow velocity

and pressure. Most sewer system designs impose a range on the flow velocity. At the minimum end

of this range is the self cleansing velocity. This velocity must be exceeded to prevent buildup in the

pipes. In addition, a maximum velocity is enforced to avoid damaging the pipes. Another common

constraint is minimum head pressure. The head pressure for a pipe is the flow pressure as sewage

enters. Normally, the goal is to keep this pressure above a minimum value at each node to ensure

adequate flow through the entire sewer system. The flow velocities and pressures are dependent on

the design of the sewer system. Therefore, the optimization techniques often use a hydraulic solver

to calculate these values for candidate solutions.

There are many algorithms that use this basic problem formulation. An overview of several

design solving approaches is as follows. Dajani et al. developed a mathematical program to solve for

the optimal pipe diameter and slope [10], The objective function is o fth e fo rm C = a + bD 2 + c X 2,

where C is the cost of one pipe link, D is the diameter of the sewer pipe, X is the depth of the pipe

and a, b and c are regression coefficients. Using the Manning Equation2 for flow velocity, the pipe

diameter is written in terms of the slope. Substituting this new expression for the diameter into the

cost function allows the objective function to be written in terms of the slope only. Therefore, the

resulting optimization involves only one variable. The authors have evaluated separable, dynamic

and geometric programming as methods to solve this problem.

Separable program m in g is d escrib ed by the authors as a “tech n iq u e f o r h a n d lin g cer ta in ty p e s o f

nonlinear functions within the framework o f a general linear programming form at”. This technique

may be applied as long as:

1. Each nonlinear function is a linear combination of single variable functions,

2The Manning Equation is an equation for gravity driven flow velocity in a pipe, where this velocity is a function o f
hydraulic radius, roughness and slope o f the pipe[23].

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Each function is expressible as a piecewise linear function, and

3. It is possible to reach a local optimal if the objective function is concave when minimizing, or

convex when maximizing.

This approach is good for small problem instances meeting these criteria, but the authors note

that this technique is not scalable [10]. The complexity increases rapidly as the number of pipes

in the system increases. The authors also observe that dynamic programming provides solutions

that use commercially available pipe diameters and is independent of the specific objective function.

Geometric programming techniques can provide solutions for problems involving both nonlinear

objective functions and constraints. These techniques find a solution by calculating an increasing

sequence of lower bounds that converge to the true minimum value. To formulate the problem as a

geometric program, the objective function must take the form of a general posynomial.3 The authors

claims it is not difficult to express most problems in this form.

Although no tests are provided, Dajani et. al [10] cite a claim from Merrit and Brogan [22] that

their dynamic programming method reduces the cost o f the sewer system by 10-20% over manually

produced sewer plans, and from Velon [36] that as much as 35% reduction could be achieved from

separable programming.

Walters introduces an algorithm that considers manhole position in addition to pipe depth and

size[37]. To simplify the problem, a rough solution is given, specifying the initial number of man

holes and the flow direction. An example of this input is represented in part a) of Figure 2.5. For

each manhole, a grid of possible positions is defined. Manholes may coincide as long as the flow is

not disrupted. Therefore, the optimal solution may have fewer manholes than the rough solution. An

example of the elimination of a manhole is given in part b) of Figure 2.5. Dynamic programming is

used to find a solution, with the manhole position and pipe depth as the variables. Pipe diameters are

chosen as the smallest diameter that can handle the required flow. The manual storm sewer design

for a housing estate is compared to the results generated by the algorithm. The cost of the networks

generated using the algorithm were 4% lower for a low flow network and 7% lower for a higher flow

network.

Genetic algorithms are a popular tool used to compute sewer networks [15]. Savic and Walters

introduce a genetic algorithm to find pipe diameters that result in the minimum cost water distribu

tion network [27]. The authors describe their solution as a gray-coded genetic algorithm, but neglect

to d escr ib e e x a ctly h ow so lu tion s are co d ed . T he o b jec tiv e fun ction for a pop u la tion m em b er is the

cost of the coded sewer system. The authors implement this method using pipe cost as the cost for

candidate solutions. Each node of each candidate solution must meet two constraints. First, the flow

continuity constraint ensures the portion of the flow consumed by the node does not exceed the water

delivered to the node. The second constraint enforces the minimum flow pressure at the head of each

3 A general posynom ial is a function o f the form g = u i + U2 + ■ ■ ■ + u „ , where ii; = C jtj41^ 2 • ■ ■ tm " 1 ■ In this
formulation Ci is a positive constant, the a i j values are real constants and t j are variables.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B

P,Dl

Figure 2.5: a) Example input flow b) Flow with manholes coinciding

pipe. As genetic algorithms are not designed to enforce constraints of this form, a hydraulic solver

must be used to verify each candidate solution. In order to guide the search, infeasible solutions

are allowed to remain in the population, but with a penalty. This genetic algorithm was applied to

several sizing problems in the field, and the authors state that the solutions “compared favorably in

terms o f cost and minimum head requirements to those obtained by several other techniques”. One

of the drawbacks of this approach is the computation time required by the hydraulic solver. The

verification process is computationally expensive and must be run once for each candidate solution.

Vairavamoorthy and Ali follow a similar model, but offer several improvements [35]. First, candi

date solutions are coded with real numbers, providing greater flexibility than techniques using binary

strings to encode solutions. In particular, the goal is to eliminate situations where there are more

binary encodings than actual solutions, and thus to avoid the overhead of filtering invalid solutions.

Second, the hydraulic solver is improved using a linear transformation function. This technique

produces solutions similar to the previous genetic algorithm approaches, but the verification stage

requires much less computation.

Despite the promising results reported by many authors, these optimization approaches have not

been adopted for every day use by the engineering community[7, 31, 35, 37]. Several reasons have

been proposed for this. First, some of these solutions work well on small neighborhoods, but do not

scale to large ones. Second, these techniques are not flexible enough to handle the wide range of

constraints that can arise when designing real neighborhoods.

Taber et al. explore why design techniques have not been adopted in the design of water distribu

tion networks[31]. They claim that these techniques are not designed to handle database information

used by engineers in the manual design process, and there is a lack of user interface for data manip

ulation and disp lay. T h e authors ex p lo re the integration o f d esig n approaches w ith a G IS system for

the efficient gathering of information and improved graphical output of the design.

Chau et al. present a knowledge based system approach to encapsulate "...rules o f thumb, heuris

tics, judgment, code o f practice and previous experience o f the designer”[8] . A semi-automated

design tool was developed using a blackboard architecture. This architecture stores many different

pieces of knowledge from many different sources. The blackboard acts as a global context, keep-

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ing the current state of the solution, and applies the appropriate knowledge based on this state. This

knowledge base is coupled with a user-friendly interface that provides support to the engineer during

the design process. To conduct tests, a typical storm drainage network with 39 manholes and a num

ber of secondary and tertiary sewage collection branches was designed using standard engineering

practices and with the assistance of the tool. Using the tool, the number of man-hours was reduced

from forty to one. Engineers were polled on the usefulness of the system, and results showed that

the average engineer agreed that this tool was effective. Despite the perceived usefulness of this

system, semi-automated tools have yet to be adopted by engineering practitioners.

2.2.3 Edge Selection Optimization

Many authors optimize the sewer system layout considering only the high-level connectivity [14,

29, 38]. This section presents an overview of several types of edge selection techniques proposed in

the literature.

An intuitive approach to edge selection is to apply standard spanning tree algorithms to G. The

difficulty with this approach is that the cost for each edge in the graph is not fixed. There are several

factors that affect the cost of an edge. For an edge, the connectivity of the remainder of the network

affects the cost, as modifying the connectivity might change the diameter o f the pipe represented by

the edge. In addition, design factors play a role in determining the cost. Different sized pipes have

different costs, while the slope of the pipe affects the length of pipes needed as well as excavation

costs. To be effective, an edge selection algorithm must address these issues.

Tekeli and Belkaya state that the optimal solution will be a shortest path spanning tree rooted at

the outfall, since the goal is to find the shortest path from each node to the outfall [33], They present

a technique that tries to best utilize gravity to convey the sewage while finding a spanning tree with

a short path. The first step to this algorithm is to define the flow directions each edge may assume

in the final tree. Typically, this is done based on the topology of the neighborhood. The direction of

each edge is set such that the flow direction matches the slope of the terrain. The only exception to

this is nodes lying at local minima. To prevent these nodes from acting as sinks, the pipes adjacent

to these nodes may assume either flow direction in the final tree. Once the directions have been set,

a shortest path algorithm, such as Dijkstra’s Algorithm, is used to find the shortest path between

every pair of nodes. The authors observe that sometimes this algorithm does not result in a spanning

tree. To remedy this, additional edges in the original graph are allowed to assume one of either flow

direction s in the resultant tree. T h is p rocess is continued until the algorithm produ ces a spann ing

tree.

For this algorithm to be effective, a good edge cost metric is required. The authors stress the

difficulty of this, since the cost of related design properties has yet to be determined. It is claimed

that common engineering practice lays pipes parallel to the ground surface where possible, limiting

the slopes to an acceptable minimum in heavily contoured areas. These standards motivate three cost

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

metrics. The first is horizontal length (HL). This measure chooses the pipe of the minimum length.

Over flat surfaces, this means that each pipe will connect to the node at the minimum allowable

elevation. Contoured surfaces are difficult to deal with, and thus not considered in this measure,

making the depth of these pipes unpredictable. The second measure considers steepest descent for

the inverse slope (IS) of the pipe. The measure can be expressed as where L is the length of the

pipe and A Z is the difference between the upstream and downstream elevation of the pipe. Finally,

the last metric considers the excavation cost associated with an edge. Since the design phase has

yet to be executed, the exact excavation costs of the pipes are not known. However, this value is

estimated by assuming the upstream end of the pipe is buried at the minimum depth, and the slope

is the minimum possible depth. Under this assumption, the excavation depth can be represented as

E x = \{ D \ + D 2)L , where I)\ is the upstream pipe depth, D -2 the downstream pipe depth and L

is the length of the pipe.

Results for this technique are compared to manual layouts produced by senior civil engineering

students. The edge selection algorithm described above was applied, and the design for the sewer

system was found using the design algorithm described in [32]. Of the three metrics, only the E x

measure exhibits clear improvement showing a reduction of as much as 15.5% in excavation costs

compared to the manual plan. The other metrics were typically on par with, and occasionally better

than, the manually generated plan. At the time this paper was published, this algorithm could not

be applied to larger neighborhoods due to memory constraints. To produce sewer system plans for

these neighborhoods, the large neighborhoods were broken into several sub-neighborhoods. This

approach was tested on a neighborhood with 312 nodes and 514 possible connections. From the

author’s test, employing the sub-neighborhood approach does not generate layouts better than those

manually generated[33]. In some cases the sub-neighborhood approach produces better layouts and

vice versa. This approach was only used to cope with the high memory demands of applying the

method to an entire large neighborhood. Modern day computers are unlikely to be affected by these

memory issues.

A number of authors explore optimization of edge selection. Many of these authors apply genetic

algorithms. Walters and Lohbeck examine how to encode valid trees as binary and integer strings for

use with GAs[38]. This encoding ensures that solutions are spanning trees by only allowing a single

upstream connection for each node. For the binary string encoding, each node in the graph has one

or more bits representing which of the potential upstream pipes is connected. Thus, if there are two

p o ssib le p ip es, then o n ly o n e bit is necessary. H ow ever, for three or m ore p o ss ib le in terconn ection s,

additional bits are necessary. This encoding has a major flaw. If the number of interconnections is

not a power of two, the resultant bit strings will either have combinations with no meanings, or there

will be multiple strings that define the same connection. The authors address this flaw by assigning

multiple bit representations to some connections, thus avoiding meaningless strings. However, by

using this approach, pipes that are represented by more than one string combination are more likely

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to propagate to further generations. This problem is alleviated by using an integer representation,

where there is a single integer for each node representing the upstream connection.

For this approach, the authors calculate the cost of each edge as

cost = leng th x f lo w

It follows that the cost of a tree, Cx, is the sum of each of selected edge. Before the reproductive

phase, the fitness of each tree is assigned using the following fitness function

r / \ 1 C x Cmiro
K ^ x) — -L — — x;

^ m a x rriin

where Cx is the cost of the current tree, C'nnn is population’s lowest tree cost, and Cmax is the

population’s highest tree cost.

Smith and Walters present a GA approach with a different crossover operator[29]. They remark

that each child should inherit all edges shared by both parents, and fairly inherit from the unique

edges of both. This is done by randomly selecting half of the edges from one parent, and half of the

edges from the other parent. However, this approach is likely to produce many disconnected graphs.

Instead, the authors present a technique that increases the probability of the progeny being trees. To

do this, the unique edges of parent one are paired with the unique edges of parent two if each edge

links a common set of nodes in the respective layout. That is, an edge e in parent one is paired to

an edge e in parent two if e connects subsets such that S = S \ |J S -2, and e connects subsets such

that S = S[(J S ’2- Note that these pairings are not unique. An edge in parent one may be mapped

to multiple edges in parent two and vice versa. These pairings are represented as a bipartite graph,

where each side represents a parent, and there is a node for each unique edge. Each pair of edges

in P I and P 2 linking the same subsets is represented by an edge in the bipartite graph. To produce

a tree, a matching algorithm is used to pair edges for each node. This matching is used to produce

children by randomly interchanging matched edges between parents, producing two networks with

the proper number of edges .

Geem et al. apply an evolutionary search technique they refer to as Harmony Search[14]. This

technique uses the analogy of harmonies in music, that are composed of several different building

blocks. Each tree is considered as a harmony divided into n parts.

New harmonies are improvised by combining parts from previously appealing harmonies. The

algorithm keeps a harmony memory which stores the m best harmonies (trees). During each itera

tion, a new harmony is improvised by randomly choosing each component from a harmony in the

harmony memory. The major difference between this harmony search and GAs is that each new har

mony may have more than two parents. If the resultant tree is better than the worst tree in harmony

memory, then it is added to memory and the rest of the harmony memory is resorted. Otherwise, it

is disposed of. This process continues until a stopping criteria is met.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

While some authors choose to optimize edge selection alone, others attempt to integrate both

design and connectivity considerations in the optimization process.

Hassalani and Dandy introduce a GA approach to simultaneously optimize connectivity and

pipe sizing for a water distribution network[16]. The network is encoded using an integer string,

divided into three components. The first component represents the tree, with an integer for each

node representing the upstream pipe. Since only one upstream pipe is defined for each node, each

string is guaranteed to encode a tree. The second component encodes pipe sizes, with the integers

representing a commercially available pipe. Finally, the last integer in the string encodes the pump

driving water through the network. For each member of the population, hydraulic analysis is applied

to determine if minimum pressure constraints are violated. Members of the population violating

these constraints have a penalty term added to their fitness cost, allowing them to contribute to

further generations with a reduced probability. The authors evaluate this approach by applying the

genetic algorithm to a network with 12 nodes and 30 possible node connections. In this best case,

the cost was reduced from $190,000 to $106,534.

Li and Matthew present an iterative algorithm that optimizes edge selection and design in a

co-operative fashion[20]. The entire sewer system planning problem is modeled as the following

non-linear program

F (Q , H 1 ?H 2 ,Q)

used to calculated the values for each where Q is a vector defining the flow, Hi a

vector of upstream pipe elevations and H 2 a vector of downstream pipe elevations. For node 1 in

the graph, the Boolean Ttj specifies whether or not a pumping station is present. This function is

minimized subject to the following constraints.

1. Flow continuity equation A Q T q = 0 must not be violated, where A is the incidence matrix,4

Q is the network flow rate vector, and q is the flow rate vector for local input,

2. = 1 if node % has a pumping station, else = 0,

3. Minimum and maximum flow velocities are enforced,

4. Minimum pipe depth,,

5. Upstream elevation of downstream pipes equal to or lower than the upstream elevation of

upstream pipes, except for nodes with pumping stations,

6. Pipe sizes are limited to commercial diameters,

7. Maximum proportional water depth, and

4This incidence matrix is a square matrix representing connectivity between nodes. If a connection exists between nodes
i and j , then the entries in the i 1 h row and j t h column and the j tfl row and i 1 /l column will be one, otherwise these entries
are zero.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8. Minimum elevation of outlets.

There are several reasons this formulation is very difficult to solve directly. One reason is that

both <&,; and the pipe diameters are discrete variables. Another reason is that the incidence matrix

A, which depends on the specific tree, is not known a priori. To overcome this two sub-models are

introduced. The first sub-model assumes a fixed layout and minimizes the design. It is represented

in the following equation:

F = m in HuH2 , $ F (H i , H 2, $)

In this sub-model, the incidence matrix A, and therefore the flow Q are held constant. To find

the pipe slopes and diameters, a technique known as Discrete Differential Dynamic Programming

(DDDP)is used [17, 2 1].5

The second sub-model fixes H i, H 2, $ along with the pipe diameters D. The corresponding

objective function is shown in the equation below:

F = m ir iQ F (Q)

To minimize this objective function, the authors introduce a technique called the searching di

rection method. For this technique, each pipe is either a tree branch or chord branch. Tree branches

are the edges that are part of the spanning tree of the layout, while the remaining branches are des

ignated as chord branches. Instead of removing chord branches entirely from the network, they are

kept to convey flow from the local area. To ensure these pipes are not part o f the main network, a

cut is introduced at one extremity of the pipe. To derive the searching direction technique, the flow

is separated into tree and chord branch components. Using these components, the objective function

can be expressed in terms of tree branch flow alone and chord branch flow alone. Using standard

calculus, the authors demonstrate the objective function can be decreased by swapping the status of

a tree/chord branch pair. This derivation also provides a metric that determines the best pair to swap.

Figure 2.6 shows an example of how a pair of tree branches can be swapped, where the solid lines

represent tree branches, and the dashed lines represented chord branches. In this figure, the status of

branches A and B are swapped.

Using both DDDP and the searching direction method, an algorithm to minimize a sewer sys

tem plan is proposed. To initialize the algorithm, an initial spanning tree is found using Dijkstra’s

algorithm, where edge weights are the product o f pipe length and average ground elevation. From

this initial layout, the iteration begins. Each iteration first swaps a tree/chord branch pair using the

searching direction method, and minimizes the design of the resulting network using DDDP. The

5 D D D P is a dynamic programming approach designed to decrease the memory and computational costs o f standard
dynamic programming. It is an iterative technique that uses a trial solution for each iteration. At the beginning o f each
iteration, an interval is defined around the trial solution. During the iteration, only state changes within this interval are
considered. Conventional dynamic programming is applied to this restricted problem space to find a new solution, which is
used as the trial solution during the next iteration. The process continues until a pre-defined ending criteria is met.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.6: Swapping the status of branches A and B

swapping of branches continues until a stopping condition is reached, such as a lack of decrease in

the objective function for n successive branch swaps.

The authors validate the performance of this method by comparing results to the manually pro

duced plan for a real neighborhood of 10,000 people, with approximately 2.6 k m 2 drainage area.

The sewer plan produced shows a 14.79% savings for overall cost, and a 12.57% savings for con

struction costs alone.

Diogo et al. provide a framework for three-dimensional optimization of urban drainage systemsj 12].

This framework considers many facets of the sewer system planning stage, integrating modules that

optimize the connectivity of nodes, pipe slope and diameter, manhole placement and position of spe

cial structures such as pumping stations and water treatment plants. It is claimed that this framework

is applicable in planning for new sewer systems and for remodeling or expanding existing sewer sys

tems. Three-dimensional optimization is defined by the authors as the “simultaneous selection o f the

least-cost solution fo r the system (plan) layout and network (vertical) design subject to hydraulic,

sanitary, and constructive constraints and to the restrictions o f real applications.”

Using this framework, the optimization process is divided into three main modules. The first

module is concerned with minimizing the cost of the layout with respect to the connectivity of nodes.

Similar to Tekeli, and Li and Matthews [20, 33], the authors seek a minimum cost spanning tree.

However, the edge selection algorithms presented here are capable of generating several independent

sewer networks, each with their own outfall. This is accomplished by generating multiple spanning

trees. Given a fixed layout, the second module is used to determine which nodes should have fixed

position manholes, pumping stations or outlets. Finally, the third module optimizes sewer sections,

pipe levels and the number of intermediate manholes.

T w o d i f f e r e n t a p p r o a c h e s h a v e b e e n a p p l ie d to o p t im iz e e d g e s e le c t io n . T h e f i r s t is a s im u la te d

annealing approach [26]. To apply simulated annealing, it is necessary to define what constitutes

neighboring trees, and a process for generating them. A technique similar to the tree/chord pair

branch swapping of Li and Matthew [20] discussed previously is used. First, a node in the sewer

system is selected at random. At this node, one of the downstream tree branches adjacent to the node

is selected, and changed to a chord branch. To produce a valid tree, one of two things can be done.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The first is to choose a downstream adjacent chord branch, and reclassify it as a tree branch, thus

reconnecting the tree. This is equivalent to the swapping procedure shown in Figure 2.6. Otherwise,

if the node selected is classified as a valid outfall, then the sewage flow can be directed to this outfall

instead of further downstream. Note that this second option means that an additional tree will be

added to the forest. It is also possible to eliminate a tree if swapping the tree/chord branch pair

connects the existing tree to another tree.

Genetic algorithms were also applied as an approach to optimize the layout. The authors develop

a crossover operator that builds the children in an iterative fashion, where each iteration corresponds

to a node in the network. Children inherit from each parent in alternating iterations. That is, child

one inherits from parent one during odd iterations and from parent two during even iterations, and

vice versa for child two. The process starts by generating a random permutation of the nodes. During

the i th iteration, the child inherits the downstream path from the i th node in the permutation to either

the outfall, or until the downstream path becomes connected to the outfall. M utation is implemented

by randomly applying the neighboring tree operator defined for the simulated annealing approach.

The design process involves two coordinated sub-models, one for the optimization of tree prop

erties as a whole and another that optimizes properties of the individual edges. Tree optimization is

analogous to the design optimization previously discussed. For this sub-model, pipes are buried at

the minimum depth, and pipe diameter is optimized. In addition, the locations of pumping stations

and treatment plants are specified. Edge optimization is primarily concerned with the placement of

intermediate manholes. For this task, a grid of possible locations is defined for each new manhole.

A dynamic programming technique, such as the Walters technique previously discussed [37], is used

to calculate the position of these intermediate manholes.

Diogo and Graveto further examine edge selection algorithms for the three dimensional opti

mization architecture [11], In this paper, a complete forest enumeration algorithm is developed and

compared to the simulated annealing approach applied in [12]. This enumeration approach can be

described as follows. Consider the graph defining the potential interconnections between nodes. The

authors define four properties, shown in Figure 2.7, defining the connectivity and flow direction of

each edge. In this figure, the left hand states represent a pipeline which is part of a forest, while the

right hand states show pipelines that have cuts. As a pre-processing step, the legal states for each

edge and the collection of outfall points are defined.

All of the forests for the graph are enumerated using a depth-first search approach. At each

n o d e in the search tree a state, ch o sen from F igure 2 .7 , is a ss ig n ed to o n e o f the ed g es. I f this

assignment produces an invalid forest, this search path produces a cutoff. This occurs when cycles

are introduced into the graph or the resulting partial assignment does not admit a path from each

node to an outfall. The simulated annealing approach discussed in this paper uses the neighborhood

edge swap function described in the previously discussed Diogo paper [12].

The conclusion of this study is that full enumeration may be feasible for small to medium

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.7: Four possible edge states

projects, but it is too computationally intensive for large ones. The authors do not present a size

range for small, medium or large projects; however, results are presented for a real sewer system

edge selection project.

The performance of these methods is evaluated using the plan for a real sanitary interceptor

sewer in Coimbra City, Portugal. The initial base graph for the layout consists of 23 vertices, 35

arcs and 13 simple circuits. The total number of forests enumerated is 3,413,650. For each of

these forests, a design was found using the design solver discussed in [12]. Producing a complete

plan for each of these forests, including both layout and design, took about 97,277 seconds on a

Pentium II system. The cheapest plan was about $3,620,016 Euros, while the most expensive cost

was $10,839,242 Euros. The average cost over each forest was $7,794,650 Euros. Results for the

simulated annealing were also promising. Over 20 series of 100 consecutive runs, the optimal layout

was found approximately 69% times. Each of these runs required about two minutes computation

time. These results imply that the simulated annealing approach will find high quality, or near

optimal solutions while evaluating only a small portion of the search space.

2.2.4 Multi-Objective Sewer System Optimization

Sometimes, minimizing the infrastructure cost is not the only planning consideration. There are

often other considerations such as water quality and network reliability. For example, several re

searchers have attempted to find low cost pipe networks that still provide a good degree of relia

bility. Todini presents a method for water distribution networks[34]. The concept of resiliency is

defined in terms of power per node, or the pressure defined at the head of each pipe. The goal of a

resilient network is to provide each node more power than necessary and to add redundancy in the

pipe connections. The author presents several resilience indices based on this idea.

Using one of these resiliency measures, a set of best solutions is generated as follows. Since

this optimization problem has multiple objectives, there is no single clear best solution. Therefore,

as an input to this problem, an engineer providers an acceptable range of values for the resiliency

index i. Consider a fixed resilience index i = n. For this value of i, the method returns the lowest

cost solution with value i = n. In this manner, a set of best solutions is generated for each value

of i in the specified range. The result is a Pareto front of solutions, where each solution represents

the lowest cost solution with respect to its corresponding i value. A heuristic algorithm is used to

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

estimate the Pareto front. Using this front, an engineer can choose a solution deemed to be the best

trade-off between network reliability and cost.

Prasad and Park present an approach to minimize the design cost, while maximizing network

resiliency[25]. The network resiliency index is designed to incorporate both excess power delivered

to each node and the degree of redundancy in the design. Multi-objective optimization is performed

using non-dominated sorting genetic algorithms (NSGA). NSGAs are similar to the traditional GAs,

with the exception that the selection operator is designed to prefer non-dominated candidate solu

tions. A candidate solution x * dominates another candidate Xj if both:

1. The candidate x,; is no worse than Xj in all objectives, and

2. The candidate Xi is strictly better than Xj in at least one objective.

Each non-dominated solution is given the same large dummy fitness value. In order to main

tain diversity in the population, each non-dominated solution is divided by a niche count, which is

proportional to the number of solutions close to this candidate.

As in previous GA formulations, a hydraulic solver is used to verify flow constraints. For all

other constraints, a failure index defines how much a candidate solution breaks the constraints.

To allow the evolution process to produce better solutions, infeasible candidates may propagate

from generation to generation. To allow the propagation of infeasible solutions, the definition for

dominance is extended as follows. A candidate Xj dominates another candidate x , if any of the

following are true.

1. Both are feasible and x t dominates Xj with respect to (1) and (2) above

2. Solution Xi is feasible and Xj is not,

3. Both are infeasible, but x., has a smaller degree of violation, or

4. Both are infeasible, and x , dominates Xj with respect to (1) and (2) above

Tests for this technique show promising results. The Pareto Front for a relatively small network

was solved by using exhaustive search. The NSGA algorithm produced a solution set very close to

the actual Pareto Front. It is worth noting that the quality of a solution is dependent on the network

resiliency index. If this index does not accurately compare the reliability of different solutions, the

resultant network design may produce poor reliability.

Afshar et al. present a two phase iterative algorithm to optimize both design and edge selection

of water distribution networks, while maintaining a certain degree of reliability [6]. To measure

reliability, the number of paths from the source to each node is used as a metric. A network with

reliability of degree n would have at least n different paths from the source to any node.

The first phase of this algorithm deals with design optimization. The problem is formulated

as a cost minimization problem where the design cost is minimized with respect to head pressure,

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

velocity and diameter constraints. Head and velocity constraints are enforced using cost penalties.

Each network is evaluated using a hydraulic solver. If the network violates either head or velocity

constraints, a penalty term proportional to the degree of violation is added to the cost. During this

stage, a continuous range of pipe diameters is used. Based on this formulation, a design is found

using the DOT optimization package[4].

The second phase is known as the floating phase. During this phase, pipes that may be removed

from the network without violating reliability are identified. A measure, known as the floating index,

is used to determine which pipe should be removed from the network. This measure is calculated as

Fi = 77*-, where C, is the cost of the pipe, and Hi measures the hydraulic importance of the pipe to
T2/.

the network. Three different values for Hi are considered. These are pipe diameter, discharge of the

pipe, and the contribution of the pipe to the head demand at its downstream node. During the floating

phase, the pipe with the highest floating index is marked as a floating pipe. The minimum diameter

for the pipe is set to zero, and the design phase of subsequent iterations may choose to remove this

pipe from the network. This two phase process continues to iterate until it is not possible to label

pipes as floating.

The solution produced by the preceding method produces continuous pipe sizes. To be useful

in a real sewer system plan, the pipes specified must be comprised of commercially available pipe

sizes. To obtain this, a simple search is applied. First, each pipe in the network is sized down to the

nearest comparable pipe. This results in a network that violates the head and velocity constraints.

Then, a search is conducted to determine which pipe in the network would provide the least increase

in cost if the pipe size was rounded up. Heuristics to find this pipe are defined based on the type of

constraint defined, i.e. velocity or head constraints. Searching continues until the resulting network

does not violate any of the constraints.

The edge selection techniques previously discussed involved choosing a set of edges ensuring

that each node is connected to the layout. In some cases, determining which nodes a network should

service is also part of the problem. Lejano gives an example for water distribution networks[19]. In

these networks, a certain amount of water will be returned to the potable water supply. Instead of

supplying each node with fresh water from an outside source, reclaimed water may be redistributed

throughout the system. However, delivering reclaimed water can be expensive. Given a set of clients,

it may be desirable to choose a subset of these clients such that the benefits from distributing this

reclaimed water justifies the cost.

In the p rev io u sly c ited w ork, L ejano adopts a m ix ed in teger linear program m ing approach w ith

an objective function that simultaneously maximizes the benefits of distributing reclaimed water and

minimizes the cost of the system. In general terms, the problem solves for the set of clients supplied,

the edges connecting these clients and the flow at each node. This formulation includes constraints

to validate some simplifying assumptions, as well as preserving the integrity of the flow throughout

each node in the network.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Integrating Manhole Placement into Sewer System Planning

As illustrated in the previous sections, a considerable amount of research effort has gone into the

automation of planning sewer systems. Results clearly illustrate the potential for savings in both

man-hours and infrastructure costs. Many authors report a reduction in pipe, excavation and/or

maintenance costs.

Developing algorithms that simultaneously optimize all the considerations for a sewer plan is

regarded as a difficult problem. Rather, it is a widely adopted simplification to break the sewer

planning process into the two interrelated tasks of design and layout. Of these two tasks, the layout

is regarded as more difficult.

Much of the existing research considers layout as only the connectivity of nodes, or edge selec

tion. Each of these techniques assumes fixed nodes, and the possible interconnections to be defined

beforehand. There are several problems with this approach. First, it provides only a semi-automation

of the layout task. Manual effort is still required to produce this information. In addition, the qual

ity of the solution depends on fixed nodes. If a little flexibility is allowed in the position of fixed

position manholes, it might be possible to produce a better pipeline containing fewer manholes.

Most researchers disregard the placement of manholes. However, a clever manhole placement

scheme may result in pipelines with fewer manholes, further reducing the cost of the solution. The

reduction of even a few manholes in a sewer system plan may save tens or hundreds of thousands

of dollars on infrastructure costs. Few authors have addressed this consideration. As discussed in

Section 2.2.4, Walters [37] presents a method for doing this. However, this method requires an

initial layout to be provided, and a reduction of manholes may only be achieved if two manholes

can be merged into one. Diogo et al. [12] introduce a system architecture that considers this level

o f optimization, but provide little detail, stating a technique such as that o f Walters [37] may be

used for this. This thesis research develops manhole placement techniques. These techniques can be

integrated with other layout and design algorithms to further automate the sewer planning process.

Many authors propose planning systems following the general architecture shown in Figure 2.8.

These systems typically use algorithms similar to those previously discussed to optimize edge se

lection and design. Many such systems optimize edge selection and design in an iterative fashion.

Tools to further optimize sewer plans by considering the placement of manholes are integrated into

this process. An architecture for such a system is presented in Figure 2.9.

During the pre-processing phase, information is extracted from engineering survey data, and

any data required for optimization algorithms is prepared. This includes the determination of fixed

points and their connectivity. This thesis shows how this can be done for residential neighborhoods

by identifying intersections and placing fixed points at these intersections. The main difference in

this architecture is the manhole placement phase. The purpose of this phase is to define the position

of intermediate manholes between fixed points. To further optimize the sewer network, the position

of fixed points may be varied to facilitate the elimination of manholes. Note that this architecture

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S to p p in g C o n d ito n

D o n e

D e s ig n

E d g e S e le c t io n

Figure 2.8: Typical sewer planner architecture

Stopping Conditon
Not Done

Done

Design

P re-P rocessing

Iteration Selector

E dge Selection

M anhole P lacem ent

Figure 2.9: Proposed sewer planner architecture

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

allows iteration from the design phase to both edge selection and manhole placement. The iteration

selector algorithm takes the current state of the solution and determines whether to iterate back to

the edge selection or manhole placement phase. Each level of optimization may produce several

alternatives to be considered for the final plan. An open research problem is to determine how these

iterations will be performed.

2.4 Conclusion

This chapter provides an overview of the engineering process. For the purpose of automation, the

sewer planning problem is separated into three sub-problems. Edge selection defines the high-level

connectivity between fixed points in the system. Manhole placement defines the position of the pipes

and manholes that compose the pipeline between fixed points. Finally, design specifies the diameter

and upstream and downstream heights of each pipe.

An overview of the literature related to these three sub-problems is presented. This literature

is rich in ideas, but most of these ideas are not validated on a wide range of real neighborhood

data. Despite some promising results, there is no fully automated planning system widely used by

industry. Many techniques presented in the literature do not attempt to minimize cost by considering

the placement of each pipe and manhole. Considering this level of detail in the automation process

can reduce both manual effort and infrastructure costs. An expanded sewer planner architecture has

been presented, incorporating a more detailed manhole placement phase.

The following chapters will introduce tools that can be used within this architecture. Chapter 3

explores the feasibility of dealing directly with real engineering data. Chapter 4 develops algorithms

to place a pipeline between two fixed points. Chapter 5 builds on this work developing several

algorithms to place the pipes for an entire neighborhood, attempting to reduce the total number of

manholes. Chapter 6 presents an initial investigation into how the algorithms developed in Chapters

4 and 5 can be integrated into a complete planning system.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Representing Neighborhoods using
Multigraphs

This research examines the automation of the sewer system planning process. Ideally, an automated

planning system would use data in the same format already used by engineers. Otherwise, additional

effort would be required to use such a system. In this chapter, strategies for imposing structure

on neighborhood rendering data are examined. In particular, a road and intersection multigraph

structure used by many algorithms in this thesis is introduced. Not only does this chapter introduce

basic tools for this research system, it also provides an insight into data manipulation considerations

for an industrial strength system.

3.1 Dealing with Raw Data

The proposed sewer system automation begins with the data compiled from a neighborhood survey.

This data consists o f lines and arcs representing the curbs that delimit roads in the neighborhood.

For engineers, this data is sufficient for the two-dimensional road map to be visualized, and can be

used in cooperation with CAD software to allow an engineer to manually place pipes and manholes.

For this thesis, lines and arcs are taken to be the geometric primitives from which a more complex

neighborhood multigraph structure is built. It is assumed that these geometric primitives are avail

able as input to the automation process. Theses lines and arcs are represented in an input file, using

the format shown in Figure 3.1. Lines are defined by the three-dimensional coordinates of their

endpoints. Arcs represent a subset of a circle, and are defined by the center point, a radius and two

sweep angles. The arc is the portion of the circle swept from the first angle to the second angle in

the clockwise direction. These angles are measured in radians.

Note that each entry begins with a two letter prefix specifying what the geometry composes.

Currently, the only prefix in use is CR, specifying that this geometry is a piece of the road curbs.

This data field has been reserved to allow additional geometry, such as the pipelines in the sewer

system layout, or pipes or wires from other utility services, to be represented in the same file.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CR Line x \ y\ z \ x i 1 /2 Z2

CR Arc x y z radius angle 1 angle 2

Figure 3.1: Data format for line and arc geometric primitives respectively

The algorithms presented in this thesis require that additional structure be imposed on this data.

Geometry is grouped into objects classified as either roads or intersections. The following section

describes the process of identifying these components and organizing them into a multigraph com

posed of roads and intersections.

Extracting components from the initial data begins by identifying intersections. These are identified

by matching portions of the geometry with intersection templates. The test system for this thesis

defines templates for three-way and four-way intersections as well as cul-de-sacs. These templates

are shown in Figure 3.2. Once the intersections have been isolated, the remaining geometry is

separated into road segment components. To accomplish this, the geometry is organized into groups

of connected chains. These chains are paired such that each pair represents the curbs for one road

segment. The entrances of each road segment are identified as being either intersection adjacent or

a dead-end. Each intersection mouth must be adjacent to a road segment. The structure defined

above can be represented as a multigraph where the intersections are the vertices, and the roads the

edges. This structure is a multigraph, and not a simple graph, as it is possible to have more than one

edge between a pair o f vertices. The terms neighborhood graph and neighborhood multigraph will

be used interchangeably in this thesis.

Consider the sample neighborhood containing five labeled intersections as shown in Figure 3.3.

The neighborhood graph for this two-dimensional map is shown in Figure 3.4, where the intersec

tions are represented as vertices and the edges as roads. Note, that a single pair of intersections may

have m ultip le e d g e s b etw een them , as is the ca se for the in tersection pairs (3 ,5) and (1 ,4). A lso note

the dead-end road adjacent to intersection 2. Edges such as this are often excluded from the graph

since they only have once adjacency. In this case, the layout algorithms will operate on the graph

without this edge. Layouts for these dead-end edges are determined separately and appended to the

layout generated on the neighborhood graph.

To properly infer a neighborhood structure from the raw data, the geometry composing each

3.2 Inferring the Multigraph Structure

Figure 3.2: Patterns for cul-de-sacs, three-way and four-way intersections

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.3: Sample neighborhood

4 5

Figure 3.4: Neighborhood graph structure inferred from the neighborhood in Figure 3.3

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

intersection must match an intersection template. While the current research system can successfully

impose this graph structure on many real data files, it is likely that the templates shown in Figure 3.2

are not representative of all intersections occurring in real data. For example, a neighborhood may

contain five-way intersections.

As well, real data files may contain noisy data, complicating the pattern matching process. In

fact, several obstacles had to be overcome to accurately parse the test neighborhoods used in this

thesis. For example, there are often gaps between the lines and arcs defining a single curb. Theo

retically, the endpoints for a line or arc that is part of a curb should be shared by adjacent geome

try. In practice, the endpoint of one segment does not always correspond directly with its adjacent

component. This has little affect when rendering the road, but such a gap can be problematic for

computation. To generate the multigraph, these gaps must be identified and filled. In addition, there

were also instances of duplicate geometry. These duplicates must be identified and removed to avoid

errors in computation.

Such real world flaws are an implementation issue. Producing a robust system for converting

real data into the neighborhood graph is beyond the scope of this thesis. This work has been used to

implement a data conversion system adequate for this thesis, and to provide a proof of the concept

that an automated sewer system planner can use existing rendering data. The use of this type of data

is important, because it relieves the engineer of preparing new data sets for the automation process.

3.3 Cut Location and the Expanded Graph Structure

The previous section describes how the lines and arcs used to display the neighborhood can be

organized into an intuitive multigraph structure. However, this multigraph does not specify all of the

properties of the layout. Consider applying edge selection techniques to the neighborhood graph.

This results in a spanning tree where the edges define the core backbone of the sewer network.

Edges from the neighborhood graph not appearing in the spanning tree represent chord branches.

Each chord branch requires a cut in its corresponding pipeline, or else there will be a cycle in

the layout. This cut may lie anywhere along the pipeline. However, each potential cut location

defines another two-dimensional layout, which in turn defines new flows in each graph. Consider a

neighborhood where there are t trees, and n chord branches. If there are m candidate cut locations

per chord branch, the number of layouts will be t x m n , as there will be m ” different combinations

of cut locations amongst the chord branches.

Therefore, to reduce the size of the layout space, cuts are constrained to be located at one of the

two extremes of the chord branch. Using this simplification, an expanded graph structure may be

used to represent the exact location of each cut. Consider two adjacent vertices, v\ and v-2 , connected

by the edge e = V\V2 - If e is not a tree branch in the layout, it will be completely absent from the

spanning tree generated during edge selection. However, this absence tells us nothing about the

position of the cut within the pipeline. Based on the earlier assumption, there are two potential

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

locations for this cut. To represent this for an edge e, a dummy vertex n i ,2 is introduced. This edge

e is then replaced by two new edges e' = f 1 ^ 1,2 ar)d e" = ^2 ^ 1 .2 - This expanded graph can be

used to represent whether the edge e is a tree branch, and if not which end the cut will lie. In any

spanning tree, there are three possibilities for the expanded edges: both e' and e" are in the tree,

only e' is in the tree or only e" is in tree. If both edges are in the graph, then the original edge e will

be a tree branch in the sewer network. The case where only e' is in the tree is used to represent the

case where the cut is on the V2 side. Similarly, e represents the case where the cut is on the v\ side.

v3 v4

Figure 3.5: Simple neighborhood multigraph for four road loop

The above expansion is performed for each edge in the original neighborhood graph. Applying

this expansion technique to Figure 3.5 produces the expanded graph shown in Figure 3.6. A com

plete edge selection of this graph is represented in Figure 3.7. This graph represents a layout with

only one chord branch V2 V4 . The cut in this chord branch is located at vertex i>2 , which is specified

by the absence of V2 U2 , 4 in the spanning tree from the expanded graph shown in Figure 3.7.

3 ri2A

V3 n 3,4 VA

Figure 3.6: Expanded neighborhood graph for four road loop

The expanded graph structure introduced here provides a powerful representation for edge se

lection algorithms. This representation has several convenient consequences. The expanded graph

structure facilitates a cleaner description of algorithms. With the simple neighborhood graph, many

algorithms need to be defined as a two step process. In the first step, the core backbone for the sewer

network is calculated by finding a spanning tree in the graph. Flowever, the resulting graph does

not specify the position of cuts, only the edges where they exist. Thus, a second step to define the

location of cuts in these cut edges is required. In the expanded graph, each valid layout maps to a

spanning tree and vice versa. Edge selection can be represented as a single step algorithm generating

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vi V-2
- •

™1,3 • n2.

v3 n 3j 4 i >4

Figure 3.7: Spanning tree in expanded graph representing a complete edge selection

spanning trees in the expanded graph. Thus, the expanded graph provides a more complete layout

representation and a more convenient way to express edge selection algorithms. It is worth noting

that the expanded graph will be larger than the original neighborhood graph. In the expanded graph,

the number of vertices increases by the number of edges in original graph. As well, the number of

edges in the expanded graph is twice the number of edges in the original graph.

This expanded graph will utilized by the sewer planning prototype presented in Chapter 6 .

3.4 Conclusion

This chapter discussed how data used to display a neighborhood can be converted into a form used to

compute the layout. Several basic templates that can be used to identify intersections are introduced.

Once intersections have been identified and extracted, the remaining geometry is separated into the

roads connecting these intersections.

This chapter also discusses the position of cuts within chord branches. The location of cuts is

constrained to the extremities of each road to limit the number of sewer system layouts. Based on the

assumption that the cuts will lie at the extremities of each road, an expanded graph structure is intro

duced. This graph structure efficiently represents the tree and chord branches in a sewer network as

well as the position of the cuts within each chord branch. The expanded graph structure contributes

a simple structure that represents direction and cut information for primary and secondary pipelines

of a sewer system. This structure can be adopted for existing and new edge selection algorithms.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Local Placement

The automation and optimization of real-world sewer systems involves many variables, such as

manhole and pipe positions, and the depths, slopes and diameters o f pipes. The approach adopted

in this thesis separates the planning process into easier to solve sub-problems. Each of these sub

problems are solved separately, and the results combined to form a complete sewer plan. One

important sub-problem is the positioning of pipes and manholes within a single pipeline. This

chapter explores techniques to generate these pipelines by placing pipes and manholes between two

fixed points.

4.1 Problem Definition

Consider the problem of connecting two fixed points with a pipeline. In the sewer planning problem,

pipelines are constrained to lie beneath roads. For this problem, roads are represented as a simple

polygon. The term simple polygon is used to denote a polygon with a well-defined interior and

exterior. To ensure the pipeline is placed underneath the road, the two initial points, and each point

in the pipeline, are required to lie totally within this polygon. In addition, manholes are required

whenever a pipe either reaches a maximum distance, or changes directions. Therefore, even if the

two points are visible via a straight line, it may not be possible to connect them using a single pipe.

There are two aspects of this sub-problem that affect the cost. These are pipe length and the

number of manholes. The variance in pipe length between two layouts is relatively small. This

fact, coupled with the high cost of installing manholes, makes the number of manholes the cost-

dominating factor. Therefore, the performance of placement algorithms is evaluated by the number

o f m an h oles in the p ip elin e.

Several placement approaches are examined in this chapter. First, a suite of techniques using

control points to guide the placement is presented. The first technique uses control points in the

center of the road to guide the placement. To improve upon this center-based approach, two solutions

using a heuristic that guides the pipeline toward curbs are explored. The final approach iteratively

expands frontiers of reachable points.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Control Point Placement

The first placement techniques explored guide placement using a set of control points. Any point

lying inside of the road polygon may be used as a control point. Pipes are placed one at a time, in

the direction of the furthest reachable control point. This placement scheme is greedy in that the

longest pipe length possible is always used. The basic algorithm can be defined as the following two

step process:

1. If the goal manhole can be reached using an allowable pipe length, connect the current man

hole to the goal, otherwise

2. Identify the furthest control point that is reachable via a straight line lying totally within the

road polygon and, using this line as a direction vector, place a pipe of maximum allowable

length.

PLACEPlPE(c u r r e n tm a n h o le , P2, m a x l e n g t h , layou t)

/*
INPUT VARIABLES: ___________________
P2 - Control point guiding search along vector curren tm anho le , P2

maxlength: The maximum allowable pipe length

INPUT/OUTPUT VARIABLES:
currentmanhole: Last placed manhole, used as starting point for the pipe
layout: List of manholes defining a pipeline
*/

if D lST A N C E (curren tm anho le ,p2) > m a x le n g th
then

(n o r m <— NORMALIZEDDlRECTIONVECTOR(cwrentTOan/io/e, P2)
{ e n d m a n h o le <— c u r r e n tm a n h o le + m a x le n g th x n o r m

else
e n d m a n h o le <— p 2

A d d M a n h o l e (e n d m a n h o le , layout)
A D D P lP E (curren tm anho le , e n d m a n h o le , layou t)
r e tu rn (e n d m a n h o le)

Figure 4.1: Pseudo-code for function placing the largest possible pipe starting at the point current
manhole

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTROLPoiNTPLACEMENT(roa<i,p i ,P 2 , m a x l e n g t h)

/*
INPUT VARIABLES:
road\ Polygon delimiting the area of the road
P i,P 2 - Beginning and ending points for the pipeline
maxlength: The maximum allowable pipe length

RETURNS:
layout. List of manholes that defines the pipeline between p \ and P2

*/

layou t <r~ 0
c o n tro lp o in ts <— F i n d C o n t r o l P o i n t s (road)
c u r r e n tm a n h o le *— p \
while c u r r e n tm a n h o le ^ P2

do
' i f R eA C B A B L E (c u rren tm a n h o le , P2)

then
c u r r e n tm a n h o le <— PLA C EP lPE (curren tm anho le ,p2)

<

else
(f p <— FURTHESTREACHABLEPoiNT(currentman/io/e, con tro lpo in ts)

^\ c u r r e n tm a n h o le <— P l a c e P i p e (c u r r e n tm a n h o le , f p)
r e tu r n (la y o u t)

Figure 4.2: Pseudo-code for function to place a pipeline between two points where the placement is
guided by control points

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Consider the placement of a single pipe. For a moment, assume the control point guiding this

placement has already been identified. PLACEPIPE, with pseudo-code shown in Figure 4.1, de

scribes the details of how the pipe is placed. Placement begins from the last manhole placed, rep

resented by currentmanhole in the pseudo-code. The direction of this pipe will be defined by the

vector from currentmanhole to p 2 - The resulting pipe will meet one of two criteria. Either the pipe

will be of the maximum allowable length, or it will halt on the boundary of the road so as to stay

within the polygon. The fact that each control point lies within the road polygon ensures pipes are

not placed outside of the road. PLACEPIPE ensures this is the case by not allowing the placed pipe

to be longer than the vector curren tm anho le , p 2 -

Using the function PLACEPIPE, the pseudo-code for placing the pipeline is defined in CON-

TROLPOINTPLACEMENT, shown in Figure 4.2. During each iteration, the algorithm checks

whether the goal point, p 2 , is reachable from currentmanhole. If so, the algorithm proceeds to

place a straight pipeline until the goal point is reached. If not, then the furthest reachable control

point is identified and pipe placement is conducted using the function PLACEPIPE. Note that this

function assumes the existence of a reachable control point. If no reachable point exists, a pipe will

not be placed. Each method used to generate control points has been developed to ensure that at

least one control point is reachable from anywhere in the road.

Figure 4.3: Control points for centerline placement

The function FINDCONTROLPOINTS is key in determining the form of the pipeline produced

by CONTROLPOINTPLACEMENT. It is this function that determines the control points guiding

the search. Two different approaches are used to identify control points. The first is referred to as

centerline, and is intended to guide the search toward the center of the road. Control point selection

begins by arbitrarily choosing one of the two curbs. Control points are defined at the center of the

road at each place where the chosen curb changes direction. Note that this process could have been

done for both curbs. However, for most roads the two curbs are very similar in structure, and thus

defining control points using two curbs generate pairs of very close points. Figure 4.3 shows an

example road component, with the control points represented by crosses. The second approach is

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.4: Control points for curbpoint placement

referred to as the curbpoint approach, and is used to guide the pipeline in such a way that is likely

to cut corners. For each curb, the points where the curb changes direction define the control points.

An example of these control points are shown in Figure 4.4.

When using curb points to guide placement, the aforementioned algorithm only selects a single

point from two curbs. However, there is no guarantee that the chosen curb point will generate the

best solution. To improve the chances of generating a better solution, this algorithm is modified to

consider the furthest control point from each of the two curbs. Conceptually, this algorithm builds

a binary tree, as each step in the placement expands the solution using two different manholes. The

leaves of the tree correspond to complete layouts, and a node at depth n corresponds to the placement

of the n th manhole in the pipeline.

The pseudo-code for this approach is presented in Figures 4.5 and 4.6. To differentiate between

the convention and doubling approaches, the two techniques will be referred to as curbpoint single

and curbpoint doubling placement respectively.

4.3 Frontier Placement

The frontier placement algorithm returns a close approximation to the minimum number of manholes

required to place the pipeline for a road segment. This approach is based on the idea of propagating

a frontier of reachable points. A frontier can be defined in terms of an initial set of points and a

maximum pipe length. The frontier for a set of points is a curve defining the furthest reachable

points in all directions from the set of points. The idea of this algorithm is to propagate reachability

frontiers from the in itial point until the g o a l po in t can be reached. In co n tin u o u s sp a ce , the num ber

of frontiers required to reach the goal point defines the minimum number of manholes required to

place a pipeline from the initial point to the end point. A proof sketch for this claim is presented in

Appendix A.

Consider the initial manhole as the first frontier, the i th frontier represents the furthest reachable

points using i — 1 pipes. Figure 4.7 shows a screen shot of the frontiers generated during an actual

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GREEDYDoUBLlNG(roa(i ,pi ,p2, m axlen g th , layout)

/*
INPUT VARIABLES:
road: Polygon delimiting the area of the road
P i,P 2 - Beginning and ending points for the pipeline
maxlength: The maximum allowable pipe length

RETURNS:
Manhole layout from GreedyRecur function call
*/

// Takes the polygon representing the road, and returns geometry for each
// curb separately
G e t C u r b s (c w W , curb2 , road)
con tro lpo in tsl FlNDCONTROLPOINTS(c«r61)
controlpoints2 e - F i n d C o n t r o l P o i n t s (c u ? ’62)
cu rren tm anho le <— p\
la y o u t«— 0

r e tu r n (G re e d y R e c u r(p i ,P 2 , c o n tro lp o in ts l, con tro lpo in ts2 , m a x len g th))

Figure 4.5: Pseudo-code for main greedy doubling function

placement. The initial manhole is the rightmost cross, with the leftmost cross being the target

manhole. Each cluster of crosses is the discrete approximation of the frontier found by applying

frontier placement. Note that the target manhole is considered as the fifth and final frontier. To

find a specific placement, a backward trace is conducted from the destination manhole, through

each frontier back toward the source manhole. In choosing the manholes on adjacent frontiers, care

must be taken to ensure no pipes longer than the allowable length are placed. It is a straightforward

process to trace a single valid layout from the frontiers. It is worth noting that pipe length can be

minimized by searching through the space of different manhole pairings between frontiers. However,

the computational effort required for this search is often expensive and provides little in the way of

cost savings to the overall layout.

4.4 Local Placement Tests

The performance of these local placement algorithms has been tested using several synthetic and

real roadway corridors. These roads have been chosen to exhibit different characteristics. Test roads

range from straight curbs, to gentle bends to very windy roads. The synthetic roads were generated

using a tiling approach, where each tile is either a straight road piece or a bend.

Layouts were produced for each test road using the centerline, curbpoint single, curbpoint dou

bling and frontier approaches. In addition, the maximum pipe length was varied, providing addi

tional data for analysis. The performance of each algorithm is evaluated by measuring the number

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G re e d y R e c u r (p i ,P 2 , c o n tro lp o in ts l, con tro lp o in ts l, m a x len g th)

/*

INPUT VARIABLES:
road: Polygon delimiting the area of the road
P i,P 2 - Beginning and ending points for the pipeline
controlpoints], controlpoints2: Set of control points from each curb respectively
maxlength: The maximum allowable pipe length

RETURNS:
layout: Least cost layout from layl and lay2
*/

G e t C u r b s (c w 61, curb2 , road)
if p i = p 2

then return (la y o u t)
if R E A C H ABLE(currentm anhole , P2)

then P l a c e P i p e (c u r r e n tm a n h o le , P2)

else
' / I <— FURTHESTREACHABLEPOINT(currpomt,CW-M)
/ 2 <— FURTHESTREACHABLEPOINT(currpoint,crtr62)

la y l <— l a y 2 <— la y o u t
f i <— Pl ACEP\PE(c u r r e n tm a n h o le , f 1, l a y l)
/2 *— P l a c e P i p e (c u r r e n tm a n h o le , / 2, lay 2)

la y l <— GREEDYRECUR(/i, p 2, road, c o n t r o lp o in t s l , c o n t ro lp o in t s l , l a y l)
l a y ! <— G r e e d y R e c u r (/ 2,P 2 , road, c o n t ro lp o in t s l , c o n t ro lp o in t s l , la y l)

return (MlNIMUMLAYOUT^ayl, la y !))

Figure 4.6: Pseudo-code for recursive greedy doubling function

Frontier 3

Frontier 4

F ro n tie r 5

Frontier 2
Frontier 1

Figure 4.7: Example road segment with five frontiers

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of manholes in each layout. The length of the pipeline is not considered, as the number of manholes

is the cost dominating consideration for these pipelines.

Figure 4.8: Real neighborhood straight stretch

Tests were conducted using a test suite of five different roads. The geometry for these roads

is displayed in Appendix B, while the results of the tests are shown in Appendix C. For the test

instances discussed in this section, the geometry from Appendix C has been reproduced within the

chapter.

From the results of this test suite, the following observations can be made. Even for relatively

straight road segments, a simple algorithm may not generate a placement with the fewest number

of manholes. An example of a relatively straight road from a real neighborhood can be seen in

Figure 4.8. For each of the pipe lengths used to generate a layout for this road, the two curbpoint

approaches and the frontier approach generate the same number of manholes. However, for several

instances the centerline generated a layout with one more manhole than layouts generated by the

other three algorithms. These results indicate that for roads with only gentle bends, the choice of

local placement algorithms can affect solution quality.

Pipe Length Centerline Curbpoint Single Curbpoint Doubling Frontier
40 8 8 8 8

50 7 7 7 7
60 6 6 6 6

70 6 5 5 5
80 5 5 5 5
90 5 4 4 4
1 0 0 5 4 4 4
1 1 0 5 4 4 4
1 2 0 4 4 4 4
130 4 4 4 4
140 4 4 4 4
150 4 4 4 4

Figure 4.9: Number of manholes in placements for Real Straight Road

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pipe Length Centerline Curbpoint Single Curbpoint Doubling Frontier
40 1 2 1 2 11 11

50 1 0 1 0 1 0 1 0

60 1 0 1 0 9 9
70 8 1 0 9 7
80 7 8 7 7
90 7 6 6 6

1 0 0 7 7 6 6

1 1 0 7 7 6 6

1 2 0 7 7 6 6

130 7 7 6 6

140 7 7 6 6

150 7 7 6 6

Figure 4.11: Number of manholes in placements for Test Road B

For roads with curves, the curbpoint and frontier algorithms are better at discovering layouts

with fewer manholes than the centerline approach. The layouts generated for Test Neighborhood

B, shown in Figure 4.10, present a good illustration of the differing capabilities of each algorithm.

Consider the number of manholes generated for each layout, as shown in Figure 4.11. For most of

the pipe lengths in this test, the curbpoint doubling and frontier algorithms generate solutions with

fewer manholes than centerline and curbpoint single. Cases where this happens are shown for the

six problem instances in the range from 100 to 150.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.12: Test Road D

Another consideration for these algorithms is computation time. To provide an analysis of the

time required for each algorithm, tests have been conducted on Road D, shown in Figure 4.12. Road

D is a real road taken from a real neighborhood. This road was chosen for two reasons. First,

the road is o f realistic length. Second, this road contains two curves, making the placement more

complex than a straight stretch of road. Maximum pipe lengths were varied from very small to about

twice the expected pipe maximum to evaluate time for layouts with varying numbers of manholes.

These results are presented in Figure 4.13. The computation time required for both the centerline

and curbpoint single approaches is almost negligible. For the frontier approach, computation time

is consistently in the 0.5-0.'7 second range regardless o f the maximum pipe length. This result is

important, as it shows that the frontier approach scales well. The shorter the maximum pipe length,

the larger the number of frontiers that will need to be calculated. Therefore, this result indicates

that the additional frontiers required are calculated with a very low cost. The curbpoint doubling

approach did not fare as well. For the shortest pipe length, this algorithm required 2,738 seconds to

compute a layout containing 24 manholes.

Maximum Length Centerline Curbpoint Single Curbpoint Doubling Frontier
15 0 . 0 0 2 0.043 2,738.0 0.645
2 0 0 . 0 0 1 0.034 70.64 0.586
25 0.000 0.027 11.56 0.506
30 0 . 0 0 1 0.024 3.17 0.564
35 0 . 0 0 1 0.019 0.910 0.510
40 0 . 0 0 0 0.018 0.714 0.482
45 0 . 0 0 1 0.017 0.383 0.555
50 0.000 0.015 0.284 0.567
55 0.000 0.015 0.225 0.625
60 0 . 0 0 1 0.015 0.162 0.607

Figure 4.13: Layout computation times in seconds for Test Road D

The curbpoint approaches employ a heuristic to cut corners that often outperform the centerline

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

approach. However, the curbpoint approaches will not always outperform centerline. An example of

this occurs at pipe length 70 for Neighborhood B, shown in Figure 4.11. Notice here that the center-

line approach produces a layout with fewer manholes than both the curbpoint single and curbpoint

doubling approach. However, in this case the frontier approach is able to produce a solution with

fewer manholes than each of the other algorithms.

Remember that the frontier approach finds an approximation of the optimal layout. The quality

of the solution depends on the sampling of the continuous space. In each of the tests shown here,

the frontier technique generates layouts that are at least as good as the solutions generated using

other algorithms. In some cases, the quality of the solution found by the frontier algorithm is better

than the other solutions. While this does not indicate that the frontier approach is finding optimal

solutions, it gives evidence that it is effective at finding good quality solutions.

In this section, performance for control point and frontier algorithms was measured against the

performance of simpler algorithms. However, a more interesting metric is to compare the number

o f manholes with placements from real neighborhoods. Unfortunately, there are several reasons that

this is not a fair comparison. One reason is that local placement assumes a single fixed maximum

pipe distance. In the pipeline from the real neighborhood, this restriction does not exist. Further

more, an engineer may sometimes use curved pipes to avoid placing manholes.

For local placement, the only data needed is the curb data. However, engineers consider addi

tional factors, such as the elevation at different points in the road. Part of the reason these algorithms

ignore elevation was the absence of this information in the testing data.

These different problem constraints make it difficult to compare solution quality with real lay

outs. However, this does not indicate that the algorithms presented here are not useful. Rather, these

algorithms provide a set of basic tools to be used in the automation process. For an industrial strength

planning system, they will have to be enhanced to meet the additional real world constraints.

4.5 Overview of Computational Complexity

In each of the tests presented in this chapter, road layouts were always generated in a relatively

small amount of time. However, pipeline placement is a primitive tool for the entire sewer system

planning problem. To predict how each of these algorithms will scale as the size of the roads grow,

computational complexity will be examined.

Consider the process of placing pipe(s) from a fixed starting manhole. During each step, the

algorithms presented here evaluate a set of candidate manholes, expanding a single or multiple

layouts respectively. Determining the candidate manhole set and adding the pipe to the layout are

not computationally intensive. The main computational consideration is determining whether the

resulting pipe lies within the curbs of the road. This analysis will include a description of the

computation entailed by this test, and estimate a bound on the number of these tests required for

each of these algorithms.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Testing whether a pipeline lies within the curbs of the road is done primarily using line segment

intersections. If the line segment does not intersect the road polygon, it can be said that the segment

is either totally inside or outside of the polygon. To determine whether the line segment is totally

inside the polygon, the midpoint of the line segment is tested to see if it is inside or outside the

polygon. A single line segment intersection test is not expensive. However, the number of these

tests depends on the line segments in the road. For a highly detailed road with many line segments,

this test must be performed many times, adding to the overall computation required.

Consider the centerline approach, where the number of control points is p and the number of

manholes in the layout produced is m . During each iteration, there is a maximum of p line segment

tests, one for each potential control point. Therefore the number of line segment tests for this

algorithm is on the order of 0 (m p). A similar argument can be made for the curbpoint single

approach. However, in this case the number of control points, p, will be roughly twice that of

centerline since the control points are generated from both curbs instead of one. Now, consider the

curbpoint doubling approach. For each placement, it spawns two layouts. If the layouts each have m

manholes, then this approach will generate 2m — 1 layouts to be considered. Therefore, the number

of line segment tests required for this approach is on the order of 0 (m p 2 m)

The implementation of the frontier approach casts r rays to grow the frontier, where r is the

number of rays used to sample the propagation of the complete frontier. That is, from each point

in the previous frontier, r rays are cast for the next frontier. From each of these rays, s points are

sampled along the ray. It seems that this approach will produce a large number of points very quickly,

r after the first frontier, r 2 along the second frontier, and in general r n on the n th frontier. Using

this logic, the number of line segment tests required will be on the order of 0 (s r m). However, not

every point will belong to the sampled frontier. In this implementation, the true frontier is sampled

by q regions. Each of these regions represents a distance range from one of the curbs. For each

region, the frontier point with the most forward progress toward the goal is chosen as a true frontier

point. Consider the road segment show in Figure 4.14, where the pipeline is being placed from left

to right. The frontier for this road is sampled using three regions, where the regions are separated

using dashed lines. Regions 1 and 2 contain only one point each, p% and p 2 respectively. Each of

these points will be the chosen frontier sample point for their respective regions. Region 3 contains

two points, ps and p±. Since the point p,\ represents further forward progress along the road, it is

chosen as the frontier point for region 3 . 1

T herefore, there w ill be n m a x im u m q frontier p o in ts produced during each iteration. T he num ber

of line segment tests required for this algorithm will be on the order of O(qrsrri). While this may

seem like an expensive operation, sample sizes can be chosen relatively small without affecting the

quality of the algorithm. Therefore, frontier placement is generally not computationally expensive

' For any point within the road, its progress toward the goal is measured as follows. One o f the two curbs is arbitrarily
chosen as a basis for the measurement. To measure the forward progress represented by a point, it is first projected to the
closest point on the chosen curb. Progress is measured as the distance between the start o f the curb and this projected point.
So, the point with the largest progress distance is considered the point with the greatest forward progress

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R egion 1
.................................— . .

R egion 2
Pi

+ P2

R egion 3
+ P 3 P a

---------------------------►

To G oal M anhole

Figure 4.14: Frontier sampling example

and should be preferred to each of the other placement algorithms.

4.6 Conclusion

When given the freedom to place pipes anywhere underneath the road, the curbpoint and frontier

approaches are often capable of generating layouts that save manholes. However, in some cases

engineers are restricted to lay the pipeline in the center of the road. If this is the case, the centerline

placement scheme can be used to automatically and quickly produce such a layout. In other cases,

the placement of pipes and manholes is limited to a smaller corridor referred to as a conduit. In

this case, the curbs of the road may be replaced with the boundaries of the conduit and any of the

aforementioned algorithms may be used. The centerline and curbpoint single approaches should be

used when local placement is required as a fast primitive operation. When more time can be allotted,

frontier placement should be used.

The algorithms presented in this chapter are effective for placing a pipeline between two fixed

points. This is only a small sub-problem of the sewer system planning problem. However, these

algorithms can be used as primitive components for algorithms used for planning an entire sewer

system. The next chapter introduces several higher level algorithms that use local placement to

generate a pipeline for each of the roads in an entire neighborhood.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Global Manhole Placement

In the previous chapter, techniques for placing a pipeline between two fixed points were introduced.

Using these techniques, this chapter examines algorithms to reduce the number of manholes and

pipes in a placement for an entire neighborhood. The approach taken is to fix a manhole at each

intersection, dividing the problem into several separate local placement problems. By defining a

set of candidate manholes for each intersection, the global placement problem is transformed to a

discrete domain. Two algorithms to choose candidate manholes for each intersection are presented.

The first sequentially fixes intersection manholes based on a greedy heuristic measuring the best

layout for directly adjacent roads. The second approach employs a branch-and-bound search to find

the best set of fixed manholes with respect to the manhole discretizaton. The performance of the

branch-and-bound search is improved with the introduction of two enhancements. The algorithms

presented in this chapter are evaluated using real neighborhoods.

5.1 Modeling the Problem

Global placement is based on the assumption that each intersection contains a manhole. This as

sumption is justifiable. Intersections are components where multiple road segments merge. Such

merging constitutes a change in pipe direction for at least one pipeline, which requires a manhole

by definition. Therefore it is reasonable to say that the globally optimal layout should contain a

manhole in each intersection.

The previous argument motivates the necessity of a manhole for each intersection. However, the

fixed manhole may lie anywhere within the intersection. The algorithms presented here are based on

the h y p o th esis that the p la cem en t o f the fixed m a n h o les a ffects the number o f m a n h o les in a pipeline

between two intersections. Using this assumption, a general two step solution strategy is proposed.

1. Fix one manhole for each intersection;

2. Using these fixed manholes, apply local placement to each road component. 1

1 In som e cases, one end o f a road will not be adjacent to an intersection, rather it ends at a dead-end. In this case, a fixed
point can be chosen anywhere in the region o f the dead-end.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The algorithms in this chapter address the first step. The local placement problems in step two

are solved using algorithms from Chapter 4.

Consider fixing a manhole for a single intersection. The domain of potential manhole positions

is continuous; any point that lies inside the geometry delimiting the intersection is a valid manhole

position. The approach taken is to transform this continuous space into a discrete one. Each inter

section will be sampled, resulting in a discrete set of fixed candidates. This discretization allows the

application of discrete search techniques to evaluate different sets of fixed candidate manholes.

Transforming the candidate manhole set into a discrete space facilitates the use of discrete

search-based algorithms. However, this transformation can potentially result in a loss of optimality.

If the transformation from the continuous domain to the discrete domain does not include a set of

optimal candidate manhole positions, it will not be possible to find the optimal solution.

By fixing a candidate manhole for each intersection, the problem is transformed into separate lo

cal placement problems; one for each road in the neighborhood graph. For each road, the algorithms

in this chapter fix a single point in both adjacent intersections. Using a local placement algorithm

from Chapter 4, a pipeline can be generated between the two fixed points, where the geometry of

the road is the simple polygon.

Figure 5.1: Fixed nodes and potential connections

Determining the optimal placement of pipes and manholes for an entire neighborhood is a com

plex problem. The placement of a single intersection manhole is highly correlated with the place

ment of other intersection manholes. Consider the process of choosing a candidate manhole set for

the example graph structure shown in Figure 5.1, where each of the vertices represent intersections

and the edges represent roads. Let the process start by choosing the best manhole for intersection

2. The position of this manhole affects the quality of the solutions for the roads road \2 , road,2-4

and road 2 r, • To choose the best manhole position for intersection 2 one may fix the manholes for

intersections 1, 3, and 5 such that the pipelines for the roads adjacent to intersection 2 contain the

fewest manholes. However, this local optimization approach may not result in a globally optimal

so lu tion s. C on sid er in tersection 1. In add ition to r o a d \ 2 , it is a lso con n ect to in tersection 4 via

ro a d u . Therefore, intersection 2 is indirectly related to intersection 4, as the position of the fixed

manholes for intersections 2 and 4 must be considered when determining the best manhole position

for intersection 1. An algorithm designed to find the globally optimal solution must consider each

of these correlations.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Definitions and Basic Functions

In this section, some terminology and functions used in the algorithm pseudo-code from this chapter

are introduced. Define N to be a neighborhood, and I and B, to be the set of intersection and road

components of the neighborhood respectively. Let the number of intersections be \I\ = n and the

number of roads be \R\ — m . Further, let ij £ I be the j th intersection. The function layou t(I)

defines a mapping from each i € I to its corresponding fixed manhole. If no manhole has been fixed

for i, then layou t(i) = 0. A solution to the global manhole placement problem is a mapping, layout,

such that la yo u t(ij) ^ 0, Vi, £ I. In other words, a manhole has been fixed for each intersection of

N . For the purpose of the algorithms presented here, these solutions will be considered complete,

as the actual layout can be generated from this mapping using local placement algorithms.

The cost of the placement for a road is defined to be the number of manholes in the placement

between the two fixed endpoints. The function P L A C E (c \ , 0 2) will be used to denote a generic

local placement between manholes c\ and C2 and the number of manholes in the placement is de

noted \P L A C E (c i, C2)\- To define the manhole placement for each road, a manhole must be fixed

for both adjacent intersections. Each pairing of fixed manholes in both intersections adjacent to a

road will be referred to as a candidate manhole pair.

The pseudo-code presented in this chapter utilizes several simpler functions. A description of

these functions is presented below.

ROAD(AI): This function returns the set o f roads R contained in neighborhood N .

ADJACENTINTERSECTIONS(r, 1 \ , %A'- Given a road r , returns the two adjacent intersection *1

and t 2 -

GETOTHERADJACENTINTERSECTION(r, i): Given a road r and an intersection i, this function

returns the other intersection adjacent to this road

BUILDINTERSECTIONLIST(Ar): This is a generic function which given a neighborhood N ,

builds an ordered list of intersections. This function may be implemented using any intersec

tion ordering heuristic.

LOWESTCOSTROAD(r): For a road r , returns the number of manholes in the minimum cost

placement for the road. This function considers each pair of fixed manholes for a road.

GETGRID(i): For an intersection i, returns the set of candidate manholes.

EMPTY(Z): Given a list I, this function returns whether this list is empty or not.

POPFRONT(I): Given a list I, this function returns the front item and removes it from the list.

Partial solutions are an integral concept to the algorithms presented in this chapter. A partial

solution is a mapping where manholes are fixed for some intersections, and not fixed for others. If a

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

manhole is not fixed for the intersection ik, the mapping function returns I ay out (ik) = 0. The size

of the map corresponds to the number of fixed manholes, and layout defines a complete solution

when \layout\ = |/ | .

To evaluate the quality of a partial solution, a cost estimation function is necessary. Pseudo-code

for the cost estimation function is presented in Figure 5.2. This estimation provides a lower-bound

based on the best achievable layout for each individual road. This estimate is calculated as the sum

of cost estimates for each road in N . The estimate for an individual road depends on one of three

situations:

1. Both adjacent manholes are fixed. In this case, the exact number of manholes in the pipeline

for the road is used. In the pseudo-code shown in Figure 5.2, this cost is calculated by Case I.

2. Neither adjacent manhole is fixed. In this case, the estimated cost corresponds to the lowest

number of manholes in a pipeline between any of the candidate manhole pairs. This quantity

is calculated by Case II in Figure 5.2.

3. One adjacent manhole is fixed. The estimated cost is the lowest number of manholes from

a pipeline using the one fixed candidate manhole. Cases III and IV from the pseudo-code in

Figure 5.2 represent this situation.

Note that this cost estimation function requires the calculation of the local placement cost for

each corresponding candidate manhole pair. The cost o f a single candidate pair may be calculated

multiple times. Therefore, for each road the cost of placements for each candidate manhole pair is

pre-calculated and cached in a cost map. Note that if the size of each candidate manhole set is p, that

means that there are p 2 candidate pairs per road. Therefore, this pre-processing step will calculate

exactly m p 2 local placements. This number will typically be small. Thus, this pre-processing step

is not a key computational consideration for most global placement algorithms.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ESTIMATECOST(i?, layout)

I*

Input Variables:
R: A set of roads for which to estimate a layout cost.

layout: A partial layout defining the current set of fixed manholes

Returns:The sum of the estimated costs for each r e R
*/
cost <— 0
for each r £ R

/* Get intersections adjacent to road r */
ADJACENTINTERSECTIONS(r, i i , i 2)
/* Case I:Both adjacent manholes fixed, use precise cost */
if layout[i\ \ yf 0 and la y o u t [*2] 7̂ 0

then cost *— cost + \PhACE(layout[ii],layout[i2})\

/* CASE II: If neither adjacent manhole is fixed, the least number of manholes
in any pipeline generated from a candidate pair is added to the cost */
else if layou t[i \ \ = 0 and l a y o u t ^] = 0
then {cost <— cost + LowESTROADCOST(r)

/* Case III: If la y o u t^] A 0, then the lowest possible road cost
with *2 fixed is added to the total cost */

else if la y o u t [ii| = 0
'g r id = G e t G r i d (j i)
m in c o s t = 0 0

for each m G g r id
|PLACE(m, layout[i2\)\ < m in c o s t

then m in c o s t <— |PLACE(m, layout[i2\)\
cost <— cost + m in c o s t

do <

then
do

/* Case IV: If layout[i\) / 0, then the lowest possible road cost
with i \ fixed is added to the total cost */

else if la y o u t [i2] = 0
g r id <— GETGRID(i2)

then

return (cost)

m in c o s t <— 0 0

for each m £ g r id
i f \PhACE(layout[ii] ,m)\ < m in c o s t

then m in c o s t <— \PLACE(layout[ii] ,m)\
cost +— cost + m in c o s t

do

Figure 5.2: Pseudo-code for function to estimate an upper bound on the cost for a road

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Traversing the Candidate Manhole Space

Consider the different ways to fix candidate manholes as a discrete solution space S. To minimize the

cost of the layout, the best set of fixed manholes from S must be found. However, as the number of

candidate manholes grows, the size of this space can become quite large. Consider a neighborhood

with n intersections and p candidate manholes for each intersection. The number of ways to fix a

single manhole for each intersection is then pn . As the values of p or n grow, enumerating all of the

sets of fixed manholes is not computationally feasible. More sophisticated algorithms are required to

traverse the solution space. In this section, two algorithms to traverse the candidate manhole space

are proposed. The first algorithm defines an iterative process where manholes are fixed based on

a localized greedy heuristic. The second algorithm employs a branch-and-bound search strategy to

find the optimal placement subject to the constraints in the problem formalization[24]. 2

5.3.1 Greedy Sequential Manhole Placement

The greedy sequential manhole placement approach fixes manholes in an iterative fashion, where

each iteration corresponds to a single intersection. For each intersection, a localized cost heuristic

is used to determine the best candidate manhole. The chosen manhole is the one that minimizes the

sum of the cost estimates of the adjacent roads.

One way to potentially improve the performance of this algorithm is to fix the order in which

intersections are processed. One heuristic explored orders intersections based on the number of

adjacent roads, referred to as the degree of the intersection. Using this heuristic, intersections are

sorted by descending degree. The rationale behind this is that fixing a manhole for a higher degree

intersection will have more effect on the optimization since this manhole will be involved in the

placement of more roads.

The pseudo-code for this algorithm is presented in Figure 5.3. This algorithm starts by ordering

the intersections. The function BUILDINTERSECTIONLIST represents a generic function that

builds the list of intersections. This function may implement any intersection ordering scheme.

Each iteration of the while loop corresponds to the process of fixing a candidate manhole for a

single intersection. Consider the iteration for fixing a manhole for intersection i. The outermost

for loop, for each m G g r id] , iterates through all of the candidate manholes for intersection i to

identify the one with the lowest cost estimate. The next two nested for loops are used to find the

lowest cost estimate for each road adjacent to i. At the end of each while loop iteration, the candidate

manhole that produces this lowest cost estimate is fixed for the current intersection. Note that grid -2

represents the candidate manhole grid for the intersection at the opposite end of an adjacent road. It

is possible that a candidate manhole has been fixed for *2 during a previous iteration. In this case,

the fixed manhole is used instead of the candidate manhole grid.

2This placement is optimal with respect to the discrete grid o f possible manhole positions and the chosen local placement
algorithms. A better solution may exist in the continuous problem domain, but is not be represented in the discrete domain.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G r e e d y S e q u e n t i a l L a y o u t (/ V)

/*
Input Variables:
N: The neighborhood graph, containing the roads and intersections

Returns:
layout: Specifies the fixed manhole for each intersection in N
*/

/* Build an ordered list of intersections from N */
I n tL i s t <— BUILDlNTERSECTIONLlST(iV)

/* Fix the manhole for each intersection in the list sequentially */
while not E m p t y (In tL is t)

' i 4- POPFRONT(JnfLisf)
/*Initialize best manhole to null, and the estimated cost for that manhole to oo */
bestM anhole <— 0

m inA d ja cen tR o a d C o st <— oo

grid i <— G e t G r i d (z)
/*This loop estimates the cost associated with each candidate manhole for i.*/
for each m j G gridi

adjacentRoadCost <— 0
for each road r adjacent to i

‘̂ opposite GETOTHERADJACENTlNTERSECTION(r, i)

I* If a manhole is fixed for iopposite, add this as the only point in
grid i, otherwise grid i gets the entire set of candidates*/
if layOut^lopposite\ = 0

then grid i <- GETGRlD(ioppOSjte)
else grid i <- layout[iopp0site}

do <
do

do < m in R o a d C o st <— oo
for each m 2 G gridi

|PLACE(m i,m 2)| < m in R o a d C o st
then m in R o a d C o s t <— |PLACE(mi, m 2)|

adjacent RoadCost <— adjacent RoadCost + m inR oadC ost

do (i f I
I t

/* If the sum of estimated costs for adjacent road is less than the previous
best then set the best manhole to m i */

if adjacent RoadCost < m in A d ja cen tR oadC ost
(m inA d jacen tR oadC os t <— adjacent RoadCostthen \b e s tM a n h o le <— m 1

layout[i} <— bestM anhole
return (layout)

Figure 5.3: Pseudo-code for the greedy sequential global placement algorithm

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3.2 Branch-and-Bound Placement

As previously discussed, pure enumeration is often not a computationally feasible method for finding

the best set of candidate manholes. To find this best set without generating each combination, a

branch-and-bound approach is used.

Instead of sequentially fixing only one manhole per intersection, a backtracking approach is used

to evaluate multiple solutions. Partial solutions only need to be expanded if the lower bound on the

cost is less than the cost of the current best solution. This lower bound for a partial solution is found

by applying the cost estimate function defined in Figure 5.2. Pseudo-code for the branch-and-bound

algorithm is defined in Figures 5.4 and 5.5.

B r a n c h - a n d - B o u n d (/V)

/*
Input Variables:
N: The neighborhood graph, containing the roads and intersections

Returns:
bestlayout: Specifies the fixed manhole for each intersection in N
*/
lo w estc o s t <— oo
in te r s e c tio n s <— BuiLDlNTERSECTlONLlST(iV)
/* Initialize variables for the current and best layouts used by BBRecur */
e m p ty la y o u t <— 0
b es tla y o u t <— 0

/* Recursively search each set of fixed candidate manholes, returning the best one */
BBRECUR(iV, in te r s e c tio n s , e m p ty la y o u t, b es tla y o u t, low estcost)
return (b e s tla y o u t)

Figure 5.4: Pseudo-code for branch-and-bound global placement algorithm

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BBRECUR(-/V, in te r se c tio n s , la y o u t, b es tla yo u t, lo w es tc o s t)

/*
Input Variables:
N: The neighborhood graph, containing the roads and intersections

intersections: The ordered intersection list

layout: The partial layout being expanded by this function

Input/Output Variables:

bestlayout: The best layout built so far. When this function exits, the
best layout found during the recursive descent is returned through this variable.

lowestcost: The number of manholes in the best layout built so far. When this
function exits, the number of manholes in the best layout is returned through this
variable.
Returns:
Both the best layout and the number of manholes it contains through bestlayout
and lowestcost variables respectively.*/

/* Get the set of roads from the neighborhood */
R <— R o a d s (N)

/* If there are no intersections left in in te r s e c tio n s , this constitutes a complete layout.
Check if this complete layout is better than the previous best complete layout, if so then
it is set as the current best layout. */

if EMPTY (in te rsec tio n s ')

{if E s t i m a t e C o s t (J ? , la y o u t) < lo w estco s t
then / l ° w e s t cost E s t i m a t e C o s t (/ ? , la yo u t)

\b e s t la y o u t <— la y o u t

else
i <— in te r s e c t io n s .POPFRONT()
/* Returns the set of non-dominated candidate manholes. This function implements
the domination measure described in Section 5.3.2. */

g r id <— N o n D o m i n a t e d C a n d i d a t e s (/)

/* Recursively expand a layout for each non-dominated candidate manhole */
for each m £ g rid

' n e w la y o u t <— la y o u t
n e w la y o u t\i\ <— m

do cost <— E S T IM A T E C O S T (J ? , new layout)
if cost < lo w estco st

then B B R e c u r (/ V , in te r s e c tio n s , n e w la y o u t, b es tla yo u t, lo w estco s t)

Figure 5.5: Pseudo-code for the recursive function implementing the branch-and-bound global
placement algorithm

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Two enhancements have been added to the branch-and-bound algorithm to further prune the

search space. The first enhancement prunes candidate manholes which are provably inferior to

another candidate manhole. This approach is referred to as domination and can be applied at every

node in the search. In the pseudo-code, the grid of non-dominated manholes is returned by the

function NONDOMINATEDCANDIDATES.

This function prunes the candidate manhole set in the following manner. Consider the candidate

manholes for an n-way intersection. For each candidate, two vectors of length n will be calculated.

These vectors contain the cost o f the best and worst placement for each of the adjacent roads re

spectively. To calculate the values for these vectors, the cost of the layout between each candidate

manhole pair must be calculated. A candidate manhole, ci; dominates another candidate manhole,

Cj, if every component for the worst solution in c* is equal to or better than the corresponding com

ponent for the best solution of Cj.

Consider a four-way intersection Jo, where R \ , i?2 , R 3 , R 4 and I \ , I 2 , h I 4 represent the

adjacent roads and their intersections respectively, as shown in Figure 5.6. The intersection I 0 is

connected to the roads R \ , R 2 , R?, and R 4 . This means that there will be four components in the

domination vectors. One value represents the cost to place the pipeline for R \ , one the cost for R 2 ,

the third the cost for R% and the fourth the cost for R 4 .

h

h

Figure 5.6: Example domination for intersection 0

Now, let If) have three candidate manholes: co,o, co,i> co,2 - Each of these manhole candidates

will have one vector representing the best placements, and one the worst. As well consider intersec

tion I i , which has three candidate manholes c^o, c i.i, c 1 2 . This example configuration is shown in

Figure 5.6.

The R \ component for each domination vector is calculated as shown at the top of the following

page. The other three vector components are calculated in a similar manner.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CoTit = m aa:(|PLAC£;(co,o,ci,o)|,|PLAC'£;(co,o,ci,1) |) |PLAC'i;(co.o,c1.2)|)

co T st = m a x (\P L A C E (c o ti ,c i f i) \ , \P L A C E (c 0, i , c i ti)\, \P L A C E (c 0^ , c 1:2)\)

cl ° rst = m a x (\P L A C E (c 0,2 , c uo) \ , \P L A C E (c <)!2, c l ,1) \ , \P L A C E (co , 2 , c h2)\)

cbef = m in (\P L A C E {co ,o ,c l f i)\, \P L A C E (c 0fi, c i,i) |, \P L A C E (c 0fi, c h2)\)

cbf = m i n (\ P L A C E (c 0, i , c lto) \ , \P L A C E (c o , i ,c 1,1) \ , \P L A C E (c o , i ,c 1,2)\)

cb0f = m in (\P L A C E (c 0,2 , ci,o)i, \P LA C E (co , 2 ,c i ,i) \ , \P L A C E { c oa , c i <2)\)

Figure 5.7 shows an example of how domination relations are determined once the vectors are

calculated. A three-way intersection with three candidate manholes is considered. In this example,

c2 dominates ci, since for every adjacent road, the worst placement for c2 has the same number or

fewer manholes than the best solution for c i . As well, the worst solution using c2 is equivalent to

the best solution using C 3 . So c2 also dominates C 3 . This means that the worst possible placement

using c2 is at least as good as the best possible placements using ci and C 3 . Therefore, c\ and C 3 can

be pruned from the search without affecting solution quality.

Candidate Best Worst
Cl {2,4 ,5} {3,4 ,5}
C2 {2,3 ,4} {2,4 ,4}
C3 {2,4 ,4} {3,5 ,5}

Figure 5.7: Domination example where c2 dominates ci and C3

Using domination, pruning also occurs when the cost for each adjacent road is the same re

gardless of the chosen candidate manhole. When this occurs, the worst and best vectors for each

candidate manhole will be identical. An example of this is shown in Figure 5.8. When this occurs,

the branch-and-bound search only needs to expand solutions using a single one of these candidate

manholes.

Candidate Best Worst
Cl {2,4 ,5} {2,4 ,5}
C2 {2,4 ,5} {2,4,5}
C3 {2,4 ,5} {2,4 ,5}

Figure 5.8: Domination example where the choice of candidate manhole is inconsequential

The computation required for domination can be reduced by filling the best placement vectors

first. Once these are filled, the worst manhole placement vectors can be assembled one at a time.

After the worst manhole placement vector is calculated for a manhole, it can be compared to the

best placement vector for each other manhole. If this comparison yields manhole domination, the

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

remaining worst manhole placement vectors need not be calculated. From the example above, c2

gives the best solution. Generating each of the best manhole placement vectors, and the worst

placement vector for only c2 is sufficient to show that c2 is a dominant manhole position.

Another enhancement is to separate the neighborhood graph into smaller, independent sub

graphs. This will be referred to as graph reduction. Graph reduction is based on the following

observation. When calculating the placement for a road segment, the choice of candidate manholes

for each adjacent intersection may not affect the cost of the road. In some cases, a placement al

gorithm may generate a layout for the road containing the same number of manholes regardless of

the candidate manhole pairing. Such a road will not affect the global placement, as no matter which

manholes are fixed, the placement of the road has the same cost. Conceptually, these roads can be

removed from the graph. For the adjacent intersections, any choice of candidate manholes is later

used to generate the pipeline. By disregarding these roads, the search space is reduced, and some

times separated into several independent sub-graphs. An example is presented in Figure 5.9. In this

graph the vertices represent intersections, and the edges roads. Consider road Rr, in the graph on the

left. If the placement algorithm for each candidate manhole pairing for R$ generates a layout of the

same cost, then Rr, can conceptually be removed. In this case, the two sub-graphs on the right are

created. The manholes may be fixed for both of these sub-graphs independently without affecting

the global layout cost.

Rq

Rs

Figure 5.9: Sub-graph example: Removing Rr, on the left creates two sub-graphs to be solved,
shown on the right

Recall that the description for the greedy sequential algorithm explored the use of an ordering

heuristic. The use of such a heuristic may improve the performance of the branch-and-bound search

as well. The branch-and-bound algorithm presented in this chapter prunes partial solutions if the

minimum bound of their cost is no better than the best observed solution. The goal of such a heuristic

is to fix intersection manholes so that at each step the minimum cost estimate is as close to the

minimum solution cost as possible. In doing this, non-optimal partial solutions may be recognized

and pruned at a higher level of tree. The effect of intersection ordering is explored in the next section

using several random ordering techniques.

Another issue with the branch-and-bound search is the cost of the initial solution. If no extra

information is available, the initial minimum cost bound is set to infinity. As better solutions are

found, the value for this cost decreases. However, the performance of the search is highly dependent

on the quality of solutions discovered early during the search. If the quality of the first solution

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

discovered is poor, then many other poor solutions may be fully expanded before a better solution is

found. One way to overcome this issue is to initialize branch-and-bound with solution from another

algorithm. This can be done using the solution from the greedy sequential algorithm. As will be

seen in Section 5.4, the greedy sequential algorithm typically requires much less computation than

the branch-and-bound and often provides good quality solutions to this problem.

5.4 Results

Performance of the global placement algorithms is evaluated using data from three real neighbor

hoods provided by David Schaeffer Engineering. Figure 5.10 provides a breakdown of the graph

components for each neighborhood, while the neighborhoods themselves are shown in Figures 5.11,

5.12 and 5.13. To test the computational limits of branch-and-bound and its enhancements, a sub

neighborhood from Neighborhood C is used. This sub-neighborhood is shown in Figure 5.14. To

provide multiple data points for each test neighborhood, the maximum pipe length is varied.

This section presents tests to evaluate both the greedy sequential and branch-and-bound algo

rithms in terms of both solution quality and computation time. First, the number of manholes in

placements generated by both algorithms is compared to several basic placement schemes. Second,

solution times for each algorithm are explored. Third, the effect of the domination and graph reduc

tion branch-and-bound enhancements are evaluated by measuring the number of nodes and solution

times for several problem instances. Finally, the performance of the branch-and-bound algorithm is

further explored by solving instances using different intersection orderings.

Neighborhood Cul-de-Sacs Three-Ways Four-Ways Roads
A 5 4 3 16
B 0 14 2 26
C 0 30 4 55

C 23 0 20 3 40

Figure 5.10: Component breakdown for test data

With the exception of cul-de-sacs, each intersection has five candidate manholes. For cul-de-

sacs, only the center point will be considered as this manhole placement only affects the single

adjacent road. For each other intersection type, a grid containing five points has been defined. The

position of the candidate manholes have been pre-defined to include the center o f the intersection

as well as a point close to the opening to each road. For three-way intersections, a fifth manhole

candidate is defined as the average between the center point and another arbitrarily chosen fixed

point. These grids are displayed in the figures for the test neighborhoods.

5.4.1 Solution Quality

As with the local placement algorithms, the solution quality for global placement is measured in

terms of the number of manholes. Results have been generated using frontier placement as the local

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.11: Neighborhood A

62

FS « ie 5) , ,

63

R eproduced with perm ission o f the
°°W riaht owner. Funher

^Production prohibited wiiw ithou t

Figure 5.13: Neighborhood C

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nc t

FI
j \ j \

Figure 5.14: Neighborhood C x\■ A subset of neighborhood C with 23 intersections

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

placement algorithm. Recall that the branch-and-bound algorithm will find the best possible solution

with respect to both local placement algorithm and selection of candidate manholes. Therefore, the

best solution for each test instance will correspond to the results of the branch-and-bound approach.

Results for five global placement algorithms are presented in Figures 5.15, 5.16 and 5.17. The

first two algorithms are simplistic approaches used as a baseline for the greedy sequential and

branch-and-bound approaches introduced in this chapter. The first simple algorithm randomly

chooses a candidate manhole from the discrete candidate manhole grid for each intersection. This

technique has been implemented to validate the assertion that the position of the intersection man

hole is important. Results for this approach are presented in the Random Fixed column. These

results are an average over twenty-five runs using this algorithm.

Following this, another simplistic algorithm that places a candidate manhole at the center of each

manhole is evaluated. This approach is used to mimic a simplistic rule an engineer may employ.

Intuitively, the number of manholes in a global placement generated using this approach should be

reasonable. The quality of solutions generated using this simple rule are presented in the column

entitled Center in the following results tables.

Two variations of the greedy sequential algorithm were implemented. The first variation does not

implement a fixed intersection ordering scheme, rather it measures the performance of the algorithm

using numerous random intersection orderings. For testing, solutions were generated for twenty-five

random orderings. The column entitled GS-Random in Figures 5.15, 5.16, 5.17 presents only the

cost associated with the best solution from twenty-five random intersection orderings. The other

implementation of the greedy sequential algorithm investigates the effectiveness of the descending

degree ordering heuristic, with results presented in the GS-Descending Degree column. Finally, the

number of manholes generated using the branch-and-bound solution are presented in the column

labeled B-and-B.

Algorithm
Max Length Random Fixed Center GS-Random GS-Descending Degree B-and-B

50 52.6 50 48 48 48
60 46.0 44 44 44 44
70 42.6 41 41 41 41
80 40.4 38 36 36 36
90 37.0 33 31 31 31
1 0 0 36.3 32 29 30 29

Figure 5.15: Number of manholes in layout for Neighborhood A where Random Fixed is averaged
over twenty-five runs and GS-Random is the lowest cost over twenty-five runs

From the results, it is clear that randomly fixing the candidate manholes produces solutions of

considerably poorer quality than the other algorithms discussed. In every test instance, random

candidate manhole selection performs significantly worse than the more sophisticated algorithms

introduced in this chapter. These results support the hypothesis that the position of the fixed inter

section manholes has an effect on the quality of the global neighborhood layout.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm
Max Length Random Fixed Center GS-Random GS-Descending Degree B-and-B

50 75.9 75 72 73 72
60 67.0 63 62 63 62
70 60.2 56 53 54 53
80 57.2 50 48 49 48
90 55.4 45 45 49 45
1 0 0 51.0 42 40 41 40

Figure 5.16: Number of manholes in layout for Neighborhood B where Random Fixed is averaged
over twenty-five runs and GS-Random is the lowest cost over twenty-five runs.

Algorithm
Max Length Random Fixed Center GS-Random GS-Descending Degree B-and-B

50 1 0 1 .1 99 94 97 94
60 91.7 8 8 82 82 80
70 81.8 69 67 6 8 67
80 75.0 60 59 59 59
90 72.0 58 57 57 57
1 0 0 70.1 57 55 56 55

Figure 5.17: Number of manholes in layout for Neighborhood C 23 where Random Fixed is averaged
over twenty-five runs and GS-Random is the lowest cost over twenty-five runs.

Consider the global placements generated by fixing the candidate manhole in the center o f each

intersection. These results indicate that the center points are a good choice for the intersection

manhole. In each test case, the layout produced using this rule greatly outperforms random selection.

However, the greedy sequential and branch-and-bound approaches generate fewer manholes in all

but three test instances; pipe lengths 60 and 70 of Figure 5.15 and pipe length 90 in Figure 5.16.

In the majority of test cases, the number of manholes in the center-based solution is within one to

three manholes of the best solution. However, the discrepancy between the center-based and best

solutions are not always as close. For example, consider maximum pipe length 60 for Neighborhood

C ' 2 3 in Figure 5.17. In this case, the center-based solution has eight more manholes than the best

observed solution; making it 10% more expensive. From these results, it can be concluded that

the practice of placing manholes in the center of each intersection is better than purely random

placement, but is not guaranteed to produce good quality solutions. Since this approach requires

a single local placement to be calculated for each road, it is a computationally inexpensive way to

generate solutions. However, both the greedy sequential and branch-and-bound algorithms generate

higher quality solutions.

The greedy sequential algorithm implemented with the descending degree ordering heuristic

produces good quality solutions, but these solutions often contain more manholes than the branch-

and-bound solution. In 11 of the 18 test instances shown in Figures 5.15, 5.16 and 5.17, the layouts

contain more manholes than the branch-and-bound approach. A particularly poor solution can be

observed for Neighborhood B with maximum pipe length 90, shown in Figure 5.16. In this case, the

descending degree heuristic generates a solution with 4 more manholes, or 8 .8 % more expensive,

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

than the solution generated using the branch-and-bound approach.

Results show that the greedy sequential algorithm can often equal branch-and-bound solutions

by considering a relatively small number of intersection orderings. In all but one test instance, at

least one of the twenty-five random orderings generates a solution with the same number of manholes

as the branch-and-bound approach. For the exception instance, which occurs in Neighborhood C 23

with a maximum pipe length of 60, the solution quality still outperforms both the random fixed

and center placement approaches by 9.7 and 6 manholes respectively. In addition, the best observed

greedy sequential solution is within 2 manholes, or 2.5%, of the solution generated using the branch-

and-bound algorithm.

With only twenty-five randomized intersection orderings, the greedy sequential approach is often

able to generate solutions with the minimum number of manholes. However, the greedy sequential

algorithm with descending degree ordering does not generate the best solution as frequently. There

fore, the recommended use of the greedy sequential technique is to solve the instance multiple times

with different random orderings.

As mentioned previously, the branch-and-bound approach generates the best solution corre

sponding to the chosen local placement algorithm and candidate manhole grids. In many cases,

the greedy sequential approach generates solutions that are equal to or slightly more expensive than

the branch-and-bound solution. Ideally, the branch-and-bound approach should always be chosen

over the other algorithms presented in this chapter. However, this analysis ignores the computation

time required for each approach. The following section examines computation time, exploring the

usefulness of these algorithms for real sized neighborhoods.

5.4.2 Computation Time

This section explores the computation time required for the greedy sequential and branch-and-bound

algorithms. For each of the tests presented here, the branch-and-bound algorithm has been enhanced

with both domination and graph reduction. Each algorithm orders intersections by descending de

gree.

Algorithm
Max Length Greedy Sequential B-and-B

50 59.4 + 0.003 59.6 + 0.000
60 64.2 + 0.003 63.8 + 0.000
70 65.6 + 0.004 65.7 + 0.060
80 74.2 + 0.005 77.0 + 0.000
90 81.3 + 0.004 81.2 + 2 . 0 0 0

1 0 0 85.9 + 0.005 83.6 + 0.025

Figure 5.18: Pre-processing time + Search time results in seconds for Neighborhood B

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm
Max Pipe Length Greedy Sequential B-and-B

50 32.1 + 0.005 32.8+0.001
60 33.4+0.006 33.3 + 444.0
70 34.2 + 0.005 *

80 36.9 + 0.005 36.7 + 0.013
90 41.0+0.005 39.7 + 0.002
too 43.5 + 0.005 43.3 + 0.002

Figure 5.19: Pre-processing time + Search time results in seconds for Neighborhood C 23

Algorithm
Max Pipe Length Greedy Sequential B-and-B

50 95.6 + 0.016 95.4 + 0.001
60 1 0 1 . 8 8 + 0.018 *

70 103.0 + 0.016 *

80 109.7 + 0.015 *

90 115.8 + 0.017 *

too 127.5 + 0.015 *

Figure 5.20: Pre-processing time + Search time results in seconds for Neighborhood C

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The computation times for Neighborhoods B, C 23 and C are presented in Figures 5.18, 5.19 and

5.20 respectively. Times were measured using a machine with dual 2 GHz AMD Athlon processors

and 1 GB of memory. A computation limit of four hours was imposed for each test instance. For

instances where computation is incomplete after this time limit, an is recorded in the table.

Reported times are separated into two categories. The first category represents pre-processing costs.

For both algorithms, this pre-processing is the amount of time required to cache the number of

manholes in the road placement for each candidate manhole pairing. The second cost represents

the time required by the global placement algorithm to generate the set of fixed manholes. Using

this approach, a result reported as 60.0 + 2 0 0 . 0 indicates 60.0 seconds for pre-processing and 2 0 0 . 0

seconds to compute the positions of the fixed candidate manholes.

The first test case involves Neighborhood B, a real neighborhood of medium size. As shown

in Figure 5.18, the time required by both greedy sequential and branch-and-bound to calculate the

global placement is insignificant. The only case in which the computation is above a fraction of

a second is for the branch-and-bound algorithm with a maximum pipe length of 90, where the

computation time is 2.0 seconds. For this neighborhood, the bulk of the computation time occurs in

the pre-processing phase.

The results for neighborhood sub-graph C 2 3 , and the corresponding full neighborhood, Neigh

borhood C, are presented in Figures 5.19 and 5.20 respectively. Several things can be said from these

results. First, these results give evidence that the greedy sequential approach scales well to larger

neighborhoods. Similar to Neighborhood B, the greedy sequential computation cost is insignificant,

and the dominant cost is in the pre-processing phase.

However, results for the branch-and-bound approach are mixed. For some test instances, a solu

tion cannot be calculated in the allotted four hour time period. Examples of this occur for maximum

pipe length of 70 for each of these two neighborhoods. However, in many other cases the algorithm

time is actually insignificant. This can be seen in the majority of test instances for neighborhood

C 23 in Figure 5.19 as well as in pipe length 50 for Neighborhood C in Figure 5.20.

These results show a considerable difference in the computation time between problem in

stances. Even more interesting is that varying the maximum pipe length within a neighborhood

can change the solution time drastically. The following two sections will explore properties of the

branch-and-bound algorithm. First, the effectiveness of the enhancements is explored. Second, the

effect of intersection ordering on the performance of the algorithm is examined.

5.4.3 Branch-and-Bound Algorithm Effectiveness

The branch-and-bound search algorithm finds the best set of intersection manholes. Each of the

branch-and-bound variations presented here is designed to search the space of intersection manholes,

eliminating inferior solutions as they are identified. This section explores how effectively these

algorithms identify these inferior solutions, and thus prune the search. Tests were conducted using

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

three variations of the branch-and-bound algorithm:

1. Non-enhanced branch-and-bound

2. Branch-and-bound with domination

3. Branch-and-bound with domination and graph reduction

In some instances, the number of nodes searched using the graph reduction enhancement is

reported as a sum. This occurs when this enhancement successfully separates the problem into

independent sub-graphs. Therefore, a result reported as 10,000 + 500 + 1,000 means that graph

reduction separated the instance into three independent sub-graphs, solved by searching 10,000,500

and 1,000 nodes respectively.

Tests were performed on several neighborhood instances. Both the computation time and the

number of nodes searched to reach a solution were recorded. A maximum time allotment of four

hours was set for each problem instance. Whenever an algorithm exceeds this allotment, an ’*’ is

recorded in the corresponding table entry.

To appreciate the size of the solution space for each problem, the effort for the branch-and-bound

search to enumerate all possible solutions is presented in Figure 5 .21.3

Neighborhood Tree Size Estimated Enumeration Time
B 1.90 x 1011 236 days

C*23 1.5 x 1016 1.9 x 107 days
c 8.3 x 1018 1.0 x 1010 days

Figure 5.21: Full enumeration time and tree size for each test neighborhood.

Figure 5.21 shows that it is hopeless to fully enumerate each potential solution. Even for the

medium-sized Neighborhood B, the time estimated to enumerate every single solution is 236 days.

For sub-neighborhood Cx\ and its corresponding full neighborhood C, the cost to fully enumerate

every solution is well beyond a single lifetime. To generate the best candidate manhole sets, each of

the algorithms presented here must effectively prune large portions of the search tree.

3The size o f the search tree is calculated as (E J L i P;) + T where p is the number o f candidate manholes per intersection
and m. is the number o f intersections. Time estimates are calculated based on 9,281 nodes being searched per second. This
total was calculated from the branch-and-bound search for Neighborhood B with a maximum pipe length o f 60. Here
1,937,010 nodes are searched in 208.7 seconds. This is approximately = 9281 nodes per second.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm
Max Length B-and-B B-and-B + Dominance B-and-B + Dominance + Graph Reduction

50 61 36 11
60 1,937,010 1,772 83 + 4
70 6,647 689 645 + 4
80 64 48 20+ 13
90 907,974 78,429 20,932
100 1,859 557 245

Figure 5.22: Number of nodes searched for branch-and-bound and enhanced branch-and-bound for
Neighborhood B

Algorithm
Max Length B-and-B B-and-B + Dominance B-and-B + Dominance + Graph Reduction

50 59.5 + 0.005 59.3 + 0.002 59.6 + 0.000
60 63.9 + 206.4 63.9 + 0.114 63.8 + 0.000
70 66.3 + 0.680 66.2 + 0.080 65.7 + 0.060
80 74.7 + 0.004 74.6 + 0.004 77.0 + 0.000
90 81.4+101.6 81.5 + 8.950 81.2 + 2.000
100 83.0 + 0.186 83.8 + 0.689 83.6 + 0.025

Figure 5.23: Pre-processing time + Search time results in seconds for Neighborhood B

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Consider the node counts and time results for Neighborhood B, shown in Figures 5.22 and 5.23

respectively. Using the branch-and-bound approach, the best candidate manhole set is identified

very quickly. In each instance, the number of nodes searched is an insignificant fraction of the full

tree. Solution times measure under one second for each instance, except maximum pipe lengths

60 and 90. Even in these cases, the search time is on the order of hundreds of seconds. Using the

domination enhancement, the search times are further reduced for these two cases. For length 60,

the time is reduced from 206.4 seconds to 0.114 seconds. Similarly, the time for length 90 is reduced

from 101.6 seconds to 8.95 seconds. Adding the sub-graph enhancement along with domination for

length 90 further reduces the time from 8.95 to 2.00 seconds.

Algorithm
Max Length B-and-B B-and-B + Dominance B-and-B + Dominance + Graph Reduction

50 * 3,343 5+4+2+35
60 * 4,965,539 4,331,685
70 * >{< *

80 1 2 1 1 1 2 1 1 0

90 30 25 2 2

too 38 25 2 2

Figure 5.24: Number of nodes searched for branch-and-bound and enhanced branch-and-bound for
Neighborhood C 23

Algorithm
Max Length B-and-B B-and-B + Dominance B-and-B + Dominance + Graph Reduction

50 * 31.7 + 0.390 32.8 +0.001
60 * 33.1 +577.4 33.3 + 444.0
70 * * *

80 36.9 + 0.010 36.6 + 0.020 36.7 + 0.013
90 40.1 + 0.003 39.7 +0.003 39.7 + 0.002
1 0 0 43.5 + 0.005 43.0 + 0.003 43.3 + 0.002

Figure 5.25: Pre-Processing time + Search time results in seconds for Neighborhood C 2 3

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The branch-and-bound algorithm was also tested on Neighborhood C23 > a subset of a real neigh

borhood containing 23 intersections. The results for these tests are shown in Figures 5.24 and

5.25. As shown in Figure 5.21, the enumeration of every solution for this Neighborhood (723 is

intractable. However, using the branch-and-bound approach it is possible to calculate solutions in

many instances. Furthermore, using the enhanced branch-and-bound algorithms solves more in

stances in the four hour time window than the non-enhanced branch-and-bound. The non-enhanced

branch-and-bound algorithm only finds a solution for three of the six instances, while both enhanced

versions of the algorithms solve five instances. One of the instances unsolved by the non-enhanced

branch-and-bound algorithm is solved by the enhanced version in less than a second. The other

instance solved only by the enhanced branch-and-bound algorithm took less than ten minutes.

These results indicate that the enhanced branch-and-bound algorithms can potentially be used

to generate global placements for some real neighborhoods. However, it also appears that some

placement instances may prove to be too difficult for the branch-and-bound approach.

The problem instance with a maximum length of 70 in Neighborhood C'23 provides an interesting

example of a difficult problem instance. To identify what causes this problem instance to be difficult,

the following test was performed using the fully enhanced branch-and-bound algorithm. To obtain

the actual branch-and-bound cost, the search was run to completion. This gave a cost of 67 manholes,

calculated in just under seven hours. Each time the branch-and-bound algorithm improved on its

previous best solution, the time and cost of this new solution was recorded. It was observed that the

search found a solution with 67 manholes almost immediately. This means that the remainder of

the search was used to prove that there is no better solution. One reason it took so long to identify

this initial solution as a lowest-cost layout is the quality of the lower-bound calculated using the

pseudo-code in Figure 5.2. In instances where the solution is found quickly, not much of the tree

needs to be searched to verify the minimum cost bound. In this particular instance, the search must

delve further into the tree to prove that the initial solution is indeed the minimum cost solution.

Up to this point, the branch-and-bound results presented use a fixed intersection ordering. While

instances such as the instance with maximum pipe length 70 of Neighborhood C 23 may be legiti

mately difficult, it may also be possible that an unlucky intersection ordering makes this problem

more difficult to solve. The following subsection examines the effect intersection ordering has on

the search.

5.4.4 Branch-and-Bound and Intersection Ordering

In the previous subsection, experiments showed a high variance in computational time for the

branch-and-bound algorithm. Even within the same neighborhood, it was observed that some in

stances were trivial to solve, while others were still unsolved after four hours. However, each of the

solutions in the previous section is based on a single intersection ordering. This subsection explores

the effect of intersection ordering on the computation time.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Neighborhood Length Solved Min Time Avg Time
B 50 242 0.001 3.7

C 23 70 33 1.420 289.4

Figure 5.26: Instances solved using branch-and-bound for random intersection ordering

Neighborhood Length Solved Min Time Avg Time
B 50 250 0.001 0.711

C 23 70 141 0.88 90.38

Figure 5.27: Instances solved using domination enhanced branch-and-bound for random intersection
ordering

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Several problem instances were chosen from the previous section. Each instance was solved

for 250 randomly chosen intersection orderings using both the non-enhanced branch-and-bound and

the domination enhanced branch-and-bound algorithms. Each of these algorithms is tested using an

identical set of random intersection orderings. In addition, the minimum cost bound is initialized

using a solution found by the greedy sequential algorithm. From the results in the previous section,

it was observed that the algorithm either solved the problem very quickly, or timed out after the

four hours of allotted search time. For this reason, each branch-and-bound search was allotted five

minutes of computation time. For each test, the number of instances solved in this time frame

is recorded. For those searches which did complete, the solution time and number of nodes is

presented. Results are presented in Figures 5.26 and 5.27 for the branch-and-bound and domination

enhanced branch-and-bound algorithms respectively.

As shown in Figure 5.23, the problem instance for Neighborhood B with maximum pipe length

50 was easily solved using each variation of the branch-and-bound algorithm. In Figure 5.26, it can

be seen that this problem instance is not difficult for most intersection orderings. The five minute

search limit is able to generate a solution in all but 8 of the 250 orderings. However, the enhanced

branch-and-bound algorithm is able to solve the instance for each of the 250 orderings. The fact

that these algorithms were able to solve this instance for most orderings suggests that this is an easy

instance. It is of interest to determine if similar instances from other medium-sized neighborhoods

are also easy. However, more testing is required to generalize the performance of these algorithms

for medium-sized neighborhoods.

Consider the difficult instance from Neighborhood C 23 with maximum pipe length 70. Using the

descending degree intersection ordering, this problem instance remained unsolved after four hours

of computation. However, it was observed that this instance was solved in under 5 minutes for some

random orderings. Using the non-enhanced branch-and-bound this occurred in 33 out 250 cases,

while for the enhanced search 141 of the 250 instances were solved. Also, this instance was solved

very quickly for some orderings. The minimum time for the non-enhanced branch-and-bound search

was 1.42 seconds, while this instance was solved as quickly as 0.88 seconds for the enhanced search.

These results indicate that the intersection ordering does affect search performance. These results

are promising. They suggest the use of different random intersection orderings as an approach to

solve seemingly difficult problem instances.

Further research is required to develop a specific intersection ordering to improve branch-and-

b o u n d p e r f o r m a n c e . H o w e v e r , th e s e r e s u l t s c a n a l r e a d y b e u s e d . T o a v o id b a d in t e r s e c t io n o r d e r in g s ,

a time limit can be set for each branch-and-bound search. If after that time limit, a solution is not

found, then the intersection can be randomly permuted and a new search started. In this manner,

it is possible to exploit a good intersection ordering without actually knowing how to find such an

ordering.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Overview of Computational Complexity

This section provides a brief complexity analysis for the pre-processing phase and each of the algo

rithms presented in this chapter. For this analysis let rn and n be the number of roads and intersec

tions in the neighborhood respectively, and p the number of candidate manholes per intersection.

First, consider the number of local placements that must be calculated to generate the cached

cost map for each candidate manhole pair. If each intersection has p candidates, the number of

local placements to be calculated per road is p 2. Thus, there will be exactly inp2 local placements

calculated per neighborhood. The exact complexity for the pre-processing phase depends on the

local placement algorithm used. A complexity analysis of the different road placement algorithms

is presented in Section 4.5.

In practice, the pre-processing phase scales well to the largest neighborhood tested, Neighbor

hood C, containing 34 intersections. Each of the tests conducted in this chapter utilized the frontier

placement algorithm, one of the more computationally complex local placement algorithms. The

highest observed pre-processing time, observed for Neighborhood C and shown in Figure 5.20, is

127.5 seconds. Based on this complexity analysis and the observed times, the pre-processing phase

should remain computationally tractable for larger real-world neighborhoods.

The greedy sequential algorithm is computationally simple. To fix the intersection manholes, a

single linear sweep through each intersection is required. Recall that for each intersection, a manhole

is fixed so as to minimize the cost estimate for each adjacent road. The candidate manhole pair costs

are calculated during the pre-processing phase, therefore the greedy sequential algorithm is only

required to perform table look ups. Therefore, the cost of the greedy sequential algorithm depends

on the number of intersections alone, and is 0 (n) .

In the worst case, the branch-and-bound search will enumerate every possible set of candidate

manholes for the graph. If there are n intersections, this means that the size of the search tree will

be i P2) + 1- Therefore, the worst case computational complexity of this algorithm is 0 (p n).

However, the tests from the previous section indicate that the branch-and-bound algorithm performs

much better than the worst case scenario.

Consider the domination enhancement. For each intersection, the domination measure is used to

eliminate inferior candidate manholes. Therefore, instead of a fixed value p, each intersection k will

expand zk < p candidate manholes. The number of solutions expanded with dominance is z^.

If each intersection contains no dominant candidate manholes, the performance of the dominance

enhanced algorithm will be the same as the non-enhanced branch-and-bound algorithm.

The graph reduction enhancement separates the neighborhood into independent sub-graphs.

Each of these sub-graphs is solved independently, with complexity 0 (p q),q < n. Therefore, the

complexity of the branch-and-bound algorithm using the graph reduction enhancement will be the

complexity of the largest sub-graph solved. If no sub-graphs can be found, then this method is

equivalent to the non-enhanced branch-and-bound.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.1 Future Work

In this thesis, tests were conducted on a limited number of real neighborhoods. To fully under

stand the difficulty of the global placement problem, further test results from real neighborhoods are

necessary. The following experiments are proposed to further demonstrate the capabilities of the

algorithms presented in this chapter.

First, the quality of solutions for each algorithm was measured by comparing its performance

to that of other algorithms. As an attempt to compare these results to real world pipe layouts, the

performance of each algorithm was compared to a center of the intersection based layout. To further

assess the quality of these algorithms, their layouts should be compared with layouts generated by

skilled engineers.

The results presented in this section showed a high-level of variation in the computation required

for the branch-and-bound algorithm. To better gauge the difficulty of this problem, tests on more

real neighborhoods are required. The branch-and-bound algorithm should be applied to a collection

of small, medium and large real neighborhoods. Recording solution time statistics about solved

instances from each of these categories should give a better idea on the difficulty in generating

layouts for real-world neighborhood instances.

Another interesting study involves the identification of difficult problem instances. Even within

the same neighborhood, the difficulty of problem instances varied from very easy to difficult. The

ability to identify hard instances and what makes them difficult is an interesting area of study. One

way to test this is to vary the maximum pipe length for a fixed neighborhood to identify hard in

stances. Then, properties of the problem which makes these instances hard can be explored. Two

such properties that can be explored are the number of dominant candidate manholes, and the simi

larity of manhole costs between each pair of candidate manholes.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5 .28: Example domination for intersection 0

It was suggested by Martin Muller that if the sewer network is tree-structured, then global place

ment may be solved using a dynamic programming approach. This suggestion was motivated from

the following example, shown in Figure 5.28. In this figure, the filled circles S i, S%, S3 and S4

represent subsets of the neighborhood. Each of these subsets is connected to the main graph by an

intersection, and thus contain a candidate manhole grid. The optimal cost for the neighborhood is

calculated in a bottom up fashion. Assume that for S2, S3 and S4 the optimal costs with respect to

each candidate manhole in I2,13 and I4 respectively are known. The optimal cost for each candidate

manhole in I5 is calculated as the costs of roads R \ , R2, R3 and R,\, and subsets S i, S2, S3 and S4.

Note that the cost of S i is not known at this point in the calculation. Rather, it is computed during

the next recursive iteration of the algorithm.

To model global placement as a dynamic program, this cost is represented as a recurrence re

lation. To calculate the optimal solution, this recurrence relation will need to be expanded at most

once for each intersection. Disregarding the effort to compute individual road layouts, the worst case

complexity of this algorithm is O (n), where n is the number of intersections in the neighborhood.

5.6 Conclusion

The algorithms presented here automate and reduce the cost for the placement of pipes and manholes

f o r a n e ig h b o r h o o d . T o s im p l i f y th i s p r o b le m , it is a s s u m e d th a t th e r e m u s t b e a t le a s t o n e m a n h o le

present in each intersection. For each intersection, a discrete collection of candidate manholes is

defined. Under this problem definition, a solution is a collection of fixed manholes, where there is

exactly one fixed manhole per intersection. The domain of this problem is defined as the combi

nations of ways to choose a single manhole for each intersection. Given this problem definition,

a solution scheme is to transform the continuous problem to a discrete search problem where each

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

node in the search corresponds to fixing a candidate manhole for an intersection, and the leaf nodes

represent a solution where a manhole is fixed for each intersection.

The candidate manhole set for each intersection was chosen in an ad-hoc fashion. The size of the

candidate manhole set was chosen based on the largest order intersections, four way. Choosing five

candidate manholes for a four-way intersection allows a candidate to be placed close to the opening

of each adjacent road, with the final one being in the middle of the intersection. The size of the

candidate set was kept the same for three way intersections for consistency. Finally, only a single

candidate manhole in the center of the intersection was chosen for cul-de-sacs. This was done since

the intersection manhole in a cul-de-sac only affects the placement for one road, thus making it un

likely that further optimization can be achieved by varying the position of this manhole. Therefore,

fixing the cul-de-sac manhole at the center of the road decreases the complexity of the problem.

The intuition behind the choice of candidate manhole positions is that each provides a representative

set of different manhole positions. In other words, these candidate manhole choices are different

enough that each is more likely to exploit different manhole placement savings. Defining a more

representative candidate manhole set may be possible, and is left as future work.

Two algorithms for the global placement of manholes were presented. Each of these algorithms

performed better than random placement, indicating that the position of intersection manholes is im

portant. The branch-and-bound algorithm provides the optimal solution based on the constraints of

the candidate manhole grids and the local placement algorithms. However, for large neighborhoods

this can quickly become computationally intractable. The greedy sequential approach provides good

quality solutions, and can be used to quickly compute global layouts for much larger neighborhoods.

The branch-and-bound algorithms discussed in this chapter showed mixed results. Tests were

primarily conducted on a medium-sized real neighborhood with 16 intersections, and a sub-set o f a

larger real neighborhood with 23 intersections. In some instances, the branch-and-bound approach

was able to quickly generate solutions for these neighborhoods. However, for some problem in

stances with the larger neighborhood, a solution could not be found in the allotted four hour time

window. Two enhancements for the branch-and-bound algorithm were introduced, manhole domi

nation and graph reduction. The addition of these enhancements allowed more problem instances to

be solved, but there are still instances which remained too difficult to solve. An initial examination

into intersection ordering was explored by randomly permuting the order in which the search fixes

candidate manholes. It was noted that the ordering of candidate manholes does have an effect on the

p e r f o r m a n c e o f th e a lg o r i th m . F u r th e r r e s e a r c h to d e t e r m in e a g o o d o r d e r in g s c h e m e is n e c e s s a ry .

The algorithms presented in this chapter are useful for generating global manhole placements

for neighborhoods. In particular, the greedy sequential approach can be used to quickly generate

placements. To generate better quality solutions using the branch-and-bound algorithm, the follow

ing approach is proposed. First, set a time limit specifying how much computational effort to expend

for the solution. Then, calculate a global layout using the greedy sequential approach and use its

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cost to initialize a branch-and-bound search. Following this employ the fully enhanced branch-and-

bound algorithm to attempt to improve upon this solution. To avoid unlucky intersection orderings,

the search can be periodically restarted using a random ordering. If the branch-and-bound search

exhausts the desired computation time, simply halt the algorithm and use the best solution found so

far.

The sewer system layout problem defined in Chapter 1 specifies that there is a single path from

each manhole to the outfall. However, the algorithms presented in this chapter produce a fully

connected network. A single path sewer network can be acquired by introducing cuts into the global

layout produced by the algorithms presented here. The following chapter introduces some basic

algorithms for this and discusses more advanced considerations for this problem.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Sewer Planner Prototype

In the previous two chapters, algorithms for placing manholes and pipes were developed. However,

manhole placement is only one component of a complete sewer system planner. This chapter de

scribes a sewer planning prototype based on an architecture introduced in Chapter 2. This prototype

uses algorithms from Chapters 4 and 5, along with a simple edge selection technique and a third

party design solver.

This sewer planning prototype is tested using two real-world neighborhoods and one synthetic

neighborhood. From these results, the potential of this complete solver architecture is evaluated.

Following this is a discussion of the weaknesses of the current system, and considerations for an

industrial strength system.

6.1 System Architecture

In Chapter 2, the sewer system planning problem is separated into a group of related sub-tasks or

ganized into the architecture shown in Figure 6.1. Using this architectural model, each of these

sub-problems is solved by an independent component. This chapter explores the process of combin

ing these components to produce a complete sewer planning system.

Pre-processing tasks were explored in Chapter 3. The pre-processing component imposes the

neighborhood graph structure on the raw line and arc data used to display the neighborhood. Man

hole placement specifies the position of manholes and pipes within the two-dimensional neighbor

hood road map. A manhole placement solver can be implemented using local and global placement

algorithms introduced in Chapters 4 and 5. The edge selection and the design components will be

d is c u s s e d in th e f o l lo w in g tw o s e c t io n s . F in a l ly , t h e r e is th e n o t io n o f i t e r a t io n s e le c t io n . T h is c o m

ponent is used to define how a sewer plan can be iteratively modified to improve plan quality. This

component is ignored for the prototype presented here; however, implementation considerations are

discussed later in the chapter.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Stopping Conditon
Not Done

D one

Design

P re-P rocessing

Iteration S elector

Edge Selection

M anhole P lacem ent

Figure 6.1: Proposed sewer planner architecture

6.2 Edge Selection

Consider the edge selection problem introduced in Chapter 2. Edge selection is defined in terms of

the graph G = (V ,E) , where the vertices represent fixed points and the edges represent potential

connections between them. In terms of the neighborhood graph, intersections correspond to vertices

and roads correspond to edges. Consider the Li and Matthew edge selection model defined in Chap

ter 2 [20]. This model separates E into two categories, tree branches and chord branches. The tree

branches are the edges belonging to a spanning tree in G, as chosen by an edge selection algorithm.

This spanning tree constitutes the main conveyance backbone of the sewer network. The remaining

edges are chord edges. These edges are not part o f the main backbone, rather they are used to con

vey local flow. To eliminate loops in the sewer network, a cut is introduced at one extremity of each

chord branch.

Several edge selection techniques were presented in Chapter 2. Many of these techniques could

be used to implement the edge selection component of this system. For example Tekeli and Belkaya

introduce several cost measures and use standard spanning tree algorithms[33]. Walters and Lohbeck

[38] and Hassalani and Dandy [16] introduce genetic algorithm approaches to edge selection.

The edge selection algorithm used in this prototype is based on the expanded graph format

introduced in Chapter 3. Recall that each spanning tree in the expanded graph specifies both the

tree and chord edges, as well as the location of the cut within a chord edge. The flow direction of

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the network may also be inferred from this tree. Based on this graph representation, edge selection

can be viewed as the problem of finding the spanning tree that represents the best network topology.

To achieve this, Dijkstra’s Algorithm is used to find the shortest path between the outfall and each

other vertex in the graph[9]. Thus, the resulting topology will be the shortest path spanning tree.

To use Dijkstra’s Algorithm weights must be assigned to each of the edges. For the edge selection

implemented for this prototype, each edge in the expanded graph is assigned an edge weight equal

to curb length of the corresponding road.

In solving the sewer planning problem, cuts are only permissible at road extremities. Because

of this constraint, the prototype calculates the layout as follows. Using the expanded neighborhood

graph, edge selection separates the roads into tree and chord branches. Independent of edge selec

tion, manhole placement generates full pipelines for each road. Then, for each road classified as a

chord edge, cuts are then introduced into the specified extremity.

If cuts are not constrained to occur at the extremity of a road, then the manhole placement solver

will need to consider the cut position when generating pipelines. This topic is discussed further in

Section 6.6.

6.3 Design Solver

The design module used in this prototype was developed at the University of Alberta by Andrew

Neitsch and Neil Burch. This component models the design as a cost minimization problem, and

implements a solver using the CPLEX optimization engine [5]. The design module outputs a triplet

<diameter, upstream height, downstream height> for each pipe in the sewer network.

To simplify the presentation of the design optimization problem, some terminology and utility

functions are first defined. Denote the set of pipes from the layout as P . Let D be the set of

commercially available pipe diameters. Let vmin and vmax be the minimum and maximum flow

velocities respectively.

The loss of energy in flow within a pipe depends on the material properties of the pipe. This is

represented by the roughness coefficient and will be denoted n in the following problem definition.

It is assumed that the roughness coefficient is known; roughness coefficients for different materials

are presented in many civil engineering texts such as [23].

Recall that each pair of adjacent pipes meet at a manhole. The downstream end of the source

pipe may not buried at the same depth as the upstream end of the destination pipe. Rather, the

sewage may enter the manhole at a higher height than it leaves. The difference in height from which

the sewage enters and leaves the manhole is referred to as the drop height, or simply the drop.

When referring to pipes, the term invert elevation, or simply invert, is used to describe the deepest

portion at a particular point along the pipe. Consider a cross-section of the pipe at the upstream end.

The invert elevation of this cross-section refers to the deepest buried point. Conversely, the obvert

elevation refers to the shallowest point of the pipe cross-section.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following list of functions are used to specify simple properties of each pipe. Each of these

quantities may be determined directly f r o m the <dicimeter, upstream height, downstream height>

values for each pipe.

• A verageD epth (p): Returns the average depth for which this pipe is buried. Since this thesis

deals with only straight pipes, this is simply the depth of the middle of the pipe.

• P erilm t,C ost(p): Returns the per-unit cost of p, where p has a diameter from a set of dis

cretely available pipes. The set of discrete pipe diameters and associated costs are shown in

Figure D .l of Appendix D.

• Length(p): Returns the length of the pipe p.

• D ia m eter (p): Returns the diameter of p.

• S lope(p): Returns the slope of pipe p.

• Flow(p): Returns the flow value for pipe p.

• D o w n strea m In vert(p): Returns the invert point of the downstream end of a pipe.

• D ow nstream O bvert(p): Returns the obvert point the downstream end of a pipe.

• U p strea m ln vert(p): Returns the invert point of the upstream end of a pipe.

• U pstream O bvert(p): Returns the obvert point of the upstream end of a pipe.

Considered as a black box, this design solver requires the following input:

1. Available pipe sizes with per unit costs;

2. Flow contributed from each manhole;

3. Layout defining positions of pipes and manholes;

4. Heights of manholes;

5. Minimum drop height for each pipe; and

6. Maximum expected flow within each pipe.

The cost for a design is measured using a quadratic function. This function was empirically

fitted to closely approximate costs from a table of real designs.1 For a single pipe, the cost can be

separated into two parts; the actual cost of the pipe and the cost to bury it. The cost of the pipe is

calculated as L en g th (p) x P erU nitC ost(p). The cost to bury the pipe is expressed as:

'T he real neighborhood costs used to fit this function may not be reproduced in this thesis by request o f the firm which
provided this data.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D epthC ost(p) = (2.1 x A verageD epth(p) + 3.78) x A verageD epth(p) - 5.88

Note that D epthC ost(p) is quadratic. However, the goal of this problem formulation is to

represent the design problem as a linear program. To be able to use the D epthC ost(p) function in

such a formulation, it must itself be a linear function. Therefore, a piece-wise linear approximation

of this fitted function is used. This approximation will be denoted D epthC ost'(p). For this thesis,

a linear piece-wise approximation using ten line segments has been used.

Using the depth cost function, the design cost for a pipe p is expressed as:

D esignC ost(p) = (D epthC ost(p) + P e rU n itC o st(p)) x Length(p)

If the linear approximation D epthC ost is used, denote the above function:

D esig n C o st(p) ' = (D epthC ost(p)' + P e rU n itC o s t(p)) x L en g th (p)

The terminology and functions just introduced are used to define a mathematical program for

the sewer design problem. The mathematical program is defined below, followed by a description

of the constraints and variables:

Where, for each pipe p the following set of control variables is defined

cp: The cost o f p

pup\ The upstream height of the pipe p.

Pdown'■ The downstream height of the pipe p.

X = {xp'd}: A set of binary variables, one for each available pipe diameter.

The following set of constraints is used to ensure the solver generates legal solutions. For each

pipe in the sewer network, there will be one instance of each of the following twelve constraints:

1. cp > D esig n C o st'(p)

2. U pstream O bvert(p) < ground

3. D o w nstream O bvert(p) < ground

4. upstream manhole depth < U p stre a m ln v e r t(p)

5. downstream manhole depth < D own s trea m I river t(p)

peP

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. Slope(p) >
(r 3 x 1 .486)2

7. Slope(p) < ■■
(r 3 x 1 .486)2

8. 5/ope(p) >
r 3 x 1 . 4 8 6 x I I x r 2

9. D ia m eter(p up) < Diameter(pdown)

10. D ow nstream O bvert(pup) < U pstream O bvert(pdown)

11. D o w n stre a m In v e r t(p up) + drop < D o w n S trea m In ver t{p d OWn)

12- J2 deD x p4 = 1

Note that the objective function for this minimization problem is a sum of individual cost vari

ables for each pipe; cv ■ Minimizing the objective function does not directly minimize the

D esig n C o stip) 1 function. Instead, this function is indirectly minimized using the first constraint.

This constraint ensures the solution for the mathematical program has pipe cost variables cp,p G P

such that each cp is the minimum value that is greater than or equal to the piece-wise linear approx

imation of D esignCost(j>Y and the corresponding design obeys to each of the other constraints.

Constraints 2 and 3 ensure that each pipe p is buried completely underneath ground-level. Con

straints 4 and 5 ensure that neither the upstream nor the downstream ends of a pipe are buried deeper

than the depths of their adjacent manholes. Using constraints 6 and 7, the flow velocity is kept

between self cleansing and pipe damaging velocities. Constraint 8 ensures a steep enough slope to

provide the required flow. Constraints 6 through 8 are derived directly from the Manning Equation

for flow velocity. Each of these constraints involve a term r , which represents the hydraulic radius

of the pipe. The Manning Equation and the hydraulic radius are two quantities that are discussed in

most introductory civil engineering texts, such as [23].

Sewage is prevented from flowing from larger to smaller pipes using constraint 9. Uphill flow

between pipes is prevented by constraints 10 and 11. Constraint 12 ensures that exactly one of the

binary variables in X is set for each pipe, assigning a single diameter per pipe.

The final constraint involves a set of binary variables. Thus, the mathematical program just de

scribed is a mixed integer program; not a linear program. Solving a mixed integer program is an

NP-Complete problem[13]. Thus, solving this problem may be computationally intractable. There

fore, a variation of this problem that uses continuous relaxation to transform these binary variables

into continuous variables is introduced. This new problem is a linear program that may be solved

using a polynomial-time algorithm, such as an interior path method [18].

Continuous relaxation allows the binary variable from the initial formulation to assume values

in the continuous range [0,1], where the sum for each set of these variables is still constrained to be

1. In this case, the variables in X are considered as weights for their corresponding commercially

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

available diameter values. Using this technique, the pipe diameter is the weighted sum of each of

the commercially available pipe diameters.

To solve the design problem described here, the solver requires an estimate of the flow volumes

for the system. However, the actual flow is a function of the design of the system. To overcome

this, the solver implements an iterative process that first estimates these flow values, then generates

a design based on this estimate. This iterative process is defined as follows:

1. Initialize the flow values with a conservative overestimate.

2. If current set of flow values are within a threshold of another set of flow values for which a

solution has already been generated, then return the lowest cost solution.

3. Solve for pipe depths and sizes.

4. Recalculate new maximum expected flows.

5. If current network does not support the flow, update the flow using the average of the current

and last valid flows. Return to step 2.

6. If the flow is supported but the cost is higher than the previous design, then return the previous

design.

7. If the solution is valid and of lower cost than the previous best, then store the flow and cost.

Return to step 2.

By using an overestimate in the first phase, it is guaranteed that this process generates a sewer

plan that can handle the expected flows within the system. Based on each new design, the estimated

flow values are revised and the solver attempts to generate a better solution. If during this iterative

process an illegal solution is generated, then a new solution is generated using the average of the

current flows and that of the last solution. The iterative process may terminate in one of two ways.

First, it stops if during step 2, the averaged flows are within a threshold of the flows from a previous

solution. Otherwise, if a newly generated valid solution is higher in cost than the previous valid

solution, the process terminates with the lowest cost valid solution.

It is worth noting the difference in solutions produced by the two solver modes. The original

solver will generate an optimal design using legal pipe diameters. However, the relaxed mode gener

ates solutions in a continuous range. It is likely that these pipe sizes will not match the commercially

available sizes. Therefore, the design from the continuous relaxation solver will need to be modified

to use real commercial pipe sizes. For instance, pipe diameters will need to be increased to the

nearest larger commercial pipe size. However, increasing pipe size alone is not enough to gener

ate a valid solution. In some cases, it may be necessary to adjust the pipe depth so that this new

solution does not break constraints from the mathematical program. Consider a pipe, p, from the

continuous relaxation, and its corresponding pipe, p', adjusted to be of a commercially available

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

size. The depth of p' may need to be adjusted for several reasons. For example, the larger p' may no

longer be buried completely below ground. In this case, the depth of the pipe, and all corresponding

downstream pipes, will need to be increased. In other instances, the invert point o f p 1 may be buried

deeper than the manhole depth requiring the pipe to be raised.

An algorithm to adjust these continuous solutions to valid real-world designs is needed. This

transformation process is left as future work. To validate the sewer planning architecture, the con

tinuous relaxation solver has been used. To ensure that real pipe sizes are used, the pipe size is

increased to the closest commercially available size. It is acknowledged that this approach does not

guarantee legal designs. However, this approach provides a design approximation process that can

be used to evaluate the architecture as a whole.

Using the architecture defined in Figure 6.1, the pipe layout algorithms from Chapters 4 and 5

are combined with the design solver to generate a complete sewer system planner. Results for this

planner are discussed in the next section.

6.4 Algorithm Testing

This planner has been tested using real and synthetic data. However, it has been extremely difficult

obtaining real-world data representing the input volume collected at each manhole. Thus, the sewer

systems produced are not generated for the expected flow of the real-world neighborhood. For

the purpose of these tests, a constant flow volume is added to the network at each manhole. It is

acknowledged that these synthetic flow values may not be truly representative of real flows. Despite

this, it is anticipated these techniques would work well with real flow data. The tests presented here

can still be used to evaluate the architecture of the prototype. The machine used to perform these

tests has dual 2 GHz AMD Athlon processors and 1 GB of memory. Tests were conducted on three

neighborhoods. Neighborhoods B and C, shown in Figures 5.12 and 5.13 of Chapter 5 respectively

as well as synthetic neighborhood D, shown in Figure 6.2.

6.4.1 Solver Computation Times

This chapter discusses the two implementations of a design solver; discrete and continuous relax

ation. The computation time required for each implementation to generate sewer designs is explored

in this section. Tests are conducted on each of the three test neighborhoods. For each test neighbor

hood, edge selections are computed from thirty-five random spanning trees. Both the discrete and

continuous relaxation solvers are used to generate a solution for each spanning tree, and the time to

generate each design is recorded. A half-hour computational time limit is placed on each design.

For test instances where every design computation failed to complete after thirty minutes, an is

recorded in the appropriate table column. The minimum, maximum and average time statistics are

calculated using only the instances which completed in the allotted time period. Timing results for

the discrete and continuous relaxation solvers are presented in Figures 6.3 and 6.4 respectively.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.2: Test Neighborhood D

Neighborhood Minimum Time Maximum Time Average Time Unsolved
B 75.5 1,775.4 734.4 5
C * * * 35
D 8.2 1,604.3 551.9 2

Figure 6.3: Discrete solver solution times in seconds

Neighborhood Minimum Time Maximum Time Average Time Unsolved
B 2.9 6.2 4.6 0
C 5.2 15.7 12.1 0
D 5.3 10.0 8.3 0

Figure 6.4: Relaxed solver solution times in seconds

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As expected, these results exhibit that the computational costs for the discrete solver are more

expensive than the continuous relaxation version. Consider the results for the discrete solver, shown

in Figure 6.3. For neighborhoods B and D, the average solution times are 734.4 and 551.9 sec

onds respectively. However, the maximum solution times for both neighborhoods are considerably

higher at 1,775.4 and 1,604.3 seconds respectively. Additionally, neighborhood B had five problem

instances unsolved after the thirty minute time limit, while neighborhood D had two unsolved. For

large-sized real world neighborhood C, the discrete solver was not successful at solving any of the

thirty-five problem instances. The continuous relaxation solver generates designs much quicker. For

each of the three neighborhoods, all thirty-five instances were solved, with a maximum solution time

of 15.7 seconds.

These results indicate that the discrete design solver is only computationally feasible for design

ing small to medium neighborhoods. Even in this case, it appears that there are problem instances

for such neighborhoods that may not be computationally feasible. However, further testing is re

quired to confirm this claim. These results also suggest that the discrete solver is not feasible within

the design architecture presented in Figure 6.1. When multiple layouts need to be considered in the

planning process, the discrete design solver is too computationally expensive. Thus, for the remain

der of the tests presented in this chapter, the continuous relaxation version of the design solver has

been used.

6.4.2 Solution Quality

This subsection examines the quality of sewer plans generated using the shortest path spanning tree

for edge selection. For synthetic neighborhood D, the shortest path spanning tree cost is compared

to each other potential solution. For neighborhoods B and C 2 3 the cost of the shortest path spanning

tree sewer plan is compared to the sewer plan cost from 20,000 randomly generated edge selections.

Neighborhood costs are measured in dollars using the following function:

P la n C o st = D esignC ost(p) + 10, 000 x m
p S P

where D esignC ost(p) is the cost for pipes as presented in Section 6.3, and m represents the

number of manholes in the layout. Note that the second term assumes a value of $10,000 for each

manhole in the layout. While this is a reasonable manhole installation cost, the actual cost depends

on factors such as the diameter and depth of the manhole.

The sewer plans presented here were generated using the continuous relaxation version of the

design solver. For each design, pipe sizes were increased to the next largest commercially available

pipe diameter. It is noted that this practice may cause the solution to be in violation of the constraints

from the mathematical program. Therefore, the sewer plan costs presented here should be taken as

an approximation. These approximations are used to evaluate the cost of sewer plans with respect

to the underlying pipeline layout.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tests were conducted on Neighborhood D, a synthetic neighborhood shown in Figure 6.2. The

outfall in this neighborhood is located at the dead-end of the top curved road section. This neigh

borhood was chosen because it represents a shallow, but wide, network. Consider the intersections

represented at the bottom of this neighborhood. Intuitively, the most cost effective network should

route sewage from the bottom part of the neighborhood to the top part as directly as possible. That

is, the sewage should pass through at most one intersection at the bottom on its route to the top.

Conversely, the worst solution should be one that conveys sewage around the whole network before

finally depositing it at the outfall point.

To test Neighborhood D, a sewer system plan was generated for each of the 6,944 different edge

selection outcomes. Each sewer plan is based on a layout generated by the enhanced branch-and-

bound search, using frontier placement to generate layouts for each road.

Cost Type
Max Pipe Length Least Cost Highest Cost Average Cost Shortest Path Spanning Tree

50 $5,119,450 $13,594,700 $6,546,730 $5,124,840
60 $4,598,080 $11,896,700 $5,788,650 $4,625,020
70 $4,242,640 $11,139,100 $5,451,140 $4,310,810
80 $3,839,560 $8,438,010 $4,865,800 $3,852,350
90 $3,527,620 $8,133,060 $4,604,820 $3,660,190
100 $3,523,140 $8,089,650 $4,557,560 $3,537,650

Figure 6.5: Sewer plan costs for neighborhood D

The cost results for these plans are summarized in Figure 6.5. From each of these spanning

trees, the minimum, maximum and average plan costs are presented. In addition, the cost of the

plan corresponding to the shortest path spanning tree is shown. These results indicate that the high-

level network topology affects the cost of the system. With a maximum pipe length of 50, the most

expensive sewer plan is approximately 2.6 times more expensive than the cheapest plan. In addition,

the plan corresponding to the shortest path spanning tree is a mere 0.1% more expensive than the

optimal solution.

The total distance sewage is conveyed has a big effect on the overall cost of the plan. Figures 6.6

and 6.7 show the cheapest and most expensive plans for Neighborhood D. Examining the cheapest

neighborhood, sewage is conveyed to the outfall as directly as possible. In contrast, for the most

expensive plan the sewage is carried along an indirect path through the network. This suggests that

the sewer plan corresponding to the shortest path spanning tree should be of good quality. Evidence

to support this c la im is presented in co lu m n entitled S h o r te s t P ath S pa n n in g Tree in F igu re 6 .5 .

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.6: Minimum cost network topology for Neighborhood D

U+-U-U-UU
*

* i

i

\ '

\ \ -------------------- i - J ,

f t
- I

<

i f ’ \

'
'■r ■ r r

7 \
)

, 1

P 1 1

------------------------ J j
V \

Figure 6.7: Maximum cost network topology for Neighborhood D

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cost Type
Max Pipe Length Least Cost Highest Cost Average Cost Shortest Path Spanning Tree

70 $2,249,170 $3,760,680 $2,798,350 $2,299,780

Figure 6.8: Sewer plan costs for Neighborhood B

Cost Type
Max Pipe Length Least Cost Highest Cost Average Cost Shortest Path Spanning Tree

70 $3,92:3,240 $5,701,500 $4,379,120 $3,978,690

Figure 6.9: Sewer plan costs for Neighborhood C

The quality of the shortest spanning tree sewer plan was also evaluated for real Neighborhoods

B and C. For these neighborhoods, the entire set o f spanning trees is too large to fully enumerate.

Instead, for each neighborhood the shortest path spanning tree design is compared to the designs

of 20,000 randomly generated spanning trees. For each neighborhood, tests were conducted with

a maximum pipe length of 70. For both neighborhoods, the outfall was randomly placed at an

entrance and fixed for the duration of the tests. The global layout was calculated using the greedy

sequential technique, while the frontier method was used for local placement. Results for these tests

are presented in Figures 6.8 and 6.9.

In these tests, the shortest path spanning tree generates good quality solutions. For Neighborhood

B, the shortest path spanning tree plan is cheaper than 99.97% of the randomly sampled spanning

trees. Similarly, for Neighborhood C, this plan is cheaper than 99.98% of the random samples. In

addition, the shortest path spanning tree costs are within 2.2% and 1.4% from the cost of the best

observed solutions for Neighborhoods B and C respectively. The shortest path spanning tree plan is

observed to be 17.8% better than the average solution cost for Neighborhood B and 9.1% better than

the average solution cost for Neighborhood C.

Results from these three test neighborhoods indicate that the shortest path spanning tree ap

proach works well for edge selection. In every test case, the cost of the shortest path spanning tree

was within 2.5% of the cheapest observed solution. For even medium-sized neighborhoods, such as

Neighborhood B, the cost to enumerate and generate a design for every spanning tree is not compu

tationally feasible. However, these results suggest that the minimum path spanning tree design has

cost close to the optimal solution.

6.5 Discussion

The results presented in this section suggest that the local and global placement algorithms from

Chapters 4 and 5 may be used as part of a complete sewer planning system. Several observations

can be made from the results observed. First, note that the frontier placement technique has been

used for each test case. From this it can be concluded that the use of sophisticated local placement

techniques, such as the frontier placement algorithm, are feasible within the sewer planning process.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, the use of the branch-and-bound global placement algorithm is not feasible for larger

neighborhoods. As seen in Chapter 5, the application of the enhanced branch-and-bound algorithm

for larger neighborhoods, such as Neighborhood C, was not computationally feasible. However,

the use of the greedy sequential algorithm is still expected to generate good quality global layouts.

Therefore, the greedy sequential algorithm should be suitable for use in the complete sewer planning

system.

The shortest path spanning tree edge selection approach presented is simple, yet effective. The

cost of sewer plans generated using this approach was within 2.5% of the cost of the best observed

solution in every test case. Using this approach, a design only needs to be generated for a single

spanning tree. Furthermore, this spanning tree can be generated quickly. For example, Dijkstra’s

Algorithm can be used to find the shortest path spanning tree with a worst case time complexity of

0 { n 2), where n is the number of nodes in the expanded graph structure[9].

The key missing element from this system are realistic flow values. If these values can be easily

supplied as input to the planning process, then this architecture can be used to efficiently generate

a high-quality complete sewer system plan. If these flow values need to be calculated based on the

automatically generated layout, then this computation time will have to be reflected in the evaluation

of this system.

6.6 Future Considerations

In this chapter, a primitive sewer planning prototype was explored. However, there are more issues

that can be addressed to potentially improve the system.

In the architecture shown in Figure 6.1, an iterative improvement scheme is proposed. In gen

eral terms, this process iteratively perturbs the layout, solving for the design for each new layout.

However, the proposed architecture separates the layout problem into two components, edge selec

tion and manhole placement. Perturbing the high-level network topology or the precise position

of manholes will both change the cost of the overall sewer plan. A specific planning system must

define how to modify the layout. In addition, it may be reasonable to modify the high-level topology

sometimes, and the low-level detail of manhole and pipe positions other times. In Figure 6.1, the

unit labeled iteration selector chooses how the layout will be modified. The optimal policy here is

likely a combination of changes on both levels, a decision which is made by the iteration selector

unit. Additional research is necessary to determine the effect of changes to different levels of the

layout.

The edge selection algorithm implemented for this prototype constrains cuts to occur at the ex

tremities of a road. However, in real neighborhoods, the optimal position of a cut may lie elsewhere

within the road corridor. Often, the elevation at each point in the road may influence where the cut

should be located. Consider the task of placing the pipeline for a storm sewer in a road corridor, and

let the highest point of elevation lie at a point p. In such a case, it may be natural to locate the cut

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

at this point p. To generate the pipeline for this road, the manhole placement solver must place two

pipelines based on this cut position; one between the first intersection and p, and another between

the second intersection and p. An industrial strength sewer planner needs to consider elevation

information to optimize sewer plan quality.

The system presented here assumes that the flow into the system is known. However this quantity

depends on the specific network layout of the system. A fully-automated system needs to include

techniques to calculate this flow. Flow estimates can be used, but these will change each time the

layout changes. This system can be augmented with the addition of a module that calculates the flow

from the chosen layout, and drainage information for the neighborhood.

An industrial strength sewer planning system requires a design solver that generates sewer plans

using commercial pipe sizes. The design module used to implement this prototype generates pipes

within a continuous size range bounded by commercial pipe sizes. For an industrial system, it is

necessary to transform this design into one that uses commercial pipe sizes and obeys the constraints

of the mathematical program. Since this solver generates designs quickly, it would be desirable to

use it in an industrial strength sewer planning system. However, to be able to use this module, an

efficient algorithm for converting these designs into valid real-world sewer designs is necessary. One

area of future work involves the development of such a conversion algorithm. If no algorithm can

be found, then an alternate design approach must be developed.

A shortest path spanning tree approach based on the cost estimates for each pipe was used to

implement an edge selection algorithm for the test system. Results show that this approach produces

good quality solutions, but not necessarily the best quality solutions. Any of the edge selection

algorithms covered in the Chapter 2 survey could be used to implement edge selection. An area for

further research may involve the computation of optimal spanning trees for the design phase.

6.7 Conclusion

This chapter explores the implementation of a complete planning system based on the architecture

proposed in Chapter 2. Manhole placement was conducted using the local and global placement

techniques introduced in this thesis. These algorithms were used in cooperation with shortest path

spanning tree based edge selection, and a third party design module. The result is a system capable

of defining both the position of pipes and manholes as well as the depth, diameter and slope of each

pipe.

Tests on synthetic data indicate this architecture can be used to effectively automate the plan

ning stages for sewer systems. In addition to the global and local techniques introduced earlier,

this chapter proposes a simple edge selection technique. This technique simply fixes the backbone

network as the shortest path spanning tree, where the cost of each edge is simply the length of the

road. To evaluate the effectiveness of this technique, a full enumeration of every spanning tree for

a test neighborhood was done. These experiments have shown that the quality of the shortest path

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

spanning tree performs well.

The tests presented here indicate that this architecture provides an efficient technique for plan

ning sewer systems. These techniques need to be more thoroughly tested using real neighborhood

data. The real data available for testing in this thesis was limited, and often incomplete. While the

tests presented here still show the fitness of the proposed techniques, real-world data may provide

insights that can be used to improve these results.

A better technique for dealing with the flow rate through the system is required. For the design

module to produce the best solution, accurate flow information is required. This flow is based on

the infiltration to the system, which is based on the sewage properties of the neighborhood, and the

specific layout produced during the manhole placement phase. This can be developed as a separate

module, and integrated into the proposed architecture.

The techniques presented here provide a solid basis for a complete sewer system planner. The

prototype is not an industrial strength planner, but it does address some key issues for such a system.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusion and Limitations

This thesis explores the sewer system planning problem from a computing science viewpoint. Sev

eral sewer planning sub-problems are modeled as computation problems, and algorithms to solve

these sub-problems are explored. The goal is to provide the engineering research community with a

suite of algorithms to be used in a real-world sewer planning system.

The sewer planning process accepts as input the neighborhood road map, a set of available pipe

sizes and hydrological data. The goal is to generate a sewer plan that can successfully convey waste

from a set of pre-defined clients to an outfall point. Such a plan defines the position of pipes and

manholes, in addition to the diameter and upstream and downstream heights for each manhole in the

system. For this thesis, it is assumed that potential clients may lie at any point adjacent to a road. To

provide full service, pipelines are laid completely down the corridor of each road. In addition, there

may be only one path from each manhole to the outfall.

There are two important benefits to an automated planning system. First, automating the plan

ning process relieves the engineer of the tedious manual planning task. This allows the highly-skilled

expertise of the engineer to be applied to other planning problems. Second, this system can be used

to reduce the cost of the sewer system plan. This will allow contractors to tender a lower cost

estimate, increasing the chances of a successful bid.

Sewer system planning is a complex optimization problem. Standard practice separates the

planning process into two parts; design and layout. The design defines the properties of the pipes,

including the pipe diameter and upstream and downstream invert pipe elevations. A survey of design

techniques is presented in Chapter 2. Sewer system layout is further divided into two parts, edge

selection and manhole placement. Edge selection is concerned with the general topology of the

sewer network. Edge selection begins with a graph, where the vertices define fixed points in the

sewer network and the edges represent connections between them. Edge selection determines which

edges in this graph belong to the core network, and which edges are secondary pipelines conveying

only local flow. An overview of existing techniques for this problem is presented in Chapter 2. Each

edge in the aforementioned graph specifies a complete pipeline composed of individual pipes and

manholes. Manhole placement determines the position of each pipe and manhole. This level of

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

detail is often overlooked in the literature, and is the key focus of the research presented within this

thesis.

Manhole placement is addressed by two categories of algorithms. Local placement specifies the

position of pipes and manholes between two fixed points. Global placement algorithms reduce the

global cost of pipelines by varying the position of fixed manholes. Each global placement algorithm

utilizes local placement techniques to generate layouts between fixed points.

To minimize cost, local placement algorithms reduce the number of manholes in the pipeline.

Three placement techniques were examined. The centerline and curbpoint approaches guide place

ment using a set of control points. Pipes are placed in an iterative fashion, where the furthest reach

able control point from the last placed manhole guides placement for the current iteration. The

centerline approach identifies control points in the center of the road, guiding the search toward the

center of the road corridor. The curbpoint approach places control points directly on the curbs of the

road. The goal of this approach is to have the pipeline cut corners, further reducing the number of

manholes. The final local placement approach uses a reachability frontier to find the layout with the

minimum number of manholes. This algorithm defines an iterative process such that each iteration

generates a frontier defining the furthest reachable points. When the frontier passes the goal point,

a layout can be traced backward through each frontier. The implementation of this frontier method

uses a discrete approximation of a continuous approach proved to generate the minimum number

of manholes between two points. Each local technique was tested on real and synthetic roads. The

results show that the frontier approach is the most effective at reducing the number of manholes,

dominating each of the other placement techniques. In addition, the frontier approach exhibits rea

sonable computation time, requiring less than one second of computation for pipelines with up to 24

manholes. To optimize the placement of pipelines between two points, the frontier approach should

always be chosen.

To further minimize layout costs, global placement algorithms are presented. These algorithms

assume the existence of a fixed point within each intersection of the neighborhood graph. Then, for

each intersection a discrete sized grid of candidate manholes is defined. By varying the position of

these intersection manholes, these algorithms minimize the number of manholes over each pipeline

in the neighborhood. Two global placement techniques were introduced. The greedy sequential

algorithm uses a local optimization heuristic to approximate the optimal set of fixed manholes. This

approach assigns a fixed manhole to an intersection based on a cost heuristic defined as the minimum

n u m b e r o f m a n h o le s f o r e a c h d i r e c t ly a d ja c e n t r o a d . T h is s im p le h e u r i s t i c is o f te n a b le to id e n t i ty

the lowest cost solution for the set of candidate manholes.

A branch-and-bound search is employed to find the best set of fixed manholes. This algorithm

traverses the solution space, only expanding solutions that can decrease the cost. Each node in the

search corresponds to fixing a single manhole for an intersection. For partial solutions, costs for in

dividual roads are estimated as the lowest number of manholes in the pipeline, based on the potential

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

endpoints of the pipeline. The search space for this problem grows quickly as either the size of the

candidate manhole set or the number of intersections increases. Therefore, several search enhance

ments have been proposed. The first employs a domination measure to eliminate provably inferior

candidate manholes. The second identifies roads where the cost is not affected by the candidate

manhole position, removing these roads from the optimization problem.

For small to medium neighborhoods, branch-and-bound is the algorithm of choice. However, as

the size of neighborhoods increases, the size of the search space increases quickly and the branch-

and-bound approach becomes intractable. In these cases the greedy sequential ordering approach

can be used to find an estimate for the optimal global placement. Results indicate that the quality of

layout for the greedy sequential approach is near optimal, as the number of manholes in the resulting

layout is at most a few manholes from the branch-and-bound solution.

In the literature, the standard planning approach is to alternately apply design and layout tech

niques, iteratively improving the quality of the sewer plan. A new architecture that incorporates the

more detailed manhole placement phase is proposed in this thesis. Chapter 6 describes the imple

mentation of a simple planning system incorporating the manhole placement techniques introduced

in this thesis. This system automates the planning process, using only the neighborhood rendering

data, expected sewage loads, and a set of commercially available pipes sizes.

To adapt the work presented in this thesis to the real-world, there are several limitations to be

addressed. One limitation involves the maximum distance between manholes for local placement.

Local placement assumes a single maximum pipe length. In reality the maximum distance depends

on the diameter o f the pipe. In addition, there are sometimes instances where curved pipes may be

used. To generate the lowest cost pipeline, these algorithms need to consider these additional pipe

properties.

The edge selection and manhole placement algorithms do not consider ground elevation. The

addition of elevation information may be exploited to further reduce the cost of a sewer plan. For

example, the presence of a high-point within a road may affect the position and size of a cut for a

chord edge. The algorithms presented here need to be improved to exploit elevation information.

The edge selection algorithm presented in this thesis assumes that cuts within the chord edges

will occur at either extremity of the edge. However, this may not produce the best network topology.

For the algorithms presented in this thesis, the only costs considered were infrastructure and

construction costs. However, another important category of costs to consider are maintenance costs.

A s e w e r p la n th a t is i n e x p e n s iv e w ith r e s p e c t to i n f r a s t r u c tu r e a n d c o n s t r u c t io n m a y b e u n d e s i r a b le

because of high maintenance costs. A robust sewer system planner should address maintenance

costs in the edge selection, manhole placement and design solvers.

This thesis makes several contributions to the planning problem. First, this work explores how

data used to render the neighborhood can be grouped as intersection and neighborhood components

and arranged as a neighborhood graph. This neighborhood graph can be used to automatically

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

generate the graph used in the edge selection phase.

Second this thesis considers a finer level of optimization by specifying the exact position of pipes

and manholes within a pipeline. Local placement algorithms can be used to minimize the number of

manholes between two fixed points, while global placement reduces the number of manholes over

an entire neighborhood. While these techniques were presented with sewer systems in mind, it is

expected that many of the ideas discussed here are applicable to other types of pipe networks, such

as water distribution or irrigation networks.

Finally, a modified sewer system solver architecture using the algorithms presented in this the

sis is proposed. This architecture is validated by the implementation of a simple prototype sys

tem. While there is more work to be done for the implementation of a fully-automated commercial

strength sewer planning system, this thesis provides a number of key algorithms that may be used in

such a system.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] http://www.haestadmethods.com/software/pondpack/.
[2] http://www.haestad.com/software/stmcstandalone/.
[3] http : / / www. pizer . com/hydra . html.
[4] http://www.vrand.com.
[5] http://www.ilog.com/products/cplex/.
[6] M. H. Afshar, M. Ak'bari, and M. A. Marino Hon.M.ASCE. Simultaneous layout and size

optimization of water distribution networks: Engineering approach. Journal o f Infrastructure
Systems, 11(4):221—230, December 2005.

[7] C. Charalambous and A. A. Elimam. Heuristic design of sewer networks. Journal o f Environ
mental Engineering, 116(6):1181—1199, November/December 1990.

[8] K. Chau and C.S. Cheung. Knowledge representation on design of storm drainage system.
In Innovations in Applied Artificial Intelligence, number 3029 in Lecture Notes in Computer
Science, pages 886-894. Springer-Verlag, 2004.

[9] T. H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. The MIT Press,
1990.

[10] J. S. Dajani, Y. Hasit, and S. D. McCullers. Mathematical programming in sewer network
design. Engineering Optimization, 3:27-35,1977.

[11] A. F. Diogo and V. M. Graveto. Optimal layout of sewer systems: A deterministic versus a
stochastic model. Journal o f Hydraulic Engineering, 132(9):927-943, September 2006.

[12] A. F. Diogo, G. A. Walters, E. Ribeiro de Sousa, and V. M. Graveto. Three-dimensional op
timization of urban drainage systems. Computer-Aided Civil and Infrastructure Engineering,
15:409-42,2000.

[13] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory o f
NP-Completeness. W.H. Freeman and Company, 1979.

[14] Z. W. Geem, T. G. Kim, and J. H. Kim. Optimal layout of pipe networks using harmony
search. In Proceedings o f the Fourth International Conference on HydroScience and Engi
neering, 2000.

[15] D. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison
Wesley Publishing Company Inc, 1989.

[16] A. M. Hassanli and G. C. Dandy. Optimal layout and hydraulic design of branched networks
using genetic algorithms. Applied Engineering in Agriculture, 2 1 (l):55 -62 ,2005.

[17] M. Heidari, V.T. Chow, P. V. Kokotovic, and D. D. Meredith. Discrete differential dynamic
programming approach to water resources systems optimization. Water Resources Research,
7(2):273-283,1971.

[18] B. Kolman and R. E. Beck. Elementary Linear Programming with Applications. Academic
Press, 1995.

[19] R. P. Lejano. Optimizing the layout and design of branched pipeline water distributions sys
tems. Irrigation and Drainage Systems, 20:125-137,2006.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.haestadmethods.com/software/pondpack/
http://www.haestad.com/software/stmcstandalone/
http://www.vrand.com
http://www.ilog.com/products/cplex/

[20] G. Li and R. G. S. Matthew. New approach for optimization of urban drainage systems. Journal
o f Environmental Engineering, 116(5) :927-944, September/October 1990.

[21] G. Y. Li. The optimal design of sewer networks by DDDP. China Water Supply ancl Sewerage,
1986.

[22] L.B. Merritt and R.H. Brogan. Computer-based optimal design of sewer systems. Journal O f
The Environmental Engineering Division, 99(EE1):35—53, February 1973.

[23] Haestad Methods and S. R. Durrans. Stormwater Conveyance Modeling and Design. Haestad
Press, first edition, 2003.

[24] D. W. Patterson. Artificial Intelligence and Expert Systems, chapter9, pages 181-182. Prentice
Hall, 1990.

[25] T. D. Prasad and N. Park. Multiobjective genetic algorithms for design of water distribu
tion networks. Journal o f Water Resources Planning and Management, pages 73-82, Jan
uary/February 2004.

[26] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 1995.

[27] D. A. Savic and G. A. Walters. Genetic operators and constraint handling for pipe network
optimization. In T. C. Fogarty, editor, Evolutionary Computing, number 933 in Lecture Notes
in Computer Science, pages 154-165. Springer Verlag, 1995.

[28] A. R. Simpson, G. C. Dandy, and L. J. Murphy. Genetic algorithms compared to other tech
niques for pipe optimization. Journal o f Water Resources Planning Management, 120(4):423-
443, July/August 1994.

[29] D. K. Smith and G. A. Walters. An evolutionary approach for finding optimal trees in undi
rected networks. European Journal o f Operations Research, 120:593-602,2000.

[30] P. R. Swamee. Design of a sewer line. Journal o f Environmental Engineering, pages 776-781,
September 2001.

[31] S. A. Taher and J.W. Labadie. Optimal design of water-distribution networks using GIS. Jour
nal o f Water Resources Management and Planning, 122(4):301—311, July/August 1996.

[32] S. Tekeli. Computerized design of sewer networks. Journal o f Environmental News, 9:7-17,
December 1981.

[33] S. Tekeli and H. Belkaya. Computerized layout generation for sanitary sewers. Journal o f
Water Resources and Management, 112(4):500-515, October 1986.

[34] E. Todini. Looped water distribution networks design using a resilience index based heuristic
approach. Urban Water, 2:115-122,2000.

[35] K. Vairavamoorthy and M. Ali. Optimal design of water distribution systems using genetic
algorithms. Computer-Aided Civil and Infrastructure Engineering, 15:374-382,2000.

[36] J. P. Velon. Sewer cost estimation model - an application. Master’s thesis, Northwestern
University, 1971.

[37] G. A. Walters. The design of the optimal layout for a sewer network. Engineering Optimiza
tion, 9:37-50,1985.

[38] G. A. Walters and T. Lohbeck. Optimal layout of tree networks using genetic algorithms.
Engineering Optimization, 22:27—48, 1993.

[39] Water Pollution Control Federation. Design and Construction o f Sanitary and Storm Sewers,
1970.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Frontier Placement Optimality

In this section, the mathematical definitions of the reachability frontier are introduced. The term

frontier is used to define the furthest reachable points from a set of base points. The frontier manhole

placement method uses the idea of the frontier to place pipelines between two points, propagating

reachability frontiers until the endpoint can be reached. It is claimed that this method generates

placements with the minimum number of manholes. A proof of this claim is provided in this section.

Consider a simple polygon1, Q, with two points, po and pn , inside of Q. The goal is to generate

a path between the two points using the minimum number of line segments, with the restriction that

each line segment may be no longer than a maximum distance d. Since both po and pn lie within

a simple polygon, such a path exists. Denote path* as a path with the minimum number of line

segments, which is represented by the sequence path* = < po, p \ , P2 , • • •, Pn > •

A point P2 is d-reachable from pi if and only if \pip%\ < d and P1P2 lies totally inside of Q,

where | . . . | defines length. A point pn is d-reachable from p \ using n line segments if and only if

the points may be connected by a path using n line segments, such that adjacent points in the path

are d-reachable from one another.

Consider a set of points P. The set of all points d-reachable from at least one p G P is defined

as the interior of P , denoted I n t{ P). The interior for a single point p, In t(p) , is generated in the

following manner. Using p as an endpoint, sweep a line segment of length d around a full circle.

The set of d-reachable points inside of the swept circle belong to the interior. The interior for a set

of points is simply the union of the interior of each point in the set.

The set of the furthest reachable points from a set P will be defined as the Frontier of P, denoted

F ro n t(P) . Once again, consider the generation of a frontier from a single point. To generate

F ro n t(p), use p as an endpoint and sweep a line segment of length d around a full circle. For each

angle in the circle the frontier point is the furthest d-reachable point from p along the line segment.

Note that the frontier is a subset of the interior, defining the boundary of reachable points. The

frontier for a set of points P can be defined in terms of the frontiers for each point in the set. The

frontier of P will be defined as the union of the frontiers for each p 6 P, minus any points such that

1A sim ple polygon is a polygon w here the in terior and exterior are well defined.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p e In t(p ') and p ^ F ro n t(p ') , where p' ^ p ,p e P . In other words, if a point lies on the frontier

for a point p, but is strictly in the interior for another point p', then it is not included in the frontier

for the set.

The example shown in Figure A. 1 illustrates In t(p) and F ront(p) for point p inside of a simple

polygon. In this figure, the line segment swept to generate In t(p) and F ront(p) is represented by

the dashed line. Sweeping this line a full 27r radians produces F ron t(p) represented by the thick

black lines Each of the points inside of thick black lines represent In t(p).

The concepts for both the interior and frontier can be extended to n line segments as follows.

The n th interior of a point p, denoted In t(p)n , is the set of points d-reachable using a minimum of

n line segments. The n th frontier is the furthest set of points ^-reachable using n line segments. For

both In t(p)n and F ro n t(p)n , the use of any fewer line segments would mean that one of the line

segments has length greater than d. Using this definition, the original definitions of the interior and

frontier of a point p are represented as In t (p) 1 and F ro n t(p)1 respectively. The n + I th interior

can be defined in terms of the interior generation process previously described, where F ro n t (p)n is

the input for this generation. Similarly, the n + I th frontier can be generated in terms of the frontier

generation process previously described, where F ro n t(p)n is the input for this generation.

Figure A.2 shows an example where each intermediate vertex lies on a frontier. This example

has four interiors and frontiers.

F r(p)

In t(p)

Figure A. 1: Interiors and Frontiers between two points

Using the definitions for the interior and frontier, it will be proved that a path between two points

can be constructed such that each intermediate point lies on a frontier and that such a path has the

minimum number of line segments. This proof uses the following two lemmas.

Fr

F l

in t Tni Ln£

Figure A.2: Path between two points, where each intermediate point lies on a frontier

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lemma 1. Consider an optimal path, path* = < p o ,P i,P 2 ; ■ ■ ■ ,Pn >» containing n + 1 points.

Each point f j £ path* , 1 < j < n, lies in the interior In t(p o)J.

Proof. Consider the following two cases where this is not true.

Case 1: pj lies in In t(p o)k , k < j

This means there will be a path frompo to p , o f length k, denoted < po, , - ■ -, Qk~i,Pj >■ By

definition the following path to pn exists, < p o ,q i , . ■ ■, q k -i,P j,P j+ i, ■ ■ ■ ,p n >■ This path will be

of length k, + n — j < n. Therefore, this is not an optimal path.

Case 2: pj lies in In t (p f) k , k > j

Similarly there will be a path frompo to pj of length k, denoted < po, q i , . . . , q t - i ,P j >■ Thus

the following path to pn exists, < po, qi, ■ ■ ■, q k -i,P j,P j+ i, ■ ■ ■ ,p n >■ This path will be of length

k + n — j + 1 > n. Therefore, this is not an optimal path.

Thus, each point pj ,1 < j < n in the optimal path p a th *, lies in the Interior I n t (po)-7 •

□

Lem m a 2. Any line segment p fp i+1 completely inside Q, such that pi £ I n t (P)* and Pi+i £

f n t (P) l+1 must contain a point p ' such that p ' £ F r o n t fP y

Proof. From the definition, the frontier represents the furthest set of d-reachable points. Since the

line segment pipi+ l crosses the boundary of points d-reachable using % line segments, there must

exist a point p' on F r o n t(P y

□

Theorem 1 (Frontier Placement Theorem). Consider two points po and pn inside a simple polygon

Q. Let path* —< po ,P i, • • ■,pn - 1 ■ Pn > represent an optimal path. Then there exists a path

pa th ' = < po ,p i) • ■ • ,p'n- i ,P n > between po and pn such that each intermediate point p f i =

1 . . . n — 1 lies on the corresponding frontier F ron t{po)1.

Proof. This proof will generate such a path backwards, starting from the goal point pn . Con

sider the final line segment in p a th 1, pn- ip „ . Using Lemma 1, we can infer that p „ _ i lies in

/n f (p o)"^ 1 and p„ lies in In t(p 0)n . Using Lemma 2, there exists a point p !n _ 1 on this line seg

ment that lies on F r o n ^ P) 71-1. For the construction of the new path path ', add the line segment

p'n-iiP n - Now there exists a point p j,_2 on F r o n t(P)n~2 from which p 'n_ , is ri-reachable. This

follows from the frontier generation process, as the set of points F r o n t(P)n~ 1 was used to generate

Front(Py"-~2. And thus p'n_ 1 must be d-reachable from some point in F ro u t{P)n~2. Therefore,

the line P^__2? n - i can a|3ded to the path as well. This argument can be used inductively to trace

a path back to a point p[on F ront{pn) 1 ■ Also by definition of the frontier, the point on F ro n t(p o Y

is reachable from p0. This gives the path path ' = < Po ,p i, ■ • • ,p !n~ \,P n >•

The following construction generates a path path ', where each intermediate point lies on a fron

tier. This path has n + 1 points, n — 1 lying on frontiers, plus the starting and ending points. By

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

definition, the path path* also has n + 1 points. Therefore there exists a

the intermediate points in this path is a frontier point, and pa th ' has the

segments.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

path path ' where each of

minimum number of line

□

Appendix B

Local Placement Test Roads Suite

/

^ r

Figure B .l: Test Road A

Figure B.2: Test Road B

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure B.4: Test Road D

'V.

r

Figure B.5: Real neighborhood straight stretch

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C

Local Placement Test Suite Results

Pipe Length Centerline Curbpoint Single Curbpoint Doubling Frontier
40 13 13 13 13
50 11 11 11 11
60 11 11 10 10
70 10 9 9 8
80 8 7 7 7
90 8 7 7 7
100 8 7 7 7
110 8 7 7 6
120 8 7 7 6
130 8 6 6 6
140 8 6 6 6
150 8 6 6 6

Figure C. 1: Number of manholes in placements for Test Road A

Pipe Length Centerline Curbpoint Single Curbpoint Doubling Frontier
40 12 12 11 11
50 10 10 10 10
60 10 10 9 9
70 8 10 9 7
80 7 8 7 7
90 7 6 6 6
100 7 7 6 6
110 7 7 6 6
120 7 7 6 6
130 7 7 6 6
140 7 7 6 6
150 7 7 6 6

Figure C.2: Number of manholes in placements for Test Road B

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pipe Length Centerline Curbpoint Single Curbpoint Doubling Frontier
40 13 12 12 12
50 11 11 11 11
60 11 9 9 9
70 9 8 8 8
80 9 8 8 8
90 9 7 7 7
100 9 8 8 7
110 9 6 6 6
120 9 6 6 6
130 9 6 6 6
140 9 6 6 6
150 9 6 6 6

Figure C.3: Number of manholes in placements for Test Road C

Pipe Length Centerline Curbpoint Single Curbpoint Doubling Frontier
40 8 8 8 8
50 7 7 7 7
60 6 6 6 6
70 6 5 5 5
80 5 5 5 5
90 5 4 4 4
100 5 4 4 4
110 5 4 4 4
120 4 4 4 4
130 4 4 4 4
140 4 4 4 4
150 4 4 4 4

Figure C.4: Number of manholes in placements for Real Straight Road

Maximum Length Centerline Curbpoint Single Curbpoint Doubling Frontier
15 0.002 0.043 2,738 0.645
20 0.001 0.034 70.64 0.586
25 0.000 0.027 11.56 0.506
30 0.001 0.024 3.17 0.564
35 0.001 0.019 0.910 0.510
40 0.000 0.018 0.714 0.482
45 0.001 0.017 0.383 0.555
50 0.000 0.015 0.284 0.567
55 0.000 0.015 0.225 0.625
60 0.001 0.015 0.162 0.607

Figure C.5: Layout computation times in seconds for Test Road C

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D

Commercial Pipe Sizes and Costs

0.150 23.004
0.200 31.368
0.250 47.568
0.300 59.928
0.375 73.248
0.450 75.288
0.525 79.368
0.600 112.368
0.675 165.048
0.750 216.168
0.825 250.323
0.900 299.598
0.975 328.713
1.050 375.948
1.200 470.298
1.350 575.568
1.500 702.678
1.650 840.828
1.800 1014.738
1.950 1176.288
2.250 1348.878
2.400 1532.268
2.550 1792.098

Figure D. 1: Commercial pipe diameters with per unit cost

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

