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Abstract

The core innovation of this thesis lies in studying reflected backward stochastic

differential equations (RBSDE hereafter) for informational systems. An infor-

mational system is a system where there is discrepancy in the information

received by agents over time. In this thesis, we restrict to the case where our

system is governed by two flows of informations: The public information F that

is available to all agents and a larger flow of information G that has additional

information about a random time τ . We mathematically formulate our results

in a general setting where τ might not be observable by the flow of information

F. This allows our results to be applicable to credit risk theory, to life insur-

ance where mortality and longevity risks are the main challenges, to financial

models with arbitrary random horizon, ..., etcetera. Thus, we study RBSDEs

that are stopped at τ , and consider G to be the progressive enlargement of F
with τ , where τ becomes an observable time when it occurs (a stopping time

with respect to G mathematically speaking). In this setting, we quantify –as

explicit as possible– the impact of τ on the existence, the uniqueness, and the

estimate in norm the solution of the RBSDE stopped at τ . We construct an

RBSDE under F that is intimately related to the stopped one, and we single

out the exact relationship between their solutions. Importantly, we prove that

for any random time, having a positive Azéma supermartingale, there exists

a positive discount factor ˜︁E , which is a positive and non-increasing F-adapted

and RCLL process, that is vital in proving our results without assuming any

further assumption on τ . We treat both the linear and general cases of RB-

SDEs for bounded and unbounded horizon. An application to exponential

hedging under random horizon is illustrated in different manners. This gives a

clear motivation for our class of stopped RBSDEs that we treat in this thesis.
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Chapter 1

Introduction

Since the birth of differential equations in 1671, when Newton worked on the

theory of ”Flexions”, differential equations has known many successful topics.

In fact differential equations have been used to calculate the movement or flow

of electricity, to formulate many fundamental laws of physics and chemistry,

to model behaviours and evolutions of complex systems in biology,.., etcetera.

Stochastic differential equations, in short SDEs, first appeared in 1956, in

Einstein’s and Smoluchowski’s works. SDEs contain a variable which repre-

sents random white noise calculated as derivative in some sense of Brownian

motion. However, up to our knowledge, Brownian motion was born simultane-

ously with the modern finance and mathematical finance in 1900 in Bachelier’s

PhD thesis at the Sorbonne University.

The backward stochastic differential equations, BSDEs hereafter, were intro-

duced in by Bismut (1973) for the linear case, and then extended by Pardoux
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and Peng (1990) for the general case. Reflected backward stochastic differen-

tial equations, in short RBSDEs, were introduced by El Karoui et al. (1997).

Today they have become a very powerful tool applied to Mathematics, Physics,

Chemistry, Electronics, Biology, Medical science, and almost all sciences.

1.1 Reflected backward stochastic differential

equations

The BSDEs are roughly speaking inverse problems of the usual Stochastic

Differential Equations (SDEs in short). Precisely for BSDEs, the terminal

value ξ, called the final condition, is given as input and

Yt = ξ +

∫︂ T

t∧T
f(s, Ys, Zs)ds−

∫︂ T

t∧T
ZsdWs, t ≥ 0. (1.1.1)

Here W is the Brownian motion, and T is the terminal time that could be even

a random variable, and f is a functional called the generator. The RBSDEs are

BSDEs as in (1.1.1) with additional condition that the process Y should not

get below a barrier process S (also called obstacle). Thus, it is obvious that

BSDEs are particular cases of RBDEs by assuming that the barrier process is

constant S = −∞. Linear BSDEs are those BSDEs with a linear generator

in the variable (Y, Z). These Linear BSDEs with T being a fixed time (not

random) were the first BSDEs that appeared in the literature a long time ago,

mainly due to stochastic control and in the Black-Scholes formula for pricing

options. For this case, we refer the reader to [13], that we consider -in our

view– as the first paper about linear BSDEs. Then always in the case of
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constant T , the general case have been introduced by Pardoux and Peng, see

[68]. Their aim was to give a probabilistic interpretation of a solution of second

order quasi-linear partial differential equation, see [72] and [70]. Since then

there has been an upsurging interested in BSDEs due to their tremendous role

in mathematical finance, insurance, stochastic control, and partial differential

equation,..., etcetera. For more details about these facts and other related

topics, we refer the reader to [15, 21, 25, 32, 74, 75, 79, 80, 81, 84].

The RBDEs were first introduced by El Karoui, Kapoudjian, Pardoux, Peng

and Quenez in [40]. Besides their role in mathematical finance, RBSDEs play

important role providing a probabilistic formula for the viscosity solution of an

obstacle problem for a parabolic PDE. In [40], the authors assumed that the

underlying filtration is generated by a Brownian motion W and the obstacle

S is a continuous process. In [19] , the authors extended these RBDEs to

the case where the filtration is not generated by a Brownian motion and the

obstacle S may not be continuous.

1.2 Informational System

The word information comes from Latin word informatio, which means il-

lumination, exposition, unfolding. In Finance and Economics, information

means the acquirement of knowledges about costs, prices, inventory, supply

and demand of products, which can be exploited by economic agents to re-

duce uncertainties in their environment, see Rose [76] further discussions.

From the economic standpoint view, the value of information is huge. It
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helps to take the better decision and mainly to reduce the risk coming from

uncertainty. However, the acquisition of information is subject to a variety of

circumstances. In [76], the author stated:

“Information can be treated and exchanged as an economic com-

modity, which states that information has some private good fea-

tures as well. Traders of information can benefit from sale and

dissemination of information and therefore undertake the costly

process of information acquisition and production”.

One major problem is the amount of information available to an information

seeker. When one of the parties in a transaction has better information than

the other, we call this a market with asymmetric information (see [85, 86]).

It was developed as a plausible explanation of market failures (an inefficient

distribution of goods and services in a free market). In Akerlof (1970), the

author first argued about information asymmetry by asserting that car buyers

possess different information that car sellers, giving the seller an incentive to

sell goods of poor quality without lowering the price to compensate for the

inferiority. For more details about information and uncertainty, we refer the

reader to [7, 8, 9, 10, 18, 78] and the references therein to cite a few.

It is unrealistic to assume that all agents know all the prevailing information

(e.g. prices). More realistically, agents know some information, hold prob-

abilistic expectation about some other information and totally unconcerned

about most. Thus, we consider a market where there are two groups of agents.

One group receives through time the public flow of information denoted by

F, while the second group (financial managers or insiders only) receives an
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additional information. Mathematically, this extra information is modelled by

the knowledge of some random time τ , when this time occurs. Thus the flow

of information received by this agent over time is a bigger flow G (F ⊂ G).

This random time can model different situations in various contexts. In fact,

in credit risk theory this random time represents a default time, while in in-

surance market it represents the death time of insured. In (mathematical)

finance this random time might represent a random horizon, or the occurrence

time of an event that can impact the market somehow.

1.3 Our setting in RBSDEs

The BSDEs (or RBSDEs) with a random horizon are among the important

and fundamental topics in Finance, Economics, and Mathematical Finance.

The most fundamental essential works on BSDE (or RBSDE) with a random

horizon started on the paper of Peng [73], where τ is an F-stopping time. The

author describes how the solution to the class of BSDEs with an unbounded

random terminal time τ , that is an F-stopping time, is related to semilinear

elliptic PDE. It is important to mention that in the case of constant horizon

T , the solution to the BSDEs are connected to viscosity solutions to a system

of semilinear parabolic PDEs, see [69] and the references therein for details.

Afterwards, this family of RBSDEs have been extended in various directions

in [15, 21, 32, 74, 79], and the references therein to cite a few. For the case

second order BSDE under random terminal time, that is an F-stopping time,

we refer the reader to the very recent work [59].
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The previous results in handling RBSDEs are formulated where the time is

deterministic or a random variable that is observable by the public informa-

tion F. Our framework considers the case where the time is random might

not be observable by the public flow of information, that is τ might not be an

F-stopping time with values in [0,+∞). This allows our results to be applica-

ble to other economic and financial frameworks such as credit risk theory, life

insurance where mortality and longevity risks are the main challenges, random

horizon problem and so on.

Up to our knowledge, all the existing literature treating this class of RB-

DEs assumes very strong assumption(s) on τ . The most frequent assumption

among these, see [12, 54, 81] and the references therein, we cite the case where

W τ should remain a martingale under the enlarged filtration (this case is also

known in the literature as the immersion assumption). In fact, the Burkholder-

Davis-Gundy inequalities for martingales, that are really vital in BSDEs and

RBSDEs, fail for martingales stopped at τ without the immersion assumpion.

Without further assumption on τ , we will address three main problems and the

challenges induced by these. Our first main problem can be stated as follows.

⎧⎪⎪⎨⎪⎪⎩
What are the conditions (the weakest possible) on the data-triplet (f, S, YT∧τ )

that guarantee the existence and uniqueness of the solution to our RBSDE?

(1.3.1)

Our second main problem lies in mimicking the spirit of [3, 27]. In fact, we are

interested in finding an RBSDE under F, which will be the counterpart of our

RBSDE in G, and determining explicit relationship between their solutions and
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their data-triplets as well. This task is also highly motivated by its importance

in credit risk theory, and we refer the reader to [12, 81] and the references

therein to cite a few.

Our third main problem deals with controlling the norm of the solution of the

RBSDE with the norm of its data-triplet. For classical RBSDEs (i.e. the case

when τ is a stopping time or a fixed bounded horizon), this control in norm

plays important role in studying the stability of RBSDEs. In contrast to the

classical case, this problem has numerous challenges in our setting. Among

these, we cite the description of the adequate spaces and the norms, for the

solutions and/or for the data-triplet, that one should consider.

Inspired by the methods of [59] and [19], we deal with our RBSDE in two

steps. In the first step, we consider the case of bounded horizon and we

stop at T ∧ τ for some T ∈ (0,+∞) instead fo τ . For this bounded random

horizon case, thanks to an interesting probability measure ˜︁Q discovered in [29]

and intensively used in [30] for portfolio analysis, we fully answer in details

the main problems aforementioned and beyond. The second step consists of

letting T to go infinity, and derive estimates and results under P instead. This

yields to additional serious challenges.

As an application to our RBSDE, we give a preliminary version of the study

undertaken intensively in [5], where we show that the RBSDEs consider in this

thesis are fully motivated besides they generalize the literature on RBSDEs to

a much complex setting.
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1.4 Summary of the Thesis

This thesis has seven chapters including the current one. The organization of

the seven chapters is further detailed, below.

Chapter 2 recalls some stochastic elements and theorems that will be used

throughout the thesis. In Section 2.3 we address some vital results on enlarge-

ment of filtration F with τ and on martingales for the enlarged filtration. In

Section 2.4 we define the mathematical model and its preliminaries such as

the norms used for the RBSDEs.

Chapter 3 addresses the optimal stopping problem and the Snell envelop un-

der stopping with τ . This is vital as we know the Snell envelope, which is

intimately related to linear RBSDEs.

Chapter 4 is devoted to linear RBSDEs depending whether we stop the RB-

SDE at τ ∧ T for some fixed planning horizon T ∈ (0,+∞), or we stop at τ .

Chapter 5 deals with the general RBSDE, where the generator functional is

general but Lipschitz. Here, again, we distinguish the cases depending whether

we stop at τ ∧ T or τ .

Chapter 6 extends Chapters 4 and 5 to the case where the filtration F is

generated by a Brownian motion W and a Poisson process N with intensity

λ > 0, and where the terminal value of the RBSDE ξ is GT∧τ -measurable in-

stead of being FT∧τ -measurable. We consider the case of a fixed and finite

8



deterministic horizon T ∈ (0,+∞).

Chapter 7 focuses on giving some applications of RBSDEs in exponential hedg-

ing. In the first section we discuss how minimal entropy martingale measures

are affected by τ . The second and third sections treat the exponential hedging

problem using (R) BSDE for both the primal and dual problems.
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Chapter 2

Notations and Preliminaries

In this chapter, we introduce some mathematical tools, concepts, and prop-

erties on stochastic processes. This chapter contains four sections. The first

section recalls stochastic elements and properties that we used in this thesis.

In the second and third sections we recall an important theorem about local

martingale representation and some other related results in the enlarged fil-

tration. In the last section we define the spaces and norms that we used in

our studies. Throughout this thesis, let (Ω,H,H := (Ht)t≥0, P ) be a complete

filtered probability space. Where H = {Ht, 0 ≤ t ≤ T} is a completed and

right-continuous filtration that forms the flow of information.
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2.1 Notations, Definitions and Properties

In this section, we review some notations, definitions and properties, most of

them can be founded in Jacod and Shiryaev [50].

2.1.1 Stochastic Basis

A stochastic process is a family of random variables (X(t))t∈[0,T ] index by

time. The time parameter can be either discrete or continuous, but we will

only consider the continuous case.

Definition 2.1.1 ([50]). A process X is called RC ( resp. LC, resp. RCLL)

if all its paths are right-continuous ( resp. are left-continuous, resp. are right-

continuous and admit left-hand limits).

Definition 2.1.2 ([50]). A stopping time is a mapping T : Ω → [0,∞] such

that {T ≤ t} ∈ Ht for all t ∈ [0,∞).

Let us introduce stochastic intervals as the following: let S and T be two stop-

ping times, then the four kinds of stochastic intervals are the following four

random sets:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[[S, T ]] = {(ω, t) : t ∈ R+, S(ω) ≤ t ≤ T (ω)}

[[S, T [[= {(ω, t) : t ∈ R+, S(ω) ≤ t < T (ω)}

]]S, T ]] = {(ω, t) : t ∈ R+, S(ω) < t ≤ T (ω)}

]]S, T [[= {(ω, t) : t ∈ R+, S(ω) < t < T (ω)}
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Definition 2.1.3 ([83]). Let Ω be a nonempty set, and let B be a collection of

subsets of Ω. We say that B is a σ-algebra (or σ-field) provided that:

(i) the empty set ϕ belongs to B,

(ii) whenever a set A belongs to B , its complement Ac also belongs to B, and

(iii) whenever a sequence (An)n≥1 belongs to B, their union
⋃︁∞

n=1An also be-

longs to B.

Definition 2.1.4 ([50]). (a) A process X is adapted to the filtration H if Xt is

Ht- measurable for every t ∈ R+; A process X is always adapted to its history

or natural filtration which is given by

FX
t = σ(X(s), C

⃓⃓
s ∈ [0, t], C ∈ N )

where N is the set of all null sets of the state space of the process.

(b) The optional σ-field is the σ-field O(H) on (Ω,R+) that is genarated

by all RCLL H-adapted processes. Furthermore, a process X that is O(H)-

measurable is called optional and it will be denoted by X ∈ O(H).

(c) The predictable σ-field is the σ-field P(H) on (Ω,R+) that is generated by

all LC (left continuous) H-adapted processes. Furthermore, a process X that

is P(H)-measurable is called predictable and it will be denoted by X ∈ P(H).

Proposition 2.1.5 ([50]). Every process X that is RC and adapted is optional.

Any predictable process is optional process (i.e. P(H) ⊂ O(H) ).

Proposition 2.1.6 ([50]). (a) If X is RCLL and adapted process, then the

two processes X− and ∆X are optional.

(b) If X is RCLL and adapted process, then X− is a predictable process; if
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moreover X is predictable, then ∆X is predictable.

Lemma 2.1.7 ([50]). Let T be a random time (i.e. a nonnegative random

variable). T is an H-stopping time if and only if [[0, T [[, or equivalently [[T,∞[[,

is an H-optional set.

Proposition 2.1.8 ([50]). (a) If S and T are two stopping times and if Y is

HS-measurable random variable, the four processes Y 1[[S,T ]], Y 1[[S,T [[, Y 1]]S,T ]],

Y 1]]S,T [[ are optional.

(b) If S and T are two stopping times and if Y is HS-measurable random

variable, the process Y 1]]S,T ]] is predictable.

Definition 2.1.9 ([50]). An H-predictable stopping time is an H-stopping time

such that the stochastic interval [[0, T [[ is H-predictable.

2.1.2 Martingales and Semimartingales

Definition 2.1.10 ([50]). A martingale (resp. submartinagle, resp. super-

martingale) is an adapted process X on the basis (Ω,H,H, Q) whose Q-almost

all paths are RCLL, such that every Xt is integrable (i.e. E|Xt| < +∞) and

for all s, t such that s ≤ t we have:

Xs = E(Xt

⃓⃓
Hs) (resp. Xs ≤ E(Xt

⃓⃓
Hs), resp. Xs ≥ E(Xt

⃓⃓
Hs)).

Definition 2.1.11 ([50]). If X is a stochastic process and T is a random time,

then XT is called stopped process and satisfies

XT
s := Xs∧T , s ≥ 0.

13



Definition 2.1.12 ([50]). An adapted process X on the basis (Ω,H,H, Q)

whose Q-almost all paths are RCLL is called local martingale process if there

exists an increasing sequence of H-stopping times (Tn)n≥1 ↑ +∞, such that

each stopping process XTn is an H martingale.

Definition 2.1.13 ([50]). (a) two local martingales M and N are called or-

thogonal if their product MN is a local martingale.

(b) A local martingale X is called a purely discontinuous H-local martingale

(or a pure jump H-local martingale) if X0 = 0 and if it is orthogonal to all

continuous local martingales.

Theorem 2.1.14 ([50]). Any local martingale M admits a unique ( up to

indistinguishability) decomposition

M = M0 +M c +Md

where M c
0 = Md

0 = 0, M c is a continuous local martingale, and Md is a purely

discontinuous local martingale.

Definition 2.1.15 ([50]). (a) We denote by M(H, Q) ( resp. Mloc(H, Q)) the

set of all H-martingale ( resp. H-local martingale).

(b) If C(H) is the set of processes that are adapted to H, then Cloc(H) is the set

of processes, X, for which there exists a sequence of H-stopping times, (Tn)n≥1,

that increases to infinity and XTn belongs to C(H), for each n ≥ 1.

(c) We denote by V + ( resp. V ) the set of all real-valued processes A that

are RCLL, adapted, with A0 = 0, and whose each path t → At(ω) is non-

decreasing ( resp. has a finite variation over each finite interval [0, t]).
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(d) We denote by A+(H, Q) ( resp. A(H, Q)) by the set of all A ∈ V + (

resp. A ∈ V ) that are integrable: E[A∞] < ∞ ( resp. that have integrable

variation: E[Var(A)∞] <∞ ).

Lemma 2.1.16 ([50]). Any local martingale that belong to V also belongs to

Aloc(H, Q).

Definition 2.1.17 ([50]). An H-semimartinagle is a process X of the form

X = X0 + M + A where X0 is finite-valued and H0-measurable, where M is

an H-local martingale and A ∈ V . If A is predictable, we call X a special

semimartingale and the decomposition X = X0 +M+A is called the canonical

decomposition of X.

Definition 2.1.18 ([50]). We denote by L(X,H) the set of H-predictable pro-

cess that is integrable with respect to X in the sense of semimartingale.

Definition 2.1.19 ([37]). Let Y be a uniformly integrable martingale and let

p ∈ [1,∞[. We adopt the convention Y0− = 0. we say that Y belongs to BMOp

if there exists a constant C such that

E[|Y∞ − YT−|p
⃓⃓
HT ] ≤ Cp a.s. for every stopping time T .

The smallest constant with this property (or ∞ if this does not exist) is denoted

by ∥Y ∥BMOp.

2.1.3 Predictable and optional (dual) projections

Theorem 2.1.20 ([50]). Let X be a positive or bounded B ⊗ H-measurable

process. there exists an H-optional process o,H(X)(called H-optional projection
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of X ) and an H-predictable process p,H(X) (called H-predictable projection of

X ) such that

E[XT I{T<∞}
⃓⃓
HT ] =o,H (X)T I{T<∞} a.s. for any H-stopping time T,

E[XT I{T<∞}
⃓⃓
HT−] =p,H (X)T I{T<∞} a.s. for any H-predictable time T.

The two processes o,H(X) and p,H(X) are unique up to evanescent set. A ran-

dom set A is called evanescent if the set {ω : ∃t ∈ R+ with (ω, t) ∈ A} is

Q-null .

Remark 2.1.21. we denote by X • Y by the stochastic integral
∫︁ ·
0
XsdYs.

Theorem 2.1.22 ([50]). Let A ∈ A+
loc(H, Q). There is a process, called the

compensator of A and denoted by Ap,H, which is unique up to an evanescent

set, and which is characterized by being a predictable process in A+
loc(H, Q)

meeting any one of the following three equivalent statements:

(i) A− Ap,H is a local martingale;

(ii) E(Ap,H
T ) = E(AT ) for all stopping time T ;

(iii) E[(H •Ap,H)∞] = E[(H •A)∞] for all nonnegative predictable processes H.

Sometimes, Ap,H is called ”predictable compensator” of A, or also ”dual pre-

dictable projection” of A.

We recall an important theorem form martingale inequalities that goes back

to Dellacherie and Meyer, see [37, Theorem 99, Chapter VI].

Theorem 2.1.23. Consider a complete filtered probability space given by

(Ω,F ,H = (Ht)0≤t≤T , P ). Let A be predictable (optional) increasing process
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whose potential (left potential) Z is bounded above by a martingale Mt =

E[M∞|Ht]. Then

∥A∞∥Φ ≤ pΦ∥M∞∥Φ, (2.1.1)

where pΦ is the constant associated with Φ and Φ is increasing convex function

defined as the following;

Φ(t) :=

∫︂ t

0

ϕ(s)ds, pΦ := sup
t

tϕ(t)

Φ(t)
. (2.1.2)

for some right continuous increasing function ϕ which is positive on R+.

Also, we recall the following remark, see [37, Remark 100, Chapter VI].

Remark 2.1.24. Let B be an increasing right continuous locally intergrable

process. We denote by A the dual optional or predictable projection of B.

(i) If F is convex and of moderate growth with exponent p, w have

E(F (AT )) ≤ ppE(F (BT )). (2.1.3)

(ii) If F is concave, we have

E(F (BT )) ≤ 2E(F (AT )). (2.1.4)
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2.1.4 Ito’s formula and Dolèans-Dade Exponential

Definition 2.1.25 ([50]). The quadratic co-variation of the two semimartin-

gales X and Y (the quadratic variation of X, when Y = X) is the following

process:

[X, Y ] = XY −X0Y0 −X− • Y − Y− • X

(it is defined uniquely, up to an evanscent set).

Definition 2.1.26 ([50]). ⟨X, Y ⟩ denotes to the compensator of [X, Y ].

Definition 2.1.27 ([37]). Let X and Y be two local martingales. If the product

XY is a special semimartingale, we denote by ⟨X, Y ⟩ the unique predictable

process of finite variation such that XY − ⟨X, Y ⟩ is a local martingale which

is zero at 0.

Theorem 2.1.28 ([50]). If X, Y are semimartingale, and if Xc, Y c denote

their continuous martingale parts, then

[X, Y ]t = ⟨Xc, Y c⟩t +
∑︂
s≤t

∆Xs∆Ys.

Theorem 2.1.29 (Ito’s formula [50]). Let X = (X1, ..., Xd) be a d-dimensional

semimartingale, and f a class C2 function on Rd. Then f(X) is a semimartin-

gale and we have:

f(Xt) = f(X0) +
∑︂
i≤d

Dif(X−) • X i +
1

2

∑︂
i,j≤d

Dijf(X−) • ⟨X i,c, Xj,c⟩
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+
∑︂
s≤t

[︄
f(Xs) − f(Xs−) −

∑︂
i≤d

Dif(Xs−)∆X i
s

]︄
.

Theorem 2.1.30. [50] For any H-semimartinagle, L, we denote by the semi-

martingale E(L) the Doléans-Dade (stochastic) exponential, it is the unique

solution to the stochastic differential equation

dX = X−dL, X0 = 1,

and is explicitly given by

Et(L) = exp(Lt − L0 −
1

2
⟨Lc⟩t)

∏︂
0<s≤t

(1 + ∆Ls)e
−∆Ls . (2.1.5)

Furthermore,

a) If L has a finite variation, then E(L) has a finite variation.

b) If L is a local martingale, then E(L) is a local martingale.

Here we recall Yor’s lemma about the product of two stochastic exponentials.

Lemma 2.1.31. [49] If X and Y are two semimartingales, then

E(X)E(Y ) = E(X + Y + [X, Y ]).

2.2 Some useful results from stochastic

Definition 2.2.1. [52] A Brownian motion (or a standard one- dimensional

Wiener process) is a continuous, adapted process (Wt)t≥0, defined on some
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probability space (Ω,F , P ), with the properties W0 = 0 a.s. and for 0 ≤ s < t,

the increment Wt −Ws is independent of Fs and is normally distributed with

mean zero and variance t− s.

The Poisson process is a discontinuous process that counts the number of ran-

dom occurrences of some events which happen in a certain time interval. The

inter-arrival time between two events occurring is exponentially distributed.

Definition 2.2.2. Let (τi)i≥1 be a sequence of independent exponential random

variables with parameter λ > 0, and Tn =
∑︁n

i=1 τi. The process (N(t))t≥0

denoted by N(t) =
∑︁

n≥1 1{t≥Tn} is called a Poisson process with intensity λ.

A Poisson process has piecewise constant sample paths, and it increases by

jumps of size 1. Its increments N(t) − N(s) are independent and stationary

and have a Poisson distribution with mean (t− s)λ for all t > s ≥ 0.

Definition 2.2.3. A utility function U : (0,∞) → R is a strictly increasing

and strictly concave C1 function that satisfies the Inada conditions

U
′
(0+) = lim

x↓0
U

′
(x) = ∞, and U

′
(∞) = lim

x→∞
U

′
(x) = 0.

Some examples of utility functions are the so called exponential, power and

log utility functions

U(x) = 1 − e−x, U(x) =
xp

p
and U(x) = log(x) for p ∈ (−∞, 1)\{0}.

Definition 2.2.4. Let U be a utility function. The convex conjugate function
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of U is denoted as the function

U∗(y) := supx>0{U(x) − xy}, y > 0.

The convex conjugate function of a utility function U is the Legendre-Fenchel

transformation of the function −U(−x). Let the inverse of U
′

be denoted by

I so that

x = I(U
′
(x)) = U

′
(I(x)), for x > 0.

Since U is strictly increasing and strictly concave, U
′

must be strictly decreas-

ing, and therefore I is also strictly decreasing.

In the following we recall Fatou’s Lemma

Lemma 2.2.5. [82] Let η, ξn, n ≥ 1 be random variables.

(a) If ξn ≥ η for all n ≥ 1 and Eη > −∞, then

E lim ξn ≤ lim E ξn.

(b) If ξn ≤ η for all n ≥ 1 and Eη <∞, then

lim E ξn ≤ E lim ξn.

(c) If |ξn| ≤ η for all n ≥ 1 and Eη <∞, then

E lim ξn ≤ lim E ξn ≤ lim E ξn ≤ E lim ξn.

In the next theorem we recall a very useful inequality, which is known as

21



Burkhölder-Davis-Gundy inequality (BDG inequality)

Theorem 2.2.6. [37] Let ϕ be a convex function such that ϕ(0) = 0. For any

local martingale X,

1

4pϕ
∥ sup

t≥0
|Xt|∥ϕ ≤ ∥[X,X]

1
2∞∥ϕ ≤ 6pϕ∥ sup

t≥0
|Xt|∥ϕ.

Here, the constant pΦ is defined by

pΦ := sup
t

tϕ(t)

Φ(t)
∈ [1,+∞) where Φ(t) :=

∫︂ t

0

ϕ(s)ds. (2.2.1)

Also, we give another important inequality, Doob’s inequality, in the following

theorem

Theorem 2.2.7. [37] Let X be a positive submartingale. Then for all p > 1,

with q denoting the exponent conjugate to p (i.e. q := p/(p− 1))

∥ sup
t≥0

Xt∥p ≤ q sup
t≥0

∥Xt∥p.

(The result applies in particular to |X| for every martingale X.)

The following is the Girsanov’s Theorem

Theorem 2.2.8. [50] Assume that P
′ loc
≪ P and let Z be the density process.

Let M be a P -local martingale such that M0 = 0 and that the P -quadratic

covariation [M,Z] has P -locally integrable variation, and denote by ⟨M,Z⟩ its
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P -compensator. Then the process

M
′

:= M − 1

Z−
• ⟨M,Z⟩

is P
′
-local martingale.

2.3 The random horizon and the progressive

enlargement of F

In addition to this initial model (Ω,F ,F, P ), we consider an arbitrary ran-

dom time, τ , that might not be an F-stopping time. This random time is

parametrized though F by the pair (G, ˜︁G), called survival probabilities or

Azéma supermartingales, and is given by

Gt :=o,F (I[[0,τ [[)t = P (τ > t|Ft) and ˜︁Gt :=o,F (I[[0,τ ]])t = P (τ ≥ t|Ft).(2.3.1)

Furthermore, the following process

m := G+Do,F, (2.3.2)

is a BMO F-martingale and play important role in the analysis of enlargement

of filtration. The flow of information that incorporates both τ and F is defined

using the pair (D,G) given by

D := I[[τ,+∞]], G := (Gt)t≥0, Gt := G0
t+ with G0

t := Ft ∨ σ (Ds, s ≤ t) . (2.3.3)
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Thanks to [2, Theorem 3] and [26, Theorem 2.3 and Theorem 2.11], we recall

Theorem 2.3.1. The following assertions hold.

(a) For any M ∈ Mloc(F), the process

T (M) := M τ − ˜︁G−1I[[0,τ [[ • [M,m] + I[[0,τ [[ •

(︂∑︂
∆MI{ ˜︁G=0<G−}

)︂p,F
(2.3.4)

is a G-local martingale.

(b) The process

NG := D − ˜︁G−1I[[0,τ [[ • Do,F (2.3.5)

is a G-martingale with integrable variation. Moreover, H • NG is a G-local

martingale with locally integrable variation for any H belonging to

Io
loc(N

G,G) :=
{︂
K ∈ O(F)

⃓⃓
|K|G ˜︁G−1I{ ˜︁G>0} • D ∈ Aloc(G)

}︂
. (2.3.6)

For any q ∈ [1,+∞) and a σ-algebra H on Ω × [0,+∞), we define

Lq (H, P ⊗ dD) :=
{︁
X H-measurable : E[|Xτ |qI{τ<+∞}] < +∞

}︁
. (2.3.7)

The following is very useful throughout the thesis, and its proof can be found

in [29, Lemma 2.4-(b)].

Lemma 2.3.2. If G > 0, then

G = G0
˜︁EE(G−1

− • m), where ˜︁E := E
(︃
− 1˜︁G • Do,F

)︃
=: 1 − V F. (2.3.8)
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Lemma 2.3.3. For any nonnegative or integrable process X, we always have

E [Xt|Gt] I{t <τ} = E
[︁
XtI{t <τ}|Ft

]︁
G−1

t I{t <τ}. (2.3.9)

This lemma, for the case when X is integrable can be found in [34, Chapter

XX, Section 37]. For the case of X bering nonnegative can be also deduce

from the integrable case using the class monotone theorem. Now, we recall

[29, Proposition 4.3] that will be useful throughout the paper.

Proposition 2.3.4. Suppose that G > 0 and consider the process

˜︁Z := 1/E(G−1
− • m). (2.3.10)

Then the following assertions hold.

(a) The process ˜︁Zτ is a G-martingale, and for any T ∈ (0,+∞), ˜︁QT given by

d ˜︁QT

dP
:= ˜︁ZT∧τ . (2.3.11)

is well defined probability measure on Gτ∧T .

(b) For any M ∈ Mloc(F), we have MT∧τ ∈ Mloc(G, ˜︁Q). In particular W T∧τ

is a Brownian motion for ( ˜︁Q,G), for any T ∈ (0,+∞).

Remark 2.3.5. In general, the G-martingale ˜︁Zτ might not be uniformly in-

tegrable, and hence in general ˜︁Q might not be extended to (0,+∞]. For these

fact, we refer the reader to [29, Proposition 4.3] for details, where conditions

for ˜︁Zτ being uniformly integrable are fully singled out when G > 0.

Now, we recall an important representation theorem of Choulli et al. (2017)
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to the case of G-local martingales when the process G never vanishes.

Theorem 2.3.6. Suppose that G > 0. Then for any G-local martingale

MG, there exists a unique triplet (MF, φ(o), φ(pr)) that belongs to M0,loc(F) ×

Io
loc

(︁
NG,G

)︁
× L1

loc

(︂˜︁Ω,Prog(F), P ⊗D
)︂
and satisfies

E
[︁
φ(pr)
τ

⃓⃓
Fτ

]︁
I{τ<+∞} = 0, P − a.s., (2.3.12)

and

(︁
MG)︁τ = MG

0 +G−2
− I]]0,τ ]] • T (MF) + φ(o) • NG + φ(pr) • D. (2.3.13)

2.4 RBSDEs: Definition, spaces and norms

Throughout this section we suppose given a complete filtered probability space

(Ω,F ,H = (Ht)t≥0, Q), where H ⊇ F and Q is any probability measure abso-

lutely continuous with respect to P . The following definition of RBSDEs is

borrowed from [20, Definition 2.1].

Definition 2.4.1. Let σ be an H-stopping time, and (fH, SH, ξH) be a triplet

such that fH is Prog(H) ⊗B(R) ⊗B(R)-measurable functional, SH is a RCLL

and H-adapted process, and ξH is an Hσ-measurable random variable.

(a) Then an (H, Q, σ)-solution to the following RBSDE

⎧⎪⎪⎨⎪⎪⎩
dYt = −fH(t, Yt, Zt)I{t≤σ}dt+ ZtdWt∧σ − dMt − dKt, Yσ = ξH,

Y ≥ SH on [[0, σ[[,

∫︂ σ

0

(Yu− − SH
u−)dKu = 0 Q-a.s..

(2.4.1)
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is any quadruplet (Y H, ZH,MH, KH) satisfying (2.4.1) such that both MH and

[W σ,MH] belong toM0,loc(Q,H), KH is a RCLL nondecreasing and H-predictable,

MH = (MH)σ, KH = (KH)σ, and

∫︂ σ

0

(︁
(ZH

t )2 + |fH(t, Y H
t , Z

H
t )|
)︁
dt < +∞ Q-a.s. (2.4.2)

(b) We call a class-(D)-(H, Q, σ)-solution any quadruplet (Y H, ZH,MH, KH)

which is an (H, Q, σ)-solution such that
{︁
Y H
σ∧θ : θ is an H-stopping time

}︁
is

Q-uniformly integrable and

EQ

[︃∫︂ σ

0

|fH(t, Y H
t , Z

H
t )|dt

]︃
< +∞.

When Q = P we will simply call the quadruplet an H-solution, while the

filtration is also omitted when there no risk of confusion.

In this thesis, we are interested in solutions that are integrable somehow. To

this end, we recall the following spaces and norms that will be used throughout

the paper. We denote by Lp(Q) is the space of F -measurable random variables

ξ′, such that

∥ ξ′ ∥pLp(Q):= EQ [|ξ′|p] <∞.

Dσ(Q, p) is the space of RCLL and F ⊗B(R+)-measurable processes, Y , such

that Y = Y σ and

∥Y ∥pDσ(Q,p) := EQ

[︃
sup
0≤t≤σ

|Yt|p
]︃
<∞.

Here B(R+) is the Borel σ-field of R+. Sσ(Q, p) is the space of Prog(H)-
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measurable processes Z such that Z = Zσ and

∥Z∥pSσ(Q,p) := EQ

[︄(︃∫︂ σ

0

|Zt|2dt
)︃p/2

]︄
<∞.

For any M ∈ Mloc(Q,H), we define its p-norm by

∥M∥pMp(Q) := EQ
[︁
[M,M ]p/2∞

]︁
<∞,

and the p-norm of any K ∈ Aloc(Q,H) at any random time σ is given by

∥K∥pAσ(Q,p) := EQ [(Varσ(K))p] .

Herein and throughout the paper, Var(K) denotes the total variation process

of K, and Ap
σ(Q,H) is the set of K ∈ Aloc(Q,H) such that ∥K∥Aσ(Q,p) < +∞.

Definition 2.4.2. Let p ∈ (1,+∞). An Lp(Q,H)-solution for (2.4.1) is a

(Q,H)-solution (Y, Z,M,K) that belongs to the set

Dσ(Q, p) ⊗ Sσ(Q, p) ⊗Mp(Q,H) ⊗Ap
σ(Q,H).
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Chapter 3

Snell envelope under random

horizon

In this chapter we study the Snell envelope theory, the reason behind this

theory is the problem of the optimal stopping. To promote the concept of the

Snell envelope, we give the following simple example from real life that can be

found in [62]: ” Let (Zn, n ∈ N) be a sequence of integrable r.v.’s representing

the random sequence of winnings of a gambler at successive time n (n ∈ N).

For every finite stopping time ν, the expectation E(Zν) represents the expected

winnings of a gambler who decides to leave the game at the random time ν;

let us remark that by supposing ν a stopping time we are obliging the gambler

to be honest, i.e. not to leave the game at time n (event {n = ν}) taking

into account information other than that available at the moment. The Snell

envelope here represents finding the upper bound supν E(Zν) and finding the

stopping time ν∗ at which we attain this bound ”.
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To the best of our knowledge, the theory of Snell envelope and optimal stopping

origin can be traced back at least to Wald’s [87] work in probability and

statistics. After that, it becomes very popular in applications in many different

areas. The theory of Snell envelope and optimal stopping for a discrete time

firstly appearance was in Neveu [62]. For more general treatments and to the

case of continuous time, we refer the reader to El Karoui [39], Bismut and

Skalli [14], Karatzas and Shreve [53], as well as Dellacherie and Meyer [37].

This chapter contains two sections. The first section presents some prelimi-

naries that will be used in the following section. The second section presents

our main results of this chapter. More precisely, in this section, we give an

explicit connection between the Snell envelop in both filtrations F and G. This

is interesting by itself, and is useful in proving our results in the next chapters.

3.1 Preliminaries on Snell envelope

In this section, we give the definitions and some theories of the Snell envelope.

The definition of the Snell envelope in continuous time, which we borrow from

[43], is given in the following

Definition 3.1.1. Given a filtered probability space (Ω,F ,H = (Ht)0≤t≤T , P )

and an absolutely continuous probability measure Q ≪ P . Then an adapted

process U = (Ut)t∈[0,T ] is the Snell envelope with respect to Q of the process

X = (Xt)t∈[0,T ] if

1. U is a Q-supermartingale,

2. U dominates X, i.e. Ut ≥ Xt Q-almost surely for all times t ∈ [0, T ],
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3. If V = (Vt)t∈[0,T ] is a Q-supermartingale which dominates X, then V dom-

inates U .

Construction for discrete time (see [43]):

Given a filtered probability space
(︁
Ω,F ,H = (Hn)Nn=0, P

)︁
and an absolutely

continuous probability measure Q≪ P , then the Snell envelope (Un)Nn=0 with

respect to Q of the process (Xn)Nn=0 is given by the recursive scheme

UN := XN ,

Un := max(Xn, E
Q[Un+1|Hn]) for n = N − 1, · · · , 0.

Here, we give the following set up that can be found in [37]. A process X is said

to be of class D if the set of all r.v.s Xθ, where θ is an arbitrary finite stopping

time, is uniformly integrable. Let (Yt){t≥0} ∈ D denote an optional process;

Y∞ = 0. Then Yθ is defined for every stopping time θ, and the set Yθ ( where

θ runs through the set I for all stopping times) is uniformly integrable. In the

following, we give the fundamental existence theorem for the snell envelope

Theorem 3.1.2 ([37]). Let (Yt){t≥0} ∈ D denote an optional process; Y∞ = 0.

Then, the following assersions hold

(a) There exists a positive optional strong supermartingale Z with the following

property:

Z ≥ Y and for every positive optional strong supermartingale Z
′
which bounds

Y above, Z
′ ≥ Z.

Z is unique. It is called the snell envelope of Y . Moreover, Z belongs to class

D.
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(b) For every stopping time ν we have a.s.

Zν = ess sup
θ∈I,θ≥ν

E[Yθ|Hν ].

And if the paths of Y are continuous. Then, the stopping time θ∗ defined by

θ∗ := inf{t ≥ 0; Zt = Yt}

is the optimal one.

3.2 The main results

Throughout the thesis, for any two H-stopping times σ1 and σ2 such that

σ1 ≤ σ2 P -a.s., we define J σ2
σ1

(H) by

J σ2
σ1

(H) :=
{︂
σ H-stopping time : σ1 ≤ σ ≤ σ2 P -a.s.

}︂
. (3.2.1)

Also, throughout the rest of the thesis, we assume the following assumption

G > 0 (i.e., G is a positive process) and 0 < τ < +∞ P -a.s.. (3.2.2)

The condition τ > 0 P -a.s. is not restrictive at all due to the fact that through-

out the thesis the σ-algebra F0 is the trivial, which yields to G0 is number

belonging to (0, 1). Thus, the assumption under consideration translates into

the condition G0 = 1 only instead of being a real number in (0, 1). The condi-

tion G > 0 is restrictive in the sense we can not include the F-stopping times
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in this class of random times, while on the other hand this assumption says

that our τ is truly an unbounded random time.

Throughout the thesis, for any nonnegative or µ := P ⊗ D-integrable and

F × B(R+)-measurable process X, its F-optional projection with respect to

the measure µ is denoted by MP
µ (X

⃓⃓
O(F)) and is the unique F-optional process

Y satisfying

E

[︃∫︂ ∞

0

XsHsdDs

]︃
= E

[︃∫︂ ∞

0

YsHsdDs

]︃
, for any bounded and F-optional H.

We give the following useful proposition

Proposition 3.2.1. Suppose (3.2.2) holds, and let XG be a G-optional process

such that (XG)τ = XG. Then there exists a unique pair (XF, k(pr)) of processes

such that XF is F-optional, k(pr) is F-progressive,

XG = XFI[[0,τ [[ + k(pr) ·D, and XF = o,F(XGI[[0,τ [[)/G. (3.2.3)

Furthermore, the following assertions hold.

(a) XG is RCLL if and only if XF is RCLL.

(b) XG is a RCLL G-semimartingale iff XF is a RCLL F-semimartingale, and

(XG)τ = (XF)τ + (k(pr) −XF) ·D. (3.2.4)

(c) For any function f : R → R+ such that f(0) = 0. E
[︁
supt≥0 f(XG

t )
]︁
< +∞
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if and only if

f(k(pr)) ∈ L1
(︂˜︁Ω,Prog(F), P ⊗D

)︂
and E

[︃∫︂ +∞

0

sup
0≤s<t

f(XF
s )dDo,F

t

]︃
< +∞.

(d) Let σ be a finite F-stopping time. If E

[︃
sup

0≤t≤σ∧τ
(XG

t )+
]︃
< +∞, then

E

[︃
Gσ sup

0≤t≤σ
(XF

t )+
]︃

+E

[︃∫︂ σ

0

(k(op)s )+dDo,F
s

]︃
< +∞; k(op) = MP

µ (k(pr)
⃓⃓
O(F)).

Proof. Consider a G-optional process XG. Then thanks to [3, Lemma B.1 ]

(see also [51, Lemma 4.4]), there exists a pair (XF, k(pr)) such that XF is an

F-optional, k(pr) is Prog(F)-measurable, and

XGI[[0,τ [[ = XFI[[0,τ [[, and XG
τ = k(pr)τ .

Furthermore, this pair is unique due to G > 0. Thus, the condition XG =

(XG)τ yields

XG = XGI[[0,τ [[ +XG
τ I[[τ,+∞[[ = XFI[[0,τ [[ + k(pr) ·D,

and the equality (3.2.3) is proved.

a) Thanks to (3.2.3) and the fact that k(pr) ·D is a RCLL process, we deduce

that XG is a RCLL process if and only if XFI[[0,τ [[ is a RCLL process. Thus,

we consider a RCLL process XG, and let (TG
n ) be the sequence of G-stopping

times that increases to infinity, given by

TG
n := inf

{︁
t ≥ 0 : |XG

t | > n
}︁
, and satisfies |XG,n| ≤ n, XG,n := XGI[[0,TG

n [[.
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By virtue of [3, Proposition B.2-(b)] and G > 0, there exists a sequence of F-

stopping times (Tn)n which increases to infinity and satisfies TG
n ∧ τ = Tn ∧ τ .

Furthermore, by applying (3.2.3) to each XG,n, on the one hand, we deduce

that

XG,nI[[0,τ [[ = XFI[[0,τ [[I[[0,Tn[[.

On the other hand, as Tn increases to infinity, it is clear that XF is a RCLL

if and only if XFI[[0,Tn[[ =o,F (XG,nI[[0,τ [[)G
−1 is RCLL. This latter fact follows

directly from combining [33, Théorème 47, pp: 119], the boundedness of XG,n,

and the right-continuity of G. This proves assertion (a).

b) It is clear that k(pr) · D is a RCLL G-semimartingale, and hence XG is a

RCLL G-semimartingale if and only if XFI[[0,τ [[ is a RCLL G-semimartingale.

Thus, ifXF is a RCLL F-semimartingale, thenXG is a RCLL G-semimartingale.

To prove the converse, we remark that by stopping with TG
n defined above and

by using [33, Théorème 26, Chapter VII, pp: 235], there is no loss of general-

ity in assuming XG is bounded, which leads to the boundedness of XF, see [3,

Lemma B.1] or [51, Lemma 4.4 (b), pp: 63]. Thus, thanks to [33, Théorème 47,

pp: 119 and Théorème 59, pp: 268] which implies that the optional projection

of a bounded RCLL G-semimartingale is a RCLL F-semimartingale, we deduce

that XFG =o,F
(︁
XGI[[0,τ [[

)︁
is a RCLL F-semimartingale. A combination of this

with the condition G > 0 and the fact that G is a RCLL F-semimartingale

implies that XF is a RCLL F-semimartingale. Furthermore, direct calculation
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yields

XFI[[0,τ [[ = (XF)τ −XF ·D is a G-semimartingale,

and (3.2.4) follows from this equality and (3.2.3).

c) Here, we prove assertion (c). To this end, we use (3.2.3) and notice that

I

2
≤ sup

t≥0
f(XG

t ) = max

(︃
sup
0≤t<τ

f(XF
t ), f(k(pr)τ )

)︃
≤ I,

I :=

∫︂ ∞

0

(︃
sup
0≤u<t

f(XF
u ) + f(k

(pr)
t )

)︃
dDt.

Hence, we deduce that E
[︁
supt≥0 f(XG

t )
]︁
< +∞ iff E

[︂∫︁∞
0
f(k

(pr)
t )dDt

]︂
< +∞

and

E

[︃∫︂ ∞

0

sup
0≤u<t

f(XF
u )dDt

]︃
= E

[︃∫︂ ∞

0

sup
0≤u<t

f(XF
u )dDo,F

t

]︃
< +∞.

due to sup
0≤u<t

f(XF
u ) being F-optional.

d) Let σ be an F-stopping time. By applying assertion (c) to
(︁
(XG

t∧σ)+
)︁
t≥0

,

we deduce that E

[︃
sup

0≤t≤σ∧τ
(XG

t )+
]︃
< +∞ if and only if

E

[︃∫︂ σ

0

(k(pr)s )+dDs

]︃
+ E

[︃∫︂ +∞

0

sup
0≤s<t

(XF
s∧σ)+dDo,F

t

]︃
< +∞.

On the one hand, a combination of k(op) = MP
µ (k(pr)

⃓⃓
O(F)),

E

[︃∫︂ σ

0

(k(pr)s )+dDs

]︃
= MP

µ ((k(pr))+1[[0,σ]]),
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and Jensen’s inequality allows us to derive

E

[︃∫︂ σ

0

(k(op)s )+dDo,F
s

]︃
= E

[︃∫︂ σ

0

(k(op)s )+dDs

]︃
= MP

µ

(︂(︁
MP

µ (k(pr)
⃓⃓
O(F))

)︁+
1[[0,σ]]

)︂ Jensen

≤ MP
µ

(︂
MP

µ

(︁
(k(pr))+1[[0,σ]]

⃓⃓
O(F)

)︁)︂
Tower

= MP
µ

(︁
(k(pr))+1[[0,σ]]

)︁
= E

[︃∫︂ σ

0

(k(pr)s )+dDs

]︃
<∞.

On the other hand, we have

E

[︃
sup

0≤t≤σ∧τ
(XG

t )+
]︃
≥ E

[︃
sup

0≤t≤σ∧τ
(XG

t )+1{τ>σ}

]︃
= E

[︃
sup
0≤t≤σ

(XG
t )+1{τ>σ}

]︃
= E

[︃
sup
0≤t≤σ

(XF
t )+1{τ>σ}

]︃
= E

[︃
Gσ sup

0≤t≤σ
(XF

t )+
]︃
.

This proves assertion d) and the proof of the proposition is complete.

Lemma 3.2.2. Let σ1 and σ2 be two F-stopping times such that σ1 ≤ σ2

P-a.s.. Then, for any G- stopping time, σG, satisfying

σ1 ∧ τ ≤ σG ≤ σ2 ∧ τ P -a.s., (3.2.5)

there exists an F- stopping time σF such that

σ1 ≤ σF ≤ σ2 and σF ∧ τ = σG P -a.s. (3.2.6)

Proof. Thanks to [34, XX.75 b)] (see also [3, Proposition B.2-(b)]), for the

37



G-stopping time σG, there exists an F-stopping time σ such that

σG = σG ∧ τ = σ ∧ τ.

Put

σF := min (max(σ, σ1), σ2) , (3.2.7)

and on the one hand remark that σF is an F- stopping time satisfying the first

condition in (3.2.6). On the other hand, it is clear that

min(τ,max(σ, σ1)) = (τ ∧ σ1)I{σ1>σ} + (τ ∧ σ)I{σ1≤σ} = max(σ ∧ τ, σ1 ∧ τ).

Thus, by using this equality, we derive

σF ∧ τ = τ ∧ σ2 ∧ max(σ, σ1) = (τ ∧ σ2) ∧ (τ ∧ max(σ, σ1))

= (τ ∧ σ2) ∧ max(σ ∧ τ, σ1 ∧ τ) = σ ∧ τ = σG.

This ends the proof of the lemma.

The following is our main result of this Chapter, where we write in different

manners the Snell envelope of a process under G as a sum of a transformation

of an F-Snell envelope and G-martingales.

Theorem 3.2.3. Suppose G > 0, and let XG be a RCLL and G-adapted

process such that (XG)τ = XG. Then consider the unique pair (XF, k(pr))
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associated to XG, and denote by

k(op) := MP
µ (k(pr)

⃓⃓
O(F)) where µ := P ⊗D and k(F) := k(pr) − k(op). (3.2.8)

Then the following assertions hold.

(a) If either XG is nonnegative or E
[︁
supt≥0(X

G
t )+

]︁
< +∞, then the (G, P )-

Snell envelope of XG, denoted S(XG;G, P ), is given by

S(XG;G, P ) =
S(XFG+ k(op) ·Do,F;F, P )

G
I[[0,τ [[

+k(F) ·D +
(k(op) ·Do,F)−

G2
−

· T (m) +

(︃
k(op) +

k(op) ·Do,F

G

)︃
·NG.

(3.2.9)

Here S(XFG+k(op) ·Do,F;F, P ) denotes the (F, P )-Snell envelope of the process

XFG+ k(op) ·Do,F.

(b) Let T∈ (0,+∞) and ˜︁Q be given in (2.3.11). If either E
˜︁Q [︃ sup

0≤t≤T
(XG

t )+
]︃
<

+∞ or XG ≥ 0, then the (G, ˜︁Q)-Snell envelope of (XG)T , denoted by the

process S((XG)T ;G, ˜︁Q), is given by

S((XG)T ;G, ˜︁Q) =
S((XF ˜︁E − k(op) · ˜︁E)T ;F, P )˜︁E I[[0,τ [[ + k(F) ·DT

+

(︄
k(op) − k(op) · ˜︁E˜︁E

)︄
· (NG)T . (3.2.10)

Here the process ˜︁E is given by (2.3.8).

Proof. Let θ ∈ T τ
t∧τ (G), then thanks to Lemma 3.2.2 there exists σ ∈ T ∞

t (F)
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such that θ = σ ∧ τ . Then notice that

XG
θ = XG

σ∧τI{σ<τ} + k(pr)τ I{σ≥τ} = XF
σI{σ<τ} +

∫︂ σ

0

k(pr)s dDs

= XF
σI{σ<τ} +

(︂k(op)˜︁G ·Do,F
)︂
σ∧τ

+ (k(op) ·NG)σ + k(F) ·Dσ. (3.2.11)

The rest of the proof is divided into three parts. The first and second parts

prove the assertions (a) and (b) of the theorem under the assumption that XG

is bounded, while the third part relaxes this condition and proves the theorem.

Part 1. In this part, we suppose that XG is bounded, and hence the associated

three processes XF, k(pr) and k(op) are also bounded. As a result, both processes

k(op) ·NG and k(F) ·D are G-martingales. Thus, by putting

LG := k(op) ·NG + k(F) ·D, (3.2.12)

and combining the remarks above with Lemma 2.3.3 and taking conditional

expectation with respect to Gt on both sides of (3.2.11), we derive

Yt(θ) := E
[︁
XG

θ

⃓⃓
Gt

]︁
= E

[︄
XF

σI{σ<τ} +

∫︂ σ∧τ

0

k
(op)
s˜︁Gs

dDo,F
s

⃓⃓
Gt

]︄
+ LG

t

= E

[︄
XF

σI{σ<τ} +

∫︂ σ∧τ

t∧τ

k
(op)
s˜︁Gs

dDo,F
s

⃓⃓⃓⃓
Gt

]︄
+ (

k(op)˜︁G ·Do,F)t∧τ + LG
t

(1)
= E

[︄
XF

σI{σ<τ} +

∫︂ σ∧τ

t∧τ

k
(op)
s˜︁Gs

dDo,F
s

⃓⃓⃓⃓
Ft

]︄
I{τ>t}

Gt

+ (
k(op)˜︁G ·Do,F)t∧τ + LG

t

= E

[︃
GσX

F
σ +

∫︂ σ

t

k(op)s dDo,F
s

⃓⃓⃓⃓
Ft

]︃
I{τ>t}

Gt

+ (
k(op)˜︁G ·Do,F)t∧τ + LG

t

=:
XF

t (σ)

Gt

I{t<τ} −
(k(op) ·Do,F)t

Gt

I{t<τ} + (
k(op)˜︁G ·Do,F)t∧τ + LG

t (3.2.13)
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The equality (1) in the string of the equalities above is due to (σ < τ) ⊆ (t < τ)

and lemma 2.3.3. Thus, by taking the essential supremum over all θ ∈ T τ
t∧τ (G),

we deduce that

S(XG;G, P ) =
S(XFG+ k(op) ·Do,F;F, P )

G
I[[0,τ [[ −

(k(op) ·Do,F)

G
I[[0,τ [[

+(
k(op)˜︁G ·Do,F)τ + k(op) ·NG + k(F) ·D. (3.2.14)

Furthermore, put V := k(op) ·Do,F and remark that

d(1/Gτ ) = (G ˜︁G)−1I]]0,τ ]]dD
o,F −G−2

− dT (m).

Thus, by combining these with Itô, we derive

d

(︃
V τ

Gτ

)︃
= V−d

(︃
1

Gτ

)︃
+
k(op)

G
I]]0,τ ]]dD

o,F

=
V

G ˜︁GI]]0,τ ]]dDo,F − V−
G2

−
dT (m) +

k(op)˜︁G I]]0,τ ]]dD
o,F.

Thus, (3.2.9) follows immediately from combining this equality with (3.2.14)

and the easy fact that

XI[[0,τ [[ = Xτ −X ·D, for any F-semimartingale X. (3.2.15)

This ends the proof of assertion (a).

Part 2. Here, we suppose that XG is bounded, we fix T ∈ (0,+∞) and prove

assertion (b). Let θ ∈ T T∧τ
t∧τ (G) and σ ∈ T T

t (F) such that θ = σ ∧ τ . Then,

similarly as in Part 1, by taking ˜︁Q-conditional expectation in both sides of
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(3.2.11), and using (3.2.12) and the fact that the two processes k(op) ·NG and

k(F) ·D remain G-martingale under ˜︁Q (due the boundedness of kpr) and k(F)),

we write

˜︁Yt(θ) := E
˜︁Q [︁XG

θ

⃓⃓
Gt

]︁
= E

˜︁Q
[︄
XF

σI{σ<τ} +

∫︂ σ∧τ

0

k
(op)
s˜︁Gs

dDo,F
s

⃓⃓
Gt

]︄
+ LG

t

= E

[︄ ˜︁Zσ˜︁Zt

XF
σI{σ<τ} +

∫︂ σ∧τ

t∧τ

k
(op)
s
˜︁Zs˜︁Gs
˜︁Zt

dDo,F
s

⃓⃓
Gt

]︄
+
k(op)˜︁G ·Do,F

t∧τ + LG
t

= E

[︄ ˜︁ZσX
F
σI{σ<τ} +

∫︂ σ∧τ

t∧τ
G0
k
(op)
s˜︁Gs

dV F
s

⃓⃓
Ft

]︄
I{τ>t}˜︁ZtGt

+
k(op)˜︁G ·Do,F

t∧τ + LG
t

= E

[︃˜︁EσXF
σ +

∫︂ σ

t

k(op)s dV F
s

⃓⃓
Ft

]︃
I{τ>t}˜︁Et + (

k(op)˜︁G ·Do,F)t∧τ + LG
t

=:
XF

t (σ)˜︁Et I{τ>t} −
(k(op) · V F)t˜︁Et I{τ>t} + (

k(op)˜︁G ·Do,F)t∧τ + LG
t (3.2.16)

The fifth equality is a consequence of Lemma 2.3.2, where both ˜︁E and V F are

defined. By taking essential supremum over θ in both sides of (3.2.16), we get

S(XG;G, ˜︁Q) =
S(XF ˜︁E + k(op) · V F;F, P )˜︁E I[[0,τ [[ −

(k(op) · V F)˜︁E I[[0,τ [[

+(
k(op)˜︁G ·Do,F)τ + k(op) ·NG + k(F) ·D. (3.2.17)

Similar arguments, as in part 1) after equation (3.2.14), applied to V = k(op) ·

V F := −k(op) · ˜︁E , leads to

−(k(op) · V F)˜︁E−1I[[0,τ [[ + (k(op) ˜︁G−1 ·Do,F)τ = (k(op) · V F)˜︁E−1 ·NG.

Thus, (3.2.10) follows from combining this fact with (3.2.17), and the proof of

assertion (b) is completed. This ends the second part.
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Part 3: Herein, we prove the theorem without the boundedness assumption

on XG. To this end, by virtue of parts 1 and 2, we remark that the theorem

follows immediately as soon as we prove that (3.2.13) and (3.2.16) hold. To

this end, we consider the sequence of G-stopping times

TG
n := inf

{︁
t ≥ 0 : |XG| > n

}︁
,

that increases to infinity and XG,n := XGI[[0,TG
n [[ is a bounded process. To

the sequence (TG
n ), we associate a sequence of F-stopping times (Tn), which

increases to infinity and TG
n ∧τ = Tn∧τ , for all n ≥ 1. Therefore, thanks to the

parts 1 and 2, the bounded XG,n with its associated triplet (XF,n, k(pr,n), k(op,n))

= (XF, k(pr), k(op))I[[0,Tn[[ fulfills (3.2.13) and (3.2.16).

1) The case when XG ≥ 0: In this case we get XG,n ≥ 0 and it increases to

XG, and all components of (XF,n, k(pr,n), k(op,n)) are nonnegative and increase to

the corresponding components of (XF, k(pr), k(op)) respectively. Thus, thanks

to the convergence monotone theorem, it is clear that in this case E[XG,n
θ |Gt]

(respectively E
˜︁Q[XG,n

θ |Gt]) increases to E[XG
θ |Gt] (respectively E

˜︁Q[XG
θ |Gt]) and

E
[︂
GσX

F,n
σ +

∫︁ σ

t
k
(op,n)
s dDo,F

s

⃓⃓
Ft

]︂
(respectively E

[︂˜︁EσXF,n
σ +

∫︁ σ

t
k
(op,n)
s dV F

s

⃓⃓
Ft

]︂
)

increases to E
[︂
GσX

F
σ +

∫︁ σ

t
k
(op)
s dDo,F

s

⃓⃓
Ft

]︂
(resp. E

[︂˜︁EσXF
σ +

∫︁ σ

t
k
(op)
s dV F

s

⃓⃓
Ft

]︂
).

This proves that (3.2.13) and (3.2.16) hold for the case when XG ≥ 0, and the

theorem is proved in this case.

2) The case of E
[︁
supt≥0(X

G
t )+

]︁
< +∞: Then, on the one hand, Fatou’s

lemma yields

E[XG
θ |Gt] ≥ lim sup

n−→+∞
E[XG,n

θ |Gt]. (3.2.18)

43



On the other hand, the dominated convergence theorem and E[XG,n
θ |Gt] ≥

E[XG
θ |Gt] − E[ sup

0≤t≤T∧τ
(XG

t )+I{θ≥TG
n }|Gt] imply that

lim inf
n−→+∞

E[XG,n
θ |Gt] ≥ E[XG

θ |Gt]. (3.2.19)

Thus, a combination of (3.2.18) and (3.2.19) implies that E[XG,n
θ |Gt] converges

to E[XG
θ |Gt] almost surely. These two arguments combined with Proposi-

tion (3.2.1)-(d) allow us in the same manner to prove the convergence of

E
[︂
GσX

F,n
σ +

∫︁ σ

t
k
(op,n)
s dDo,F

s

⃓⃓
Ft

]︂
to E

[︂
GσX

F
σ +

∫︁ σ

t
k
(op)
s dDo,F

s

⃓⃓
Ft

]︂
. Thus, as-

sertion (a) follows immediately. The proof of assertion (b), under the assump-

tion E
˜︁Q [︃ sup

0≤t≤T∧τ
(XG

t )+
]︃
< +∞, mimics exactly the proof of assertion (a), by

substituting ˜︁Q to P , and hence the details will be omitted. This ends the

proof of theorem.
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Chapter 4

Linear RBSDEs under random

horizon

In this Chapter, we consider the linear RBSDE under G given by

⎧⎪⎪⎨⎪⎪⎩
dYt = −f(t)d(t ∧ τ) − d(Kt∧τ +Mt∧τ ) + ZtdW

τ
t , Yτ = ξ = YT ,

Yt ≥ St, 0 ≤ t < T ∧ τ, and E

[︃∫︂ T∧τ

0

(Yt− − St−)dKt

]︃
= 0.

(4.0.1)

Here, the barrier process S is an F-adapted and RCLL process, T ∈ (0,+∞],

and the generator f is an F-progressively measurable process. The terminal

value of Y , denoted by ξ, is an FT∧τ -measurable random variable. This fact,

due to the definition of the σ-algebra FT∧τ , is equivalent to the existence of

an F-optional process h such that

ξ = hT∧τ . (4.0.2)
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Here, we study in different aspects the RBSDE under G having the form of

(4.0.1) and those RBSDE under F that are related to them. In paticular,

we derive the explicit relationship between the two solutions, and hence we

show how one can pass from an RBSDE under G to an RBSDE under F and

vice-versa. The key tool and idea behind these results is the optimal stopping

problem and the Snell envelope associated to it for models with two flows

of information. This Snell concept, which is important in itself besides its

application in linear RBSDEs, is treated in Chapter 3.

This chapter has three sections. Section 4.1 handles the case when the horizon

time is bounded, or in other word we suppose T < +∞ in this first section. In

this setting, we obtain prior estimate results, which are interesting in them-

selves beyond their role in proving the existence and uniqueness results. In

addition to these, we establish an explicit connection between the RBSDE

(4.0.1) and its F-RBSDE counterpart. The second section, which is Section

4.2, considers the case of unbounded horizon, or equivalently assumes that

T = +∞. Similarly as in the first section, we state our priors estimes, exis-

tence and uniqueness of a solution, and the connection between the G-RBSDE

and the F-RBSDE counterpart results. In the third section (Section 4.3), we

gathered the proofs of the lemmas that are used and vital in the first two

sections.

4.1 The case of bounded horizon

In this section, we suppose that T < +∞ and the triplet-data (f, S, ξ) satisfies

all the conditions described in the paragraph that follows (4.0.1), and ξ ≥ Sτ∧T
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P -a.s.. Hence, working with the G-triplet data (f, S, ξ) is equivalent to work

with the F-triplet data (f, S, h). This section is divided into two subsections.

The first subsection elaborates estimates for the solution of the RBSDE (when

it exists), while the second subsection addresses the existence and uniqueness

of the solution and describes the F-RBSDE counterpart of (4.0.1).

4.1.1 Various norm-estimates for the solution

This subsection elaborates estimates for the solution of the RBSDE (4.0.1)

when T < +∞. To this end, we start elaborating some useful intermediate

results that we summarize in two lemmas.

Lemma 4.1.1. The following assertions hold.

(a) For any T ∈ (0,+∞), mT∧τ is a BMO ( ˜︁Q,G)-martingale. Furthermore,

we have

E
˜︁Q [︁[m,m]T∧τ − [m,m]t∧τ−

⃓⃓
Gt

]︁
≤ ∥m∥BMO(P ), P -a.s.. (4.1.1)

(b) For any t ∈ (0, T ], we have

E
˜︁Q [︂Do,F

T∧τ −Do,F
(t∧τ)−

⃓⃓
Gt

]︂
≤ ˜︁Gt ≤ 1, P -a.s.. (4.1.2)

(c) If a ∈ (0,+∞), then max(a, 1) ˜︁G−1 ·Do,F − ˜︁V (a) is nondecreasing, and

E

[︃∫︂ T∧τ

t∧τ

˜︁G−1
s dDo,F

s

⃓⃓
Gt

]︃
≤ 1, P − a.s., (4.1.3)
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where ˜︁V (a) is the process defined by

˜︁V (a) :=
a˜︁G ·Do,F +

∑︂(︃
−a∆Do,F˜︁G + 1 −

(︃
1 − ∆Do,F˜︁G

)︃a)︃
. (4.1.4)

The proof of this lemma is given in Section 4.3. The following lemma, that

plays crucial role in our estimations, is interesting in itself and generalizes [28,

Lemma 4.8] to more broader cases encountered in our analysis.

Lemma 4.1.2. If r−1 = a−1 + b−1, where a > 1 and b > 1, then there exists a

positive constant κ = κ(a, b) depending only on a and b such that the following

assertion holds.

For any triplet (H,X,M) such that H is predictable, X is RCLL and adapted

process, M is a martingale, and |H| ≤ |X−|, the following inequality holds.

∥ sup
0≤t≤T

|(H ·M)t|∥r ≤ κ∥ sup
0≤t≤T

|Xt|∥a∥[M ]
1
2
T∥b.

Proof. When H = X−, the assertion can be found in [28, Lemma 4.8]. To

prove the general case, we remark that, there is no loss of generality in assum-

ing |X−| > 0, and hence the process H/X− is a well defined process that is

predictable and is bounded. Thus, put

M :=
H

X−
·M,

and remark that [M,M ] = (H/X−)2 · [M,M ] ≤ [M,M ]. As a result, we derive

∥ sup
0≤t≤T

|(H ·M)t|∥r = ∥ sup
0≤t≤T

|(X− ·M)t|∥r ≤ κ∥ sup
0≤t≤T

|Xt|∥a∥[M ]
1
2
T∥b
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≤ κ∥ sup
0≤t≤T

|Xt|∥a∥[M,M ]
1
2
T∥b.

This ends the proof of the lemma.

The next lemma connects the solution of (4.0.1) for the case T < +∞ –when

it exists– to Snell envelope. Recall that J T∧τ
t∧τ (G) is defined in (3.2.1).

Lemma 4.1.3. Suppose that the triplet (f, S, ξ) satisfies

E
˜︁Q [︃|ξ| +

∫︂ T∧τ

0

|f(s)|ds+ sup
0≤u≤τ∧T

S+
u

]︃
< +∞. (4.1.5)

If (Y G, ZG,MG, KG) is a class-(D)-(G, ˜︁Q, T ∧ τ)-solution to (4.0.1), then

Y G
t = ess sup

θ∈JT∧τ
t∧τ (G)

E
˜︁Q [︃∫︂ θ

t∧τ
f(s)ds + Sθ1{θ<T∧τ} + ξ1{θ=T∧τ}

⃓⃓⃓
Gt

]︃
. (4.1.6)

The proof of the lemma can be found in Section 4.3, while herein we state our

first estimate.

Theorem 4.1.4. Suppose that T < +∞, and let p ∈ (1,+∞). Then there

exists C ∈ (0,+∞), which depends on p only, such that if (Y G, ZG, KG,MG)

is a class-(D)-(G, ˜︁Q, T ∧ τ)-solution to (4.0.1), then

∥Y G∥DT∧τ ( ˜︁Q,p) + ∥ZG∥ST∧τ ( ˜︁Q,p) + ∥MG∥Mp( ˜︁Q) + ∥KG∥AT∧τ ( ˜︁Q,p) ≤ C∆ ˜︁Q(ξ, f, S+),

(4.1.7)
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where

∆ ˜︁Q(ξ, f, S+) := ∥ξ∥Lp( ˜︁Q) + ∥
∫︂ T∧τ

0

|f(s)|ds∥Lp( ˜︁Q) + ∥S+∥DT∧τ ( ˜︁Q,p). (4.1.8)

Proof. This proof is divided into two parts, where we control and estimate, in

a way or another, the four terms in the left-hand-side of (4.1.7). To this end,

we remark that when the right-hand-side term of (4.1.7) is infinite, then the

inequality is trivial. Hence, without loss of generality, for the rest of the proof

we assume that ∆ ˜︁Q(ξ, f, S) < +∞.

Part 1. Remark that, due to ∥ · ∥L1( ˜︁Q) ≤ ∥ · ∥Lr( ˜︁Q) for r ∈ [1,+∞] which is a

direct consequence of Hölder inequality, we get

E
˜︁Q [︃|ξ| +

∫︂ T∧τ

0

|f(s)|ds+ sup
0≤u≤τ∧T

S+
u

]︃
≤ ∆ ˜︁Q(ξ, f, S+) < +∞.

Then, thanks to Lemma 4.1.3, we conclude that Y G satisfies (4.1.6), which we

recall below for the reader’s convenience

Y G
t = ess sup

θ∈J T∧τ
t∧τ (G)

E
˜︁Q [︃∫︂ θ

t∧τ
f(s)ds+ Sθ1{θ <T∧τ} + ξ1{θ=T∧τ}

⃓⃓⃓
Gt

]︃
.

Thus, by taking θ = T∧τ ∈ J T∧τ
t∧τ (G) and using ξ ≥ −ξ− and f(s) ≥ −(f(s))−,

we get

E
˜︁Q [︃−∫︂ T∧τ

0

(f(s))−ds− ξ−
⃓⃓⃓
Gt

]︃
≤ Y G

t ,
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and

Y G
t ≤ E

˜︁Q [︃∫︂ T∧τ

0

(f(s))+ds+ sup
0≤u≤τ∧T

S+
u + ξ+

⃓⃓⃓
Gt

]︃
.

This clearly leads to

|Y G
t | ≤ ˜︁Nt := E

˜︁Q [︃∫︂ T∧τ

0

|f(s)|ds+ sup
0≤u≤τ∧T

S+
u + |ξ|

⃓⃓⃓
Gt

]︃
. (4.1.9)

Hence, on the one hand, by applying Doob’s inequality to ˜︁N under ( ˜︁Q,G) we

derive

∥Y G∥DT∧τ ( ˜︁Q,p) ≤ ∥ ˜︁N∥DT∧τ ( ˜︁Q,p) ≤ CDB∆ ˜︁Q(ξ, f, S+), (4.1.10)

where CDB is the universal Doob’s constant. On the other hand, by combining

KG
T∧τ = Y G

0 − ξ +
∫︁ T∧τ
0

f(t)dt −MG
T∧τ +

∫︁ T∧τ
0

ZG
s dWt, (4.1.9) for t = 0, and

the Burkholder-Davis-Gunndy (BDG for short) inequalities for the ( ˜︁Q,G)-

martingales MG and ZG ·W τ , we get

∥KG
T∧τ∥Lp( ˜︁Q) ≤ 2∆ ˜︁Q(ξ, f, S+) + CBDG

{︂
∥MG∥Mp( ˜︁Q) + ∥ZG∥ST∧τ ( ˜︁Q,p)

}︂
.

(4.1.11)

Here CBDG is the universal BDG constant.

Part 2. A combination of Itô applied to (Y G)2 and (4.0.1) implies that

d(Y G)2 = 2Y G
− dY

G + d[Y G, Y G]

= −2Y G
− f(·)d(s ∧ τ) − 2Y G

− dK
G + 2Y G

− Z
GdW τ − 2Y G

− dM
G
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+ d[MG,MG] + d[KG, KG] + (ZG)2d(s ∧ τ) + 2d[KG,MG].

As [MG, KG] = ∆KG ·MG, the above equality yields

[MG,MG]τ∧T +

∫︂ τ∧T

0

(ZG
s )2ds

≤ (1 +
1

ϵ
) sup
0≤s≤τ∧T

|Y G
s |2 + (ξ)2 +

(︃∫︂ τ∧T

0

|f(s)|ds
)︃2

+ ϵ(KG
τ∧T )2 (4.1.12)

+ 2 sup
0≤s≤T∧τ

|(∆KG ·MG)s| + 2 sup
0≤s≤τ∧T

|(Y G
− · (ZG ·W τ −MG))s|.

Furthermore, thanks to (4.0.1) that implies −∆Y G = ∆KG+∆MG, we remark

that

|∆KG| ≤ 2M−, where M s := E
˜︁Q[ sup

0≤t≤T∧τ
|Y G

t |
⃓⃓
Gs].

Therefore, by combining this inequality, Lemma 4.1.2 applied to the last two

terms in the right-hand-side of (4.1.12) with a = b = p, and Doob’s inequality

applied to M , we get

√
2∥
√︂

|Y G
− · (ZG ·W τ +MG)|∥DT∧τ ( ˜︁Q,p) +

√
2∥
√︁

|∆KG ·MG|∥DT∧τ ( ˜︁Q,p)

≤ 2κ∥M∥1/2
DT∧τ ( ˜︁Q,p)

∥MG∥1/2
Mp( ˜︁Q)

+ 2κ∥Y G∥1/2
DT∧τ ( ˜︁Q,p)

(∥MG∥Mp( ˜︁Q) + ∥ZG∥ST∧τ ( ˜︁Q,p))
1/2

≤ κ2(1 +
√
CDB)2

ϵ
∥Y G∥DT∧τ ( ˜︁Q,p) + ϵ(∥MG∥Mp( ˜︁Q) + ∥ZG∥ST∧τ ( ˜︁Q,p)).

The last inequality is due to Young’s inequality for any ϵ ∈ (0, 1). Thus, by

inserting this latter inequality and (4.1.11) in the resulting inequality from
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(4.1.12) after taking square root and the norm in Lp( ˜︁Q) in both sides, and

using the inequality ∥
√
X + Y ∥Lp( ˜︁Q) ≥ (∥

√
X∥Lp( ˜︁Q) + ∥

√
Y ∥Lp( ˜︁Q))/2 for any

nonnegative random variables X and Y , we obtain

(
1

2
− ϵ−

√
ϵCBDG)(∥MG∥Mp( ˜︁Q) + ∥ZG∥ST∧τ ( ˜︁Q,p))

≤

{︄
κ2(1 +

√
CDB)2

ϵ
+

√︃
1 +

1

ϵ

}︄
∥Y G∥DT∧τ ( ˜︁Q,p) + (1 + 2

√
ϵ)∆ ˜︁Q(ξ, f, S+).

Hence, by inserting (4.1.10) in the above inequality and taking ϵ satisfying

1
2
− ϵ −

√
ϵCBDG > 0, the inequality (4.1.7) follows immediately from the

resulting inequality combined with (4.1.10) and (4.1.11) again. This ends the

proof of the theorem.

The next simple lemma is useful for the proof of our last theorem of this

subsection.

Lemma 4.1.5. Let (Xi)i∈I and (Yi)i∈I be two families of random variables.

Then

|ess sup
i∈I

Xi − ess sup
i∈I

Yi| ≤ ess sup
i∈I

|Xi − Yi|, P-a.s.

Proof. Remark that, due to the essential supremum definition (see [62] for

details), we obtain

ess sup
i∈I

Xi = ess sup
i∈I

(Xi − Yi + Yi) ≤ ess sup
i∈I

(Xi − Yi) + ess sup
i∈I

Yi.
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Hence, we get

ess sup
i∈I

Xi − ess sup
i∈I

Yi ≤ ess sup
i∈I

(Xi − Yi) ≤ ess sup
i∈I

|Xi − Yi|. (4.1.13)

Then by interchanging the roles of Xi and Yi we also get

ess sup
i∈I

Yi − ess sup
i∈I

Xi ≤ ess sup
i∈I

(Yi − Xi) ≤ ess sup
i∈I

|Xi − Yi|. (4.1.14)

Therefore, by combining (4.1.13) and (4.1.14) we get our result.

Now, we elaborate our second main result of this subsection, which gives esti-

mates for the difference of solutions.

Theorem 4.1.6. Suppose T < +∞ and that (Y G,i, ZG,i, KG,i,MG,i) is a class-

(D)-(G, ˜︁Q, T ∧ τ)-solution to the RBSDE (4.0.1) associated to (f (i), S(i), ξ(i)),

for each i = 1, 2. Then for p > 1, there exist positive C1 and C2 that depend

on p only such that

∥δY G∥DT∧τ ( ˜︁Q,p) + ∥δZG∥ST∧τ ( ˜︁Q,p) + ∥δMG∥Mp( ˜︁Q)

≤ C1∆ ˜︁Q(δξ, δf, δS) + C2

√︂
∥δS∥DT∧τ ( ˜︁Q,p)

⌜⃓⃓⎷ 2∑︂
i=1

∆ ˜︁Q(ξ(i), f (i), (S(i))+),

(4.1.15)

where ∆ ˜︁Q(ξ(i), f (i), (S(i))+) for i = 1, 2 and ∆ ˜︁Q(δξ, δf, δS) are defined via
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(4.1.8), and δY G, δZG, δKG, δMG, δf, δξ, and δS are given by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
δY G := Y G,1 − Y G,2, δZG := ZG,1 − ZG,2,

δMG := MG,1 −MG,2, δKG := KG,1 −KG,2,

δf := f (1) − f (2), δξ := ξ(1) − ξ(2), δS := S(1) − S(2).

(4.1.16)

Proof. This proof is achieved in two parts, where we control in norm the first

term and the remaining terms of the left-hand-side of (4.1.15) respectively.

Part 1. By combining Lemma 4.1.3, Lemma 4.1.5 and Jensen’s inequality, we

get the following

|δY G
t | = |Y G,1

t −Y G,2
t | ≤ E

˜︁Q [︃∫︂ T∧τ

0

|δf(s)|ds+ sup
0≤s≤T∧τ

|δSs| + |δξ|
⃓⃓⃓
Gt

]︃
=: ˜︂Mt.

By applying Doob’s inequality to ˜︂M under ( ˜︁Q,G), we get

∥δY G∥DT∧τ ( ˜︁Q,p) ≤ CDB∆ ˜︁Q(δξ, δf, δS), (4.1.17)

where CDB is the universal Doob’s constant that depends on p only.

Part 2. This part focuses on estimating the term

∫︂ ·

0

(δZG
s )2ds+ [δMG, δMG].

Thus, we put

⎧⎪⎪⎨⎪⎪⎩
QG := [δMG, δMG] +

∫︁ ·
0
(δZG

s )2d(s ∧ τ)

ΓG := 2 sup
0≤t≤·

|(δY G
− · (δZG ·W τ − δMG))t| + 2 sup

0≤t≤·
|(∆(δKG) · δM)t|.

(4.1.18)
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Then we apply Itô to (δY G)2, and we get

d(δY G)2 = 2δY G
− dδY

G + d[δY G, δY G]

= −2δY G
− δf(·)d(s ∧ τ) − 2δY G

− dδK
G + 2δY G

− δZ
GdW τ − 2δY G

− dδM
G

+ d[δMG, δMG] + d[δKG, δKG] + (δZG)2d(s ∧ τ) + 2d[δKG, δMG].

Thanks to this equality and using the notation in (4.1.18), we obtain

QG ≤ (δY G)2 + 2

∫︂ ·

0

δY G
s−δf(s)ds+ 2δY G

− · δKG + ΓG,

≤ 2 sup
0≤t≤·

(δY G
t )2 +

(︃∫︂ ·

0

|δf(s)|ds
)︃2

+ 2δS− · δKG + ΓG. (4.1.19)

The last inequality is due to Skorokhod’s condition (i.e. it is clear that (δY G
− −

δS−) · δK is nonincreasing) and Young’s inequality. Furthermore, thanks to

(4.0.1), we deduce that

|∆(δKG)| ≤ ˆ︂M−, where ˆ︂Mt := 2E
˜︁Q[ sup

0≤s≤T∧τ
|δY G

s |
⃓⃓
Gt].

Thus, by combining this inequality and Lemma 4.1.2 applied to ΓG with a =

b = p, and using Doob’s inequality for ˆ︂M afterwards, we derive

∥
√︂

ΓG
τ∧T∥Lp( ˜︁Q)

= ∥
√︃

2 sup
0≤t≤·

|(δY G
− · (δZG ·W τ − δMG))t| + 2 sup

0≤t≤·
|(∆(δKG) · δM)t|∥Lp( ˜︁Q)

≤∥
√︃

2 sup
0≤t≤·

|δY G
− · (δZG ·W τ )|∥Lp( ˜︁Q) + ∥

√︃
2 sup
0≤t≤·

|δY G
− · δMG

t |∥Lp( ˜︁Q)

+ ∥
√︃

2 sup
0≤t≤·

|(∆(δKG) · δM)t|∥Lp( ˜︁Q)
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(1)

≤ κ∥ sup
0≤t≤T

|δY G
t |∥

1
2
p ∥[δZG ·W τ ]

1
2
T∥

1
2
p + κ∥ sup

0≤t≤T
|δY G

t |∥
1
2
p ∥[δMG]

1
2
T∥

1
2
p

+ κ∥ sup
0≤t≤T

|ˆ︂M |∥
1
2
p ∥[δM ]

1
2
T∥

1
2
p

(2)

≤ κ∥δY G∥
1
2

DT∧τ ( ˜︁Q,p)
∥δZG∥

1
2

ST∧τ ( ˜︁Q,p)
+ κ∥δY G∥

1
2

DT∧τ ( ˜︁Q,p)
∥[δMG]

1
2
T∥

1
2
p

+ κ
√︁
CDB∥δY G∥

1
2

DT∧τ ( ˜︁Q,p)
∥[δM ]

1
2
T∥

1
2
p

= κ∥δY G∥
1
2

DT∧τ ( ˜︁Q,p)
∥δZG∥

1
2

ST∧τ ( ˜︁Q,p)
+ κ(1 +

√︁
CDB)∥δY G∥

1
2

DT∧τ ( ˜︁Q,p)
∥δMG∥

1
2

Mp( ˜︁Q)

(3)

≤ κ2(1 + (1 +
√
CDB)2)

ϵ
∥δY G∥DT∧τ ( ˜︁Q,p) + ϵ(∥δZG∥ST∧τ ( ˜︁Q,p) + ∥δMG∥Mp( ˜︁Q)).

(4.1.20)

Remark that the inequality (1) is due to Lemma 4.1.2 by taking a = b = p

which gives r = p
2
, the inequality (2) is due to Doob’s inequality applied toˆ︂M , and the inequality (3) is a consequence of Young’s inequality. By using

(4.1.19) and the fact that ∥X1 + X2∥Lp( ˜︁Q) ≥ 1
2

(︂
∥X1∥Lp( ˜︁Q) + ∥X2∥Lp( ˜︁Q)

)︂
for

any random variables X1and X2, we get

1

2
(∥δZG∥ST∧τ ( ˜︁Q,p) + ∥δMG∥Mp( ˜︁Q)) ≤ ∥

√︂
QG

T∧τ∥Lp( ˜︁Q)

≤ ∥δY G∥DT∧τ ( ˜︁Q,p) + ∆ ˜︁Q(δξ, δf, δS) +
√

2∥δS∥1/2
DT∧τ ( ˜︁Q,p)

∥δKG∥1/2
AT∧τ ( ˜︁Q,p)

+ ∥
√︂

ΓG
τ∧T∥Lp( ˜︁Q).

Thus, by combining this latter inequality with (4.1.20), (4.1.17), the fact

that Varτ∧T (δKG) ≤ KG,1
τ∧T + KG,2

τ∧T , and Theorem 4.1.4 applied to each KG,i,

i = 1, 2, the proof of the theorem follows with ϵ ∈ (0, 0.5), C1 = CDB +

CDB

(︁
ϵ+ κ2(1 + (1 +

√
CDB)2)

)︁
/(ϵ(0.5− ϵ)) and C2 :=

√
2C(0.5− ϵ)−1 where

C is the constant in Theorem 4.1.4.
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4.1.2 Existence for the G-RBSDE and its relationship

to F-RBSDE

In this subsection, we prove the existence and the uniqueness of the solution

to the RBSDE (4.0.1) when T < +∞, we establish an explicit connection

between this RBSDE and its F-RBSDE counterpart, and we highlight the

explicit relationship between their solutions as well. To this end, we sate the

following lemma

Lemma 4.1.7. Let ˜︁E := E
(︂
− ˜︁G−1 ·Do,F

)︂
and let L be an F-semimartingale.

Then we always have

L˜︁E−1I[[0,τ [[ + L˜︁E−1 ·NG = ˜︁E−1
− · Lτ .

The proof is given in Section 4.3, while below we state our main result.

Theorem 4.1.8. Suppose that T < +∞ and there is p ∈ (1,∞) such that

⃦⃦⃦ ∫︂ T∧τ

0

|f(s)|ds+ |ξ| + sup
0≤u≤τ∧T

S+
u

⃦⃦⃦
Lp( ˜︁Q)

< +∞, (4.1.21)

and consider (fF, SF, ξF) and V F given by

fF := ˜︁Ef, SF := ˜︁ES, ξF := ˜︁EThT , V F := 1 − ˜︁E , ˜︁E := E
(︂
− ˜︁G−1 ·Do,F

)︂
.

(4.1.22)

Then the following assertions hold.
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(a) The following RBSDE under F, associated to the triplet
(︁
fF, SF, ξF

)︁
,

⎧⎪⎪⎨⎪⎪⎩
Yt = ξF +

∫︂ T

t

fF(s)ds+

∫︂ T

t

hsdV
F
s +KT −Kt −

∫︂ T

t

ZsdWs,

Yt ≥ SF
t 1{t <T} + ξF1{t =T},

∫︂ T

0

(Yt− − SF
t−)dKt = 0, P -a.s.,

(4.1.23)

has a unique Lp(P,F)-solution (Y F, ZF, KF) satisfying

Y F
t = ess sup

σ∈JT
t (F)

E

[︃∫︂ σ

t

fF(s)ds +

∫︂ σ

t

hsdVF
s + SF

σ1{σ<T} + ξFI{σ=T}

⃓⃓⃓
Ft

]︃
.

(4.1.24)

(b) The RBSDE defined in (4.0.1) has a unique Lp( ˜︁Q,G)-solution denoted by

(Y G, ZG, KG,MG), and

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Y G =

Y F˜︁E I[[0,τ [[ + ξI[[τ,+∞[[, Z
G =

ZF˜︁E− I]]0,τ ]],
KG =

1˜︁E− · (KF)τ and MG =

(︃
h− Y F˜︁E

)︃
·NG.

(4.1.25)

Proof. Assertion (a) is the linear case of a general RBSDE under F given in

Subsection 5.1.2, see (5.1.27). Thus, the proof of the existence and uniqueness

of the Lp(F, P )-solution under (4.1.21) of this RBSDE will be omitted here,

and we refer the reader to Subsection 5.1.2. Furthermore, the proof of (4.1.24)

mimics exactly the proof of (4.1.6). Therefore, the remaining part of this proof

deals with assertion (b).

Thanks to the theory of Snell envelop, see [41] for details, there exists a triplet

(ZG, KG,MG) such that the quadruplet (Y G, ZG, KG,MG) is a solution to the
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RBSDE (4.0.1), where

Y G
t := ess sup

θ∈JT∧τ
t∧τ (G)

E
˜︁Q [︃∫︂ θ

t∧τ
f(s)ds + Sθ1{θ<T∧τ} + ξ1{θ=T∧τ}

⃓⃓⃓
Gt

]︃
. (4.1.26)

Furthermore, it is easy to prove that this solution is a class-(D)-(G, ˜︁Q, T ∧

τ)-solution. Thus, by combining this with Theorem 4.1.4, we conclude the

existence of an Lp( ˜︁Q,G)-solution to (4.0.1). The uniqueness of Lp( ˜︁Q,G)-

solution to (4.0.1) follows immediately from Theorem 4.1.6. Hence, the rest

of this proof focuses on proving the relationship (4.1.25). To this end, on

the one hand, thanks to the Doob-Meyer decomposition under ( ˜︁Q,G), we

remark that for any solution (Y, Z,K,M) to (4.0.1) we have (Y, Z,K,M) =

(Y G, ZG, KG,MG) if and only if Y = Y G. On the other hand, due to (4.1.26),

we have ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Y G +

∫︁ τ∧T∧·
0

f(s)ds = S(XG;G, ˜︁Q)

with

XG :=
∫︁ τ∧T∧·
0

f(s)ds+ SI[[0,τ∧T [[ + hτ∧T I[[τ∧T,+∞[[.

Therefore, in order to apply Theorem 3.2.3-(b), we need to find the unique

pair (XF, k(pr)) associated to XG. To this end, we remark that

SI[[0,τ∧T [[ = SI[[0,τ [[I[[0,T [[ and hτ∧T I[[τ∧T,+∞[[I[[0,τ [[ = hT I[[0,τ [[I[[T,+∞[[,
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and derive

XF =

∫︂ T∧·

0

f(s)ds+ SI[[0,T [[ + hT I[[T,+∞[[, k(pr) =

∫︂ T∧·

0

f(s)ds+ hT∧· = k(op).

Furthermore, it is clear that we have

⎧⎪⎪⎨⎪⎪⎩
˜︁EXF − k(op) · ˜︁E =

∫︁ T∧·
0

fF(s)ds+ SFI[[0,T [[ + (h · V F)T + ξFI[[T,+∞[[,

k(op) ˜︁E − k(op) · ˜︁E =
∫︁ T∧·
0

fF(s)ds+ (h · V F)T + ˜︁EhI[[0,T [[ + ξFI[[T,+∞[[,

and

Y F + LF = S
(︁
LF + ξFI[[T,+∞[[ + SFI[[0,T [[;F, P

)︁
,

where

LF :=

∫︂ T∧·

0

fF(s)ds+

∫︂ T∧·

0

hsdV
F
s .

Thus, by directly applying Theorem 3.2.3-(b) to Y G, on [[0, T ]], we obtain

Y G +

∫︂ τ∧T∧·

0

f(s)ds = S(XG;G, ˜︁Q)

=
S
(︂
XF ˜︁E − k(op) · ˜︁E ;F, P

)︂
˜︁E I[[0,τ [[ +

LF + ˜︁EhI[[0,T [[ + ξFI[[T,+∞[[˜︁E ·NG

=
Y F + LF˜︁E I[[0,τ [[ +

LF˜︁E ·NG +
(︁
hI[[0,T [[ + hT I[[T,+∞[[

)︁
·NG

=
Y F˜︁E I[[0,τ [[ +

1˜︁E− · (LF)τ + hT∧· ·D − h˜︁GI]]0,τ∧T ]] ·Do,F

=
Y F˜︁E I[[0,τ [[ +

∫︂ τ∧T∧·

0

f(s)ds+ ξI[[τ,+∞[[.
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The fourth equality follows from Lemma 4.1.7. This proves assertion (b), and

the proof of the theorem is complete.

We end this section by the following important remark that will be useful.

Remark 4.1.9. It worths mentioning (and easy to check) that the main results

of this section (especially Theorems 4.1.4,4.1.6 and 4.1.8) remain valid if we

replace T with any bounded F-stopping time σ. In this case, one should use

the probability ˜︁Qσ := ˜︁Zσ∧τ · P instead of ˜︁Q.

4.2 The case of unbounded horizon

In this section, we let T to be infinite in the RBSDE (4.0.1), and get

⎧⎪⎪⎨⎪⎪⎩
dY = −f(t)d(t ∧ τ) − d(K +M) + ZdW τ , Yτ = ξ = hτ ,

Yt ≥ St; 0 ≤ t < τ,

∫︂ τ

0

(Yt− − St−)dKt = 0, P -a.s..

(4.2.1)

It is important to mention that ˜︁Q (defined in (2.3.11)) depends heavily on the

finite horizon planning T , and in general the process ˜︁Zτ defined in (2.3.10)

might not be a G-uniformly integrable martingale, see [29] for details. Thus,

the fact of letting T goes to infinity triggers serious challenges in both technical

and conceptual sides. In fact, both the condition (4.1.5) and the RBSDE

(4.1.23) might not make sense when we take T to infinity, as the limit of hT

when T goes to infinity might not exist even. The rest of this section is divided

into two subsections. The first subsection focuses on existence and uniqueness

of the solution to (4.2.1), while the second subsection deals with the F-RBSDE
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counterpart to it.

4.2.1 Estimates under P for the solution of (4.0.1)

Our approach to the aforementioned challenges has two steps. The first step

relies on the following lemma and the two theorems that follow it, and aims to

get rid-off of ˜︁Q in the left-hand-sides of the estimates of Theorems 4.1.4 and

4.1.6. The second step addresses the limit of the right-hand-side terms in the

estimates of these theorems.

Lemma 4.2.1. Let T ∈ (0,+∞), ˜︁Q be the probability given in (2.3.11), and˜︁E be the process defined in (4.1.22). Then the following assertions hold.

(a) For any p ∈ (1,+∞) and any RCLL G-semimartingale Y , we have

E

[︃
sup

0≤s≤T∧τ
˜︁Es|Ys|p]︃ ≤ G−1

0 E
˜︁Q [︃ sup

0≤s≤T∧τ
|Ys|p

]︃
. (4.2.2)

(b) For any a ∈ (0,+∞), we put κ(a) := 31/a(5 + (max(a, a−1))1/a). Then for

any RCLL, nondecreasing and G-optional process K with K0 = 0, we have

E

[︄(︃∫︂ T∧τ

0

(˜︁Es−)adKs

)︃1/a
]︄
≤ κ(a)G−1

0 E
˜︁Q
[︄
K

1/a
T∧τ +

∑︂
0<s≤T∧τ

˜︁Gs(∆Ks)
1/a

]︄
.(4.2.3)

(c) For any p > 1 and any nonnegative and G-optional process H, we have

E
[︂
(˜︁E2/p

− H · [NG, NG])
p/2
T∧τ

]︂
≤ κ(a)G−1

0 E
˜︁Q [︂(H · [NG, NG]T∧τ )p/2 + (Hp/2 ˜︁G · Var(NG))T∧τ

]︂
.(4.2.4)
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(d) For any p > 1 and any nonnegative and F-optional process H, we have

E
[︂
(˜︁E2/p

− H · [NG, NG])
p/2
T∧τ

]︂
≤ κ(a)G−1

0 E
˜︁Q [︁(H · [NG, NG]T∧τ )p/2 + 2(Hp/2I]]0,τ [[ ·Do,F)T

]︁
.(4.2.5)

For the sake of simple exposition, we give the proof of this lemma in Section

4.3. In the following, using this lemma, we elaborate estimates for the solution

to (4.0.1) under the probability P instead.

Theorem 4.2.2. Suppose T ∈ (0,+∞). For any p > 1, there exists a positive

constant ˜︁C that depends on p only such that the unique Lp( ˜︁Q,G)-solution to

(4.0.1), denoted by (Y G, ZG, KG,MG), satisfies

∥
p
√︁˜︁EY G∥DT∧τ (P,p) + ∥ p

√︂˜︁E−ZG∥ST∧τ (P,p) + ∥ p

√︂˜︁E− ·KG∥AT∧τ (P,p)

+ ∥ p

√︂˜︁E− ·MG∥Mp(P )

≤ ˜︁C {︃∥ξ∥Lp( ˜︁Q) + ∥
∫︂ T∧τ

0

|f(s)|ds∥Lp( ˜︁Q) + ∥S+∥DT∧τ ( ˜︁Q,p)

}︃
=: ˜︁C∆ ˜︁Q(ξ, f, S+).

where ˜︁E is the process given by (4.1.22).

Proof. By applying Lemma 4.2.1-(b) to Kt =
∫︁ t∧τ
0

(ZG
s )2ds and a = 2/p, we

get

E

[︄(︃∫︂ T∧τ

0

(˜︁Es−)2/p(ZG
s )2ds

)︃p/2
]︄
≤ κ(a)G−1

0 E
˜︁Q
[︄(︃∫︂ T∧τ

0

(ZG
s )2ds

)︃p/2
]︄
.(4.2.6)
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By applying Lemma 4.2.1-(a) to the process Y = Y G, we obtain

E

[︃
sup

0≤s≤T∧τ
˜︁Es|Y G

s |p
]︃
≤ G−1

0 E
˜︁Q [︃ sup

0≤s≤T∧τ
|Y G

s |p
]︃
. (4.2.7)

By applying Lemma 4.2.1-(b) to the process K = KG and a = 1/p, and using

the fact that we always have
∑︁

0<s≤T∧τ

˜︁Gs(∆K
G
s )p ≤ (KG

T∧τ )p, we derive

E

[︃(︃∫︂ T∧τ

0

(˜︁Es−)1/pdKG
s

)︃p]︃
≤ κ(a)

G0

E
˜︁Q
[︄

(KG
T∧τ )p +

∑︂
0≤s≤T∧τ

˜︁Gs(∆K
G
s )p

]︄

≤ 2κ(a)

G0

E
˜︁Q [︁(KG

T∧τ )p
]︁
. (4.2.8)

Thanks to Theorem 4.1.8, we have [MG,MG] = H · [NG, NG] with H :=

(h− Y F ˜︁E−1)2 being a nonnegative and F-optional process. Thus, a direct ap-

plication of Lemma 4.2.1-(d) yields

E
[︂
(˜︁E2/p

− H · [NG, NG])
p/2
T∧τ

]︂
≤ C(p)

G0

E
˜︁Q [︁(H · [NG, NG]T∧τ )p/2 + 2(Hp/2I]]0,τ [[ ·Do,F)T

]︁
. (4.2.9)

To control the second term in the right-hand-side of the above inequality, we

remark that (Hp/2I]]0,τ [[ ·Do,F) ≤ 2p−1(|h|p + |Y G|p)I]]0,τ [[ ·Do,F, and we derive

2E
˜︁Q [︁(Hp/2I]]0,τ [[ ·Do,F)T

]︁
≤ 2pE

˜︁Q [︁|hτ |pI{τ≤T}
]︁

+ 2pE
˜︁Q [︃ sup

0≤t≤τ∧T
|Y G

t |p
]︃
.

Therefore, by combining this inequality with hτI{τ≤T} = ξI{τ≤T}, (4.2.9),

(4.2.8), (4.2.7), (4.2.6) and Theorem 4.1.4, the proof of the theorem follows
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immediately.

Similarly, the following theorem gives a version of Theorem 4.1.6 where the

left-hand-side of its estimate does not involve the probability ˜︁Q.

Theorem 4.2.3. Suppose that T < +∞, and let (Y G,i, ZG,i, KG,i,MG,i) be the

Lp( ˜︁Q,G)-solution to (4.0.1) associated to (f (i), S(i), ξ(i)), for i = 1, 2. Then,

there exist positive constants ˜︁C1 and ˜︁C2 which depend on p only such that

∥
p
√︁˜︁EδY G∥DT∧τ (P,p) + ∥ p

√︂˜︁E−δZG∥ST∧τ (P,p) + ∥ p

√︂˜︁E− · δMG∥Mp
T∧τ (P )

≤ ˜︁C1∆ ˜︁Q(δξ, δf, δS) + ˜︁C2∥δS∥1/2DT∧τ ( ˜︁Q,p)

⌜⃓⃓⎷ 2∑︂
i=1

∆ ˜︁Q(ξ(i), f (i), (S(i))+). (4.2.10)

Here ∆ ˜︁Q(ξ(i), f (i), (S(i))+) for i = 1, 2 and ∆ ˜︁Q(δξ, δf, δS) are given via (4.1.8),

while (δY G, δZG, δMG, δKG) and (δξ, δf, δS) are defined in (4.1.16).

Proof. By applying Lemma 4.2.1-(a) to Y = δY G and a = 1/p, we deduce

that

E

[︃
sup

0≤t≤T

˜︁Et|δY G
t |p
]︃
≤ κE

˜︁Q [︃ sup
0≤t≤T

|δY G
t |p
]︃
. (4.2.11)

To control the remaining terms in the left-hand-side of (4.2.10), we apply

Lemma 4.2.1-(b) to K =
∫︁ ·
0
(δZG

s )2ds+ [δMG, δMG] and a = 2/p, and get

E

[︄(︃∫︂ T∧τ

0

(˜︁Es−)2/p(δZG
s )2ds+

∫︂ T∧τ

0

(˜︁Es−)2/pd[δMG, δMG]s

)︃p/2
]︄
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≤ κE
˜︁Q
[︄(︃∫︂ T∧τ

0

(δZG
s )2ds+ [δMG, δMG]T∧τ

)︃p/2

+
∑︂

0≤t≤T∧τ

˜︁Gt|∆(δMG)t|p
]︄
.

(4.2.12)

Then by using ∆(δMG) = (δh− δY F ˜︁E−1)∆NG =: H∆NG and ˜︁E−1δY F = δY G

on ]]0, τ [[ –see Theorem 4.1.8 –, and by mimicking parts 3 and 4 in the proof

of Lemma 4.2.1, we derive

E
˜︁Q
[︄ ∑︂
0≤t≤T∧τ

˜︁Gt|∆(δMG)t|p
]︄

≤ E
˜︁Q [︂ ˜︁G|H|p · Var(NG)T

]︂
= 2E

˜︁Q [︂|H|pI]]0,τ [[ ·Do,F
T

]︂
≤ 2pE

˜︁Q [︂(|δh|p + |δY G|p)I]]0,τ [[ ·Do,F
T

]︂
≤ 2pE

˜︁Q [︃|δξ|p + sup
0≤t≤T∧τ

|δY G|p
]︃
.

(4.2.13)

Therefore, by combining (4.2.11), (4.2.12), (4.2.13) and Theorem 4.1.6, the

proof of the theorem follows immediately.

Our second step in solving (4.2.1) relies on the following lemma, and focuses

on simultaneously letting T to go to infinity and getting rid-off ˜︁Q in the norms

of the data-triplet.

Lemma 4.2.4. Let X be a non-negative and F-optional process with X0 = 0.

Then the following assertions hold.

(a) For any T ∈ (0,∞), we always have

E
˜︁Q[XT∧τ ] = E

˜︁Q[XτI{τ≤T}] +G0E[XT
˜︁ET ] = G0E

[︃∫︂ T

0

XsdV
F
s +XT

˜︁ET]︃ .
(4.2.14)
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(b) If X/E(G−1
− ·m) is bounded, then we get

lim
T→∞

E
˜︁Q[XT∧τ ] = G0∥X∥L1(P⊗V F) := G0E

[︃∫︂ ∞

0

XsdV
F
s

]︃
. (4.2.15)

The proof of this lemma can be found in Section 4.3.

4.2.2 Existence and uniqueness for (4.2.1): New spaces

and norms for the solution and data

It is clear that Lemma 4.2.4 allows us to take the limit of ˜︁Q-expectations, under

some conditions. More importantly, on the one hand, this leads naturally to

the space Lp(Ω × [0,+∞),F ⊗ B(R+), P ⊗ V F) for the data-triplet (f, h, S),

endowed with its norm defined –for any F ⊗ B(R+)-measurable X– by

∥X∥p
Lp(P⊗V F)

:= E

[︃∫︂ ∞

0

|Xt|pdV F
t

]︃
. (4.2.16)

On the other hand, the pair (Y G, ZG) in the solution of (4.0.1) when T < +∞

belongs to ˜︁Dσ(P, p)× ˜︁Sσ(P, p), with σ = T ∧ τ . The two spaces, which appear

naturally in our analysis, are given as follows: (Y, Z) ∈ ˜︁Dσ(P, p) × ˜︁Sσ(P, p) if

and only if
p
√︁˜︁E(Y, Z) ∈ Dσ(P, p) × Sσ(P, p). Furthermore the norms of these

spaces are defined by

∥Y ∥˜︁Dσ(P,p)
:= ∥Y

p
√︁˜︁E∥Dσ(P,p) and ∥Z∥˜︁Sσ(P,p) := ∥Z p

√︂˜︁E−∥Sσ(P,p). (4.2.17)

Similarly, for the remaining pair (KG,MG) in the solution of (4.0.1) when

T < +∞, we take the norm of the “discounted” pair (˜︁E1/p
− · KG, ˜︁E1/p

− ·MG)
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under P instead of that of (KG,MG) under ˜︁Q.

Below, we elaborate our principal result of this subsection.

Theorem 4.2.5. Let p ∈ (1,+∞), and suppose G > 0 and (f, S, h) satisfies

∥F + |h| + sup
0≤u≤·

|Su|∥Lp(P⊗V F) < +∞, where Ft :=

∫︂ t

0

|f(s)|ds. (4.2.18)

Then the following assertions hold.

(a) The RBSDE (4.2.1) admits a unique solution
(︁
Y G, ZG, KG,MG

)︁
.

(b) There exists a positive constant C, that depends on p only, such that

∥Y G∥˜︁Dτ (P,p)
+ ∥ZG∥˜︁Sτ (P,p) + ∥ p

√︂˜︁E− ·MG∥Mp(P ) + ∥ p

√︂˜︁E− ·KG∥Aτ (P,p)

≤ C∥F + |h| + sup
0≤s≤·

S+
u ∥Lp(P⊗V F).

(c) Consider two triplet (f (i), S(i), h(i)), i = 1, 2 satisfying (4.2.18). If the

quadruplet
(︁
Y G,i, ZG,i, KG,i,MG,i

)︁
denotes the solution to (4.2.1) associated

with (f (i), S(i), h(i)) for each i = 1, 2, then there exist positive C1 and C2 that

depend on p only such that

∥δY G∥˜︁Dτ (P,p)
+ ∥δZG∥˜︁Sτ (P,p) + ∥ p

√︂˜︁E− · δMG∥Mp(P )

≤ C1∥|δh| + |δF | + sup
0≤u≤·

|δSu|∥Lp(P⊗V F)

+ C2

√︃
∥ sup

0≤u≤·
|δSu|∥Lp(P⊗V F)

⌜⃓⃓⎷ 2∑︂
i=1

∥F (i) + |h(i)| + sup
0≤u≤·

(S
(i)
u )+∥Lp(P⊗V F).

Here δY G, δZG, δMG, δKG and δS are given by (4.1.16), F (i) is defined via

69



(4.2.18), and

δh := h(1) − h(2), δF :=

∫︂ ·

0

|f (1)
s − f (2)

s |ds. (4.2.19)

(d) Let ˜︁V (1/p) be the process defined in (4.1.4). Then, there exists a unique

Lp(P,G)-solution to

⎧⎪⎪⎨⎪⎪⎩
dY = −Y

(︂ ˜︁G
G

)︂1/p
I]]0,τ ]]d˜︁V (1/p) − ˜︁E1/p

− f(t)d(t ∧ τ) − dK − dM + ZdW τ ,

Yτ = ˜︁E1/p
τ ξ, Y ≥ ˜︁E1/pS on [[0, τ [[,

∫︂ τ

0

(Yu− − ˜︁E1/p
u− Su−)dKu = 0,

(4.2.20)

denoted by
(︂˜︁Y G, ˜︁ZG, ˜︁KG,˜︂MG

)︂
, and which satisfies

(︂˜︁Y G, ˜︁ZG, ˜︁KG,˜︂MG
)︂

=
(︂˜︁E1/pY G, ˜︁E1/p

− ZG, ˜︁E1/p
− ·KG, ˜︁E1/p

− ·MG
)︂
. (4.2.21)

Proof. Here, we start by proving that part (d) follows from assertions (a), (b)

and (c). Let
(︁
Y G, ZG, KG,MG

)︁
be the unique solution to the RBSDE (4.2.1).

Then, thanks to Itô’s calculations, we derive

˜︁E1/pY G = ˜︁E1/p
− • Y G + Y G • ˜︁E1/p, (4.2.22)

and

Y G • ˜︁E1/p = Y G •

(︄
−˜︁E1/p

−

p ˜︁G • Do,F +
∑︂
0<s≤·

{︂˜︁E1/p − ˜︁E1/p
− − 1

p
˜︁E1/p−1
− ∆˜︁E}︂)︄

= Y G •

(︄
−˜︁E1/p

−

p ˜︁G • Do,F +
∑︂
0<s≤·

{︂˜︁E1/p
−

(︂
1 − ∆Do,F˜︁G

)︂1/p
− ˜︁E1/p

− − 1

p
˜︁E1/p−1
− ∆˜︁E}︂)︄
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= Y G •

(︄
−˜︁E1/p

−

p ˜︁G • Do,F +
∑︂
0<s≤·

˜︁E1/p
−

{︂(︂
1 − ∆Do,F˜︁G

)︂1/p
− 1 − 1

p
˜︁E−1
− ∆˜︁E}︂)︄

= −Y G ˜︁E1/p
(︂ ˜︁G
G

)︂1/p
•

(︄
1

p ˜︁G • Do,F +
∑︂
0<s≤·

{︂
−
(︃

1 − ∆Do,F˜︁G
)︃1/p

+ 1 − ∆Do,F

p ˜︁G
}︂)︄

= −Y G ˜︁E1/p

(︄ ˜︁G
G

)︄1/p

• ˜︁V (1/p).

By combining this latter inequality with (4.2.22) and then using (4.2.1) after-

wards, we get

d(˜︁E1/pY G) = − ˜︁E1/pY G

(︄ ˜︁G
G

)︄1/p

I]]0,τ ]]d˜︁V (1/p) − ˜︁E1/p
− f(t)d(t ∧ τ) − ˜︁E1/p

− dKG

− ˜︁E1/p
− dMG + ˜︁E1/p

− ZGdW τ .

This proves that
(︁
Y G, ZG, KG,MG

)︁
is the unique solution to (4.2.1) if and

only if
(︂˜︁Y G, ˜︁ZG, ˜︁KG,˜︂MG

)︂
:=
(︂˜︁E1/pY G, ˜︁E1/p

− ZG, ˜︁E1/p
− ·KG, ˜︁E1/p

− ·MG
)︂

is the

unique solution to (4.2.20). Furthermore, under (4.2.18), this solution is an

Lp(P,G)-solution as soon as assertion (b) holds, due to

∥˜︁Y G∥Dτ (P,p) = ∥Y G∥˜︁Dτ (P,p)
, ∥ ˜︁ZG∥Sτ (P,p) = ∥ZG∥˜︁Sτ (P,p).

Thus, on the one hand, the existence of an Lp(P,G)-solution to (4.2.20) follows

immediately as soon as assertions (a) and (b) hold. On the other hand, the

uniqueness of the solution to (4.2.1) is a direct consequence of assertion (c).

Therefore, the rest of the proof focuses on proving existence of a solution to

(4.2.1) (i.e. the first half of assertion (a)), and assertions (b) and (c) in four

parts.
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Part 1. Here, in this part, we consider an F-stopping time σ, and we assume

that there exists a positive constant C ∈ (0,+∞) such that

max

(︃
|h|p,

(︃∫︂ ·

0

|fs|ds
)︃p

, sup
0≤u≤·

(S+
u )p
)︃

≤ CE(G−1
− ·m), on [[0, σ]]. (4.2.23)

Our goal, in this part, lies in proving under this assumption that there exists

a solution to (4.2.1) and assertion (b) holds for [[0, σ ∧ τ ]]. To this end, we

consider the sequence of data (f (n), h(n), S(n)) given by

f (n) := fI[[0,n∧σ]], h
(n)
t := ht∧σ∧n, S

(n)
t := Sn∧t∧σ, ξ

(n) := hn∧σ∧τ , (4.2.24)

For any n ≥ 1, thanks to Theorem 4.1.8-(b) and Remark 4.1.9, the RB-

SDE (4.2.1) associated to (f (n), S(n), ξ(n)) has a unique Lp(G, ˜︁Qn∧σ)-solution

denoted by (Y G,n, ZG,n,MG,n, KG,n) for the horizon n∧ σ ∧ τ (i.e., that corre-

sponds to the case where T = n ∧ σ). For any n,m ≥ 1, we apply Theorem

4.2.2 to each (f (n), h(n), S(n)) and apply Theorem 4.2.3 to the triplet

(δf, δh, δS, δξ) :=
(︁
f (n) − f (n+m), h(n) − h(n+m), S(n) − S(n+m), ξ(n) − ξ(n+m)

)︁
,

using the bounded horizon T = (n+m) ∧ σ for both theorems, and get

E

[︄
sup

0≤t≤T

˜︁Et|Y G,n
t |p +

(︃∫︂ T

0

(˜︁Es−)2/p|ZG,n
s |2ds

)︃p/2
]︄

+ E
[︂(︂

(˜︁E−)1/p ·KG,n
T

)︂p
+ ((˜︁E−)2/p · [MG,n,MG,n]T )p/2

]︂
≤ ˜︁CE ˜︁Q [︃(︃∫︂ n∧σ∧τ

0

|f(s)|ds
)︃p

+ sup
0≤s≤n∧σ∧τ

(S+
s )p + |ξ(n)|p

]︃
, (4.2.25)
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and

∥Y G,n − Y G,n+m∥˜︁Dτ (P,p)
+ ∥ZG,n − ZG,n+m∥˜︁Sτ (P,p)

+ ∥ p

√︂˜︁E− · (MG,n −MG,n+m)τ∥Mp(P )

≤ ˜︁C1∆ ˜︁Q(ξ(n) − ξ(n+m), f (n) − f (n+m), S(n) − S(n+m)) (4.2.26)

+ ˜︁C2

√︄
∥ sup

0≤t≤τ∧σ
|St∧n − St∧(n+m)|∥Lp( ˜︁Q)

∑︂
i∈{n,n+m}

∆ ˜︁Q(ξ(i), f (i), (S(i))+),

where ∆ ˜︁Q(ξ(i), f (i), (S(i))+) is given via (4.1.8), and which we recall below:

∆ ˜︁Q(ξ(i), f (i), (S(i))+)

:= ∥ξ(i)∥Lp( ˜︁Q) + ∥
∫︂ T∧τ

0

|f (i)(s)|ds∥Lp( ˜︁Q) + ∥(S(i))+∥ST∧τ ( ˜︁Q,p).

Next, we calculate the limits, when n and/or m go to infinity, of the right-

hand-sides of the inequalities (4.2.25) and (4.2.26). To this end, we start by

applying Lemma 4.2.4 to
(︁∫︁ ·

0
|f(s)|ds

)︁p
, sup0≤s≤·(S

+
s )p, and |h|p, and get

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

lim
n→∞

E
˜︁Q [︃(︃∫︂ n∧σ∧τ

0

|f(s)|ds
)︃p]︃

= G0E

[︃∫︂ ∞

0

(Ft∧σ)pdV F
t

]︃
,

lim
n→∞

E
˜︁Q [︃ sup

0≤s≤n∧σ∧τ
(S+

s )p
]︃

= G0E

[︃∫︂ ∞

0

sup
0≤s≤t∧σ

(S+
s )pdV F

t

]︃
,

lim
n→∞

E
˜︁Q [︁|ξ(n)|p]︁ = lim

n→∞
E

˜︁Q [|hn∧σ∧τ |p] = G0E

[︃∫︂ ∞

0

|ht∧σ|pdV F
t

]︃
.

(4.2.27)

This determines the limits for the right-hand-side terms of (4.2.25). To ad-
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dresses the limits of the right-hand-side terms of (4.2.26), we remark that

∥
∫︂ T∧τ

0

|f (n)(s) − f (n+m)(s)|ds∥p
Lp( ˜︁Q)

= E
˜︁Q
[︄(︄∫︂ τ∧(n+m)

0

I[[0,σ]](s)I]]n,∞[[(s)|f(s)|ds

)︄p]︄
.

increases with m. Therefore, by applying Lemma 4.2.4 to (F σ − F n∧σ)p, we

derive

sup
m

∥
∫︂ τ

0

|f (n)(s) − f (n+m)(s)|ds∥p
Lp( ˜︁Q)

= G0E

[︃∫︂ ∞

0

(F (s ∧ σ) − F (s ∧ n ∧ σ))p dV F
s

]︃
.

By combining this equality with (4.2.18) and the dominated convergence the-

orem, we get

lim
n→∞

sup
m≥1

∥
∫︂ τ

0

|f (n)(s) − f (n+m)(s)|ds∥p
Lp( ˜︁Q)

= 0. (4.2.28)

Similar arguments allow us to deduce that

∥S(n) − S(n+m)∥p
DT∧τ ( ˜︁Q,p)

= E
˜︁Q
[︄

sup
n<t≤(n+m)∧σ∧τ

|Sn − St|pI{τ∧σ>n}

]︄
,

increases with m to G0E

[︃∫︂ ∞

0

sup
n<u≤σ∧t

|S+
n − S+

u |pI{σ∧t>n}dV
F
t

]︃
. Then this

yields

lim
n→∞

sup
m≥1

∥S(n) − S(n+m)∥p
DT∧τ ( ˜︁Q,p)

= 0. (4.2.29)
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Thanks to (4.2.23), we derive

E
˜︁Q [︁|ξ(n) − ξ(n+m)|p

]︁
= E

[︂ ˜︁Z(n+m)∧τ |hn − hτ∧σ∧(n+m)|pI{τ∧σ>n}

]︂
≤ 2pCP (τ ∧ σ > n),

and hence we obtain

lim
n→∞

sup
m≥1

E
˜︁Q [︁|ξ(n) − ξ(n+m)|p

]︁
≤ lim

n→∞
2CP (τ ∧ σ > n) = 0. (4.2.30)

Thus, by combining (4.2.28), (4.2.29) and (4.2.30), we conclude that the right-

hand-side term of (4.2.26) goes to zero when n goes to infinity uniformly in m.

This proves that the sequence (Y G,n, ZG,n, KG,n,MG,n) is a Cauchy sequence in

norm, and hence it converges to (Y G, ZG, KG,MG) in norm and almost surely

for a subsequence. On the one hand, we conclude that (Y G, ZG, KG,MG) is in

fact a solution to (4.2.1). On the other hand, by taking the limit in (4.2.25)

and using Fatou and (4.2.27), the proof of assertion (b) follows immediately.

This ends the first part.

Part 2. In this part we prove that assertion (c) holds under the assump-

tion (4.2.23) over the interval [[0, σ ∧ τ ]], where σ is an F-stopping time. To

this end, we consider two triplets (f (i), S(i), h(i)), i = 1, 2, which satisfy the

boundedness assumption (4.2.23), and to which we associate two sequences

(f (i,n), S(i,n), h(i,n)), i = 1, 2, as in (4.2.24). On the one hand, by virtue of

part 1, we deduce that for each i = 1, 2, (Y G,(i,n), ZG,(i,n), KG,(i,n),MG,(i,n))

converges in norm and almost surely for a subsequence to the quadruplet

(Y G,(i), ZG,(i), KG,(i),MG,(i)), which is solution to (4.2.1) for the horizon σ ∧ τ .
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On the other hand, for each n ≥ 1, we apply Theorem 4.2.3 for

δf (n) := f (1,n) − f (2,n), δS(n) := S(1,n) − S(2,n), δξ(n) := ξ(1,n) − ξ(2,n),

and⎧⎪⎪⎨⎪⎪⎩
δY G,(n) := Y G,(1,n) − Y G,(2,n), δZG,(n) := ZG,(1,n) − ZG,(2,n),

δKG,(n) := KG,(1,n) −KG,(2,n), δMG,(n) := MG,(1,n)) −MG,(2,n),

and get

∥δY G,(n)∥˜︁DT∧τ (P,p)
+ ∥δZG,(n)∥˜︁ST∧τ (P,p)

+ ∥(˜︁E−)1/p · δMG,(n)∥Lp(P )

≤ ˜︁C1∆ ˜︁Q(δξ(n), δf (n), δS(n)) + ˜︁C2

⌜⃓⃓⎷∥δS(n)∥S( ˜︁Q,p)

2∑︂
i=1

∆ ˜︁Q (ξ(i,n), f (i,n), (S(i,n))+).

(4.2.31)

Similarly, as in the proof of (4.2.27), we use Lemma 4.2.4 and the boundedness

assumption (4.2.23) that each triplet (f (i), S(i), h(i)) (i = 1, 2) satisfies, and get

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

lim
n→∞

E
˜︁Q [︃(︃∫︂ n∧σ∧τ

0

|δf (n)
s )|ds

)︃p]︃
= G0E

[︃∫︂ ∞

0

|δFt∧σ|pdV F
t

]︃
,

lim
n→∞

E
˜︁Q [︁|δξ(n)|p]︁ = G0E

[︃∫︂ ∞

0

|δht∧σ|pdV F
t

]︃
,

lim
n→∞

E
˜︁Q [︃ sup

0≤s≤σ∧τ
= |δS(n)

s |p
]︃

= G0E

[︃∫︂ ∞

0

sup
0≤s≤t∧σ

|δSs|pdV F
t

]︃
, i = 1, 2.

(4.2.32)

Thus, by taking the limit in (4.2.31), using Fatou’s lemma for its left-hand-

side term, and using (4.2.32) for its right-hand-side term, assertion (c) follows

immediately. This ends the second part.
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Part 3. In this part, we drop the assumption (4.2.23) and prove existence of

solution to (4.2.1) and assertion (b). Hence, we consider the following sequence

of stopping times

Tn := inf

{︄
t ≥ 0 :

|ht|p + |St|p + (
∫︁ t

0
|f(s)|ds)p

Et(G−1
− ·m)

> n

}︄
,

and the sequences

h(n) := hI[[0,Tn[[, f
(n) := fI[[0,Tn]], S

(n) := SI[[0,Tn[[, ξ
(n) := hτI{τ<Tn}.(4.2.33)

Thus, for any n ≥ 1, it is clear that the triplet (f (n), h(n), S(n)) satisfies (4.2.23)

on [[0, Tn]]. Thus, thanks to the first and the second parts, we deduce the exis-

tence of unique solution to (4.2.1), denoted by (Y G,(n), ZG,(n), KG,(n),MG,(n)),

associated to (f (n), h(n), S(n)) with the horizon Tn∧τ , which remains a solution

for any horizon Tk ∧ τ with k ≥ n. Furthermore, we have

⎧⎪⎨⎪⎩∥Y G,(n)∥˜︁Dτ (P,p)
+ ∥(˜︁E−)1/p · (MG,(n))τ∥Mp(P )

+∥ZG,(n)∥˜︁Sτ (P,p) + ∥((˜︁E−)1/p ·KG,(n))τ∥Lp(P )

⎫⎪⎬⎪⎭
≤ C∥F (n) + |h(n)| + sup

0≤u≤·
(S(n)

u )+∥Lp(P⊗V F), (4.2.34)

due to assertion (b). Furthermore, for any n ≥ 1 and m ≥ 1

∥Y G,(n) − Y G,(n+m)∥˜︁Dτ (P,p)
+ ∥ZG,(n) − ZG,(n+m)∥˜︁Dτ (P,p)

+ ∥ p

√︂˜︁E− · (MG,(n) −MG,(n+m))τ∥Mp(P )
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≤ C1∥|h(n) − h(n+m)| + |F (n) − F (n+m)| + sup
0≤u≤·

|S(n)
u − S(n+m)

u |∥Lp(P⊗V F)

+ C2

√︃
∥ sup

0≤u≤·
|S(n)

u − S
(n+m)
u |∥Lp(P⊗V F)Σ(n,m), (4.2.35)

where Σ(n,m) is given by

Σ(n,m) :=
∑︂

i∈{n,n+m}

∥F (i)
t + |h(i)| + sup

0≤u≤·
(S(i)

u )+∥Lp(P⊗V F).

It is important to remark that, thanks to part 2, the latter inequality above

follows from assertion (c) applied to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
δY G := Y G,(n) − Y G,(n+m), δZG := ZG,(n) − ZG,(n+m),

δKG := KG,(n) −KG,(n+m), δMG := MG,(n) −MG,(n+m), δh := h(n) − h(n+m),

δF :=
∫︁ ·
0
|f (n)

s − f
(n+m)
s |ds, F (i) :=

∫︁ ·
0
|f (i)

s |ds, δS := S(n) − S(n+m).

Then by virtue of (4.2.18) and the dominated convergence theorem, we derive

lim
n→+∞

sup
m≥1

∥|h(n) − h(n+m)| + |F (n) − F (n+m)| + sup
0≤u≤·

|S(n)
u − S(n+m)

u |∥Lp(P⊗V F)

≤ lim
n→+∞

∥I[[Tn,+∞[[(|h| + F + sup
0≤u≤·

|Su|)∥Lp(P⊗V F) = 0.

A combination of this with (4.2.35) proves that the sequence of the quadruplet

(Y G,(n), ZG,(n), KG,(n),MG,(n)) is a Cauchy sequence in norm, and hence it con-

verges to (Y G, ZG, KG,MG) in norm and almost surely for a subsequence. As

a result, (Y G, ZG, KG,MG) clearly satisfies (4.2.1), and due to Fatou’s lemma

and (4.2.34) we conclude that assertion (b) holds. This ends part 3.

Part 4. Here we prove assertion (c) under no assumption. Thus, we con-
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sider a pair of data (f (i), S(i), h(i), ξ(i)), i = 1, 2, to which we associate two

sequences of F-stopping times (T
(i)
n )n for i = 1, 2 as in part 3, and two data-

sequences (f (n,i), h(n,i), S(n,i)) which are constructed from (f (i), h(i), S(i)) and

Tn := min(T
(1)
n , T

(2)
n ) via (4.2.33). On the one hand, thanks to part 2, we ob-

tain the existence of (Y G,(n,i), ZG,(n,i), KG,(n,i),MG,(n,i))n≥1 (i = 1, 2) solution to

(4.2.1) for the data (f (n,i), h(n,i), S(n,i)) with the horizon Tn ∧ τ . Furthermore,

the sequence (Y G,(n,i), ZG,(n,i), KG,(n,i),MG,(n,i))n≥1 converges (in norm and al-

most surely for a subsequence) to (Y G,i, ZG,i, KG,i,MG,i), which is a solution

to (4.2.1) for (f (i), S(i), h(i), ξ(i)) and the horizon τ . On the other hand, thanks

to part 3, we apply assertion (c) to

(δY G,(n), δZG,(n), δKG,(n), δMG,(n))

:= (Y G,(n,1), ZG,(n,1), KG,(n,1),MG,(n,1)) − (Y G,(n,2), ZG,(n,2), KG,(n,2),MG,(n,2)),

associated to

(δf (n), δh(n), δS(n)) := (f (n,1) − f (n,2), h(n,1) − h(n,2), S(n,1) − S(n,2))

= (δf, δh, δS)I[[0,Tn[[,

and get

∥δY G,(n)∥˜︁Dτ (P,p)
+ ∥δZG,(n)∥˜︁Sτ (P,p) + ∥ p

√︂˜︁E− · δMG,(n)∥Mp(P )

≤ C1∥|δh(n)| + |δF (n)| + sup
0≤u≤·

|δS(n)
u |∥Lp(P⊗V F)

+ C2

√︃
∥ sup

0≤u≤·
|δS(n)

u |∥Lp(P⊗V F)

⌜⃓⃓⎷ 2∑︂
i=1

∥F (n,i) + |h(n,i)| + sup
0≤u≤·

(S
(n,i)
u )+∥Lp(P⊗V F).
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Then by taking the limits on both sides of this inequality, and using Fatou

for the left-hand-side term and the convergence monotone theorem for the

right-hand-side term, we conclude that assertion (c) follows immediately for

this general case. This ends the fourth part, and the proof of the theorem is

complete.

It is important to mention that our method, in the proof above, requires the

assumption ∥ sup0≤u≤· |Su|∥Lp(P⊗V F) < +∞ in (4.2.18) which is stronger than

the condition ∥ sup0≤u≤· S
+
u ∥Lp(P⊗V F) < +∞. Importantly, the assumption

(4.2.18) reduces the generality of the theorem and similar results for BSDEs

can not be derived from this theorem in contrast to previous theorems. How-

ever, our method remains valid and can be easily adapted to the BSDEs setting

directly by just ignoring the process S and putting KG = 0 throughout the

proof, as they are irrelevant. This proves the following

Theorem 4.2.6. Let p ∈ (1,+∞) and F be given by (4.2.18). Suppose G > 0

and (f, h) satisfies ∥F + |h|∥Lp(P⊗V F) < +∞. Then the following assertions

hold.

(a) The following BSDE

dY = −f(t)d(t ∧ τ) − dM + ZdW τ , Yτ = ξ. (4.2.36)

admits a unique solution
(︁
Y G, ZG,MG

)︁
.

(b) There exists a positive constant C, that depends on p only, such that

∥Y G∥˜︁Dτ (P,p)
+ ∥ZG∥˜︁Sτ (P,p) + ∥ p

√︂˜︁E− ·MG∥Mp(P ) ≤ C∥F + |h|∥Lp(P⊗V F).
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(c) Consider two triplet (f (i), h(i)), i = 1, 2, satisfying ∥F (i) + |h(i)|∥Lp(P⊗V F) <

+∞. If
(︁
Y G,i, ZG,i,MG,i

)︁
denotes the solution to (4.2.36) associated with the

pair (f (i), h(i)) for each i = 1, 2, then there exist positive C1 and C2 that depend

on p only such that

∥δY G∥˜︁Dτ (P,p)
+ ∥δZG∥˜︁Sτ (P,p) + ∥ p

√︂˜︁E− · δMG∥Mp(P ) ≤ C1∥|δh| + |δF |∥Lp(P⊗V F).

Here δY G, δZG and δMG are given by (4.1.16), F (i) is defined via (4.2.18),

and

δh := h(1) − h(2), δF :=

∫︂ ·

0

|f (1)
s − f (2)

s |ds.

(d) Let ˜︁V (1/p) be defined in (4.1.4). Then, there exists a unique Lp(P,G)-

solution to

dY = −Y

(︄ ˜︁G
G

)︄1/p

I]]0,τ ]]d˜︁V (1/p) − ˜︁E1/p
− f(t)d(t ∧ τ) − dM + ZdW τ , Yτ = ˜︁E1/p

τ ξ,

denoted by
(︂˜︁Y G, ˜︁ZG,˜︂MG

)︂
, and satisfies

(︂˜︁Y G, ˜︁ZG,˜︂MG
)︂

=
(︂˜︁E1/pY G, ˜︁E1/p

− ZG, ˜︁E1/p
− ·MG

)︂
.

4.2.3 Relationship to RBSDE under F

In this subsection, we establish the RBSDE under F that is intimately related

to (4.2.1), and we connect their solutions as well.
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Theorem 4.2.7. Suppose that G > 0 and (f, S, h) satisfies (4.2.18) and

E
[︂(︂
F∞ ˜︁E∞)︂p]︂ < +∞, where ˜︁E := E(− ˜︁G−1 ·Do,F) and F∞ :=

∫︂ ∞

0

|fs|ds.

(4.2.37)

Consider the pair (fF, SF) given by (4.1.22). Then the following hold.

(a) The following RBSDE, under F, generated by the triplet
(︁
fF, SF, h

)︁
⎧⎪⎪⎨⎪⎪⎩
Yt =

∫︂ ∞

t

fF(s)ds+

∫︂ ∞

t

hsdV
F
s +K∞ −Kt −

∫︂ ∞

t

ZsdWs,

Yt ≥ SF
t , E

[︃∫︂ ∞

0

(Yt− − SF
t−)dKt

]︃
= 0,

(4.2.38)

has a unique Lp(P,F)-solution (Y F, ZF, KF).

(b) The unique Lp( ˜︁Q,G)-solution to (4.2.1), denoted by
(︁
Y G, ZG, KG,MG

)︁
,

satisfies

⎧⎪⎪⎨⎪⎪⎩
Y G = Y F ˜︁E−1I[[0,τ [[ + ξI[[τ,+∞[[, Z

G = ZF ˜︁E−1
− I]]0,τ ]],

KG = ˜︁E−1
− I]]0,τ ]] ·KF, and MG =

(︂
h− Y F ˜︁E−1

)︂
·NG.

(4.2.39)

Proof. On the one hand, remark that, due to the assumptions (4.2.18) and

(4.2.37), both random variables
∫︁∞
0

|fF
s |ds and

∫︁∞
0

|hs|dV F
s belong to Lp(P ).

Indeed, in virtue of (V F
∞)p−1 ≤ 1, this fact follows from the following two

inequalities

∫︂ ∞

0

|fF
s |ds = ˜︁E∞F∞ +

∫︂ ∞

0

FsdV
F
s , and

(︃∫︂ ∞

0

|hs|dV F
s

)︃p

≤
∫︂ ∞

0

|hs|pdV F
s .

On the other hand, similar arguments as in the proof of Lemma 4.1.3, one can
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prove that any Lp(P,F)-solution to (4.2.38) (Y, Z,K) satisfies

Yt = ess sup
σ∈T ∞

t (F)
E

[︃∫︂ σ

t

fF
s ds+

∫︂ σ

t

hsdV
F
s + SF

σI{σ<+∞}
⃓⃓
Ft

]︃
=: Yt.

Furthermore, due to the Snell envelope theory, see [40] for details or see also the

proof of Theorem 4.1.8, the Doob-Meyer decomposition of the supermartingale

Y +
∫︁ ·
0
hsdV

F
s +

∫︁ ·
0
fF
s ds = M −K. Thanks to the predictable representation

theorem, we deduce the existence of Z ∈ L2
loc(W,F) such that M = Z • W .

Therefore, the triplet (Y , Z,K) is the solution to (4.2.38). This proves that

(4.2.38) has a unique solution, and the proof of assertion (a) is complete.

The rest of the proof deals with assertion (b). Remark that, in virtue of

Theorem 4.2.5, the RBSDE (4.2.1) has a unique Lp( ˜︁Q,G)-solution. Therefore,

we will prove that (ˆ︁Y , ˆ︁Z, ˆ︁K,ˆ︂M) given by

ˆ︁Y :=
Y F˜︁E I[[0,τ [[ + ξI[[τ,+∞[[, ˆ︁Z :=

ZF˜︁E− I]]0,τ ]], ˆ︁K :=
1˜︁E− · (KF)τ ,

and ˆ︂M :=

(︃
h− Y F˜︁E

)︃
·NG,

is a solution to (4.2.1). To this end, we put ˆ︁Γ := Y F/˜︁E , and on the one hand

we remark that

ˆ︁Y = ˆ︁ΓI[[0,τ [[ + hτI[[τ,+∞[[ = ˆ︁Γτ + (h− ˆ︁Γ) ·D. (4.2.40)

On the other hand, by combining Itô applied to ˆ︁Γ, (4.2.38) that the triplet

(Y F, ZF, KF) satisfies, ˜︁E−1 = E(G−1·Do,F), ˜︁E ˜︁G = ˜︁E−G, and dV F = ˜︁E− ˜︁G−1dDo,F
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we derive

dˆ︁Γ = Y Fd˜︁E−1 +
1˜︁E−dY F =

ˆ︁Γ˜︁GdDo,F +
1˜︁E−dY F

=
ˆ︁Γ˜︁GdDo,F − fF˜︁E−ds− h˜︁E−dV F − 1˜︁E−dKF +

ZF˜︁E− dW
=
ˆ︁Γ − h˜︁G dDo,F − fds− 1˜︁E−dKF +

ZF˜︁E− dW.
Thus, by stopping ˆ︁Γ at τ and inserting the above equality in (4.2.40) and

arranging terms we get

dˆ︁Y = −f(t)d(t ∧ τ) − d ˆ︁K + dˆ︂M + ˆ︁ZdW τ , and ˆ︁Yτ = ξ. (4.2.41)

This proves that (ˆ︁Y , ˆ︁Z, ˆ︁K,ˆ︂M) satisfies the first equation in (4.2.1). Further-

more, it is clear that Y F
t ≥ SF

t implies the second condition in (4.2.1). To

prove the Skorokhod condition (the last condition in (4.2.1)), we combine the

Skorokhod condition for the triplet (Y F, ZF, KF), the fact that ˆ︁Y− ≥ S− on

]]0, τ ]], and

0 ≤
∫︂ τ

0

(ˆ︁Yt− − St−)d ˆ︁Kt =

∫︂ τ

0

(Y F
t− − SF

t−)˜︁E−2
t− dK

F
t

≤
∫︂ ∞

0

(Y F
t− − SF

t−)˜︁E−2
t− dK

F
t = 0,

P-a.s.. This ends the second part, and the proof of theorem is complete.

Remark 4.2.8. (a) It is clear that, in general, the existence of an Lp(P,F)-

solution to (4.2.38) exiges stronger assumptions than the existence of Lp(P,G)-

solution to (4.2.1).
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(b) It is clear that one can easily derive similar theorem for the BSDE setting.

For more details see Theorem 4.2.6 and the discussions before it.

4.3 Proof of Lemmas of Sections 4.1 and 4.2

In this subsection, we give the proof of the intermediate Lemmas 4.1.1, 4.1.3,

4.1.7, 4.2.1 and 4.2.4.

Proof of Lemma 4.1.1. Recall that ∆m = ˜︁G − G− ≤ 1, and m is a BMO

(F, P )-martingale, see Definition 2.1.19. Furthermore, we have

E
˜︁Q [︁[m,m]T∧τ − [m,m]t∧τ

⃓⃓
Gt

]︁
= E

[︃∫︂ T∧τ

t∧τ
Es(G−1

− ·m)−1d[m,m]s
⃓⃓
Gt

]︃
Et∧τ (G−1

− ·m)

= E

[︃∫︂ T∧τ

t∧τ
Es(G−1

− ·m)−1d[m,m]s
⃓⃓
Ft

]︃
Et(G−1

− ·m)

Gt

I{τ>t}

= E

[︃∫︂ T

t

˜︁Esd[m,m]s
⃓⃓
Ft

]︃
1˜︁Et I{τ>t} ≤ ∥m∥BMO(P ).

Hence, assertion (a) follows from this latter inequality. Thanks to Lemma

2.3.3, on (τ > s) we derive

E
˜︁Q [︂Do,F

T∧τ −Do,F
s−
⃓⃓
Gs

]︂
= ∆Do,F

s + E

[︃∫︂ T∧τ

s∧τ

1

Eu(G−1
− ·m)

dDo,F
u

⃓⃓
Gs

]︃
Es∧τ (G−1 ·m)

= E

[︃∫︂ T∧τ

s∧τ

1

Eu(G−1
− ·m)

dDo,F
u

⃓⃓
Fs

]︃
Es∧τ (G−1 ·m)

Gs

+ ∆Do,F
s

= E

[︄∫︂ T

s

Eu(− ˜︁G−1
− ·Do,F)

Es(− ˜︁G−1
− ·Do,F)

dDo,F
u

⃓⃓
Fs

]︄
+ ∆Do,F

s ≤ ˜︁Gs.
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This proves assertion (b). The remaining part of this proof addresses assertion

(c). Remark that 1 − (1 − x)a ≤ max(a, 1)x, for any 0 ≤ x ≤ 1. Thus, in

virtue of (4.1.4), we get

∆˜︁V (a) = 1 −
(︃

1 − ∆Do,F˜︁G
)︃a

≤ max(1, a)
∆Do,F˜︁G .

Hence, by putting

W :=
max(1, a)˜︁G ·Do,F − ˜︁V (a),

we deduce that both

I{∆Do,F ̸=0} ·W =
∑︂{︃

max(1, a)
∆Do,F˜︁G − 1 +

(︃
1 − ∆Do,F˜︁G

)︃a}︃

and I{∆Do,F=0} ·W = (1−a)+˜︁G I{∆Do,F=0} · Do,F are nondecreasing processes. By

combining this with

W = I{∆Do,F=0} ·W + I{∆Do,F ̸=0} ·W

we deduce that assertion (c) holds. This ends the proof of the lemma.

Proof of Lemma 4.1.3. Let ν ∈ J T∧τ
t∧τ (G). By using (4.0.1) when T < ∞ and

by taking the conditional expectation under ˜︁Q afterwards, we get

Yt∧τ = E
˜︁Q [︃∫︂ ν

t∧τ
f(s)ds+ Yν +Kν −Kt∧τ

⃓⃓⃓
Gt

]︃
≥ E

˜︁Q [︃∫︂ ν

t∧τ
f(s)ds+ Sν1{ν <τ∧T} + ξ1{ν =τ∧T}

⃓⃓⃓
Gt

]︃
.
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Thus, by letting ν spans the set J T∧τ
t∧τ (G), we obtain

Yt∧τ ≥ ess sup
θ∈J T∧τ

t∧τ (G)

E
˜︁Q [︃∫︂ θ

t∧τ
f(s)ds+ Sθ1{θ<τ∧T} + ξI{θ=τ∧T}

⃓⃓⃓
Gt

]︃
. (4.3.1)

To prove the reverse inequality, we consider the following sequence of stopping

times

θn := inf

{︃
t ∧ τ ≤ u ≤ T ∧ τ ; Yu < Su +

1

n

}︃
∧ (T ∧ τ), n ≥ 1.

Then it is clear that θn ∈ J T∧τ
t∧τ (G), and

Y − S ≥ 1

n
on [[t ∧ τ, θn[[, and Y− − S− ≥ 1

n
on ]]t ∧ τ, θn]].

As a result, we get I]]t∧τ,θn]] ·K ≡ 0. Hence, by using (4.0.1) again we get

Yt∧τ = Yθn +

∫︂ θn

t∧τ
f(s)ds+

∫︂ θn

t∧τ
d(K +M)t∧τ −

∫︂ θn

t∧τ
ZsdW

τ
t

= Yθn +

∫︂ θn

t∧τ
f(s)ds+

∫︂ θn

t∧τ
dMt∧τ −

∫︂ θn

t∧τ
ZsdW

τ
t .

By taking conditional expectation under ˜︁Q, we get

Yt∧τ = E
˜︁Q[Yθn +

∫︂ θn

t∧τ
f(s)ds|Gt],

which implies

ess sup
θ∈J T∧τ

t∧τ (G)

E
˜︁Q [︃∫︂ θ

t∧τ
f(s)ds+ Sθ1{θ <τ∧T} + ξI{θ=τ∧T}

⃓⃓⃓
Gt

]︃
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≥ E
˜︁Q [︃∫︂ θn

t∧τ
f(s)ds+ Sθn1{θn<τ∧T} + ξ1{θn=τ∧T}

⃓⃓⃓
Gt

]︃
= Yt∧τ + E

˜︁Q [︂(Sθn − Yθn)1{θn<τ∧T}

⃓⃓⃓
Gt

]︂
≥ Yt∧τ −

1

n
˜︁Q(θn < τ ∧ T |Gt).

Thus, due to ˜︁Q(θn < τ ∧ T
⃓⃓
Gt) ≤ 1, we take n to infinity and get

ess sup
ν∈J T∧τ

t∧τ (G)

E
˜︁Q [︃∫︂ ν

t∧τ
f(s)ds+ Sν1{ν <τ∧T} + ξ1{ν=τ∧T}

⃓⃓⃓
Gt

]︃
≥ Yt∧τ .

By combining this inequality with (4.3.1), we get (4.1.6), and the proof of the

lemma is completed.

Proof of Lemma 4.1.7. Let L be an F-semimartingale. Then we derive

L˜︁E I[[0,τ [[ =
Lτ˜︁Eτ

− L˜︁E ·D = L · 1˜︁Eτ
+

1˜︁E− · Lτ − L˜︁E ·D

=
L

G˜︁E− I]]0,τ ]] ·Do,F +
1˜︁E− · Lτ − L˜︁E ·D

=
L˜︁G˜︁E I]]0,τ ]] ·Do,F +

1˜︁E− · Lτ − L˜︁E ·D

= −L˜︁E ·NG +
1˜︁E− · Lτ .

The fourth equality follows from the fact that ˜︁E = ˜︁E−G/ ˜︁G. This ends the

proof of the lemma.

Proof of Lemma 4.2.1. This proof has four parts where we prove the four as-

sertions respectively.

Part 1. Let a ∈ (0,+∞) and Y be a RCLL G-semimartingale, and put
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Y ∗
t := sup0≤s≤t |Ys|. Then, on the one hand, we remark that

sup
0≤t≤T∧τ

˜︁Et|Yt|a ≤ sup
0≤t≤T∧τ

˜︁Et(Y ∗
t )a. (4.3.2)

On the other hand, thanks to Itô, we derive

˜︁E(Y ∗)a = (Y ∗
0 )a + ˜︁E · (Y ∗)a + (Y ∗

−)a · ˜︁E ≤ (Y ∗
0 )a + ˜︁E · (Y ∗)a. (4.3.3)

Thus, by combining (4.3.2) and (4.3.3) with ˜︁E = G/
(︁
G0E(G−1

− ·m)
)︁
, we get

E

[︃
sup

0≤t≤T∧τ
˜︁Et|Yt|a]︃ ≤ E

[︃
(Y ∗

0 )a +

∫︂ T∧τ

0

˜︁Esd(Y ∗
s )a
]︃

= E[(Y ∗
0 )a] +

1

G0

E
˜︁Q [︃∫︂ T∧τ

0

Gsd(Y ∗
s )a
]︃
≤ G−1

0 E
˜︁Q [(Y ∗

T∧τ )a] .

This proves assertion (a).

Part 2. Let a ∈ (0,+∞) and K be a RCLL nondecreasing and G-optional

process with K0 = 0. Then, we remark that

˜︁Ea
− ·K = K ˜︁Ea −K · ˜︁Ea = K ˜︁Ea +K ˜︁Ea

− · ˜︁V (a)

= K ˜︁Ea +K− ˜︁Ea
− · ˜︁V (a) + ∆K ˜︁Ea

− · ˜︁V (a), (4.3.4)

where ˜︁V (a) is defined in (4.1.4). As a result, by combining the above equality,

the fact that (
∑︁n

i=1 xi)
1/a ≤ n1/a

∑︁n
i=1 x

1/a
i for any sequence of nonnegative

numbers and Lemma 4.1.1, we derive

E
[︂
(˜︁Ea

− ·KT∧τ )1/a
]︂
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≤ 31/aE
[︂
(KT∧τ )1/a ˜︁ET∧τ + (K− ˜︁Ea

− · ˜︁V (a)
T∧τ )1/a + (˜︁Ea

−∆K · ˜︁V (a)
T∧τ )1/a

]︂
≤ 31/aE

˜︁Q [︃ a
√︁
KT∧τ

GT∧τ

G0

]︃
+ 4

a
√

3E

[︃
sup

0≤t≤T∧τ
K

1/a
t
˜︁Et]︃

+
a
√

3E

[︃
a

√︂˜︁Ea
−∆K · ˜︁V (a)

T∧τ

]︃
.

Then, due to K1/a ˜︁E ≤ ˜︁E · K1/a and ˜︁E = G/
(︁
G0E(G−1

− ·m)
)︁
, the above in-

equality leads to

E
[︂
(˜︁Ea

− ·KT∧τ )1/a
]︂

≤
a
√

3

G0

E
˜︁Q [︂ a
√︁
KT∧τ

]︂
+ 4 × a

√
3E

[︃∫︂ T∧τ

0

˜︁Etd a
√︁
Kt

]︃
+

a
√

3E

[︃
a

√︂˜︁Ea
−∆K · ˜︁V (a)

T∧τ

]︃
≤ 5

31/a

G0

E
˜︁Q [︁(KT∧τ )1/a

]︁
+ 31/aE

[︂
(˜︁Ea

−∆K · ˜︁V (a)
T∧τ )1/a

]︂
. (4.3.5)

Thus, it remains to deal with the last term in the right-hand-side term of

the above inequality. To this end, we distinguish the cases whether a ≥ 1 or

a < 1.

The case when a ≥ 1, or equivalently 1/a ≤ 1. Then we use the fact that

(
∑︁
xi)

1/a ≤
∑︁
x
1/a
i for any sequence of nonnegative numbers, and get

E
[︂
(∆K ˜︁Ea

− · ˜︁V (a)
T∧τ )1/a

]︂
= E

⎡⎣(︄ ∑︂
0≤t≤T∧τ

∆Kt
˜︁Ea
t−∆˜︁V (a)

t

)︄1/a
⎤⎦ ≤ E

[︄ ∑︂
0≤t≤T∧τ

(∆Kt)
1/a ˜︁Et−(∆˜︁V (a)

t )1/a

]︄

≤ a1/aE

[︄ ∑︂
0≤t≤T∧τ

(∆Kt)
1/a ˜︁Et−]︄ = a1/aE

[︄ ∑︂
0≤t≤T∧τ

(∆Kt)
1/a
˜︁Gt

Gt

˜︁Et]︄

=
a1/a

G0

E
˜︁Q
[︄ ∑︂
0≤t≤T∧τ

˜︁Gt(∆Kt)
1/a

]︄
.
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The last equality follows from ˜︁E/G = G−1
0 /E(G−1

− ·m). Thus, by combining

this latter inequality with (4.3.5), assertion (b) follows immediately for this

case of a ≥ 1.

For the case of a ∈ (0, 1), or equivalently 1/a > 1, we use Lemma 4.1.1 and

derive

E

[︃
(∆K ˜︁Ea

− · ˜︁V (a))T∧τ − (∆K ˜︁Ea
− · ˜︁V (a))t∧τ−

⃓⃓⃓⃓
Gt

]︃
= E

[︃∫︂ T∧τ

t∧τ
∆Ks

˜︁Ea
s−d˜︁V (a)

s + (∆Kt∧τ ˜︁Ea
t∧τ−∆˜︁V (a))t∧τ

⃓⃓⃓⃓
Gt

]︃
≤ E

[︃∫︂ T∧τ

t∧τ
sup

0≤u≤s
∆Ku

˜︁Ea
u−d

˜︁V (a)
s + sup

0≤u≤t∧τ
∆Ku

˜︁Ea
u−

⃓⃓⃓⃓
Gt

]︃
= E

[︃∫︂ T∧τ

t∧τ
E[˜︁V (a)

T∧τ − ˜︁V (a)
s−
⃓⃓
Gs]d sup

0≤u≤s
∆Ku

˜︁Ea
u− + sup

0≤u≤t∧τ
∆Ku

˜︁Ea
u−

⃓⃓⃓⃓
Gt

]︃
≤ E

[︃
sup

0≤u≤T∧τ
∆Ku

˜︁Ea
u−

⃓⃓⃓⃓
Gt

]︃
.

Therefore, a direct application of Theorem 2.1.23, we obtain

E

[︃
a

√︂
∆K ˜︁Ea

− · ˜︁V (a)
T∧τ

]︃
≤ 1

a
√
a
E

[︃
sup

0≤u≤T∧τ
˜︁Eu− a
√︁

∆Ku

]︃
≤ 1

a
√
a
E

[︄ ∑︂
0≤u≤T∧τ

˜︁Eu− a
√︁

∆Ku

]︄

= a−1/aG−1
0 E

˜︁Q
[︄ ∑︂
0≤u≤T∧τ

˜︁Gu
a
√︁

∆Ku

]︄
.

Hence, by combining this inequality with (4.3.5), assertion (b) follows imme-

diately in this case of a ∈ (0, 1), and the proof of assertion (b) is complete.

Part 3. Here we prove assertion (c). To this end, we consider p > 1, a G-

optional process H, and we apply assertion (b) to the process K = H ·[NG, NG]
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and a = 2/p, and get

E
[︂
(˜︁E2/p

− H · [NG, NG])
p/2
T∧τ

]︂
≤ C(a)

G0

E
˜︁Q
[︄

(H · [NG, NG]T∧τ )p/2 +
∑︂

0≤t≤T∧τ

˜︁GtH
p/2
t |∆NG|p

]︄
.

Therefore, assertion (c) follows from combining this inequality with

∑︂
0≤t≤·

˜︁GtH
p/2
t |∆NG

t | ≤ ˜︁GHp/2 · Var(NG) and |∆NG|p−1 ≤ 1.

Part 4. Consider consider p > 1 and a nonnegative and F-optional process

H. Thus, by applying assertion (c), we obtain the inequality (4.2.4). Hence,

to get (4.2.5), we remark that Var(NG) = (G/ ˜︁G) ·D+ ˜︁G−1I]]0,τ [[ ·Do,F, and due

to the F-optinality of H we have

E
˜︁Q [︂ ˜︁Gt

√︁
Hp

t · Var(NG)T

]︂
= 2E

[︄∫︂ T

0

√︁
Hp

t

Et(G−1
− ·m)

I]]0,τ [[(t)dD
o,F
t

]︄
= 2E

˜︁Q [︂(√HpI]]0,τ [[ ·Do,F)T

]︂
.

Therefore, by combining this with (4.2.4), assertion (d) follows immediately.

This ends the proof of the lemma.

Proof of Lemma 4.2.4. Remark that, for any process H, we have

HT∧τ = HτI{0<τ≤T} +HT I{τ>T} +H0I{τ=0}.
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Thus, by applying this to the process X/E(G−1
− ·m), we derive

E
˜︁Q[XT∧τ ] = E

[︃
XT∧τ

ET∧τ (G−1
− ·m)

]︃
= E

[︃
Xτ

Eτ (G−1
− ·m)

I{0<τ≤T} +
XT

ET (G−1
− ·m)

I{τ>T} +X0I{τ=0}

]︃
= E

[︃∫︂ T

0

Xs

Es(G−1
− ·m)

dDo,F
s +

XT

ET (G−1
− ·m)

GT +X0(1 −G0)

]︃
= E

[︃
G0

∫︂ T

0

XsdV
F
s +G0XT

˜︁ET +X0(1 −G0)

]︃
.

Thus, due to X0 = 0, (4.2.14) follows immediately from the latter equality.

To prove assertion (b), we take the limit on both sides of (4.2.14) and we use

the fact that G∞− = limt−→+∞Gt = 0 P -a.s. and this ends the proof of the

lemma.
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Chapter 5

General RBSDEs under random

horizon

This chapter extends Chapter 4 to the case where the generator f is a general

functional f(t, ω, y, z) satisfying some Lipschitz’ condition on the variables y

and z. Precisely, we address the following general RBSDE

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dYt = −f(t, Yt, Zt)d(t ∧ τ) − d(Kt∧τ +Mt∧τ ) + ZtdW
τ
t ,

Yτ = ξ = YT ,

Yt ≥ St, 0 ≤ t < T ∧ τ, and E

[︃∫︂ T∧τ

0

(Yt− − St−)dKt

]︃
= 0.

(5.0.1)

Here, the barrier process S is an F-adapted and RCLL process, and the ter-

minal value ξ is an FT∧τ -measurable random variable, or equivalently it takes

the form of ξ = hT∧τ for an F-optional process h. The deterministic horizon

T ∈ (0,+∞], while the generator f is a Prog(F) ⊗ B(R) ⊗ B(R)-measurable
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functional satisfying the following inequality for all y, y
′ ∈ R, z, z′ ∈ Rd,

|f(t, y, z) − f(t, y
′
, z

′
)| ≤ CLip(|y − y

′ | + ∥z − z
′∥). (5.0.2)

Here CLip is a positive constant. Throughout our study for this RBSDE,

in this chapter, we will distinguish two principal cases depending whether

T ∈ (0,+∞) or T = +∞. Thus, the rest of this chapter is divided into two

sections.

5.1 The case of bounded horizon

In this section, we study the RBSDE (5.0.1) when T < +∞. This section has

two subsections. The first subsection presents some useful estimate results that

are interesting in themselves beyond their role in proving the existence and

uniqueness results. These latter results are elaborated in the second subsection

besides the explicit connection between the RBSDE (5.0.1) and its F-RBSDE

counterpart and their solutions as well.

5.1.1 Estimate inequalities for the solution

In this subsection, we derive norm-estimates for the solution of the RBSDE

(5.0.1) when it exists. These inequalities play important role in the proof of

the existence and uniqueness of the solution of the RBSDE on the one hand.

On the other hand, the role of these estimates in studying the stability of

RBSDEs is known, for more details we refer the reader to [21] and [19] and

the references therein to cite a few.
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Lemma 5.1.1. Suppose T ∈ (0,+∞), and put f0(t) := f(t, 0, 0). Then the

following assertions hold.

(a) If (Y G, ZG, KG,MG) is a class-(D)-(G, ˜︁Q, τ ∧ T )-solution to the RBSDE

(5.0.1) that corresponds to (f, S, ξ), then

Y G
t = ess sup

θ∈T T∧τ
t∧τ (G)

E
˜︁Q
[︄∫︂ θ

t∧τ
f(s,YG

s ,Z
G
s )ds + SθI{θ<T∧τ} + ξI{θ=T∧τ}

⃓⃓⃓⃓
⃓ Gt

]︄
.(5.1.1)

(b) If (Y G,i, ZG,i, KG,i,MG,i) is a class-(D)-(G, ˜︁Q, T ∧ τ)-solution to the RB-

SDE (5.0.1) associated to (f (i), S(i), ξ(i)), i = 1, 2, then for any α > 0 the

following holds

exp

(︃
α(t ∧ τ)

2

)︃
|δY G

t |

≤ CLip√
α
E

˜︁Q
⎡⎣√︄∫︂ T∧τ

0

eαs(δZG
s )2ds+

√︄∫︂ T∧τ

0

eαs|δY G
s |2ds

⃓⃓⃓⃓
⃓ Gt

⎤⎦ (5.1.2)

+ E
˜︁Q
⎡⎣ sup

0<s≤T∧τ
eαs/2|δSu| + eα(T∧τ)/2|δξ| +

1√
α

√︄∫︂ T∧τ

0

eαs|δfs|2ds
⃓⃓⃓⃓
Gt

⎤⎦ .
Here, δft := f (1)(t, Y G,1, ZG,1) − f (2)(t, Y G,1, ZG,1).

(c) If (Y G, ZG, KG,MG) is a class-(D)-(G, ˜︁Q, T ∧ τ)-solution to the RBSDE

(5.0.1) that corresponds to (f, S, ξ), then for any α > 0, any F-stopping time

σ ∈ T T
0 (F) and any t ∈ [0, T ], the following holds

exp
(︂α

2
(t ∧ τ)

)︂
|Y G

t |I{σ≤τ}I{σ≤t}

≤ CLip√
α
E

˜︁Q
⎡⎣√︄∫︂ T∧τ

σ∧τ
eαs|Y G

s |2ds+

√︄∫︂ T∧τ

σ∧τ
eαs(ZG

s )2ds

⃓⃓⃓⃓
Gt

⎤⎦ (5.1.3)
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+ E
˜︁Q
[︄

sup
σ∧τ≤u≤T∧τ

eα
u
2S+

u I{σ≤τ} + eα
T∧τ
2 |ξ|I{σ≤τ}

⃓⃓⃓⃓
⃓ Gt

]︄

+
1√
α
E

˜︁Q
⎡⎣√︄∫︂ T∧τ

σ∧τ
eαs|f0(s)|2ds

⃓⃓⃓⃓
⃓ Gt

⎤⎦ .
Proof. The proof of assertion (a) mimics the footsteps of the proof of (4.1.6)

in Theorem 4.1.8. Thus, the rest of this proof focuses on proving assertions

(b) and (c) in two parts.

Part 1. This part proves assertion (b). To this end, we start by proving the

following

⎧⎪⎪⎨⎪⎪⎩
|δY G

t | ≤ E
˜︁Q [︃∫︁ T∧τ

t∧τ |∆fs|ds+ supt∧τ<s≤T∧τ |δSu| + |δξ|
⃓⃓⃓⃓
Gt

]︃
,

∆ft := f1(t, Y
G,1
t , ZG,1

t ) − f2(t, Y
G,2
t , ZG,2

t )

(5.1.4)

Let t ∈ [0, T ] be arbitrary but fixed. Hence, on the one hand, (5.1.4) follows

immediately by applying assertion (a) to each Y G,i, i = 1, 2, and then using

Lemma 4.1.5. On the other hand, due to Hölder’s inequality, for any nonneg-

ative and progressively measurable process h, and any α′ > 0, p1 > 1, and

q1 := p1/(p1 − 1), we have

∫︂ T∧τ

t∧τ
hsds ≤

(︃
p1
α′q1

)︃ 1
q1

exp

(︃
−α

′(t ∧ τ)

p1

)︃(︃∫︂ T∧τ

t∧τ
eα

′shp1s ds

)︃ 1
p1

. (5.1.5)

By using the fact that |∆fs| ≤ |δfs| + CLip|δY G
s | + CLip|δZG

s |, and applying

the above inequality repeatedly, we derive

∫︂ T∧τ

t∧τ
|∆fs|ds
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≤ 1√
α

exp
(︂
−α

2
(t ∧ τ)

)︂⎧⎨⎩
√︄∫︂ T∧τ

t∧τ
eαs|δfs|2ds+ CLip

√︄∫︂ T∧τ

t∧τ
eαs|δY G

s |2ds

⎫⎬⎭
+
CLip√
α

exp
(︂
−α

2
(t ∧ τ)

)︂(︃∫︂ T∧τ

t∧τ
eαs(δZG

s )2ds

)︃1/2

.

Thus, by combining this inequality with (5.1.4), we derive

exp

(︃
α(t ∧ τ)

2

)︃
|δY G

t |

≤ E
˜︁Q
⎡⎣ sup

t∧τ<s≤T∧τ
eαs/2|δSu| + eα(T∧τ)/2|δξ| +

CLip√
α

√︄∫︂ T∧τ

t∧τ
eαs(δZG

s )2ds

⃓⃓⃓⃓
⃓ Gt

⎤⎦
+

1√
α
E

˜︁Q
[︄
CLip

(︃∫︂ T∧τ

t∧τ
eαs|δY G

s |2ds
)︃ 1

2

+

(︃∫︂ T∧τ

t∧τ
eαs|δfs|2ds

)︃ 1
2
⃓⃓⃓⃓
Gt

]︄
.

Here CLip is the Lipschitz’s constant associated to the driver f defined in

(5.0.2). Thus, (5.1.2) follows immediately from the inequality above, and the

first part is completed.

Part 2. Here we prove assertion (c). Thus, we consider α > 0 and an F-

stopping time σ. Similarly as in part 1, for any t ∈ [0, T ], thanks to (5.1.1) we

have

Y G
t ≥ −E ˜︁Q

[︄∫︂ T∧τ

t∧τ

(︁
f(s, Y G

s , Z
G
s )
)︁−
ds+ ξ−

⃓⃓⃓⃓
⃓ Gt

]︄

Y G
t ≤ E

˜︁Q
[︄∫︂ T∧τ

t∧τ

(︁
f(s, Y G

s , Z
G
s )
)︁+
ds+ sup

t∧τ≤θ≤T∧τ
S+
θ I{t<τ} + ξ+

⃓⃓⃓⃓
⃓ Gt

]︄
.
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Thus, by combining these inequalities with |x| = x+ + x−, we obtain

|Y G
t | ≤ E

˜︁Q
[︄∫︂ T∧τ

t∧τ
|f(s, Y G

s , Z
G
s )|ds+ sup

t∧τ≤θ≤T∧τ
S+
θ I{t<τ} + |ξ|

⃓⃓⃓⃓
⃓ Gt

]︄
.

(5.1.6)

Then the Lipschitz assumption of f in (5.0.2) implies that

∫︂ T∧τ

σ∧τ
|f(s, Y G

s , Z
G
s )|ds ≤

∫︂ T∧τ

σ∧τ
|f0(s)|ds+ CLip

∫︂ T∧τ

σ∧τ
|Y G

s |ds

+ CLip

∫︂ T∧τ

σ∧τ
|ZG

s |ds.

Hence, by applying (5.1.5) to each term on the right-hand-side above for p1 =

q1 = 2, and inserting the resulting inequality in (5.1.6) afterwards, we obtain

for any t ∈ [0, T ]

eα(t∧τ)/2|Y G
t |

≤ 1√
α
E

˜︁Q
[︄(︃∫︂ T∧τ

t∧τ
eαs(f0(s))

2ds

)︃ 1
2

+ CLip

(︃∫︂ T∧τ

t∧τ
eαs|Y G

s |2ds
)︃ 1

2

⃓⃓⃓⃓
⃓ Gt

]︄

+ E
˜︁Q
⎡⎣CLip√

α

√︄∫︂ T∧τ

t∧τ
eαs(ZG

s )2ds+ sup
t∧τ≤θ≤T∧τ

e
θ
2S+

θ I{t<τ} + eα(T∧τ)/2|ξ|

⃓⃓⃓⃓
⃓ Gt

⎤⎦ .
Therefore, the inequality (5.1.3) follows immediately from combining the above

inequality with (σ ≤ t)∩ (σ ≤ τ) ∈ Gt. This proves assertion (c) and ends the

proof of the lemma.

Throughout the rest of the thesis, CDB is the Doob’s constant, CBDG is the

BDG universal constant, κ is the positive constant given by Lemma 4.1.2

99



(the three constants depend on p ∈ (1,+∞) only), and CLip is the Lipschitz

constant in (5.0.2).

Theorem 5.1.2. Suppose that T < +∞, and let p > 1, α > α0(p), and

0 < α′ < α/2, where

α0(p) := max

⎛⎝4CLip + 4C2
Lip + 1, 81

{︄
1 +

9
√

2κ(1 + CDB)

3 −
√

8

}︄2

C2
DBC

2
Lip

⎞⎠ .

(5.1.7)

Then there exists ˆ︁C > 0 which depends on (α, α′, p) only such that for any F-

stopping time σ ∈ T T
0 (F) and any class-(D)-(G, ˜︁Q, T ∧ τ)-solution to (5.0.1),

denoted by the quadruplet (Y G, ZG,MG, KG), we have

∥eα·/2Y GI{τ≥σ}I[[σ,+∞[[∥Dτ∧T ( ˜︁Q,p) + ∥eα·/2ZGI]]σ,+∞[[∥Sτ∧T ( ˜︁Q,p)

+ ∥eα·/2Y GI]]σ,+∞[[∥Sτ∧T ( ˜︁Q,p) + ∥eα′(τ∧·)I]]σ,+∞[[ ·KG∥AT∧τ ( ˜︁Q,p)

+ ∥eα(τ∧·)/2I]]σ,+∞[[ ·MG∥Mp
T ( ˜︁Q) ≤ ˆ︁C {︂∥eα(T∧τ)/2ξI{τ≥σ}∥Lp( ˜︁Q)

}︂
+ ˆ︁C {︂∥e(α−α′)·S+I[[σ,+∞[[∥Dτ∧T ( ˜︁Q,p) + ∥eα·/2f0(·)I]]σ,+∞[[∥Sτ∧T ( ˜︁Q,p)

}︂
.

Proof. Let σ ∈ T T
0 (F) be an F-stopping time. Remark that, in virtue of (5.1.3)

and Doob’s inequality under ( ˜︁Q,G), on the one hand, we have

∥eα·/2Y GI{τ≥σ}I[[σ,+∞[[∥DT∧τ ( ˜︁Q,p)

≤ CDB

{︂
∥eα·/2S+I[[σ,+∞[[∥DT∧τ ( ˜︁Q,p) + ∥eα(T∧τ)/2ξI{τ≥σ}∥Lp( ˜︁Q)

}︂
(5.1.8)

+
CDBCLip√

α

{︂
∥eα·/2ZGI]]σ,+∞[[∥ST∧τ ( ˜︁Q,p) + ∥eα·/2Y GI]]σ,+∞[[∥ST∧τ ( ˜︁Q,p)

}︂
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+
CDB√
α
∥eα·/2f0I]]σ,+∞[[∥ST∧τ ( ˜︁Q,p).

On the other hand, by combining Itô applied to eαt(Y G
t )2, eα(σ∧τ)(Y G

σ∧τ )2 ≥ 0,

(5.0.1), and Young’s inequality (i.e. 2xy ≤ ϵx2 + y2/ϵ, ϵ > 0), we put C :=

α− 2CLip − 2C2
Lip − ϵ−1 and derive

C

∫︂ T∧τ

σ∧τ
eαs(Y G

s )2ds+
1

2

∫︂ T∧τ

σ∧τ
eαs(ZG

s )2ds+

∫︂ T∧τ

σ∧τ
eαtd[MG,MG]s

≤ eα(T∧τ)ξ2I{σ≤τ} + ϵ

∫︂ T∧τ

σ∧τ
eαs|f0(s)|2ds+ 2

∫︂ T∧τ

σ∧τ
eαsS+

s−dK
G
s , (5.1.9)

+ sup
0≤t≤T∧τ

|(I]]σ,+∞[[ · LG,1)t|.

In this inequality, we also used the Skorokhod’s condition (i.e., (Y G
− −S−)·KG ≡

0), while LG,1 ∈ Mloc(G) is given by

LG,1 := 2eα(τ∧·)(Y G
− − ∆KG

s )) ·MG + 2eα(τ∧·)Y G
− Z

G ·W τ . (5.1.10)

Throughout this section, for the sake of simplifying notation, we put

∥|(ZG,MG)|∥(σ,α, ˜︁Q) := ∥e
α
2
(·∧τ)I]]σ,+∞[[ ·MG∥Mp

T ( ˜︁Q) + ∥e
α·
2 ZG

s I]]σ,+∞[[∥ST∧τ ( ˜︁Q,p).

(5.1.11)

Thus, by applying Lemma 4.1.2 to I]]σ,+∞[[ · LG,1 with a = b = p, and using

Doob’s inequality afterwards to the martingale E
˜︁Q[sup0≤s≤T∧τ |Y G

s |I{σ≤s∧τ}
⃓⃓
Gt],

we derive

∥
√︂

|I]]σ,+∞[[ · LG,1|∥DT∧τ ( ˜︁Q,p)
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≤ 2
√︂
κ(1 + CDB)∥|(ZG,MG)|∥(σ,α, ˜︁Q)∥e

α·
2 Y GI[[σ,+∞[[∥DT∧τ ( ˜︁Q,p)

≤ ϵ1∥|(ZG,MG)|∥(σ,α, ˜︁Q) +
κ(1 + CDB)

ϵ1
∥eα·/2Y GI[[σ,+∞[[∥DT∧τ ( ˜︁Q,p). (5.1.12)

Therefore, by combining (5.1.8), (5.1.9), and (5.1.12), and the fact that

∥

⌜⃓⃓⎷ n∑︂
i=1

Xi∥Lp( ˜︁Q) ≥ n−1

n∑︂
i=1

∥
√︁
Xi∥Lp( ˜︁Q)

for nonnegative random variables (Xi)i=1,...,n, we get

∥eα·/2Y GI[[σ,+∞[[∥DT∧τ ( ˜︁Q,p) + C1∥eα·/2Y GI]]σ,+∞[[∥ST∧τ ( ˜︁Q,p)

+ C2∥eα·/2ZGI]]σ,+∞[[∥ST∧τ ( ˜︁Q,p) + C3∥eα·/2I]]σ,+∞[[ ·MG∥Mp
T ( ˜︁Q)

≤ C4∥e
α
2
·f0(·)I]]σ,+∞[[∥ST∧τ ( ˜︁Q,p) + C5∥e

α
2
(T∧τ)ξI{σ≤τ}∥Lp( ˜︁Q) (5.1.13)

+ C6∥e
α
2
·S+I[[σ,+∞[[∥DT∧τ ( ˜︁Q,p)

+ C7∥e(α−α′)·S+I[[σ,+∞[[∥1/2DT∧τ ( ˜︁Q,p)
∥eα′(τ∧·)I]]σ,+∞[[ ·KG

T ∥
1/2

Lp( ˜︁Q)
, for α′ < α/2,

where Ci, i = 1, ..., 7 are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 :=
√
C
3

−
(︂

1 + κ(1+CDB)
ϵ1

)︂
CDBCLip√

α
,

C2 := 1
3
√
2
− ϵ1 −

(︂
1 + κ(1+CDB)

ϵ1

)︂
CDBCLip√

α
,

C3 := 1
3
− ϵ1, C4 :=

√
ϵ+ CDB√

α

(︂
1 + κ(1+CDB)

ϵ1

)︂
,

C5 := 1 + C6, C6 := CDB

(︂
1 + κ(1+CDB)

ϵ1

)︂
, C7 :=

√
2.

(5.1.14)
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Thus, the next step consists of controlling the norm of KG. To this end, we

use the RBSDE (5.0.1) and Ito’s formula, and derive for any α′ > 0 and t > σ

∫︂ T∧τ

t∧τ
eα

′sdKG
s

= −
∫︂ T∧τ

t∧τ
eα

′sdY G
s −

∫︂ T∧τ

t∧τ
eα

′sf(s, Y G
s , Z

G
s )ds−

∫︂ T∧τ

t∧τ
eα

′sdMG
t

+

∫︂ T∧τ

t∧τ
eα

′sZG
s dW

τ
s

Ito
= −eα′T∧τY G

T∧τ + eα
′t∧τY G

t∧τ +

∫︂ T∧τ

t∧τ
eα

′s(α′Y G
s − f(s, Y G

s , Z
G
s ))ds

−
∫︂ T∧τ

t∧τ
eα

′sdMG
s +

∫︂ T∧τ

t∧τ
eα

′sZG
s dW

τ
s .

Therefore, by using this latter equality together with (5.0.2), we derive

E
˜︁Q [︃∫︂ T∧τ

t∧τ
eα

′sdKG
s

⃓⃓
Gt∧τ

]︃
≤ E

˜︁Q [︃2 sup
t∧τ<u≤T∧τ

eα
′s|Y G

s | +

∫︂ T∧τ

t∧τ
eα

′s|α′Y G
s + f(s, Y G

s , Z
G
s )|ds

⃓⃓
Gt∧τ

]︃
,

≤ E
˜︁Q [︃2 sup

t∧τ<u≤T∧τ
eα

′s|Y G
s | +

∫︂ T∧τ

t∧τ
eα

′s(α′ + CLip)|Y G
s |ds

⃓⃓
Gt∧τ

]︃
+ E

˜︁Q [︃∫︂ T∧τ

t∧τ
eα

′s|f0(s)|ds
⃓⃓
Gt∧τ

]︃
+ CLipE

˜︁Q [︃∫︂ T∧τ

t∧τ
eα

′s|ZG
s |ds

⃓⃓
Gt∧τ

]︃
.

Then by applying (5.1.5) for each term above, and choosing α′ < α/2, we get

for t > σ

E
˜︁Q [︃∫︂ T∧τ

t∧τ
eα

′sdKG
s

⃓⃓⃓⃓
Gt∧τ

]︃

≤ E
˜︁Q
⎡⎣2 sup

σ∧τ≤u≤T∧τ
eα

′s|Y G
s | +

α′ + CLip√
α− 2α′

√︄∫︂ T∧τ

σ∧τ
eαs(Y G

s )2ds

⃓⃓⃓⃓
Gt∧τ

⎤⎦
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+
1√

α− 2α′
E

˜︁Q
⎡⎣CLip

√︄∫︂ T∧τ

σ∧τ
eαs(ZG

s )2ds+

√︄∫︂ T∧τ

σ∧τ
eαs(f0(s))2ds

⃓⃓⃓⃓
Gt∧τ

⎤⎦ .
Therefore, thanks to Theorem 2.1.23, we deduce that for any p > 1 and

α′ < α/2, we have

∥(eα
′·I]]σ,+∞[[ ·KG)T∧τ∥Lp( ˜︁Q)

≤ C ′
{︂
∥e

α·
2 Y GI[[σ,+∞[[∥DT∧τ ( ˜︁Q,p) + ∥e

α·
2 Y GI]]σ,+∞[[∥ST∧τ ( ˜︁Q,p)

}︂
(5.1.15)

+ C ′∥e
α·
2 ZGI]]σ,+∞[[∥ST∧τ ( ˜︁Q,p) + C ′∥eα·/2f0(·)I]]σ,+∞[[∥ST∧τ ( ˜︁Q,p),

where the constant C ′ is given by

C ′ := pmax

(︃
2,
α′ + CLip√
α− 2α′

)︃
.

Remark that for α > α0(p), and by choosing ϵ = 9/5 and ϵ1 = (3 −
√

8)/9
√

2,

we get 1/9 < C2 ≤ min(C1, C3). By inserting (5.1.15) in (5.1.13) and using

Young’s inequality, we get

∥e
α·
2 Y GI[[σ,+∞[[∥DT∧τ ( ˜︁Q,p) + ∥e

α·
2 Y GI]]σ,+∞[[∥ST∧τ ( ˜︁Q,p) + ∥|(ZG,MG)|∥(σ,α, ˜︁Q)

≤ C
{︂
∥e

α
2
(τ∧·)f0I[[σ,+∞[[∥SpT ( ˜︁Q) + ∥e

α
2
(T∧τ)ξI{σ≤τ}∥Lp( ˜︁Q)

}︂
+ C∥e(α−α′)·S+I]]σ,+∞[[∥DT∧τ ( ˜︁Q,p),

where C := (20(C ′)2 + C6)/(C2 − (1/9)). Therefore, the proof of the theorem

follows immediately from combining the above inequality with (5.1.15) and

choosing ˆ︁C = C(1 + C ′) + C ′. This ends the proof of the theorem.
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Theorem 5.1.3. Suppose that T < +∞ and let p > 1, α > α0(p) given in

(5.1.7), and α′ ∈ (0, α/2). Then there exist positive ˆ︁Cj, j = 1, 2, 3, 4, which de-

pend on (α, α′, p) only such that limα→∞ ˆ︁C1 = 0 and for (Y G,i, ZG,i, KG,i,MG,i),

a class-(D)-(G, ˜︁Q, T ∧ τ)-solution to (5.0.1) corresponding to (f (i), S(i), ξ(i)),

i = 1, 2, we have

∥e
α
2
·δY G∥DT∧τ ( ˜︁Q,p) + ∥e

α
2
·δY G∥ST∧τ ( ˜︁Q,p)

+ ∥e
α
2
·δZG∥ST∧τ ( ˜︁Q,p) + ∥e

α
2
· · δMG∥Mp( ˜︁Q)

≤ ˆ︁C1∥eα·/2δf∥ST∧τ ( ˜︁Q,p) + ˆ︁C2∥eα(T∧τ)/2δξ∥Lp( ˜︁Q) + ˆ︁C3∥eα·/2δS∥DT∧τ ( ˜︁Q,p)

+ ˆ︁C4

⌜⃓⃓⎷∥eα·/2δS∥DT∧τ ( ˜︁Q,p)

{︄
2∑︂

i=1

∆(ξ(i), f (i), (S(i))+)

}︄
. (5.1.16)

Here ∆(ξ(i), f (i), (S(i))+) is given by

∆(ξ(i), f (i), (S(i))+)

:= ∥eα(T∧τ)/2ξ(i)∥Lp( ˜︁Q) + ∥eα(τ∧·)(S(i))+∥DT ( ˜︁Q,p) + ∥eα(τ∧·)/2f (i)(·, 0, 0)∥ST ( ˜︁Q,p),

(5.1.17)

and (δY G, δZG, δMG, δKG) and (δf, δS, δξ) are given by

δY G := Y G,1 − Y G,2, δZG := ZG,1 − ZG,2, δMG := MG,1 −MG,2
2 ,

δKG := KG,1 −KG,2, δS := S(1) − S(2), δξ := ξ(1) − ξ(2),

δft := f1(t, Y
G,1
t , ZG,1

t ) − f2(t, Y
G,1
t , ZG,1

t ).
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Proof. On the one hand, due to the Lipschitz assumption on f , we have

|∆ft| := |f1(t, Y G,1, ZG,1) − f2(t, Y
G,2, ZG,2)| ≤ |δft| + CLip|δY G

t | + CLip|δZG
t |.

(5.1.18)

On the other hand, in virtue of Lemma 5.1.1-(b) and Doob’s inequality, we

get

∥eα·/2δY G∥DT∧τ ( ˜︁Q,p)

≤ CDB

{︃
∥e

α·
2 δSu∥DT∧τ ( ˜︁Q,p) + ∥e

α
2
(T∧τ)δξ∥Lp( ˜︁Q) +

1√
α
∥e

α·
2 δf∥ST∧τ ( ˜︁Q,p)

}︃
(5.1.19)

+
CDBCLip√

α

{︂
∥eα·/2δZG∥ST∧τ ( ˜︁Q,p) + ∥eα·/2δY G∥ST∧τ ( ˜︁Q,p)

}︂
.

By combining Itô applied to eαt(δY G
t )2, (δY G

0 )2 ≥ 0 and (6.2.10), and putting

LG := eα(τ∧·)(δY G
− − 2∆(δKG

s )) · δMG + eα(τ∧·)(δY G
− )δZG ·W τ , (5.1.20)

which belongs to Mloc( ˜︁Q,G), we derive

α

∫︂ T∧τ

0

eαs(δY G
s )2ds+

∫︂ T∧τ

0

eαs(δZG
s )2ds+

∫︂ T∧τ

0

eαtd[δMG, δMG]s

≤ eα(T∧τ)(δξ)2 + 2

∫︂ T∧τ

0

eαs(δY G
s )∆fsds+ 2

∫︂ T∧τ

0

eαs(δY G
s−)dδKG

s + LG
T ,

≤ eα(T∧τ)(δξ)2 + 2

∫︂ T∧τ

0

eαs|δY G
s |(|δfs| + CLip(|δY G| + |δZG|))ds

+ 2(eα·(δY G
− ) · δKG)T∧τ + LG

T

= eα(T∧τ)(δξ)2 + 2

∫︂ T∧τ

0

eαs|δY G
s ||δfs|ds+ 2

∫︂ T∧τ

0

eαsCLip|δY G
s |2ds
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+ 2

∫︂ T∧τ

0

eαsCLip|δY G
s ||δZG|ds+ 2

∫︂ T∧τ

0

eαs(δY G
s−)dδKG

s + LG
T

≤eα(T∧τ)(δξ)2 + (
1

ϵ
+ 2C2

Lip + 2CLip)

∫︂ T∧τ

0

eαs|δY G
s |2ds+ ϵ

∫︂ T∧τ

0

eαs|δfs|2ds

+
1

2

∫︂ T∧τ

0

eαs|δZG|2ds+ 2

∫︂ T∧τ

0

eαs(δY G
s−)dδKG

s + LG
T .

Therefore, by arranging terms and putting C := α− 2CLip − 2C2
Lip − ϵ−1 , we

obtain

C

∫︂ T∧τ

0

eαs(δY G
s )2ds+

1

2

∫︂ T∧τ

0

eαs(δZG
s )2ds+

∫︂ T∧τ

0

eαtd[δMG, δMG]s

≤ eα(T∧τ)(δξ)2 + ϵ

∫︂ T∧τ

0

eαs|δfs|2ds+ 2

∫︂ T∧τ

0

eαs(δY G
s−)dδKG

s + LG
T

≤ eα(T∧τ)(δξ)2 + ϵ

∫︂ T∧τ

0

eαs|δfs|2ds+ 2

∫︂ T∧τ

0

eαs|δSs−|dVars(δK
G) + LG

T .

(5.1.21)

The last inequality is a consequence of

eα(τ∧·)(δY G
− ) · δKG ≤ eα(τ∧·)(δSG

−) · δKG ≤ eα(τ∧·)|δSG
−| · Var(δKG),

which is due to Skorokhod’s condition. Furthermore, by applying Lemma 4.1.2

to LG given in (5.1.20) with a = b = p and Doob’s inequality afterwards, there

exists a constant κ = κ(p) > 0 which depends on p only such that

∥|LG|1/2∥DT∧τ ( ˜︁Q,p)

≤
√︃
κ(1 + CDB)

{︂
∥eα

2
· · δMG∥Mp

T ( ˜︁Q) + ∥eα
2
·δZG∥ST∧τ ( ˜︁Q,p)

}︂
∥e

α
2
·δY G∥1/2

DT∧τ ( ˜︁Q,p)
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≤ ϵ1∥e
α
2
· · δMG∥Mp

T ( ˜︁Q) + ϵ1∥e
α
2
·δZG∥ST∧τ ( ˜︁Q,p) +

κ(1 + CDB)

ϵ1
∥e

α
2
·δY G∥DT∧τ ( ˜︁Q,p).

(5.1.22)

Therefore, by combining (5.1.21), (5.1.22) and (5.1.19) and choosing ade-

quately α, ϵ, ϵ1 and using n−1
∑︁n

i=1 x
p/2
i ≤ (

∑︁n
i=1 xi)

p/2 ≤ np/2
∑︁n

i=1 x
p/2
i for

any positive integer and any sequence of nonnegative number xi, we derive

1

3

{︂√
C∥eα·/2δY G∥ST∧τ ( ˜︁Q,p) + 2−1∥eα·/2δZG∥ST∧τ ( ˜︁Q,p) + ∥eα(τ∧·)/2 · δMG∥Mp

T ( ˜︁Q)

}︂
≤ ϵ∥e

α
2
·δf∥ST∧τ ( ˜︁Q,p) + ∥e

α
2
(T∧τ)δξ∥Lp( ˜︁Q) + ∥|LG|1/2∥DT∧τ ( ˜︁Q,p)

+
√

2∥e
α
2
·δS∥1/2

DT∧τ ( ˜︁Q,p)
∥e

α
2
· · δKG∥1/2

AT∧τ ( ˜︁Q,p)
,

≤ ϵ∥eα(τ∧·)/2δf∥ST∧τ ( ˜︁Q) + ∥e
α
2
(T∧τ)δξ∥Lp( ˜︁Q)

+
√

2∥eα·/2δS∥1/2
DT∧τ ( ˜︁Q,p)

∥eα·/2 · δKG)∥1/2
AT∧τ ( ˜︁Q,p)

+ ϵ1∥eα(τ∧·)/2 · δMG∥Mp
T ( ˜︁Q)

+ ϵ1∥eα·/2δZG∥ST∧τ ( ˜︁Q,p) +
κ(1 + CDB)

ϵ1
∥eα·/2δY G∥DT∧τ ( ˜︁Q,p).

Then by combining this equality with (5.1.19) and (5.1.21) we obtain

∥e
α
2
·δY G∥DT∧τ ( ˜︁Q,G) + C1∥e

α
2
·δY G∥ST∧τ ( ˜︁Q,p) + C2∥e

α
2
·δZG∥ST∧τ ( ˜︁Q,p)

+ C3∥e
α
2
(τ∧·) · δMG∥Mp( ˜︁Q) ≤ C4∥eα·/2δf∥ST∧τ ( ˜︁Q,p) + C5∥eα(T∧τ)/2δξ∥Lp( ˜︁Q)

+ C6∥eα·/2δS∥DT∧τ ( ˜︁Q,p) + C7

√︂
∥eα·/2δS∥DT∧τ ( ˜︁Q,p)∥eα·/2 · δKG∥AT∧τ ( ˜︁Q,p),

(5.1.23)

where Ci, i = 1, ..., 7 are given by (5.1.14). Then here we take ϵ = 2/α,

ϵ1 = (3 −
√

8)/9
√

2 and α > α1(p), and remark that 0 < C2 ≤ min(C1, C3).
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Furthermore, in virtue of Theorem 5.1.2 with σ = 0, we get

∥eα·/2 · δKG∥AT∧τ ( ˜︁Q,p) ≤
2∑︂

i=1

∥eα·/2 ·KG,i∥AT∧τ ( ˜︁Q,p) ≤ ˆ︁C 2∑︂
i=1

∆(ξ(i), f (i), (S(i))+).

Therefore, by inserting this in (5.1.23), the inequality (5.1.16) follows imme-

diately with

ˆ︁C1 =
C4

C2

, ˆ︁C2 =
C5

C2

, ˆ︁C3 =
C6

C2

, ˆ︁C4 =
C7

√︁ˆ︁C
C2

.

It is also clear that ˆ︁C1 goes to zero when α goes to infinity. This ends the

proof of the theorem.

5.1.2 Existence, uniqueness & connection to F-RBSDEs

In this subsection, we elaborate our results on the existence and uniqueness

of the solution to (5.0.1), and describe the form of its F-RBSDE counterpart.

To this end, we assume that there exists α > α0(p) such that

E

[︃˜︁ETK(α)
T (f, S, h) +

∫︂ T

0

K(α)
s (f, S, h)dV F

s

]︃
< +∞, (5.1.24)

where

K(α)
t (f, S, h) := |eαt/2ht|p +

(︃∫︂ t

0

eαs|f0(s)|2ds
)︃p/2

+ sup
0≤u≤t

(eαuS+
u )p, (5.1.25)

and f0(t) := f(t, 0, 0). One of the main obstacles, herein, lies in guessing the

form of the F-RBSDE that corresponds to (5.0.1). To overcome this challenge,

we appeal to the linear case and the known method of approximating the
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solution to the general RBSDE (5.0.1) by the sequence of solutions to linear

RBSDEs –as it is adopted in [19] and the references therein–. This is the aim

of the following remark.

Remark 5.1.4. Following the footsteps of [19] and the main stream of BSDE

literature, we define the sequence of linear RBSDEs under G, whose solutions

approximate the solution to the general RBSDE (5.0.1). Thus, we consider

the sequence
(︁
Y G,n, ZG,n,MG,n, KG,n

)︁
defined recursively as follows.

(Y G,0, ZG,0,MG,0, KG,0) := (0, 0, 0, 0),

for any n ≥ 1,
(︁
Y G,n, ZG,n,MG,n, KG,n

)︁
is the unique solution to :⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Yt = ξ +

∫︂ T∧τ

t∧τ
f(s, Y G,n−1

s , ZG,n−1
s )ds+

∫︂ T∧τ

t∧τ
dMs +

∫︂ T∧τ

t∧τ
dKs

−
∫︁ T∧τ
t∧τ ZsdWs,

Y ≥ S on ]]0, τ [[,

∫︂ T∧τ

0

(Yt− − St−)dKt = 0.

Thus, from this recursive sequence of solutions, and thanks to the linear part

fully analyzed in Sections 4.1 and 4.2, we obtain a sequence of RBSDEs under

F and their solutions. This can be achieved by determining
(︁
Y F,n, ZF,n, KF,n

)︁
associated to

(︁
Y G,n, ZG,n,MG,n, KG,n

)︁
for each n ≥ 0 as follows.

1. As (Y G,0, ZG,0,MG,0, KG,0):=(0, 0, 0, 0), then we get

(Y F,0, ZF,0, KF,0) := (0, 0, 0).
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2. For n = 1,
(︁
Y G,1, ZG,1,MG,1, KG,1

)︁
is the solution to

Yt = ξ +

∫︂ T∧τ

t∧τ
f(s, 0, 0)ds+

∫︂ T∧τ

t∧τ
dMs +

∫︂ T∧τ

t∧τ
dKs −

∫︂ T∧τ

t∧τ
ZsdWs.

Here, the generator/driver is constant in (Y, Z,M,K), and hence in

virtue of Theorem 4.1.8 there exists a unique (Y F,1, ZF,1, KF,1) solution

to the RBSDE (4.1.23) with generator/driver fF,1(s) := ˜︁Esf(s, 0, 0) and

⎧⎪⎪⎨⎪⎪⎩
Y G,1 = Y F,1 ˜︁E−1I[[0,τ [[ + ξ1[[τ,+∞[[, Z

G,1 = ZF,1 ˜︁E−1
− ,

KG,1 = ˜︁E−1
− ·KF,1, MG,1 =

(︂
h− Y F,1 ˜︁E−1

)︂
·NG.

(5.1.26)

3. For n = 2,
(︁
Y G,2, ZG,2,MG,2, KG,2

)︁
is the solution to

Yt = ξ +

∫︂ T∧τ

t∧τ
f(s, Y G,1

s , ZG,1
s )ds+

∫︂ T∧τ

t∧τ
dMs +

∫︂ T∧τ

t∧τ
dKs

−
∫︂ T∧τ

t∧τ
ZsdWs.

Thus, by plugging (5.1.26) in this equation, we obtain

Yt = ξ +

∫︂ T∧τ

t∧τ
f(s,

Y F,1
s˜︁Es ,

ZF,1
s˜︁Es− )ds+

∫︂ T∧τ

t∧τ
dMs +

∫︂ T∧τ

t∧τ
dKs

−
∫︂ T∧τ

t∧τ
ZsdWs.

The generator here does not depend on (Y, Z,M,K). Hence, again, The-

orem 4.1.8 yields the existence of a unique (Y F,2, ZF,2, KF,2) solution to
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the RBSDE (4.1.23) under F with generator/driver

fF,2(s) := ˜︁Esf (︂s, Y F,1
s /˜︁Es, ZF,1

s /˜︁Es−)︂ ,
and

Y G,2
t =

Y F,2
t˜︁Et 1{t <τ} + ξ1{t≥τ}, Z

G,2 =
ZF,2˜︁E− , KG,2 =

1˜︁E− ·KF,2,

and MG,2 =

(︃
h− Y F,2˜︁E

)︃
·NG.

4. By iterating this procedure, we get the sequence
(︁
Y F,n, ZF,n, KF,n

)︁
defined

recursively as follows.

(Y F,0, ZF,0, KF,0) := (0, 0, 0, 0),

Y F,n
t = ξF +

∫︂ T

t

fF(s, Y F,n−1
s , ZF,n−1

s )ds+

∫︂ T

t

hsdV
F
s +KF,n

T −KF,n
t

−
∫︂ T

t

ZF,n
s dWs,

Y F,n
t ≥ SF

t 1{t <T} + ξF1{t =T},

∫︂ T

0

(Y F,n
t− − SF

t−)dKF,n
t = 0,

where fF(s, y, z) := ˜︁Esf (︂s, y(˜︁Es)−1, z(˜︁Es)−1
)︂
. Thus, thanks to the convergence

-in norm and almost surely for a subsequence- of
(︁
Y G,n, ZG,n,MG,n, KG,n

)︁
and

(4.1.25), we deduce that
(︁
Y F,n, ZF,n, KF,n

)︁
should also converge to

(︁
Y F, ZF, KF

)︁
,
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and this obtained triplet satisfies

⎧⎪⎪⎨⎪⎪⎩
Yt = ξF +

∫︂ T

t

fF(s, Ys, Zs)ds+

∫︂ T

t

hsdV
F
s +KT −Kt −

∫︂ T

t

ZsdWs,

Yt ≥ SF
t 1{t <T} + ξF1{t =T},

∫︂ T

0

(Yt− − SF
t−)dKt = 0.

This gives us the RBSDE under F that we are looking for, and this also shows

the importance of analyzing the linear case separately besides its own impor-

tance.

Below, we elaborate our main result which connects RBSDE in G with those

in F.

Theorem 5.1.5. Suppose T < +∞, G > 0 and both (5.0.2) and (5.1.24)

hold. Then the following assertions hold.

(a) The following RBSDE under F, associated to the triplet (SF, ξF, fF),

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Yt = ξF +

∫︂ T

t

fF(s, Ys, Zs)ds+

∫︂ T

t

hsdV
F
s +KT −Kt −

∫︂ T

t

ZsdWs,

Yt ≥ SF
t , t ∈ [0, T ),

∫︂ T

0

(Yt− − SF
t−)dKt = 0,

(5.1.27)

has a unique Lp(P,F)-solution that we denote by (Y F, ZF, KF), where

fF(s, y, z) := ˜︁Esf (︂s, y ˜︁E−1
s , z ˜︁E−1

s

)︂
, SF := ˜︁ES, ξF := ˜︁EThT . (5.1.28)

(b) There exists a unique Lp( ˜︁Q,G)-solution to (5.0.1), denoted by the quadru-
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plet (Y G, ZG,MG, KG), and is given by

⎧⎪⎪⎨⎪⎪⎩
Y G = Y F ˜︁E−1I[[0,τ [[ + ξI[[τ,+∞[[, ZG = ZF ˜︁E−1I]]0,τ ]],

KG = ˜︁E−1
− · (KF)τ and MG =

(︂
h− Y F ˜︁E−1

)︂
·NG.

(5.1.29)

Proof. This proof is divided into two steps, where we prove assertions (a) and

(b) respectively.

Step 1. On the one hand, put

˜︁fF(t, y, z) := fF(t, y − (h · V F)t, z), ˜︁SF := SF + h · V F,

and ˜︁ξF := ξF + (h · V F)T ,

and remark that (Y , Z,K) is a solution to (5.1.27) iff

(Y ′, Z ′, K ′) := (Y + h · V F, Z,K)

is a solution to the following RBSDE

⎧⎪⎪⎨⎪⎪⎩
Yt = ˜︁ξF +

∫︂ T

t

˜︁fF(s, Ys, Zs)ds+KT −Kt −
∫︂ T

t

ZsdWs,

Yt ≥ ˜︁SF
t , t ∈ [0, T ),

∫︂ T

0

(Yt− − ˜︁SF
t−)dKt = 0.

(5.1.30)

On the other hand, thanks to (5.1.24), we derive

∥˜︁ξF∥Lp(P ) ≤ ∥ξF∥Lp(P ) + ∥(|h| · V F)T∥Lp(P )

≤ ∥ξF∥Lp(P ) + E
[︁
(|h|p · V F)T

]︁1/p
< +∞,
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∥ ˜︁fF(·, 0, 0)∥ST (P,p) ≤ ∥fF(·, 0, 0)∥ST (P,p) + CLip∥(|h| · V F)T∥Lp(P ) < +∞,

and

∥(˜︁SF)+∥DT (P,p) ≤ ∥(SF)+∥DT (P,p) + ∥(|h| · V F)T∥Lp(P ) < +∞.

Therefore, by combining these inequalities and [19, Theorem 3.1], we conclude

that (5.1.30) has a unique Lp(P,F)-solution. This ends the first part.

Step 2. Here we prove assertion (b). To this end, on the one hand, we remark

that due to Theorem 5.1.3 the RBSDE (5.0.1) has at most one Lp( ˜︁Q,G)-

solution. On the other hand, when it exists, Theorem 5.1.2 claims that a

class-(D)-(G, ˜︁Q, T ∧ τ)-solution to (5.0.1) is in fact an Lp( ˜︁Q,G)-solution when

the triplet
(︁
eα(T∧τ)/2ξ, e(α−α′)·S+, eα·/2f0

)︁
∈ Lp( ˜︁Q) ⊗ Dτ∧T ( ˜︁Q, p) ⊗ Sτ∧T ( ˜︁Q, p).

Furthermore, thanks to Lemma 4.2.4 and its proof, it is not difficult to prove

that the latter fact is equivalent to the condition (5.1.24). Thus, the proof of

assertion (b) will follows immediately as soon as we prove that the quadruplet

(Y , Z,K,M), give by

Y :=
Y F˜︁E I[[0,τ [[ + ξI[[τ,+∞[[, Z :=

ZF˜︁E I]]0,τ ]], K :=
1˜︁E− · (KF)τ

and M :=

(︃
h− Y F˜︁E

)︃
·NG,

is in fact a class-(D)-(G, ˜︁Q, T ∧ τ)-solution to (5.0.1). The proof for the fact

that (Y , Z,K,M) is a solution to (5.0.1) mimics exactly Step 2 in the proof

of Theorem 4.2.7, and we will omit here. The rest of this proof proves that

this solution is a class-(D)-(G, ˜︁Q, T ∧ τ)-solution as the following. On the one
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hand, note that due to Lipschitz condition we have

E
˜︁Q [︃∫︂ T∧τ

0

|f(s, Y s, Zs)|ds
]︃

≤ E
˜︁Q [︃∫︂ T∧τ

0

|f0(s)|ds
]︃

+ CLipE
˜︁Q [︃∫︂ T∧τ

0

|Y s|ds
]︃

+ CLipE
˜︁Q [︃∫︂ T∧τ

0

|Zs|ds
]︃

= E
˜︁Q [︃∫︂ T∧τ

0

|f0(s)|ds
]︃

+ CLipE

[︃∫︂ T

0

|Y F
s |ds

]︃
+ CLipE

[︃∫︂ T

0

|ZF
s |ds

]︃
<∞.

On the other hand, thanks to Lemma 2.3.3, we derive

Lt(σ) := E

[︃∫︂ σ

t

fF(s, Y F, ZF)ds+ SF
σ1{σ <T} + ξF1{σ =T}

⃓⃓⃓⃓
Ft

]︃
1{t <τ}

Et(− ˜︁G−1 • Do,F)

+ E

[︃
1

G0

∫︂ σ

t

˜︁ZshsdD
o,F
s

⃓⃓⃓⃓
Ft

]︃
1{t <τ}

Et(− ˜︁G−1 • Do,F)

= E

[︃∫︂ σ

t

˜︁Zsf(s,
Y F˜︁E ,

ZF˜︁E )Gsds+ ˜︁ZσSσGσ1{σ <T}

⃓⃓⃓⃓
Ft

]︃
1{t <τ}˜︁ZtGt

+ E

[︃ ˜︁ZThTGT1{σ=T} +

∫︂ σ

t

˜︁ZshsdD
o,F
s

⃓⃓⃓⃓
Ft

]︃
1{t <τ}˜︁ZtGt

= E

[︃∫︂ σ

t

˜︁Zsf(s,
Y F˜︁E ,

ZF˜︁E )1{s<τ}ds+ ˜︁ZσSσ1{σ <T∧τ}

⃓⃓⃓⃓
Ft

]︃
1{t <τ}˜︁ZtGt

+ E

[︃ ˜︁ZThT1{τ>T=σ} + ˜︁Zτhτ1{σ≥τ>t}

⃓⃓⃓⃓
Ft

]︃
1{t <τ}˜︁ZtGt

= E

[︄∫︂ σ∧τ

t∧τ

˜︁Zs˜︁Zt

f(s,
Y F˜︁E ,

ZF˜︁E )ds+
˜︁Zσ∧τ˜︁Zt

Sσ∧τ1{σ∧τ <τ∧T}

⃓⃓⃓⃓
Gt

]︄
1{t <τ}

+ E

[︄ ˜︁Zσ∧τ˜︁Zt

ξ1{σ∧τ=τ∧T}

⃓⃓⃓⃓
Gt

]︄
1{t <τ}

= E
˜︁Q [︃∫︂ θ∧τ

t∧τ
f(s, Y , Z)ds+ Sθ1{θ <T∧τ} + ξ1{θ=T∧τ}

⃓⃓⃓⃓
Gt

]︃
1{t <τ}.

Thus, by combining the latter equality with the Snell envelope representation
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of Y F, we get

Y tI[[0,τ [[ =
Y F
t˜︁E I[[0,τ [[ = ess sup

σ∈JT
t (F)

Lt(σ)

= ess sup
σ∈JT

t (F)
E

˜︁Q [︃∫︂ θ∧τ

t∧τ
f(s,Ys,Zs)ds + Sθ1{θ <T∧τ} + ξ1{θ=T∧τ}

⃓⃓⃓⃓
Gt

]︃
1{t <τ}.

(5.1.31)

Then, by using the analysis as in part 2 of the proof of Theorem 4.1.4, see the

inequality (4.1.9), we deduce that (5.1.31) yields

|Y t| ≤ E
˜︁Q [︂|ξ| ⃓⃓⃓ Gt

]︂
+ |Y t|I[[0,τ [[

≤ E
˜︁Q [︃∫︂ T∧τ

0

|f(Y s, Zs)|ds+ sup
θ≤T∧τ

S+
θ + 2|ξ|

⃓⃓⃓
Gt

]︃
.

This proves the solution is of class (D) as defined in Definition 2.4.1-(2). This

ends the proof of theorem.

5.2 The case of unbounded horizon

This section considers the case of unbounded horizon, or equivalently T = +∞.

Similarly as in the first section, we state our prior estimates, we prove existence

and uniqueness of the solution, and we establish the connection between the

G-RBSDE and the F-RBSDE counterpart. For the reader convenience, we

precisely re-define our RBSDE below as

⎧⎪⎪⎨⎪⎪⎩
dYt = −f(t, Yt, Zt)d(t ∧ τ) − d(Kt∧τ +Mt∧τ ) + ZtdW

τ
t ,

Yτ = ξ, Yt ≥ St, 0 ≤ t < τ, E

[︃∫︂ τ

0

(Yt− − St−)dKt

]︃
= 0.

(5.2.1)
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Here (ξ, S, f) is such that S is an F-adapted and RCLL process, f(t, y, z) is

a Prog(F) ⊗ B(R) ⊗ B(R)-measurable functional satisfying (5.0.2) and ξ is

an Fτ -measurable random variable, or equivalently there exists an F-optional

process h such that ξ = hτ . This section has three subsections. The first sub-

section derives estimates and stability inequalities that controls the solutions

under P instead of ˜︁Q. The second subsection introduces the RBSDE under

F and discusses the existence and uniqueness of its solution, while the third

subsection solves (5.2.1) and discusses its properties. Recall that the spaces˜︁Dσ(P, p) and ˜︁Sσ(P, p) and their norms respective are defined in (4.2.17).

5.2.1 Estimate under P for the solution of (5.0.1)

This subsection extends Theorem 4.2.2 and 4.2.3 to the case of general gener-

ator f . These theorems, that give estimates for the solutions under P instead,

are based essentially on Theorems 5.1.2 and 5.1.3 respectively, and represent

an important step towards solving (5.2.1).

Theorem 5.2.1. Suppose T < +∞ and let p > 1, α > α0(p) given in (5.1.7)

and α′ ∈ (0, α/2). There exists C > 0 depending on (α, α′, p) only such that,

for the class-(D)-(G, ˜︁Q, T ∧ τ)-solution to the RBSDE (5.0.1) associated to

(f, S, ξ) denoted by (Y G, ZG,MG, KG), we have

∥eα·/2Y G∥˜︁DT∧τ (P,p)
+ ∥eα(τ∧·)/2Y G∥˜︁ST∧τ (P,p)

+ ∥eα(τ∧·)/2ZG∥˜︁ST∧τ (P,p)

+∥eα·/2I]]0,T∧τ ]]
p

√︂˜︁E− ·MG∥Mp(P,G) + ∥
∫︂ T∧τ

0

eα
′s p

√︂˜︁Es−dKG
s ∥Lp(P )

≤ C

{︃
∥eα(T∧τ)/2ξ∥Lp( ˜︁Q) + ∥eα·/2f0∥ST∧τ ( ˜︁Q,p) + ∥ sup

0≤t≤·
e(α−α′)tS+

t ∥ST∧τ ( ˜︁Q,p)

}︃
,
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where ˜︁E is defined in (4.1.22), and we recall it herein with f0.

˜︁Et := Et(− ˜︁G−1 ·Do,F), and f0(t) := f(t, 0, 0). (5.2.2)

Proof. The proof relies essentially on Lemma 4.2.1 and Theorem 5.1.2.

In fact, a direct application of Lemma 4.2.1-(a) to Y := eα(·∧T∧τ)/2Y G yields

E

[︃
sup

0≤s≤T∧τ
epαs/2 ˜︁Es|Y G

s |p
]︃
≤ G−1

0 E
˜︁Q [︃ sup

0≤s≤T∧τ
epαs/2|Y G

s |p
]︃
. (5.2.3)

By applying Lemma 4.2.1-(b) to both cases when K =
∫︁ ·
0
eαs|ZG

s |2ds and when

K =
∫︁ ·
0
eαs|Y G

s |2ds afterwards with a = 2/p, we get

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

E

[︃(︂∫︁ T∧τ
0

eαs(˜︁Es)2/p|ZG
s |2ds

)︂p/2]︃
≤ κ

G0
E

˜︁Q [︃(︂∫︁ T∧τ
0

eαs|ZG
s |2ds

)︂p/2]︃
,

E

[︃(︂∫︁ T∧τ
0

eαs(˜︁Es)2/p|Y G
s |2ds

)︂p/2]︃
≤ κ

G0
E

˜︁Q [︃(︂∫︁ T∧τ
0

eαs|Y G
s |2ds

)︂p/2]︃
.

(5.2.4)

Similarly, we apply Lemma 4.2.1-(b) to K = eα·/2 ·KG with a = 1/p, we get

E

[︃(︃∫︂ T∧τ

0

eα
′s(˜︁Es−)1/pdKG

s

)︃p]︃
≤ κ

G0

E
˜︁Q
[︄(︃∫︂ T∧τ

0

eα
′sdKG

s

)︃p

+
∑︂

0<s≤T∧τ

˜︁Gs(e
α′s∆KG

s )p

]︄

≤ 2κ

G0

E
˜︁Q [︃(︃∫︂ T∧τ

0

eα
′sdKG

s

)︃p]︃
. (5.2.5)

The last inequality follows from the easy facts that ˜︁G ≤ 1 and
∑︁

0<s≤T (∆Vs)
p ≤

V p
T for any nondecreasing process V with V0 = 0 and any p ≥ 1.
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The rest of the proof will address the term that involves the G-martingale

MG. Thus, thanks to Theorem 5.1.5, we know that [MG,MG] = H ′ · [NG, NG]

where H ′ := (h−Y F/˜︁E)2, which is F-optional. Thus, an application of Lemma

4.2.1-(d) to H := eα·(h− Y F/˜︁E)2 that is F-optional, we get

E

[︃(︂
(˜︁E)2/pH · [NG, NG]T∧τ

)︂p/2]︃
≤ κ

G0

E
˜︁Q [︂(︁H · [NG, NG]T

)︁p/2
+ 2(Hp/2I]]0,τ [[ ·Do,F)T

]︂
=

κ

G0

E
˜︁Q [︂(︁eα· · [MG,MG]T

)︁p/2
+ 2(Hp/2I]]0,τ [[ ·Do,F)T

]︂
. (5.2.6)

Thus, we need to control the second term in the right-hand-side of this in-

equality. To this end, we remark that (Hp/2I]]0,τ [[ · Do,F) ≤ 2p−1(|heα·/2|p +

|Y Geα·/2|pI]]0,τ [[) ·Do,F. Thus, by using this, we derive

2E
˜︁Q [︁(Hp/2I]]0,τ [[ ·Do,F)T

]︁
≤ 2pE

˜︁Q [︁epατ/2|hτ |pI{τ≤T}
]︁

+ 2pE
˜︁Q [︃ sup

0≤t≤τ∧T
epαs/2|Y G

t |p
]︃
. (5.2.7)

Therefore, by combining this inequality with hτI{τ≤T} = ξI{τ≤T}, (5.2.6),

(5.2.5), (5.2.4), (5.2.3) and Theorem 5.1.2 with σ = 0, the proof of the theorem

follows immediately.

Theorem 5.2.2. Suppose that T < +∞ and let p > 1, α > α0(p) defined in

(5.1.7) and α′ ∈ (0, α/2). Then there exist positive Ci, i = 1, 2, 3, that depend

on (α, α′, p) only such that limα→∞C1 = 0 and for (Y G,i, ZG,i, KG,i,MG,i)

being a class-(D)-(G, ˜︁Q, T ∧ τ)-solution to the RBSDE (5.0.1) that correspond
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to (f (i), S(i), ξ(i)), i = 1, 2 respectively, we have

∥e
α
2
·δY G∥˜︁DT∧τ (P,p)

+ ∥e
α
2
·δY G∥˜︁ST∧τ (P,p)

+ ∥e
α
2
·δZG∥˜︁ST∧τ (P,p)

+ ∥e
α
2
· p

√︂˜︁E− · δMG∥Mp(P,G) ≤ C1∥e
α
2
·δf∥ST∧τ ( ˜︁Q,p) + C2∥e

α
2
(T∧τ)δξ∥Lp( ˜︁Q)

+ C3

⌜⃓⃓⎷∥eα
2
·δS∥DT∧τ ( ˜︁Q,p)

2∑︂
i=1

∆(ξ(i), f (i), (S(i))+).

Here ∆(ξ(i), f (i), (S(i))+) is

∆(ξ(i), f (i), (S(i))+)

:= ∥eα(T∧τ)/2ξ(i)∥Lp( ˜︁Q) + ∥eα·/2f (i)
0 ∥ST∧τ ( ˜︁Q,p) + ∥ sup

0≤t≤·
e(α−α′)t(S

(i)
t )+∥ST∧τ ( ˜︁Q,p)

(5.2.8)

and (δY G, δZG, δMG, δKG) and (δf, δS, δξ) are given by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
δY G := Y G,1 − Y G,2, δZG := ZG,1 − ZG,2, δMG := MG,1 −MG,2,

δKG := KG,1 −KG,2, δS := S(1) − S(2), δξ := ξ(1) − ξ(2),

δft := f (1)(t, Y G,1
t , ZG,1

t ) − f (2)(t, Y G,1
t , ZG,1

t ).

(5.2.9)

Proof. By applying Lemma 4.2.1-(a) to Ys = eαs/2δY G
s and a = p, we obtain

E

[︃
sup

0≤s≤T∧τ
epαs/2 ˜︁Es|δY G

s |p
]︃
≤ G−1

0 E
˜︁Q [︃ sup

0≤s≤T∧τ
epαs/2|δY G

s |p
]︃
. (5.2.10)

By applying Lemma 4.2.1-(b) to both cases when K =
∫︁ ·
0
eαs|δZG

s |2ds and
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when K =
∫︁ ·
0
eαs|δY G

s |2ds afterwards with a = 2/p, we get

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

E

[︃(︂∫︁ T∧τ
0

eαs(˜︁Es)2/p|δZG
s |2ds

)︂p/2]︃
≤ κ

G0
E

˜︁Q [︃(︂∫︁ T∧τ
0

eαs|δZG
s |2ds

)︂p/2]︃
,

E

[︃(︂∫︁ T∧τ
0

eαs(˜︁Es)2/p|δY G
s |2ds

)︂p/2]︃
≤ κ

G0
E

˜︁Q [︃(︂∫︁ T∧τ
0

eαs|δY G
s |2ds

)︂p/2]︃
.

(5.2.11)

Thanks to Theorem 5.1.5, we know that [δMG, δMG] = H ′ · [NG, NG] where

H ′ := (δh − δY F/˜︁E)2, which is F-optional. Thus, an application of Lemma

4.2.1-(d) to Hs := eαsH ′
s that is F-optional, and similar argument as in (5.2.7),

we get

E

[︃(︂
(˜︁E)2/pH · [NG, NG]T

)︂p/2]︃
≤ κ

G0

E
˜︁Q [︂(︁H · [NG, NG]T

)︁p/2
+ 2(Hp/2I]]0,τ [[ ·Do,F)T

]︂
=

κ

G0

E
˜︁Q [︂(︁eα· · [δMG, δMG]T

)︁p/2
+ 2(Hp/2I]]0,τ [[ ·Do,F)T

]︂
≤ κ

G0

E
˜︁Q [︂(︁eα· · [δMG, δMG]T

)︁p/2]︂
(5.2.12)

+
2pκ

G0

{︃
E

˜︁Q [︁|δhτ |pepατ/2I{τ≤T}
]︁

+ E
˜︁Q [︃ sup

0≤t≤τ∧T
epαs/2|δY G

t |p
]︃}︃

Hence, by combining (5.2.10), (5.2.11), (5.2.12) and Theorem 5.1.3, the proof

of the theorem follows.

5.2.2 Existence and uniqueness of the solution to (5.2.1)

This subsection elaborates our first main result of this section, which proves

the existence and uniqueness of the solution to (5.2.1), and gives estimates for
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it.

Theorem 5.2.3. Let p ∈ (1,+∞), α > α0(p) defined in (5.1.7) and α′ ∈

(0, α/2). Suppose G > 0 and

∥F (α) + eα·/2|h| + sup
0≤u≤·

eαu|Su|∥Lp(P⊗V F) < +∞, (5.2.13)

where F
(α)
t :=

√︂∫︁ t

0
eαs|f0(s)|2ds. Then the following assertions hold.

(a) There exists a unique solution (Y G, ZG,MG, KG) to the RBSDE (5.2.1).

(b) There exists positive C, which depends on (α, α′, p) only, such that

∥eα·/2Y G∥˜︁Dτ (P,p)
+ ∥eα·/2ZG∥˜︁Sτ (P,p) + ∥eα·/2Y G∥˜︁Sτ (P,p)

+ ∥eα′·(˜︁E−)1/p ·KG
τ ∥Lp(P ) + ∥eα·/2(˜︁E−)1/p · (MG)τ∥Mp(P )

≤ C∥eα·/2|h| + F (α) + sup
0≤u≤·

eαs(S+
u )∥Lp(P⊗V F).

(c) Let (f, h(i), S(i)), i = 1, 2, be two triplets satisfying (5.2.13), and the

quadruplet (Y G,i, ZG,i, KG,i,MG,i) be the solutions to their corresponding RB-

SDE (5.2.1). There exist C1 and C2 that depend on α and p only such that

∥eα·/2δY G∥˜︁Dτ (P,p)
+ ∥eα·/2δZG∥˜︁Sτ (P,p) + ∥(eα·/2(˜︁E−)1/p · δMG)τ∥Mp(P )

≤ C1∥eα·/2|δh| + sup
0≤u≤·

eαu/2|δSu|∥Lp(P⊗V F)

+ C2

√︃
∥ sup

0≤u≤·
e

α
2
u|δSu|∥Lp(P⊗V F)

⌜⃓⃓⎷ 2∑︂
i=1

∆̄i.

123



Here (δY G, δZG, δKG, δMG) and (δf, δS, δh) are given by (5.2.9). And,

∆̄i := ∥e
α
2
·|hi| + F (α) + sup

0≤u≤·
eαu(Si(u))+∥Lp(P⊗V F).

Proof. On the one hand, in virtue of assertion (c), it is clear that (5.2.1) has at

most one solution. Thus, the rest of this proof focuses on proving the existence

of the solution and assertion (b) and (c). To this end, we divide the rest of

the proof into four parts.

Part 1. In this part, we consider an F-stoppoing time σ, and we suppose that

there exists a positive constant C such that

max

(︃
epα·/2|h|p, (F (α))p, sup

0≤t≤·
epα·(S+

t )p
)︃

≤ CE(G−1
− ·m) on [[0, σ]].(5.2.14)

Our goal, in this part, lies in proving under this assumption that there exists a

solution to (5.2.1) and assertion (b). To the triplet (f, S, h) satisfying (5.2.14),

we associate (f
(n)
, S

(n)
, h

(n)
) given by

f
(n)

:= fI[[0,n∧σ]], S
(n)

t := Sn∧σ∧t, h
(n)

t := hn∧σ∧t, ξ
(n)

:= hn∧σ∧τ . (5.2.15)

Then thanks to Theorem 5.1.5, we deduce that for each triplet (f
(n)
, S

(n)
, ξ

(n)
),

the RBSDE (5.2.1) has a unique solution (Y
(n)
, Z

(n)
,M

(n)
, K

(n)
). Then by

applying Theorem 5.2.1 to (Y
(n)
, Z

(n)
,M

(n)
, K

(n)
) and applying Theorem 5.2.2

to the difference of solutions

(δY, δZ, δM, δK)

:= (Y
(n+m)

, Z
(n+m)

,M
(n+m)

, K
(n+m)

) − (Y
(n)
, Z

(n)
,M

(n)
, K

(n)
),
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and the horizon T = (n+m) ∧ σ, we get

∥eα·/2Y (n)∥˜︁DT∧τ (P,p)
+ ∥eα(τ∧·)/2Y (n)∥˜︁ST∧τ (P,p)

+ ∥eα(τ∧·)/2Z(n)∥˜︁ST∧τ (P,p)

+ ∥eα·/2I]]0,T∧τ ]]
p

√︂˜︁E− ·M (n)∥Mp(P,G) + ∥
∫︂ T∧τ

0

e
α
2
s p

√︂˜︁Es−dK(n)

s ∥Lp(P ) (5.2.16)

≤ C
{︂
∥eα(T∧τ)/2ξ

(n)∥Lp( ˜︁Q) + ∥eα·/2f (n)

0 ∥ST∧τ ( ˜︁Q,p)

}︂
+ C∥ sup

0≤t≤·
eαt(St

(n)
)+∥ST∧τ ( ˜︁Q,p),

and

∥eα·/2 ˜︁E1/pδY ∥DT ( ˜︁P ,p) + ∥eα·/2(˜︁E−)1/p|δZ∥SpT ( ˜︁P ,p) + ∥eα·/2(˜︁E−)1/p · δM∥Mp
T ( ˜︁P )

≤ C1∥eα(τ∧·)/2δf∥SpT ( ˜︁Q) + C2∥eα(T∧τ)/2δξ∥Lp( ˜︁Q) (5.2.17)

+ C3∥eα(τ∧·)/2δS∥1/2DT ( ˜︁Q)
sup
k≥n

√︂
∆(ξ(k), f (k), (S(k))+).

Here we put f
(k)

0 (t) := f
(k)

(t, 0, 0) and ∆(ξ(k), f (k), (S(k))+) is given by

∆(ξ(k), f (k), (S(k))+)

:= ∥eα(T∧τ)/2ξ
(k)∥Lp( ˜︁Q) + ∥eα(τ∧·)/2f (k)

0 ∥ST ( ˜︁Q,p) + ∥eα(τ∧·)(S(k)
)+∥DT ( ˜︁Q,p),

(5.2.18)

Next, we calculate the limits, when n and/or m go to infinity, of the right-

hand-sides of the inequalities (5.2.16) and (5.2.17). It is clear that, in virtue
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of Lemma 4.2.4, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

lim
n→∞

∥eα(n∧τ)/2ξ(n)∥p
Lp( ˜︁Q)

= E

[︃∫︂ ∞

0

eαsp/2|hs|pdV F
s

]︃
lim
n→∞

∥eα(τ∧·)(S(n)
)+∥p

DT ( ˜︁Q,p)
= E

[︃∫︂ ∞

0

sup
0≤s≤t

eαsp(S+
s )pdV F

s

]︃
lim
n→∞

∥eα(τ∧·)/2f (n)
(·, 0, 0)∥p

ST ( ˜︁Q,p)
= E

[︃∫︂ ∞

0

(F
(α)
t )pdV F

t

]︃
.

(5.2.19)

This determines the limits for the right-hand-side terms of (5.2.16). To ad-

dresses the limits of the right-hand-side terms of (5.2.17), we remark that due

to the assumption 5.2.14 and in virtue of Lemma 4.2.4, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
n→∞

sup
m≥0

∥e
α
2
(τ∧·)δS∥DT ( ˜︁Q,p) ≤ 2 lim

n→∞
∥e

α
2
(τ∧·)S+I[[n,∞[[∥DT ( ˜︁Q,p) = 0

lim
n→∞

sup
m≥0

∥e
α
2
(T∧τ)δξ∥Lp( ˜︁Q) = lim

n→∞
sup
m≥0

∥e
α
2
(T∧τ)(h(n+m)∧τ − hn∧τ )∥Lp( ˜︁Q) = 0,

lim
n→∞

sup
m≥0

∥eα(τ∧·)/2δf(·, 0, 0)∥DT ( ˜︁Q,p) = 0,

supk≥0

√︁
∆(ξ(k), f (k), (S(k))+) < +∞,

(5.2.20)

now we deal with the first term in the right-hand-side of (5.2.17). To this end,

on the one hand, we remark that

|δft| = |(f (n+m) − f
(n)

)(t, Y
(n+m)

t , Z
(n+m)

t )| = |f(t, Y
(n+m)

t , Z
(n+m)

t )|I{n<t≤n+m}

≤ |f(t, 0, 0)|I{n<t≤n+m} + Clip(|Y
(n+m)

t | + Z
(n+m)

t |)I{n<t≤n+m}. (5.2.21)
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On the other hand, thanks to Theorem 5.1.2, applied to the quadruplet

(Y
(n+m)

, Z
(n+m)

,M
(n+m)

, K
(n+m)

)

and σ = n, we deduce that

∥eα(τ∧·)/2Z(n+m)
I]]n,n+m]]∥ST ( ˜︁Q,p) + ∥eα·/2Y (n+m)

I]]n,n+m]]∥ST ( ˜︁Q,p)

≤ ˆ︁C {︂∥eα(T∧τ)/2ξ
(n+m)

I{τ>n}∥Lp( ˜︁Q) + ∥eα(τ∧·)S+I]]n,n+m]]∥DT ( ˜︁Q,p)

}︂
+ ˆ︁C∥eα(τ∧·)/2f(·, 0, 0)I]]n,n+m]]∥ST ( ˜︁Q,p)

Therefore, by combining this inequality with (5.2.20) and (5.2.21), we deduce

that

lim
n→∞

sup
m≥0

∥eα(τ∧·)/pδf∥S(n+m)∧τ ( ˜︁Q,p) = 0. (5.2.22)

Thus, by combining (5.2.17), (5.2.20) and (5.2.22), we conclude that the se-

quence (Y
(n)
, Z

(n)
,M

(n)
, K

(n)
) is a Cauchy sequence in norm, and hence it

converges in norm and almost surely for a subsequence, and its limite is a

solution to (5.2.1). This proves assertion (a) of the theorem provided that

assertion (c) is true. Furthermore, by taking the limit in (5.2.16) and using

Fatou and (5.2.19), the proof of assertion (b) follows immediately. This ends

the first part.

Part 2. Here we prove assertion (c) under the assumption (5.2.14). Consider

two triplets (f, S(i), h(i)), i = 1, 2 satisfying (5.2.14). Then for each triplet we

associate to it a sequence (f
(n)
, S

(n,i)
, h

(n,i)
) defined via (5.2.15). Thus, there
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exists (Y
(n,i)

, Z
(n,i)

,M
(n,i)

, K
(n,i)

), for each i = 1, 2, that converges in norm

and almost surely for a subsequence to (Y
G,i
, Z

G,i
,M

G,i
, K

G,i
) which is solu-

tion to (5.2.1) associated to (f, S(i), h(i)). Then by applying Theorem 5.2.2 to

the difference of solutions

(δY, δZ, δM, δK)

:= (Y
(n,1)

, Z
(n,1)

,M
(n,1)

, K
(n,1)

) − (Y
(n,2)

, Z
(n,2)

,M
(n,2)

, K
(n,2)

),

and the horizon T = n, we get

∥eα·/2 ˜︁E1/pδY ∥DT ( ˜︁P ,p) + ∥eα·/2(˜︁E−)1/p|δZ∥SpT ( ˜︁P ,p) + ∥eα·/2(˜︁E−)1/p · δM∥Mp(P,G)

≤ C2∥eα(T∧τ)/2δξ
(n)∥Lp( ˜︁Q) + C3∥eα(τ∧·)/2δS

(n)∥1/2
DT ( ˜︁Q)

⌜⃓⃓⎷ 2∑︂
k=1

∆(ξ(k), f (k), S(k)).

(5.2.23)

Here ∆(ξ(k), f (k), S(k)) is given by (5.2.18). Similarly, as in the proof of (5.2.19),

we use Lemma 4.2.4 and the boundedness assumption (5.2.14) that each triplet

(f, S(i), h(i)) (i = 1, 2) satisfies, we get

⎧⎪⎪⎪⎨⎪⎪⎪⎩
lim
n→∞

∥eα(n∧τ)/2δξ(n)∥p
Lp( ˜︁Q)

= E

[︃∫︂ ∞

0

eαsp/2|δhs|pdV F
s

]︃
lim
n→∞

∥eα(τ∧·)/2(δS(n)
)∥p

DT ( ˜︁Q,p)
= E

[︃∫︂ ∞

0

sup
0≤s≤t

eαsp/2(δSs)
pdV F

s

]︃ (5.2.24)

Thus, by taking the limit in (5.2.23), using Fatou’s lemma for its left-hand-side

term, and using (5.2.24) and (5.2.19) for its right-hand-side term, assertion (c)

follows immediately. This ends the second part.
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Part 3. In this part, we drop the assumption (5.2.14) and prove existence of

solution to (5.2.1) and assertion (b). Hence, we consider the following sequence

of stopping times

Tn := inf

{︃
t ≥ 0 : max(eαtp/2|ht|p, (F (α)

t )p, sup
0≤u≤t

eαup|Su|p) > nE(G−1
− ·m)

}︃
.

(5.2.25)

It is clear that Tn is an F-stopping time that converges to infinity almost

surely. Then we associate a sequence, to the triplet (f, S, h), denoted by

(f (n), S(n), h(n)), given by

f (n) := fI[[0,Tn[[, S
(n) := SI[[0,Tn[[, h

(n) := hI[[0,Tn[[. (5.2.26)

Thus, for any n ≥ 1, it is clear that the triplet (f (n), h(n), S(n)) satisfies (5.2.14)

on [[0, Tn]]. Thus, thanks to the first and the second parts, we deduce the exis-

tence of unique solution to (5.2.1), denoted by (Y G,(n), ZG,(n), KG,(n),MG,(n)),

associated to (f (n), h(n), S(n)) with the horizon Tn∧τ , which remains a solution

for any horizon Tk ∧ τ with k ≥ n. Furthermore, we have

∥eα·/2Y G,(n)∥˜︁Dτ (P,p)
+ ∥eα·/2Y G,(n)∥˜︁Dτ (S,p)

+ ∥eα·/2(˜︁E−)1/p · (MG,(n))τ∥Mp(P )

+ ∥eα·/2ZG,(n)∥˜︁Sτ (P,p) + ∥eα·/2(˜︁E−)1/p ·KG,(n)
τ ∥Lp(P )

≤ C∥F (n) + eα·/2|h(n)| + sup
0≤u≤·

eαs(S(n)
u )+∥Lp(P⊗V F), (5.2.27)

due to assertion (b). Furthermore, for any n ≥ 1 and m ≥ 1

∥eα·/2(Y G,(n) − Y G,(n+m))∥˜︁Dτ (P,p)
+ ∥eα·/2(ZG,(n) − ZG,(n+m))∥˜︁Dτ (P,p)
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+ ∥eα·/2 p

√︂˜︁E− · (MG,(n) −MG,(n+m))τ∥Mp(P )

≤ C1∥eα·/2|h(n) − h(n+m)| + |F (α,n) − F (α,n+m)|

+ sup
0≤u≤·

eαu/2|S(n)
u − S(n+m)

u |∥Lp(P⊗V F)

+ C2

√︄
∥ sup

0≤u≤·
eαu/2|S(n)

u − S
(n+m)
u |∥Lp(P⊗V F)

∑︂
i∈{n,n+m}

∆i, (5.2.28)

where

∆i := ∥F (α,i)
t + e

α·
2 |h(i)| + sup

0≤u≤·
eαu(S(i)

u )+∥Lp(P⊗V F).

Then by virtue of (5.2.13) and the dominated convergence theorem, we put

∆(n,m) :=

∥e
α·
2 |h(n) − h(n+m)| + |F (α,n) − F (α,n+m)| + sup

0≤u≤·
e

αu
2 |S(n)

u − S(n+m)
u |∥Lp(P⊗V F),

and we derive

lim
n→+∞

sup
m≥1

∆(n,m)

≤ lim
n→+∞

∥I[[Tn,+∞[[(e
α·/2|h| + F (α) + sup

0≤u≤·
eαu/2|Su|)∥Lp(P⊗V F) = 0.

A combination of this with (5.2.28) proves that the sequence of the quadruplet

(Y G,(n), ZG,(n), KG,(n),MG,(n)) is a Cauchy sequence in norm, and hence it con-

verges to (Y G, ZG, KG,MG) in norm and almost surely for a subsequence. As

a result, (Y G, ZG, KG,MG) clearly satisfies (5.2.1), and due to Fatou’s lemma

and (5.2.27) we conclude that assertion (b) holds. This ends part 3.
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Part 4. Here we prove assertion (c) under no assumption( i.e. we drop

the assumption (5.2.14)). Let (f, S, h) be a triplet and consider In fact,

we consider two triplets (f, Si, hi), i = 1, 2, to which we associate two se-

quences of F-stopping times (T
(i)
n )n for i = 1, 2 as in (5.2.25), and two data-

sequences (f (n), S(n,i), h(n,i)) which are constructed from (f (i), h(i), S(i)) and

Tn := min(T
(1)
n , T

(2)
n ) via (5.2.26). Therefore, for each i = 1, 2 and any n ≥ 1,

the triplet (f (n), S(n,i), h(n,i)) with the horizon Tn∧τ fulfills (5.2.14), and hence

due to Part 1, there exists a unique solution (Y
(n,i)

, Z
(n,i)

,M
(n,i)

, K
(n,i)

) that

converges in norm and almost surely for a subsequence to the quadruplet

(Y G,i, ZG,i,MG,i, KG,i). Furthermore, we apply assertion (c) to the difference

of solutions

(︁
δY G,n, δZG,n, δMG,n

)︁
= (Y

(n,1)
, Z

(n,1)
,M

(n,1)
, K

(n,1)
) − (Y

(n,2)
, Z

(n,2)
,M

(n,2)
, K

(n,2)
),

and get

∥eα·/2δY G,n∥˜︁Dτ (P,p)
+ ∥eα·/2δZG,n∥˜︁Sτ (P,p) + ∥eα·/2(˜︁E−)1/p · (δMG,n)τ∥Mp(P )

≤ C1∥eα·/2|δh| + sup
0≤u≤·

eαu/2|δSu|∥Lp(P⊗V F)

+ C2

√︃
∥I[[0,Tn]] sup

0≤u≤·
e

α
2
u|δSu|∥Lp(P⊗V F)

⌜⃓⃓⎷ 2∑︂
i=1

∆̄
Tn

i ,

with

∆̄
Tn

i := ∥I[[0,Tn]]{e
α
2
·|hi| + F (α) + sup

0≤u≤·
eαu(Si(u))+}∥Lp(P⊗V F).
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Therefore, by taking the limit on both sides of this inequality, and using Fatou

for the left-hand-side term and the convergence monotone theorem for the

right-hand-side term, we deduce that assertion (c) holds.

Herein we state its BSDE version as we did is Subsection 4.2.2.

Theorem 5.2.4. Let p ∈ (1,+∞), α > α0(p) defined in (5.1.7). Suppose

G > 0 and

∥F (α) + eα·/2|h|∥Lp(P⊗V F) < +∞, where F
(α)
t :=

√︄∫︂ t

0

eαs|f0(s)|2ds. (5.2.29)

Then the following assertions hold.

(a) There exists a unique solution (Y G, ZG,MG) to the following BSDE

dYt = −f(t, Yt, Zt)d(t ∧ τ) − dMt∧τ + ZtdW
τ
t , Yτ = ξ = hτ . (5.2.30)

(b) There exists positive C, which depends on (α, α′, p) only, such that

∥e
α
2
·Y G∥˜︁Dτ (P,p)

+ ∥e
α
2
·ZG∥˜︁Sτ (P,p) + ∥e

α
2
·Y G∥˜︁Sτ (P,p) + ∥eα·/2 p

√︂˜︁E− · (MG)τ∥Mp(P )

≤ C∥eα·/2|h| + F (α)∥Lp(P⊗V F).

(c) Let (f, h(i)), i = 1, 2, be two pairs satisfying (5.2.13), and (Y G,i, ZG,i,MG,i)

be the solutions to their corresponding BSDE (5.2.30). There exists C1 which

depends on α and p only such that

∥e
α
2
·δY G∥˜︁Dτ (P,p)

+ ∥e
α
2
·δZG∥˜︁Sτ (P,p) + ∥e

α
2
· p

√︂˜︁E− · (δMG)τ∥Mp(P )

≤ C1∥eα·/2|δh|∥Lp(P⊗V F).
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Here (δY G, δZG, δMG) and (δf, δh) are given by (5.2.9).

Proof. The proof of this theorem follows the same footsteps as the proof of

Theorem 5.2.3 by just ignoring the process S and putting KG = 0 throughout

the proof, as they are irrelevant.

5.2.3 An RBSDE under F with infinite horizon and its

relationship to (5.2.1)

In this subsection, we derive our second main result of this section that ad-

dresses the RBSDE under F given below, and connects it to (5.2.1).

⎧⎪⎪⎨⎪⎪⎩
Yt =

∫︂ ∞

t

fF(s, Ys, Zs)ds+

∫︂ ∞

t

hsdV
F
s +K∞ −Kt −

∫︂ ∞

t

ZsdWs,

Yt ≥ SF
t , t ≥ 0, E

[︃∫︂ ∞

0

(Yt− − SF
t−)dKt

]︃
= 0.

(5.2.31)

Here (fF, SF, ˜︁E) denote the functionals defined via (5.1.28). First of all, remark

that a solution to this RBSDE is any triplet (Y, Z,K) such that lim
t→∞

Yt exists

almost surely and is null, and

⎧⎪⎪⎨⎪⎪⎩
dYt = fF(t, Yt, Zt)dt− htdV

F
t − dKt + ZtdWt,

Yt ≥ SF
t , t ≥ 0, E

[︃∫︂ ∞

0

(Yt− − SF
t−)dKt

]︃
= 0.

This latter RBSDE generalizes Hamadène et al . [46] in many aspects. First

of all, our obstacle process SF is arbitrary RCLL and might not be continuous

at all. Furthermore, we do not exige that the part (Y,K) of the solution to be

continuous. Besides these, our RBSDE has an additional term,
∫︁ ·
0
hsdV

F
s that
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might not be absolutely continuous with respect to the Lebesgue measure.

Theorem 5.2.5. Let p ∈ (1,+∞), (h, S) be a pair of F-optional processes, f

is a functional satisfying (5.0.2), and (fF, SF, ˜︁E) is given by (5.1.28). Suppose

that G > 0 and there exists α > α0(p) such that C1CLip < 1 –where C1 is given

by Theorem 5.2.1 –,

(5.2.13) holds and E
[︂(︂˜︁E∞F (α)

∞

)︂p]︂
< +∞. (5.2.32)

Then the RBSDE (5.2.31) has a unique Lp(P,F)-solution (Y F, ZF, KF).

The proof of this theorem is based on the following lemma

Lemma 5.2.6. For α > α0(p) and α′ ∈ [0, α/2), there exist Ci, i = 1, 2, 3, 4

that depend on (α, α′, p) only such that limα→+∞C1 = 0 and the following

assertions hold.

(a) If (Y i, Zi, Ki) is an Lp(F, P )-solution to the RBSDE (5.2.33) associated

to (f i, Si, ξi), i = 1, 2, then

∥e
α
2
·δY ∥D(P,p) + ∥e

α
2
·δZ∥S(P,p)

≤ C1∥e
α
2
·δf∥S(P,p) + C2∥e

α
2
T δξ∥Lp(P ) + C3

√︂
∥eα

2
·δS∥S(P,p)∥e

α
2
·δK∥AT (P,p).

(b) If (Y, Z,K) is a class-(D)-(F, P,∞)-solution to the RBSDE (5.2.33), then

∥e
α
2
·Y ∥D(P,p) + ∥e

α
2
·Z∥S(P,p) + ∥e

α
2
·Y ∥S(P,p) + ∥e

α
2
·KT∥Lp(P )

≤ C4

{︂
∥e

α
2
·f0(·)∥S(P,p) + ∥e

α
2
T ξ∥Lp(P ) + ∥e(α−α′)·S+∥S(P,p)

}︂
.
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The proof of this lemma mimics those of Theorems 5.1.2 and 5.1.3, and will

be omitted here.

Proof of Theorem 5.2.5. Remark that due to the assumption (5.2.13), the non-

decreasing process U :=
∫︁ ·
0
hsdV

F
s has a limit at infinity. Put

˜︁fF(s, y, z) = fF(s, y − Us, z), ˜︁SF := SF + U, and ˆ︁ξ := U∞ =

∫︂ ∞

0

hsdV
F
s .

Then (Y , Z,K) solves (5.2.31) if and only if (Y ′, Z ′, K ′) := (Y + U,Z,K) is a

solution to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Yt = ˆ︁ξ +

∫︂ ∞

t

˜︁fF(s, Ys, Zs)ds+K∞ −Kt −
∫︂ ∞

t

ZsdWs,

Yt ≥ ˜︁SF
t , t ≥ 0, E

[︃∫︂ ∞

0

(Yt− − ˜︁SF
t−)dKt

]︃
= 0,

(5.2.33)

Now, we define the sequence (Y (n), Z(n), K(n)) as follows: (Y (0), Z(0), K(0)) :=

(0, 0, 0), and (Y (n), Z(n), K(n)) is the unique solution to

Y
(n)
t = ξ +

∫︂ ∞

t

˜︁fF(s, Y (n−1)
s , Z(n−1)

s )ds+

∫︂ ∞

t

Z(n)
s dWs +K(n)

∞ −K
(n)
t .(5.2.34)

The existence and uniqueness of this Lp(F, P )-solution follow from Theorem

4.2.7 and that

∫︂ ∞

t

| ˜︁fF(s, Y (n−1)
s , Z(n−1)

s )|ds ≤ CLip

∫︂ ∞

t

| ˜︁fF(s)|ds

+ CLip

∫︂ ∞

t

e−
α
2
se

α
2
s|Y (n−1)

s |ds+ CLip

∫︂ ∞

t

e−
α
2
se

α
2
s|Z(n−1)

s |ds,
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≤ CLip

∫︂ ∞

t

| ˜︁fF(s)|ds+ CLip

√︄∫︂ ∞

t

e−αsds

√︄∫︂ ∞

t

eαs|Y (n−1)
s |2ds

+ CLip

√︄∫︂ ∞

t

e−αsds

√︄∫︂ ∞

t

eαs|Z(n−1)
s |2ds <∞.

The last inequality above is due to Lemma 5.2.6-(b). Thus, by applying

Lemma 5.2.6 to (Y (i), Z(i), K(i)) and

(δY, δZ, δK) :=
(︁
Y (n+m) − Y (n), Z(n+m) − Z(n), K(n+m) −K(n)

)︁
,

we define the norm

∥|(Y, Z,K)|∥ := ∥Y ∥D(P,p) + ∥Z∥S(P,p) + ∥KT∥Lp(P ),

for any triplet (Y, Z,K) ∈ D(P, p) × S(P, p) ×A+
loc, and deduce that

sup
i≥0

{︁
∥|(Y (i), Z(i), K(i))|∥ + ∥Y (i)∥S(P,p)

}︁
< +∞, (5.2.35)

and

∥|(δY, δZ, 0)|∥ ≤ C1∥δf∥ ≤ C1CLip∥|(Y (n+m−1)−Y (n−1), Z(n+m−1)−Z(n−1), 0)|∥.

Thus, by iterating this latter inequality, we get

∥|(Y (n+m) − Y (n), Z(n+m) − Z(n), 0)|∥ ≤ (C1CLip)
n∥|(Y (m), Z(m), 0)|∥

≤ (C1CLip)
n sup

i≥0
∥|(Y (i), Z(i), 0)|∥.

136



By combining this with (5.2.35), we conclude that the sequence (Y (n), Z(n)) is a

Cauchy, and hence it converges in norm and almost surely for a subsequence to

(Y, Z). Then the convergence of K(i) to some K follows immediately from the

RBSDE (5.2.33), and therefore the triplet (Y, Z,K) is a solution to (5.2.33).

The uniqueness of the solution to (5.2.33) is a direct consequence of Lemma

5.2.6-(a). This ends the proof of the theorem.

Below, we establish the relationship between the solution of (5.2.1) and that

of (5.2.31).

Theorem 5.2.7. Suppose that the assumptions of Theorem 5.2.5 hold. Then

both RBSDEs (5.2.31) and (5.2.1) have unique Lp(F, P )-solutions, denoted by

the triplet (Y F, ZF, KF) and the quadruplet (Y G, ZG, KG,MG) respectively, and

they satisfy

⎧⎪⎪⎨⎪⎪⎩
Y G = Y F ˜︁E−1I[[0,τ [[ + ξI[[τ,+∞[[, Z

G = ZF ˜︁E−1I]]0,τ ]],

KG = ˜︁E−1
− · (KF)τ and MG =

(︂
h− Y F ˜︁E−1

)︂
·NG.

(5.2.36)

Proof. Thanks to Theorems 5.2.5 and 5.2.3, it is clear that both RBSDEs

(5.2.31) and (5.2.1) have unique solutions. This proves the first claim of the

theorem, while the proof of (5.2.36) follows immediately as soon as we prove

that (Y , Z,M,K) given by

Y :=
Y F˜︁E I[[0,τ [[ + ξI[[τ,+∞[[, Z :=

ZF˜︁E I]]0,τ ]], K :=
1˜︁E− · (KF)τ

and M :=

(︃
h− Y F˜︁E

)︃
·NG.
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is a solution to (5.2.1). This latter fact can be proved by following exactly

the footsteps of Step 2 in the proof of Theorem 4.2.7. This ends the proof of

theorem.
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Chapter 6

Extension to models with jumps

and general terminal value

Throughout this chapter we consider a fixed and finite deterministic horizon

T ∈ (0,+∞). The main contribution of this chapter lies in extending Chapters

4 and 5 to the case where the filtration F is generated by a Brownian motion W

and a Poisson process N with intensity λ > 0, and where the terminal value of

the RBSDE ξ is GT∧τ -measurable instead of being FT∧τ -measurable. However,

we restrict this chapter to the square integrability instead of p-integrability of

Chapters 4 and 5.

In [11] Barles et al. considered the BSDE when the noise is driven by both

Brownian motion and a Poisson random measure. They proved under appro-

priate assumptions that their BSDE has a unique solution. Also under an

appropriate framework, they found that their BSDE’s solution is the unique

viscosity solution of a system of parabolic integro-partial differential equa-
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tions. The extension to the case of RBSDE with jumps, which is driven by a

Brownian motion and an independent Poisson point process, have been estab-

lished by Hamadène and Ouknine [48], the authors have shown the existence

and uniqueness of a solution when the terminal value is square integrable, the

driver is uniformly Lipschitz and the barrier is rcll whose jumping times are

inaccessible stopping time and hence the reflecting process K is continuous.

While, Essaky [44] extends the case of Hamadène et al. when the barrier S

is allowed to have predictable jumps then the process Y is so and then the

reflecting process K are no longer continuous but just rcll.

We start with a stochastic basis (Ω,F , P ), with a filtration F(N,W ) := (Ft)t≥0

that satisfies the usual conditions of right continuity and completeness. For

simplicity we assume that F0 is trivial and FT = F , We give an auxiliary

measurable space (E,B(E), λ), where λ is a non-nagative σ-finite measure on

(E,B(E)) satisfying
∫︁
E

1∧ |e|2λ(de) <∞. Let E := Rl \{0}, then we suppose

that the filtration F := F(N,W ) is generated by the two following mutually

independent processes:

- a standard Brownian motion W = (Wt)t≥0.

- a poisson process N with intensity λ > 0. Then, NF; NF
t := Nt − λt is a

(F(N,W ), P )- martingale process.

Define the following:

(˜︁Ω, ˜︁F) := (Ω × [0, T ] × E,F ⊗ B([0, T ]) ⊗ B(E))

Also define ˜︁P := P ⊗ B(E),
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where P is the predictable σ-field on Ω × [0, T ]. A function on ˜︁Ω that is˜︁P-measurable is called predictable. For more details about random measures

we recommend you to read chapter II in [50]. In addition to the spaces that

are defined in section 2.4, we define the desired space in this chapter as the

following

• L2
T (N,Q) is the space of F(N,W )-predictable processes V such that

∥V ∥2L2
T (N,Q) := EQ

[︃∫︂ T

0

|Vt|2dNt

]︃
= EQ

[︃∫︂ T

0

|Vt|2λdt
]︃
<∞.

Remark 6.0.1. Note that due to Proposition 2.3.4-b we have that W τ and

(NF)τ are (G, ˜︁Q)-local martingales.

Suppose that there exists an F-progressively measurable process h(pr) such that

ξ = h
(pr)
T∧τ and Sτ∧T ≤ ξ P − a.s. (6.0.1)

Throughout this chapter define J σ2
σ1

(H) as the set of all stopping times in H

with values in [σ1, σ2], also ˜︁Q be the probability defined by (2.3.11). For ease,

until the end of this section we write F := F(N,W ).

This chapter consists of two sections. The first section presents the case of G-

RBSDE for linear driver, in this section we give some useful estimates and the

existence and uniqueness results for the solution of this RBSDE also it presents

an explicit connection to its F-RBSDE counterpart. In the second section, we

handle the case of non linear driver G-RBSDE. We give some useful estimates

and the existence and uniqueness results for the solution of this RBSDE, also
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we present an explicit connection to its F-RBSDE counterpart.

6.1 The linear case

In this section we consider the following linear RBSDEs,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dY = −f(t)d(t ∧ τ) − d(K +M) + ZdW τ + Z
′
d(NF)τ ,

Yτ = YT = ξ, Yt ≥ St on [0, T ∧ τ),

⟨M,W +NF⟩G ≡ 0, and E

[︃∫︂ τ∧T

0

(Yt− − St−)dKt

]︃
= 0.

(6.1.1)

Here K is an increasing process such that K0 = 0, the barrier process S is an

F-adapted and RCLL process, ξ = h
(pr)
T∧τ with h(pr) being F-progressively mea-

surable and its F-optional projection is h(op) := MP
µ (h(pr)

⃓⃓
O(F)), µ := P⊗D.

T ∈ (0,+∞), and the generator f is F-progressively measurable function.

6.1.1 Estimates for the solution of the BSDE (6.1.1)

This subsection elaborates estimates for the solution of the BSDE (6.1.1).

Lemma 6.1.1. Suppose that the triplet (f, ξ, S) satisfies

E
˜︁Q [︃|ξ| +

∫︂ T∧τ

0

|f(s)|ds+ sup
0≤u≤τ∧T

(S+
u )

]︃
< +∞, (6.1.2)

˜︁Q be the probability defined by (2.3.11). Suppose that (Y G, ZG, Z
′G,MG, KG)

is a class-(D)-(G, ˜︁Q, T ∧ τ)-solution to the RBSDE (6.1.1) then for t ∈ [0, T ]
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we have

Y G
t := ess sup

υ∈J T∧τ
t∧τ (G)

E
˜︁Q [︃∫︂ υ∧τ

t∧τ
f(s)ds+ Sυ1{υ <T∧τ} + ξ1{υ=T∧τ}

⃓⃓⃓
Gt

]︃
(6.1.3)

Proof. The proof can be obtained by mimicking exactly the footsteps of the

proof of Lemma 4.1.3 and using (Z
′
• NF)τ is a (G, ˜︁Q)-martingale.

Remark 6.1.2. For any F-optional process X that belongs to Io(NG,G) we

have that X • [NG, NF] = X∆N • NG is a G-martingale. This is due to the

fact that |X∆N | ≤ |X|. This implies that X∆N ∈ Io(NG,G), and hence

X • [NG, NF] = X∆N • NG is a G-martingale.

Theorem 6.1.3. There exists a positive constant C such that if the quintuplet

(Y G, ZG, Z
′G, KG,MG) is a class-(D)-(G, ˜︁Q, T ∧ τ)-solution to (6.1.1), then

E
˜︁Q [︃ sup

0≤t≤T∧τ
(Y G

t )2 +

∫︂ T∧τ

0

|ZG
s |2ds+

∫︂ T∧τ

0

|Z ′G
s |2dN + [MG,MG]T∧τ

]︃
+ E

˜︁Q [︁(KG
T∧τ )2

]︁
≤ C

{︃
∥ξ∥2

L2( ˜︁Q)
+ ∥

∫︂ T∧τ

0

|f(s)|ds∥2
L2( ˜︁Q)

+ ∥S+∥2DT∧τ ( ˜︁Q,2)

}︃
,

(6.1.4)

Proof. The proof mimicks the same footsteps of the proof of Theorem 4.1.4,

and uses (Z
′
• NF)τ is a (G, ˜︁Q)-martingale together with using Remark 6.1.2.

Theorem 6.1.4. Let (Y G,i, ZG,i, Z
′G,i, KG,i,MG,i) be a class-(D)-(G, ˜︁Q, T∧τ)-

solution to the RBSDE (6.1.1) that correspond to (fi, Si, ξ
i), i = 1, 2 respec-
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tively. Then there exist a positive constants C1 and C2 such that

E
˜︁Q [︃ sup

0≤t≤T∧τ
(δY G

t )2 +

∫︂ T∧τ

0

|δZG
s |2ds+

∫︂ T∧τ

0

|δZ ′G
s |2dN + [δMG, δMG]T∧τ

]︃

≤ C1∆ ˜︁Q(δξ, δf, δS) + C2∥δSG
s ∥DT∧τ ( ˜︁Q,2)

⌜⃓⃓⎷ 2∑︂
i=1

∆ ˜︁Q(ξ(i), f (i), (S(i))+). (6.1.5)

where ∆ ˜︁Q(ξ(i), f (i), (S(i))+) for i = 1, 2 and ∆ ˜︁Q(δξ, δf, δS) are defined via

(4.1.8).

The proof of this theorem mimicks the same footsteps of the proof of Theorem

4.1.6 by using the fact that (Z
′
•NF)τ is (G, ˜︁Q)-martingale together with using

Remark 6.1.2.

6.1.2 Existence and uniqueness for the G-RBSDE solu-

tion and its relationship to F-RBSDE

In this subsection, we prove the existence and uniqueness of the solution to

the RBSDE (6.1.1), and we establish explicit connection between this RBSDE

and its F-RBSDE counterpart.

Theorem 6.1.5. Suppose that T <∞ and there is p ∈ (1,∞) such that

∥
∫︂ T∧τ

0

|f(s)|ds+ |ξ| + sup
0≤u≤τ∧T

S+
u ∥L2( ˜︁Q) < +∞. (6.1.6)

and consider (fF, SF, ξF) and V F given by

fF := ˜︁Ef, SF := ˜︁ES, ξF := ˜︁ETh(op)T , V F := 1 − ˜︁E , ˜︁E := E
(︃
− 1˜︁G ·Do,F

)︃
.(6.1.7)
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Then the following assertions hold.

(a) The following RBSDE under F, associated to the triplet
(︁
fF, SF, ξF

)︁
,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dYs = −fF(s)ds− h
(op)
s dV F

s − dKs + ZsdWs + Z
′
sdN

F
s ,

YT = ξ, Yt ≥ SF
t 1{t <T} + ξF1{t =T},

∫︂ T

0

(Yt− − SF
t−)dKt = 0, P -a.s.,

(6.1.8)

has a unique L2(P,F)-solution (Y F, ZF, Z
′F, KF) that satisfies

Y F
t = ess sup

σ∈J T
t (F)

E

[︃∫︂ σ

t

fF(s)ds+

∫︂ σ

t

h(op)s dV F
s + SF

σ1{σ<T} + ξFI{σ=T}

⃓⃓⃓
Ft

]︃
.

(6.1.9)

(b) The RBSDE defined in (6.1.1) has a unique L2( ˜︁Q,G)-solution, denoted by

(Y G, ZG, Z
′G, KG,MG) given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Y G =

Y F˜︁E I[[0,τ [[ + ξI[[τ,∞[[, ZG =
ZF˜︁E− I]]0,τ ]], Z

′G =
Z

′F˜︁E− I]]0,τ ]]
KG =

1˜︁E− • (KF)τ , and MG = (
Y F˜︁E − h(op)) • NG − (h(pr) − h(op)) • D.

(6.1.10)

Proof. Assertion (a) is the linear case of a general RBSDE under F given in

Subsection 6.2.2, see (6.2.17). Thus, the proof of the existence and uniqueness

of the L2(F, P )-solution under (6.1.6) (respectively the solution under (6.1.2))

of this RBSDE will be omitted here, and we refer the reader to Subsection

6.2.2. Furthermore, on the one hand, the proof of (6.1.9) mimics exactly

the proof of (6.1.3). On the other hand, under the assumption (6.1.6), the

existence and uniqueness of the L2( ˜︁Q,G)-solution to (6.1.1) satisfying (6.1.10)
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follows immediately from Theorems 6.1.3 and 6.1.4 and assertion (b). Hence,

the remaining proof focuses on proving assertion (b).

Under the assumption (6.1.2), the existence and uniqueness of the solution to

(6.1.1) follows from combining Lemma 6.1.1 and the theory of Snell envelop,

see [41] for details. Thus, assertion (b) follows as soon as we prove that the

solution (Y G, ZG, Z
′G, KG,MG) described by Lemma 6.1.1 satisfies (6.1.10).

To this end, on the one hand, thanks to the Doob-Meyer decomposition under

( ˜︁Q,G), we remark that for any solution (Y, Z, Z
′
, K,M) to (6.1.1) we have

(Y, Z, Z
′
, K,M) = (Y G, ZG, Z

′G, KG,MG) if and only if Y = Y G. On the

other hand, due to (6.1.3), we have

Step 1.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Y G +

∫︁ τ∧T∧·
0

f(s)ds = S(XG;G, ˜︁Q)

with

XG :=
∫︁ τ∧T∧·
0

f(s)ds+ SI[[0,τ∧T [[ + h
(pr)
τ∧T I[[τ∧T,+∞[[.

Therefore, in order to apply Theorem 3.2.3-(b), we need to find the unique

pair (XF, k(pr)) associated to XG. To this end, we remark that

SI[[0,τ∧T [[ = SI[[0,τ [[I[[0,T [[ and h
(pr)
τ∧T I[[τ∧T,+∞[[I[[0,τ [[ = h

(pr)
T I[[0,τ [[I[[T,+∞[[,

and derive

XF =

∫︂ T∧·

0

f(s)ds+ SI[[0,T [[ + h
(pr)
T I[[T,+∞[[,
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and

k(pr) =

∫︂ T∧·

0

f(s)ds+ h
(pr)
T∧·

where its F-optional projection is

k(op) := MP
µ (k(pr)

⃓⃓
O(F)), µ := P ⊗D,

=

∫︂ T∧·

0

f(s)ds+ h
(op)
T∧· ,

where

h(op) := MP
µ (h(pr)

⃓⃓
O(F)), µ := P ⊗D.

Furthermore, we have the following

˜︁EXF − k(op) · ˜︁E =

∫︂ T∧·

0

fF(s)ds+ SFI[[0,T [[ + ξFI[[T,+∞[[ − h(op) · ˜︁E ,
=

∫︂ T∧·

0

fF(s)ds+ SFI[[0,T [[ + ξFI[[T,+∞[[ + (h(op) · V F)T ,

k(op) ˜︁E − k(op) · ˜︁E =

∫︂ T∧·

0

fF(s)ds+ (h(op) · V F)T + ˜︁Eh(op)I[[0,T [[ + ξFI[[T,+∞[[,

and

Y F + LF = S
(︁
LF + ξFI[[T,+∞[[ + SFI[[0,T [[;F, P

)︁
,

LF :=

∫︂ T∧·

0

fF(s)ds+

∫︂ T∧·

0

h(op)s dV F
s .
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Thus, by directly applying Theorem 3.2.3-(b) to Y G, on [[0, T ]], we obtain

Y G +

∫︂ τ∧T∧·

0

f(s)ds = S(XG;G, ˜︁Q)

=
S
(︂
XF ˜︁E − k(op) · ˜︁E ;F, P

)︂
˜︁E I[[0,τ [[ + (k(pr) − k(op)) ·DT

+

(︄
k(op) − k(op) · ˜︁E˜︁E

)︄
· (NG)T

=
S
(︂
XF ˜︁E − k(op) · ˜︁E ;F, P

)︂
˜︁E I[[0,τ [[ + (h(pr) − h(op)) ·DT

+

(︄
k(op) − k(op) · ˜︁E˜︁E

)︄
· (NG)T

=
S
(︂
XF ˜︁E − k(op) · ˜︁E ;F, P

)︂
˜︁E I[[0,τ [[ + (h(pr) − h(op)) ·DT

+
LF + ˜︁Eh(op)I[[0,T [[ + ξFI[[T,+∞[[˜︁E · (NG)T

=
Y F + LF˜︁E I[[0,τ [[ +

LF˜︁E ·NG +
(︂
h(op)I[[0,T [[ + h

(op)
T I[[T,+∞[[

)︂
· (NG)T

+ (h(pr) − h(op)) ·DT

=
Y F˜︁E I[[0,τ [[ +

1˜︁E− · (LF)τ + h
(op)
T∧· ·D − h(op)˜︁G I]]0,τ∧T ]] ·Do,F + (h(pr) − h(op)) ·DT

=
Y F˜︁E I[[0,τ [[ +

∫︂ τ∧T∧·

0

f(s)ds+ ξI[[τ,+∞[[.

The sixth equality follows from Lemma 4.1.7. This proves assertion (b).

Step 2. Consider (Y G, ZG, Z
′G, KG,MG) given by (6.1.10), and define the

process Γ as follows.

Γ :=
Y F

E(− ˜︁G−1 • Do,F)
= Y FE(G−1 • Do,F), (6.1.11)
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and remark that, in virtue of the first equality in (6.1.10), we have

Y G = Γτ + (h(pr) − Γ) • D. (6.1.12)

Thanks to direct Ito’s calculations, and (6.1.8), we derive

dΓ =
Γ˜︁GdDo,F + E−(G−1 • Do,F)dY F

=
Γ − h(op)˜︁G dDo,F − f(t)dt− E−(G−1 • Do,F)dKF + ZFE−(G−1 • Do,F)dW

+ Z
′FE−(G−1 • Do,F)dNF. (6.1.13)

Then by inserting this latter equation in (6.1.12) and arranging terms we get

dY G

= −f(t)d(t ∧ τ) − E−(G−1 • Do,F)d(KF)τ − ΓdNG + h(pr)dD

− h(op)˜︁G dDo,F + E−(G−1 • Do,F)ZFdW τ + E−(G−1 • Do,F)Z
′Fd(NF)τ

= − f(t)d(t ∧ τ) − E−(G−1 • Do,F)d(KF)τ − (Γ − h(op))dNG

+ (h(pr) − h(op))dD + E−(G−1 • Do,F)ZFdW τ + E−(G−1 • Do,F)Z
′Fd(NF)τ

= − f(t)d(t ∧ τ) − dKG − dMG + ZGdW τ + Z
′Gd(NF)τ . (6.1.14)

This proves that the processes defined in (6.1.10) satisfy the first equation in

(6.1.1). To prove the second condition in (6.1.1), it is enough to remark that

we have

Y F
t ≥ SF

t I{t <T} + ξFI{t =T},
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which implies that for any t ∈ [0, T )

Y F
t

Et(− ˜︁G−1 • Do,F)
I{t <τ} ≥ StI{t <τ}.

This is obviously equivalent to the second condition of (6.1.1)). To prove the

Skorokhod condition (the last condition in (6.1.1)), we use the Skorokhod con-

dition for the quadruple (Y F, ZF, Z
′F, KF) (as it is the solution to the RBSDE

(6.1.8) with the data triplet (fF, SF, ξF) defined in (6.1.7)) given by

∫︂ T

0

(Y F
t− − SF

t−)dKF
t = 0, P -a.s.. (6.1.15)

As Y G
− − S− ≥ 0 on ]]0, τ ]] and KG is an increasing process, we get

∫︂ T

0

(Y G
t− − St−)dKG

t =

∫︂ T∧τ

0

(Y F
t− − SF

t−)Et−(G−1 • Do,F)2dKF
t

≤
∫︂ T

0

(Y F
t− − SF

t−)Et−(G−1 • Do,F)2dKF
t = 0, P -a.s..

It is clear that the last equality is equivalent to (6.1.15) due the fact that KF

is nondecreasing and Y F
− − SF

− ≥ 0 . This ends the second step.

6.2 The case of general generator f

We finally prove the existence and uniqueness to the solution of RBSDE with

general generator and a filtration F = F(N,W ) is generated by the brownian

motion W and the poisson process N . In addition to the settings that is given
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by Section 6.1, we assume that there exists a positive constant CLip such that

|f(t, y1, z1, z
′

1) − f(t, y2, z2, z
′

2)| ≤ CLip(|y1 − y2| + ∥z1 − z2∥ +
√
λ∥z′

1 − z
′

2∥),

(6.2.1)

for all y1, y2 ∈ R ,z1, z2 ∈ Rd and z
′
1, z

′
2 ∈ Rl.

In this section, we are interested in the following RBDES,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dYt = −f(t, Yt, Zt, Z
′
t)d(t ∧ τ) − d(Kt∧τ +Mt∧τ )

+ZtdW
τ
t + Z

′
td(NF

t )τ ,

Yτ = ξ = YT , Yt ≥ St ; 0 ≤ t < T ∧ τ,

E

[︃∫︂ T∧τ

0

(Yt− − St−)dKt

]︃
= 0,

(6.2.2)

where (ξ, S, f) is such that S is F(N,W )-adapted and RCLL process, f(t, y, z, z
′
)

is a Prog(F) × B(R) × B(Rd) × B(Rl \ {0})-measurable that satisfies the as-

sumption (6.2.1), and ξ ∈ L2(GT∧τ ).

6.2.1 Important estimates for the solution

This subsection derives a number of norm-estimates for the solution of the

RBSDEs when this exists. These inequalities play important role in the proof

of the existence of uniqueness of the solution of this RBSDE on the one hand.

On the other hand, the role of these estimates in studying the stability of

RBSDEs is without reproach.

Recall that as λ • (t ∧ τ) is the compensator for N τ in (G, ˜︁Q), then for any
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predictable process H that is bounded or nonnegative, we have

E
˜︁Q [︃∫︂ T∧τ

0

HdN

]︃
= E

˜︁Q [︃∫︂ T∧τ

0

Hλds

]︃
.

Lemma 6.2.1. The following assertions hold.

(a) Let (Y G, ZG, Z
′G, KG,MG) be a class-(D)-(G, ˜︁Q, T ∧τ)-solution to the RB-

SDEs (6.2.2) that corresponds to (f, S, ξ). Then for any t ∈ [0, T ], we have

Y G
t = ess sup

θ∈T T∧τ
t∧τ

E
˜︁Q
[︄∫︂ θ∧τ

t∧τ
f(s,YG

s ,Z
G
s ,Z

′G
s )ds + SθI{θ<T∧τ} + ξI{θ=T∧τ}

⃓⃓⃓⃓
⃓Gt

]︄
.

(6.2.3)

(b) Let (Y G
i , Z

G
i , Z

′G
i , K

G
i ,M

G
i ) be a class-(D)-(G, ˜︁Q, T ∧τ)-solution to the RB-

SDEs (6.2.2) that corresponds to (fi, Si, ξ
i), i = 1, 2 respectively. Then for any

α > 0, the following holds

exp

(︃
α(t ∧ τ)

2

)︃
|δY G

t |

≤ E
˜︁Q
⎡⎣ sup

0<s≤T∧τ
eαs/2|δSs| + eα(T∧τ)/2|δξ| +

CLip√
α

√︄∫︂ T∧τ

0

eαs(δZG
s )2ds

⃓⃓⃓⃓
⃓ Gt

⎤⎦
+ E

˜︁Q
⎡⎣CLip√

α

√︄∫︂ T∧τ

0

eαs(δZ ′G
s )2dN +

CLip√
α

√︄∫︂ T∧τ

0

eαs|δY G
s |2ds

⃓⃓⃓⃓
Gt

⎤⎦
+ E

˜︁Q
⎡⎣√︄∫︂ T∧τ

0

eαs|δfs|2ds
⃓⃓⃓⃓
Gt

⎤⎦ . (6.2.4)

Proof. The proof of this lemma follows the same footsteps of proving Lemma
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5.1.1, by choosing p = q = 2 and observing that

∆ft := f1(t, Y
G,1
t , ZG,1

t , Z
′G,1
t ) − f2(t, Y

G,2
t , ZG,2

t , Z
′G,2
t ),

and that |∆fs| ≤ |δfs| + CLip|δY G
s | + CLip|δZG

s | + CLip

√
λ|δZ ′G|s, and noting

that (︃∫︂ T∧τ

t∧τ
eαs/2δZ

′G
s dN

F
)︃2

=

(︃∫︂ T∧τ

t∧τ
eαs(δZ

′G
s )2dN

)︃
.

Theorem 6.2.2. Let (Y G, ZG, Z
′G,MG, KG) be a class-(D)-(G, ˜︁Q, T ∧ τ)-

solution to the RBSDE (6.2.2) for the triplet (f, S, ξ). Then for α big enough,

there exists a positive constant C := C(α, T ) that depends on (α, T ) only such

that

E
˜︁Q
[︄

sup
0≤s≤T∧τ

eαs|Y G
s |2 +

(︃∫︂ T∧τ

0

eαt/2dKG
t

)︃2

+

∫︂ T∧τ

0

eαs|ZG
s |2ds

]︄

+ E
˜︁Q [︃∫︂ T∧τ

0

eαs(Z
′G
s )2dN +

∫︂ T∧τ

0

eαsd[MG,MG]s

]︃
≤ CE

˜︁Q [︃ξ2 +

∫︂ T∧τ

0

eαs|f(s, 0, 0, 0)|2ds+ sup
0≤s≤T∧τ

eαs(S+
s )2
]︃
.

Proof. Thanks to the BSDE (6.2.2) and Ito’s formula, we get

∫︂ T∧τ

0

eα
t
2dKG

t

= −
∫︂ T∧τ

0

eα
t
2dY G

t −
∫︂ T∧τ

0

eα
t
2f(t, Y G

t , Z
G
t , Z

′G
t )dt−

∫︂ T∧τ

0

eα
t
2dMG

t

+

∫︂ T∧τ

0

eα
t
2ZG

t dW
τ
t +

∫︂ T∧τ

0

eα
t
2Z

′G
t dN

F
t
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Ito
= −eα

T
2 Y G

T + Y G
0 +

∫︂ T∧τ

0

eα
t
2 (
α

2
Y G
t − f(t, Y G

t , Z
G
t , Z

′G
t ))dt−

∫︂ T∧τ

0

eα
t
2dMG

t

+

∫︂ T∧τ

0

eα
t
2ZG

t dWt +

∫︂ T∧τ

0

eα
t
2Z

′G
t dN

F
t

then

E
˜︁Q [︃∫︂ T∧τ

0

eα
t
2dKG

t

⃓⃓
Gt∧τ

]︃
≤ E

˜︁Q [︃(2 + T ) sup
0≤s≤T∧τ

eαs/2(Y G
s ) +

∫︂ T∧τ

0

eα
t
2 |f(t, Y G

t , Z
G
t , Z

′G
t )|dt

⃓⃓
Gt∧τ

]︃
≤ E

˜︁Q [︃(2 + T ) sup
0≤s≤T∧τ

eαs/2(Y G
s )
⃓⃓
Gt∧τ

]︃
+ CLipE

˜︁Q [︃∫︂ T∧τ

0

eα
t
2 (|f(t, 0, 0, 0)| + |Y G

t | + |ZG
t | +

√
λ|Z ′G

t |)dt
⃓⃓
Gt∧τ

]︃
≤ E

˜︁Q [︃(2 + 2T ) sup
0≤s≤T∧τ

eαs/2(Y G
s )
⃓⃓
Gt∧τ

]︃
+ CLipE

˜︁Q [︃∫︂ T∧τ

0

eα
t
2 (|f(t, 0, 0, 0)| + |ZG

t | +
√
λ|Z ′G

t |)dt
⃓⃓
Gt∧τ

]︃
.

Therefore, by using this latter equality together with Theorem 2.1.23 and

(
∑︁n

i=1 xi)
2 ≤ n

∑︁n
i=1 x

2
i , we derive

E
˜︁Q
[︄(︃∫︂ T∧τ

0

eα
t
2dKG

t

)︃2
]︄
≤ CT

(︂
∥eα

t
2Y G∥2DT∧τ ( ˜︁Q,2)

+ ∥eα
t
2f(t, 0, 0, 0)∥2ST∧τ ( ˜︁Q,2)

)︂
+ CT

(︂
∥eα

t
2ZG∥2ST∧τ ( ˜︁Q,2)

+ ∥eα
t
2Z

′G∥2L2
T∧τ (N, ˜︁Q)

)︂
.

(6.2.5)

On the one hand, applying (6.2.4) by putting

(f1, S1, ξ
1) ≡ (0, 0, 0) and (f2, S2, ξ

2) ≡ (f, S, ξ),

154



and then using Doob’s inequality under ( ˜︁Q,G), we have that

∥eα·/2Y G∥DT∧τ ( ˜︁Q,2)

≤ CDB

{︂
∥eα·/2S+∥DT∧τ ( ˜︁Q,2) + ∥eα(T∧τ)/2ξ∥L2( ˜︁Q)

}︂
+
CDB√
α
∥eα·/2f(·, 0, 0, 0)∥ST∧τ ( ˜︁Q,2)

+
CDBCLip√

α

{︂
∥eα·/2ZG∥ST∧τ ( ˜︁Q,2) + ∥eα·/2Z ′G∥L2

T∧τ (N, ˜︁Q) + ∥eα·/2Y G∥ST∧τ ( ˜︁Q,2)

}︂
.

(6.2.6)

On the other hand, by combining Itô applied to eαt(Y G
t )2, (6.2.2), and Young’s

inequality (i.e. 2xy ≤ ϵx2 + y2/ϵ for any ϵ > 0), we derive

C⏟ ⏞⏞ ⏟
(α− 2CLip − 2C2

Lip − ϵ−1)

∫︂ T∧τ

t∧τ
eαs(Y G

s )2ds+
1

2

∫︂ T∧τ

t∧τ
eαs(ZG

s )2ds

+
1

2

∫︂ T∧τ

t∧τ
eαs|Z ′G

s |2dN +

∫︂ T∧τ

t∧τ
eαtd[MG,MG]s

≤ eα(T∧τ)ξ2 + ϵ

∫︂ T∧τ

t∧τ
eαs|f(s, 0, 0, 0)|2ds+ 2

∫︂ T∧τ

t∧τ
eαsY G

s−dK
G
s

+ 2

∫︂ T∧τ

t∧τ
eαs(Y G

s− − ∆KG
s ))dMG + 2

∫︂ T∧τ

t∧τ
eαs(Y G

s−)ZG
s dW

+ 2

∫︂ T∧τ

t∧τ
eαs(Y G

s−)Z
′G
s dN

F

≤ eα(T∧τ)ξ2 + ϵ

∫︂ T∧τ

t∧τ
eαs|f(s, 0, 0, 0)|2ds+ 2

∫︂ T∧τ

t∧τ
eαsS+

s−dK
G
s

+ 2

∫︂ T∧τ

t∧τ
eαs(Y G

s− − ∆KG
s ))dMG + 2

∫︂ T∧τ

t∧τ
eαs(Y G

s−)ZG
s dW
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+ 2

∫︂ T∧τ

t∧τ
eαs(Y G

s−)Z
′G
s dN

F, (6.2.7)

where the last equality is due to the Skorokhod’s condition. Thus, by taking

the conditional expectation for both sides of the above inequality, and then

by combining the result with (6.2.6) and (6.2.5), and noting that α is big we

derive the following inequality

∥eα·/2Y G∥DT∧τ ( ˜︁Q,2) + C1∥eα·/2Y G∥ST∧τ ( ˜︁Q,2)

+ C2∥eα·/2ZG∥ST∧τ ( ˜︁Q,2) + C
′

2∥eα·/2Z
′G∥L2

T∧τ (N, ˜︁Q) + C3∥eα·/2 • MG∥M2
T ( ˜︁Q)

≤ C4∥eα·/2f(·, 0, 0, 0)∥ST∧τ ( ˜︁Q,2) + C5∥ξ∥L2( ˜︁Q) + C6∥eα·/2S+∥DT∧τ ( ˜︁Q,2)

+ C7∥eα/2·S+∥1/2
DT∧τ ( ˜︁Q,2)

∥eα/2 • KG
T ∥

1/2

L2( ˜︁Q)
,

≤ C4∥eα·/2f(·, 0, 0, 0)∥ST∧τ ( ˜︁Q,2) + C5∥ξ∥L2( ˜︁Q) + C6∥eα·/2S+∥DT∧τ ( ˜︁Q,2)

+ ϵ2C7∥eα/2·S+∥DT∧τ ( ˜︁Q,2) +
C7

ϵ2
∥eα/2 • KG

T ∥L2( ˜︁Q),

≤ C4∥e
α
2
·f(·, 0, 0, 0)∥ST∧τ ( ˜︁Q,2) + C5∥ξ∥L2( ˜︁Q) + (C6 + ϵ2C7)∥e

α
2
·S+∥DT∧τ ( ˜︁Q,2)

+
C7CT

ϵ2

(︂
∥eα

t
2Y G∥2DT∧τ ( ˜︁Q,2)

+ ∥eα
t
2f(t, 0, 0, 0)∥2ST∧τ ( ˜︁Q,2)

+ ∥eα
t
2ZG∥2ST∧τ ( ˜︁Q,2)

)︂
+
C7CT

ϵ2

(︂
∥eα

t
2Z

′G∥2L2
T∧τ (N, ˜︁Q)

)︂
(6.2.8)

The proof is done by choosing appropriate ϵ2.

Theorem 6.2.3. Let (Y G,i, ZG,i, Z
′G,i, KG,i,MG,i) be a class-(D)-(G, ˜︁Q, T∧τ)-

solution to the RBSDE (6.2.2) that corresponds to (fi, Si, ξ
i), i = 1, 2 respec-

tively. Then for any α such that α ≥ 1+4CLip+8C2
Lip, there exist positive con-

stants ˆ︁Ci := ˆ︁Ci(α), i = 1, .., 4 that depend on (α) only such that limα→∞ ˆ︁C1 = 0
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and

∥eα·/2δY G∥DT∧τ ( ˜︁Q,2) + ∥eα·/2δY G∥ST∧τ ( ˜︁Q,2) + ∥eα·/2δZG∥ST∧τ ( ˜︁Q,2)

+ ∥δZ ′G∥L2
T∧τ (N, ˜︁Q) + ∥eα(τ∧·)/2 • δMG∥M2( ˜︁Q)

≤ ˆ︁C1∥eα·/2δf∥ST∧τ ( ˜︁Q,2) + ˆ︁C2∥eα(T∧τ)/2δξ∥L2( ˜︁Q)

+ ˆ︁C3∥eα·/2δS∥DT∧τ ( ˜︁Q,2) + ˆ︁C4

⌜⃓⃓⎷∥eα·/2δS∥DT∧τ ( ˜︁Q,2)

{︄
2∑︂

i=1

∆i

}︄
. (6.2.9)

Here (δY G, δZG, δZ
′G, δMG, δKG) and (δf, δS, δξ) are given by

δY G := Y G,1 − Y G,2, δZG := ZG,1 − ZG,2, δZ
′G := Z

′G,1 − Z
′G,2,

δMG := MG,1 −MG,2
2 , δKG := KG,1 −KG,2, δS := S1 − S2,

δξ := ξ1 − ξ2, δft := f1(t, Y
G,1
t , ZG,1

t , Z
′G,1
t ) − f2(t, Y

G,1
t , ZG,1

t , Z
′G,1
t ).

and

∆i

:= ∥eα(T∧τ)/2ξ(i)∥L2( ˜︁Q) + ∥eα(τ∧·)(S(i))+∥ST ( ˜︁Q,2) + ∥eα(τ∧·)/2f (i)(·, 0, 0, 0)∥ST ( ˜︁Q,2).

Proof. We start by the following simple remark that is due to the Lipschitz

assumption on f

|∆ft| := |f1(t, Y G,1, ZG,1, Z
′G,1) − f2(t, Y

G,2, ZG,2, Z
′G,2)|

≤ |δft| + CLip|δY G
t | + CLip|δZG

t | + CLip

√
λ|δZ ′G

t |. (6.2.10)
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On the other hand, by using Lemma 6.2.1-(b) and Doob’s inequality, we get

∥eα·/2δY G∥DT∧τ ( ˜︁Q,2)

≤ CDB

{︃
∥e

α·
2 δS∥DT∧τ ( ˜︁Q,2) + ∥e

α
2
(T∧τ)δξ∥L2( ˜︁Q) +

1√
α
∥e

α·
2 δf∥ST∧τ ( ˜︁Q,2)

}︃
(6.2.11)

+
CDBCLip√

α

{︂
∥e

α
2
·δZG∥ST∧τ ( ˜︁Q,2) + ∥e

α
2
·δZ

′G∥L2
T∧τ (N, ˜︁Q) + ∥eα·/2δY G∥ST∧τ ( ˜︁Q,2)

}︂
.

By combining Itô applied to eαt(δY G
t )2, (δY G

0 )2 ≥ 0, and putting

LG : = eα(τ∧·)(δY G
− − 2∆(δKG

s )) · δMG + eα(τ∧·)(δY G
− )δZG ·W τ

+eα(τ∧·)(δY G
− )δZ

′G ·NF, (6.2.12)

which belongs to Mloc( ˜︁Q,G), we derive

eαt(δY G
t∧τ )2

= (δY G
0 )2 + αeαt(δY G

t )2 • (t ∧ τ) + 2eαtδY G
t− • δY G

t∧τ + eαt • [δY G, δY G]t∧τ

= (δY G
0 )2 + α

∫︂ t∧τ

0

eαs(δY G
s )2ds+ 2

∫︂ t∧τ

0

eαs(δY G
s−)d(δY G

s )

+

∫︂ t∧τ

0

eαs(δZG
s )2ds+

∫︂ t∧τ

0

eαs(δZ
′G
s )2dN

+

∫︂ t∧τ

0

eαtd[δ(MG +KG), δ(MG +KG)]s

= (δY G
0 )2 + α

∫︂ t∧τ

0

eαs(δY G
s )2ds− 2

∫︂ t∧τ

0

eαs(δY G
s )∆fsds

− 2

∫︂ t∧τ

0

eαs(δY G
s−)dδKG

s − 2

∫︂ t∧τ

0

eαs(δY G
s−)dδMG

s

+ 2

∫︂ t∧τ

0

eαs(δY G
s−)δZ

′GdNF
s +

∫︂ t∧τ

0

eαs(δZG
s )2ds+

∫︂ t∧τ

0

eαs(δZ
′G
s )2dN
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+ 2

∫︂ t∧τ

0

eαs(δY G
s−)δZGdWs +

∫︂ t∧τ

0

eαtd[δ(MG +KG), δ(MG +KG)]s

Now, by taking t = T we have

eαT (δY G
T∧τ )2 = (δY G

0 )2 + α

∫︂ T∧τ

0

eαs(δY G
s )2ds− 2

∫︂ T∧τ

0

eαs(δY G
s )∆fds

− 2

∫︂ T∧τ

0

eαs(δY G
s−)dδKG

s − 2

∫︂ T∧τ

0

eαs(δY G
s−)dδMG

s

+ 2

∫︂ T∧τ

0

eαs(δY G
s−)δZGdWs + 2

∫︂ T∧τ

0

eαs(δY G
s−)δZ

′GdNF
s +

∫︂ T∧τ

0

eαs(δZG
s )2ds

+

∫︂ T∧τ

0

eαs(δZ
′G
s )2dN +

∫︂ T∧τ

0

eαtd[δ(MG +KG), δ(MG +KG)]s

therefore,

(δY G
0 )2 + α

∫︂ T∧τ

0

eαs(δY G
s )2ds+

∫︂ T∧τ

0

eαs(δZG
s )2ds+

∫︂ T∧τ

0

eαs(δZ
′G
s )2dN

+

∫︂ T∧τ

0

eαtd[δMG, δMG]s = eαT (δY G
T∧τ )2 + 2

∫︂ T∧τ

0

eαs(δY G
s )∆fds

+ 2

∫︂ T∧τ

0

eαs(δY G
s−)dδKG

s − [δKG, δKG]T∧τ + LG

≤ eαT (δY G
T∧τ )2 + 2

∫︂ T∧τ

0

eαs|δY G
s |∆f |ds+ 2

∫︂ T∧τ

0

eαs(δY G
s−)dδKG

s + LG

hence,

(δY G
0 )2 + α

∫︂ T∧τ

0

eαs(δY G
s )2ds+

∫︂ T∧τ

0

eαs(δZG
s )2ds+

∫︂ T∧τ

0

eαs(δZ
′G
s )2dN

+

∫︂ T∧τ

0

eαtd[δMG, δMG]s

≤ 2

∫︂ T∧τ

0

eαs|δY G
s |(|δf(s, Y G

1 , Z
G
1 , Z

′G
1 )| + CLip|δY G

s | + CLip|δZG
s |)ds+ LG
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+ eαT (δY G
T∧τ )2 + 2

∫︂ T∧τ

0

eαs|δY G
s |CLip

√
λ|δZ ′G

s |ds+ 2

∫︂ T∧τ

0

eαs(δY G
s−)dδKG

s

= eαT (δY G
T∧τ )2 + 2

∫︂ T∧τ

0

eαs|δY G
s ||δf(s, Y G

1 , Z
G
1 , Z

′G
1 )|ds

+ 2

∫︂ T∧τ

0

eαsCLip|δY G
s |2ds+ 2

∫︂ T∧τ

0

eαsCLip|δY G
s ||δZG

s |ds+

2

∫︂ T∧τ

0

eαsCLip|δY G
s ||δZ ′G

s |
√
λds+ 2

∫︂ T∧τ

0

eαs(δY G
s−)dδKG

s + LG

Y oung

≤ eαT (δY G
T∧τ )2 +

1

ϵ

∫︂ T∧τ

0

eαs|δY G
s |2ds+ ϵ

∫︂ T∧τ

0

eαs|δf(s, Y G
1 , Z

G
1 , Z

′G
1 )|2ds

+ 2

∫︂ T∧τ

0

eαsCLip|δY G
s |2ds+ 2C2

Lip

∫︂ T∧τ

0

eαs|δY G
s |2ds+

1

2

∫︂ T∧τ

0

eαs|δZG
s |2ds

+ 2C2
Lip

∫︂ T∧τ

0

eαs|δY G
s |2ds+

1

2

∫︂ T∧τ

0

eαs|δZ ′G
s |2λds+ 2

∫︂ T∧τ

0

eαs(δY G
s−)dδKG

s

+ LG

therefore

(δY G
0 )2 +

C⏟ ⏞⏞ ⏟
(α− 2CLip − 4C2

Lip −
1

ϵ
)

∫︂ T∧τ

0

eαs(δY G
s )2ds+

1

2

∫︂ T∧τ

0

eαs(δZG
s )2ds

+

∫︂ T∧τ

0

eαs(δZ
′G
s )2dN +

1

2

∫︂ T∧τ

0

eαs|δZ ′G
s |2λds+

∫︂ T∧τ

0

eαtd[δMG, δMG]s

≤ eαT (δY G
T∧τ )2 +

∫︂ T∧τ

0

eαsϵ|δf(s, Y G
1 , Z

G
1 , Z

′G
1 )|2ds+ 2

∫︂ T∧τ

0

eαs(δY G
s−)dδKG

s

+ LG

Skorohod

≤ eαT (δY G
T∧τ )2 +

∫︂ T∧τ

0

eαsϵ|δf(s, Y G
1 , Z

G
1 , Z

′G
1 )|2ds

+ 2

∫︂ T∧τ

0

eαs|δSs−|dVar
s

(δKG
s ) + LG

= eαT (δξ)2 +

∫︂ T∧τ

0

eαsϵ|δf(s, Y G
1 , Z

G
1 , Z

′G
1 )|2ds+ 2

∫︂ T∧τ

0

eαs|δSs−|dVar
s

(δKG
s )
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+ LG, (6.2.13)

Therefore, by taking the expected value for both sides of 6.2.13), we derive

C∥eα·/2δY G∥ST∧τ ( ˜︁Q,p) + 2−1∥eα·/2δZG∥ST∧τ ( ˜︁Q,p) + 2−1∥eα·/2δZ ′G∥ET∧τ ( ˜︁Q,p)

+ ∥eα(τ∧·)/2 · δMG∥Mp
T ( ˜︁Q) ≤ ϵ∥eα·/2δf∥ST∧τ ( ˜︁Q,p) + ∥eα(T∧τ)/2δξ∥Lp( ˜︁Q)

+ 2∥eα·/2δS∥1/2
DT∧τ ( ˜︁Q,p)

∥VarT(eα·/2 · δKG)∥1/2
Lp(˜︁Q)

Then by combining this equality with (6.2.11) we obtain

∥eα·/2δY G∥DT∧τ ( ˜︁Q,p) +

(︃
C − CDBCLip√

α

)︃
∥eα·/2δY G∥ST∧τ ( ˜︁Q,p)

+

(︃
1

2
− CDBCLip√

α

)︃
∥eα·/2δZG∥ST∧τ ( ˜︁Q,p) + ∥eα(τ∧·)/2 · δMG∥Mp

T ( ˜︁Q)

+

(︃
1

2
− CDBCLip√

α

)︃
∥eα·/2δZ ′G∥ET∧τ ( ˜︁Q,p)

≤
(︃
ϵ+

CDB√
α

)︃
∥eα·/2δf∥ST∧τ ( ˜︁Q,p) + (1 + CDB)∥eα(T∧τ)/2δξ∥Lp( ˜︁Q)

+ CDB∥e
α·
2 δS∥DT∧τ ( ˜︁Q,p) + 2∥eα·/2δS∥1/2

DT∧τ ( ˜︁Q,p)
∥VarT(eα·/2 · δKG)∥1/2

Lp(˜︁Q)

(6.2.14)

Then here we take ϵ = 2/α, then C = α
2
− 2CLip − 4C2

Lip, and take α large

such that 1
2
≤ α

2
− 2CLip − 4C2

Lip, and remark that for this α we have

0 <
1

2
− CDBCLip√

α
≤ min

{︃
1, C − CDBCLip√

α

}︃
.
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Furthermore, by Theorem 6.2.2, we get

∥VarT(eα·/2 • δKG)∥L2(˜︁Q) ≤ ∥(eα·/2 • KG,1)T∥L2(˜︁Q) + ∥(eα·/2 • KG,2)T∥L2(˜︁Q)

≤ ˆ︁C 2∑︂
i=1

∥e
α
2
(T∧τ)ξ(i)∥L2( ˜︁Q) + ∥eα(τ∧·)(S(i))+∥ST ( ˜︁Q,2) + ∥e

α
2
(τ∧·)f (i)(·, 0, 0)∥ST ( ˜︁Q,2).

Therefore, by plugging this inequality in (6.2.14), the inequality (6.2.9) follows

immediately with

ˆ︁C1 =

2
α

+ CDB√
α

1
2
− CDBCLip√

α

, ˆ︁C2 =
1 + CDB

1
2
− CDBCLip√

α

, ˆ︁C3 =
CDB

1
2
− CDBCLip√

α

, ˆ︁C4 =
2
√︁ˆ︁C

1
2
− CDBCLip√

α

.

It is also clear that ˆ︁C1 goes to zero when α goes to infinity. This ends the

proof of the theorem.

6.2.2 Existence, uniqueness & connection to F-RBSDEs

In this section we find the RBSDE under F that is connected to the RBSDE

(6.2.2) under G. Also, we elaborate our results on existence and uniqueness

of the solution to (6.2.17). We will assume that

E

[︃˜︁ETKT (f, S, h(op)) +

∫︂ T

0

Ks(f, S, h
(op))dV F

s

]︃
< +∞, (6.2.15)

where

Kt(f, S, h
(op)) := |h(op)t |2 +

∫︂ t

0

|f(s, 0, 0, 0)|2ds+ sup
0≤u≤t

(S+
u )2, t ≥ 0. (6.2.16)

Remark 6.2.4. Following the same footsteps of remark 5.1.4 we find the RB-
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SDE under the flow F as the following

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dY F
t = −fF(s, Y F

s , Z
F
s , Z

′F
s )ds− h

(op)
s dV F

s − dKF
t + ZF

s dWs + Z
′F
s dNF

s ,

Y F
T = ξF, Y F

t ≥ SF
t , t ∈ [0, T )

∫︂ T

0
(Y F

t− − SF
t−)dK

F
t = 0, P -a.s.,

(6.2.17)

where SF, ξF, and fF are given by

fF(s, y, z, z
′
) := ˜︁Esf (︂s, y ˜︁E−1

s , z ˜︁E−1
s , z′ ˜︁E−1

s

)︂
, SF

t := ˜︁EtSt, ξF := ˜︁ETh(op)T .

(6.2.18)

In the following theorem we give our main result of this section as the following

Theorem 6.2.5. Let G > 0 and ˜︁E be the process defined in (5.2.2). Then the

following assertions hold.

(a) The RBSDE (6.2.17)-(6.2.18) has a unique L2(P,F)-solution that we de-

note by (Y F, ZF, Z
′F, KF).

(b) There exists a unique L2( ˜︁Q,G)-solution to (6.2.2), denoted by the quintu-

plet (Y G, ZG, Z
′G, KG,MG), and is given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Y G
t =

Y F
t˜︁Et 1{t <τ} + ξ1{t≥τ}, ZG =

ZF˜︁Et I]]0,τ ]], Z
′G =

Z
′F˜︁Et I]]0,τ ]],

KG =
1˜︁E− • (KF)τ and MG = (

Y F˜︁E − h(op)) • NG − (h(pr) − h(op)) • D.

(6.2.19)

Proof. The proof of this theorem can be achieved in two steps. Step 1 focuses

in proving (a). While step 2 focuses in proving (b).

Step 1. The proof of existence and uniqueness of an L2(P,F)- soluoion to
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the RBSDE (6.2.17)-(6.2.18)) mimics exactly Step 1 in the proof of Theorem

5.1.27 with using [48] instead of [19], and will be omitted.

Step 2. Due to Theorem 6.2.3 the RBSDE (6.2.2) has at most one solution.

Thus, the proof of assertion (b) will follows immediately as soon as we prove

that (Y , Z, Z ′, K,M), give by

Y :=
Y F˜︁E I[[0,τ [[ + ξI[[τ,+∞[[, Z :=

ZF˜︁E I]]0,τ ]], K :=
1˜︁E− • (KF)τ ,

Z ′ :=
Z

′F˜︁Et I]]0,τ ]], and M := (
Y F˜︁E − h(op)) • NG − (h(pr) − h(op)) ·D,

is in fact a solution to (6.2.2). The proof of (6.2.19) mimics exactly Step 2

in the proof of Theorem 5.1.27 with using [44] instead of [19], and will be

omitted. This ends the proof the theorem.
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Chapter 7

Exponential hedging under

random horizon

This chapter focuses on giving some applications to RBSDEs in exponential

hedging. This shows a clear motivation to our studies of RBSDEs of Chapters

4, 5, and 6. This chapter has three sections. In the first section we give

some developments on minimal entropy martingale measures under random

horizon τ . The second and third sections address the exponential hedging

problem using its BSDEs and RBSDEs for the primal and the dual problems

resoectively. It is worth mentioning that this chapter is a preliminary version

of paper [5].
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7.1 Minimal entropy martingale measure for

(Sτ ,G)

This section addresses the minimal entropy martingale measure/density for

the model (Sτ G). To this end, we recall a useful lemma from Choulli and

Stricker (2005,2006).

Lemma 7.1.1. Let N be an H-semimartingale such that Z := E(N) > 0 Then

the following holds.

Z ln(Z) = Z−(1 + lnZ−) • N + Z− • HE(N,P ). (7.1.1)

Here,

HE(N,P ) =
1

2
⟨N c⟩ +

∑︂
0<s≤t

((1 + ∆N) ln(1 + ∆N) − ∆N) .

For the proof, we refer the reader to Choulli and Stricker (2005, 2006).

Lemma 7.1.2. Suppose G > 0 and let φ ∈ Io
loc(N

G,G) satsifying − ˜︁G < Gφ

and φ∆Do,F < ˜︁G. Then the following assertions hold.

(a) The following process

V (φ) :=
φ˜︁G1{ ˜︁G=G} • Do,F −

∑︂
0≤s<·

(︂
ln(1 − φs∆D

o,F
s˜︁Gs

)
)︂

(7.1.2)

is a RCLL and F-adapted process with locally integrable variation.

(b) If furthermore 0 ≤ φ, then V (φ) is nondecreasing.
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(c) We always have we have

E(φ • NG) =
(︂

1 +
φG˜︁G • D

)︂
exp

(︁
−I]]0,τ [[ • V (φ)

)︁
. (7.1.3)

Proof. The assertions (a) and (b) are obvious and will be omitted here. The

rest of the proof proves assertion (c). First remark that

∆NG = ∆D − ˜︁G−1I]]0,τ ]]∆D
o,F =

(︃
1 − ∆Do,F˜︁G

)︃
∆D − ˜︁G−1I]]0,τ [[∆D

o,F

=
G˜︁G∆D − ˜︁G−1I]]0,τ [[∆D

o,F.

Therefore, this equality implies that

∑︂
0<s≤t

(︁
ln(1 + φs∆N

G
s ) − φs∆N

G
s

)︁
=
(︂

ln(1 +
φG˜︁G ) − φG˜︁G

)︂
• Dt +

∑︂
0<s≤t

(︂
ln(1 − φs∆D

o,F
s˜︁Gs

) +
φs∆D

o,F
s˜︁Gs

)︂
I]]0,τ [[(s)

Thus, a combination of this equality and the explicit form of the stochastic

exponential (see 2.1.5)) yields

Et(φ • NG) = exp

{︄
(φ • NG)t +

∑︂
0≤s<t

(︁
ln(1 + φs∆N

G
s ) − φs∆N

G
s

)︁}︄

= exp

⎧⎪⎨⎪⎩ − φ˜︁GI]]0,τ [[ • Do,F
t + ln(1 + φG˜︁Gs

) • Dt

+
∑︁

0<s≤t

(︂
ln(1 − φs∆Do,F

s˜︁Gs
) + φs∆Do,F

s˜︁Gs

)︂
I]]0,τ [[(s)

⎫⎪⎬⎪⎭
=
(︂

1 +
φG˜︁G • D

)︂
exp

⎧⎪⎨⎪⎩ − φ˜︁G1{ ˜︁G=G}I]]0,τ [[ • Do,F
t

+
∑︁

0<s≤t

(︂
ln(1 − φs∆Do,F

s˜︁Gs
)
)︂
I]]0,τ [[(s)

⎫⎪⎬⎪⎭ .
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This proves (7.1.3), and the proof of the lemma is complete.

Below, we elaborate our main results of this section that requires the following

notation

Zloc(S
τ ,G) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
ZτE(φ • NG)

E(G−1
− • m)τ

E(ψ • D) :

(Z, φ) ∈ Zloc(S,F) × Io
loc(N

G,G),

ψ ∈ L1
loc(
˜︁Ω,Prog(F), P ⊗D),

E[ψτ |Fτ ] = 0

max
(︂
−G˜︁Gφ, φ− φG˜︁G

)︂
< 1,

ψ > −1 P ⊗D − a.e.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(7.1.4)

Here Zloc(X,H) denotes the set of all H-local martingale deflators for the

model (X,H). Its definition can be found in [29], and which we recall below.

Definition 7.1.3. Let X be an H-semimartingale and Z be a process.

We call Z is a H-local martingale deflator for X (or called local martingale

density) if Z > 0, Z0 = 1, and there exists an H-predictable process φ such

that 0 < φ ≤ 1 and both processes Z and Z(φ • X) are H-local martingales.

Throughout the thesis, the set of all local martingale deflator for (X,H) will

be denoted by Zloc(X,H).

Thus, our main theorem in this section is the following

Theorem 7.1.4. Suppose that G > 0 and ∆Do,F = 0. Then the following

assertions hold.
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(a) The following equality holds.

inf
Z∈Zloc(Sτ ,G)

E[ZT ln(ZT )] = inf
Z∈Z+

loc(S
τ ,G)

E [ZT ln(ZT )] , (7.1.5)

where

Z+
loc(S

τ ,G) :=

{︃
ZτE(φ • NG)

E(G−1
− • m)τ

∈ Zloc(S
τ ,G) : φ ≥ 0

}︃
. (7.1.6)

(b) Let ˜︁Z be defined in (2.3.10) and put Zφ := E(φ • NG) for any φ ∈

Io
loc(N

G,G). Then

inf
Z∈Zloc(S,F)

E
[︂
ZT∧τ ˜︁ZT ln(ZT∧τ ˜︁ZT )

]︂
<∞ (7.1.7)

iff

inf

Z ∈ Zloc(S,F)

φ ∈ Φ+
b

E
[︂
ZT∧τ ˜︁ZTZ

φ
T ln(ZT∧τ ˜︁ZTZ

φ
T )
]︂
<∞, (7.1.8)

where

Φ+
b :=

{︄
φ ∈ Io

loc(N
G,G) : φ ≥ 0, and φ+ V (φ) is a bounded process

}︄
.

(7.1.9)
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(c) We always have

inf
Z∈Z+

loc(S
τ ,G)

E [ZT ln(ZT )] ≤ inf

Z ∈ Zloc(S,F)

φ ∈ Φ+
b

E
[︂
(ZT∧τ ˜︁ZTZ

φ
T ln(ZT∧τ ˜︁ZTZ

φ
T )
]︂
.

Proof. Remark that

{︂
Zτ ˜︁ZZφ

⃓⃓⃓
Z ∈ Zloc(S,F) and φ ∈ Φ+

b

}︂
⊂ Z+

loc(S
τ ,G).

Thus, assertion (c) follows immediately. The rest of this proof deals with

assertions (a) and (b) in two parts.

Part 1. Here we prove assertion (a). Remark that Z+
loc(S

τ ,G) ⊆ Zloc(S
τ ,G),

and hence

inf
Z∈Zloc(Sτ ,G)

E(ZT ln(ZT )) ≤ inf
Z+

loc(S
τ ,G)

E(ZT ln(ZT )).

To prove the reverse inequality, we denote by

φ+ := max(φ, 0) and φ− := max(−φ, 0),

and consider ZG ∈ Zloc(S
τ ,G) This implies the existence of (KF, φ, φ(pr))

which belongs to M0,loc(F) × Ioloc(N
G,G) × L1

loc(Ω̃,Prog(F), P ⊗D) such that

φ(pr) > −1 P ⊗D, E
[︁
φ(pr)
τ

⃓⃓
Fτ

]︁
I{τ<+∞} = 0, P − a.s.,

−G̃
G

< φ <
G̃

G̃−G
.
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ZG = E(T (KF) −G−1
− • T (m))E(φ • NG)E(φ(pr) • D).

Throughout the rest of the proof, we put

Z1 := E(T (KF) −G−1
− • T (m)), Z2 := E(φ • NG), Z3 := E(φ(pr) • D).

Then we derive

ZG lnZG = ZG ln(Z1Z2Z3) = ZG lnZ1 + ZG lnZ2 + ZG lnZ3

= Z2Z3(Z1 lnZ1) + Z1Z3(Z2 lnZ2) + Z1Z2(Z3 lnZ3).

Also we put

L1 := Z1 lnZ1, L2 := Z2 lnZ2, L3 := Z3 lnZ3.

Z1Z2L3 = (Z1Z2)− • L3 + (L3)− • (Z1Z2) + [Z1Z2, L3]

note that L3
− = E−(φ(pr) • D) ln(E−(φ(pr) • D)) = 1 ln 1 = 0, also note that

(Z1Z2)− • L3

= (Z1Z2)− • [(1 + ln(E−(φpr • D))Z3
−φ

pr • D + E−(φpr • D) • HE(φpr • D)]

= (Z1Z2)− • [(φpr • D) +HE(φpr • D)]

= (Z1Z2)− • (φpr • D) + (Z1Z2)− • HE(φpr • D)

= G− local martingale+ (Z1Z2)− • HE(φpr • D).

As HE(φpr •D) is non-decreasing and non-negative and (Z1Z2)− > 0, then we
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deduce that (Z1Z2)− • HE(φpr • D) ≥ 0. Hence, (Z1Z2)− • HE(φpr • D) = 0 iff

HE(φpr • D) = 0 iff φpr • D = 0 iff φpr = 0 . Therefore (Z1Z2)− • HE(φpr • D)

takes its infimum value when φpr = 0. Hence,

(Z1Z2)− • L3 ≥ G-local martingale.

Finally, note that

[Z1Z2, L3] = [E(T (KF) −G−1
− • T (m))E(φ • NG), E(φ(pr) • D) ln(E(φ(pr) • D))]

is in Mloc(G). From above we see that Z1Z2L3 ≥ G-local martingale. Now,

note that

Z2Z3L1 = Z3
−•(Z2L1)+(Z2L1)−•Z3+[Z2L1, Z3] = Z2L1+G−local martingale.

And

Z1Z3L2 = Z3
− •(Z1L2)+(Z1L2)− •Z3+[Z1L2, Z3] = Z1L2+G-local martingale.

So, we get that

E(ZG lnZG) ≥ E(Z1Z2 ln(Z1Z2)) + E(G− local martingale).

But, Z1Z2 ln(Z1Z2) = Z2(Z1 ln(Z1)) + Z1(Z2 ln(Z2))

On the other hand, thanks to a combination of Integration by parts and
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Lemma(7.1.1), we deduce that

Z2 ln(Z2) = E(φ • NG) ln(φ • NG)

= E(φ+ • NG)E(−φ− • NG) ln(E(φ+ • NG)E(−φ− • NG))

= E(−φ− • NG)E(φ+ • NG) ln(E(φ+ • NG))

+ E(φ+ • NG)E(−φ− • NG) ln(E(−φ− • NG))

= E(−φ− • NG)
(︂

(1 + ln(E−(φ+ • NG))E−(φ+ • NG) • φ+ • NG
)︂

+ E(−φ− • NG)
(︂
E−(φ+ • NG) • HE(φ+ • NG)

)︂
+ E(φ+ • NG)

(︂
(1 + ln(E−(−φ− • NG))E−(−φ− • NG) • (−φ−) • NG

)︂
+ E(φ+ • NG)

(︂
E−(−φ− • NG) • HE(−φ− • NG)

)︂

Ito
= E(−φ− • NG)

(︂
(1 + ln(E−(φ+ • NG))E−(φ+ • NG) • φ+ • NG

)︂
+ E−(−φ− • NG)E−(φ+ • NG) • HE(φ+ • NG)

+ E−(φ+ • NG)HE
− (φ+ • NG) • E(−φ− • NG)

+ [E(−φ− • NG), E−(φ+ • NG) • HE(φ+ • NG)]

+ E(φ+ • NG)
(︂

(1 + ln(E−(−φ− • NG))E−(−φ− • NG) • (−φ−) • NG
)︂

+ E−(φ+ • NG)E−(−φ− • NG) • HE(−φ− • NG)

+
(︂
E−(−φ− • NG) • HE(−φ− • NG)

)︂
−

• E(φ+ • NG)

+ [E(φ+ • NG), E−(−φ− • NG) • HE(−φ− • NG)]
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= G-local martingale + E−(−φ− • NG)E−(φ+ • NG) • HE(φ+ • NG)

+ E−(φ+ • NG)E−(−φ− • NG) • HE(−φ− • NG)

≥ G-local martingale

+ E−(φ+ • NG) • HE(φ+ • NG) + E−(φ+ • NG)E−(−φ− • NG) • HE(−φ− • NG).

However, due to HE(−φ− • NG,G) is non-decreasing and non-negative and

that E−(φ+ • NG)E−(−φ− • NG) > 0, we deduce that

E−(φ+ • NG)E−(−φ− • NG) • HE(−φ− • NG) ≥ 0.

Hence E−(φ+ • NG)E−(−φ− • NG) • HE(−φ− • NG, P ) = 0 iff

HE(−φ−•NG, P ) = 0 iff φ−•NG = 0 iff φ− = 0 . Therefore E−(φ+•NG)E−(−φ−•

NG) • HE(−φ− • NG) takes its infimum value when φ− = 0.

Therefore,

Z2 ln(Z2) ≥ G-local martingale + E−(φ+ • NG) • HE(φ+ • NG, P ).

This implies that

Z1Z2 ln(Z2) ≥ G-local martingale + Z1{E−(φ+ • NG) • HE(φ+ • NG, P )}.

(7.1.10)

Now, note that

Z2Z1 lnZ1 = E(φ • NG)Z1 lnZ1 = E(φ+ • NG)E(−φ− • NG)Z1 lnZ1
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= E−(φ+ • NG)E−(−φ− • NG) • Z1 lnZ1 + (Z1 lnZ1)− • E(φ • NG)

+ [E(φ • NG), Z1 lnZ1]

= G-local martingale + E−(φ+ • NG)E−(−φ− • NG) • Z1 lnZ1

+ [E(φ • NG), Z1 lnZ1]

= E−(φ+ • NG)E−(−φ− • NG) • {(1 + lnZ1
−)Z1

− • (T (KF) −G−1
− • T (m))

+ Z1
− • HE(T (KF) −G−1

− • T (m), P )}

+ [E(φ • NG), {(1 + lnZ1
−)Z1

− • (T (KF) −G−1
− • T (m))

+ Z1
− • HE(T (KF) −G−1

− • T (m), P )}] + G-local martingale

= E−(φ+ • NG)E−(−φ− • NG) • Z1
− • HE(T (KF) −G−1

− • T (m), P )

+ [E(φ • NG), (1 + lnZ1
−)Z1

− • (T (KF) −G−1
− • T (m))] + G-local martingale

= G-local martingale

+ E−(φ+ • NG)E−(−φ− • NG) • Z1
− • HE(T (KF) −G−1

− • T (m), P )

≥ G-local martingale + E−(φ+ • NG) • Z1
− • HE(T (KF) −G−1

− • T (m), P ).

(7.1.11)

By combining (7.1.10) and (7.1.11) we get

ZG lnZG ≥ Z1Z2 lnZ2 + Z2Z1 lnZ1 + G-local martingale

≥ G-local martingale + Z1{E−(φ+ • NG) • HE(φ+ • NG, P )}

+ E−(φ+ • NG) • Z1
− • HE(T (KF) −G−1

− • T (m), P )

and hence,

E(ZG lnZG) ≥ E[(Z1Z2 lnZ2) + (Z2Z1 lnZ1)]
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≥ E[Z1{E−(φ+ • NG) • HE(φ+ • NG, P )}] (7.1.12)

+ E[E−(φ+ • NG) • Z1
− • HE(T (KF, P ) −G−1

− • T (m), P )]

= E[Z
(1)
T lnZ

(1)
T ] ≥ inf

Z+
loc(S

τ ,G)
E[ZG lnZG],

where Z(1) := Z1E(φ+ • NG) ∈ Z+
loc(S

τ ,G). This proves assertion (a).

Part 2. Here we prove assertion (b). Remark that, it is clear that

inf
Z∈Zloc(S,F)

E
[︂
ZT∧τ ˜︁ZT ln(ZT∧τ ˜︁ZT )

]︂
≥ inf

Z ∈ Zloc(S,F)

φ ∈ Φ+
b

E
[︂
ZT∧τ ˜︁ZTZ

φ
T ln(ZT∧τ ˜︁ZTZ

φ
T )
]︂
.

This prove that (7.1.7) implies (7.1.8). To prove the reverse implication,

we consider ZG ∈ Z+
loc(S

τ ,G). Then there exists Z ∈ Zloc(S,F) and φ ∈

Io
loc(N

G,G) such that

0 ≤ φ, φ( ˜︁G−G) < ˜︁G, and ZG =
ZτE(φ • NG)

E(G−1
− • m)τ

.

Put ˆ︁Z as ˆ︁Z :=
Zτ

E(G−1
− • m)τ

.

Therefore,

ZG lnZG = E(φ • NG) ˆ︁Z ln
(︂
E(φ • NG) ˆ︁Z)︂

= E(φ • NG) ˆ︁Z ln ˆ︁Z + ˆ︁ZE(φ • NG) ln E(φ • NG)

= E(φ • NG)
{︂ˆ︁Z−

(︂
1 + ln( ˆ︁Z−)

)︂
• ˆ︁N + ˆ︁Z− • HE( ˆ︁N,P )

}︂
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+ ˆ︁Z{︂E−(φ • NG)
(︂

1 + ln(E−(φ • NG))φ • NG
)︂

+ Z2
− • HE(φ • NG, P )

}︂
Ito
= E−(φ • NG) •

{︂ˆ︁Z−

(︂
1 + ln( ˆ︁Z−)

)︂
• ˆ︁N + ˆ︁Z− • HE( ˆ︁N,P )

}︂
+
{︂ˆ︁Z−

(︂
1 + ln( ˆ︁Z−)

)︂
• ˆ︁N + ˆ︁Z− • HE( ˆ︁N,P )

}︂
• (φ • NG)

+ ˆ︁Z •

{︂
E−(φ • NG)

(︂
1 + ln(E−(φ • NG))φ • NG

)︂
+ Z2

− • HE(φ • NG, P )
}︂

+
{︂
E−(φ • NG)

(︂
1 + ln(E−(φ • NG))φ • NG

)︂
+ Z2

− • HE(φ • NG, P )
}︂

−
• ˆ︁N.

Hence,

E[ZG lnZG] = E[E−(φ • NG) ˆ︁Z− • HE
T∧τ ( ˆ︁N,P )]

+ E[ ˆ︁ZE−(φ • NG) • HE
T (φ • NG, P )].

Note that for any φ ∈ Φ+
b , there exists C > 0 such that

C ≤ E−(φ • NG) = e−(V−(φ))τ ≤ 1,

where V (φ) := φ˜︁G • Do,F in this case of ∆Do,F = 0. Hence,

CE[ ˆ︁Z− •HE
T∧τ ( ˆ︁N,P )] ≤ E[E−(φ •NG) ˆ︁Z− •HE

T∧τ ( ˆ︁N,P )] ≤ E[ ˆ︁Z− •HE
T∧τ ( ˆ︁N,P )].

(7.1.13)

By combining this latter inequalities with the fact that E ˆ︁ZT ln( ˆ︁ZT )] = E[ ˆ︁Z− •

HE
T∧τ ( ˆ︁N,P )] whose proof can be found in Choulli and Stricker (2005, 2006),

the proof of assertion (b) follows immediately. This ends the proof of the

theorem.
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Theorem 7.1.5. If there exists Z ∈ Zloc(S,F) such that

E
[︂
ZT∧τ ˜︁ZT ln

(︂
ZT∧τ ˜︁ZT

)︂]︂
<∞,

then the following equivalent assertions hold.

(a) The minimal entropy martingale measure for (Sτ ,G) exists.

(b) Zexp(S
τ ,G) :=

{︁
Z ∈ Zloc(S

τ ,G) : E[ZT ln(ZT )] <∞
}︂
̸= ϕ.

Proof. The proof is trivial by a combination of Theorem 7.1.4 and Theorem

2.1 in Frittelli (2000).

Corollary 7.1.6. Suppose that (S,F, P ) is complete market model that is ar-

bitrage free, and denote by ˆ︁Z its unique martingale density. Then the minimal

entropy martingale measure for (Sτ ,G) exists if

E
[︂ ˆ︁ZT∧τ ˜︁ZT ln

(︂ ˆ︁ZT∧τ ˜︁ZT

)︂]︂
<∞.

7.2 BSDE formulation for the primal problem

Let (Ω,F,P) be a complete probability space that is generated by the brownian

motion W . Throughout this chapter, we consider a financial market which

consists of one risk-free asset, whose price process is assumed to be equal to 1

at any date, and one risky asset with price process S. throughout this chapter

we consider the price process S evolves according to the equation

dSt = St(µtdt+ σtdWt), (7.2.1)
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with the classical assumptions:

(i) µ, σ are predictable processes.

(iii) σt > 0 for any 0 ≤ t ≤ T , and there exists a non-negative constant C such

that

|µ| + σ +
1

σ
≤ C.

Let λ be the risk premium process. That is µt := σtλt. A process π is called

a trading process if it is a predictable process and if
∫︁ T

0
πt

St−
dSt is well defined.

Under the assumption that the trading strategy is self-financing, the wealth

process Xx,π
t associated with the trading strategy π and the initial capital x

satisfies ⎧⎪⎪⎨⎪⎪⎩
dXx,π

t = π(µtdt+ σtdWt)

Xx,π
0 = x.

Here, until the rest of this chapter we consider the contingent claim

B := g1τ>T , (7.2.2)

where g is a bounded FT measurable random variable. Our aim is to study the

classical optimization problem

V (x,B) = supπ∈AE[U(Xx,π
T∧τ +B)] (7.2.3)

where A is the set of all admissible strategies.

179



Let

L

(︃∫︂ ·∧τ

0

dS

S

)︃
be the set of all processes π which is G− predictable,∫︂ ·∧τ

0

dS

S
− integrable and R− valued process.

For the problem (7.2.3) set

A = L

(︃∫︂ ·∧τ

0

dS

S

)︃
,

and U is the exponential utility function

U(x) = −e−γx ; x ∈ R and γ is a given constant.

The optimization problem (7.2.3) can be written as

V (x,B) = e−γxV (0, B) = −e−γxinfπ∈AE[e−γ(X0,π
T∧τ+B)]

Hence, it is enough to study

V (0, B) = −infπ∈AE[e−γ(X0,π
T∧τ+B)]. (7.2.4)

Let us Define Ṽ (0, ˜︁B) as the following

Ṽ (0, ˜︁B) := −infπ∈AE
˜︁Q[e−γ(X0,π

T∧τ+
˜︁B)], (7.2.5)

where −γ ˜︁B := −γB − ln(Z̃T ). Note that V (0, B) = Ṽ (0, ˜︁B), for ease we will
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work on Ṽ (0, ˜︁B).

From now on, let us use the notation Xs∧τ,π
t∧τ ; 0 ≤ s ≤ t ≤ T to refer to the

wealth process restricted to [s ∧ τ, t ∧ τ ] and started from x = 0.

We give the dynamic extension of the initial problem (7.2.5). For any initial

time 0 ≤ t ≤ T define

Lt := essinfπ∈AE
˜︁Q[e−γ(Xt∧τ,π

T∧τ + ˜︁B)|Gt∧τ ]. (7.2.6)

Note that Ṽ (0, ˜︁B) = −L(0). For any π ∈ A we define Lπ as follows

Lπ
t := E

˜︁Q[e−γ(Xt∧τ,π
T∧τ + ˜︁B)|Gt], ∀t ∈ [0, T ]. (7.2.7)

Proposition 7.2.1. For any π ∈ A, we consider the following function

fπ(t, y, z) := y{−γ
2π2σ2

2
+ γπµ} + γπσz, ∀ (y, z), (7.2.8)

and the associated BSDE given by

⎧⎪⎪⎨⎪⎪⎩
dYt = fπ(t Yt, Zt)d(t ∧ τ) + ZtdW

τ − UtdN
G

YT = e−γB̃.

(7.2.9)

Then this BSDE has a unique solution denoted by (Y π, Zπ, Uπ) satisfying Y π =

Lπ.
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Proof. From the definition of the process Lπ, we deduce that

MG
t := ˜︁Zt∧τe

−γX0,π
t∧τLπ

t = E[ ˜︁ZT∧τe
−γ(X0,π

T∧τ+
˜︁B)|Gt]

is a G-martingale such that its terminal value MG
T = hτ for an F-optional

process h. Hence, thanks to Theorem 2.3.6, we conclude the existence of

(MF, φ) ∈ M0,loc(F) × Io
loc

(︁
NG,G

)︁
such that

Z̃t∧τe
−γX0,π

t∧τLπ
t = e−γxLπ

0 +
1

G2
−
I]]0,τ ]] • T (MF) + φ • NG. (7.2.10)

Here, MF is an F-martingale, and due to the martingale representation theorem

for the Brownian filtration, we obtain an F-predictable processes ψ such that

T (MF) = ψ • T (W ). Thus by inserting this in (7.2.10), we get

Lπ
t =

eγX
0,π
t∧τ

Z̃t∧τ

(︃
e−γxLπ

0 +
1

G2
−
ψ • T (W ) + φ • NG

)︃
.

Now, by applying Itô and the integration by-part formula repeatedly for the

terms in the right-hand-side of the equation above, we get

Lπ
t =

eγ(X
0,π
t∧τ )−

(Z̃t∧τ )−
• (e−γxLπ

0 +
1

G2
−
ψ • T (W ) + φ • NG)

+ (e−γxLπ
0 +

1

G2
−
ψ • T (W ) + φ • NG)− •

eγX
0,π
t∧τ

Z̃t∧τ

+ [
eγX

0,π
t∧τ

Z̃t∧τ
, e−γ̂xLπ

0 +
1

G2
−
ψ • T (W ) + φ • NG]

=
eγ(X

0,π
t∧τ )−

(Z̃t∧τ )−
• (e−γxLπ

0 +
1

G2
−
ψ • T (W ) + φ • NG)
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+ (Z̃t∧τ )−e
−γ(X0,π

t∧τ )−Lπ
t− •

eγX
0,π
t∧τ

Z̃t∧τ

+

[︄
eγX

0,π
t∧τ

Z̃t∧τ
, e−γxLπ

0 +
1

G2
−
ψ • T (W ) + φ • NG

]︄

=
eγ(X

0,π
t∧τ )−

(Z̃t∧τ )−
• (e−γxLπ

0 +
1

G2
−
ψ • T (W ) + φ • NG)

+ (Z̃t∧τ )−e
−γ(X0,π

t∧τ )−Lπ
t− •

eγ(X
0,π
t∧τ )−

(Z̃t∧τ )−
•
(︁
(β(m) + γπσ) • T (W )

+ {γπµ+
γ̂2π2σ2

2
+ 2γ̂πσβ(m) + (β(m))2} • (t ∧ τ)

)︁
+ [

eγ(X
0,π
t∧τ )−

(Z̃t∧τ )−
•
(︁
(β(m) + γπσ) • T (W )

+ {γπµ+
γ̂2π2σ2

2
+ 2γπσβ(m) + (β(m))2} • (t ∧ τ)

)︁
),

e−γxLπ
0 +

1

G2
−
ψ • T (W ) + φ • NG]

=
eγ(X

0,π
t∧τ )−

(Z̃t∧τ )−
• (

1

G2
−
ψ • T (W ) + φ • NG)

+ Lπ
t− •

(︂
(β(m) + γπσ) • T (W )

)︂
+ Lπ

t− •

(︂
{γπµ+

γ2π2σ2

2
+ 2γπσβ(m) + (β(m))2} • (t ∧ τ)

)︂
+
eγ(X

0,π
t∧τ )−

(Z̃t∧τ )−

ψ

G2
−

(γπσ + β(m)) • (t ∧ τ)

=
eγ(X

0,π
t∧τ )−

(Z̃t∧τ )−
• (

1

G2
−
ψ • T (W ) + φ • NG) + Lπ

t− •
(︁
(β(m) + γ̂πσ) • T (W )

+
(︂
Lπ

t−{γπµ+
γ2π2σ2

2
+ 2γπσβ(m) + (β(m))2}

)︂
• (t ∧ τ)

+
(︂eγ(X0,π

t∧τ )−

(Z̃t∧τ )−

ψ

G2
−

(γπσ + β(m))
)︂

• (t ∧ τ)
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=

(︄
eγ(X

0,π
t∧τ )−

(Z̃t∧τ )−

ψ

G2
−

+ Lπ
t−(β(m) + γ̂πσ)

)︄
• T (W ) +

eγ(X
0,π
t∧τ )−

(Z̃t∧τ )−
φ • NG

+
(︂
Lπ

t−{γπµ+
γ2π2σ2

2
+ 2γπσβ(m) + (β(m))2}

)︂
• (t ∧ τ)

+
(︂eγ(X0,π

t∧τ )−

(Z̃t∧τ )−

ψ

G2
−

(γπσ + β(m))
)︂

• (t ∧ τ)

=

(︄
eγ(X

0,π
t∧τ )−

(Z̃t∧τ )−

ψ

G2
−

+ Lπ
t−(β(m) + γπσ)

)︄
• W τ +

eγ(X
0,π
t∧τ )−

(Z̃t∧τ )−
φ • NG

+
(︂
Lπ

t−{γπµ+
γ2π2σ2

2
+ 2γπσβ(m) + (β(m))2}

+
eγ(X

0,π
t∧τ )−

(Z̃t∧τ )−

ψ

G2
−

(γπσ + β(m)) − β(m) e
γ(X0,π

t∧τ )−

(Z̃t∧τ )−

ψ

G2
−

− β(m)Lπ
t−(β(m) + γπσ)

)︂
• (t ∧ τ)

=

(︄
eγ(X

0,π
t∧τ )−

(Z̃t∧τ )−

ψ

G2
−

+ Lπ
t−(β(m) + γπσ)

)︄
• W τ +

eγ(X
0,π
t∧τ )−

(Z̃t∧τ )−
φ • NG

+
(︂
Lπ

t−{γπµ+
γ̂2π2σ2

2
+ γπσβ(m)} +

eγ(X
0,π
t∧τ )−

(Z̃t∧τ )−

ψ

G2
−
γπσ

)︂
• (t ∧ τ)

This implies that

dLπ
t =

(︄
eγ(X

0,π
t∧τ )−

(Z̃t∧τ )−

ψ

G2
−

+ Lπ
t−(β(m) + γπσ)

)︄
dW τ +

eγ(X
0,π
t∧τ )−

(Z̃t∧τ )−
φdNG (7.2.11)

+
(︂
Lπ

t−{γπµ+
γ̂2π2σ2

2
+ γπσβ(m)} +

eγ(X
0,π
t∧τ )−

(Z̃t∧τ )−

ψ

G2
−
γπσ

)︂
d(t ∧ τ)
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Put

Zπ
t :=

eγ(X
0,π
t∧τ )−

(Z̃t∧τ )−

ψ

G2
−

+Lπ
t−(β(m)I]]0,τ ]] +γπσ)I]]0,τ ]], Uπ

t := −e
γX0,π

t−˜︁Zt−
φt. (7.2.12)

Then, by using these notations that gives us

ψ = G2
−(Z̃t∧τ )−e

−γ(X0,π
t∧τ )−Zπ

t∧τ −G2
−(Z̃t∧τ )−e

−γ(X0,π
t∧τ )−Lπ

t−(γπσ + β(m)),

we obtain

Lπ
t−{γπµ+

γ2π2σ2

2
+ γπσβ(m)} +

eγ(X
0,π
t∧τ )−

(Z̃t∧τ )−

ψ

G2
−
γπσ

= Lπ
−{−

γ2π2σ2

2
+ γπµ} + γπσZπ

t∧τ .

By combining this equation with (7.2.12) and (7.2.11), we get the following

dynamics

dLπ
t = fπ(t,Lπ

t , Z
π
t , U

π
t )d(t ∧ τ) + Zπ

t d W
τ − Uπ

t dN
G.

This proves the proposition.

In the following we present our main result in this subsection.

Theorem 7.2.2. Let λ := µ/σ, and consider the following BSDE

⎧⎪⎪⎨⎪⎪⎩
−dYt = −Yt

2

(︁
ZtY

−1
t + λ

)︁2
d(t ∧ τ) − ZtdW

τ + UtdN
G

YT = e−γ̂ ˜︁B.
(7.2.13)
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Then if the solution of this BSDE exists and is denoted by (Y (P ), Z(P ), U (P )),

then we have that Y (P ) = L, where L is defined in (7.2.6).

Proof. First recall that, by proposition 7.2.1, for any π ∈ A we have

Lπ
t =e−γB̃ −

∫︂ T∧τ

t∧τ

(︃
Lπ

s{−
γ2π2σ2

2
+ γπµ} + γπσZπ

s

)︃
ds−

∫︂ T∧τ

t∧τ
Zπ

s dW
τ

+

∫︂ T∧τ

t∧τ
Uπ
s dN

G.

and hence,

Lπ
t =E

˜︁Q [︃e−γB̃ −
∫︂ T∧τ

t∧τ

(︃
Lπ

s{−
γ2π2σ2

2
+ γπµ} + γπσZπ

s

)︃
ds|Gt

]︃

By using the fact that L := essinfπ∈ALπ
t for any 0 ≤ t ≤ T , we have

Lt = essinfπ∈At∧τE
˜︁Q [︃e−γB̃ −

∫︂ T∧τ

t∧τ

(︃
Lπ

s{−
γ2π2σ2

2
+ γπµ} + γπσZπ

s

)︃
ds|Gt

]︃
= E

˜︁Q [︃e−γB̃ +

∫︂ T∧τ

t∧τ
essinfπ∈A −

(︃
Lπ

s{−
γ2π2σ2

2
+ γπµ} + γπσZπ

s

)︃
ds|Gt

]︃

therefore the process L corresponds to the solution of a BSDE, whose driver

is the essential infimum over π of the drivers of (Lπ)π∈A. And as

essinf
π∈A

−
(︃
y{−γ

2π2σ2

2
+ γπµ} + γπσz

)︃
= −y

2

(︃
z

y
+
µ

σ

)︃2

= −y
2

(︃
z

y
+ λ

)︃2

,

where λ := µ
σ
. The optimal π∗ is given by σπ∗ = 1

γ̂

(︂
µ
σ

+ z
y

)︂
= 1

γ̂

(︂
λ+ z

y

)︂
we

get our BSDE in (7.2.13).
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7.3 BSDE formulation for the dual problem

In this section, we derive the BSDE associated to the dual problem to the

primal problem (7.2.5) . To this end, we start deriving the duality and hence

defining this dual problem. For the reader’s convenience, we recall the defini-

tion of relative entropy H(Q1|Q2) for two probabilities Qi, i = 1, 2 as follows.

H(Q1|Q2) :=

⎧⎪⎪⎨⎪⎪⎩
E
[︂
dQ1

dQ2
ln dQ1

dQ2

]︂
if Q1 ≪ Q2

+∞ otherwise.

Recall that λ be the risk premium process. That is µt := σtλt. For each

bounded process φ ∈ Io(NG,G), define the probability measure QG,φ as the

following

ZG,φ := E (−λ • W τ ) E(φ • NG)
Y or
= E

(︁
−λ • W τ + φ • NG)︁

define the (G, QG,φ)-Brownian motion ˆ︂W by the formula:

ˆ︂Wt := W τ
t + λ • (t ∧ τ).

The following two probabilities defined on FT and GT∧τ respectively will play

important roles in the rest of this chapter.

ˆ︁QF := ET (−λ • W τ ) · P, ˆ︁QG := ET∧τ (−λ • W τ ) ˜︁ZT · P. (7.3.1)

Then we consider the dual set to the dual problem that we will define after-
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wards.

Φf :=

{︄
φ ∈ Io(NG,G) : −1 < φ and E

ˆ︁QG
[Zφ

T ln(Zφ
T )] <∞

}︄
, Zφ := E(φ•NG).

(7.3.2)

This for any φ ∈ Φf , the process Zφ is a true martinagle under ˆ︁QG, and hence

the following probability that will use later on is well defined

QG,φ := ZG,φ
T · ˜︁Q := ZφET∧τ (−λ • W ) · ˜︁Q, (7.3.3)

Until the rest of this chapter we assume that ∆Do,F = 0.

Lemma 7.3.1. For any φ ∈ Φf , if ∆Do,F = 0, then the following two processes

NG,φ
t =NG

t − φ

1 + φ
• D and ˆ︁NG,φ

t =NG
t − φ˜︁GI[[0,τ ]] • Do,F (7.3.4)

belong to Mloc(Q
G,φ).

Proof. Step 1. This step focuses in proving the first part of (7.3.4). Due to a

combination of NG := D− ˜︁G−1I[[0,τ [[ •D
o,F, ∆Do,F = 0, and Girsanov’s theorem

we get that

NG,φ
t : =NG

t − φ

1 + φ
• D.

belongs to Mloc(Q
G,φ).

Step 2. This step focuses in proving the second part of (7.3.4). Due to step

(1), we have that

(1 + φ) • NG,φ ∈ Mloc(Q
G,φ).
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However,

(1 + φ) • NG,φ = (1 + φ) • (NG − φ

1 + φ
• D)

= (1 + φ) •

(︂
NG − φ

1 + φ
• (NG + ˜︁G−1I[[0,τ [[ • Do,F)

)︂
= (1 + φ) •

(︂ 1

1 + φ
• NG − φ

1 + φ
˜︁G−1I[[0,τ [[ • Do,F

)︂
= NG

t − φ˜︁GI[[0,τ ]] • Do,F = ˆ︁NG,φ.

By Theorem 2.1 of Frittelli (2000) there exists a unique equivalent local mar-

tingale measure ( ELMM) ˜︁QE that minimize H(Q| ˜︁Q). This ˜︁QE is called the

minimal entropy martingale measure or minimal ˜︁Q-entropy martingale mea-

sure. The density of ˜︁QE with respect to ˜︁Q has the form

ZE
T :=

d ˜︁QE

d ˜︁Q = cEe
γ̂X0,πE

T∧τ

for some constant cE > 0 and some πE ∈ L(
∫︁ ·∧τ
0

dS
S

) such that X0,πE
is ˜︁QE-

martingale, and

E
˜︁QE

[︃
ln

(︃
ZE

T

ZE
t

)︃ ⃓⃓
Gt

]︃
= ln cE + γ̂X0,πE

t∧τ − lnZE
t , 0 ≤ t ≤ T. (7.3.5)

Following exactly the same footsteps as above, define the probability measure˜︁Q ˜︁B equivalent to ˜︁Q by

d ˜︁Q ˜︁B
d ˜︁Q := c ˜︁Be−γ̂ ˜︁B with c−1˜︁B := E

˜︁Q[e−γ̂ ˜︁B] ∈ (0,∞).
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let Z
˜︁B denotes its density process with Z

˜︁B
T =

d ˜︁Q ˜︁B
d ˜︁Q , we get ˜︁QE, ˜︁B is the unique

ELMM in Qf ( ˜︁Q ˜︁B):= { the set of all ELLM Q with H(Q| ˜︁Q ˜︁B) < ∞}, that

minimize H(Q| ˜︁Q ˜︁B) over all Q ∈ Qf ( ˜︁Q ˜︁B), we obtain

ZE, ˜︁B
T :=

d ˜︁QE, ˜︁B
d ˜︁Q ˜︁B = cE, ˜︁Beγ̂X0,πE, ˜︁B

T∧τ

for some constant cE, ˜︁B > 0 and some πE, ˜︁B ∈ L(
∫︁ ·∧τ
0

dS
S

) such that X0,πE, ˜︁B
is

( ˜︁QE, ˜︁B,G)-martingale .

Let

A :=

⎧⎪⎨⎪⎩π ∈ L

(︃∫︂ ·∧τ

0

dS

S

)︃ ⃓⃓⃓ e−γ̂
∫︁ T∧τ
0

πs
Ss

dSs ∈ L1
T ( ˜︁Q ˜︁B,G),

and
(︂

π
S

• St

)︂
{t≤T∧τ}

∈ M( ˜︁QE, ˜︁B,G)

⎫⎪⎬⎪⎭ (7.3.6)

be the set of all admissible strategies. The rest of this chapter we consider the

following assumption

B ∈ L∞(GT , P ), and E[ ˜︁ZT ln( ˜︁ZT )] <∞. (7.3.7)

We give the relation between the primal problem (7.2.4) and the dual problem

due to the following theorem.

Theorem 7.3.2. Assume (7.3.7) holds. Then

− ess inf
π∈A

E
˜︁Q[e−γ(Xt∧τ,π

T∧τ + ˜︁B)
⃓⃓
Gt]

= − exp
{︂
− ess inf

φ∈Φf

EQG,φ

[︄
ln

(︄
ZG,φ

T

ZG,φ
t

)︄
+ γ ˜︁B ⃓⃓Gt

]︄}︂
. (7.3.8)

190



Proof. Let us start with the LHS of (7.3.8):

− ess inf
π∈A

E
˜︁Q[e−γ(Xt∧τ,π

T∧τ + ˜︁B)
⃓⃓
Gt] = ess sup

π∈A
E

˜︁Q[e−γ(Xt∧τ,π
T∧τ + ˜︁B)

⃓⃓
Gt]

= ess sup
π∈A

−E ˜︁Q
[︄
E[e−γ ˜︁B]

e−γ ˜︁B
E[e−γ ˜︁B]

e−γXt∧τ,π
T∧τ

⃓⃓
Gt

]︄

= c−1˜︁B ess sup
π∈A

−E ˜︁Q
[︄
Z

˜︁B
t

Z
˜︁B
t

Z
˜︁B
T e

−γXt∧τ,π
T∧τ

⃓⃓
Gt

]︄

= c−1˜︁B Z
˜︁B
t ess sup

π∈A
−E ˜︁Q ˜︁B

[︂
e−γXt∧τ,π

T∧τ

⃓⃓
Gt

]︂
= c−1˜︁B Z

˜︁B
t ess sup

π∈A
−E ˜︁Q ˜︁B

[︄
ZE, ˜︁B

T

ZE, ˜︁B
t

ZE, ˜︁B
t

ZE, ˜︁B
T

e−γXt∧τ,π
T∧τ

⃓⃓
Gt

]︄

= c−1˜︁B Z
˜︁B
t ess sup

π∈A
−E ˜︁QE, ˜︁B

[︄
ZE, ˜︁B

t

ZE, ˜︁B
T

e−γXt∧τ,π
T∧τ

⃓⃓
Gt

]︄

= c−1˜︁B Z
˜︁B
t Z

E, ˜︁B
t ess sup

π∈A
−E ˜︁QE, ˜︁B

⎡⎣ 1

cE, ˜︁BeγX0,πE, ˜︁B
T∧τ

e−γ̂Xt∧τ,π
T∧τ

⃓⃓
Gt

⎤⎦
= c−1˜︁B c−1

E, ˜︁BZ ˜︁B
t Z

E, ˜︁B
t ess sup

π∈A
−E ˜︁QE, ˜︁B [︃

e−γ(Xt∧τ,π
T∧τ +X0,πE, ˜︁B

T∧τ )
⃓⃓
Gt

]︃
Jensen

≤ c−1˜︁B c−1

E, ˜︁BZ ˜︁B
t Z

E, ˜︁B
t ess sup

π∈A
−
[︃
e−γE

˜︁QE, ˜︁B
[(Xt∧τ,π

T∧τ +X0,πE, ˜︁B
t∧τ )|Gt]

]︃
= −c−1˜︁B c−1

E, ˜︁BZ ˜︁B
t Z

E, ˜︁B
t e−γX0,πE, ˜︁B

t∧τ . (7.3.9)

Now, need to calculate the RHS of (7.3.8):

ess inf
φ∈Φf

EQG,φ

[︄
ln

(︄
ZG,φ

T

ZG,φ
t

)︄
+ γ ˜︁B ⃓⃓Gt

]︄

= ess inf
φ∈Φf

(︄
E

˜︁Q
[︄
dQG,φ/d ˜︁Q
ZG,φ

t

ln

(︄
dQG,φ/d ˜︁Q
ZG,φ

t

)︄ ⃓⃓
Gt

]︄
+ EQG,φ

[︂
γ ˜︁B ⃓⃓Gt

]︂)︄

= ess inf
φ∈Φf

(︄
E

˜︁Q [︂ 1

ZG,φ
t

dQG,φ/d ˜︁Q ˜︁B
d ˜︁Q/d ˜︁Q ˜︁B ln

(︂
c ˜︁Be−γ̂ ˜︁B dQG,φ/d ˜︁Q ˜︁B

ZG,φ
t

)︂ ⃓⃓
Gt

]︂
+EQG,φ

[︂
γ ˜︁B ⃓⃓Gt

]︂ )︄
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= ess inf
φ∈Φf

(︄
E

˜︁Q ˜︁B
[︂

Z
˜︁B
t

ZG,φ
t

dQG,φ

d ˜︁Q ˜︁B ln
(︂
c ˜︁Be−γ̂ ˜︁B dQG,φ/d ˜︁Q ˜︁B

ZG,φ
t

)︂ ⃓⃓
Gt

]︂
+EQG,φ

[︂
γ ˜︁B ⃓⃓Gt

]︂ )︄

= ess inf
φ∈Φf

(︄
E

˜︁Q ˜︁B
[︂

Z
˜︁B
t

ZG,φ
t

dQG,φ

d ˜︁Q ˜︁B
(︂

ln(c ˜︁B) − γ̂ ˜︁B + ln(dQG,φ/d ˜︁Q ˜︁B)
)︂ ⃓⃓

Gt

]︂
−E ˜︁Q ˜︁B

[︂
Z

˜︁B
t

ZG,φ
t

dQG,φ

d ˜︁Q ˜︁B ln(ZG,φ
t )

⃓⃓
Gt

]︂
+ EQG,φ

[︂
γ ˜︁B ⃓⃓Gt

]︂ )︄

(7.3.10)

But

E
˜︁Q ˜︁B
[︄
Z

˜︁B
t

ZG,φ
t

dQG,φ

d ˜︁Q ˜︁B ln(c ˜︁B)
⃓⃓
Gt

]︄
= ln(c ˜︁B)E

˜︁Q ˜︁B
[︄
Z

˜︁B
t

ZG,φ
t

dQG,φ/d ˜︁Q
d ˜︁Q ˜︁B/d ˜︁Q

⃓⃓
Gt

]︄

= ln(c ˜︁B)E
˜︁Q
[︄
Z

˜︁B
T

Z
˜︁B
t

Z
˜︁B
t

ZG,φ
t

dQG,φ/d ˜︁Q
d ˜︁Q ˜︁B/d ˜︁Q

⃓⃓
Gt

]︄
= ln(c ˜︁B)E

˜︁Q
[︄
Z

˜︁B
T

Z
˜︁B
t

Z
˜︁B
t

ZG,φ
t

ZG,φ
T

Z
˜︁B
T

⃓⃓
Gt

]︄

= ln(c ˜︁B)E
˜︁Q
[︄
ZG,φ

T

ZG,φ
t

⃓⃓
Gt

]︄
= ln(c ˜︁B)EQG,φ [︁

1
⃓⃓
Gt

]︁
= ln(c ˜︁B).

And,

E
˜︁Q ˜︁B
[︄
Z

˜︁B
t

ZG,φ
t

dQG,φ

d ˜︁Q ˜︁B γ ˜︁B ⃓⃓Gt

]︄
= E

˜︁Q
[︄
Z

˜︁B
T

Z
˜︁B
t

Z
˜︁B
t

ZG,φ
t

dQG,φ/d ˜︁Q
d ˜︁Q ˜︁B/d ˜︁Q γ ˜︁B ⃓⃓Gt

]︄

= E
˜︁Q
[︄
Z

˜︁B
T

Z
˜︁B
t

Z
˜︁B
t

ZG,φ
t

ZG,φ
T

Z
˜︁B
T

γ ˜︁B ⃓⃓Gt

]︄
= EQG,φ

[︂
γ ˜︁B ⃓⃓Gt

]︂
.

Therefore

− exp

{︄
−ess inf

φ∈Φf

EQG,φ

[︄
ln

(︄
ZG,φ

T

ZG,φ
t

)︄
+ γ̂ ˜︁B ⃓⃓Gt

]︄}︄

= − 1

c ˜︁B exp
{︁
− ess inf

φ∈Φf

E
˜︁Q ˜︁B[︁ Z ˜︁B

t

ZG,φ
t

dQG,φ

d ˜︁Q ˜︁B
(︄

ln(
dQG,φ

d ˜︁Q ˜︁B ) − ln(ZG,φ
t )

)︄ ⃓⃓
Gt

]︁}︁
(7.3.11)
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And finally, in the same way as above we have

ess inf
φ∈Φf

E
˜︁Q ˜︁B
[︄
Z

˜︁B
t

ZG,φ
t

dQG,φ

d ˜︁Q ˜︁B
(︂

ln(dQG,φ/d ˜︁Q ˜︁B) − ln(ZG,φ
t )

)︂ ⃓⃓
Gt

]︄

= ess inf
φ∈Φf

E
˜︁Q ˜︁B
[︄
Z

˜︁B
t

ZG,φ
t

dQG,φ

d ˜︁Q ˜︁B
(︄

ln

(︄
dQG,φ/d ˜︁Q ˜︁B
ZG,φ

t /Z
˜︁B
t

ZG,φ
t

Z
˜︁B
t

)︄
− ln(ZG,φ

t )

)︄ ⃓⃓
Gt

]︄

= ess inf
φ∈Φf

E
˜︁Q ˜︁B
[︄
Z

˜︁B
t

ZG,φ
t

dQG,φ

d ˜︁Q ˜︁B
(︄

ln

(︄
dQG,φ/d ˜︁Q ˜︁B
ZG,φ

t /Z
˜︁B
t

)︄
− ln(Z

˜︁B
t )

)︄ ⃓⃓
Gt

]︄

= ess inf
φ∈Φf

⎧⎪⎨⎪⎩
E

˜︁Q ˜︁B
[︂

Z
˜︁B
t

ZG,φ
t

dQG,φ

d ˜︁Q ˜︁B ln
(︁dQG,φ/d ˜︁Q ˜︁B

ZG,φ
t /Z

˜︁B
t

)︁⃓⃓
Gt

]︂
− ln(Z

˜︁B
t )E

˜︁Q ˜︁B
[︂

Z
˜︁B
t

ZG,φ
t

dQG,φ

d ˜︁Q ˜︁B
⃓⃓
Gt

]︂
⎫⎪⎬⎪⎭

= E
˜︁QE, ˜︁B

[︄
ln

(︄
ZE, ˜︁B

T

ZE, ˜︁B
t

)︄ ⃓⃓
Gt

]︄
− ln(Z

˜︁B
t )

= E
˜︁QE, ˜︁B [︃

ln

(︃
cE, ˜︁BeγX0,πE, ˜︁B

T∧τ

)︃ ⃓⃓
Gt

]︃
− ln(ZE, ˜︁B

t ) − ln(Z
˜︁B
t )

= ln(cE, ˜︁B) + E
˜︁QE, ˜︁B [︂

γX0,πE, ˜︁B
T∧τ

⃓⃓
Gt

]︂
− ln(ZE, ˜︁B

t ) − ln(Z
˜︁B
t )

= ln(cE, ˜︁B) + γX0,πE, ˜︁B
t∧τ − ln(ZE, ˜︁B

t ) − ln(Z
˜︁B
t )

by substituting this into (7.3.11) we get

− exp

{︄
−ess inf

φ∈Φf

EQG,φ

[︄
ln

(︄
ZG,φ

T

ZG,φ
t

)︄
+ γ ˜︁B ⃓⃓Gt

]︄}︄

= − 1

c ˜︁B exp
{︂
− ln(cE, ˜︁B) − γX0,πE, ˜︁B

t∧τ + ln(ZE, ˜︁B
t ) + ln(Z

˜︁B
t )
}︂

= −c−1˜︁B c−1

E, ˜︁BZE, ˜︁B
t Z

˜︁B
t e

−γX0,πE, ˜︁B
t∧τ . (7.3.12)
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Corollary 7.3.3.

− inf
π∈A

E
˜︁Q[e−γ(X0,π

T∧τ+
˜︁B)] = − exp

{︄
− inf

φ∈Φf

(︂
H(QG,φ| ˜︁Q) + EQG,φ

(γ ˜︁B)
)︂}︄

.

Proof. The proof is done by taking t = 0 in theorem 7.3.2.

The goal of the rest of this section is to solve the dual problem defined by

sup
φ∈Φf

(︂
−H(QG,φ| ˜︁Q) − EQG,φ

γ ˜︁B)
)︂
. (7.3.13)

The dynamic version of this problem can be written as

˜︁Jt := ess sup
φ∈Φf

EQG,φ

[︄
− ln

(︄
ZG,φ
T

ZG,φ
t

)︄
− γ˜︁B⃓⃓⃓Gt

]︄
(7.3.14)

To this end, we consider

Λ(x) := ln(1 + x) − x

1 + x
, x > −1. (7.3.15)

Proposition 7.3.4. For any φ ∈ Φf , we associate Jφ given by

Jφ
t := EQG,φ

[︄
− ln

(︄
ZG,φ

T

ZG,φ
t

)︄
− γ ˜︁B ⃓⃓⃓⃓⃓Gt

]︄
, ∀ 0 ≤ t ≤ T. (7.3.16)

(a) It holds that

Jφ
t = −EQG,φ

[︄∫︂ T∧τ

t∧τ
Λ(φs)dDs +

1

2

∫︂ T∧τ

t∧τ
λ2sds+ γ ˜︁B ⃓⃓⃓⃓⃓Gt

]︄
. (7.3.17)
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(b) If the following BSDE

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
dY = (1

2
λ2 + λZ)d(t ∧ τ) + ZtdW

τ
t − U

(︂
dNG − φ ˜︁G−1I[[0,τ ]]dD

o,F
s

)︂
+ ((1 + φ) ln(1 + φ) − φ) ˜︁G−1I[[0,τ ]]dD

o,F
s .

YT = −γ ˜︁B,
(7.3.18)

has an integrable (G, T ∧ τ)-solution (Y φ, Zφ, Uφ), then Y φ = Jφ.

Proof.

EQG,φ

[︄
ln

(︄
ZG,φ

T

ZG,φ
t

)︄
+ γ ˜︁B ⃓⃓Gt

]︄

= EQG,φ

[︃
ln E

(︃
−
∫︂ T∧τ

t∧τ
λsdW

τ
s +

∫︂ T∧τ

t∧τ
φsdN

G
s

)︃
+ γ ˜︁B ⃓⃓Gt

]︃
,

= EQG,φ

[︃
−
∫︂ T∧τ

t∧τ
λsdW

τ
s +

∫︂ T∧τ

t∧τ
φsdN

G
s − 1

2

∫︂ T∧τ

t∧τ
λ2sds

⃓⃓
Gt

]︃
+ EQG,φ

[︄ ∑︂
t∧τ<s≤T∧τ

(︁
ln(1 + φs∆N

G
s ) − φs∆N

G
s

)︁
+ γ ˜︁B ⃓⃓Gt

]︄
,

= EQG,φ

[︃
−
∫︂ T∧τ

t∧τ
λsdWs +

∫︂ T∧τ

t∧τ
φsdN

G
s − 1

2

∫︂ T∧τ

t∧τ
λ2sds

⃓⃓
Gt

]︃
+ EQG,φ

[︃
+

∫︂ T∧τ

t∧τ
(ln(1 + φs) − φs) dDs + γ ˜︁B ⃓⃓Gt

]︃
,

= EQG,φ

[︃
−
∫︂ T∧τ

t∧τ
λs

(︂
dˆ︂Ws − λsds

)︂
+

∫︂ T∧τ

t∧τ
φsd(NG,φ +

φ

1 + φ
dDs)

⃓⃓
Gt

]︃
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+ EQG,φ

[︃
−1

2

∫︂ T∧τ

t∧τ
λ2sds+

∫︂ T∧τ

t∧τ
(ln(1 + φs) − φs) dDs + γ ˜︁B ⃓⃓Gt

]︃
,

= EQG,φ

[︃
1

2

∫︂ T∧τ

t∧τ
λ2sds+

∫︂ T∧τ

t∧τ

(︃
ln(1 + φs) −

φs

1 + φ

)︃
dDs + γ ˜︁B ⃓⃓⃓ Gt

]︃
.

This proves (7.3.17). The remaining proof proves assertion (b). Thus, we

remark that

Jφ
t −

∫︂ t

0

(︃
ln(1 + φs) −

φs

1 + φ

)︃
dDs −

1

2

∫︂ t∧τ

0

λ2sds

= EQG,φ

[︃
−
∫︂ T∧τ

0

(︃
ln(1 + φs) −

φs

1 + φ

)︃
dDs −

1

2

∫︂ T∧τ

0

λ2sds− γ ˜︁B ⃓⃓Gt

]︃

is a (G, QG,φ)-martingale process. Hence, by Girsanov’s theorem, there exists

a (G, ˜︁Q)-martingale process MG, ˜︁Q,φ such that

Jφ
t −

∫︂ t∧τ

0

(︃
ln(1 + φs) −

φs

1 + φ

)︃
dNG

s − 1

2

∫︂ t∧τ

0

λ2sds

−
∫︂ t∧τ

0

(︃
ln(1 + φs) −

φs

1 + φ

)︃ ˜︁G−1I[[0,τ ]]dD
o,F
s

= MG, ˜︁Q,φ − ⟨MG, ˜︁Q,φ,−λ • W τ + φ • NG⟩ ˜︁Qt (7.3.19)

Again by applying Girsanov’s Theorem again to MG, ˜︁Q,φ is (G, ˜︁Q)-martingale,

we deduce the existence of a (G, P )-martingale process MG,P,φ such that the

following equality holds

MG, ˜︁Q,φ = MG,P,φ − ⟨MG,P,φ, G−1
− • T (m)⟩t (7.3.20)

Now, by applying Theorem 2.3.6 to MG,P,φ, which is a (G, P )-martingale, we
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get the existence of a unique (MF,φ, φ(o,φ)) ∈ M0,loc(F) × Io
loc

(︁
NG,G

)︁
such

that

MG,P,φ = MG,P,φ
0 +G−2

− I]]0,τ ]] • T (MF,φ) + φ(o,φ) • NG

= MG,P,φ
0 +G−2

− ψφ • T (W ) + φ(o,φ) • NG. (7.3.21)

The F-predictable process ψφ is a consequence of applying the predictable

representation theorem to MF,φ. Therefore, by substituting the above latter

equality in (7.3.20) we obtain

MG, ˜︁Q,φ = MG,P,φ
0 +G−2

− ψφ • T (W ) + φ(o,φ) • NG

+ ⟨MG,P,φ
0 +G−2

− ψφ • T (W ) + φ(o,φ) • NG, G−1
− • T (m)⟩P·∧τ

= MG,P,φ
0 +G−2

− ψφ • T (W ) + φ(o,φ) • NG + ⟨G−2
− ψφ • T (W ), G−1

− • T (m)⟩Pt

= MG,P,φ
0 + φ(o,φ) • NG

t +G−2
− ψφ • W τ

t

and then find (7.3.19) we get that

Jφ
t −

∫︂ t∧τ

0

(︃
ln(1 + φs) −

φs

1 + φ

)︃
dNG

s − 1

2

∫︂ t∧τ

0

λ2sds

−
∫︂ t∧τ

0

(︃
ln(1 + φs) −

φs

1 + φ

)︃ ˜︁G−1I[[0,τ ]]dD
o,F
s

= MG,P,φ
0 + φ(o,φ) • NG

t +G−2
− ψφ • W τ

t

− ⟨MG,P,φ
0 + φ(o,φ) • NG +G−2

− ψφ • W τ ,−λ • W τ + φ • NG⟩ ˜︁Qt

= MG,P,φ
0 + φ(o,φ) • NG +G−2

− ψφ • W τ
t − ⟨G−2

− ψφ • W τ ,−λ • W τ )⟩ ˜︁Qt
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− ⟨φ(o,φ) • NG, φ • NG⟩ ˜︁Qt

= MG,P,φ
0 + φ(o,φ) • NG +

ψφ

G2
−

• W τ
t +

ψφ

G2
−
λ • (t ∧ τ) −

(︁
φ(o,φ)φ∆NG • NG)︁p

= MG,P,φ
0 + φ(o,φ) • NG +

ψφ

G2
−

• W τ
t +

ψφ

G2
−
λ • (t ∧ τ) −

(︁
φ(o,φ)φ∆D • NG)︁p

= MG,P,φ
0 + φ(o,φ) • NG +G−2

− ψφ • W τ
t +G−2

− ψφλ • (t ∧ τ) −
(︁
φ(o,φ)φ • D

)︁p

= MG,P,φ
0 + φ(o,φ) • NG +G−2

− ψφ • W τ
t +G−2

− ψφλ • (t ∧ τ)

− φ(o,φ)φ ˜︁G−1I[[0,τ ]] • Do,F.

Therefore,

dJφ
t =

{︃
ln(1 + φs) −

φs

1 + φ
+ φ(o,φ)

}︃
dNG +G−2

− ψφdW τ
t

+

{︃
1

2
λ2s +G−2

− ψφλ

}︃
d(t ∧ τ) +

(︃
ln(1 + φs) −

φs

1 + φ
− φ(o,φ)φ

)︃
I[[0,τ ]]˜︁G dDo,F

s .

Define Zφ := G−2
− ψφ and Uφ := −

(︂
ln(1 + φ) − φ

1+φ
+ φ(o,φ)

)︂
, then

φ(o,φ) = −Uφ − ln(1 + φ) +
φ

1 + φ
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and hence.

ln(1 + φ) − φ

1 + φ
− φ(o,φ)φ = (1 + φ) ln(1 + φ) − φ+ Uφφ.

Therefore,

dJφ
t = (

1

2
λ2 + λZφ)d(t ∧ τ) + Zφ

t dW
τ
t − UφdNG

+ ((1 + φ) ln(1 + φ) − φ+ Uφφ) ˜︁G−1I[[0,τ ]]dD
o,F
s .

Consider the following BSDE

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dYt =

(︃
1

2
λ2 + λtZt

)︃
d(t ∧ τ) + ZtdW

τ
t

−UtdN
G
t −

(︁
Ut + e−Ut − 1

)︁ ˜︁G−1
t I]]0,τ ]](t)dD

o,F
t .

YT∧τ = −γ ˜︁B.
(7.3.22)

By changing slightly the notations, we can prove that this BSDE belongs to a

generalized family of BSDEs.

Lemma 7.3.5. The RBSDE (7.3.22) can be written as

dYt = ˆ︁f(t, Ut)dA
τ
t + Ztdˆ︂W τ

t − UtdN
G, YT∧τ = −γ ˜︁B, P -a.s.. (7.3.23)
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where ⎧⎪⎪⎨⎪⎪⎩
ˆ︂Wt := Wt +

∫︁ t

0
λsds, At := t+Do,F

t ,

ˆ︁f(t, u) := 1
2
λ2t (1 − Γt) − Γt˜︁Gt

(e−u + u− 1), Γt :=
dDo,F

t

dAt
.

(7.3.24)

The proof is trivial and will be omitted. The BSDE (7.3.23)-(7.3.24) is a

generalized BSDE compared to the existing ones of the literature. In fact our

process A might not be absolutely continuous with respect to the Lebesgue

measure. This gives a new family of BSDEs that we could not find in the

literature. In fact all the literature assumes the driver is governed with the

real time t. This open a new class of BSDEs that deserves attention and

investigation in virtue of its financial importance. Furthermore, the driver

f(t, u) is not Lipschitz in the variable u for many reasons.

Theorem 7.3.6. Suppose that the BSDE (7.3.23)-(7.3.24) has a solution

(ˆ︁Y , ˆ︁Z, ˆ︁U) of class (D) under ˆ︁QG. Then the following assertions hold.

(a) The following equality holds

ˆ︁Y = ess sup
φ∈Φf

Jφ. (7.3.25)

(b) The quadruplet

(Y (D), Z(D),M (D), K(D)) :=
(︂ˆ︁Y , ˆ︁Z, ˆ︁U • NG,

(︂ˆ︁U + e−
ˆ︁U − 1

)︂ ˜︁G−1
t I[[0,τ ]] • Do,F

)︂
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is a solution of class (D) under ˆ︁QG for the following RBSDE

⎧⎪⎪⎨⎪⎪⎩
dYt = 1

2
λ2td(t ∧ τ) + Ztdˆ︂W τ

t − dMt − dKt, YT∧τ = −γ ˜︁B
Y ≥ ˆ︁S on [[0, T ∧ τ [[,

∫︂ T∧τ

0

(Yt− − ˆ︁St−)dKt = 0, P -a.s..

(7.3.26)

Here ˆ︂W is defined in (7.3.24), and ˆ︁S is given by

ˆ︁S := E
ˆ︁QF

[︄
−1

2

∫︂ T

t

˜︁Es˜︁Et λ2sds−
˜︁ET˜︁Et
(︂
γg + ln

(︁
E−1
T (G−1

− • m)
)︁)︂⃓⃓

Ft

]︄

+ E
ˆ︁QF
[︃∫︂ T

t

1˜︁Et ln
(︁
Es(G−1

− • m)
)︁
dV F

s

⃓⃓
Ft

]︃
. (7.3.27)

This theorem conveys two main ideas. On the one hand, the solution to

the dual problem is equivalently given by the solution of the BSDE (7.3.23)-

(7.3.24) . On the other hand, this BSDE can be considered as a particular case

of the class of linear RBSDEs investigated in Chapter 4 of this thesis. This

is our main and real motivations for those RBSDEs. This latter fact is very

intriguing, as itself conveys that probably the barrier process plays central role

somehow in shaping the form of the solution to the RBSDE. This fact deserves

more attention.

Proof of Theorem 7.3.6. This proof is divided into two parts. The first part

proves (a), while the second part proves (b).

Part 1. Here, we prove assertion (a). On the one hand, as Jφ is the solution
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to the BSDEs (7.3.18), we have

dJφ
t = (

1

2
λ2 + λZφ)d(t ∧ τ) + Zφ

t dW
τ
t − UφdNG − f(φ,Uφ) ˜︁G−1I[[0,τ ]]dD

o,F
t

= (
1

2
λ2(1 − Γ) − f(φ,Uφ) ˜︁G−1Γ)dAτ + Zφ

t dˆ︂W τ
t − UφdNG (7.3.28)

where f(φ,Uφ) := − ((1 + φ) ln(1 + φ) − φ+ Uφφ). On the other hand, as ˆ︁Y
is the solution to the BSDE (7.3.23)-(7.3.24), we have

dˆ︁Yt = ˆ︁f(t, Ut)dA
τ
t + ˆ︁Ztdˆ︂W τ

t − ˆ︁UtdN
G. (7.3.29)

Here, ˆ︁f(t, u) :=
1

2
λ2t (1 − Γt) −

Γt˜︁Gt

(e−u + u− 1).

Therefore, by substacting the equalities (7.3.28) and (7.3.29) we get

d(Jφ
t − ˆ︁Yt)

= ((e−
ˆ︁U + ˆ︁U − 1) − f(φ,Uφ)) ˜︁G−1ΓdAτ + (Zφ

t − ˆ︁Zt)dˆ︂W τ
t − (Uφ − ˆ︁U)dNG

= ((e−
ˆ︁U + ˆ︁U − 1) − f(φ, ˆ︁U)) ˜︁G−1ΓdAτ + (f(φ, ˆ︁U) − f(φ,Uφ)) ˜︁G−1ΓdAτ

+ (Zφ
t − ˆ︁Zt)dˆ︂W τ

t − (Uφ − ˆ︁U)dNG

= ((e−
ˆ︁U + ˆ︁U − 1) − f(φ, ˆ︁U)) ˜︁G−1ΓdAτ + (Zφ

t − ˆ︁Zt)dˆ︂W τ
t − (Uφ − ˆ︁U)d ˆ︁NG,φ.

(7.3.30)

Therefore,

Jφ
t − ˆ︁Yt = Jφ

T − ˆ︁YT −
∫︂ T∧τ

t∧τ
((e−

ˆ︁U + ˆ︁U − 1) − f(φ, ˆ︁U)) ˜︁G−1ΓdAτ
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−
∫︂ T∧τ

t∧τ
(Zφ

t − ˆ︁Zt)dˆ︂W τ
t +

∫︂ T∧τ

t∧τ
(Uφ − ˆ︁U)d ˆ︁NG,φ. (7.3.31)

Take the conditional expectation for both sides of (7.3.31) with respect to

QG,φ, we get

Jφ
t − ˆ︁Yt = EQG,φ

[︃∫︂ T∧τ

t∧τ
(f(φ, ˆ︁U) − (e−

ˆ︁U + ˆ︁U − 1)) ˜︁G−1I[[0,τ ]] ˜︁G−1ΓdA|Gt

]︃
≤ 0.

(7.3.32)

this implies that,

Jφ
t ≤ ˆ︁Yt, for all φ ∈ Φf

and hence,

ess sup
φ∈Φf

Jφ
t ≤ ˆ︁Yt.

On the other hand, note that

ess sup
φ∈Φf

{︁
−(1 + φ) ln(1 + φ) + φ− U (D)φ

}︁
= e−U(D) − 1 + U (D).

where the essential supremum occurs on ˆ︁φ := e−U(D) − 1, or equivalently

U (D) = ln(1 + ˆ︁φ) =: U ˆ︁φ. By substituting this ˆ︁φ in (7.3.18) to get

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
dJ ˆ︁φ

t = (1
2
λ2 + λZ ˆ︁φ)d(t ∧ τ) + Z ˆ︁φ

t dW
τ
t − U ˆ︁φdNG

−
(︁
(1 + ˆ︁φ) ln(1 + ˆ︁φ) − ˆ︁φ+ U ˆ︁φˆ︁φ)︁ ˜︁G−1I[[0,τ ]]dD

o,F
s .

J ˆ︁φ
T = −γ ˜︁B.

(7.3.33)
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
dJ ˆ︁φ

t = (1
2
λ2 + λZ ˆ︁φ)d(t ∧ τ) + Z ˆ︁φ

t dW
τ
t − U ˆ︁φ (︂dNG − ˆ︁φ ˜︁G−1I[[0,τ ]]dD

o,F
s

)︂
((1 + ˆ︁φ) ln(1 + ˆ︁φ) − ˆ︁φ) ˜︁G−1I[[0,τ ]]dD

o,F
s .

J ˆ︁φ
T = −γ ˜︁B.

therefore, by the uniqueness of the solution of the RBSDE (7.3.33) and as

this RBSDE coincide with the RBSDE (7.3.18) we have that Y (D) = J ˆ︁φ
t . By

combining this with the fact that ess sup
φ∈Φf

Jφ
t ≤ Y

(D)
t , which is proven in part(a)

of this theorem, we have ess sup
φ∈Φf

Jφ
t = Y

(D)
t .

Part 2. Here we prove (b). This part is divided into two steps as the following.

Step 1. On the one hand, as
(︂ˆ︁Y , ˆ︁Z, ˆ︁U • NG

)︂
is a solution to (7.3.23) then

we have

dˆ︁Yt = ˆ︁f(t, ˆ︁Ut)dA
τ
t + ˆ︁Ztdˆ︂W τ

t − ˆ︁UtdN
G, ˆ︁YT∧τ = −γ ˜︁B, P -a.s.. (7.3.34)

where ⎧⎪⎪⎨⎪⎪⎩
ˆ︂Wt := Wt +

∫︁ t

0
λsds, At := t+Do,F

t ,

ˆ︁f(t, u) := 1
2
λ2t (1 − Γt) − Γt˜︁Gt

(e−u + u− 1), Γt :=
dDo,F

t

dAt
.

(7.3.35)

Thus, by substituting ˆ︁f(t, u) := 1
2
λ2t (1 − Γt) − Γt˜︁Gt

(e−u + u − 1), Γt :=
dDo,F

t

dAt

in the (7.3.34) we get that the quadruplet

(Y (D), Z(D),M (D), K(D)) :=
(︂ˆ︁Y , ˆ︁Z, ˆ︁U • NG,

(︂ˆ︁U + e−
ˆ︁U − 1

)︂ ˜︁G−1
t I[[0,τ ]] • Do,F

)︂
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is a solution to the following BSDE

dYt =
1

2
λtd(t ∧ τ) + Ztdˆ︂W τ

t − dMt − dKt, YT∧τ = −γ ˜︁B.

On the other hand, due to ˆ︁Y = ess supφ∈Φf
Jφ we have that

ˆ︁Y ≥ J0 = E
ˆ︁Q [︃−1

2

∫︂ T∧τ

t∧τ
λ2sds− γ ˜︁B ⃓⃓Gt

]︃
=: SG

t . (7.3.36)

To prove the Skorokhod condition, we derive the following

E

[︃∫︂ T∧τ

0

(Y
(D)
t− − SG

t−)dK
(D)
t

]︃
= E

[︃∫︂ T∧τ

0

(Y
(D)
t− − SG

t−)
(︂
U

(D)
t + e−U

(D)
t − 1

)︂ ˜︁G−1I[[0,τ ]]dD
o,F
t

]︃
= E

[︃∫︂ T

0

(Y F
t− − So,F

t− )
(︂
U

(D)
t + e−U

(D)
t − 1

)︂ ˜︁G−1I[[0,τ ]]dD
o,F
t

]︃
= E

[︃∫︂ T

0

(Y F
t− − So,F

t− )
(︂
U

(D)
t + e−U

(D)
t − 1

)︂
dDt

]︃
= E

[︂
(Y F

τ− − So,F
τ−)

(︂
U (D)
τ + e−U

(D)
τ − 1

)︂
I{τ≤T}

]︂
= E

[︂
(Y

(D)
τ− − SG

τ−)
(︂
U (D)
τ + e−U

(D)
τ − 1

)︂
I{τ≤T}

]︂
= 0. (7.3.37)

Where Y F and So,F are the optional processes in F that are equals to Y (D) and

SG on [[0, τ [[, and hence Y F
− = Y

(D)
− and So,F

− = SG
− on ]]0, τ ]]. The last equality

in (7.3.37) is because of the following: First, we put

κ(x) := ln(1 + x) − x

1 + x
, for any x > −1,
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and we remark that

Y
(D)
t

:= ess sup
φ∈Φf

{︁
EQG,φ[︁− ∫︂ T∧τ

t∧τ
κ(φs)dDs −

1

2

∫︂ T∧τ

t∧τ
λ2sds− γ ˜︁B ⃓⃓Gt

]︁}︁
= ess sup

φ∈Φf

{︂
EQG,φ

[︃
−κ(φτ )1{t<τ≤T} −

1

2

∫︂ T∧τ

t∧τ
λ2sds− γ ˜︁B ⃓⃓Gt

]︃}︂

Therefore,

Y
(D)
τ−

= ess sup
φ∈Φf

{︁
EQG,φ[︁− κ(φτ )1{τ−<τ≤T} −

1

2

∫︂ T∧τ

τ∧τ
λ2sds− γ ˜︁B ⃓⃓Gτ−

]︁}︁
= −γ ˜︁B + ess sup

φ∈Φf

{︂
EQG,φ

[︃
−
(︃

ln(1 + φτ ) − φτ

1 + φτ

)︃
1{τ−<τ≤T}

⃓⃓
Gτ−

]︃}︂
= −γ ˜︁B.

The last inequality is due to

ess sup
φ∈Φf

{︂
EQG,φ [︁−Λ(φτ )1{τ≤T}

⃓⃓
Gτ−
]︁ }︂

≤ 0 = EQG,0 [︁−Λ(0)1{τ≤T}
⃓⃓
Gτ−
]︁
,

which yields

ess sup
φ∈Φf

EQG,φ

[︃
−
(︃

ln(1 + φτ ) − φτ +
φ2
τ

1 + φτ

)︃
1{τ≤T}

⃓⃓
Gτ−

]︃
= 0.

Also, note that
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SG
τ− = EQG,0

[︃
−1

2

∫︂ T∧τ

τ∧τ
λ2sds− γ ˜︁B ⃓⃓Gτ−

]︃
= EQG,0

[︂
−γ ˜︁B ⃓⃓Gτ−

]︂
= −γ ˜︁B.

Step 2. In this step, we prove that on [[0, τ [[, the processes ˆ︁S and SG defined

in (7.3.36) coincide. It is clear that for any t ∈ [0, T )

SG
t = SG

t 1{t <τ} − γ ˜︁B1{t ≥τ} = SG
t 1{t <τ} − ln

(︁
E−1
τ (G−1

− • m)1{t ≥τ}.

Now, we find ˆ︁St1{t <τ} as the following

SG
t 1{t <τ} = E

ˆ︁QG
[︃
−1

2

∫︂ T∧τ

t∧τ
λ2sds− γ ˜︁B ⃓⃓Gt

]︃
1{t <τ}

= E

[︃
−1

2

∫︂ T∧τ

t∧τ

Es (−λ • W )

Es(G−1
− • m)

λ2sds
⃓⃓
Gt

]︃
Et(G−1

− • m)

Et (−λ • W )
1{t <τ}

+ E

[︃
−ET∧τ (−λ • W )

ET∧τ (G−1
− • m)

γ ˜︁B ⃓⃓Gt

]︃
Et(G−1

− • m)

Et (−λ • W )
1{t <τ}

= E

[︃
−1

2

∫︂ T∧τ

t∧τ

Es (−λ • W )

Es(G−1
− • m)

λ2sds
⃓⃓
Gt

]︃
Et(G−1

− • m)

Et (−λ • W )
1{t <τ}

+ E

[︃
−ET (−λ • W )

ET (G−1
− • m)

(︁
γg + ln

(︁
E−1
T (G−1

− • m)
)︁)︁

1{T <τ}
⃓⃓
Gt

]︃
Et(G−1

− • m)

Et (−λ • W )
1{t <τ}

+ E

[︃
Eτ (−λ • W )

Eτ (G−1
− • m)

ln
(︁
Eτ (G−1

− • m)
)︁
1{T ≥τ}

⃓⃓
Gt

]︃
Et(G−1

− • m)

Et (−λ • W )
1{t <τ}

= E

[︃
−1

2

∫︂ T

t

Es (−λ • W )

Es(G−1
− • m)

λ2sGsds
⃓⃓
Ft

]︃
Et(G−1

− • m)

GtEt (−λ • W )
1{t <τ}

+ E

[︃
−ET (−λ • W )

ET (G−1
− • m)

(︁
γg + ln

(︁
E−1
T (G−1

− • m)
)︁)︁
GT

⃓⃓
Ft

]︃
Et(G−1

− • m)

GtEt (−λ • W )
1{t <τ}
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+ E

[︃∫︂ T

t

Es (−λ • W )

Es(G−1
− • m)

ln
(︁
Es(G−1

− • m)
)︁
dDo,F⃓⃓Ft

]︃
Et(G−1

− • m)

GtEt (−λ • W )
1{t <τ}

= E
ˆ︁QF
[︃
−1

2

∫︂ T

t

˜︁Esλ2sds− ˜︁ET(︂γg + ln
(︁
E−1
T (G−1

− • m)
)︁)︂⃓⃓

Ft

]︃
1{t <τ}˜︁Et

+ E
ˆ︁QF
[︃∫︂ T

t

ln
(︁
Es(G−1

− • m)
)︁
dV F

s

⃓⃓
Ft

]︃
1{t <τ}˜︁Et

= ˆ︁St1{t <τ}

where ˆ︁S is defined by (7.3.27).

Proposition 7.3.7. The RBSDE (7.3.26) has a unique quadruplet solution

(Y (D), Z(D),M (D), K(D)) that is connected to the unique solution (Y F, ZF, KF)

of the following RBSDE under F

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Yt = ξF +

∫︂ T

t

fF(s, Zs)ds−
∫︂ T

t

ln
(︂ ˜︁Zs

)︂
dV F

s +KT −Kt −
∫︂ T

t

ZsdWs,

Yt ≥ SF
t , t ∈ [0, T ),

∫︂ T

0

(Yt− − SF
t−)dKt = 0,

(7.3.38)

where

fF(s, z) := −˜︁Esf (︂s, z ˜︁E−1
s

)︂
, SF :=

ˆ︁St(g)

Et (−λ • W )
, ξF := −˜︁ETγ ˜︁B,

and ˜︁E := E(− ˜︁G−1 • Do,F) (7.3.39)
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as the following

Y (D) =
Y F˜︁E I[[0,τ [[ − γ ˜︁BI[[τ,+∞[[, Z

(D)

=
ZF˜︁E , K(D) =

1˜︁E− • (KF)τ

and M (D) =

(︃
− ln

(︂ ˜︁Z)︂− Y F˜︁E
)︃

• NG.

Proof. The proof is a direct application of theorem 5.1.5.
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et processus de Markov. Z. Wahrscheinlichkeitstheorie verw. Gebiete 39,
301-313, 1977.

[15] Briand, Ph. and Confortola, F.: Quadratic BSDEs with random terminal
time and elliptic PDEs in infinite dimension. Electronic Journal of Proba-
bility, Vol. 13, No. 54, 1529-1561, 2008.

[16] Briand, P. and Hu, Y.: ”BSDE with quadratic growth and unbounded
terminal value”, Probability Theory Related Fields, 136 (4), 604-618, 2006.

[17] Briand, P. and Hu, Y.: ”Quadratic BSDEs with convex generators and
unbounded terminal conditions”, Probability Theory and Related Fields,
141, 543-567, 2008.

[18] Borch, K. H.: The economics of uncertainty, volume 209. Princeton Uni-
versity Press Princeton, 1968.

[19] Bouchard, B. Possamäı, D., Tan, X. and Zhou,C.: A unified approach
to a priori estimates for super-solutions of BSDEs in general filtrations.
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