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In this paper, generalized additive mixed models are constructed for the analysis

of geographical and temporal variability of cancer ratios. In this class of

models, spatially correlated random effects and temporal components are adopted.

Spatio-temporal models that use intrinsic conditionally autoregressive smoothing

across the spatial dimension and B-spline smoothing over the temporal dimension

are considered. We study the patterns of incidence ratios over time and

identify areas with consistently high ratio estimates as areas for further investigation.

A hierarchical Bayesian approach using Markov chain Monte Carlo techniques

is employed for the analysis of the childhood cancer diagnoses in the province
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of Alberta, Canada during 1995-2004. We also evaluate the sensitivity of

such analyses to prior assumptions in the Poisson context.

Introduction

For children aged one year to adolescence in Canada, childhood cancer leading

to death outnumbers any other disease-specific deaths; it causes more deaths

than asthma, diabetes, cystic fibrosis and AIDS combined (Borugian et

al. 2005). Given this outcome, analyzing the ratio of childhood cancer

diagnoses based on geographical and temporal variations is worthwhile. We

consider spatial and temporal trends in the annual number of childhood

cancer diagnoses between 1995 and 2004 in the province of Alberta, Canada.

The analysis of disease ratios over region and time has received considerable

attention because of the desire to provide reliable maps of disease ratios.

Maps of regional incidence ratios over time are useful tools in determining

spatial and temporal patterns of disease. Disease incidence ratios may differ

substantially across geographical regions. Evaluating such spatial variation

in a disease by regional characteristics may provide important information

to determine the risks and causes of the disease.

The analysis of disease cases over space uses Poisson regression, which
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implicitly assumes that the cases in nearby regions are independent and

the variance of cases is equal to the mean. However, these may not be

reasonable assumptions because unmeasured casual factors of a disease that

are omitted from a regression model can lead to extra-Poisson variation. In

addition, a certain degree of spatial correlation may be present in a response,

depending on how smoothly the omitted factors vary across regions. The

use of mixed models for geographical data to account for extra-Poisson

variability through the introduction of random effects was first used by

Clayton and Kaldor (1987); often the random effects are spatially correlated

in a disease mapping context. For inference based on mixed models, one

may use empirical Bayes or Markov chain Monte Carlo (MCMC) methods

such as the Gibbs sampler (Besag, York, and Mollié 1991; Bernardinelli and

Montomoli 1992; Clayton and Bernadinelli 1992; Cressie 1992; Waller et al.

1997; Knorr-Held 2000; Lu and Carlin 2005). Breslow and Clayton (1993)

propose the use of the penalized quasi-likelihood (PQL) method for inference

in generalized linear mixed models (GLMMs), and also provide an example in

the context of disease mapping. The PQL method has been used extensively

in the literature (Breslow and Lin 1995; Lin and Breslow 1996; MacNab

and Dean 2000, 2001; Dean, Ugarte, and Militino 2004). The generalized

estimating equation (GEE) approach, introduced by Liang and Zeger (1986)

and Prentice and Zhao (1991), also may be used for inference in GLMMs.
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The temporal random smoothing of ratios also has been studied in the

literature. Zeger (1988) uses an autoregressive (AR) model to describe

temporal count data. Waller et al. (1997) extend the existing hierarchical

Bayesian spatial models to account for temporal random effects and spatio-temporal

interactions. Knorr-Held (2000) proposes a unified approach for a Bayesian

analysis of incidence or mortality data in space and time. MacNab and Dean

(2001) and Silva et al. (2008) propose spatio-temporal models that use AR

local smoothing across the spatial effects, and B-spline smoothing over the

temporal effects. Martinez-Beneito, López-Quilez, and Botella-Rocamora

(2008) suggest an autoregressive spatio-temporal model based on time series

and Bayesian spatial modeling to link information in time and space.

To fit an appropriate model for our dataset of childhood cancer incidence,

we study a comprehensive model that is based on a generalized additive

mixed model (GAMM) to account for the spatio-temporal analysis of risks.

This model accommodates spatially correlated random effects and temporal

effects. The well-known intrinsic conditionally autoregressive (ICAR) approach

(Besag, York, and Molliè 1991) is used for the spatial random effects, and

linear trend and B-spline approaches are used for the temporal effects. The

model specification also accommodates the interaction between space and

time.
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Methodology

Let yit be the number of disease cases for the i-th geographic area at year

t, and let eit be the corresponding expected number of disease cases for

i = 1, ..., I; t = 1, ..., T. Define µc
it as the conditional expectation of the yit

given the random effects. A generalized Poisson mixed model for µc
it is given

by

µc
it = exp[log(eit) + m + S(t) + ηi + φi + θit], (1)

where m is a fixed effect representing the overall mean ratio over time

and region, ηi and φi represent specified and unspecified features of the

spatial structure of area i, respectively, and θit is the interaction between

the spatial and temporal effects. To account for the fixed temporal effects,

S(t) represents a cubic B-spline with three inner knots (Eilers and Marx

1996), a specification found useful in our exploration of the data. Note that

the knots are located in the first and third quartiles as well as the median of

time t (= 1, ..., T ). For example, if T = 10, the knots would be located at

t =3.25, 5.50, and 7.75. One may simply consider a linear trend (βt) instead

of S(t), depending on the nature of a dataset. With the overall mean of ratio

m in our model, the B-spline is provided without an intercept. In this case,

S(t) is given by

S(t) = β1B1(t) + β2B2(t) + β3B3(t) + β4B4(t),
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where (βl, Bl) are the coefficients and basis functions of the B-spline, respectively

(l = 1, ..., 4), with Bl(t) being a cubic function of t (De Boor 1978; Eilers and

Marx 1996).

To capture the random effects ηi, the usual ICAR model is used. One may

define a variety of ICAR models by taking a collection of mutually compatible

conditional distributions p(ηi|η−i), i = 1, ..., I, where η−i = {ηj; j 6= i, j ∈ ∂i}

and ∂i denotes a set of neighbours for the i-th area (Besag, York, and Molliè

1991). In particular, we define the following model for the spatial effects ηi:

η = (η1, ..., ηI)
′ ∼ N(0,Ση),

Ση = σ2
ηD

−1,

where σ2
η is the spatial dispersion parameter. The neighbourhood matrix D

is defined such that its i-th diagonal element is the number of neighbours

of the corresponding area (∂i), and the off-diagonal elements in each row

are -1 if the corresponding areas are neighbours and zero otherwise (Leroux,

Lei, and Breslow 1999; MacNab and Dean 2000, 2001). Because D is a

singular matrix, one may use the Moore-Penroze generalized inverse D
−1

(Harville 1997). One can define the neighbours matrix D in various ways

(Earnest et al. 2007), depending on the context of an analysis, but one

popular definition is simply the set of areas that have common borders, and
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we use this definition. We have ηi|η−i ∼ N(η̄, σ2
η/∂i) by noting that η̄ is the

mean of the random effects in the neighbourhood of the i-th area.

The unstructured heterogeneity φ = (φ1, ..., φI)
′

is assumed to have a

Gaussian distribution with mean 0 and covariance matrix σ2
φII , where II is

an identity matrix with dimension I.

One may define the interaction effect of space and time, θit, as δit or Si(t)

depending on the nature of a dataset (Bernardinelli et al. 1995; MacNab and

Dean 2001; Silva et al. 2008), where δi is the coefficient of the linear temporal

effect related to the i-th area, and Si(t) is a cubic B-spline for specific area i.

Bayesian inference and model comparison

With advances in computational power, much progress in empirical Bayes

and Bayesian hierarchical modeling has been made that enables stable estimators

for mortality rates in small areas by using information from all areas to derive

estimates for individual areas. A comprehensive account of hierarchical

Bayesian (HB) models for spatial and spatio-temporal data is given by Banerjee,

Carlin, and Gelfand (2004).

We employ the Bayesian approach using MCMC to estimate the model

parameters (say ω). In the HB approach, we estimate ω by its posterior mean.
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The uncertainty in the HB estimate is measured by the posterior standard

deviation of ω. We use the Gibbs sampler (e.g., Gelfand and Smith 1990;

Gelman and Rubin 1992) to obtain the posterior mean and posterior variance

of ω. The Gibbs sampler is a Monte Carlo Markovian updating scheme that

gives the marginal, conditional, and joint distribution of the random variables

v1, ..., vs (say), where s is the length of ω. The joint density of v1, ..., vs is

assumed to be equally determined by the collection of conditional densities

of vr given v−r = (v1, ..., vr−1, vr+1, ..., vs)
′

, and f(vr|v−r), r = 1, ..., s. The

Gibbs sampler requires generation of samples from the conditional densities

f(vr|v−r) for r = 1, ..., s. Starting with an initial set of values v
(0)
1 , ..., v

(0)
s ,

a random number, v
(1)
1 , is first generated from f(v1|v

(0)
−1). In a similar way,

we generate v
(1)
2 , ..., v

(1)
s successively from f(v2|v

(1)
1 , v

(0)
3 , ..., v

(0)
s ), ..., f(vs|v

(1)
−s).

Hence, the first replicate v
(1)
1 , ..., v

(1)
s is obtained. We continue replicating, say

R times, where (v
(R)
1 , ..., v

(R)
s ) converges to (v1, ..., vs) in distribution under

some regularity conditions.

To generate samples from the posterior distribution using the MCMC

method via the Gibbs sampler, we need to sample from the full conditional

distributions. In our application, all of these full conditional distributions

are standard distributions that can be easily sampled. To implement our

application in the HB setup, we use the WinBUGS software (Lunn et al.
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2000). We use the ICAR for spatial random effects as previously defined.

The hyperparameters σ2
η and σ2

φ, which determine the variation of the spatial

model, have to be estimated from the data. We assign the proper gamma

distributed priors to the precision of spatial effects, (σ−2
η , σ−2

φ ), where the

proper gamma is given by σ−2 ∼ G(a, b)(say), with mean a/b and variance

a/b2, to avoid problems with improper hyperpriors. Gamma distributed

priors are computationally convenient as the full conditional of σ−2 again

is gamma distributed. Moreover, if a linear trend θit = δit is postulated, one

may assume that δi ∼ N(0, σ2
δ ), i = 1, ..., I, independently, and independent

of spatial random effects ηi and φi, where σ−2
δ is assigned a proper gamma

distributed prior. When considering a linear trend (βt) as the overall temporal

trend, β would be assigned an independent normal distribution with zero

mean and a large variance. When considering a cubic B-spline for S(t)

and θit, the corresponding B-spline basis functions βl and βli are assigned

independent normal distributions with zero means and variances σ2
l and

σ2∗
l (i = 1, ..., I; l = 1, ..., 4), where proper gamma distributed priors are

designated for σ−2
l and σ−2∗

l . The gamma distributed priors as well as the

normal distributed priors are usually assigned highly dispersed, but proper,

priors.

In terms of prior assumptions, we assign a flat prior for the whole real line
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for m and highly dispersed priors for all other model parameters, where flat

prior means that each point in real line has an equal chance to be chosen. In

particular, we assign N(0, 106) for β, N(0, σ2
δ ) for δi, N(0, σ2

l ) and N(0, σ2∗
l )

for the coefficients of the B-spline βl and βli parameters, and G(0.5, 0.0005)

for the spatial hyperparameters σ−2
η , σ−2

φ , and σ−2
δ , σ−2

l , σ−2∗
l (l = 1, ..., 4).

In order to ensure that the ICAR model is identifiable, Besag and Kooperberg

(1995) suggest constraining the random effects to sum to zero, and using a

flat prior for the entire real line for the intercept, m. For more details about

the choice of hyperparameters in disease mapping, see Bernardinelli, Clayton,

and Montomoli (1995) and the discussion in Best et al. (1999).

For each model considered in the subsequent Application section, we

independently simulate l = 5 parallel runs, each of length D = 2d, with d =

5, 000. To reduce the effects of the starting values on the final results, the first

5,000 iterations of each run are deleted (a burn-in sequence). We take every

5th iteration of the remaining 5,000 iterations to reduce the autocorrelation in

the run (i.e., thinning or weeding), leading to 1,000 iterations for each run for

analysis purposes. Hence, we have l = 5 runs with sample size n = 1, 000 for

each run. To monitor the convergence of the model parameters, we use several

diagnostic methods implemented in the Bayesian output analysis (BOA)

program (Smith 2007), a freely available package created for R. In particular,
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we evaluate descriptive diagnostic tests, such as the autocorrelation of generated

samples of model parameters from the posterior distribution, and convergence

diagnostic tests, such as the Brooks, Gelman, and Rubin test (Gelman and

Rubin 1992; Brooks and Gelman 1998) and the Heidelberger and Welch

(1983) test. None of these tests indicated non-convergence of the model

parameters.

An important aspect of our analysis is the choice of the best model among

postulated sub-models of model (1). Unfortunately, some criteria are not

applicable (e.g., Bayes factor) to the model in the presence of flat or ICAR

priors. Some measures of model comparison may be calculated easily with

MCMC methods. In the context of a Poisson likelihood function, we have

three criteria that we compare in our application. The first criterion is the

saturated deviance (McCullagh and Nelder 1989), defined as

SD =
I∑

i=1

T∑

t=1

dit,

where

dit = 2{yit log(
yit

µ̂c
it

) − yit + µ̂c
it}.

The second measure is the Pearson function (McCullagh and Nelder 1989),

defined as

P =

I∑

i=1

T∑

t=1

(yit − µ̂c
it)

2/µ̂c
it.
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The last measure is the deviance information criterion (DIC), which is a

standard measure in the Bayesian setup (Spiegelhalter et al. 2002). This

measure is a generalization of the Akaike information criterion, which handles

hierarchical Bayesian models of any degree of complexity. It is given by

DIC = 2SD(ω) − SD(ω̄),

where SD(ω) is the posterior mean of the saturated deviance, and ω̄ is the

posterior mean of the model parameter vector ω. Although we mainly rely on

this measure for assessing models in our application, the other measures also

are computed for comparison purposes. Smaller values of the above criteria

indicate a better model in terms of fit and complexity.

The DIC can be partitioned into the local DIC, leverage, and deviance

residuals to assess the local model fit and influence by visualization for groups

of observations (Wheeler, Hickson, and Waller 2010). However, in this paper

we focus on the DIC proposed by Spiegelhalter et al. (2002).

An application

A dataset of all cancer diagnoses in children (age ≤ 19) in the western

Canadian province of Alberta during 10 fiscal years is considered in this

cohort, which corresponds to T = 10 in our notation. The cohort includes

12



all children and youth residing in Alberta with any type of cancer diagnosis

during April 1, 1994, to March 31, 2004.

The Alberta Cancer Registry is a population-based registry certified by

the North American Association of Central Cancer Registries (NAACCR).

Generally, the certification is at the “Gold” level, which means that certain

standards have been achieved, such as at least 95% completion of case ascertainment,

fewer than 0.1% duplicate cases, and variables to provide incidence statistics

are 100% error free. Full details about the certification are available at

www.naaccr.org/Certification/CertificationLevels.aspx.

Data extracted from the Registry included sex (female, male, other), age

year at diagnosis (0-19 years), calendar year and fiscal year of diagnosis,

morphology and topography codes, and behaviour code (benign, undetermined,

in situ, malignant). During the study period, the population of Alberta

increased from 2.7 million in 1995 to 3.2 million in 2004, and the average

annual population of children numbered approximately 800,000. During the

last study year, the province consisted of nine Regional Health Authorities

that were responsible for the delivery of health care services. These regions

are further sub-divided into I = 70 areas. These sub-Regional Health Authorities

(sRHAs) are the geographic units used in our analysis, and all data, for both

population and cancer cases, are linked to these geographic boundaries.

The number of cancer cases totaled 1,966 over the study period. Of
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these, 24 cases have either missing ages or sex entries of other, and hence

were removed from the analysis (i.e., our analysis is based on 1,942 cases).

The mean and median number of yearly cases per sRHA are 2.8 and 2.4

(ranging from 0.2 to 7.5), respectively. The values of the sRHA population

sizes range from 2,458 to 30,560, with mean and median values of 12,140 and

11,720, respectively. Region 52 has the smallest population, and region 50

has the largest. Table 1 reveals that the observed rates of cancer diagnoses

were generally increasing over time for both males and females, with rates

for males lower than those for females.

“Table 1 about here”

Because gender is not thought to be a predictor of the development of

childhood cancers, analyses were stratified by gender. The expected number

of cancer cases, eit, was adjusted and calculated as eit =
∑4

j=1 nitjyj/nj,

where j indexes the age group (0-4, 5-9, 10-14, 15-19 years), nitj is the

population at risk in sRHA i at time t for age group j, yj =
∑

i

∑
t yitj , and

similarly, nj =
∑

i

∑
t nitj . We estimated several spatio-temporal models of

equation form (1), to analyze the ratio of cancer diagnoses, using WinBUGS

and BOA. For the first step, the simple linear temporal trend model (M1)

was considered and defined as log(µc
it/eit) = m + βt. Estimates of the linear

trend effect β indicate an increasing trend (0.026 with standard error 0.010
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for females, and 0.014 with standard error 0.012 for males) in the ratio

of cancer diagnoses over time for this period. Table 2 reports model M1

as well as other model specifications we thought were appropriate in our

exploration of the data. These sub-models of the spatio-temporal model (1)

have an increasing level of complexity. For instance, model M2 is the simple

linear trend model M1 plus a linear regional (sRHA) temporal component,

and spatially structured (ηi) and unstructured (φi) components. Model M3

essentially is model M2 with the simple linear trend βt replaced with a cubic

B-spline S(t). Sub-models of M2 and M3 are variants of the models M2 and

M3.

To compare competing models, we calculated the measures of overall

fit SD, P, and DIC using the WinBUGS package. On the basis of these

values, listed in Table 2, model M3B is better than M2 for both females

and males, particularly when compared with M1, which includes no spatial

random effects. The model M3B is the best model based on the DIC measure.

Evidence exists of both a B-spline temporal trend and spatial variation in

the standardized incidence ratio. Model M3, or one of its variants, seems

slightly better than model M2 in terms of the overall fit measures, although no

striking evidence exists indicating that one of these variants is substantially

better than the others. The improvement in fit measures for models M1 to
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M3 generally seems to have similar magnitudes for both females and males.

“Table 2 about here”

Fig. 1 portrays the overall crude incidence ratio over time adjusted for

age group,
∑I

i=1 yit/
∑I

i=1 eit, and incidence ratios, exp(m+βt) and exp(m+

S(t)). Fig. 1 reveals that over the studied period, the cubic B-spline produces

smooth estimates of the crude incidence ratios for both females and males.

An overall increase in childhood cancer ratios over time also exists, especially

for females.

“Fig. 1 about here”

Some risk factors may vary spatially, and to evaluate such spatial dependence,

the spatial distribution of the regional effects over time is mapped as exp(δit+

ηi + φi) for model M3, which is automatically calibrated on a common base

for the temporal effects. Fig. 2 presents maps of the estimated spatial effects

based on the fitted model for females and males, where the regional risk factor

of cancer cases corresponds to one selected year. For confidentiality, the year

is not shown. Note that the break points in Fig. 2 are chosen for convenience,

based on the distribution of the cancer ratios, and that the lowest category

includes values ranging from 0.75 to 0.85, and the highest category includes

values ranging from 1.15 to 1.92. The overall spatial pattern suggests that
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some regions with relatively high cancer ratios for females are located in

the north-central part of the province, whereas for males some regions with

relatively high cancer ratios are located in the south-central part of the

province. For females, in addition to the north-central part of the province,

some regions in the south part of the province also have relatively high cancer

ratios. Generally, the spatial pattern does not change much over time. Parts

of the two largest population centres have the highest estimated cancer ratios.

The region between these centres also has relatively high ratios in some of its

parts. More investigation may be needed to explore the reasons for seemingly

higher cancer ratios in these regions compared to other parts of the province.

“Fig. 2 about here”

“Fig. 3 about here”

Fig. 3 furnishes graphs of the childhood cancer ratio estimates for four

selected health regions for females over time. Crude incidence ratios adjusted

for age group are defined by yit/eit, whereas the other estimated ratios are

calculated as exp(δit + ηi + φi). Crude incidence ratio estimates are variable

in these sub-regions. As shown in Fig. 3, the ratio of cancer diagnoses

has an increasing trend over time in regions shown in panels (b) and (c),

and has a decreasing trend in regions shown in panels (a) and (d). Similar
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patterns are observed for males (not shown). In general, a certain trend in

the log-ratio estimates over time for a region suggests that the underlying

rate of cancer cases in that region also has the same pattern relative to the

provincial average.

In Bayesian estimation of parameters for the purposes of disease mapping,

choosing suitable values for the prior assumptions also is important. Full

details of the prior sensitivity and choice of models appear in Pascutto et al.

(2000). We investigate the choice of priors through a sensitivity study for

the childhood cancer cases in the next section.

Prior sensitivity

The hyperprior distributions of the variance components are generally set

to be vague to get the most information from the data. The prior for

the precision of the random effects (σ−2) often is specified as a gamma

distribution with scale and shape parameters both equal to 0.001. One also

may use a uniform prior for the random effects σ2. However, when modeling

the precision of the spatial random effects in an ICAR model, using a gamma

distribution with scale parameter equal to 0.5 and shape parameter equal to

0.0005 (Bernardinelli, Clayton, and Montomoli 1995; Kelsall and Wakefield
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1999; Silva et al. 2008) is common.

To investigate the influence of hyperprior specifications in the Poisson

context, we conducted a sensitivity analysis with respect to the prior distributions

for the spatial precision parameters σ−2
η and σ−2

φ , assuming a variety of

different gamma priors G(a, b), whose mean and variance are a/b and a/b2,

respectively. Note that we used the same priors for σ−2
δ and σ−2

l . In our

experimental design, similar to Silva et al. (2008), we used the following

combinations: (a, b) = (0.5, 0.0005), (0.001, 0.001), (0.01, 0.01), (0.1, 0.1), (2, 0.001),

(0.2, 0.0004), and (10, 0.25), which are denoted by A, B, C, D, E, F, and G,

respectively. Prior B has a larger dispersion than A, and C and D are

variants of prior B, with the associated precision in increasing order. Priors

E and F correspond to distributions with the same variance as prior A, but

with lower (E) and larger (F ) dispersion. Prior G is the furthest departure

from a non-informative setting.

Table 3 provides summary measures of model fit for models M1, M2, and

M3 with various hyperparameter settings for gender-specific analyses. The

cubic B-spline model seems to provide a better fit than the linear trend for

overall time trend, for both females and males. When comparing DIC values

across both models and priors, the more striking effect is that the DIC slightly

tends to prefer model M3 compared to model M2, and a smaller difference
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exists in the DIC across priors than across models. For the vague priors

considered here, omitting the main effects in the model seems to play a more

important role than the choice of prior in determining the goodness-of-fit with

respect to the DIC and the other measures of fit considered (SD and P). We

also considered different combinations of priors (A − G) for models M2 and

M3; the results were almost equal regardless of the priors (not shown). As a

result, changing the prior assumptions on the variance components does not

have a considerable effect on the selected model in the Application section.

“Table 3 about here”

Summary and conclusion

We illustrate a model for spatio-temporal analysis that pays specific attention

to the mapping of area-level disease ratios over time. The model accommodates

a cubic B-spline for the overall temporal trend, a small-area linear temporal

trend, and an ICAR and independent normal random variable models for

specified and unspecified spatial random effects, respectively. The fully

Bayesian approach is employed for the analysis using MCMC techniques.

We studied the convergence of the samples obtained through diagnostic

methods, and concluded that convergence was achieved. Our sensitivity

analysis using different priors for the variance components points out that
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this hierarchical Bayesian spatio-temporal analysis for Poisson data yields

similar results regardless of the vague priors considered in the Application

section.

We used a B-spline for this Bayesian spatio-temporal analysis, which can

be easily incorporated into the modeling of the temporal components, and

which is computationally straightforward. However, we could not apply the

B-spline approach for each specific region, Si(t), because of an insufficient

number of observations, and, consequently, unidentifiability of the associated

model parameters.

We adjusted our expected number of cases by age. One can easily extend

the approach to include covariates in the model specification, and such an

inclusion may be required for some applications. However, the total number

of cancer cases in our data set limited our ability to include such covariates

directly. More precisely, in order to include the covariates in the model,

one needs to have more observations to ensure valid inference. In addition,

the relative rarity of childhood cancer means that diagnosis-specific (i.e.,

leukemia, lymphoma) types could not be separately analyzed. This aspect

may be a considerable limitation if different diagnosis-specific risk factors

exist that vary over geography. A study in a larger geographical region with

additional years may be necessary for diagnosis-specific analyses.
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Overall, the model estimates suggest that the childhood cancer incidence

ratios are increasing over time for both females and males. For females, the

north-central part of the province has generally higher ratios than the other

areas, although some regions in the south part of province also have higher

ratios. Moreover, the south-central part of the province generally has higher

ratios than other areas for males. These findings may represent real increases,

or may represent different distributions of important covariates that are

unmeasured and unadjusted for in our modeling. Further investigation may

be warranted to explore these findings. In the United States and Europe,

the overall rates of childhood cancer have increased since the 1970s (Ries

et al. 1999; McKinney et al. 2003; Dreifaldt, Carlberg, and Hardell 2004;

Steliarova-Foucher, Stiller, and Kaatsch 2004; Dalmasso et al. 2005), which

collaborate the notion of real increases here.
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Table 1 Observed Rates (per 1,000 children) of Cancer Diagnoses for

Females and Males During 1995-2004

Gender 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Female 0.22 0.28 0.24 0.24 0.30 0.26 0.30 0.30 0.28 0.33

Male 0.17 0.17 0.17 0.19 0.11 0.17 0.18 0.17 0.19 0.23
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Table 2 The Values of P , SD, and DIC for Comparison of the Sub-Models

of Model (1)

Gender Models defined from log(µc
it/eit) P SD DIC

Female M1 : m + βt 1112 485 496

M2 : m + βt + δit + ηi + φi 736 407 417

M2A : m + βt + ηi + φi 740 409 417

M2B : m + βt + δit + ηi 735 406 425

M2C : m + βt + δit + φi 733 405 426

M3 : m + S(t) + δit + ηi + φi 728 395 412

M3A : m + S(t) + ηi + φi 736 408 415

M3B : m + S(t) + δit + ηi 722 385 402

M3C : m + S(t) + δit + φi 731 405 423

Male M1 : m + βt 1351 511 530

M2 : m + βt + δit + ηi + φi 675 309 317

M2A : m + βt + ηi + φi 677 309 318

M2B : m + βt + δit + ηi 676 309 326

M2C : m + βt + δit + φi 674 309 327

M3 : m + S(t) + δit + ηi + φi 672 295 310

M3A : m + S(t) + ηi + φi 677 308 314

M3B : m + S(t) + δit + ηi 667 287 302

M3C : m + S(t) + δit + φi 675 308 323
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Figure 1. Overall childhood cancer incidence ratios over time for (a) females

and (b) males (crude incidence ratio [solid line], linear trend [dashed line],

cubic B-spline [dotted line]).
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(a) (b)

Figure 2. Maps of the childhood cancer incidence ratios corresponding to

the spatial effects representing regional incidence risks for (a) females and

(b) males for one selected year; Alberta childhood cancer data, 1995-2004.

Major urban areas are provided as inserts.
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Figure 3. Plots of crude incidence ratio estimates and estimated ratios

based on model M3 for females, 1995-2004, for local health regions 6, 17, 22,

and 65 in plots (a), (b), (c), and (d), respectively. The solid line represents

crude incidence ratios; the dashed line, fitted ratios.
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Table 3 The Values of P, SD, and DIC for Sensitivity Analysis of the

Model Selection

Females Males

Prior Models P SD DIC P SD DIC

A M1 1112 485 496 1351 511 530

M2 736 407 417 675 309 317

M3 728 395 412 672 295 310

B M2 734 410 416 674 309 317

M3 726 398 411 671 295 310

C M2 732 408 415 673 308 317

M3 724 396 410 669 293 308

D M2 724 496 414 669 301 317

M3 717 384 410 666 286 310

E M2 740 418 417 678 314 319

M3 728 405 412 674 299 311

F M2 736 412 416 675 310 318

M3 726 399 411 672 296 309

G M2 727 404 418 667 303 318

M3 722 400 416 664 287 310
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