
Online Learning under Partial Feedback

by

Yifan Wu

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Yifan Wu, 2016

Abstract

In an online learning problem a player makes decisions in a sequential manner.

In each round, the player receives some reward that depends on his action and

an outcome generated by the environment while some feedback information

about the outcome is revealed. The goal of the player can be various.

In this thesis we investigate several variants of online learning problems

with different feedback models and objectives. First we consider the pure ex-

ploration problem with multi-action probes. We design algorithms that can

find the best one or several actions with high probability while using as few

probes as possible. Then we study the side observation model in the regret

minimization scenario. We derive a novel finite time distribution dependent

lower bound and design asymptotically optimal and minimax optimal algo-

rithms. Last we investigate the conservative bandit problem where the objec-

tive is to minimize the regret while maintaining the cumulative reward above a

baseline. We design algorithms for several variants of the problem and derive

a lower bound.

In each of the three variants of the online learning problem we consider,

our problem setting generalizes some previous work. The theoretical results

successfully recover existing results in special cases as well as propose novel

perspectives in the more general settings.

ii

Preface

Chapter 2 and Chapter 3 are joint works with András György and Csaba

Szepesvári, and were published in Wu et al. (2015a) and Wu et al. (2015b).

Chapter 4 is a joint work with Roshan Shariff, Tor Lattimore and Csaba

Szepesvári, and will be published in Wu et al. (2016).

iii

Acknowledgements

I sincerely thank my supervisors, Csaba Szepesvári and András György, for

their encouragement and patient support on my research. I am also grateful

to my collaborators, Roshan Shariff and Tor Lattimore, for working together

on this work. Furthermore I would like to thank my thesis committee chair

Micheal Bowling for his comments on how to improve the thesis. Finally I

would like to thank my parents and the University of Alberta for supporting

my study during the master program.

iv

Table of Contents

1 Introduction 1
1.1 Online learning . 1
1.2 Different objectives . 2

1.2.1 Pure exploration . 2
1.2.2 Regret minimization 5
1.2.3 Conservative bandits 7

1.3 Summary of contributions . 9

2 Pure Exploration with Multi-option Probes 11
2.1 Preliminaries . 12

2.1.1 Notation . 12
2.1.2 Problem Formulation 12
2.1.3 Set Multi-Cover Problems 15

2.2 Finding the Best Option . 17
2.2.1 Successive Elimination with Probes 17
2.2.2 An Alternative Algorithm to Find the Best Option . . 27

2.3 PAC Subset Selection . 42
2.3.1 Strong PAC Subset Selection 43
2.3.2 Average PAC Subset Selection 46

2.4 Summary . 51

3 Regret Minimization with Gaussian Side Observations 52
3.1 Problem Formulation . 53

3.1.1 Notation . 55
3.2 Lower Bounds . 55

3.2.1 A General Finite Time Lower Bound 57
3.2.2 A Relaxed Lower Bound 59

3.3 Algorithms . 69
3.3.1 An Asymptotically Optimal Algorithm 69
3.3.2 A Minimax Optimal Algorithm 77

3.4 Summary . 87

4 Conservative Bandits 88
4.1 Conservative Multi-Armed Bandits 89

4.1.1 Conservative Exploration 90
4.2 The Stochastic Setting . 91

4.2.1 The Budget Constraint 92
4.2.2 BudgetFirst — A Naive Algorithm 93
4.2.3 Conservative UCB . 93
4.2.4 Considering the Expected Regret and Budget 100
4.2.5 Learning an Unknown µ0 101

4.3 The Adversarial Setting . 104
4.4 Lower Bound on the Regret 106

v

4.5 Experiments . 109
4.6 Summary . 111

5 Conclusions and Future Work 112

Bibliography 113

vi

List of Figures

1.1 A specialized algorithm (SEWP) proposed in this thesis can
take nontrivial advantage of the probe structure as compared
with simple adaptations of earlier algorithms, while being only
marginally more expensive. All algorithms maintain the same
error-rate. The plot on the left-hand-side uses a log-log-scale.
Due to the special structure of the problem, the expected stop-
ping time of the specialized algorithm scale linearly with

√
K,

while the others scale linearly with K, the number of options. 4

2.1 |p| = 1, easy case . 42
2.2 |p| = 1, hard case . 42

2.3 |p| =
√
K, easy case . 42

2.4 |p| =
√
K, hard case . 42

2.5 |p| = K, easy case . 42
2.6 |p| = K, hard case . 42

4.1 Choosing the default arm increases the budget. Then it is safe
to explore a non-default arm if it cannot violate the constraint
(i.e. make the budget negative). 91

4.2 Average regret for varying α and n = 104 and δ = 1/n 110
4.3 Average regret as n varies with α = 0.1 and δ = 1/n 111

vii

Chapter 1

Introduction

In this chapter we first introduce the online learning framework. Next we

present different learning objectives along with more general feedback models

that generalize the full-information and the bandit setting. Then we summa-

rize the contributions that will be presented in the following chapters of this

thesis.

1.1 Online learning

In an online learning problem, a player (or learner) needs to interact with

the environment in a round-by-round case. In each round the player makes

a decision and the environment generates an outcome. After the player takes

the action some feedback information about the outcome is revealed then the

player can make a decision for the next round. There are two types of environ-

ments: stochastic and non-stochastic. In stochastic environments the outcome

is generated from some probability distribution while in non-stochastic envi-

ronments there is no probabilistic assumption about the outcome, which may

be generated in an adversarial way.

The formulation of an online learning problem typically includes an envi-

ronment, an action space, a feedback model and a learning objective. In this

thesis we mainly focus on environments that have a finite set of K options,

which are referred to learning with expert advice in the literature. In this

framework, there are two basic feedback models: the full-information setting

1

and the multi-armed bandit 1 setting. In both settings the action space is

the same as the set of options2: in each round, the player picks an option

and observes some feedback about the outcome of the environment. In the

full-information setting, the player can observe the outcome associated with

each of the options while in the bandit setting the player can only observe the

outcome associated with the option that is picked in that round. In the next

section we will talk about different types of learning objectives and introduce

some more general feedback models.

1.2 Different objectives

In this section we will first introduce two different learning objectives — pure

exploration and regret minimization as well as feedback models that generalize

the full-information and the bandit setting. Furthermore we will introduce

conservative bandits which aim at minimizing the regret under some additional

constraint.

1.2.1 Pure exploration

In pure exploration problems the player aims at extracting information about

the environment regardless of the reward/loss incurred during the process. A

most basic pure exploration problem is the best arm identification problem in

the stochastic multi-armed bandit setting, where the goal is to find the option

with highest reward mean with high probability. The history of the best arm

identification problem goes back more than half a century (Bechhofer, 1958;

Paulson, 1964), and with much activity in the last decade (e.g. Even-Dar

et al., 2002; Mannor and Tsitsiklis, 2004; Audibert et al., 2010; Kalyanakr-

ishnan and Stone, 2010; Bubeck et al., 2011; Kalyanakrishnan et al., 2012;

Gabillon et al., 2012; Karnin et al., 2013; Kaufmann and Kalyanakrishnan,

2013; Bubeck et al., 2013; Jamieson et al., 2014; Kaufmann et al., 2015a; Zhou

1In the rest of this thesis we will mostly use bandit instead of multi-armed bandit for
simplicity.

2When the action space is the same as the set of options we will simply use the term
“action” for an option.

2

et al., 2014).

Multi-option probes

In addition to finding the best option in the standard bandit setting, some of

the recent work also studies other variants of objectives such as finding the

best multiple options and different settings such as the combinatorial setting

(Chen et al., 2014; Gabillon et al., 2016). In this thesis we will present our

work on the multi-option probe setting where the goal is to find the best one

or multiple option(s) by using as few multi-option probes as possible.

The motivation of the multi-option probe setting is as follows: Consider

the problem of identifying the most rewarding option(s) out of finitely many.

At your disposal are a number of probing devices, or just probes, that give you

noisy measurements of the quality of a select set of options. More precisely,

each probe is associated with a known subset of options whose quality the probe

will measure. In a sequential process, the goal is to select the probes so that

one can stop early to return, with high probability, a sufficiently rewarding

option (or a set of options). As a specific example, consider the problem of

identifying the segment on a road network that is in the worst shape after a

long winter. Measurements can be obtained by sending trucks checking the

road for potholes along the paths they travel on. The trucks must return to

their garage every day. Here, the options correspond to road segments, the

probes correspond to a closed walk in the road network that starts from the

garage. Somewhat ironically, a road segment is “rewarding” (from the point

of view of how beneficial it is to sending there the repair team) if it has many

potholes. 3 Measurements are noisy, as potholes are easy to miss.

Problems like the above one abound. Numerous quality assurance and

surveying tasks are such that measurements give simultaneous information

about multiple entities due to physical constraints on the measurement pro-

cess. Application areas include technical computing (e.g., networking), biology

(ecology, microbiology, etc.), physics, etc. Of course, even though individual

3In practice, one may want a whole “plan” at the end for the repair team. As often,
we took the liberty of simplifying the problem to be able to focus on how the structure of
probes should be used.

3

10 100 1000

103

104

105

106

Number of options

N
um

be
r o

f p
ro

be
s

us
ed

SEWP
lilUCB
SE

200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

Number of options

R
un

ni
ng

 ti
m

e
pe

r p
ro

be
 (m

s)

SEWP
lilUCB
SE

Figure 1.1: A specialized algorithm (SEWP) proposed in this thesis can take
nontrivial advantage of the probe structure as compared with simple adapta-
tions of earlier algorithms, while being only marginally more expensive. All
algorithms maintain the same error-rate. The plot on the left-hand-side uses a
log-log-scale. Due to the special structure of the problem, the expected stop-
ping time of the specialized algorithm scale linearly with

√
K, while the others

scale linearly with K, the number of options.

measurements might be impossible, it is always possible to treat each probe

as one that gives individual measurements for the options associated with it,

though this could be wasteful (cf. Fig. 1.1). The main topic of this part of

work is how to exploit, with efficient algorithms, when probes give information

about multiple options.

Compared to our multi-option probe setting, Chen et al. (2014) and Gabil-

lon et al. (2016) study a “reversed” setting where the goal is to find the best

“probe” by pulling “options”. After our work is published, Jun et al. (2016)

studies a similar scenario where options can be experimented in “batches”.

The difference between their work and ours is that they allow repeated op-

tions in a “batch” while their “batch space” is more restricted than ours (e.g.

of the same size, contains any combination).

(In Figure 1.1, the lilUCB algorithm comes from Jamieson et al. (2014).

The parameters we used in experiments is the lilUCB Heuristic setting, which

performs the best in the experiments of Jamieson et al. (2014). The SE al-

gorithm is short for the successive elimination algorithm of Even-Dar et al.

(2002). As these algorithms select options for measurements, we adapt them

4

to the probe setting by choosing the first probe in some arbitrary ordering of

probes that gives a measurement for the selected option . In experiments, all

distributions we used are Gaussian with variance 1/4. Each point reported

in the figure is based on 100 repeated experiments under the same reward

distributions, where we set one of the means to be 0.5 and the others to be 0.

)

1.2.2 Regret minimization

In regret minimization problems the player receives some reward, or, inter-

changeably, payoff, in each round after taking an action. The goal is to maxi-

mize the cumulative reward during the learning process. The performance of

algorithms is defined in terms of cumulative regret : the difference between the

total reward received by the player and that when the player constantly takes

some “best” action. Lower regret means better performance.

In both full-information and bandit setting the reward of taking an action

is just the outcome associated with that action: In the full information setting

the player observes the reward of all possible actions at the end of every round.

In the bandit setting the player only observes its own reward and receives

no information about the reward of other actions (Bubeck and Cesa-Bianchi,

2012).

Graph-structured feedback

Recently, several papers considered a more refined setup, called graph-structured

feedback, that interpolates between the full-information and the bandit case:

here the feedback structure is described by a (possibly directed) graph, and

choosing an action reveals the payoff of all actions that are connected to the

selected one, including the chosen action itself. This problem, motivated for

example by social networks, has been studied extensively in both the adversar-

ial (Mannor and Shamir, 2011; Alon et al., 2013; Kocák et al., 2014; Alon et al.,

2015) and the stochastic cases (Caron et al., 2012; Buccapatnam et al., 2014).

However, most algorithms presented heavily depend on the self-observability

assumption, that is, that the payoff of the selected action can be observed.

5

Removing this self-loop assumption leads to the so-called partial monitoring

case (Alon et al., 2015). In the absolutely general partial monitoring setup the

learner receives some general feedback that depends on its choice (and the en-

vironment), with some arbitrary (but known) dependence (Cesa-Bianchi and

Lugosi, 2006; Bartók et al., 2014). While the partial monitoring setup covers

all other problems, its analysis has concentrated on the finite case where both

the set of actions and the set of feedback signals are finite (Cesa-Bianchi and

Lugosi, 2006; Bartók et al., 2014), which is in contrast to the standard full

information and bandit settings where the feedback is typically assumed to be

real-valued. To our knowledge there are only a few exceptions to this case: in

Alon et al. (2015), graph-structured feedback is considered without the self-

loop assumption, while continuous action spaces are considered in Lin et al.

(2014) and Lattimore et al. (2014) with special feedback structure (linear and

censored observations, resp.).

Gaussian side observations

In this thesis we consider a generalization of the graph-structured feedback

model, called the Gaussian side observation model, which can also be viewed

as a general partial monitoring model with real-valued feedback. In the Gaus-

sian side observation model, after selecting an action i, the learner receives

information about the payoff of every action j in the form of Gaussian obser-

vations whose mean is the same as the mean payoff, but the variance depends

on the pair (i, j) (and may be infinite). The setup allows a more refined infor-

mation transfer from one action to another than previous partial monitoring

setups, including the recently introduced graph-structured feedback case.

After our work is published, Kocák et al. (2016) generalized the graph-

structured feedback setting in a similar fashion by allowing different level of

noise in observations. Compared with our work, they are studying a non-

stochastic payoff setting and presenting different type of regret bounds.

6

1.2.3 Conservative bandits

In this thesis we also study a variant of the regret minimization problem in

the multi-armed bandit setting called conservative bandits, where the goal is

to minimize the cumulative regret under some additional constraint (lower

bound) on the cumulative reward over time. This problem is motivated by

the challenge faced by a company wishing to explore new strategies to max-

imize revenue whilst simultaneously maintaining their revenue above a fixed

baseline, uniformly over time. For example, the manager of Zonlex, a fic-

tional company, has just learned about bandit algorithms and is very excited

about the opportunity to use this advanced technology to maximize Zonlex’s

revenue by optimizing the content on the landing page of the company’s web-

site. Every click on the content of their website pays a small reward; thanks

to the high traffic that Zonlex’s website enjoys, this translates into a decent

revenue stream. Currently, Zonlex chooses the website’s contents using a strat-

egy designed over the years by its best engineers, but the manager suspects

that some alternative strategies could potentially extract significantly more

revenue. The manager is willing to explore bandit algorithms to identify the

winning strategy. The manager’s problem is that Zonlex cannot afford to lose

more than 10% of its current revenue during its day-to-day operations and at

any given point in time, as Zonlex needs a lot of cash to support its operations.

The manager is aware that standard bandit algorithms experiment “wildly”,

at least initially, and as such may initially lose too much revenue and jeop-

ardize the company’s stable operations. As a result, the manager is afraid of

deploying cutting-edge bandit methods, but notes that this just seems to be

a chicken-and-egg problem: a learning algorithm cannot explore due to the

potential high loss, whereas it must explore to be good in the long run.

The problem described in the previous paragraph is ubiquitous. It is

present, for example, when attempting to learn better human-computer in-

teraction strategies, say in dialogue systems or educational games. In these

cases a designer may feel that experimenting with sub-par interaction strate-

gies could cause more harm than good (Rieser and Lemon, 2008; Liu et al.,

7

2014). Similarly, optimizing a production process in a factory via learning

(and experimentation) has much potential (Gabel and Riedmiller, 2011), but

deviating too much from established “best practices” will often be considered

too dangerous. For examples from other domains see the survey paper of

Garćıa and Fernández (2015).

Our constraint here is equivalent to a constraint on the regret to a de-

fault strategy, or in the language of prediction-with-expert-advice, or bandit

literature, regret to a default action. In the full information setting, mostly

studied in the adversarial setting, much work has been devoted to understand-

ing the price of such constraints (Hutter and Poland, 2005; Even-Dar et al.,

2008; Koolen, 2013; Sani et al., 2014). In particular, Koolen (2013) studies

the Pareto frontier of regret vectors (which contains the non-dominated worst-

case regret vectors of all algorithms). The main lesson of these works is that

in the full information setting even a constant regret to a fixed default ac-

tion can be maintained with essentially no increase in the regret to the best

action. The situation quickly deteriorates in the bandit setting as shown by

Lattimore (2015a). This is perhaps unsurprising given that, as opposed to the

full information setting, in the bandit setting one needs to actively explore to

get improved estimates of the actions’ payoffs. Lattimore (2015a) describes

two learning algorithms relevant to our setting: In the stochastic setting we

consider, Unbalanced MOSS (and its relative, Unbalanced UCB) are able to

achieve a constant regret penalty while maintaining the return constraint while

Exp3-γ achieves a much better regret as compared to our strategy for the ad-

versarial setting. However, neither of these algorithms maintain the return

constraint uniformly in time. Neither will the constraint hold with high prob-

ability. While Unbalanced UCB achieves problem-dependent bounds, it has

the same issues as Unbalanced MOSS with maintaining the return constraint.

Also, all these strategies rely heavily on knowing the payoff of the default

action.

More broadly, the issue of staying safe while exploring has long been rec-

ognized in reinforcement learning (RL). Garćıa and Fernández (2015) provides

a comprehensive survey of the relevant literature. Lack of space prevents us

8

from including much of this review. However, the short summary is that while

the issue has been considered to be important, no previous approach addresses

the problem from a theoretical angle. Also, while it has been recognized that

adding constraints on the return is one way to ensure safety, as far as we know,

maintaining the constraints during learning (as opposed to imposing them as

a way of restricting the set of feasible policies) has not been considered in this

literature. Our work, while it considers a much simpler setting, suggest a novel

approach to address the safe exploration problem in RL. Another line of work

considers safe exploration in the related context of optimization (Sui et al.,

2015). However, the techniques and the problem setting (e.g., objective) in

this work is substantially different from ours.

1.3 Summary of contributions

Chapter 2 is based on the work of Wu et al. (2015a). We investigate the

pure exploration problem in the multi-option probe setting: In each round,

a subset of the options, from an available set of subsets, can be selected to

receive noisy information about the quality of the options in the chosen subset.

The goal is to identify the highest quality option, or a group of options of the

highest quality, with a small error probability, while using the smallest number

of measurements. The problem generalizes best-arm identification problems.

By extending previous work, we design new algorithms that are shown to

be able to exploit the combinatorial structure of the problem in a nontrivial

fashion, while being unimprovable in special cases. The algorithms call a set

multi-covering oracle, hence their performance and efficiency is strongly tied

to whether the associated set multi-covering problem can be efficiently solved.

Chapter 3 is based on the work of Wu et al. (2015b): We investigate the

regret minimization problem with Gaussian side observations in stochastic

environments: For the first time in the literature, we provide non-asymptotic

problem-dependent lower bounds on the regret of any algorithm, which recover

existing asymptotic problem-dependent lower bounds and finite-time minimax

lower bounds available in the literature. We also provide algorithms that

9

achieve the problem-dependent lower bound (up to some universal constant

factor) or the minimax lower bounds (up to logarithmic factors).

Chapter 4 is based on the work of Wu et al. (2016): We study the conser-

vative bandit problem. We consider both the stochastic and the adversarial

settings, where we propose natural yet novel strategies and analyze the price

for maintaining the constraints. Amongst other things, we prove both high

probability and expectation bounds on the regret, while we also consider both

the problem of maintaining the constraints with high probability or expec-

tation. For the adversarial setting the price of maintaining the constraint

appears to be higher, at least for the algorithm considered. A lower bound

is given showing that the algorithm for the stochastic setting is almost op-

timal. Empirical results obtained in synthetic environments complement our

theoretical findings.

10

Chapter 2

Pure Exploration with
Multi-option Probes

In this chapter we present our work on the pure exploration problem in the

multi-option probe setting (Wu et al., 2015a). We consider two basic settings:

identifying the best option with a prespecified error probability while using

the smallest possible number of probes, and identifying a group of options of a

fixed size, again with a prespecified error probability with the smallest possible

number of probes. For the first setting, we propose two algorithms, SEWP

and EGEWP described in Section 2.2, extending the works of Even-Dar et al.

(2002) and Karnin et al. (2013). They work by constructing coverings with the

probes of the sets of options not eliminated. The second algorithm removes a

logarithmic term from the upper bound and it required a non-trivial extension

of the median elimination method of Even-Dar et al. (2002). For the second

setting, in Section 2.3, the quality of a group returned is assessed either by the

quality of the worst option in the group (following Kalyanakrishnan and Stone

(2010)), or by the average quality of options in the group (Zhou et al., 2014).

We propose a single algorithm (SARWP) that essentially covers both cases.

For the average quality, our distribution dependent upper bound is novel even

in the bandit case and also near optimal in the worst case compared with

the lower bound proposed by Zhou et al. (2014). For simple probe structures

(singletons, or when a probe that covers all options is available), our algorithms

are shown to be essentially unimprovable. We also give lower bounds for

general probe structures. While both our lower and upper bounds express

11

how the structure of the probes interferes with the structure of payoffs, they

differ in subtle ways and it remains for future work to see whether there is a

gap between them.

2.1 Preliminaries

In this section, we formulate the problem studied, as well as introducing the

set covering problem, which will play an important role in our algorithms and

analysis. We start by defining some notation.

2.1.1 Notation

The set of natural numbers will be denoted by N, which includes zero. For

a positive natural number n, [n] denotes the set of integers between 1 and n:

[n] = {1, . . . , n}. The power set, i.e., the set of all subsets of a set S, will be

denoted by 2S. As usual, functions, mapping set X to set Y will be viewed

as elements of Y X . For v ∈ Y X , we will often write vx instead of v(x) to

minimize clutter. This also helps with the next convention: When U ⊂ X, we

will use vU to denote the restriction of v ∈ Y X to U : vU(u) = v(u), u ∈ U . We

identify Y [n] with Y n (the set of n-tuples) in the natural way, which allows us

to use notation vU for v ∈ Y n ≡ Y [n]. The cardinality of a set S is denoted by

|S|. Certain symbols will be reserved to denote elements of certain sets (i.e.,

p will always be an element of set P). When using such reserved symbols, we

will abbreviate (e.g.)
∑

p∈P f(p) to
∑

p f(p). We will use log(·) to denote the

natural logarithm function.

2.1.2 Problem Formulation

A decision maker is given a pair ([K] ,P), where elements of [K] are called

options, and P ⊂ 2[K] such that the sets in P cover [K]: ∪P = [K]. Elements

of P are called probes. A problem instance D, or environment, is specified by

K distributions over the reals, D = (D1, . . . , DK). The decision maker does

not have direct access to these distributions. For 1 ≤ i ≤ K, we think of

distribution Di as the distribution of “rewards” associated with option i. We

12

assume that the mean reward µi =
∫
xDi(dx) of each option is well defined.

Further assumptions on Di will be given later.

The goal of the decision maker is to find options with the largest mean

reward. For this, the decision maker can query the rewards of the options

by using the probes in a sequential manner. In particular, for each round

t = 1, 2, . . . , first a random reward Xt,i ∼ Di is generated for each option

i from its associated distribution. It is assumed that Xt,i is independent of

the other rewards (Xs,j)s6=t or j 6=i. We set Xt = (Xt,1, . . . , Xt,K) ∈ RK . In

round t = 1, 2, . . . , the decision maker chooses a probe pt ∈ P based on

her past observations, to observe the values Xt,i for each option i in pt; with

our earlier introduced notation we can write that the decision maker observes

Xt,pt
.
= (Xt)pt ∈ Rpt . At the end of each round, the decision maker can decide

between continuing or stopping to return a list of guesses (or a single guess)

on the indices of the good options. The goal is to stop as soon as possible,

while avoiding poor guesses.

The following specific problem settings will be considered:

(i) Fixed confidence, best-option identification. The optimal option is unique:

If µ? = maxi∈[K] µi, maxi:µi 6=µ? µi < µ?. The goal of the decision maker

is to identify the index i? = argmaxi∈[K] µi of the optimal option. The

decision maker is given a confidence parameter 0 ≤ δ < 1 and it is re-

quired that the guess returned after τ probes must be correct on an event

E with probability at least 1 − δ. Decision makers are compared based

on their probe complexity, i.e., the number of probes they use when the

“good event” E happens.

(ii) PAC subset selection. There are two subproblems that we consider. In

both cases the decision maker is given a confidence, 0 ≤ δ < 1, a sub-

optimality threshold ε > 0 and a subset cardinality 1 ≤ m ≤ K. The

problems differ in how a quality q(S, µ) measure is assigned to a subset

S ⊂ [K] of options. In both problems, the goal is to find a subset of op-

tions of cardinality m such that q(S, µ) ≥ maxP⊂[K]:|P |=m q(P, µ)− ε and

with probability 1−δ, the decision maker must return a subset satisfying

13

the above quality constraint. As before, decision makers are compared

based on how many probes they use before stopping. The two quality

measures considered are the reward of the worst option in the set and

the average reward: qmin(S, µ) = mini∈S µi and qavg(S, µ) = 1
|S|
∑

i∈S µi,

S ⊂ [K], |S| = m. We call the corresponding problems the strong and

the average PAC subset selection problems.

An algorithm used by a decision maker to select probes, stop and return a

guess will be said to be admissible with respect to a class of environments, if,

for any environment within the class and any 0 ≤ δ < 1, the guess computed

is correct (according to the previous requirements) with probability 1− δ.

The above problems have been considered in the past in the special case

when P contains singletons only, by a number of authors (see Section 1.2.1 for

some references). We shall call these the “bandit” problems. While one can

readily apply the algorithms developed for the bandit case to our problem,

the expectation is that the probe complexity of reasonable algorithms should

improve considerably as P becomes “richer” (this was illustrated in Fig. 1.1).

The question is how the structure of P together with the problem instance

influences the problem complexity. For example, in the extreme case when P

contains [K], we expect the probe complexity of reasonable algorithms to scale

sublinearly with K, whereas in the bandit case a linear scaling is unavoidable.

The case when P = {[K]} will be called the full information case.

Note that since all probes “cost” the same amount (one unit of time), a

reasonable algorithm will avoid any probe p that is entirely included in some

other probe p′ ∈ P . Hence, we may as well assume that the set of probes does

not have nontrivial chains in it.

We will present results for the class of environments Dsg with the following

restrictions: For each 1 ≤ i ≤ K, Di is sub-Gaussian with common parameter

σ2 = 1/4:

log

∫

R
e−λ(x−µi)Di(dx) ≤ λ2σ2/2 = λ2/8

for all λ ∈ R. To simplify the presentation of our results, without loss of

generality, we assume that µ1 ≥ µ2 ≥ · · · ≥ µK . (note that, obviously, the

14

algorithms do not use this assumption). For further simplicity, we assume that

∆i ∈ [0, 1] for all i ∈ [K] where ∆i = µ1 − µi, 2 ≤ i ≤ K. Our assumptions

on the reward distributions Di are satisfied if, for example, Di has bounded

support.

We will present algorithms, which will be shown to be admissible for Dsg

and we will bound their probe complexities. The bounds on the probe com-

plexities will be given in terms of the (suboptimality) gaps ∆i, 2 ≤ i ≤ K,

i.e., they will be dependent on the distributions D = (D1, . . . , DK). Hence, we

call them distribution dependent bounds. We will accompany our constructive

results with lower bounds, putting a lower limit on the probe complexity of

all admissible algorithms. Again, these will be given in terms of the gaps ∆i.

2.1.3 Set Multi-Cover Problems

Probes allow one to “explore” multiple options simultaneously. Clever al-

gorithms should use the probes in a smart way to guarantee the necessary

number of samples for each of the options while using the smallest number

of probes. If, for example, n ∈ N observations are enough from each of the

options to distinguish their mean payoff from that of the optimal option, then

an intelligent algorithm would try to create the smallest covering of [K] using

the subsets in P to meet this requirement. More generally, for J ⊂ [K], we

define

min
{∑

p sp : s ∈ NP ,
∑

p:i∈p sp ≥ n, i ∈ J
}

to be the cost of the smallest n-fold multi-covering of elements of J . Any

s ∈ NP achieving the minimum is called an optimal (integral) n-cover of J ,

while a feasible vector s is called an n-cover. Given an n-cover s ∈ NP , we will

say that probe p belongs to s (writing p ∈ s) if sp > 0. The optimization prob-

lem defining CIP is a linear integer program (hence the IP in CIP). Relaxing

the integrality constraint s ∈ NP to the nonnegativity constraint s ∈ [0,∞)P ,

we get a so-called fractional optimal n-cover of J by solving the otherwise

identical optimization problem. The resulting optimal value will be denoted

by CLP(J, n). Note that the relaxed problem is a linear program, explaining

15

“LP” in CLP. While this linear program has potentially exponentially many

variables in K, it can still be efficiently solved provided an efficiently com-

putable membership oracle is available for its dual (Grötschel et al., 1993).

Both CIP(J, n) and CLP(J, n) can be extended to non-integer values of n.

It follows immediately from the definitions that CLP(J, n) ≤ CIP(J, n).

Further, for any a > 0, CLP(J, a n) = a CLP(J, n) = an CLP(J, 1). The inte-

grality gap for a set multi-covering problem instance is given by (P , J, n) is

CIP(J, n)/CLP(J, n) (Vazirani, 2001).

Our algorithms will need “small” n-covers for various subsets J ⊂ [K].

Depending on the structure of P , calculating an optimal multi-cover of J may

be easy or hard 1 (Slavik, 1998; Schrijver, 2003; Korte and Vygen, 2006).

Thus, to keep the presentation general, our algorithms will rely on a set multi-

covering oracle COrcl, which given J, n,P , returns an n-fold multi-cover of J

using the sets in P . Denote by CO(J, n) the cost of the multi-cover returned

by the oracle on J, n (as with CIP and CLP the dependence on P is suppressed).

The oracle’s integral (fractional) approximation gap, GIP (O,P) (GLP (O,P)),

is the worst-case multiplicative loss due to using COrcl in place of an optimal

integral (fractional) cover. In particular, with ? ∈ {IP, LP},

G?(O,P) = sup
n∈N+,J⊂[K]

CO(J, n)

C?(J, n)
.

Let d = maxp∈P |p| be the maximum number of actions that can be covered by

a single probe. If the set-system P has no special structure, one possibility is to

use the greedy algorithm G as the oracle. This algorithm works by sequentially

setting sp = n for the probe p ∈ P that covers the maximum number of active

options in J and then deactivates the options that are covered by p, until

all options are deactivated. Further, GLP (O,P) ≤ 1 + log(d) ≤ 1 + log(K).

Lovász (1975) showed that CG(J, 1) ≤ (1 + log d)CLP(J, 1). Then, CG(J, n) =

n CG(J, 1) ≤ (1 + log d)n CLP(J, 1) = (1 + log d)CLP(J, n), showing that the

required inequality indeed holds. Raz and Safra (1997) proved that the exists

some constant c > 0 such that, unless P = NP , no approximation ratio of

1Computing the exact solution for the decision version of set covering (i.e., when n = 1),
when P can be any covering system, is known to be NP-hard (Vazirani, 2001).

16

c log(K) can be achieved, so in a worst-case the greedy algorithm is a near-

optimal approximation algorithm.

2.2 Finding the Best Option

In this section we present two algorithms and their analysis for the fixed con-

fidence, best-option identification problem. Recall that in this problem, given

a set of probes P and a confidence δ ∈ (0, 1], we need to design a sequential

procedure that identifies the best option i? with probability at least 1−δ using

as few probes as possible.

2.2.1 Successive Elimination with Probes

The first algorithm modifies the successive elimination algorithm of Even-Dar

et al. (2002) to take into account the richer observation structure of our prob-

lem. Recall that the algorithm of Even-Dar et al. (2002) works in phases, in

each phase observing a certain number of rewards for each remaining candi-

date actions. At the end of the phase the provably suboptimal actions are

eliminated. The number of observations in each phase depends only on the

phase index. The process stops when the candidate set contains a single el-

ement. The main difference to the algorithm of Even-Dar et al. (2002) is

that in each phase our algorithm, which we call Successive Elimination with

Probes (SEWP), computes a set multi-covering for the remaining candidate

actions given the probes, with a requirement adjusted to the phase index. The

returned multi-cover is then used to get the observations for the remaining

actions.

Our first result shows that Algorithm 1 is admissible and gives an upper

bound on its probe complexity. To state it, define the scheduling and confi-

dence functions

f(t) = 2t, g(t, δ) =

√
log(4Kt2/δ)

2t+1
. (2.1)

For simplicity, assume that the options are ordered in decreasing order of their

mean rewards and ∆2 > 0, i.e., the optimal option is unique. For 2 ≤ i ≤ K

17

Algorithm 1 SuccessiveEliminationWithProbes (SEWP)

1: Inputs: K, δ, P , observation scheduling function f : N→ N and confidence
function g : N× (0, 1]→ [0,∞).

2: Initialize candidate set: A1 = [K].
3: for t = 1, 2, . . . do
4: C(t)← COrcl(At, f(t),P).
5: Use each p in C(t) for Cp(t)-times to get new observations.
6: For each i ∈ At, let µ̂i(t) be the mean of all observations so far for option

i.
7: At+1 ← {i ∈ At : µ̂i(t) + 2g(t, δ) > maxj∈At µ̂j(t)}.
8: if |At+1| = 1 then
9: Return the option in At+1.
10: end if
11: end for

define

T̂i(δ) = 1 + max

{
s : g(s, δ) ≥ ∆i

4

}
, (2.2)

N̂i(δ) =
128

∆2
i

log

(
54K

δ
log

4

∆i

)

and let T̂K+1(δ) = 0 and N̂K+1(δ) = 0. Note that 2T̂i(δ)+1 ≤ N̂i(δ), and both

are decreasing with i ≥ 2 increasing.

Theorem 1. Pick any 0 ≤ δ < 1 and let SEWP run with inputs (K, δ,P , f, g)

with f, g given by (2.1). Then, with probability at least 1 − δ, SEWP returns

the optimal option i? = 1 within N probes, where N satisfies

N ≤ GIP (O,P)
K∑

i=2

T̂i(δ)∑

t=T̂i+1(δ)+1

CIP([i] , 2t) . (2.3)

Furthermore, with M̂i(δ)
.
= N̂i(δ)− N̂i+1(δ),

N ≤ GLP (O,P)
K∑

i=2

M̂i(δ) CLP ([i] , 1) . (2.4)

The proof borrows ideas from Even-Dar et al. (2002). To prove that SEWP

is admissible, one only needs to show that when none of the confidence intervals

based on g used in the elimination step fail, the optimal option will not be

eliminated. This essentially relied on Hoeffding’s inequality, union bounds

18

and calculations. To calculate the bound on the probe complexity bound, one

shows that option i will be eliminated after phase T̂i(δ). This happens because

in each phase the confidence sets of all options decrease at a uniform rate.

We start with a technical lemma:

Lemma 2. Let 0 < a < 1/e, b ≥ 2. Then, for any n ≥ n∗(a, b)
.
=

2
a

log(2b log 1
a
), an ≥ log(b log n).

Proof. Let q1(x) = ax, q2(x) = log(b log x) = log(log x) + log b, x > e. The

claim to be proven is that for any n ≥ n∗
.
= n∗(a, b), q1(n) ≥ q2(n). By

differentiation, it is easy to verify that the function f(x) = q1(x) − q2(x) is

non-decreasing if and only if x log x ≥ 1/a. Hence, it suffices to show that

n∗ log n∗ ≥ 1/a, n∗ > e so that q2(n∗) is well-defined and q1(n∗) ≥ q2(n∗).

From the assumptions and the definition of n∗, we get that n∗ ≥ 2 log(4)/a ≥
1
a
> e. Hence q2(n∗) is well-defined. Now, from n∗ > e, we also get n∗ log n∗ ≥

n∗, which together with n∗ ≥ 1/a proves that n∗ log n∗ ≥ 1/a.

To verify q1(n∗) ≥ q2(n∗) note first that from our assumptions on a and b,

2b log 1
a
≥ 4 ≥

√
e. Hence,

q1(n∗) = 2 log(2b log 1
a
) = log(4b2 log2 1

a
) ≥ log(2b2 log 1

a
) = log b+ log(2b log 1

a
)

which holds, as by our condition on a, log(1/a) ≥ 1
2
. On the other hand,

q2(n∗) = log b+ log(log n∗) = log b+ log log
(

2
a

log(2b log 1
a
)
)

< log b+ log log(2b
a

log 1
a
) (log 2x < x)

< log b+ log log(2b
a2

) . (log 1
a
< 1

a
)

Now, using again that log(2x) < x,

log(2b
a2

) = log(2b) + log 1
a2
< b+ log 1

a2
≤ b log 1

a2
,

where in the last inequality we also used b ≥ 2 and log 1
a2
≥ 2 and that for

x, y ≥ 2, x + y ≤ xy
2

+ y x
2

= xy. Putting together all the inequalities, we

obtain q2(n∗) < q1(n∗).

. .

19

With this, we are ready to prove Theorem 1:

Proof of Theorem 1. Let T denote the number of phases before the algorithm

exits, i.e., |AT | > 1 and |AT+1| = 1. Let U denote the event that for any phase

1 ≤ t ≤ T , and for any option i ∈ At that is not yet eliminated, the mean

reward µi of option i is within the g(t, δ) vicinity of its estimate µ̂i(t):

U = {|µ̂i(t)− µi| ≤ g(t, δ) for all (i, t) s.t. 1 ≤ t ≤ T and i ∈ At} .

First, we will argue about the correctness and cost of the algorithm assuming

that U happens and then we will show that U indeed happens with large

probability.

Assume therefore that U happens. We claim that on this event, the optimal

option i? = 1 cannot be eliminated, i.e., 1 ∈ A1, . . . , AT+1. That 1 ∈ A1 holds

since A1 = [K]. Now, given that 1 ∈ At for some 1 ≤ t ≤ T , we have that

µ̂1(t) + 2g(t, δ) ≥ µ1 + g(t, δ) > maxj∈At µj + g(t, δ) ≥ maxj∈At µ̂j(t), showing

that 1 ∈ At+1 and hence option 1 indeed will not be eliminated.

Now, still assuming that U happens, consider bounding N . We start by

asking how big t can be for a suboptimal option i 6= 1 to be still included in

At+1. Intuitively, if an option is still considered as a candidate, its subopti-

mality “gap” ∆i cannot be large. Indeed, defining µ̂∗(t) = maxj∈At µ̂j(t), from

i ∈ At+1 we derive

∆i = µ1 − µi ≤ µ̂1(t) + g(t, δ)− (µ̂i(t)− g(t, δ)) ≤ µ̂∗(t)− µ̂i(t) + 2g(t, δ)

≤ 4g(t, δ) ,

where the second inequality used that 1 ∈ At and hence µ̂∗(t) ≥ µ̂1(t), while

the last inequality used that i ∈ At+1. Hence, by the definition of T̂i
.
= T̂i(δ),

from i ∈ At+1 it follows that t < T̂i. In particular, for any t ≥ T̂i + 1, i 6∈ At.

As a matter of fact, for any i > 2, t ≥ T̂i + 1, and j ≥ i, j cannot be in At.

Hence, At ⊂ {1, . . . , i− 1}. By reindexing, for 1 ≤ i ≤ K and using T̂K+1 = 0,

we conclude that

t ≥ T̂i+1 + 1 implies that At ⊂ [i] , 1 ≤ i ≤ K . (2.5)

20

Since (2.5) implies that for t ≥ T̂2 + 1, At is a singleton, T ≥ T̂2 + 1 cannot

hold. Hence, T ≤ T̂2. Now, we can bound N , the total number of probes used

before termination:

N =
T∑

t=1

P∑

p=1

Cp(t) =
T∑

t=1

CO(At, f(t)) ≤
T̂2∑

t=1

CO(At, f(t))

≤ GIP (O,P)

T̂2∑

t=1

CIP(At, f(t)) , (2.6)

where we set At = {1} for t > T . Now, we divide the set {1, . . . , T̂2} into the

disjoint intervals Si = {T̂i+1 + 1, . . . , T̂i}, i = 2, . . . , K. Using that, by (2.5),

for any t ∈ Si it holds that At ⊂ [i] and thus CIP(At, f(t)) ≤ CIP([i] , f(t))

(where we used that for any A ⊂ B, n ∈ N, CIP(A, n) ≤ CIP(B, n)), we get

N ≤ GIP (O,P)
K∑

i=2

T̂i∑

t=T̂i+1+1

CIP([i] , 2t) ,

proving (2.3).

It remains to lower bound the probability that U happens by 1 − δ. As

usual, we do this by upper bounding the probability of the complementer event

U c = {∃s ∈ [T] ,∃i ∈ As s.t. |µ̂i(s)− µi| > g(s, δ)}. For the sake of simplicity,

let us now assume that in each phase t, for each option in At, we use only

the first f(t) observed rewards and drop the potential “overflow”. In fact, by

dropping additional observations, the probability of failure can only increase,

hence we may make this assumption without loss of generality.

We have

Pr(U c) = Pr (∃s ∈ [T] ,∃i ∈ As, |µ̂i(s)− µi| > g(s, δ))

=
∞∑

t=1

Pr (T = t,∃s ∈ [t] ,∃i ∈ As, |µ̂i(s)− µi| > g(s, δ)) .

Note that µ̂i(s) is defined only when i ∈ As. Without loss of generality we

can assume that µ̂i(s) when i ∈ As is calculated based on taking the average

of the first n(s) =
∑s

q=1 f(q) elements of an infinite i.i.d. sequence of random

variables drawn from the distribution of option i. Hence, defining µ̂i(s) as the

21

average of the first n(s) random variables in this infinite sequence, we get a

consistent extension of the definition of µ̂i(s) for arbitrary s ≥ 1.

We have

Pr(U c) =
∞∑

t=1

Pr (T = t,∃s ∈ [t] ,∃i ∈ As, |µ̂i(s)− µi| > g(s, δ))

≤
∞∑

t=1

Pr (T = t,∃s ∈ [t] ,∃i ∈ [K] , |µ̂i(s)− µi| > g(s, δ))

≤
∞∑

t=1

K∑

i=1

Pr (T = t, ∃s ∈ [t] , |µ̂i(s)− µi| > g(s, δ))

≤
K∑

i=1

∞∑

s=1

∞∑

t=1

Pr (T = t, |µ̂i(s)− µi| > g(s, δ))

=
K∑

i=1

∞∑

s=1

Pr (|µ̂i(s)− µi| > g(s, δ)) .

According to Hoeffding’s inequality,

Pr (|µ̂i(s)− µi| > g(s, δ)) ≤ 2 exp

(
−2

s∑

t=1

f(t)g(s, δ)2

)

≤ 2 exp

(
−2s+1 · log(4Ks2/δ)

2s+1

)

=
δ

2Ks2

and hence

Pr(U c) ≤
K∑

i=1

∞∑

s=1

δ

2Ks2
< δ .

Thus, it remains to upper bound T̂i = 1 + max
{
t : g(t, δ) ≥ ∆i

4

}
:

T̂i = 1 + max

{
t : g(t, δ) ≥ ∆i

4

}

= 1 + max

{
t :

√
log(4Kt2/δ)

2t+1
≥ ∆i

4

}

≤ 1 + max

{
log2 n :

√
log(4K(log2 n)2/δ)

2n
≥ ∆i

4

}

≤ 1 + log2 max

{
n :

∆2
i

16
n ≤ log

(
4K

δ · log 2
log n

)}
.

22

To bound the maximum above, we use Lemma 2. In our problem both b =

4K
δ·log 2

> 2 and 1
a

= 16
∆2
i
> e satisfy the conditions in this lemma. Plugging in

these values of a and b in n∗ = n∗(a, b), we get an upper bound of T̂i in the

form of 1 + log2

(
32
∆2
i

log
(

16K
δ·log 2

log 4
∆i

))
≤ log2

(
64
∆2
i

log
(

54K
δ

log 4
∆i

))
, which

concludes the proof of the upper bound on T̂i.

Let us now turn to proving (2.4). According to (2.6), we also have

N =
T∑

t=1

P∑

p=1

Cp(t) =
T∑

t=1

CO(At, f(t)) ≤
T̂2∑

t=1

CO(At, f(t))

≤ GLP (O,P)

T̂2∑

t=1

CLP(At, f(t)) , (2.7)

Since for At ∈ [i], CLP(At, f(t)) ≤ CLP([i] , f(t)) also holds,

N ≤ GLP (O,P)
K∑

i=2

T̂i∑

t=T̂i+1+1

CLP([i] , 2t)

= GLP (O,P)
K∑

i=2

T̂i∑

t=T̂i+1+1

2t

 CLP([i] , 1)

≤ GLP (O,P)
K∑

i=2

(
2T̂i+1 − 2T̂i+1+1

)
CLP([i] , 1)

= GLP (O,P)

(
K∑

i=2

2T̂i+1CLP([i] , 1)−
K∑

i=2

2T̂i+1+1CLP([i] , 1)

)

≤ GLP (O,P)
K∑

i=2

(
2T̂i+1 − 2T̂i+1+1

)
CLP([i] , 1)

≤ GLP (O,P)

(
K∑

i=2

2T̂i+1CLP([i] , 1)−
K−1∑

i=2

2T̂i+1+1CLP([i] , 1)

)

= GLP (O,P)

(
K∑

i=2

2T̂i+1CLP([i] , 1)−
K∑

i=3

2T̂i+1CLP([i− 1] , 1)

)

= GLP (O,P)

(
2T̂2+1CLP([2] , 1) +

K∑

i=3

2T̂i+1 (CLP([i] , 1)− CLP([i− 1] , 1))

)

≤ GLP (O,P)

(
N̂2(δ)CLP([2] , 1) +

K∑

i=3

N̂i(δ) (CLP([i] , 1)− CLP([i− 1] , 1))

)

= GLP (O,P)
K∑

i=2

(
N̂i(δ)− N̂i+1(δ)

)
CLP([i] , 1)

23

= GLP (O,P)
K∑

i=2

M̂i(δ)CLP([i] , 1)

where 2T̂i+1 ≤ 128
∆2
i

log
(

54K
δ

log 4
∆i

)
= N̂i(δ) and N̂K+1(δ) = 0.

. .

The bound (2.3) may be tighter than that shown in (2.4), but perhaps the

second is a bit easier to understand. 2 For simplicity, let us explain (2.4).

Once (2.4) is explained, the meaning of (2.3) follows. The term GLP (O,P) is

the price of using an oracle combined with some upper bounding that allowed

us to arrive at this simpler result by resorting to the linearity properties of

CLP. The rest is what we call a sequential fractional multi-cover with the

requirements that option i be covered N̂i(δ) times: In a sequential multi-

cover, the covering is not done in a single-shot, but is done in phases. In the

first phase, all the options must be covered M̂K(δ) times. In the next phase,

all the options but the last must be covered M̂K−1(δ) times, etc., up to the

last phase when options one and two must be covered M̂2(δ) times. Note that

the total requirements for an option i are M̂K(δ) + M̂K−1(δ) + · · · + M̂i(δ) =

N̂K(δ)−N̂K+1(δ)+N̂K−1(δ)−N̂K(δ)+ · · ·+N̂i(δ)−N̂i+1(δ) = N̂i(δ). Roughly

N̂i(δ) ≈ O(1/∆2
i) is the number of observations needed from option i (and

one) in order to be able to tell which of the two options has a bigger mean

reward. Now, compared to (2.4), (2.3) uses a more precise expression for the

number of probes, by relying on the the phase structure of the algorithm.

An alternative choice of f(t) and g(t, δ) is that f(t) = 1 and g(t, δ) =√
log(4Kt2/δ)

t
, which leads to N̂i(δ) = O

(
1

∆2
i

log K
δ∆i

)
instead.

Now, we argue that this bound is tight up to a logK factor, at least in

some cases. In particular, in the bandit case, the covering problem is triv-

ial and we can use an optimal covering oracle. Then, CO([i] , 2t) = i2t, and

hence the bound becomes O
(∑K

i=1
1

∆2
i

log
(
K
δ

log 1
∆i

))
. Up to a log factor,

this matches the lower bound of Kaufmann et al. (2015a) which takes the

form Ω
(∑K

i=1 ∆−2
i log(1/δ)

)
. Furthermore, as noted by Jamieson et al. (2014)

2In fact, if CO(·, n) is monotone increasing, (2.3) will hold with CO replacing GIP · CIP,
further tightening the bound.

24

(based on a result of Farrell (1964)) the log log ∆−1 term is necessary.

To examine the tightness of the upper bound, we derive a distribution

dependent lower bound on the probe complexity of algorithms admissible for

Dsg. Call an environment D a Gaussian environment with common variance

σ2 if for any 1 ≤ i ≤ K, Di is a Gaussian with variance σ2.

Theorem 3 (Distribution-dependent lower bound). For any algorithm ad-

missible for Dsg, any confidence 0 < δ < 1/2, any probe set P, any sequence

0 = ∆1 < ∆2 ≤ . . .∆K, if D is a Gaussian environment with common vari-

ance σ2 = 1/4 and means µ1 = µ2 + ∆2 = · · · = µK + ∆K, if N is the number

of probes used by the algorithm on D then

E [N] ≥ min
s∈[0,∞)P

∑

p∈P

sp s.t.
∑

p:1∈p

sp ≥
1

4∆2
2

log
1

6δ
,

and
∑

p:i∈p

sp ≥
1

4∆2
i

log
1

6δ
, 2 ≤ i ≤ K .

The proofs of our lower bounds are based on the following lemma, a spe-

cialized version of Lemma 1 of Kaufmann et al. (2015a). In the lemma we need

the Kullback-Leibler divergence (or relative entropy) KL(P1, P2) of two distri-

butions: KL(P1, P2) =
∫
P1(dx) log dP1

dP2
(x) if the Radon-Nikodym derivative

dP1

dP2
exists and is +∞ otherwise. Specializing this to two Bernoulli distribu-

tions, we get the binary relative entropy function, d(x, y) = x log(x/y) + (1−

x) log((1 − x)/(1 − y)) defined for x, y ∈ [0, 1]. (Define d(0, 0) = d(1, 1) = 0,

d(0, 1) = d(1, 0) = +∞.)

Lemma 4. Let î∗ ∈ [K] be the option returned by some algorithm after ob-

serving reward from option i ∈ [K] Mi times and let î∗ = 0 if the algorithm

never stops. For any a ∈ [K], let Ua denote the event that î∗ = a. Then, for

any two environments D1 and D2, and for any a ∈ [K],

K∑

i=1

ED1 [Mi]KL(D1
i , D

2
i) ≥ d(PrD1(Ua),PrD2(Ua)) ,

where EDj and PrDj denote expectation and probability, respectively, under the

assumptions that the environment is Dj.

25

Proof of Theorem 3. The relative entropy of two one-dimensional Gaussian

distributions with common variance σ2 = 1/4 and mean differencem ism2/(2σ2).

LetGµ denote the Gaussian distribution with mean µ. Hence, KL(Gµ, Gµ+a) =

2a2 for any µ, a ∈ R. Further, for any δ ∈ (0, 1/2),

d(1− δ, δ) = (1− δ) log
1− δ
δ

+ δ log
δ

1− δ
>

1

2
log

1

2δ
+ δ log δ

≥ 1

2
log

1

2δ
− 1

e
>

1

2
log

1

6δ
. (2.8)

Pick µ1 = 1/2, µi = µ1−∆i and let D0 = (D1, . . . , DK)
.
= (Gµ1 , . . . , GµK).

Define D1 to be the modification of D0 when D2 is replaced by Gµ1+ε and let

Di with 2 ≤ i ≤ K be the modification of D0 when Di is replaced by Gµ1+ε

with some ε > 0. As in the proof of Theorem 2 in Kaufmann et al. (2015a), we

apply Lemma 4 to the K pairs of environments (D0, D1), . . . , (D0, DK) and

option a = 1.

We have KL(D0
j , D

1
j) = 0 unless j = 2 in which case KL(D0

2, D
1
2) =

KL(Gµ2 , Gµ1+ε) = (∆2 + ε)2. Also, for any 2 ≤ i ≤ K, 1 ≤ j ≤ K,

KL(D0
j , D

i
j) = 0 unless i = j in which case KL(D0

i , D
i
i) = KL(Gµi , Gµ1+ε) =

2(∆i + ε)2. Further, the optimal option in D0 is option one, while the op-

timal option in Di is option i because ε > 0. Hence, if U is the event

that the algorithm picks option one, then, since the algorithm is admissible,

PrD0(U) ≥ 1 − δ, and PrDi(U) ≤ δ. Combined with (2.8), letting Mi denote

the number of observations from option i, we get

ED0 [M1] ≥ 1

4(∆2 + ε)2
log

1

6δ
, ED0 [Mi] ≥

1

4(∆i + ε)2
log

1

6δ
, 2 ≤ i ≤ K .

Define Np the number of times probe p is used. Then, N =
∑

p∈P Np and

Mi =
∑

p:i∈pNp. Combining this with the previous inequalities leads to the

linear program as shown in Theorem 3.

. .

Note that the lower bound clearly reflects the structure of P . However, even

disregarding the constants and logarithmic factors, there is still a gap between

our upper and lower bounds: In the upper bound, as explained before, the

26

size of a sequential cover appears, while in the lower bound, the size of a “one-

shot” cover is seen. Note that in either the bandit or the full information case,

there is no gap between these quantities. We were able to establish a gap of

log(K) when considering sequential and one-shot integral covers. However, it

remains a very interesting open question whether the gap can be closed in the

fractional case.

2.2.2 An Alternative Algorithm to Find the Best Op-
tion

The second algorithm is a generalization of the exponential gap elimination

algorithm of Karnin et al. (2013), which improves the logarithmic term in the

sample complexity from log(K
δ

log 1
∆

) to log(1
δ

log 1
∆

) for the bandit problem.

So we expect that generalizing that algorithm to our setting will have a similar

improvement regarding the logK term.

The exponential gap elimination algorithm of Karnin et al. (2013) calls the

median elimination algorithm of Even-Dar et al. (2002) as a subroutine, which

finds an ε-optimal option using O(Kε−2 log(1/δ)) samples with probability at

least 1 − δ (an option is ε-optimal iff its expected reward is at least µ1 − ε).

So before generalizing the exponential gap elimination algorithm, we need to

first design a counterpart for the median elimination algorithm.

Median Elimination With Probes

The median elimination algorithm (ME) of Even-Dar et al. (2002) works as

follows: The algorithm runs in phases. In every phase t each potentially good

arm is sampled 4ε−2
t log(3/δt) times, where δt = δ2−t−1 and εt = ε(3/4)t/3;

then the lower half of the arms with inferior performance is eliminated, and

the next phase is run with the remaining arms only. The algorithm terminates

when a single arm remains.

A tempting approach to address our problem would be, instead of sampling

each remaining arm n times in one phase, we sample a set of probes that is

a minimum n-cover of those arms. We will call this naive modification of

the median elimination algorithm the naive-ME algorithm. While “naive-

27

ME” preserves the same O(Kε−2 log(1/δ)) performance in the bandit case,

the following proposition shows that in the full information case this algorithm

requires K1/2-times more probes than expected.

Proposition 5. In the full information case where P = {[K]}, the probe

complexity of the naive-ME algorithm is at least

Ω

(
K1/2

ε2
log

K

δ

)
.

Proof. The median elimination algorithm deterministically runs dlog2Ke phases

since it eliminates half of the arms in each phase. In phase t, the algorithm

collects 4
ε2t

log 3
δt

samples for each arm in the set of arms At considered, where

εt = ε
3

(
3
4

)t
and δt = δ

2t+1 , and then selects At+1 to contain half of the arms

with better estimated mean rewards. Under the full information setting, there

is only one probe that covers all arms, so the algorithm uses that probe the

probe 4
ε2t

log 3
δt

times in each phase. Then the total probe complexity N is

N =

dlog2Ke∑

t=1

4

ε2
t

log
3

δt
=

dlog2Ke∑

t=1

36

ε2

(
16

9

)t
log

6 · 2t

δ

≥ 36

ε2

(
16

9

)log2K

log
6K

δ
(only take the last term)

=
36

ε2
K log2

16
9 log

6K

δ
>

36

ε2
K1/2 log

6K

δ

= Ω

(
K1/2

ε2
log

K

δ

)
.

. .

Intuitively, the presence of the K1/2 term is not expected since the full

information case gives K times more information than the bandit case.

We have shown that simply replacing the uniform sampling in each phase in

the median elimination algorithm of Even-Dar et al. (2002) with a set multi-

cover does not work, so a more careful design is needed. Our proposed al-

gorithm, called Median Elimination With Probes (MEWP) is shown in Al-

gorithm 2. It essentially runs the original median elimination algorithm for

bandits over a one-cover of all options (that is, each probe in the cover is

28

treated as an option in the bandit setting), and in each phase we eliminate

half of the probes that do not seem to cover a good option. We stop running

median elimination when a single probe covers all the remaining options. Then

the algorithm enters its second stage where we use this probe until we iden-

tify an almost optimal option from the remaining ones. In the next theorem

we prove that the algorithm is admissible, and give an upper bound on the

number of probes required to find an ε-optimal option.

Algorithm 2 MedianEliminationWithProbes

1: Inputs: K, δ ∈ (0, 1], ε > 0, P .
2: Set εt = ε

6
(3

4
)t, δt = δ

2t+1 .
3: C ← COrcl([K] , 1,P), and define a partition of the options as A1 =
{πp ⊂ p : p ∈ C,∪p∈Cπp = [K]}.

4: for t = 1, 2, . . . do
5: for all π ∈ At do
6: Use 4

ε2t
log 3|π|

δt
-times p ∈ C that covers π to get observations for each

option in p.
7: Let µ̂π(t) = maxi∈π µ̂i(t), where µ̂i(t) is the empirical mean reward of

option i based on the observations in the actual phase t.
8: end for
9: Find the median m(t) of {µ̂π(t) : π ∈ At}.
10: Let At+1 = {π ∈ At : µ̂π(t) ≥ m(t)}.
11: if |At+1| = 1 then
12: terminate the loop and let π̂∗ be the single element of At+1

13: end if
14: end for
15: If |π̂∗| > 1, use the probe that covers π̂∗ for 8

ε2
log 2|π̂∗|

δ
-times.

16: Return the option î∗ ∈ π̂∗ with the highest empirical mean based on these
observations.

Theorem 6. With probability at least 1 − δ, MEWP returns an ε-optimal

option î∗, and N , the total number of probes used by the algorithm is

N = O

(
CO([K] , 1)

ε2
log
|πmax|
δ

)
. (2.9)

where |πmax| = maxπ∈A1 |π|.

Proof of Theorem 6. The algorithm contains two stages: First, in the for loop,

we aim to find a probe that contains an ε/2-optimal option with probability

at least 1 − δ/2, in O(|A1|ε−2 log(|πmax|/δ)); then we find an option that is

29

ε/2-optimal option within this probe with probability at least 1 − δ/2 after

O(ε−2 log(|πmax|/δ)) probes.

First we will analyze the algorithm on the first stage. We need to show

that

Pr
(
µ̂π̂∗ > µπ∗ −

ε

2

)
≥ 1− δ

2
(2.10)

where µπ = maxi∈π µi for all π ∈ A1 and π∗ = argmaxπ µπ. Clearly, µπ∗ = µ1,

the expectation of the best option.

Let πt = argmaxπ∈At µπ. Let Prt and Et denote the conditional probability

and conditional expectation given all randomness before phase t. To prove

(2.10), we will first show that

Prt
(
µπt+1 > µπt − εt

)
≥ 1− δt .

Define Aεt = {π ∈ At : µπ ≤ µπt − εt} and A∗t = {π ∈ At : µ̂π(t) > µ̂πt(t)}.

Then, for any π ∈ At, the event {π ∈ A∗t ∩Aεt}∧ {µ̂πt(t) ≥ µπt − εt/2} implies

{µ̂π(t) > µπ + εt/2}. Thus, for any π ∈ At, π 6= πt,

Prt

(
π ∈ A∗t ∩ Aεt

∣∣µ̂πt(t) ≥ µπt −
εt
2

)

≤ Prt

(
µ̂π(t) > µπ +

εt
2

∣∣∣∣At, µ̂πt(t) ≥ µπt −
εt
2

)

= Prt

(
µ̂π(t) > µπ +

εt
2

)
≤ δt

3
,

where (i) the equality holds since the samples from the options in π and πt are

independent, and (ii) the last inequality holds, since by Hoeffding’s inequality

(Cesa-Bianchi and Lugosi, 2006),

Prt

(
µ̂i(t) > µπ +

εt
2

)
≤ Prt

(
µ̂i(t) > µi +

εt
2

)
<

δt
3|π|

for all i ∈ π, since µ̂i(t) is estimated from (2/εt)
2 log(3|π|/δt) samples, and

the union bound implies that this inequality simultaneously holds for all i ∈ π

with probability δt/3. Furthermore, by definition πt 6∈ Aεt , hence

Prt

(
πt ∈ A∗t ∩ Aεt

∣∣µ̂πt(t) ≥ µπt −
εt
2

)
= 0 .

30

Therefore,

Et
[
|A∗t ∩ Aεt |
|At|

∣∣∣∣µ̂πt(t) > µπt −
εt
2

]
≤ δt

3

Applying Markov’s inequality, we have

Prt

(
|A∗t ∩ Aεt |
|At|

≥ 1

2

∣∣∣∣µ̂πt(t) > µπt −
εt
2

)
≤ 2δt

3
.

Note that again by Hoeffding’s inequality and the union bound, Prt(µ̂πt(t) >

µπt − εt
2

) ≥ 1 − δt
3

, and { |A
∗
t∩Aεt |
|At| < 1

2
} implies {µπt+1 > µπt − εt}. Then, by

union bound, we get

Prt
(
µπt+1 > µπt − εt

)
≥ 1− δt

Since the bound is constant, the unconditional probability also satisfies this

inequality, and so, by the union bound,

Pr
(
µπ̂∗ ≤ µπ∗ −

ε

2

)
≤

log2 |A1|∑

t=1

Pr
(
µπt+1 ≤ µπt − εt

)
≤

log2 |A1|∑

t=1

δt <
δ

2
,

proving (2.10).

Next we will calculate the probe complexity until π̂∗ is found:

log2 |A1|∑

t=1

∑

π∈At

4

ε2
t

log
3|π|
δt
≤

log2 |A1|∑

t=1

4|At|
ε2
t

log
3|πmax|
δt

= O

(
|A1|
ε2

log
|πmax|
δ

)

Now we will analyze the second stage, by showing that it finds an ε/2-

optimal option from π̂∗ with probability at least 1 − δ/2. Assume that the

first stage ran for T phases, so we will consider conditional probabilities PrT

conditioned on the first T phases of the first stage.

Let i∗π̂∗ denote the optimal option in π̂∗, µ̂i be the empirical mean reward

for option i ∈ π̂∗ in the second stage, computed from 8
ε2

log 2|π̂∗|
δ

samples,

î∗ = argmaxi∈π̂∗ µ̂i, A
ε = {i ∈ π̂∗ : µi ≤ µi∗

π̂∗
− ε

2
} and A∗ = {µ̂i > µ̂i∗

π̂∗
}.

Clearly, {µ̂i∗
π̂∗
≥ µi∗

π̂∗
− ε

4
} and {∀i ∈ Aε, µ̂i ≤ µi + ε

4
} imply {|Aε ∩ A∗| = ∅},

which in turn implies {̂i∗ /∈ Aε}. Therefore,

PrT

(
µî∗ > µi∗

π̂∗
− ε

2

)
≥ PrT

(
µ̂i∗

π̂∗
≥ µi∗

π̂∗
− ε

4
∧ ∀i ∈ Aε, µ̂i ≤ µi +

ε

4

)

31

≥ 1− PrT

(
µ̂i∗

π̂∗
< µi∗

π̂∗
− ε

4

)
−
∑

i∈Aε
PrT

(
µ̂i > µi +

ε

4

)
.

Applying Hoeffding’s inequality, we have

PrT

(
µ̂i − µi >

ε

4

)
≤ e−

nε2

8 =
δ

2|π̂∗|

where n = 8
ε2

log 2|π̂∗|
δ

. Note that the same probability bound holds for µi−µ̂i >
ε
4
. Therefore,

PrT

(
µî∗ ≥ µi∗

π̂∗
− ε

2

)
≥ 1− (|Aε|+ 1)δ

2|π̂∗|
≥ 1− δ

2
.

Since the bound is independent of the condition, we also have

Pr
(
µî∗ ≥ µi∗

π̂∗
− ε

2

)
≥ 1− δ

2
.

Combining with (2.10), we obtain

Pr(µî∗ ≥ µi? − ε) ≥ 1− δ .

Finally, the total number of probes can be bounded as

N = O

(
|A1|
ε2

log
|πmax|
δ

)
+

8

ε2
log

2|π̂∗|
δ

= O

(
CO([K] , 1)

ε2
log
|πmax|
δ

)

(|A1| = CO([K] , 1))

. .

Note that we have |πmax| inside the log term instead of the expected 1. It

can be shown that this worst case upper bound is unimprovable in both the

bandit and full information setting by the following theorem.

Theorem 7. In the full information case, for every K ≥ 2, ε > 0 and δ ∈

(0, 1/2), and for any algorithm that returns an ε-optimal option with probability

at least 1− δ, there exist reward distributions (D1, . . . , DK) such that

E[N] ≥ 1

16ε2
log

K

12δ
(2.11)

where N is the total number of probes used by the algorithm.

Moreover, for any general observation structure P, a lower bound is

E[N] ≥ CLP([K] , 1)

16ε2
log

1

6δ
. (2.12)

32

Proof of Theorem 7. We prove (2.11) and (2.12) separately.

First we prove a modification of Lemma 4 for the full information case.

Lemma 8. Consider the full information case. Let î∗ ∈ [K] be the option

returned by some algorithm after N trials if the algorithm stops and let î∗ = 0

if the algorithm never stops. Furthermore, for any a ∈ [K], let Ua denote the

event that î∗ = a. Then, for any two environments D1 and D2, and for any

a ∈ [K],

ED1 [N]
K∑

i=1

KL(D1
i , D

2
i) ≥ d(PrD1(Ua),PrD2(Ua)),

where EDj and PrDj denote expectation and probability under the assump-

tions that the environment is Dj, KL(D1
i , D

2
i) denotes the relative entropy

(or Kullback-Leibler divergence) between D1
i and D2

i for all i ∈ [K], and

d(x, y) = x log(x/y)+(1−x) log((1−x)/(1−y)) is the binary relative entropy.

Proof. Assume that the full information algorithm is applied in the bandit case

in a naive way: trying each option once in the bandit case when it would choose

to try the only probe in the full information case. Then N1 = . . . = NK = N ,

and the statement of the lemma follows immediately from Lemma 4.

Proof of (2.11). We prove the theorem by applying Lemma 8. In order to do

so, we need to construct the environments D1 and D2. We assume that for any

i ∈ [K] , k ∈ {1, 2}, Dk
i is Gaussian with mean µki and variance σ2 = 1/4. In

D2 we set µ2
1 = ε, µ2

2 = ... = µ2
K = 0. Now consider any algorithm that returns

an ε-optimal option with probability 1 − δ. Then we have PrD2(U1) ≥ 1 − δ.

Furthermore,
∑K

i=2 PrD2(Ui) < δ, and so there exists some j ∈ {2, . . . , K}

such that PrD2(Uj) < δ/(K − 1). We use this j to select the expected values

of the distributions D1
i : in particular, we let µ1 = ε, µj = 2ε, and µi = 0 for

all other i. Then we have PrD1(Uj) ≥ 1− δ.

Since the relative entropy of two 1-dimensional Gaussian distributions with

common variance σ2 and mean difference m is m2/(2σ2), we have

K∑

i=1

KL(D1
i , D

2
i) = KL(D1

j , D
2
j) = (2ε)2/(2σ2) = 8ε2 .

33

Furthermore, by the monotonicity properties of the binary entropy function d,

and since PrD2(Uj) < δ/(K − 1) < 1− δ ≤ PrD1(Uj), we have

d(PrD1(Uj),PrD2(Uj)) ≥ d(1− δ, δ/(K − 1)) .

Thus, applying Lemma 8, we get

ED1 [N] ≥
d
(
1− δ, δ

K−1

)

8ε2
. (2.13)

The last step is to bound d
(
1− δ, δ

K−1

)
from below:

d

(
1− δ, δ

K − 1

)
= (1− δ) log

1− δ
δ

K−1

+ δ log
δ

1− δ
K−1

>
1

2
log

K − 1

2δ
+ δ log δ ≥ 1

2
log

K − 1

2δ
− 1

e

>
1

2
log

K − 1

6δ
≥ 1

2
log

K

12δ
.

Combined with (2.13) we have ED1 [N] ≥ 1
16ε2

log K
12δ

, which concludes the

proof.

Proof of (2.12). Let D be an environment such that Di, i ∈ [K] is Gaussian

with mean µi and variance σ2 = 1/4, where µ1 = ε and µi = 0 for all i 6= 1.

We create K environments, D1, . . . , DK , such that Dk
i is Gaussian with

mean µki and variance σ2 = 1/4, and use Lemma 4 to lower bound the number

of trials needed in environment D. For D1, let µ1
1 = −ε and µ1

i = µi for all

i 6= 1. For Dk, k 6= 1, let µkk = 2ε and µkj = µj for all j 6= k.

Consider an algorithm A that, with probability at least 1 − δ, returns

an ε-optimal solution (in any environment satisfying the assumptions of our

setting). Then, using the notation of Lemma 4, we have PrDk(U1) < δ for all

k ∈ [K] and PrD(U1) ≥ 1− δ.

Let Ni be the number of samples observed by algorithm A for option i.

Similarly to the proof of Lemma 8, we construct a bandit algorithm from A

using probes in such a way that whenever A decides to try a probe p in the

original problem, the bandit version tries each option i ∈ p once in the bandit

problem. Then the number of samples for each option i will be the same in the

34

original and in the bandit problem, and so, similarly to the proof of Theorem 7,

Lemma 4 implies that

ED[Ni] ≥
d(1− δ, δ)

8ε2

for all i ∈ [K]. Using the derivation in Theorem 3, we get d(1−δ, δ) > 1
2

log 1
6δ

.

Therefore, we have

ED[Ni] =
∑

p3i

ED[Np] ≥
1

16ε2
log

1

6δ

where Np is the number of times that probe p is played. Since ED[N] =
∑

p∈P ED[Np], lower bounding ED[N] leads to

ED[N] ≥ CLP

(
[K] ,

1

16ε2
log

1

6δ

)
=
CLP([K] , 1)

16ε2
log

1

6δ
. (2.14)

. .

Compared to the upper bound of Theorem 6 in general cases, lower bound

(2.12) has a |πmax| gap inside the log term. However, (2.12) is not tight since

in the full information case we have a tighter lower bound Ω(ε−2 log(K/δ)) in

(2.11). Therefore, although whether the |πmax| term is tight or not is still an

open question there has to be some quantity between 1 and K in the log term.

Note that MEWP may not be the best choice for only finding an ε-optimal

option in practice since it does not provide distribution dependent perfor-

mance. However, the worst case upper bound is theoretically good enough

(has a better log term) for being a subroutine of our later algorithm EGEWP.

Exponential Gap Elimination Algorithm

Given the MEWP algorithm, we continue with generalizing the exponen-

tial gap elimination algorithm. The new algorithm, called Exponential Gap

Elimination with Probes (EGEWP), is shown in Algorithm 3. The new idea

here is to use the partition-based exploration technique (as in the MEWP

algorithm) and replace the bandit-case median elimination subroutine with

35

Algorithm 3 ExpGapEliminationWithProbes

1: Inputs: K, δ, P .
2: Initialize candidate set: A1 = [K]. Set εt = 1

4·2t , δt = δ
50t3

.
3: for t = 1, 2, . . . do
4: C(t)← COrcl(At, 1,P).
5: Create a partition Πt of At such that Πt ={

πp ⊂ p : p ∈ C(t),∪p∈C(t)πp = At
}

.
6: for πp ∈ Πt do

7: Use probe p for 2
ε2t

log 2|πp|
δt

-times to get observations for each option

in p.
8: end for
9: For each i ∈ At, let µ̂i(t) be the mean of all observations in phase t for

option i.
10: it ← MedianEliminationWithProbes(At,

εt
2
, δt).

11: Let At+1 = {i ∈ At : µ̂i(t) ≥ µ̂it(t)− εt}.
12: if |At+1| = 1 then
13: Return the option in At+1.
14: end if
15: end for

MEWP. The analysis follows a combination of the techniques of Karnin et al.

(2013) and the proof of Theorem 6. However, due to the more complicated

observation structure, we are only able to prove a ∆2 dependent upper bound

on the number of probes:

Theorem 9. If the oracle COrcl always returns the optimal solution for integer

programming, EGEWP finds the optimal option with probability at least 1− δ

after using

O

(
CO([K] , 1)

∆2
2

log

(
|pmax|
δ

log
1

∆2

))
(2.15)

probes where |pmax| = maxp∈P |p|.

Proof of Theorem 9. As in earlier proofs, we are going to use Prt and Et to

denote the conditional probability and conditional expectation, respectively,

given all randomness before phase t, and we denote the σ-algebra correspond-

ing to the latter by Ft−1.

First we are going to bound the number of phases in running EGEWP. We

start with the following simple observation: For any i 6= 1 and t such that

36

T ≥ t ≥ log2
1

∆i
, i ∈ At and 1 ∈ At, the event Ct,i = {µit ≥ µ1 − εt

2
} ∧ {µit ≤

µ̂it(t) + εt
2
} ∧ {µi ≥ µ̂i(t)− εt

2
} implies i /∈ At+1. This holds since given Ct,i,

µ̂it(t) ≥ µit −
εt
2
≥ µ1 − εt ≥ µi + 3εt ≥ µ̂i(t) +

5

2
εt > µ̂i(t) + εt

where in the third step we used that µ1− µi = ∆i ≥ 2−t = 4εt for t ≥ log2
1

∆i
.

Now assume that Ft−1 is such that 1 ∈ At and π ∈ Πt. Then, for any t ≥

log2
1

∆2
,

Prt (∃i ∈ π, i 6= 1, i ∈ At+1)

≤ Prt

(
µit < µ1 −

εt
2

)
+ Prt

(
µit > µ̂it(t) +

εt
2

)
+
∑

i∈π,i6=1

Prt

(
µi < µ̂i(t)−

εt
2

)
.

(2.16)

Now, for any t ≥ 1 and Ft−1 as above,

Prt

(
µit < µ1 −

εt
2

)
≤ δt

by the high probability guarantee for the success of MEWP and the fact that

new samples are used in each phase. Furthermore, for any i ∈ π and t ≥ 1,

Prt

(
µi < µ̂i(t)−

εt
2

)
≤ δt

2|π|
and Prt

(
µi > µ̂i(t) +

εt
2

)
≤ δt

2|π|
(2.17)

by Hoeffding’s inequality since µ̂i is computed from 2ε−2
t log(2|π|/δt) new sam-

ples. Finally, since it is selected based on different samples than the ones used

in estimating µ̂it , denoting by πt(j) the partition cell of At containing j, we

have

Prt

(
µit > µ̂it(t) +

εt
2

)
=
∑

j∈At

Prt

(
µj > µ̂j(t) +

εt
2

∣∣it = j
)

Prt (it = j)

=
∑

j∈At

Prt

(
µj > µ̂j(t) +

εt
2

)
Prt (it = j)

≤
∑

j∈At

δt
2|πt(j)|

Prt (it = j) ≤ δt
2
. (2.18)

Continuing (2.16) with the above inequalities, we obtain that for any t ≥

log2
1

∆2
and Ft−1 such that 1 ∈ At and π ∈ Πt,

Prt (∃i ∈ π, i 6= 1, i ∈ At+1) ≤ δt +
δt
2

+
δt
2

= 2δt. (2.19)

37

Since the same 2δt bound holds for ny Ft−1 with 1 ∈ At and π ∈ Πt, we also

have

Pr (∃i ∈ π, i 6= 1, i ∈ At+1|π ∈ Πt, 1 ∈ At) ≤ 2δt. (2.20)

Furthermore, for any t ≥ 1, the events {1 ∈ At}, {µ̂1(t) ≥ µ1 − εt
2
}, and

{µ̂it(t) ≤ µit + εt
2
} imply that 1 ∈ At+1, since

µ̂1(t) ≥ µ1 −
εt
2
≥ µit −

εt
2
≥ µ̂it(t)− εt .

Therefore, from (2.17) (for i = 1) and (2.18) we get

Pr(1 ∈ At+1|1 ∈ At) ≥ 1− δt
2
− δt

2
= 1− δt . (2.21)

The above inequality shows that the optimal option 1 is not eliminated with

high probability, while (2.20) shows that for large enough t, the suboptimal

options are eliminated with high probability. Thus, it remains to quantify

how fast the suboptimal options are eliminated. To this end, we show that the

number of probes used in every phase decays exponentially fast for t ≥ log2
1

∆2
.

Let Π+
t = {π ∈ Πt : ∃i ∈ π, i ∈ At+1}. Then, for any t ≥ log2

1
∆2

and Ft−1

with 1 ∈ At, we have Et
[
|Π+

t − πt(1)|
]
≤ 2δt|Πt − πt(1)| by (2.19), and so

Et
[
|Π+

t − π(1)|
|Πt − πt(1)|

]
≤ 2δt .

Again, since the right hand side is independent of the conditioning in Et, we

can replace the conditioning on Ft−1 with conditioning on 1 ∈ At; then, by

Markov’s inequality, for any z > 0 and t ≥ log2
1

∆2
,

Pr

(
|Π+

t − π(1)|
|Πt − πt(1)|

>
1

z

∣∣∣∣1 ∈ At
)
≤

E
[
|Π+
t −π(1)|

|Πt−πt(1)|

]

z
≤ 2zδt . (2.22)

Now define the event

B(t) =

{
|Π+

t − πt(1)|
|Πt − πt(1)|

≤ 1

z

}
∧ {∀i ∈ πt(1), i 6= 1, i /∈ At+1};

note that π(1), and hence B(t), is defined when 1 ∈ At. Then, by (2.20),(2.22),

and the union bound,

Pr(B(t)|1 ∈ At) ≥ 1− 2zδt − 2δt = 1− 2(z + 1)δt. (2.23)

38

Next we consider when the algorithm stops if 1 ∈ At and B(t) happen in

each phase t ≥ log2
1

∆2
. Note that, denoting the last phase of the algorithm

by T , the probability of this event can be bounded from below as

Pr

(
{∀t ∈ [T] , 1 ∈ At} ∧ {∀ log2

1

∆2

≤ t ≤ T,B(t)}
)

≥ 1−
∞∑

t=1

(2z + 3)δt = 1−
∞∑

t=1

(2z + 3)δ

50t3
≥ 1− 3δ(2z + 3)

100
, (2.24)

by (2.21), (2.23), the union bound, and since
∑∞

t=1 1/t3 < 1+
∫∞

1
1/t3dt = 3/2.

If z > 1 and |Πt| ≤ z, then

|Π+
t − π(1)| ≤ |Πt − π(1)|

z
≤ z − 1

z
< 1 ,

which means that Π+
t ⊂ {π(1)}. Also, B(t) implies that all suboptimal options

in π(1) are eliminated, which leads to the fact that only the optimal option 1

can survive after phase t. According to the algorithm, there must be at least

one option left after the elimination of each phase, so we can conclude that if

for some z > 1 and phase t > log2
1

∆2
, {1 ∈ At}, |Πt| ≤ z, and B(t) holds, the

algorithm must stop after this phase and return the optimal option i? = 1.

If |Πt| > z, and {1 ∈ At} and B(t) holds, then

|Π+
t |
|Πt|

≤ |Π
+
t − π(1)|+ 1

|Πt|
≤ |Πt − π(1)|+ z

z|Πt|
=
|Πt|+ z − 1

z|Πt|

≤ (z − 1) + (z + 1)

z(z + 1)
=

2

z + 1
,

Since repartitioning in the next phase will not increase the number of probes

needed to cover At+1 compared to Π+
t , we have |Πt+1| ≤ |Π+

t |. Therefore, for

any z > 1 and t ≥ log2
1

∆2
such that {1 ∈ At} ∧B(t) holds, |Πt| > z, implies

|Πt+1|
|Πt|

≤ 2

z + 1
. (2.25)

For simplicity, we choose z = 15. Then, by (2.24), the probability of the

event {∀t ∈ [T] , 1 ∈ At}∧{∀ log2
1

∆2
≤ t ≤ T,B(t)} is at least 1− δ; thus, it is

enough to bound the probe complexity of the algorithm under the latter event.

Assuming the event holds, by the choice of z we have that after t ≥ log2
1

∆2

phases, |Πt| ≥ 16 implies |Πt+1|
|Πt| ≤

1
8
, and the algorithm stops after phase t

39

if |Πt| ≤ 15. Let s = log2
1

∆2
. Then the algorithm must run into one of the

following three cases: (a) T < s, (b) T ≥ s and |Πt| ≥ 16 for s ≤ t ≤ T , (c)

T ≥ s and |Πt| ≥ 16 for s ≤ t ≤ T − 1, |ΠT | ≤ 15.

Here we only consider the last two cases where T ≥ s; the upper bound

obtained this way trivially hold for case (a), as well. For T ≥ s, we divide

the T phases into two parts: 1 ≤ t < s and s ≤ t ≤ T . In the second part,

by definition, |Πt| ≥ 16 for s ≤ t ≤ T − 1, and so |Πt| ≤ CO([K] , 1)
(

1
8

)t−s

for s ≤ t ≤ T by (2.25). Therefore, the probe complexity of the algorithm,

without the samples used by the MEWP subroutine, is

s−1∑

t=1

∑

π∈Πt

2

ε2
t

log
2|π|
δt

+
T∑

t=s

∑

π∈Πt

2

ε2
t

log
2|π|
δt

≤ 32CO([K] , 1)
s−1∑

t=1

4t log
100|pmax|t3

δ

+ 32CO([K] , 1)
T−s∑

r=0

(
1

8

)r
4r+s log

100|pmax|(r + s)3

δ
. (2.26)

Here the first term on the right hand side is clearly bounded from above by

C1
CO([K] , 1)

∆2
2

log

(
|pmax|
δ

log
1

∆2

)

for some universal positive constant C1, while the second term can be bounded

as

C2 · CO([K] , 1)4s
(T−s∑

r=0

1

2r
log

s · |pmax|
δ

+
T−s∑

r=0

log r

2r

)

≤ C3

(
CO([K] , 1)

∆2
2

log

(
|pmax|
δ

log
1

∆2

))
(r + s ≤ rs)

for universal contants C2, C3 > 0. In conclusion, the total probe complexity

without the samples used by median elimination is

O

(
CO([K] , 1)

∆2
2

log

(
|pmax|
δ

log
1

∆2

))
.

The last thing is to show that the probe complexity of the MEWP subroutine

is dominated by the above quantity. To show this, consider each phase t, the

40

number of probes used outside median elimination is
∑

π∈Πt
2
ε2t

log 2|π|
δt

which is

relaxed to 2CO(At,1)

ε2t
log 2|pmax|

δt
in our analysis. According to Theorem 6, MEWP

in phase t uses O
(
CO(At,1)

ε2t
log |πmax|

δt

)
probes, where |πmax| = maxπ∈Πt |π| ≤

|pmax|. So taking the probe complexity of median elimination processes into

account we still have the total probe complexity as

N = O

(
CO([K] , 1)

∆2
2

log

(
|pmax|
δ

log
1

∆2

))
.

. .

If COrcl is not guaranteed to return the optimal integer cover, the above

theorem still holds by making the following modification to the algorithm to en-

sure that Πt+1 is not worse than Πt for every t: if | {π ∈ Πt : π ∩ At+1 6= ∅} | <

CO(At+1, 1), then use the same partition pattern from Πt for Πt+1.

Compared to the bound for SEWP, the logK term is replaced with log |pmax|.

More specifically, in the full information case, the upper bound becomes

O
(

1
∆2

2
log
(
K
δ

log 1
∆2

))
, which is the same as the upper bound for SEWP.

In the bandit case, the algorithm is exactly the same as the exponential

gap elimination algorithm of Karnin et al. (2013), which enjoys an optimal

O
(∑K

i=1
1

∆2
i

log
(

1
δ

log 1
∆i

))
upper bound on the number of probes, and is bet-

ter than the upper bound for SEWP in bandit case. Therefore, although not

formally proved, we expect that EGEWP enjoys an improved probe complexity

compared with SEWP.

Comparing SEWP and EGEWP empirically

To empirically compare the performance between SEWP and EGEWP algo-

rithms, we investigate the performance under three different probe settings:

(a) the bandit case; (b) the full information case; and (c) an intermediate case

where every subset of size |p| =
√
K is a probe. For each scenario we consider

two environments: (a) an easy problem where µ1 = 0.3 and µ2 = ... = µK = 0

and (b) a hard problem where µ1 = 1 and µi = 1 − (i/n)0.5 for i 6= 1. Each

reward distribution is Gaussian with variance σ2 = 1/4. Under each combi-

nation of probe and distribution settings, we test the sample complexity for

41

different values of K with δ = 0.1. In the experiments we report average probe

usage over 100 runs. The results are shown in Figure 2.4.

The results show that EGEWP performs worse than the SEWP in all

settings considered, despite its favorable asymptotic performance guarantees.

This phenomenon is supported by the experimental studies by Jamieson et al.

(2014) in the bandit case, in which the exponential gap elimination algorithm

of Karnin et al. (2013) is shown to be worse than the successive elimination

algorithm of Even-Dar et al. (2002).

10 100 1000 10000 100000
102

104

106

108

1010

1012

Number of actions

N
um

be
r o

f p
ro

be
s

us
ed

SEWP
EGEWP

Figure 2.1: |p| = 1,
easy case

10 100 1000 10000 100000
102

104

106

108

1010

1012

Number of actions

N
um

be
r o

f p
ro

be
s

us
ed

SEWP
EGEWP

Figure 2.2: |p| = 1,
hard case

10 100 1000 10000 100000
102

104

106

108

1010

Number of actions

N
um

be
r o

f p
ro

be
s

us
ed

SEWP
EGEWP

Figure 2.3: |p| =
√
K,

easy case

10 100 1000 10000 100000
102

104

106

108

1010

Number of actions

N
um

be
r o

f p
ro

be
s

us
ed

SEWP
EGEWP

Figure 2.4: |p| =
√
K,

hard case

10 100 1000 10000 100000
102

103

104

105

Number of actions

N
um

be
r o

f p
ro

be
s

us
ed

SEWP
EGEWP

Figure 2.5: |p| = K,
easy case

10 100 1000 10000 100000
102

104

106

108

1010

Number of actions

N
um

be
r o

f p
ro

be
s

us
ed

SEWP
EGEWP

Figure 2.6: |p| = K,
hard case

2.3 PAC Subset Selection

In this section, we consider the two PAC subset selection problems introduced

in Section 2.1. The first, named strong PAC subset selection, is the same as the

Explore-m problem introduced by Kalyanakrishnan and Stone (2010) where

the goal is to find m (ε,m)-optimal options. The second problem, named

average PAC subset selection, is to select a subset of m options with ε-optimal

average reward, introduced by Zhou et al. (2014).

42

The basic idea of our approach is to generalize our SEWP algorithm with

two modifications: (i) First, besides rejecting the options that cannot be in

the best m options after each phase, we also accept options that have enough

confidence to be one of the best m options, which shares a similar idea with

the Racing algorithm in Kaufmann and Kalyanakrishnan (2013). (ii) Spe-

cific stopping conditions are designed to meet the ε-relaxation in the problem

definition.

To make it easier to express the probe complexity, we introduce a new

symbol ∆
(ε,m)
i defined by ∆

(ε,m)
i = max{µi − µm+1, ε} if i ≤ m and ∆

(ε,m)
i =

max{µm − µi, ε} if i > m. We then sort ∆
(ε,m)
i for all i ∈ [K] in ascending

order and let S(i) be the first i options in the list, while ∆
(ε,m)
(i) denotes the i-th

smallest entry.

Analogously to Theorem 1, let f(t) = 2t, g(t, δ) =
√

log(4Kt2/δ)
2t+1 , and define

N̂(i)(ε, δ) =
128

(
∆

(ε,m)
(i)

)2 log

(
54K

δ
log

4

∆
(ε,m)
(i)

)
(2.27)

and let N̂(K+1)(ε, δ) = 0.

Note that N̂(1)(ε, δ) = N̂(2)(ε, δ) since ∆
(ε,m)
(1) = ∆

(ε,m)
(2) = max{µm−µm+1, ε}.

Also let M̂(i)(ε, δ)
.
= N̂(i)(ε, δ)− N̂(i+1)(ε, δ).

2.3.1 Strong PAC Subset Selection

First we propose an algorithm that returns a subset Ŝ∗ containing m (ε,m)-

optimal options with high probability. An option i is defined to be (ε,m)-

optimal iff µi ≥ µm − ε. This requirement is the same as qmin(Ŝ∗, µ) ≥

qmin([m] , µ)− ε where qmin(S, µ) = mini∈S µi.

The algorithm, called Successive Accept Reject with Probes (SARWP) is

shown in Algorithm 4. The following theorem shows that Algorithm 4 is

admissible and the probe complexity is bounded.

Theorem 10. With probability at least 1− δ, SARWP returns a subset Ŝ∗ of

size m within N probes, where qmin(Ŝ∗, µ) ≥ qmin([m] , µ) − ε and N satisfies

N ≤ GLP (O,P)
∑K

i=2 M̂(i)(ε, δ)CLP

(
S(i), 1

)
.

43

Algorithm 4 SuccessiveAcceptRejectWithProbes

1: Inputs: K, m, ε, δ, P , observation scheduling function f : N → N and
confidence function g : N× (0, 1]→ [0,∞).

2: Initialize candidate set A1 = [K], accepted options Aa1 = ∅, rejected
options Ar1 = ∅.

3: for t = 1, 2, . . . do
4: C(t)← COrcl(At, f(t),P).
5: Use each p ∈ C(t) for Cp(t)-times to get new observations.
6: For each i ∈ At, let µ̂i(t) be the mean of all observations so far for option

i. Sort the options in At in descending order of µ̂i(t). Let Ht be the first
m− |Aat | options and Lt = At \Ht.

7: if mini∈Ht µ̂i(t) ≥ maxi∈Lt µ̂i(t) + 2g(t, δ)− ε then
8: Return Ŝ∗ = Aat ∪Ht as selected subset.
9: end if
10: Let

Aat+1 = Aat ∪ {i ∈ Ht : µ̂i(t) > maxj∈Lt µ̂j(t) + 2g(t, δ)},
Art+1 = Art ∪ {i ∈ Lt : µ̂i(t) < minj∈Ht µ̂j(t)− 2g(t, δ)},
and At+1 = [K]− Aat+1 − Art+1

11: end for

Proof of Theorem 10. Let T denote the number of phases that the algorithm

runs until the stopping condition is satisfied and U denote the event that all

confidence bounds hold throughout the process:

U = {|µ̂i(t)− µi| ≤ g(t, δ) for all (i, t) s.t. 1 ≤ t ≤ T and i ∈ At} .

In the proof of Theorem 1, we have already shown that Pr(U) ≥ 1− δ. So the

remaining of the proof contains two parts given the fact that U holds: (i) if

T is finite thus Ŝ∗ is returned, each option in Ŝ∗ must be (ε,m)-optimal, and

(ii) the probe complexity is upper bounded.

First we will show that if T <∞ then each option i ∈ Ŝ∗ must be (ε,m)-

optimal. Since Ŝ∗ = AaT ∪HT , if i ∈ Ŝ, i belongs to either AaT or HT . If i ∈ AaT ,

we use the following proposition to show that 1 ≤ i ≤ m.

Proposition 11. If U holds, then for any 2 ≤ t ≤ T , if i ∈ Aat then 1 ≤ i ≤ m,

if i ∈ Art then m+ 1 ≤ i ≤ K.

Proof. For t = 2, if i ∈ Aa2, then µ̂i(1) > maxj∈L1 µ̂j(1) + 2g(1, δ). Since

|L1| = K−m, we can find at least K−m options such that for each j of them

µ̂i(1) > µ̂j(1) + 2g(1, δ). From U we know that µi > µj, which means there

44

are at least K−m options worse than i, hence 1 ≤ i ≤ m holds. On the other

hand, if i ∈ ArT , for similar reason, we can find at least m options better than

i and thus m+ 1 ≤ i ≤ K. Next we will show that if it holds for t then it also

holds for t+ 1.

If it holds for t, then we have # {i : 1 ≤ i ≤ m, i ∈ At} = m − |Aat | and

{i : m+ 1 ≤ i ≤ K, i ∈ At} = K−m−|Art |. For i ∈ At and i ∈ Aat+1, we can

find at least |Lt| = K−m−|Art | options in At worse than i so 1 ≤ i ≤ m must

hold. Similarly, for i ∈ At and i ∈ Art+1, we can find at least |Ht| = m− |Aat |

options in At better than i so m+ 1 ≤ i ≤ K must hold. Then by induction,

Proposition 11 holds.

We now continue the proof of Theorem 10. Proposition 11 shows that

if i ∈ AaT then 1 ≤ i ≤ m. For the other case, if i ∈ HT , then µ̂i(T) ≥

maxj∈LT µ̂j(T)+2g(T, δ)−ε. Next we will show that µi ≥ µm−ε by discussing

the following two cases:

If 1 ≤ i ≤ m then µi ≥ µm − ε must hold. If m+ 1 ≤ i ≤ K, since i ∈ HT

and all options in ArT must be K −m worst, then there exists 1 ≤ j ≤ m such

that j ∈ LT and thus µ̂i(T) ≥ µ̂j(T) + 2g(T, δ)− ε. Therefore µi ≥ µj − ε ≥

µm − ε.

Now we have shown that if T <∞, every option in Ŝ∗ = AaT ∪HT must be

(ε,m)-optimal. Next we will prove that if U holds then the probe complexity

is upper bounded by the following propositions.

Proposition 12. For 1 ≤ t < T , g(t, δ) > ε/2.

Proof. If g(t, δ) ≤ ε/2, then mini∈Ht µ̂i(t) ≥ maxi∈Lt µ̂i(t) ≥ maxi∈Lt µ̂i(t) +

2g(t, δ)− ε. The stopping condition is satisfied, thus T = t.

Proposition 13. For 1 ≤ t < T , if i ∈ At+1, then g(t, δ) ≥ (µi − µm+1)/4 if

1 ≤ i ≤ m, and g(t, δ) ≥ (µm − µi)/4 if m+ 1 ≤ i ≤ K.

Proof. For i ∈ At, 1 ≤ i ≤ m, if g(t, δ) < (µi − µm+1)/4, since #{i : m+ 1 ≤

i ≤ K, i ∈ At} = K −m − |Art |, there exist at least K −m − |Art | options in

At such that for each j of them µi − µj > 4g(t, δ). Then

µ̂i(t)− µ̂j(t) ≥ (µi − g(t, δ))− (µj + g(t, δ)) = µi − µj − 2g(t, δ) > 2g(t, δ) .

45

Given the fact that Lt contains K −m − |Art | options with the lowest µ̂j(t)s

for j ∈ At, we have µ̂i(t) > maxj∈Lt µ̂j(t) + 2g(t, δ), which means i must be

accepted to Aat+1 thus i /∈ At+1.

Similarly, we can prove that for i ∈ At, m + 1 ≤ i ≤ K, if g(t, δ) <

(µm − µi)/4, then i must be rejected to Art+1. Now Proposition 13 has been

proved.

Combining Propositions 12 and 13 and the definition of ∆
(ε,m)
i we get that

for 1 ≤ t < T , if i ∈ At+1, g(t, δ) ≥ ∆
(ε,m)
i /4. Then following the proof of

Theorem 1 gives the result of Theorem 10.

. .

The upper bound on the probe complexity is in a similar form to the one

for SEWP in Theorem 1, while here the number of samples required for option

i is determined by ∆
(ε,m)
i instead of ∆i. This complexity measure matches ex-

isting work for the bandit case (Kalyanakrishnan et al., 2012; Kaufmann and

Kalyanakrishnan, 2013). In the bandit case, the upper bound matches the

worst case lower bound in Kalyanakrishnan et al. (2012): Ω(Kε−2 log(m/δ)),

up to logarithmic factors. We do not have a distribution dependent lower

bound like Theorem 3 and even in the bandit case a distribution dependent

lower bound for ε > 0 is still an open question (Kaufmann and Kalyanakrish-

nan, 2013).

2.3.2 Average PAC Subset Selection

Next we consider the problem that aims to find a subset whose aggregate regret

is ε-optimal. Given a subset S ⊂ [K] and |S| = m, the aggregate regret of S

is defined as RS = 1
m

(∑
i∈[m] µi −

∑
i∈S µi

)
= qavg([m] , µ)− qavg(S, µ) where

qavg(S, µ) = 1
|S|
∑

i∈S µi. The aggregate regret of S is said to be ε-optimal iff

RS ≤ ε.

To address the problem of finding an average ε-optimal subset, Algorithm

4 can still be employed by only modifying the stopping condition according to

the different objective. The new stopping condition is described as follows:

46

Stopping condition for average PAC subset selection: First for each i ∈ At,

we construct an adversarial estimation µ̂′i(t) by setting µ̂′i(t) = µ̂i(t) − g(t, δ)

if i ∈ Ht and µ̂′i(t) = µ̂i(t) + g(t, δ) if i ∈ Lt. Then we sort the options in

descending order according to µ̂′i(t) and let H ′t be the first m − |Aat | options

while L′t be the remaining. The algorithm stops and returns Ŝ∗ = Aat ∪Ht if

∑

i∈Ht\H′t

(µ̂i(t)− g(t, δ)) ≥
∑

i∈H′t\Ht

(µ̂i(t) + g(t, δ))−mε .

This way of constructing “adversarial estimation” is similar to the one in the

CLUCB algorithm of Chen et al. (2014), where the goal is to identify a subset

with the highest reward sum without ε relaxation.

The next theorem shows that with the modified stopping condition, Algo-

rithm 4 is admissible and bounds its probe complexity. Define

b(m, ε) = max
{
a ∈ N+ : µm−a+1 − µm+a ≤

mε

a

}
, (2.28)

or b(m, ε) = 1 if µm − µm+1 > mε. Then we have the following result:

Theorem 14. With probability at least 1− δ, SARWP with modified stopping

condition returns a subset Ŝ∗ of size m within N probes, where qavg(Ŝ
∗, µ) ≥

qavg([m] , µ)−ε and N satisfies N ≤ GLP (O,P)
∑K

i=2 M̂(i)(mε/b, δ)CLP

(
S(i), 1

)
,

where b = b(m, ε).

Proof of Theorem 14. Let T denote the number of phases that the algorithm

runs until the stopping condition is satisfied and U denote the event that all

confidence bounds hold throughout the process:

U = {|µ̂i(t)− µi| ≤ g(t, δ) for all (i, t) s.t. 1 ≤ t ≤ T and i ∈ At} .

We have Pr(U) ≥ 1− δ. Similar with the proof of Theorem 10, the remaining

of the proof contains two parts given the fact that U holds: (i) if T is finite

thus Ŝ∗ is returned, the aggregate regret of Ŝ∗ must be ε-optimal, and (ii) the

probe complexity is upper bounded.

First we will show that if T <∞ then 1
m

(∑
i∈[m] µi −

∑
i∈Ŝ∗ µi

)
≤ ε. Re-

call that Ŝ∗ = AaT ∪HT . The options in AaT incur no regret since Proposition 11

47

still holds and says that AaT ⊂ [m]. So we only need to show that

∑

i∈[m]\AaT

µi −
∑

i∈HT

µi ≤ mε .

Furthermore, it is equivalent to show

∑

i∈[m]\AaT \HT

µi −
∑

i∈HT \[m]

µi ≤ mε .

Recall the stopping condition

∑

i∈HT \H′T

(µ̂i(T)− g(T, δ)) ≥
∑

i∈H′T \HT

(µ̂i(T) + g(T, δ))−mε .

To show that the stopping condition is sufficient, we introduce some new no-

tations:

Consider the sequence of options in At sorted by their µ̂i(t), let at(i) be

the option at the i-th position. Let

bt = max
{
a ∈ N : µ̂at(mt−a+1) − µ̂at(mt+a) < 2g(t, δ)

}
,

where mt = m− |Aat |.

According to the construction of H ′t we know that Ht = {at(1), ..., at(mt)},

H ′t = {at(1), ..., at(mt−bt), at(mt+1), ..., at(mt+bt)} and |Ht\H ′t| = |H ′t\Ht| =

bt.

Next we construct a set of pairs PairT = {(i, j)} for i ∈ [m] \AaT \HT and

j ∈ HT \[m] as follows: sort HT \[m] and [m]\AaT \HT both in descending order

according to their µ̂i(T)s (this is valid since [m] \AaT ⊂ AT by Proposition 11)

, then take last of i ∈ [m] \ AaT \ HT and the first j ∈ HT \ [m] as a pair

into PairT , then repeat this procedure until no option remains (Note that

| [m] \ AaT \HT | = |HT \ [m] |). Since for each pair (i, j), i /∈ HT and j ∈ HT ,

we have µ̂j(T) ≥ µ̂i(T).

Then

∑

i∈[m]\AaT \HT

µi −
∑

i∈HT \[m]

µi

≤
∑

(i,j)∈PairT

(µ̂i(T)− µ̂j(T) + 2g(T, δ))

48

≤
∑

(i,j)∈Pair+T

(2g(T, δ)− (µ̂j(T)− µ̂i(T)))

where Pair+
T = {(i, j) ∈ PairT : µ̂j(T)− µ̂i(T) < 2g(T, δ)}. Then we will

show |Pair+
T | ≤ bT . This is because, if |Pair+

T | > bT , then there must be

a pair (i, j) ∈ Pair+
T such that j ∈ HT ∩ H ′T and i /∈ HT ∪ H ′T . Thus

µ̂aT (mT−bT)(T)−µ̂aT (mT+bT+1)(T) ≤ µ̂j(T)−µ̂i(T) < 2g(T, δ) which contradicts

the definition of bt.

Next we construct another set of |Pair+
T | pairs (i, j) between i ∈ H ′T \HT

and j ∈ HT \H ′T in the similar fashion: Let

Pair′T =
{

(aT (mT + |Pair+
T |), aT (mT − |Pair+

T |+ 1)), ..., (aT (mT + 1), aT (mT))
}
.

If we consider the pairs in Pair+
T and Pair′T in the order that they are con-

structed, then for each corresponding (i, j) ∈ Pair+
T and (i′, j′) ∈ Pair′T , we

have µ̂j(T)− µ̂i(T) ≥ µ̂j′(T)− µ̂i′(T). Therefore,

∑

i∈[m]\AaT \HT

µi −
∑

i∈HT \[m]

µi ≤
∑

(i,j)∈Pair+T

(2g(T, δ)− (µ̂j(T)− µ̂i(T)))

≤
∑

(i,j)∈Pair′T

(2g(T, δ)− (µ̂j(T)− µ̂i(T)))

Consider the remaining pairs (i, j) between i ∈ H ′T \ HT and j ∈ HT \ H ′T
which are not in Pair′T , 2g(T, δ) − (µ̂j(T)− µ̂i(T)) > 0 still holds. Then we

have

∑

i∈[m]\AaT \HT

µi −
∑

i∈HT \[m]

µi

≤
∑

i∈H′T \HT

(µ̂i(T) + g(T, δ))−
∑

i∈HT \H′T

(µ̂i(T)− g(T, δ))

≤ mε .

Now we have proved that the aggregate regret of Ŝ∗ is ε-optimal. The remain-

ing task is to upper bound the probe complexity.

Proposition 15. For 1 ≤ t < T , g(t, δ) > mε/4b, where

b = max
{
a ∈ N+ : µm−a+1 − µm+a ≤

mε

a

}
,

or b = 1 if µm − µm+1 > mε.

49

Proof. The proposition is proved by showing that if g(t, δ) ≤ mε/4b, the stop-

ping condition must be satisfied after this phase. Recall the definition of

bt = |Ht \H ′t| = |H ′t \Ht|, we will first show that bt ≤ b.

If b = min{m,K − m}, bt ≤ b must hold. Next we discuss the case

when b < min{m,K −m}: Since µm−b − µm+b+1 > mε/b ≥ 4g(t, δ), for any

1 ≤ i ≤ m − b and m + b + 1 ≤ j ≤ K, if i, j ∈ At, then µ̂i(t) − µ̂j(t) ≥

µi−µj−2g(t, δ) > 2g(t, δ). So there are at least m−|Aat |− b = mt− b options

in At such that for each i of them 1 ≤ i ≤ m−b, as well as at least |At|−mt−b

options such that for each j of them m + b + 1 ≤ j ≤ K. Since for each pair

of such i, j, µ̂i(t) > µ̂j(t), if bt > b then there must exist 1 ≤ i ≤ m − b and

m + b + 1 ≤ j ≤ K such that i, j ∈ (Ht \H ′t) ∪ (H ′t \Ht). This is impossible

because

µ̂at(mt−bt+1)(t) ≥ µ̂i(t) > µ̂j(t) + 2g(t, δ) ≥ µ̂at(mt+bt)(t) + 2g(t, δ) ,

which contradicts the definition of bt. Hence bt ≤ b holds.

Then

∑

i∈H′t\Ht

(µ̂i(t) + g(t, δ))−
∑

i∈Ht\H′t

(µ̂i(t)− g(t, δ))

= 2btg(t, δ) +
∑

i∈H′t\Ht

µ̂i(t)−
∑

i∈Ht\H′t

µ̂i(t)

≤ 2btg(t, δ) ≤ 2bt ≤ 2b · mε
4b

≤ mε ,

which shows that the stopping condition is satisfied and thus the proposition

holds.

Note that Proposition 13 still holds here, together with Proposition 15 we

get that for 1 ≤ t < T , if i ∈ At+1, g(t, δ) ≥ ∆
(mε/b,m)
i /4. Then following the

proof of Theorem 1 gives the result of Theorem 14.

. .

Compared with Theorem 10, the complexity here is measured by ∆
(mε/b,m)
i

instead. This distribution dependent complexity measure is novel even in the

50

bandit case since the algorithm in Zhou et al. (2014) comes with distribution

independent guarantee only. Regarding the worst case performance, since

b(m, ε) ≤ min{m,K − m}, in bandit case our upper bound can be further

relaxed to O
(
K
ε2

log
(
K
δ

log 1
ε

))
if m ≤ K/2 and O

(
K(K−m)2

m2ε2
log
(
K
δ

log K−m
mε

))

if m > K/2. Compared with the worst case lower bound in Zhou et al.

(2014): Ω
(
K
ε2

(
1 + log(1/δ)

m

))
for m ≤ K/2 and Ω

(
K−m
m
· K
ε2

(
K−m
m

+ log(1/δ)
m

))

for m > K/2, although our upper bound does not exactly match this worse

case lower bound, our distribution dependent quantity b(m, ε) shows how the

different K
ε2

and K(K−m)2

m2ε2
terms appear for small m and large m compared with

K/2.

2.4 Summary

We introduced a generalized version of the best arm identification problem,

where a decision maker can query multiple arms at a time. This generalization

describes several real world problems that are not adequately modeled by the

standard best-arm identification problem. We generalized several existing al-

gorithms and provided distribution dependent upper and lower bounds on the

probe complexity, and showed that our algorithms achieve essentially the best

possible performance in special cases. In the PAC subset selection problems

our complexity measure either matches existing works for the bandit case or

provides some new insights. One very interesting question that remains for fu-

ture work is whether there is a real gap between our lower and upper bounds.

However, much work remains to be done: We view our paper as opening a

whole new practical and exciting research area of investigating richer feedback

structures in “winner selection” problems. Interesting questions include how

to change the algorithms when the subsets to be returned are restricted, or

when probes are associated with costs.

51

Chapter 3

Regret Minimization with
Gaussian Side Observations

In this chapter we present our work on the regret minimization problem in

the Gaussian side observation setting (Wu et al., 2015b). We assume that

selecting an action i the learner can observe a random variable Xij for each

action j whose mean is the same as the payoff of j, but its variance σ2
ij depends

on the pair (i, j). For simplicity, throughout the chapter we assume that all

the payoffs and the Xij are Gaussian. While in the graph-structured feedback

case one either has observation on an action or not, but the observation always

gives the same amount of information, our model is more refined: Depending

on the value of σ2
ij, the information can be of different quality. For example,

if σ2
ij =∞, trying action i gives no information about action j. In general, for

any σ2
ij < ∞, the value of the information depends on the time horizon T of

the problem: when σ2
ij is large relative to T (and the payoff differences of the

actions) essentially no information is received, while a small variance results

in useful observations.

After defining the problem formally in Section 3.1, we provide non-asymptotic

problem-dependent lower bounds in Section 3.2, which depend on the distri-

bution of the observations through their mean payoffs and variances. To our

knowledge, these are the first such bounds presented for any stochastic partial

monitoring problem beyond the full-information setting: previous work either

presented asymptotic problem-dependent lower bounds (e.g., Graves and Lai,

1997; Buccapatnam et al., 2014), or finite-time minimax bounds (e.g., Bartók

52

et al., 2014; Alon et al., 2013, 2015). Our bounds can recover all previous

bounds up to some universal constant factors not depending on the problem.

In Section 3.3, we present two algorithms with finite-time performance guar-

antees for the case of graph-structured feedback without the self-observability

assumption. While due to their complicated forms it is hard to compare our

finite-time upper and lower bounds, we show that our first algorithm achieves

the asymptotic problem-dependent lower bound up to problem-independent

multiplicative factors. Regarding the minimax regret, the hardness (Θ̃(T 1/2)

or Θ̃(T 2/3) regret1) of partial monitoring problems is characterized by their

global/local observability property (Bartók et al., 2014) or, in case of the

graph-structured feedback model, by their strong/weak observability property

(Alon et al., 2015). In the same section we present another algorithm that

achieves the minimax regret (up to logarithmic factors) under both strong

and weak observability, and achieves an O(log3/2 T) problem-dependent regret.

Earlier results for the stochastic graph-structured feedback problems (Caron

et al., 2012; Buccapatnam et al., 2014) provided only asymptotic problem-

dependent lower bounds and performance bounds that did not match the

asymptotic lower bounds or the minimax rate up to constant factors. A related

combinatorial partial monitoring problem with linear feedback was considered

in Lin et al. (2014), where the presented algorithm was shown to satisfy both an

Õ(T 2/3) minimax bound and a logarithmic problem dependent bound. How-

ever, the dependence on the problem structure in that paper is not optimal,

and, in particular, the paper does not achieve the O(
√
T) minimax bound for

easy problems.

3.1 Problem Formulation

Formally, we consider an online learning problem with Gaussian payoffs and

side observations : Suppose a learner has to choose from K actions in every

round. When choosing an action, the learner receives a random payoff and also

some side observations corresponding to other actions. More precisely, each

1Tilde denotes order up to logarithmic factors.

53

action i ∈ [K] = {1, . . . , K} is associated with some parameter θi, and the

payoff Yt,i to action i in round t is normally distributed random variable with

mean θi and variance σ2
ii, while the learner observes a K-dimensional Gaussian

random vector Xt,i whose jth coordinate is a normal random variable with

mean θj and variance σ2
ij (we assume 0 ≤ σij ≤ ∞) and the coordinates of

Xt,i are independent of each other. We assume the following: (i) the random

variables (Xt, Yt)t are independent for all t; (ii) the parameter vector θ is

unknown to the learner but the variance matrix Σ = (σ2
ij)i,j∈[K] is known in

advance; (iii) θ ∈ [0, D]K for some D > 0; (iv) mini∈[K] σij ≤ σ < ∞ for all

j ∈ [K], that is, the expected payoff of each action can be observed.

The goal of the learner is to maximize its payoff or, in other words, minimize

the expected regret

RT = T max
i∈[K]

θi −
T∑

t=1

E [Yt,it]

where it is the action selected by the learner in round t. Note that the problem

encompasses several common feedback models considered in online learning

(modulo the Gaussian assumption), and makes it possible to examine more

delicate observation structures:

Full information: σij = σj <∞ for all i, j ∈ [K].

Bandit: σii <∞ and σij =∞ for all i 6= j ∈ [K].

Partial monitoring with feedback graphs (Alon et al., 2015): Each ac-

tion i ∈ [K] is associated with an observation set Si ⊂ [K] such that

σij = σj <∞ if j ∈ Si and σij =∞ otherwise.

We will call the uniform variance version of these problems when all the finite

σij are equal to some σ ≥ 0. Some interesting features of the problem can be

seen when considering the generalized full information case , when all entries

of Σ are finite. In this case, the greedy algorithm, which estimates the pay-

off of each action by the average of the corresponding observed samples and

selects the one with the highest average, achieves at most a constant regret

54

for any time horizon T .2 On the other hand, the constant can be quite large:

in particular, when the variance of some observations are large relative to the

gaps dj = maxi θi − θj, the situation is rather similar to a partial monitoring

setup for a smaller, finite time horizon. In this chapter we are going to analyze

this problem and present algorithms and lower bounds that are able to “in-

terpolate” between these cases and capture the characteristics of the different

regimes.

3.1.1 Notation

Define CN
T = {c ∈ NK : ci ≥ 0 ,

∑
i∈[K] ci = T} and let N(T) ∈ CN

T denote the

number of plays over all actions taken by some algorithm in T rounds. Also

let CR
T = {c ∈ RK : ci ≥ 0 ,

∑
i∈[K] ci = T}. We will consider environments

with different expected payoff vectors θ ∈ Θ, but the variance matrix Σ will

be fixed. Therefore, an environment can be specified by θ; oftentimes, we will

explicitly denote the dependence of different quantities on θ: The probability

and expectation functionals under environment θ will be denoted by Pr (·; θ)

and E [·; θ], respectively. Furthermore, let ij(θ) be the jth best action (ties

are broken arbitrarily, i.e., θi1 ≥ θi2 ≥ · · · ≥ θiK) and define di(θ) = θi1(θ) − θi
for any i ∈ [K]. Then the expected regret under environment θ is RT (θ) =
∑

i∈[K] E [Ni(T); θ] di(θ). For any action i ∈ [K], let Si = {j ∈ [K] : σij <∞}

denote the set of actions whose parameter θj is observable by choosing action

i. Throughout the chapter, log denotes the natural logarithm and ∆n denotes

the n-dimensional simplex for any positive integer n.

3.2 Lower Bounds

The aim of this section is to derive generic, problem-dependent lower bounds to

the regret, which are also able to provide minimax lower bounds. The hardness

in deriving such bounds is that for any fixed θ and Σ, the dumb algorithm that

always selects i1(θ) achieves zero regret (obviously, the regret of this algorithm

2To see this, notice that the error of identifying the optimal action decays exponentially
with the number of rounds.

55

is linear for any θ′ with i1(θ) 6= i1(θ′)), so in general it is not possible to give

a lower bound for a single instance. When deriving asymptotic lower bounds,

this is circumvented by only considering consistent algorithms whose regret

is sub-polynomial for any problem (Graves and Lai, 1997). However, this

asymptotic notion of consistency is not applicable to finite-horizon problems.

Therefore, following ideas of Li et al. (2015), for any problem we create a family

of related problems (by perturbing the mean payoffs) such that if the regret of

an algorithm is “too small” in one of the problems than it will be “large” in

another one, while it still depends on the original problem parameters (note

that deriving minimax bounds usually only involves perturbing certain special

“worst-case” problems).

As a warm-up, and to show the reader what form of a lower bound can be

expected, first we present an asymptotic lower bound for the uniform-variance

version of the problem of partial monitoring with feedback graphs. The result

presented below is an easy consequence of Graves and Lai (1997), hence its

proof is omitted. An algorithm is said to be consistent if supθ∈Θ RT (θ) = o(T γ)

for every γ > 0. Now assume for simplicity that there is a unique optimal

action in environment θ, that is, θi1(θ) > θi for all i 6= i1 and let

Cθ =

c ∈ [0,∞)K :

∑

i:j∈Si

ci ≥
2σ2

d2
j(θ)

for all j 6= i1(θ) ,
∑

i:i1(θ)∈Si

ci ≥
2σ2

d2
i2(θ)(θ)

 .

Then, for any consistent algorithm and for any θ with θi1(θ) > θi2(θ),

lim inf
T→∞

RT (θ)

log T
≥ inf

c∈Cθ
〈c, d(θ)〉 . (3.1)

Note that the right hand side of (3.1) is 0 for any generalized full infor-

mation problem (recall that the expected regret is bounded by a constant for

such problems), but it is a finite positive number for other problems. Similar

bounds have been provided in Caron et al. (2012); Buccapatnam et al. (2014)

for graph-structured feedback with self-observability (under non-Gaussian as-

sumptions on the payoffs). In the following we derive finite time lower bounds

that are also able to replicate this result.

56

3.2.1 A General Finite Time Lower Bound

First we derive a general lower bound. For any θ, θ′ ∈ Θ and q ∈ ∆|C
N
T |, define

f(θ, q, θ′) as

f(θ, q, θ′) = inf
q′∈∆

|CN
T
|

∑

a∈CN
T

q′(a) 〈a, d(θ′)〉

such that
∑

a∈CN
T

q(a) log
q(a)

q′(a)
≤
∑

i∈[K]

Ii(θ, θ′)

∑

a∈CN
T

q(a)ai

 ,

where Ii(θ, θ
′) is the KL-divergence between Xt,i(θ) and Xt,i(θ

′), given by

Ii(θ, θ
′) = KL(Xt,i(θ);Xt,i(θ

′)) =
∑K

j=1(θj − θ′j)
2/2σ2

ij. Clearly, f(θ, q, θ′) is

a lower bound on RT (θ′) for any algorithm for which the distribution of N(T)

is q. The intuition behind the allowed values of q′ is that we want q′ to be as

similar to q as the environments θ and θ′ look like for the algorithm (through

the feedback (Xt,it)t). Now define

g(θ, c) = inf
q∈∆

|CN
T
|
sup
θ′∈Θ

f(θ, q, θ′), such that
∑

a∈CN
T

q(a)a = c ∈ CR
T .

g(θ, c) is a lower bound of the worst-case regret of any algorithm with E [N(T); θ] =

c. Finally, for any x > 0, define

b(θ, x) = inf
c∈Cθ,x

〈c, d(θ)〉 where Cθ,x = {c ∈ CR
T ; g(θ, c) ≤ x}.

Here Cθ,x contains all the possible values of E [N(T); θ] that can be achieved

by some algorithm whose lower bound g on the worst-case regret is smaller

than x. These definitions give rise to the following theorem:

Theorem 16. Given any B > 0, for any algorithm such that supθ′∈Θ RT (θ′) ≤

B, we have, for any environment θ ∈ Θ, RT (θ) ≥ b(θ, B).

Proof of Theorem 16 . Let φθ,σ denote the density function of aK-dimensional

Gaussian random variable with mean vector θ and independent components

wehere the variance of the ith coordinate is σ2
i , and define

LT =
T∑

t=1

log
φθ,σit (Xt,it)

φθ′,σit (Xt,it)

57

where it is the choice of the algorithm in round t. Let q, q′ ∈ ∆|C
N
T | denote the

joint distribution over the number of plays for each action under environment

θ and θ′ ∈ Θ, respectively, that is, q(a) = Pr (N(T) = a; θ) and q′(a) =

Pr (N(T) = a; θ′) for each a ∈ CN
T .

For any a ∈ CN
T , applying a standard change of measure equality (see, e.g.,

Kaufmann et al., 2015a, Lemma 15), we obtain

q′(a) = Pr (N(T) = a; θ′) = E [I {N(T) = a} exp(−LT); θ]

= E [I {N(T) = a}E [exp(−LT)|N(T) = a; θ] ; θ]

≥ E [I {N(T) = a} exp (E [−LT |N(T) = a; θ]) ; θ]

= Pr (N(T) = a; θ) exp (E [−LT |N(T) = a; θ])

= q(a) exp (E [−LT |N(T) = a; θ]) .

Thus E [LT |N(T) = a; θ] ≥ log q(a)
q′(a)

and so

∑

i∈[K]

E [Ni(T); θ] Ii(θ, θ
′) = E [LT ; θ]

=
∑

a∈CN
T

Pr (N(T) = a; θ)E [LT |N(T) = a; θ]

≥
∑

a∈CN
T

q(a) log
q(a)

q′(a)
,

where E [Ni(T); θ] =
∑

a∈CN
T
q(a)ai. Therefore, according to the definition

of f(θ, q, θ′), we have f(θ, q, θ′) ≤
∑

a∈CN
T
q′(a) 〈a, d(θ′)〉 = RT (θ′) for any

θ′ ∈ Θ. Then supθ′∈Θ f(θ, q, θ′) ≤ supθ′∈Θ RT (θ′) ≤ B must hold. Since

E [N(T); θ] =
∑

a∈CN
T
q(a)a we have g(θ,E [N(T); θ]) ≤ supθ′∈Θ f(θ, q, θ′) ≤ B.

Thus E [N(T); θ] ∈ Cθ,B and so RT (θ) ≥ b(θ, B), which concludes the proof of

Theorem 16.

. .

Remark 17. If B is picked as the minimax value of the problem given the

observation structure Σ, the theorem states that for any minimax optimal

algorithm the expected regret for a certain θ is lower bounded by b(θ, B).

58

3.2.2 A Relaxed Lower Bound

Now we introduce a relaxed but more interpretable version of the finite-time

lower bound of Theorem 16, which can be shown to match the asymptotic

lower bound (3.1). The idea of deriving the lower bound is the following:

instead of ensuring that the algorithm performs well in the most adversarial

environment θ′, we consider a set of “bad” environments and make sure that

the algorithm performs well on them, where each “bad” environment θ′ is the

most adversarial one by only perturbing one coordinate θi of θ.

However, in order to get meaningful finite-time lower bounds, we need to

perturb θ more carefully than in the case of asymptotic lower bounds. The

reason for this is that for any sub-optimal action i, if θi is very close to θi1(θ),

then E [Ni(T); θ] is not necessarily small for a good algorithm for θ. If it is

small, one can increase θi to obtain an environment θ′ where i is the best

action and the algorithm performs bad; otherwise, when E [Ni(T); θ] is large,

we need to decrease θi to make the algorithm perform badly in θ′. Moreover,

when perturbing θi to be better than θi1(θ), we cannot make θ′i−θi1(θ) arbitrarily

small as in asymptotic lower-bound arguments, because when θ′i−θi1(θ) is small,

large E
[
Ni1(θ); θ

′], and not necessarily large E [Ni(T); θ′], may also lead to low

finite-time regret in θ′. In the following we make this argument precise to

obtain an interpretable lower bound.

Formulation

We start with defining a subset of CR
T that contains the set of “reasonable”

values for E [N(T); θ]. For any θ ∈ Θ and B > 0, let

C ′θ,B =

{
c ∈ CR

T :
K∑

j=1

cj
σ2
ji

≥ mi(θ, B) for all i ∈ [K]

}

where mi, the minimum sample size required to distinguish between θi and its

worst-case perturbation, is defined as follows: For i 6= i1, if θi1 = D,3 then

mi(θ, B) = 0. Otherwise let

mi,+(θ, B) = max
ε∈(di(θ),D−θi]

1
ε2

log T (ε−di(θ))
8B

,

3Recall that θi ∈ [0, D].

59

mi,−(θ, B) = max
ε∈(0,θi]

1
ε2

log T (ε+di(θ))
8B

,

and let εi,+ and εi,− denote the value of ε achieving the maximum in mi,+ and

mi,−, respectively. Then, define

mi(θ, B) =

{
mi,+(θ, B) if di(θ) ≥ 4B/T ;

min {mi,+(θ, B),mi,−(θ, B)} if di(θ) < 4B/T .

For i = i1, then mi1(θ, B) = 0 if θi2(θ) = 0, else the definitions for i 6= i1 change

by replacing di(θ) with di2(θ)(θ) (and switching the + and − indices):

mi1(θ),−(θ, B) = max
ε∈(di2(θ)(θ),θi1(θ)]

1
ε2

log
T (ε−di2(θ)(θ))

8B
,

mi1(θ),+(θ, B) = max
ε∈(0,D−θi1(θ)]

1
ε2

log
T (ε+di2(θ)(θ))

8B

where εi1(θ),− and εi1(θ),+ are the maximizers for ε in the above expressions.

Then, define

mi1(θ)(θ, B) =

{
mi1(θ),−(θ, B) if di2(θ)(θ) ≥ 4B/T ;

min
{
mi1(θ),+(θ, B),mi1(θ),−(θ, B)

}
if di2(θ)(θ) < 4B/T .

Note that εi,+ and εi,− can be expressed in closed form using the Lambert

W : R→ R function satisfying W (x)eW (x) = x: for any i 6= i1(θ),

εi,+ = min

{
D − θi , 8

√
eBe

W

(
di(θ)T
16
√
eB

)
/T + di(θ)

}
,

εi,− = min

{
θi , 8

√
eBe

W

(
−
di(θ)T
16
√
eB

)
/T − di(θ)

}
,

(3.2)

and similar results hold for i = i1, as well.

Now we can give the main result of this section, a simplified version of

Theorem 16:

Corollary 18. Given B > 0, for any algorithm such that supλ∈ΘRT (λ) ≤ B,

we have, for any environment θ ∈ Θ, RT (θ) ≥ b′(θ, B) = minc∈C′θ,B 〈c, d(θ)〉.

Proof of Corollary 18. We start the proof with two technical lemmas on the

Lambert W function.

60

Lemma 19. Let a, b > 0 with ab < 1 and f(x) = 1
x2

log ((x+ a)b) for x > 0.

Then f(x) ≤ f(x∗) for all x > 0 where

x∗ =

√
e

b
e
W
(
− ab

2
√
e

)
− a .

Proof.

f ′(x) =
x−3

x+ a
(x− 2(x+ a) log ((x+ a)b)) .

Let g(y) = y − a− 2y log by defined on y > a.

g′(y) = −2 log yb− 1 .

If ab ≤ 1√
e

then g(y) is increasing when a < y < 1
b
√
e

and decreasing when

y > 1
b
√
e
. If 1√

e
< ab < 1 then g(y) is decreasing on y > a.

Since limy→a g(y) = −2a log ab > 0 and limy→+∞ g(y) = −∞ we know that

there exists a unique y∗ > a such that g(y∗) = 0, g(y) > 0 for a < y < y∗

and g(y) < 0 for y > y∗. It can be verified that y∗ = x∗ + a =
√
e
b
e
W
(
− ab

2
√
e

)
satisfies g(y∗) = 0 and y∗ > a (which comes from W (− ab

2
√
e
) > W (− 1

2
√
e
) = −1

2

and thus y∗ >
1
b
> a). Therefore f ′(x) > 0 when 0 < x < x∗ and f ′(x) < 0

when x > x∗. Since f(x) is continuous when x > 0 we have proved that

f(x) ≤ f(x∗) for all x > 0.

Lemma 20. Let a, b > 0 and f(x) = 1
x2

log ((x− a)b) for x > a. Then

f(x) ≤ f(x∗) for all x > a where

x∗ =

√
e

b
e
W
(
ab
2
√
e

)
+ a .

Proof.

f ′(x) =
x−3

x− a
(x− 2(x− a) log ((x− a)b)) .

Let g(y) = y + a− 2y log by defined on y > 0.

g′(y) = −2 log yb− 1 .

So g(y) is increasing when 0 < y < 1
b
√
e

and decreasing when y > 1
b
√
e
.

61

Since limy→0 g(y) = a > 0 and limy→+∞ g(y) = −∞ we know that there

exists a unique y∗ > 0 such that g(y∗) = 0, g(y) > 0 for 0 < y < y∗ and

g(y) < 0 for y > y∗. It can be verified that y∗ = x∗ − a =
√
e
b
e
W
(
ab
2
√
e

)
satisfies

g(y∗) = 0. Therefore f ′(x) > 0 when a < x < x∗ and f ′(x) < 0 when x > x∗.

Since f(x) is continuous when x > a we have proved that f(x) ≤ f(x∗) for all

x > a.

To prove Corollary 18, it suffices to show b′(θ, B) ≤ b(θ, B).

Define C ′θ,B =
{
c ∈ CR

T :
∑K

j=1
cj
σ2
ji
≥ mi(θ, B) for all i ∈ [K]

}
. We will

prove Cθ,B ⊂ C ′θ,B by showing that if c ∈ CR
T satisfies g(θ, c) ≤ B then c ∈ C ′θ,B.

For c ∈ CR
T , if g(θ, c) ≤ B, then there exists q ∈ ∆|C

N
T | such that

sup
θ′∈Θ

f(θ, q, θ′) ≤ B and
∑

a∈CN
T

q(a)a = c .

We will next derive K constraints on c to show that c ∈ C ′θ,B by picking

different θ′s. Before proceeding with the proof, we introduce the following

technical lemma:

Lemma 21. For any A ⊂ CN
T and q, q′ ∈ ∆|C

N
T |, if q(A) ≥ 1/2 then

∑

a∈CN
T

q(a) log
q(a)

q′(a)
≥ 1

2
log

1

4q′(A)
,

where q′(A) =
∑

a∈A q
′(a).

Proof. Let Ac = CN
T − A. By the log-sum inequality we have

∑

a∈CN
T

q(a) log
q(a)

q′(a)
≥ KL(q(A), q′(A)) , (3.3)

where for x, y ∈ [0, 1], KL(x, y) = x log(x/y) + (1 − x) log((1 − x)/(1 − y))

denotes the binary KL-divergence. Now for such x, y, since x log x + (1 −

x) log(1− x) is minimized for x = 1/2, we have

KL(x, y) ≥ log
1

2
+ x log

1

y
+ (1− x) log(

1

1− y
) ≥ log

1

2
+

1

2
log

1

y
=

1

2
log

1

4y
.

Combining with (3.3) proves the lemma.

62

Now we continue the proof of Corollary 18. First consider i 6= i1(θ).

If
∑

a:ai≤T/2 q(a) ≥ 1/2, construct θ(i,+) by replacing θi with θi+εi,+. Then

f(θ, q, θ(i,+)) ≤ B holds, so there exists q′ ∈ ∆|C
N
T | such that

∑

a∈CN
T

q′(a)
〈
a, d(θ(i,+))

〉
≤ B

and ∑

a∈CN
T

q(a) log
q(a)

q′(a)
≤
∑

j∈[K]

cjIj(θ, θ
(i,+)) .

Applying Lemma 21 with A = {a : ai ≤ T/2} gives

∑

j∈[K]

cjIj(θ, θ
(i,+)) ≥ 1

2
log

1

4q′(A)
,

where

q′(A) =
∑

a∈CN
T

I

{∑

j 6=i

aj ≥ T/2

}
q′(a) ≤ 2

T

∑

a∈CN
T

q′(a)
∑

j 6=i

aj

=
2

T (εi,+ − di(θ))
∑

a∈CN
T

q′(a)
∑

j 6=i

aj(εi,+ − di(θ))

≤ 2

T (εi,+ − di(θ))
∑

a∈CN
T

q′(a)
〈
a, d(θ(i,+))

〉

≤ 2B

T (εi,+ − di(θ))
.

Since Ij(θ, θ
(i,+)) = ε2

i,+/2σ
2
ji, we get

∑

j∈[K]

cj
σ2
ji

≥ 1

ε2
i,+

log
T (εi,+ − di(θ))

8B
. (3.4)

If
∑

a:ai≤T/2 q(a) < 1/2 and di(θ) ≥ 4B/T , then

f(θ, q, θ) =
∑

a∈CN
T

q(a) 〈a, d(θ)〉 ≥
∑

a∈CN
T

q(a)aidi(θ)

≥ di(θ)
∑

a∈CN
T

I {ai ≥ T/2} q(a)ai

≥ 4B

T

T

2

∑

a∈CN
T

I {ai ≥ T/2} q(a) > B ,

63

which contradicts the fact that supθ′∈Θ f(θ, q, θ′) ≤ B.

If
∑

a:ai≤T/2 q(a) < 1/2 and di(θ) < 4B/T , construct θ(i,−) by replacing θi

with θi−εi,−. Then there exists q′ ∈ ∆|C
N
T | such that

∑
a∈CN

T
q′(a)

〈
a, d(θ(i,−))

〉
≤

B and
∑

a∈CN
T
q(a) log q(a)

q′(a)
≤
∑

j∈[K] cjIj(θ, θ
(i,−)). Applying Lemma 21 with

A = {a : ai > T/2} gives

∑

j∈[K]

cjIj(θ, θ
(i,−)) ≥ 1

2
log

1

4q′(A)
,

where

q′(A) =
∑

a∈CN
T

I {ai > T/2} q′(a) ≤ 2

T

∑

a∈CN
T

aiq
′(a)

≤ 2

T (εi,− + di(θ))

∑

a∈CN
T

q′(a)ai(εi,− + di(θ))

≤ 2

T (εi,− + di(θ))

∑

a∈CN
T

q′(a)
〈
a, d(θ(i,−))

〉
≤ 2B

T (εi,− + di(θ))
.

Using Ij(θ, θ
(i,−)) = ε2

i,−/2σ
2
ji gives

∑

j∈[K]

cj
σ2
ji

≥ 1

ε2
i,−

log
T (εi,− + di(θ))

8B
. (3.5)

Now consider i = i1(θ).

If
∑

a:ai≥T/2 q(a) ≥ 1/2, construct θ(i1,−) by replacing θi with θi − εi,−.

Then there exists q′ ∈ ∆|C
N
T | such that

∑
a∈CN

T
q′(a)

〈
a, d(θ(i,−))

〉
≤ B and

∑
a∈CN

T
q(a) log q(a)

q′(a)
≤
∑

j∈[K] cjIj(θ, θ
(i,−)). Applying Lemma 21 with A =

{a : ai ≥ T/2} and

q′(A) =
∑

a∈CN
T

I {ai ≥ T/2} q′(a) ≤ 2

T (εi,− − di2(θ)(θ))

∑

a∈CN
T

q′(a)ai(εi,− − di2(θ)(θ))

≤ 2B

T (εi,− − di2(θ)(θ))

gives

∑

j∈[K]

cj
σ2
ji

≥ 1

ε2
i,−

log
T (εi,− − di2(θ)(θ))

8B
. (3.6)

64

If
∑

a:ai≥T/2 q(a) < 1/2 and di2(θ)(θ) ≥ 4B/T , then

f(θ, q, θ) =
∑

a∈CN
T

q(a) 〈a, d(θ)〉 ≥
∑

a∈CN
T

q(a)di2(θ)

∑

j 6=i

aj

≥ di2(θ)

∑

a∈CN
T

I

{∑

j 6=i

aj > T/2

}
q(a)

∑

j 6=i

aj

>
4B

T

T

2

∑

a∈CN
T

I

{∑

j 6=i

aj > T/2

}
q(a)

≥ B ,

which contradicts the fact that supθ′∈Θ f(θ, q, θ′) ≤ B.

If
∑

a:ai≥T/2 q(a) < 1/2 and di2(θ)(θ) < 4B/T , construct θ(i,+) by replacing

θi with θi+εi,+. Then there exists q′ ∈ ∆|C
N
T | such that

∑
a∈CN

T
q′(a)

〈
a, d(θ(i,+))

〉
≤

B and
∑

a∈CN
T
q(a) log q(a)

q′(a)
≤
∑

j∈[K] cjIj(θ, θ
(i,+)). Applying Lemma 21 with

A = {a : ai < T/2} and

q′(A) =
∑

a∈CN
T

I

{∑

j 6=i

aj > T/2

}
q′(a) ≤ 2

T

∑

a∈CN
T

q′(a)
∑

j 6=i

aj

=
2

T (εi,+ + di2(θ)(θ))

∑

a∈CN
T

q′(a)
∑

j 6=i

aj(εi,+ + di2(θ)) ≤
2B

T (εi,+ + di2(θ))

gives

∑

j∈[K]

cj
σ2
ji

≥ 1

ε2
i,+

log
T (εi,+ + di2(θ))

8B
. (3.7)

Combining (3.4) (3.5) (3.6) (3.7) gives c ∈ C ′θ,B, which concludes the proof.

. .

Next we compare this bound to existing lower bounds.

Comparison to the Asymptotic Lower Bound (3.1)

Now we will show that our finite time lower bound in Corollary 18 matches

the asymptotic lower bound in (3.1) up to some constants. Pick B = αT β

for some α > 0 and 0 < β < 1. For simplicity, we only consider θ which is

“away from” the boundary of Θ (so that the minima in (3.2) are achieved by

65

the second terms) and has a unique optimal action. Then, for i 6= i1(θ), it is

easy to show that εi,+ = di(θ)
2W (di(θ)T 1−β/(16α

√
e))

+ di(θ) by (3.2) and mi(θ, B) =

1
ε2i,+

log
T (εi,+−di(θ))

8B
for large enough T . Then, using the fact that log x −

log log x ≤ W (x) ≤ log x for x ≥ e, it follows that limT→∞mi(θ, B)/ log T =

(1 − β)/d2
i (θ), and similarly we can show that limT→∞mi1(θ)(θ, B)/ log T =

(1 − β)/d2
i2(θ)(θ). Thus, C ′θ,B →

(1−β) log T
2

Cθ, under the assumptions of (3.1),

as T → ∞. This implies that Corollary 18 matches the asymptotic lower

bound of (3.1) up to a factor of (1− β)/2.

Comparison to Minimax Bounds

Now we will show that our θ-dependent finite-time lower bound reproduces the

minimax regret bounds of Mannor and Shamir (2011) and Alon et al. (2015),

except for the generalized full information case.

The minimax bounds depend on the following notion of observability: An

action i is strongly observable if either i ∈ Si or [K] \ {i} ⊂ {j : i ∈ Sj}. i is

weakly observable if it is not strongly observable but there exists j such that

i ∈ Sj (note that we already assumed the latter condition for all i). LetW(Σ)

be the set of all weakly observable actions. Σ is said to be strongly observable

if W(Σ) = ∅. Σ is weakly observable if W(Σ) 6= ∅.

Next we will define two key qualities introduced by Mannor and Shamir

(2011) and Alon et al. (2015) that characterize the hardness of a problem

instance with feedback structure Σ: A set A ⊂ [K] is called an independent

set if for any i ∈ A, Si ∩ A ⊂ {i}. The independence number κ(Σ) is defined

as the cardinality of the largest independent set. For any pair of subsets

A,A′ ⊂ [K], A is said to be dominating A′ if for any j ∈ A′ there exists

i ∈ A such that j ∈ Si. The weak domination number ρ(Σ) is defined as the

cardinality of the smallest set that dominates W(Σ).

Corollary 22. Assume that σij = ∞ for some i, j ∈ [K], that is, we are not

in the generalized full information case. Then,

(i) if Σ is strongly observable, with B = ασ
√
κ(Σ)T for some α > 0, we

have supθ∈Θ b
′(θ, B) ≥ σ

√
κ(Σ)T

64eα
for T ≥ 64e2α2σ2κ(Σ)3/D2.

66

(ii) If Σ is weakly observable, with B = α(ρ(Σ)D)1/3(σT)2/3 log−2/3K for

some α > 0, we have supθ∈Θ b
′(θ, B) ≥ (ρ(Σ)D)1/3(σT)2/3 log−2/3K

51200e2α2 .

Proof of Corollary 22. Define ε = 8eB
T

. First consider the case that Σ is

strongly observable.

If the maximum independence number κ(Σ) ≥ 2, there exists an indepen-

dent set Aκ ⊂ [K] such that |Aκ| = κ(Σ). We construct θ as follows: Let

θi1 = D/2 for some i1 ∈ Aκ and θi = D/2 − ε for i ∈ Aκ \ {i1}. For the

remaining i /∈ Aκ, let θi = 0. Note that each i in Aκ must be self observable

since otherwise it is a weakly observable action. Also in Aκ i can be observed

only by itself according to the definition of independent sets.

Then we will lower bound b′(θ, B). According to our choice of ε, we have

8
√
eB

T
e
W
(

εT
16
√
eB

)
+ ε = 2ε .

Therefore, for i = i1 we have εi,− = 2ε and εi,+ = 2ε for i ∈ Aκ \ {i1}. Thus

for any i ∈ Aκ,

mi(θ, B) =
1

4ε2
log

Tε

8B
=

1

4ε2
.

Recall that we defined

C ′θ,B =

c ∈ C

R
T :

∑

j:i∈Sj

cj ≥ σ2mi(θ, B) for all i ∈ [K]

and b′(θ, B) = infc∈C′θ,B 〈c, d(θ)〉. For any c ∈ C ′θ,B, let a =
∑

i/∈Aκ ci. Then we

have for any i ∈ Aκ,
∑

j:i∈Sj cj ≤ a+ci and thus ci ≥ σ2mi(θ, B)−a = σ2

4ε2
−a.

Since di(θ) = ε for all i ∈ Aκ \ {i1} and di(θ) = D/2 for all i /∈ Aκ, we get

〈c, d(θ)〉 =
∑

i∈Aκ\{i1}

ciε+
aD

2
≥ (κ(Σ)− 1)

(
σ2

4ε2
− a
)
ε+

aD

2

≥ κ(Σ)

2

(
σ2

4ε2
− a
)
ε+

aD

2
=
κ(Σ)σ2

8ε
+
D − κ(Σ)ε

2
a

≥ κ(Σ)σ2

8ε
(3.8)

if κ(Σ)ε < D. Applying our particular choice of ε and B, we get the conclusion

that for T ≥ 64e2α2σ2κ(Σ)3

D2 , b′(θ, B) ≥ σ
√
κ(Σ)T

64eα
.

67

If κ(Σ) = 1, since we exclude the full information case, there always exists

a pair of actions i1 and i2 such that i2 /∈ Si1 (here i1 6= i2 is not necessary).

We construct θ by setting θi1 = D/2 and θi = D/2 − ε for all i 6= i1. Then

mi(θ, B) = 1
4ε2

holds for all i ∈ [K]. For any c ∈ C ′θ,B, let a =
∑

i6=i1 ci, then
∑

j:i2∈Sj cj ≤ a. Hence a ≥ σ2mi2(θ, B) = σ2

4ε2
and

〈c, d(θ)〉 = aε ≥ σ2

4ε
>
κ(Σ)σ2

8ε
. (3.9)

Combining (3.8) and (3.9) gives the first part of Corollary 22.

Now we turn to the case that Σ is weakly observable. The idea of con-

structing the worst θ comes from the proof of Theorem 7 in Alon et al. (2015)

which based on the following graph-theoretic lemma:

Lemma 23 (Restated from Lemma 8 in Alon et al. (2015)). Let G = (V,E)

be a directed graph with K vertices and let W ⊂ V be a subset of vertices

with domination number ρ. Then there exists an independent set U ⊂ W with

the property that |U | ≥ ρ
50 logK

and any vertex of G dominates at most logK

vertices of U .

LetW(Σ) ⊂ [K] be the set of all weakly observable actions. By Lemma 23

we know that there exists an independent set Aρ ⊂ W(Σ) such that |Aρ| ≥
ρ(Σ)

50 logK
and for any i ∈ [K], |Si ∩ U | ≤ logK.

If ρ(Σ) ≥ 100 logK such that |Aρ| ≥ 2, we can construct θ as follows: Let

θi1 = D/2 for some i1 ∈ Aρ and θi = D/2 − ε for i ∈ Aρ \ {i1}. For the

remaining i /∈ Aρ, let θi = 0. Note that actions in Aρ cannot be observed by

any action inside Aρ. For any c ∈ C ′θ,B, let a =
∑

i/∈Aρ ci. Since for any i,

|Si ∩ U | ≤ logK, we have
∑

i∈Aρ
∑

j:i∈Sj cj ≤ a logK and

a logK ≥ |Aρ|min
i∈Aρ

∑

j:i∈Sj

cj ≥ |Aρ|min
i∈Aρ

σ2mi(θ, B) ≥ ρ(Σ)σ2

200 logKε2
.

Therefore,

〈c, d(θ)〉 ≥ aD

2
≥ ρ(Σ)σ2D

200ε2 log2K
=

(ρ(Σ)D)1/3(σT)2/3 log−2/3K

12800e2α2
. (3.10)

If ρ(Σ) < 100 logK, then we pick a weakly observable action as i2. There

must be another action i1 such that i2 /∈ Si1 due to the definition of weakly

68

observable actions. Then we set θ as θi1 = D/2, θi2 = D/2− ε and θi = 0 for

the remaining actions. So for any c ∈ C ′θ,B, let a =
∑

i6=i1,i2 ci ≥ σ2mi2(θ, B).

Then

〈c, d(θ)〉 ≥ aD

2
≥ σ2mi2(θ, B)D

2
=
Dσ2

8ε2
=
D1/3(σT)2/3

512e2α2
· log4/3K

ρ(Σ)2/3

≥ (ρ(Σ)D)1/3(σT)2/3 log−2/3K

51200e2α2
. (3.11)

In the last step we used the fact that K ≥ 3 for any weakly observable Σ.

Combining (3.10) and (3.11) gives the second part of Corollary 22.

. .

Remark 24. In Corollary 22, picking α = 1
8
√
e

for strongly observable Σ and

α = 1
73

for weakly observable Σ gives formal minimax lower bounds: (i) If Σ

is strongly observable, for any algorithm we have supθ∈Θ RT (θ) ≥ σ
√
κ(Σ)T

8
√
e

for

T ≥ eσ2κ(Σ)3/D2. (ii) If Σ is weakly observable, for any algorithm we have

supθ∈ΘRT (θ) ≥ (ρ(Σ)D)1/3(σT)2/3

73 log2/3K
.

3.3 Algorithms

In this section we present two algorithms and their finite-time analysis for the

uniform variance version of our problem (where σij is either σ or∞). The up-

per bound for the first algorithm matches the asymptotic lower bound in (3.1)

up to constants. The second algorithm achieves the minimax lower bounds

of Corollary 22 up to logarithmic factors, as well as O(log3/2 T) problem-

dependent regret. In the problem-dependent upper bounds of both algorithms,

we assume that the optimal action is unique, that is, di2(θ)(θ) > 0.

3.3.1 An Asymptotically Optimal Algorithm

Let c(θ) = argminc∈Cθ 〈c, d(θ)〉; note that increasing ci1(θ)(θ) does not change

the value of 〈c, d(θ)〉 (since di1(θ)(θ) = 0), so we take the minimum value

of ci1(θ)(θ) in this definition. Let ni(t) =
∑t−1

s=1 I {i ∈ Sis} be the number of

observations for action i before round t and θ̂t,i be the empirical estimate of

θi based on the first ni(t) observations. Let Ni(t) =
∑t−1

s=1 I {is = i} be the

69

number of plays for action i before round t. Note that this definition of Ni(t)

is different from that in the previous sections since it excludes round t.

Algorithm 5

1: Inputs: Σ, α, β : N→ [0,∞).
2: For t = 1, ..., K, observe each action i at least once by playing it such that
t ∈ Sit .

3: Set exploration count ne(K + 1) = 0.
4: for t = K + 1, K + 2, ... do
5: if N(t)

4α log t
∈ Cθ̂t then

6: Play it = i1(θ̂t).
7: Set ne(t+ 1) = ne(t).
8: else
9: if mini∈[K] ni(t) < β(ne(t))/K then
10: Play it such that argmini∈[K] ni(t) ∈ Sit .
11: else
12: Play it such that Ni(t) < ci(θ̂t)4α log t.
13: end if
14: Set ne(t+ 1) = ne(t) + 1.
15: end if
16: end for

Our first algorithm is presented in Algorithm 5. The main idea, coming

from Magureanu et al. (2014), is that by forcing exploration over all actions,

the solution c(θ) of the linear program can be well approximated while paying

a constant price. This solves the main difficulty that, without getting enough

observations on each action, we may not have good enough estimates for d(θ)

and c(θ). One advantage of our algorithm compared to that of Magureanu

et al. (2014) is that we use a nondecreasing, sublinear exploration schedule

β(n) (β : N→ [0,∞)) instead of a constant rate β(n) = βn. This resolves the

problem that, to achieve asymptotically optimal performance, some parameter

of the algorithm needs to be chosen according to dmin(θ) as in Magureanu et al.

(2014). The expected regret of Algorithm 5 is upper bounded as follows:

Theorem 25. For any θ ∈ Θ, ε > 0, α > 2 and any non-decreasing β(n) that

satisfies 0 ≤ β(n) ≤ n/2 and β(m+ n) ≤ β(m) + β(n) for m,n ∈ N,

RT (θ) ≤
(
2K + 2 + 4K/(α− 2)

)
dmax(θ) + 4Kdmax(θ)

T∑

s=0

exp
(
− β(s)ε2

2Kσ2

)

70

+ 2dmax(θ)β
(

4α log T
∑

i∈[K]

ci(θ, ε) +K
)

+ 4α log T
∑

i∈[K]

ci(θ, ε)di(θ) .

where ci(θ, ε) = sup{ci(θ′) : |θ′j − θj| ≤ ε for all j ∈ [K]}.

Proof of Theorem 25. Define the events

Ut =

{
|θ̂t,i − θi| ≤

√
2ασ2 log t

ni(t)
for all i ∈ [K]

}
,

Vt =
{
|θ̂t,i − θi| ≤ ε for all i ∈ [K]

}
,

Wt =

{
N(t)

4α log t
∈ C(θ̂t)

}
,

Yt =

{
min
i∈[K]

ni(t) < β(ne(t))/K

}
,

and let U c
t , V

c
t , W c

t , Y c
t denote their complements, respectively. Using these

events, the regret of the algorithm can be decomposed as

RT (θ) =
T∑

t=1

E [dit(θ)] ≤ Kdmax(θ) +
n∑

t=K+1

E [dit(θ)]

= Kdmax(θ) +
T∑

t=K+1

E [dit(θ) (I {U c
t }+ I {Ut,Wt}+ I {Ut,W c

t , Yt}

+I {Ut,W c
t , Y

c
t , V

c
t }+ I {Ut,W c

t , Y
c
t , Vt})] . (3.12)

We will upper bound each quantity in (3.12) separately.

By Hoeffding’s inequality and the union bound, we have for t ≥ K + 1,

Pr

(
|θ̂t,i − θi| >

√
2ασ2 log t

ni(t)

)

≤
t∑

s=1

Pr

(
|θ̂t,i − θi| >

√
2ασ2 log t

ni(t)

∣∣∣∣∣ni(t) = s

)

≤ 2t1−α .

Then, using α > 2,
∑n

t=K+1 E [dit(θ)I {U c
t }] can be bounded as

T∑

t=K+1

E [dit(θ)I {U c
t }] ≤ dmax(θ)

T∑

t=K+1

Pr(U c
t)

≤ dmax(θ)
T∑

t=K+1

2Kt1−α ≤ 2Kdmax(θ)

α− 2
. (3.13)

71

Next consider
∑T

t=K+1 E [dit(θ)I {Ut,Wt}]. If Ut and Wt hold, first we have

ni1(θ̂t)
≥ 8ασ2 log t

d2
i2(θ̂t)

(θ̂t)
,

and

θ̂t,i1(θ̂t)
− θi1(θ̂t)

≤
√

2ασ2 log t

ni1(θ̂t)
(t)
≤
di1(θ̂t)

(θ̂t)

2
≤ di(θ̂t)

2
(3.14)

for any i 6= i1(θ̂t). Similarly, for i 6= i1(θ̂t) we have

θi − θ̂t,i ≤

√
2ασ2 log t

ni(t)
≤ di(θ̂t)

2
. (3.15)

Combining (3.14) and (3.15) gives θi ≤ θi1(θ̂t)
for any i 6= i1(θ̂t), which

means i1(θ̂t) = i1(θ), hence

T∑

t=K+1

E [dit(θ)I {Ut,Wt}] = 0 . (3.16)

Consider the next term in (3.12),

T∑

t=K+1

E [dit(θ)I {Ut,W c
t , Yt}] ≤ dmax(θ)E

[
T∑

t=K+1

I {Ut,W c
t , Yt}

]
. (3.17)

To bound (3.17), first we prove two auxiliary results:

Proposition 26. Let K < t1 < t2. If
∑t2−1

s=t1
I {W c

s , Ys} ≥ K,

then mini∈[K] ni(t2) ≥ mini∈[K] ni(t1) + 1.

Proof. We prove the proposition by contradiction. Assume mini∈[K] ni(t2) =

mini∈[K] ni(t1). Then there exists a j such that nj(t1) = nj(t2) and nj(s) =

mini∈[K] ni(s) for all t1 ≤ s ≤ t2. Since
∑t2−1

s=t1
I {W c

s , Ys} ≥ K, there exist K

time instants t1 ≤ s1 < s2 < ... < sK ≤ t2−1 such that
{
W c
sk
, Ysk

}
happens for

1 ≤ k ≤ K. According to the algorithm, for each sk, there exists jk 6= j such

that jk ∈ Sisk and njk(sk) = nj(sk) = mini∈[K] ni(sk). Note that each action

appears at most once as such jk for 1 ≤ k ≤ K since njk(sk + 1) = njk(sk) + 1,

but there are only K−1 actions other than j, which means that such j cannot

exist. This proves the proposition.

72

Proposition 27.

T∑

t=K+1

I {W c
t , Yt} ≤ 1 + β

(
T∑

t=K+1

I {W c
t }

)
. (3.18)

Proof. According to the algorithm we have ne(t) =
∑t−1

s=K+1 I {W c
s } for t > K.

Now define

t′ = max {K + 1 ≤ t ≤ T : W c
t , Yt} .

If such t′ does not exist, then the left hand side of (3.18) becomes 0, and the

proposition holds. If such t′ exists, by Proposition 26,

min
i∈[K]

ni(t
′) ≥ min

i∈[K]
ni(K + 1) +

⌊
1

K

t′−1∑

t=K+1

I {W c
t , Yt}

⌋
≥ 1

K

t′−1∑

t=K+1

I {W c
t , Yt} .

Therefore,

T∑

t=K+1

I {W c
t , Yt} = 1 +

t′−1∑

t=K+1

I {W c
t , Yt} ≤ 1 +K min

i∈[K]
ni(t

′) < 1 + β(ne(t
′))

≤ 1 + β(ne(T)) ≤ 1 + β

(
T∑

t=K+1

I {W c
t }

)
.

Now we return to bounding the right hand side of (3.17). Using the above

proposition and the properties of β, we get

T∑

t=K+1

I {Ut,W c
t , Yt}

≤
T∑

t=K+1

I {W c
t , Yt} ≤ 1 + β

(
T∑

t=K+1

I {W c
t }

)

≤ 1 + β

(
T∑

t=K+1

I {U c
t }+ I {Ut,W c

t , Yt}+ I {Ut,W c
t , Y

c
t , V

c
t }+ I {Ut,W c

t , Y
c
t , Vt}

)

≤ 1 +
1

2

T∑

t=K+1

(I {U c
t }+ I {Ut,W c

t , Yt}+ I {Ut,W c
t , Y

c
t , V

c
t })

+ β

(
n∑

t=K+1

I {Ut,W c
t , Y

c
t , Vt}

)
.

73

Reordering gives

T∑

t=K+1

I {Ut,W c
t , Yt}

≤ 2 +
T∑

t=K+1

I {U c
t }+

T∑

t=K+1

I {Ut,W c
t , Y

c
t , V

c
t }+ 2β

(
n∑

t=K+1

I {Ut,W c
t , Y

c
t , Vt}

)
,

and, by (3.13), we get

T∑

t=K+1

E [dit(θ)I {Ut,W c
t , Yt}] ≤ dmax(θ)E

[
T∑

t=K+1

I {Ut,W c
t , Yt}

]

≤ 2dmax(θ) +
2Kdmax(θ)

α− 2
+ dmax(θ)

T∑

t=K+1

E [I {Ut,W c
t , Y

c
t , V

c
t }]

+ 2dmax(θ)E

[
β

(
n∑

t=K+1

I {Ut,W c
t , Y

c
t , Vt}

)]
. (3.19)

To bound
∑T

t=K+1 E [I {Ut,W c
t , Y

c
t , V

c
t }], we first introduce two lemmas

based on Combes and Proutiere (2014):

Lemma 28 (Lemma 4.3 of Combes and Proutiere (2014)). Let {Zt}t∈N+ be

a sequence of independent zero-mean normal random variables with variance

σ2. Let Ft denote the σ-algebra generated by {Zs}s≤t and define the filtration

F = (Ft)t∈N+. Consider r, n0 ∈ N+ and T ≥ n0. Define Yt =
∑t−1

s=n0
BsZs

where Bt ∈ {0, 1} is an Ft−1-measurable random variable. Furthermore, let

n(t) =
∑t−1

s=n0
Bs and let φ be a stopping time with respect to the filtration F ,

which satisfies either n(φ) ≥ r or φ = T + 1. Then, for any ε > 0 we have

Pr (|Yφ| > n(φ)ε, φ ≤ T) ≤ 2 exp

(
− rε

2

2σ2

)
.

Lemma 29. Define Ft the σ-algebra generated by {Xi,s}s∈[t],i∈[K]. Let Λ ⊂

[1, T] ∩ N be a set of (random) time instants. Assume there exists a sequence

of (random) sets {Λs}0≤s≤T such that (i) Λ ⊂ ∪0≤s≤TΛs, (ii) for all 0 ≤ s ≤ T ,

|Λs| ≤ 1, (iii) for all 0 ≤ s ≤ T , if t ∈ Λs then ni(t) ≥ β(s)/K, and (iv) the

event {t ∈ Λs} is Ft measurable. Then for any ε > 0 and i ∈ [K]:

E

[
T∑

t=1

I
{
t ∈ Λ, |θ̂t,i − θi| > ε

}]
≤

T∑

s=0

2 exp

(
−β(s)ε2

2Kσ2

)
.

74

Proof of Lemma 29. We adapt the proof of Lemma 2.2 from Combes and

Proutiere (2014). For 0 ≤ s ≤ T , define φs = t if Λs = {t} or φs = T + 1 if

Λs = ∅. Then

E

[
T∑

t=1

I
{
t ∈ Λ, |θ̂t,i − θi| > ε

}]
≤ E

[
T∑

s=0

I
{
φs ≤ T, |θ̂φs,i − θi| > ε

}]

=
T∑

s=0

Pr
(
φs ≤ T, |θ̂φs,i − θi| > ε

)
. (3.20)

Since φs can be viewed as an F -stopping time and satisfies either ni(φs) ≥

dβ(s)/Ke or φs = T + 1, if dβ(s)/Ke ≥ 1 then applying Lemma 28 gives

Pr
(
φs ≤ T, |θ̂φs,i − θi| > ε

)
≤ 2 exp

(
−dβ(s)/Keε2

2σ2

)
≤ 2 exp

(
−β(s)ε2

2Kσ2

)
.

If dβ(s)/Ke = 0 then Pr
(
φs ≤ T, |θ̂φs,i − θi| > ε

)
< 2 = 2 exp

(
−β(s)ε2

2Kσ2

)
still

holds. Now proceeding from (3.20) we can get the result of Lemma 29.

Now we define Λ = {t : K + 1 ≤ t ≤ T, Ut,W
c
t , Y

c
t }, and Λs = {t : K + 1 ≤

t ≤ T, Ut,W
c
t , ne(t) = s,mini∈[K] ni(t) ≥ β(s)/K}. It can be verified that Λs

satisfies the conditions in Lemma 29: (i) If t ∈ Λ then there must be some

0 ≤ s ≤ T such that ne(t) = s and thus t ∈ Λs. (ii) If t ∈ Λs then for t′ > t,

ne(t
′) ≥ ne(t + 1) = ne(t) + 1 = s + 1, so t′ /∈ Λs. Condition (iii) and (iv) are

also satisfied from the definition of Λs.

Then

T∑

t=K+1

E [I {Ut,W c
t , Y

c
t , V

c
t }] =

T∑

t=K+1

E [I {t ∈ Λ, V c
t }]

≤
K∑

i=1

T∑

t=K+1

E
[
I
{
t ∈ Λ, |θ̂t,i − θi| > ε

}]
≤ 2K

T∑

s=0

exp

(
−β(s)ε2

2Kσ2

)
. (3.21)

Finally we will upper bound
∑n

t=K+1 dit(θ)I {Ut,W c
t , Y

c
t , Vt}.

Recall that in the algorithm, if W c
t and Y c

t happens, some it satisfying

Ni(t) < ci(θ̂t)4α log t is played. Such it must exist because otherwise Ni(t)
4α log t

≥

ci(θ̂t)4α log t holds for any i ∈ [K] and thus Wt =
{

N(t)
4α log t

∈ C(θ̂t)
}

happens,

which causes contradiction.

75

Define

Θ(θ, ε) = {λ ∈ Θ : |λi − θi| ≤ ε for all i ∈ [K]} ,

and

ci(θ, ε) = sup
λ∈Θ(θ,ε)

ci(λ) .

Let Ti be the maximum t ≤ T such that it = i and I {Ut,W c
t , Y

c
t , Vt} = 1.

Then

Ni(Ti) =

Ti−1∑

s=1

I {is = i} ≤ ci(θ̂Ti)4α log Ti ≤ ci(θ, ε)4α log T .

Thus

T∑

t=K+1

I {it = i, Ut,W
c
t , Y

c
t , Vt} ≤ ci(θ, ε)4α log T + 1 .

So we have

T∑

t=K+1

dit(θ)I {Ut,W c
t , Y

c
t , Vt} ≤ 4α log T

∑

i∈[K]

ci(θ, ε)di(θ) +
∑

i∈[K]

di(θ) , (3.22)

and

T∑

t=K+1

I {Ut,W c
t , Y

c
t , Vt} ≤ 4α log T

∑

i∈[K]

ci(θ, ε) +K . (3.23)

Now plugging (3.23) (3.21) into (3.19) and plugging (3.13) (3.16) (3.19)

(3.21) (3.22) into (3.12) we get

RT (θ) ≤
(

2K + 2 +
4K

α− 2

)
dmax(θ) + 4Kdmax(θ)

T∑

s=0

exp

(
−β(s)ε2

2Kσ2

)

+ 2dmax(θ)β

4α log T

∑

i∈[K]

ci(θ, ε) +K

+ 4α log T

∑

i∈[K]

ci(θ, ε)di(θ) .

. .

Further specifying β(n) and using the continuity of c(θ) around θ, it imme-

diately follows that Algorithm 5 achieves asymptotically optimal performance:

76

Corollary 30. Suppose the conditions of Theorem 25 hold. Assume, further-

more, that β(n) satisfies β(n) = o(n) and
∑∞

s=0 exp
(
−β(s)ε2

2Kσ2

)
< ∞ for any

ε > 0, then for any θ such that c(θ) is unique,

lim sup
T→∞

RT (θ)/ log T ≤ 4α inf
c∈Cθ
〈c, d(θ)〉 .

Note that any β(n) = anb with a ∈ (0, 1
2
], b ∈ (0, 1) satisfies the re-

quirements in Theorem 25 and Corollary 30. Also note that the algorithms

presented in Caron et al. (2012); Buccapatnam et al. (2014) do not achieve

this asymptotic bound.

3.3.2 A Minimax Optimal Algorithm

Next we present an algorithm achieving the minimax bounds. For any A,A′ ⊂

[K], let c(A,A′) = argmaxc∈∆|A| mini∈A′
∑

j:i∈Sj cj (ties are broken arbitrarily)

and m(A,A′) = mini∈A′
∑

j:i∈Sj cj(A,A
′). For any A ⊂ [K] and |A| ≥ 2,

let AS = {i ∈ A : ∃j ∈ A, i ∈ Sj} and AW = A − AS . Furthermore,

let gr,i(δ) = σ
√

2 log(8K2r3/δ)
ni(r)

where ni(r) =
∑r−1

s=1 is,i and θ̂r,i be the empirical

estimate of θi based on first ni(r) observations (i.e., the average of the samples).

The algorithm is presented in Algorithm 6. It follows a successive elimi-

nation process: it explores all possibly optimal actions (called “good actions”

later) based on some confidence intervals until only one action remains. While

doing exploration, the algorithm first tries to explore the good actions by only

using good ones. However, due to weak observability, some good actions might

have to be explored by actions that have already been eliminated. To control

this exploration-exploitation trade off, we use a sublinear function γ to control

the exploration of weakly observable actions.

In the following we present high-probability bounds on the performance of

the algorithm, so, with a slight abuse of notation, RT (θ) will denote the regret

without expectation in the rest of this section.

77

Algorithm 6

1: Inputs: Σ, δ.
2: Set t1 = 0, A1 = [K].
3: for r = 1, 2, ... do
4: Let αr = min1≤s≤r,AWs 6=∅m([K] , AWs) and γ(r) = (σαrtr/D)2/3. (Define

αr = 1 if AWs = ∅ for all 1 ≤ s ≤ r.)
5: if AWr 6= ∅ and mini∈AWr ni(r) < mini∈ASr ni(r) and mini∈AWr ni(r) < γ(r)

then
6: Set cr = c([K] , AWr).
7: else
8: Set cr = c(Ar, A

S
r).

9: end if
10: Play ir = dcr · ‖cr‖0e and set tr+1 ← tr + ‖ir‖1.

11: Ar+1 ← {i ∈ Ar : θ̂r+1,i + gr+1,i(δ) ≥ maxj∈Ar θ̂r+1,j − gr+1,j(δ)}.
12: if |Ar+1| = 1 then
13: Play the only action in the remaining rounds.
14: end if
15: end for

Theorem 31. For any δ ∈ (0, 1) and any θ ∈ Θ,

RT (θ) ≤ (ρ(Σ)D)1/3(σT)2/3 · 7
√

6 log(2KT/δ) + 125σ2K3/D + 13K3D

with probability at least 1− δ if Σ is weakly observable, while

RT (θ) ≤ 2KD + 80σ

√
κ(Σ)T · 6 logK log

2KT

δ

with probability at least 1− δ if Σ is strongly observable.

Proof of Theorem 31. For every r > 0, define the events

Ur =
{
|θ̂r,i − θi| ≤ gr,i(δ) for all i ∈ [K]

}
.

Then, by Hoeffding’s inequality and union bound, we have

Pr (∩r≥2Ur) ≥ 1− δ .

Next we will upper bound the regret based on the fact that Ur holds for

all r ≥ 2. Define rT = max{r : tt < T, |Ar| ≥ 2}, the event

Vr =

{
AWr 6= ∅, min

i∈AWr
ni(r) < min{min

i∈ASr
ni(r), γ(r)}

}

78

and its complement V c
r . Then consider the regret:

RT (θ) ≤
rT∑

r=1

I {Vr} 〈ir, d(θ)〉+

rT∑

r=1

I {V c
r } 〈ir, d(θ)〉

≤
rT∑

r=1

I {Vr} ‖ir‖1D +

rT∑

r=1

I {V c
r } ‖ir‖1 max

i∈Ar
di(θ) . (3.24)

We upper bound the two terms in (3.24) separately. Before proceeding, we

introduce the following proposition which lower bounds ni(r) for i ∈ AWr .

Proposition 32. For any i, r such that i ∈ AWr ,

ni(r) ≥
αr−1

2

r−1∑

s=1

I {Vs} ‖is‖1 − (βr − 1)K , (3.25)

where βr =
∣∣⋃

1≤s≤r A
W
s

∣∣.

Proof of Proposition 32. The proof is done by induction. Let Wr denote the

event that for any 1 ≤ s ≤ r and any i ∈ AWs , (3.25) holds. W1 holds because

AW1 = ∅. Now we assume Wr holds and consider Wr+1.

If AWr+1 = ∅, then Wr+1 holds. If AWr+1 6= ∅, for i ∈ AWr+1, consider ni(r+1)

in different cases:

If i ∈ AWr , then ni(r) ≥ αr−1

2

∑r−1
s=1 I {Vs} ‖is‖1 − (βr − 1)K. Recall that

αr = min1≤s≤r,AWs 6=∅m([K] , AWs). So we have

ni(r + 1) ≥ ni(r) + I {Vr} ‖cr‖0 αr ≥
αr
2

r∑

s=1

I {Vs} ‖is‖1 − (βr+1 − 1)K ,

where we use the fact that αr is non-increasing, βr is non-decreasing as well

as

‖ir‖1 = ‖dcr · ‖cr‖0e‖1
≤ ‖cr‖0 + ‖cr‖0 · ‖cr‖1 = 2 ‖cr‖0 . (3.26)

If i /∈ AWr , then i ∈ ASs for all 1 ≤ s ≤ r and thus βr+1 ≥ βr + 1. Let

r′ = max{s ≤ r : Vs}. If such r′ does not exist, then

ni(r + 1) ≥ 0 ≥ αr
2

r∑

s=1

I {Vs} ‖is‖1 − (βr+1 − 1)K .

79

If such r′ exists

ni(r + 1) ≥ ni(r
′) > min

j∈AW
r′
nj(r

′) ≥ αr′−1

2

r′−1∑

s=1

I {Vs} ‖is‖1 − (βr′ − 1)K

≥ αr
2

r∑

s=1

I {Vs} ‖is‖1 −
αr
2
‖ir′‖1 − (βr′ − 1)K

≥ αr
2

r∑

s=1

I {Vs} ‖is‖1 − βr′K

≥ αr
2

r∑

s=1

I {Vs} ‖is‖1 − (βr+1 − 1)K ,

where the facts αr ≤ 1, ‖ir′‖1 ≤ 2K and βr′ ≤ βr+1 − 1 are used.

Now we have proved that Wr+1 holds based on the assumption of Wr, hence

Wr holds for any r, which gives the result of Proposition 32.

Based on Proposition 32,
∑r

s=1 I {Vs} ‖is‖1 can be upper bounded by the

following fact:

Proposition 33. For any r ≥ 1,
∑r

s=1 I {Vs} ‖is‖1 ≤
2γ(r)+2Kβr

αr
.

Proof of Proposition 33. Let r′ = max{s ≤ r : Vs}. Then

γ(r′) > min
i∈AW

r′
ni(r

′) ≥ αr′−1

2

r′−1∑

s=1

I {Vs} ‖is‖1 − (βr′ − 1)K .

Hence

r∑

s=1

I {Vs} ‖is‖1 ≤
r′−1∑

s=1

I {Vs} ‖is‖1 + ‖ir′‖1 ≤
2γ(r′) + 2K(βr′ − 1)

αr′
+ 2K

≤ 2γ(r′) + 2Kβr′

αr′
.

Since αr is non-increasing, βr is non-decreasing and γ(r)/αr = α
−1/3
r (σtr/D)2/3

is non-decreasing, we have
∑r

s=1 I {Vs} ‖is‖1 ≤
2γ(r)+2Kβr

αr
.

Now we are ready to upper bound the first term in (3.24):

rT∑

r=1

I {Vr} ‖ir‖1D ≤
2γ(rT) + 2KβrT

αrT
D = 2α−1/3

rT
D1/3(σT)2/3 + 2KD

βrT
αrT

.

(3.27)

80

Next consider the second term in (3.24):
∑rT

r=1 I {V c
r } ‖ir‖1 maxi∈Ar di(θ).

Given Ur holds for all r we know that i1(θ) is never eliminated. Then for

any i ∈ Ar, we have |θ̂r,i − θi| ≤ gr,i(δ) and θ̂r,i + gr,i(δ) ≥ θ̂i1(θ) − gr,i1(θ)(δ).

Therefore,

di(θ) ≤ min
{
D, 2gr,i(δ) + 2gr,i1(θ)(δ)

}

≤ min

{
D, 4σ

√
6 log

2KT

δ

(
min
i∈Ar

ni(r)

)−1/2
}
.

So

rT∑

r=1

I {V c
r } ‖ir‖1 max

i∈Ar
di(θ) ≤

rT∑

r=1

I {V c
r } ‖ir‖1 min

{
D,C(min

i∈Ar
ni(r))

−1/2

}
,

(3.28)

where C = 4σ
√

6 log 2KT
δ

.

The next step is to lower bound mini∈Ar ni(r) when V c
r happens. Define

ηmin = minA∈[K],|A|≥2 m(A,AS). For i ∈ ASr ,

ni(r) ≥
r−1∑

s=1

I {V c
s } ‖cs‖0m(As, A

S
s) ≥ ηmin

2

r−1∑

s=1

I {V c
s } ‖is‖1 . (3.29)

For i ∈ AWr , since V c
r happens and AWr 6= ∅, we have

ni(r) ≥ min{min
i∈ASr

ni(r), γ(r)} ≥ min

{
ηmin

2

r−1∑

s=1

I {V c
s } ‖is‖1 , γ(r)

}
.

By Proposition 33,

ηmin

2

r−1∑

s=1

I {V c
s } ‖is‖1 ≥

1

2K

(
tr −

r∑

s=1

I {Vs} ‖is‖1

)

≥ 1

2K

(
tr −

2γ(r) + 2Kβr
αr

)

=
1

2K

(
tr − 2α−1/3

r

(
σtr
D

)2/3

− 2Kβr/αr

)

≥ 1

2K
tr −

(
σtr
D

)2/3

−K2 ,

where we used αr, ηmin ≥ 1/K and βr ≤ K.

81

For tr ≥ 125σ2

D2 K3 + 10K3, we have 4
5
tr ≥ 4K

(
σtr
D

)2/3
and 1

5
tr ≥ 2K3, so

ηmin

2

r−1∑

s=1

I {V c
s } ‖is‖1 ≥

1

2K
tr −

(
σtr
D

)2/3

−K2

≥ 2

(
σtr
D

)2/3

+K2 −
(
σtr
D

)2/3

−K2

=

(
σtr
D

)2/3

≥
(
σαrtr
D

)2/3

= γ(r) .

So we have proved that for any r ≤ rT such that tr ≥ T0 = 125σ2

D2 K3 +10K3

and V c
r happens, mini∈Ar ni(r) ≥ γ(r) ≥ (σαrT tr/D)2/3. Therefore, following

(3.28) gives

rT∑

r=1

I {V c
r } ‖ir‖1 max

i∈Ar
di(θ)

≤
rT∑

r=1

I {V c
r } ‖ir‖1 min

{
D,C(min

i∈Ar
ni(r))

−1/2

}

≤
∑

r≥1:tr<T0

‖ir‖1D +
∑

r≤rT :tr≥T0

‖ir‖1C
(σαrT

D

)−1/3

t−1/3
r

≤ (T0 + 2K)D + C
(σαrT

D

)−1/3 ∑

r≤rT :tr≥T0

(tr+1 − tr)(tr+1 − 2K)−1/3

≤ (T0 + 2K)D + C
(σαrT

D

)−1/3
∫ trT+1

T0

(x− 2K)−1/3dx

≤ (T0 + 2K)D + C
(σαrT

D

)−1/3
∫ trT

T0−2K

x−1/3dx

≤ (T0 + 2K)D +
3

2
C
(σαrT

D

)−1/3

T 2/3

=
125σ2K3

D
+ (10K3 + 2K)D + α−1/3

rT
D1/3(σT)2/3 · 6

√
6 log

2KT

δ
. (3.30)

Now plugging (3.27) and (3.30) into (3.24) gives

RT (θ) ≤ α−1/3
rT

D1/3(σT)2/3 · 7
√

6 log
2KT

δ
+

125σ2K3

D
+ 13K3D .

If Σ is strongly observable, then AWr is always empty and V c
r always hap-

pens. According to (3.24) (3.28) and (3.29) we have

RT (θ) ≤
rT∑

r=1

‖ir‖1 max
i∈Ar

di(θ)

82

≤
rT∑

r=1

(tr+1 − tr) min

{
D,C

(ηmin

2

)−1/2

t−1/2
r

}

≤ 2KD + C
(ηmin

2

)−1/2
∫ trT

0

x−1/2dx

≤ 2KD + 8σ

√
T

ηmin

· 12 log
2KT

δ
.

To finish the proof, it suffices to show that 1
αrT

≤ ρ(Σ) and 1
ηmin

≤

κ(Σ)50 logK, which is based on the following fact:

Proposition 34. For any A,A′ ⊂ [K] Let ρLP(A,A′) denote the minimum

fractional cover number from A to A′, that is

ρLP(A,A′) = min
b∈[0,∞)A

∑

i∈A

bi

s.t.
∑

i:j∈Si

bi ≥ 1 for all j ∈ A′ .

Then m(A,A′) = 1
ρLP(A,A′) .

Proof of Proposition 34. Recall that

m(A,A′) = max
c∈∆A

min
i∈A′

∑

j:i∈Sj

cj

= max
c∈∆A,a

a s.t.
∑

i:j∈Si

ci ≥ a for all j ∈ A′ .

Let b = c/a, then

m(A,A′) = max
b∈[0,∞)A,a

a s.t.
∑

i:j∈Si

bi ≥ 1 for all j ∈ A′ and
∑

i∈A

bi =
1

a

= max
b∈[0,∞)A

1∑
i∈A bi

s.t.
∑

i:j∈Si

bi ≥ 1 for allj ∈ A′

=
1

ρLP(A,A′)
.

To lower bound αrT , let ρ(A,A′) be the integer version of ρLP(A,A′) by

restricting b ∈ NA. Then we have ρ(Σ) = ρ([K] ,W(Σ)) and

αrT ≥ m([K] ,W(Σ)) =
1

ρLP([K] ,W(Σ))
≥ 1

ρ(Σ)
,

83

where we used the fact that AWr ⊂ W(Σ) for any r ≤ rT .

To lower bound ηmin, we use

ηmin = min
A∈[K],|A|≥2

m(A,AS) = min
A∈[K],|A|≥2

m(A,A) =
1

maxA∈[K],|A|≥2 ρLP(A,A)

(AS = A for strongly observable Σ), thus

max
A∈[K],|A|≥2

ρ(A,A) ≥ 1

ηmin

.

For any A ∈ [K] , |A| ≥ 2, let ΣA be the subgraph of Σ on A. We apply

Lemma 23 on ΣA with the subset W = A. Then the lemma states that A

contains an independent set U of size at least ρ(A,A)
50 log |A| . Since an independent

set of ΣA is also an independent set of Σ, for each subset A there exists an

independent set of Σ with size at least ρ(A,A)
50 log |A| . So the independence number

κ(Σ) ≥ max
A∈[K],|A|≥2

ρ(A,A)

50 log |A|
≥ 1

50 logK
max

A∈[K],|A|≥2
ρ(A,A) ≥ 1

ηmin50 logK
,

which indicates 1
ηmin
≤ κ(Σ)50 logK.

. .

Theorem 35 (Problem-dependent upper bound). For any δ ∈ (0, 1) and any

θ ∈ Θ such that the optimal action is unique, with probability at least 1− δ,

RT (θ) ≤ 1603KDσ2

d2
min(θ)

(log(2KT/δ))3/2 + 14K3D + 125σ2K3/D

+ 15
(
KDσ2

)1/3 (
125σ2/D2 + 10

)
K2 (log(2KT/δ))1/2 .

Proof of Theorem 35. Similarly to the proof of Theorem 35, we define high

probability events

Ur =
{
|θ̂r,i − θi| ≤ gr,i(δ) for all i ∈ [K]

}
.

and upper bound the regret based on the fact that for all r ≥ 2, Ur holds. The

rest of the proof will be based on upper bounding the number of round before

all sub-optimal actions are eliminated.

84

Define rT = max{r : tt < T, |Ar| ≥ 2}, event

Vr =

{
AWr 6= ∅, min

i∈AWr
ni(r) < min{min

i∈ASr
ni(r), γ(r)}

}

and V c
r be its complement.

For any r ≤ rT and any i ∈ Ar, i 6= i1(θ), we have 2gr,i(δ) + 2gr,i1(θ)(δ) ≥

di(θ) ≥ dmin(θ), where dmin(θ) denotes di2(θ)(θ). From gr,i(δ) = σ
√

2 log(8K2r3/δ)
ni(r)

we get

dmin(θ) ≤ 2σ
√

2 log(8K2r3/δ)

(
1√
ni(r)

+
1√

ni1(θ)(r)

)
≤ Cr

(
min
i∈Ar

ni(r)

)−1/2

,

where Cr = 4σ
√

6 log 2Kr
δ

, and thus

min
i∈Ar

ni(r) ≤
C2
r

d2
min(θ)

. (3.31)

Then consider the regret:

RT (θ) ≤
rT∑

r=1

I {Vr} 〈ir, d(θ)〉+

rT∑

r=1

I {V c
r } 〈ir, d(θ)〉

≤
rV∑

r=1

I {Vr} ‖ir‖1 dmax(θ) +

rW∑

r=1

I {V c
r } ‖ir‖1 max

i∈Ar
di(θ) . (3.32)

where rV = max{r ≤ rT : Vr} and rW = max{r ≤ rT : V c
r }.

Since mini∈AWrV
ni(rV) < mini∈ASrV

ni(rV) we have

min
i∈ArV

ni(rV) = min
i∈AWrV

ni(rV) ≥ 1

2ρ+(Σ)

rV −1∑

s=1

I {Vs} ‖is‖1 −K
2

by applying Proposition 32, where ρ+(Σ) = max{ρ(Σ), 1}. Then we can upper

bound the first term in (3.32) by

rV∑

r=1

I {Vr} ‖ir‖1 ≤
2ρ+(Σ)C2

rV

d2
min(θ)

+ 2ρ+(Σ)K2 + 2K . (3.33)

Regarding the second term in (3.32), recall that for any r ≤ rT such that tr ≥

T0 = 125σ2

D2 K3+10K3 and V c
r happens, mini∈Ar ni(r) ≥ γ(r) ≥ (σαrT tr/D)2/3 ≥(

σtr
ρ+(Σ)D

)2/3

.

85

Using the fact that maxi∈Ar di(θ) ≤ min
{
dmax(θ), Cr (mini∈Ar ni(r))

−1/2
}

gives

rW∑

r=1

I {V c
r } ‖ir‖1 max

i∈Ar
di(θ)

≤
rW∑

r=1

I {V c
r } ‖ir‖1 min

{
dmax(θ), Cr(min

i∈Ar
ni(r))

−1/2

}

≤
∑

r≥1:tr<T0

‖ir‖1 dmax(θ) +
∑

r≤rW :tr≥T0

‖ir‖1CrW

(
σ

ρ+(Σ)D

)−1/3

t−1/3
r

≤ (T0 + 2K)dmax(θ) + CrW

(
σ

ρ+(Σ)D

)−1/3 ∑

r≤rW :tr≥T0

(tr+1 − tr)(tr+1 − 2K)−1/3

≤ (T0 + 2K)dmax(θ) + CrW

(
σ

ρ+(Σ)D

)−1/3 ∫ trW+1

T0

(x− 2K)−1/3dx

≤ (T0 + 2K)dmax(θ) + CrW

(
σ

ρ+(Σ)D

)−1/3 ∫ trW

T0−2K

x−1/3dx

≤ (T0 + 2K)dmax(θ) +
3

2
CrW

(
σ

ρ+(Σ)D

)−1/3

t2/3rW
. (3.34)

Now we upper bound trW . If trW ≥ T0 then
C2
rW

d2min(θ)
≥ mini∈ArW ni(rW) ≥

(
σtrW
ρ+(Σ)D

)2/3

. Hence

t2/3rW
≤
(

σ

ρ+(Σ)D

)−2/3 C2
rW

d2
min(θ)

+ T
2/3
0 . (3.35)

Combining (3.32) (3.33) (3.34) and (3.35) with CrW ≤ CrT gives

RT (θ) ≤ 1603ρ+(Σ)Dσ2

d2
min(θ)

(
log

2KrT
δ

)3/2

+ 14K3D +
125σ2K3

D

+ 15
(
ρ+(Σ)Dσ2

)1/3
(

125σ2

D2
+ 10

)
K2

(
log

2KrT
δ

)1/2

. (3.36)

Applying rT ≤ T and ρ+(Σ) ≤ K gives the result of Theorem 35.

Note that using rT ≤ T here is only for simplicity, actually rT can be upper

bounded by some constant by more careful analysis. This is because, according

to Proposition 33,
∑rT

s=1 I {Vs} ‖is‖1 = O
(
t
2/3
rT

)
, and trW = O

(
(log trT)3/2

)
, we

have

trT ≤ trW +

rT∑

s=1

I {Vs} ‖is‖1 = O
(
t2/3rT

)
+O

(
(log trT)3/2

)
,

86

which mean trT must be upper bounded by some constant independent with

T .

. .

Remark 36. Picking δ = 1/T gives an O(log3/2 T) upper bound on the ex-

pected regret.

3.4 Summary

We considered a novel partial-monitoring setup with Gaussian side observa-

tions, which generalizes the recently introduced setting of graph-structured

feedback, allowing finer quantification of the observed information from one

action to another. We provided non-asymptotic problem-dependent lower

bounds that imply existing asymptotic problem-dependent and non-asymptotic

minimax lower bounds (up to some constant factors) beyond the full infor-

mation case. We also provided an algorithm that achieves the asymptotic

problem-dependent lower bound (up to some universal constants) and another

algorithm that achieves the minimax bounds under both weak and strong ob-

servability.

However, we think this is just the beginning. For example, we currently

have no algorithm that achieves both the problem dependent and the minimax

lower bounds at the same time. Also, our upper bounds only correspond to

the graph-structured feedback case. It is of great interest to go beyond the

weak/strong observability in characterizing the hardness of the problem, and

provide algorithms that can adapt to any correspondence between the mean

payoffs and the variances (the hardness is that one needs to identify suboptimal

actions with good information/cost trade-off).

87

Chapter 4

Conservative Bandits

In this chapter we present our work on the conservative bandit problem (Wu

et al., 2016). Our contributions are as follows: (i) Starting from multi-armed

bandits, we first formulate what we call the family of “conservative bandit

problems”. As expected in these problems, the goal is to design learning algo-

rithms that minimize regret under the additional constraint that at any given

point in time, the total reward (return) must stay above a fixed percentage of

the return of a fixed default arm, i.e., the return constraint must hold uniformly

in time. The variants differ in terms of how stringent the constraint is (i.e.,

should the constraint hold in expectation, or with high probability?), whether

the bandit problem is stochastic or adversarial, and whether the default arm’s

payoff is known before learning starts. (ii) We analyze the naive build-bud-

get-then-learn strategy described above (which we call BudgetFirst) and design

a significantly better alternative for stochastic bandits that switches between

using the default arm and learning using a version of UCB in a “smoother”

fashion. (iii) We prove that the new algorithm, which we call Conservative

UCB, meets the uniform return constraint (in various senses), while it can

achieve significantly less regret than BudgetFirst. In particular, while Bud-

getFirst is shown to pay a multiplicative penalty in the regret for maintaining

the return constraint, Conservative UCB only pays an additive penalty. We

provide both high probability and expectation bounds, consider both high

probability and expectation constraints on the return, and also consider the

case when the payoff of the default arm is initially unknown. (iv) We also

88

prove a lower bound on the best regret given the constraint and as a result show

that the additive penalty is unavoidable; thus Conservative UCB achieves the

optimal regret in a worst-case sense. While Unbalanced MOSS of Lattimore

(2015a), when specialized to our setting, also achieves the optimal regret (as

follows from the analysis of Lattimore (2015a)), as mentioned earlier it does

not maintain the constraint uniformly in time (it will explore too much at the

beginning of time); it also relies heavily on the knowledge of the mean payoff

of the default strategy. (v) We also consider the adversarial setting where

we design an algorithm similar to Conservative UCB: the algorithm uses an

underlying “base” adversarial bandit strategy when it finds that the return so

far is sufficiently higher than the minimum required return. We prove that

the resulting method indeed maintains the return constraint uniformly in time

and we also prove a high-probability bound on its regret. We find, however,

that the additive penalty in this case is higher than in the stochastic case.

Here, the Exp3-γ algorithm of Lattimore (2015a) is an alternative, but again,

this algorithm is not able to maintain the return constraint uniformly in time.

(vi) The theoretical analysis is complemented by synthetic experiments on

simple bandit problems whose purpose is to validate that the newly designed

algorithm is reasonable and to show that the algorithms’ behave as dictated

by the theory developed. We also compare our method to Unbalanced MOSS

to provide a perspective to see how much is lost due to maintaining the return

constraint uniformly over time.

4.1 Conservative Multi-Armed Bandits

The multi-armed bandit problem is a sequential decision-making task in which

a learning agent repeatedly chooses an action (called an arm) and receives a

reward corresponding to that action. We assume there are K + 1 arms and

denote the arm chosen by the agent in round t ∈ {1, 2, . . . } by It ∈ {0, . . . , K}.

There is a reward Xt,i associated with each arm i at each round t and the agent

receives the reward corresponding to its chosen arm, Xt,It . The agent does not

observe the other rewards Xt,j (j 6= It).

89

The learning performance of an agent over a time horizon n is usually

measured by its regret, which is the difference between its reward and what it

could have achieved by consistently choosing the single best arm in hindsight:

Rn = max
i∈{0,...,K}

n∑

t=1

Xt,i −Xt,It . (4.1)

An agent is failing to learn unless its regret grows sub-linearly: Rn ∈ o(n);

good agents achieve Rn ∈ O(
√
n) or even Rn ∈ O(log n).

We also use the notation Ti(n) =
∑n

t=1 1{It = i} for the number of times

the agent chooses arm i in the first n time steps.

4.1.1 Conservative Exploration

Let arm 0 correspond to the conservative default action with the other arms

1, . . . , K being the alternatives to be explored. We want to be able to choose

some α > 0 and constrain the learner to earn at least a 1 − α fraction of the

reward from simply playing arm 0:

t∑

s=1

Xs,Is ≥ (1− α)
t∑

s=1

Xs,0 for all t ∈ {1, . . . , n} . (4.2)

It should be clear that small values of α force the learner to be highly conser-

vative, whereas larger α correspond to a weaker constraint.

We introduce a quantity Zn, called the budget, which quantifies how close

the constraint (4.2) is to being violated:

Zt =
t∑

s=1

Xs,Is − (1− α)Xs,0; (4.3)

the constraint is satisfied if and only if Zt ≥ 0 for all t ∈ {1, . . . , n}. Note that

the constraints must hold uniformly in time.

Our objective is to design algorithms that minimize the regret (4.1) while

simultaneously satisfying the constraint (4.2). In the following sections, we

will consider two variants of multi-armed bandits: the stochastic setting in

Section 4.2 and the adversarial setting in Section 4.3. In each case we will

design algorithms that satisfy different versions of the constraint and give

regret guarantees.

90

Cumulative reward

Roundst− 1 t

Cons
tra

int:
(1− α

)µ0t

Defa
ul
t a

ct
ion

: µ
0
t

Fo
llo

wi
ng

de
fau

lt
ac
tio

n

Unsafe action

Safe action

Z̃t−1

Budget

Z̃t > 0

Z̃t < 0

Figure 4.1: Choosing the default arm increases the budget. Then it is safe
to explore a non-default arm if it cannot violate the constraint (i.e. make the
budget negative).

One may wonder: what if we only care about Zn ≥ 0 instead of Zt ≥ 0

for all t. Although our algorithms are designed for satisfying the anytime

constraint on Zt our lower bound, which is based on Zn ≥ 0 only, shows that

in the stochastic setting we cannot improve the regret guarantee even if we

only want to satisfy the overall constraint Zn ≥ 0.

4.2 The Stochastic Setting

In the stochastic multi-armed bandit setting each arm i and round t has a

stochastic reward Xt,i = µi + ηt,i, where µi ∈ [0, 1] is the expected reward of

arm i and the ηt,i are independent random noise variables that we assume have

1-subgaussian distributions. We denote the expected reward of the optimal

arm by µ∗ = maxi µi and the gap between it and the expected reward of the

ith arm by ∆i = µ∗ − µi.

The regret Rn is now a random variable. We can bound it in expectation,

91

of course, but we are often more interested in high-probability bounds on the

weaker notion of pseudo-regret:

R̃n = nµ∗ −
n∑

t=1

µIt =
K∑

i=0

Ti(n)∆i, (4.4)

in which the noise in the arms’ rewards is ignored and the randomness arises

from the agent’s choice of arm. The regret Rn and the pseudo-regret R̃n are

equal in expectation. High-probability bounds for the latter, however, can

capture the risk of exploration without being dominated by the variance in

the arms’ rewards.

We use the notation µ̂i(n) = 1
Ti(n)

∑n
t=1 1{It = i}Xt,i for the empirical

mean of the rewards from arm i observed by the agent in the first n rounds. If

Ti(n) = 0 then we define µ̂i(n) = 0. The algorithms for the stochastic setting

will estimate the µi by µ̂i and will construct and act based on high-probability

confidence intervals for the estimates.

4.2.1 The Budget Constraint

Just as we substituted regret with pseudo-regret, in the stochastic setting we

will use the following form of the constraint (4.2):

t∑

s=1

µIs ≥ (1− α)µ0t for all t ∈ {1, . . . , n} ; (4.5)

the budget then becomes

Z̃t =
t∑

s=1

µIs − (1− α)tµ0 . (4.6)

The default arm is always safe to play because it increases the budget by

µ0−(1−α)µ0 = αµ0. The budget will decrease for arms i with µi < (1−α)µ0;

the constraint Z̃n ≥ 0 is then in danger of being violated (Fig. 4.1).

In the following sections we will construct algorithms that satisfy pseudo-

regret bounds and the budget constraint (4.5) with high probability 1 − δ

(where δ > 0 is a tunable parameter). In Section 4.2.4 we will see how these

algorithms can be adapted to satisfy the constraint in expectation and with

bounds on their expected regret.

92

For simplicity, we will initially assume that the algorithms know µ0, the

expected reward of the default arm. This is reasonable in situations where the

default action has been used for a long time and is well-characterized. Even

so, in Section 4.2.5 we will see that having to learn an unknown µ0 is not a

great hindrance.

4.2.2 BudgetFirst — A Naive Algorithm

Before presenting the new algorithm it is worth remarking on the most obvious

naive attempt, which we call the BudgetFirst algorithm. A straightforward

modification of UCB leads to an algorithm that accepts a confidence parameter

δ ∈ (0, 1) and suffers regret at most

R̃n = O

(√
Kn log

(
log(n)

δ

))
= Rworst . (4.7)

Of course this algorithm alone will not satisfy the constraint (4.5), but that

can be enforced by naively modifying the algorithm to deterministically choose

It = 0 for the first t0 rounds where

(∀ t0 ≤ t ≤ n) tµ0 −Rworst ≥ (1− α)tµ0 .

Subsequently the algorithm plays the high probability version of UCB and

the regret guarantee (4.7) ensures the constraint (4.5) is satisfied with high

probability. Solving the equation above leads to t0 = Õ(Rworst/αµ0), and since

the regret while choosing the default arm may be O(1) the worst-case regret

guarantee of this approach is

R̃n = Ω

(
1

µ0α

√
Kn log

(
log(n)

δ

))
.

This is significantly worse than the more sophisticated algorithm that is our

main contribution and for which the price of satisfying (4.5) is only an additive

term rather than a large multiplicative factor.

4.2.3 Conservative UCB

A better strategy is to play the default arm only until the budget (4.6) is

large enough to start exploring other arms with a low risk of violating the

93

constraint. It is safe to keep exploring as long as the budget remains large,

whereas if it decreases too much then it must be replenished by playing the

default arm. In other words, we intersperse the exploration of a standard

bandit algorithm with occasional budget-building phases when required. We

show that accumulating a budget does not severely curtail exploration and

thus gives small regret.

Conservative UCB (Algorithm 7) is based on UCB with the novel twist of

maintaining a positive budget. In each round, UCB calculates upper confi-

dence bounds for each arm; let Jt be the arm that maximizes this calculated

confidence bound. Before playing this arm (as UCB would) our algorithm

decides whether doing so risks the budget becoming negative. Of course, it

does not know the actual budget Z̃t because the µi (i 6= 0) are unknown; in-

stead, it calculates a lower confidence bound ξt based on confidence intervals

for the µi. More precisely, it calculates a lower confidence bound for what the

budget would be if it played arm Jt. If this lower bound is positive then the

constraint will not be violated as long as the confidence bounds hold. If so, the

algorithm chooses It = Jt just as UCB would; otherwise it acts conservatively

by choosing It = 0.

Algorithm 7 Conservative UCB

1: Input: K, µ0, δ, ψ
δ(·)

2: for t ∈ 1, 2, . . . do
3: θ0(t), λ0(t)← µ0

4: for i ∈ 1, . . . , K do
5: ∆i(t)←

√
ψδ(Ti(t− 1))/Ti(t− 1)

6: θi(t)← µ̂i(t− 1) + ∆i(t)
7: λi(t)← max {0, µ̂i(t− 1)−∆i(t)}
8: end for
9: Jt ← argmaxi θi(t) {. . . and find UCB arm.}
10: ξt ←

∑t−1
s=1 λIs(t) + λJt(t)− (1− α)tµ0

11: if ξt ≥ 0 then
12: It ← Jt {. . . choose UCB arm if safe,}
13: else
14: It ← 0 {. . . default arm otherwise.}
15: end if
16: end for

94

Remark 37 (Choosing ψδ). The confidence intervals in Algorithm 7 are

constructed using the function ψδ. Let F be the event that for all rounds

t ∈ {1, 2, . . .} and every action i ∈ [K], the confidence intervals are valid:

|µ̂i(t)− µi| ≤

√
ψδ(Ti(t))

Ti(t)
.

Our goal is to choose ψδ(·) such that

Pr (F) ≥ 1− δ . (4.8)

A simple choice is ψδ(s) = 2 log(Ks3/δ), for which (4.8) holds by Hoeffding’s

inequality and union bounds. The following choice achieve better performance

in practice:

ψδ(s) = log max {3, log ζ} + log(2e2ζ) +
ζ(1 + log(ζ))

(ζ − 1) log(ζ)
log log(1 + s), (4.9)

where ζ = K/δ; it can be seen to achieve (4.8) by more careful analysis

motivated by Garivier (2013).

Some remarks on Algorithm 7

• µ0 is known, so the upper and lower confidence bounds can both be set to

µ0 (line 3). See Section 4.2.5 for a modification that learns an unknown

µ0.

• The max in the definition of the lower confidence bound λi(t) (line 7)

is because we have assumed µi ≥ 0 and so the lower confidence bound

should never be less than 0.

• ξt (line 10) is a lower confidence bound on the budget (4.6) if action

Jt is chosen. More precisely, it is a lower confidence bound on Z̃t =
∑t−1

s=1 µIs + µJt − (1− α)tµ0.

• If the default arm is also the UCB arm (Jt = 0) and the confidence

intervals all contain the true values, then µ∗ = µ0 and the algorithm will

choose action 0 for all subsequent rounds, incurring no regret.

95

The following theorem guarantees that Conservative UCB satisfies the con-

straint while giving a high-probability upper bound on its regret.

Theorem 38. In any stochastic environment where the arms have expected

rewards µi ∈ [0, 1] with 1-subgaussian noise, Algorithm 7 satisfies the following

with probability at least 1− δ and for every time horizon n, when ψδ is chosen

in accordance with Remark 37 and with L = ψδ(n):

t∑

s=1

µIs ≥ (1− α)µ0t for all t ∈ {1, . . . , n} , (4.5)

R̃n ≤
∑

i>0:∆i>0

(
4L

∆i

+ ∆i

)
+

2(K + 1)∆0

αµ0

+
6L

αµ0

K∑

i=1

∆0

max{∆i,∆0 −∆i}
, (4.10)

R̃n ∈ O
(√

nKL+
KL

αµ0

)
. (4.11)

Proof of Theorem 38. By Remark 37, with probability Pr (F) ≥ 1 − δ the

confidence intervals are valid for all t and all arms i ∈ {1, . . . , K}:

|µ̂i(t− 1)− µi| ≤
√
ψδ(Ti(t− 1))/Ti(t− 1) ≤

√
L/Ti(t− 1);

we will henceforth assume that this is the case (i.e. that F holds). By the

definition of the confidence intervals and by the construction of Algorithm 7

we immediately satisfy the constraint

n∑

t=1

µIt ≥ (1− α)nµ0 for all n.

We now bound the regret. Let i > 0 be the index of a sub-optimal arm and

suppose It = i. Since the confidence intervals are valid,

µ∗ ≤ θi(t) ≤ µ̂i(t− 1) +
√
L/Ti(t− 1)

≤ µi + 2
√
L/Ti(t− 1) ,

which implies that arm i has not been chosen too often; in particular we obtain

Ti(n) ≤ Ti(n− 1) + 1 ≤ 4L

∆2
i

+ 1. (4.12)

96

and the regret satisfies

R̃n =
K∑

i=0

Ti(n)∆i ≤
∑

i>0:∆i>0

(
4L

∆i

+ ∆i

)
+ T0(n)∆0.

If ∆0 = 0 then the theorem holds trivially; we therefore assume that ∆0 > 0

and find an upper bound for T0(n).

Let τ = max {t ≤ n | It = 0} be the last round in which the default arm is

played. Since F holds and θ0(t) = µ0 < µ∗ < maxi θi(t), it follows that Jt = 0

is never the UCB choice; the default arm was only played because ξτ < 0:

K∑

i=0

Ti(τ − 1)λi(τ) + λJτ (τ)− (1− α)µ0τ < 0 (4.13)

By dropping λJτ (τ), replacing τ with
∑K

i=0 Ti(τ − 1) + 1, and rearranging the

terms in (4.13), we get

αT0(τ − 1)µ0 < (1− α)µ0 +
K∑

i=1

Ti(τ − 1) ((1− α)µ0 − λi(τ))

≤ (1− α)µ0 +
K∑

i=1

Ti(τ − 1)

(
(1− α)µ0 − µi +

√
L

Ti(τ − 1)

)

≤ 1 +
K∑

i=1

Si . (4.14)

where ai = (1− α)µ0 − µi and

Si = Ti(τ − 1) ·
(

(1− α)µ0 − µi +
√
L/Ti(τ − 1)

)

= aiTi(τ − 1) +
√
LTi(τ − 1)

is a bound on the decrease in ξt in the first τ − 1 rounds due to choosing arm

i. We will now bound Si for each i > 0.

The first case is ai ≥ 0, i.e. ∆i ≥ ∆0 + αµ0. Then (4.12) gives Ti(τ − 1) ≤

4L/∆2
i + 1 and we get

Si ≤
4Lai
∆2
i

+
2L

∆i

+ 2 ≤ 6L

∆i

+ 2 . (4.15)

The other case is ai < 0, i.e. ∆i < ∆0 + αµ0. Then

Si ≤
√
LTi(τ − 1) ≤ 2L

∆i

+ 1, (4.16)

97

and by using ax2 + bx ≤ −b2/4a for a < 0 we have

Si ≤ −
L

4ai
=

L

4(∆0 + αµ0 −∆i)
. (4.17)

Summarizing (4.15) to (4.17) gives

Si ≤
6L

max{∆i,∆0 −∆i}
+ 2 .

Continuing from (4.14), we get

T0(n) = T0(τ − 1) + 1 ≤ 2K + 2

αµ0

+
1

αµ0

K∑

i=1

6L

max{∆i,∆0 −∆i}
.

We can now upper bound the regret by

R̃n ≤
∑

i>0:∆i>0

(
4L

∆i

+ ∆i

)
+

2(K + 1)∆0

αµ0

+
6L

αµ0

K∑

i=1

∆0

max{∆i,∆0 −∆i}
.

(4.10)

We will now show (4.11). To bound the regret due to the non-default arms,

Jensen’s inequality gives

(∑

i>0

Ti(n)∆i

)2

≤ m2
∑

i>0

Ti(n)

m
∆2
i ,

where m ≤ n is the number of times non-default arms were chosen. Combining

this with ∆2
i ≤ 4L/Ti(n) for sub-optimal arms from (4.12) gives

∑

i>0

Ti(n)∆i ≤ 2
√
mKL ∈ O(

√
nKL).

To bound the regret due to the default arm, observe that max{∆i,∆0 −

∆i} ≥ ∆0/2 and thus T0(n)∆0 ∈ O(KL/αµ0). Combining these two bounds

gives (4.11).

. .

Standard unconstrained UCB algorithms achieve a regret of orderO(
√
nKL);

Theorem 38 tells us that the penalty our algorithm pays to satisfy the con-

straint is an extra additive regret of order O(KL/αµ0).

98

Remark 39. We take a moment to understand how the regret of the algorithm

behaves if α is polynomial in 1/n. Clearly if α ∈ O(1/n) then we have a

constant exploration budget and the problem is trivially hard. In the slightly

less extreme case when α is as small as n−a for some 0 < a < 1, the extra

regret penalty is still not negligible: satisfying the constraint costs us O(na)

more regret in the worst case.

We would argue that the problem-dependent regret penalty (4.10) is more

informative than the worst case of O(na); our regret increases by

6L

αµ0

K∑

i=1

∆0

max{∆i,∆0 −∆i}
.

Intuitively, even if α is very small, we can still explore as long as the default

arm is close-to-optimal (i.e. ∆0 is small) and most other arms are clearly

sub-optimal (i.e. the ∆i are large). Then the sub-optimal arms are quickly

discarded and even the budget-building phases accrue little regret: the regret

penalty remains quite small. More precisely, if ∆0 ≈ n−b0 and mini>0:∆i>0 ∆i ≈

n−b, then the regret penalty is

O
(
na+min{0,b−b0}

)
;

small ∆0 and large ∆i means b − b0 < 0, giving a smaller penalty than the

worst case of O(na).

Remark 40. Curious readers may be wondering if It = 0 is the only conser-

vative choice when the arm proposed by UCB risks violating the constraint.

A natural alternative would be to use the lower confidence bound λi(t) by

choosing

It =

{
Jt , if ξt ≥ 0 ;

argmaxi λi(t) , otherwise .
(4.18)

It is easy to see that if F does not occur, then choosing argmaxi λi(t) increases

the budget at least as much as choosing action 0 while incurring less regret

and so this algorithm is preferable to Algorithm 7 in practice. Theoretically

speaking, however, it is possible to show that the improvement is by at most a

99

constant factor so our analysis of the simpler algorithm suffices. The proof of

this claim is somewhat tedious so instead we provide two intuitions: Firstly, the

upper bound approximately matches the lower bound in the minimax regime,

so any improvement must be relatively small in the minimax sense. Secondly,

imagine we run the unmodified Algorithm 7 and let t be the first round when

It 6= Jt and where there exists an i > 0 with λi(t) ≥ µ0. If F does not hold,

then the actions chosen by UCB satisfy

Ti(t) ∈ Ω

(
min

{
L

∆2
i

,max
j
Tj(t)

})
,

which means that arms are being played in approximately the same frequency

until they are proving suboptimal (for a similar proof, see Lattimore (2015b)).

From this it follows that once λIt(t) ≥ µ0 for some i it will not be long before

either λj(t + s) ≥ µ0 or Tj(t + s) ≥ 4L/∆2
i and in both cases the algorithm

will cease playing conservatively. Thus it takes at most a constant proportion

more time before the naive algorithm is exclusively choosing the arm chosen

by UCB.

Next we discuss how small modifications to Algorithm 7 allow it to handle

some variants of the problem while guaranteeing the same order of regret.

4.2.4 Considering the Expected Regret and Budget

One may care about the performance of the algorithm in expectation rather

than with high probability, i.e. we want an upper bound on E
[
R̃n

]
and the

constraint (4.5) becomes

E

[
t∑

s=1

µIs

]
≥ (1− α)µ0t, for all t ∈ {1, . . . , n} . (4.19)

We argued in Remark 39 that if α ∈ O(1/n) then the problem is trivially

hard; let us assume therefore that α ≥ c/n for some c > 1. By running

Algorithm 7 with δ = 1/n and α′ = (α− δ)/(1− δ) we can achieve (4.19) and

a regret bound with the same order as in Theorem 38.

To show (4.19) we have

E

[
t∑

s=1

µIs

]
≥ Pr (F)E

[
t∑

s=1

µIs

∣∣∣ F
]
≥ (1− δ)(1− α′)µ0t = (1− α)µ0t .

100

As an upper bound, we have E [Rn] ≤ E [Rn|F] + δn = E [Rn|F] + 1. Here

E [Rn|F] can be upper bounded by Theorem 38 with two changes: (i) L be-

comes O(log nK) after replacing δ with 1/n, and (ii) α becomes α′. Since

α′/α ≥ 1− 1/c we get essentially the same order of regret bound as in Theo-

rem 38.

4.2.5 Learning an Unknown µ0

Two modifications to Algorithm 7 allow it to handle the case when µ0 is

unknown. First, just as we do for the non-default arms, we need to set θ0(t)

and λ0(t) based on confidence intervals. Second, the lower bound on the budget

needs to be set as

ξ′t =
K∑

i=1

Ti(t− 1)λi(t) + λJt(t) + (T0(t− 1)− (1− α)t)θ0(t) . (4.20)

Theorem 41. Algorithm 7, modified as above to work without knowing µ0 but

otherwise the same conditions as Theorem 38, satisfies with probability 1 − δ

and for all time horizons n the constraint (4.5) and the regret bound

R̃n ≤
∑

i:∆i>0

(
4L

∆i

+ ∆i

)
+

2(K + 1)∆0

αµ0

+
7L

αµ0

K∑

i=1

∆0

max{∆i,∆0 −∆i}
.

(4.21)

Proof of Theorem 41. We proceed very similarly to the proof of Theorem 38.

As we did there, we assume that F holds: the confidence intervals are valid for

all rounds and all arms (including the default), which happens with probability

Pr (F) ≥ 1− δ.

To show that the modified algorithm satisfies the constraint (4.5), we write

the budget (4.6) as

Z̃t =
K∑

i=1

Ti(t− 1)µi + µJt + (T0(t− 1)− (1− α)t)µ0

when the UCB arm Jt is chosen and show that it is indeed lower-bounded by

ξ′t =
K∑

i=1

Ti(t− 1)λi(t) + λJt(t) + (T0(t− 1)− (1− α)t)θ0(t) . (4.20)

101

This is apparent if T0(t − 1) < (1 − α)t, since the last term in (4.20) is then

negative and θ0(t) ≥ µ0. On the other hand, if T0(t − 1) ≥ (1 − α)t then the

constraint is still satisfied:

t∑

s=1

µIs ≥ T0(t− 1)µ0 ≥ (1− α)µ0t.

We now upper-bound the regret. As in the earlier proof, we can show that

for any arm i > 0 with ∆i > 0 we have Ti(n) ≤ 4L/∆2
i + 1. If this also

holds for i = 0 or if ∆0 = 0 then R̃n ≤
∑

i:∆>0(4L/∆i + ∆i) and the theorem

holds trivially. From now on we only consider the case when ∆0 > 0 and

T0(n) > 4L/∆2
0 + 1. As before, we will proceed to upper-bound T0(n).

Let τ be the last round in which Iτ = 0. We can ignore the possibility

that Jτ = 0, since then the above bound on Ti(n) would apply even to the

default arm, contradicting our assumption above. Thus we can assume that

the default arm was played because ξ′τ < 0:

K∑

i=1

Ti(τ − 1)λi(τ) + λJτ (τ) +
(
T0(τ − 1)− (1− α)τ

)
θ0(τ) < 0 ,

in which we drop λJτ (τ), replace τ with
∑K

i=0 Ti(τ − 1) + 1, and rearrange the

terms to get

αT0(τ − 1)θ0(τ) < (1− α)θ0(τ) +
K∑

i=1

Ti(τ − 1)
(
(1− α)θ0(τ)− λi(τ)

)
.

(4.22)

We lower-bound the left-hand side of (4.22) using θ0(τ) ≥ µ0, whereas we

upper-bound the right-hand side using

θ0(τ) ≤ µ0 +

√
L

T0(τ − 1)
≤ µ0 +

∆0

2
,

which comes from T0(τ − 1) ≥ 4L/∆2
0. Combining these in (4.22) with the

lower confidence bound λi(τ) ≥ µi −
√
L/Ti(τ − 1) gives

αµ0T0(τ − 1) < (1− α)

(
µ0 +

∆0

2

)

+
K∑

i=1

Ti(τ − 1)

(
(1− α)

(
µ0 +

∆0

2

)
− µi +

√
L

Ti(τ − 1)

)

102

= (1− α)

(
µ0 +

∆0

2

)
+

K∑

i=1

Si

≤ 1 +
K∑

i=1

Si , (4.23)

where ai = (1− α)(µ0 + ∆0/2)− µi and

Si = aiTi(τ − 1) +
√
LTi(τ − 1)

is a bound on the decrease in ξ′t in the first τ − 1 rounds due to choosing arm

i. We will now bound Si for each i > 0.

Analogously to the previous proof, we get the bounds

Si ≤
6L

∆i

+ 2, when ai ≥ 0 ; (4.24)

Si ≤
2L

∆i

+ 1 , otherwise; (4.25)

and in the latter case, using ax2 + bx ≤ −b2/4a gives

Si ≤ −
L

4ai
=

L

4
(
(1 + α)∆0/2 + αµ0 −∆i

) . (4.26)

Summarizing (4.24) to (4.26) gives

Si ≤
6L

max {∗}∆i, 24
(
(1 + α)∆0/2 + αµ0 −∆i

) + 2

≤ 7L

max {∆i,∆0 −∆i}
+ 2 .

Continuing with (4.23), if T0(n) > 4L
∆2

0
+ 1, we get

T0(n) = T0(τ − 1) + 1 ≤ 2K + 2

αµ0

+
1

αµ0

K∑

i=1

7L

max{∆i,∆0 −∆i}
.

We can now upper bound the regret by

R̃n ≤
∑

i:∆i>0

(
4L

∆i

+ ∆i

)
+

2(K + 1)∆0

αµ0

+
7L

αµ0

K∑

i=1

∆0

max{∆i,∆0 −∆i}
.

(4.21)

. .

Theorem 41 shows that we get the same order of regret for unknown µ0.

103

4.3 The Adversarial Setting

Unlike the stochastic case, in the adversarial multi-armed bandit setting we

do not make any assumptions about how the rewards are generated. Instead,

we analyze a learner’s worst-case performance over all possible sequences of

rewards (Xt,i). In effect, we are treating the environment as an adversary that

has intimate knowledge of the learner’s strategy and will devise a sequence of

rewards that maximizes regret. To preserve some hope of succeeding, however,

the learner is allowed to behave randomly: in each round it can randomize

its choice of arm It using a distribution it constructs; the adversary cannot

influence nor predict the result of this random choice.

Our goal is, as before, to satisfy the constraint (4.2) while bounding the

regret (4.1) with high probability (the randomness comes from the learner’s

actions). We assume that the default arm has a fixed reward: Xt,0 = µ0 ∈ [0, 1]

for all t; the other arms’ rewards are generated adversarially in [0, 1]. The

constraint to be satisfied then becomes
∑t

s=1 Xs,Is ≥ (1− α)µ0t for all t.

Safe-playing strategy: We take any standard any-time high probability

algorithm for adversarial bandits and adapt it to play as usual when it is safe

to do so, i.e. when Zt ≥
∑t−1

s=1Xs,Is − (1 − α)µ0t ≥ 0. Otherwise it should

play It = 0. To demonstrate a regret bound, we only require that the bandit

algorithm satisfy the following requirement.

Definition 42. An algorithm A is R̂δ
t -admissible (R̂δ

t sub-linear) if for any δ,

in the adversarial setting it satisfies

Pr
(
∀t ∈ {1, 2, . . . } , Rt ≤ R̂δ

t

)
≥ 1− δ.

Note that this performance requirement is stronger than the typical high

probability bound but is nevertheless achievable. For example, Neu (2015)

states the following for the any-time version of their algorithm: given any

time horizon n and confidence level δ, Pr
(
Rn ≤ R̂′n(δ)

)
≥ 1 − δ for some

sub-linear R̂′t(δ). If we let R̂δ
t = R̂′t(δ/2t

2) then Pr
(
Rt ≤ R̂δ

t

)
≥ 1− δ

2t2
holds

for any fixed t. Since the algorithm does not require n and δ as input, a union

bound shows it to be R̂δ
t -admissible.

104

Having satisfied ourselves that there are indeed algorithms that meet our

requirements, we can prove a regret guarantee for our safe-playing strategy.

Theorem 43. Any R̂δ
t -admissible algorithm A, when adapted with our safe-

playing strategy, satisfies the constraint (4.2) and has a regret bound of Rn ≤

t0 + R̂δ
n with probability at least 1− δ where t0 = max

{
t | αµ0t ≤ R̂δ

t + µ0

}
.

Proof of Theorem 43. It is clear from the description of the safe-playing strat-

egy that it is indeed safe: the constraint (4.2) is always satisfied.

The algorithm plays safe when the following quantity, which is a lower

bound on the budget Zt, is negative:

Z ′t = Zt −Xt,It =
t−1∑

s=1

Xs,Is − (1− α)µ0t

To upper bound the regret, consider only the rounds in which our safe-playing

strategy does not interfere with playing A’s choice of arm. Then with proba-

bility 1− δ,

max
i∈{0,...,K}

t∑

s=1

1{Z ′s ≥ 0} (Xs,i −Xs,Is) ≤ R̂δ
B(t)

where B(t) =
∑t

s=1 1{Z ′s ≥ 0}. Let τ be the last round in which the algorithm

plays safe.

µ0B(τ − 1) ≤ max
i

τ−1∑

s=1

1{Z ′s ≥ 0}Xs,i

≤ R̂δ
B(τ−1) +

τ−1∑

s=1

1{Z ′s ≥ 0}Xs,Is

= R̂δ
B(τ−1) +

τ−1∑

s=1

Xs,Is − µ0(τ − 1−B(τ − 1))

≤ R̂δ
B(τ−1) + (1− α)µ0τ − µ0(τ − 1−B(τ − 1)) ,

which indicates αµ0τ ≤ R̂δ
τ +µ0 and thus τ ≤ t0. It follows that Rn ≤ t0 + R̂δ

n.

. .

Corollary 44. The any-time high probability algorithm of Neu (2015) adapted

with our safe-playing strategy gives R̂δ
t = 7

√
Kt logK log(4t2/δ) and

Rn ≤ 7
√
Kn logK log(4n2/δ) +

49K logK

α2µ2
0

log2 4n2

δ

105

with probability at least 1− δ.

Corollary 44 shows that a strategy similar to that of Algorithm 7 also works

for the adversarial setting. However, we pay a higher regret penalty to satisfy

the constraint: O
(

KL2

(αµ0)2

)
rather than the O

(
KL
αµ0

)
we had in the stochastic

setting. Whether this is because (i) our algorithm is sub-optimal, (ii) the anal-

ysis is not tight, or (iii) there is some intrinsic hardness in the non-stochastic

setting is still not clear and remains an interesting open problem.

4.4 Lower Bound on the Regret

We now present a worst-case lower bound where α, µ0 and n are fixed, but

the mean rewards are free to change. For any vector µ ∈ [0, 1]K , we will

write Eµ to denote expectations under the environment where all arms have

normally-distributed unit-variance rewards and means µi (i.e., the fixed value

µ0 is the mean reward of arm 0 and the components of µ are the mean rewards

of the other arms). We assume normally distributed noise for simplicity: other

subgaussian distributions whose parameter is kept fixed independently of the

mean rewards work identically.

Theorem 45. Suppose for any µi ∈ [0, 1] (i > 0) and µ0 satisfying

min {µ0, 1− µ0} ≥ max
{

1/2
√
α,
√
e+ 1/2

}√
K/n,

an algorithm satisfies Eµ [
∑n

t=1Xt,It] ≥ (1 − α)µ0n. Then there is some µ ∈

[0, 1]K such that its expected regret satisfies Eµ[Rn] ≥ B where

B = max

{
K

(16e+ 8)αµ0

,

√
Kn√

16e+ 8

}
. (4.27)

Proof of Theorem 45. Pick any algorithm. We want to show that the algo-

rithm’s regret on some environment is at least as large as B. If Eµ[Rn] > B

for some µ ∈ [0, 1]K , there is nothing to be proven. Hence, without loss of

generality, we can assume that the algorithm is consistent in the sense that

Eµ[Rn] ≤ B for all µ ∈ [0, 1]K .

106

For some ∆ > 0, define environment µ ∈ RK such that µi = µ0−∆ for all

i ∈ [K]. For now, assume that µ0 and ∆ are such that µi ≥ 0; we will get back

to this condition later. Also define environment µ(i) for each i = 1, . . . , K by

µ
(i)
j =

{
µ0 + ∆, for j = i ;

µ0 −∆, otherwise.

In this proof, we use Ti = Ti(n) to denote the number of times arm i was

chosen in the first n rounds. We distinguish two cases, based on how large the

exploration budget is.

Case 1: α ≥
√
K

µ0

√
(16e+ 8)n

.

In this case, B =
√
Kn√

16e+8
and we use ∆ = (4e + 2)B/n. For each i ∈ [K]

define event Ai = {Ti ≤ 2B/∆}. First we prove that Prµ(Ai) ≥ 1/2:

Prµ (Ti ≤ 2B/∆) = 1− Prµ (Ti > 2B/∆)

≥ 1− ∆Eµ[Ti]

2B
≥ 1− Eµ[Rn]

2B

≥ 1

2
.

Next we prove that Prµ(i)(Ai) ≤ 1/4e:

Prµ(i) (Ti ≤ 2B/∆) = Prµ(i) (n− Ti ≥ n− 2B/∆)

≤
Eµ(i) [n− Ti]
n− 2B/∆

≤ B

∆n− 2B

=
1

4e
.

Note that µ and µ(i) differ only in the ith component: µi = µ0 − ∆ whereas

µ
(i)
i = µ0 +∆. Then the KL divergence between the reward distributions of the

ith arms is KL(µi, µ
(i)
i) = (2∆)2/2 = 2∆2. Define the binary relative entropy

to be

d(x, y) = x log
x

y
+ (1− x) log

1− x
1− y

;

it satisfies d(x, y) ≥ (1/2) log(1/4y) for x ∈ [1/2, 1] and y ∈ (0, 1). By a

standard change of measure argument (see, e.g., Lemma 1 of Kaufmann et al.,

2015b) we get that

Eµ[Ti] ·KL(µi;µ
(i)
i) ≥ d(Prµ(Ai),Prµ(i)(Ai)) ≥ 1

2
log 1

4(1/4e)
= 1

2

107

and so Eµ[Ti] ≥ 1/4∆2 for each i ∈ [K]. Hence

Eµ[Rn] = ∆
∑

i∈[K]

Eµ[Ti] ≥
K

4∆
=

√
Kn√

16e+ 8
= B .

Case 2: α <

√
K

µ0

√
(16e+ 8)n

.

In this case, B = K
(16e+8)αµ0

and we use ∆ = K/4αµ0n. For each i define

the event Ai = {Ti ≤ 2αµ0n/∆}. First we prove that Prµ(Ai) ≥ 1/2:

Prµ {Ti ≤ 2αµ0n/∆} = 1− Prµ {Ti > 2αµ0n/∆}

≥ 1− ∆Eµ[Ti]

2αµ0n
≥ 1− Eµ[Rn]

2αµ0n

≥ 1

2
,

where we use the fact that

Eµ[Rn] = nµ0 − Eµ
[n∑

t=1

Xt,It

]
≤ nµ0 − (1− α)µ0n = αµ0n .

Next, we show that Prµ(i)(Ai) < 1/4e:

Prµ(i) (Ti ≤ 2αµ0n/∆) = Prµ(i) (n− Ti ≥ n− 2αµ0n/∆)

≤
Eµ(i) [n− Ti]
n− 2αµ0n/∆

≤ B

∆n− 2αµ0n

=
K

(4e+ 2)K − (32e+ 16)α2µ2
0n

<
1

4e
.

As in the other case, we have Eµ[Ti] > 1/4∆2 for each i ∈ [K]. Therefore

Eµ[Rn] = ∆
∑

i∈[K]

Eµ[Ti] >
K

4∆
= αµ0n,

which contradicts the fact that Eµ[Rn] ≤ αµ0n. So there does not exist an

algorithm whose worst-case regret is smaller than B.

To summarize, we proved that

Eµ[Rn] ≥

√
Kn√

16e+ 8
, when α ≥

√
K

µ0

√
(16e+ 8)n

K

(16e+ 8)αµ0

, otherwise,

108

finishing the proof.

. .

Theorem 45 shows that our algorithm for the stochastic setting is near-

optimal (up to a logarithmic factor L) in the worst case. A problem-dependent

lower bound for the stochastic setting would be interesting but is left for future

work. Also note that in the lower bound we only use Eµ [
∑n

t=1 Xt] ≥ (1−α)nµ0

for the last round n, which means that the regret guarantee cannot be improved

if we only care about the last-round budget instead of the anytime budget. In

practice, however, enforcing the constraint in all rounds will generally lead to

significantly worse results because the algorithm cannot explore early on. This

is demonstrated empirically in Section 4.5, where we find that the Unbalanced

MOSS algorithm performs very well in terms of the expected regret, but does

not satisfy the constraint in early rounds.

Remark 46. The theorem above almost follows from the lower bound given

by Lattimore (2015a), but in that paper µ0 is unknown, while here it may be

known. This makes our result strictly stronger, as the lower bound is the same

up to constant factors.

4.5 Experiments

We evaluate the performance of Conservative UCB compared to UCB and

Unbalanced MOSS (Lattimore, 2015a) using simulated data in two regimes.

In the first (Fig. 4.2) we fix the horizon and sweep over α ∈ [0, 1] to show

the degradation of the average regret of Conservative UCB relative to UCB

as the constraint becomes harsher (α close to zero). In the second regime

(Fig. 4.3) we fix α = 0.1 and plot the long-term average regret, showing that

Conservative UCB is eventually nearly as good as UCB, despite the constraint.

Each data point is an average of N ≈ 4000 i.i.d. samples, which makes error

bars too small to see. Results are shown for both versions of Conservative

UCB: The first knows the mean µ0 of the default arm while the second does

not and must act more conservatively while learning this value. As predicted

109

by the theory, the difference in performance between these two versions of the

algorithm is relatively small, but note that even when α = 1 the algorithm

that knows µ0 is performing better because this knowledge is useful in the

unconstrained setting. This is also true of the BudgetFirst algorithm, which

is unconstrained when α = 1 and exploits its knowledge of µ0 to eliminate

the default arm. This algorithm is so conservative that even when α is nearly

zero it must first build a significant budget. We tuned the Unbalanced MOSS

algorithm with the following parameters:

B0 =
nK√

nK + K
αµ0

Bi = BK =
√
nK +

K

αµ0

.

The quantity Bi determines the regret of the algorithm with respect to arm i up

to constant factors, and must be chosen to lie inside the Pareto frontier given

by Lattimore (2015a). It should be emphasised that Unbalanced MOSS does

not constrain the return except for the last round, and has no high-probability

guarantees. This freedom allows it to explore early, which gives it a significant

advantage over the highly constrained Conservative UCB. Furthermore, it also

requires B0, . . . , BK as inputs, which means that µ0 must be known in advance.

The mean rewards in both experiments are µ0 = 0.5, µ1 = 0.6, µ2 = µ3 =

µ4 = 0.4, which means that the default arm is slightly sub-optimal.

0 0.5 1
0

0.05

0.1

α

E
x
p
e
c
te
d

R
e
g
re
t
/
n

UCB Conservative UCB

Conservative UCB (unknown µ0) BudgetFirst

Unbalanced MOSS

Figure 4.2: Average regret for varying α and n = 104 and δ = 1/n

110

2,000 50,000 100,000
0

0.05

0.1

n

E
x
p
e
c
te
d

R
e
g
re
t
/
n

Figure 4.3: Average regret as n varies with α = 0.1 and δ = 1/n

4.6 Summary

We introduced a new family of multi-armed bandit frameworks motivated by

the requirement of exploring conservatively to maintain revenue and demon-

strated various strategies that act effectively under such constraints. We ex-

pect that similar strategies generalize to other settings, like contextual bandits

and reinforcement learning. We want to emphasize that this is just the begin-

ning of a line of research that has many potential applications. We hope that

others will join us in improving the current results, closing open problems, and

generalizing the model so it is more widely applicable.

111

Chapter 5

Conclusions and Future Work

In this thesis we studied three variants of online learning problems with differ-

ent objectives and presented our recent results. There are several interesting

future directions: (i) There are still some theoretical open questions in our

work, e.g. the gap between the lower and upper bound in Chapter 2, a single

algorithm that achieves both asymptotic problem-dependent and worst-case

optimality in Chapter 3 and the minimax regret in the adversarial setting in

Chapter 4. (ii) Another interesting direction is the pure exploration and regret

minimization problems in the more general partial monitoring setting (Bartók

et al., 2014). To the best of our knowledge there has not been any study on

the pure exploration problems in this setting. Regarding regret minimization,

Komiyama et al. (2015) introduces an asymptotically problem-dependent op-

timal algorithm but a minimax optimal algorithm (in terms of both the time

horizon and the scaling parameter) is still an open problem. Moreover, the

current partial monitoring setting is limited to finite outcome spaces. Extend-

ing it to continuous outcome spaces is also an interesting future work. (iii) To

further push online learning techniques into practical use, we can study other

variants of problems based on real applications such as problems with new

type of environments, objectives or other type of constraints in the learning

process.

112

Bibliography

N. Alon, N. Cesa-Bianchi, C. Gentile, and Y. Mansour. From bandits to
experts: A tale of domination and independence. In Advances in Neural
Information Processing Systems 26 (NIPS), pages 1610–1618, 2013.

N. Alon, N. Cesa-Bianchi, O. Dekel, and T. Koren. Online learning with
feedback graphs: beyond bandits. In Proceedings of The 28th Conference
on Learning Theory (COLT), pages 23–35, 2015.

J. Audibert, S. Bubeck, and R. Munos. Best arm identification in multi-
armed bandits. In Proceedings of the Annual Conference on Learning Theory
(COLT), 2010.

G. Bartók, D. P. Foster, D. Pál, A. Rakhlin, and C. Szepesvári. Partial mon-
itoring – classification, regret bounds, and algorithms. Mathematics of Op-
erations Research, 39:967–997, 2014.

R. E. Bechhofer. A sequential multiple-decision procedure for selecting the
best one of several normal populations with a common unknown variance,
and its use with various experimental designs. Biometrics, 14(3):408–429,
1958.

S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochas-
tic multi-armed bandit problems. Foundations and Trends in Machine
Learning, 5(1):1–122, 2012.

S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in finitely-armed and
continuous-armed bandits. Theoretical Computer Science, 412(19):1832–
1852, 2011.

S. Bubeck, T. Wang, and N. Viswanathan. Multiple identifications in multi-
armed bandits. In Proceedings of International Conference on Machine
Learning (ICML), 2013.

S. Buccapatnam, A. Eryilmaz, and N. B. Shroff. Stochastic bandits with side
observations on networks. SIGMETRICS Perform. Eval. Rev., 42(1):289–
300, June 2014.

S. Caron, B. Kveton, M. Lelarge, and S. Bhagat. Leveraging side observations
in stochastic bandits. In Proceedings of the 28th Conference on Uncertainty
in Artificial Intelligence (UAI), pages 142–151, 2012.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge
University Press, Cambridge, 2006.

113

S. Chen, T. Lin, I. King, M. R. Lyu, and W. Chen. Combinatorial pure
exploration of multi-armed bandits. In Advances in Neural Information
Processing Systems (NIPS), 2014.

R. Combes and A. Proutiere. Unimodal bandits: Regret lower bounds and
optimal algorithms. In Proceedings of the 31st International Conference on
Machine Learning (ICML), pages 521–529, 2014.

E. Even-Dar, S. Mannor, and Y. Mansour. PAC bounds for multi-armed bandit
and Markov decision processes. In Proceedings of the Annual Conference on
Learning Theory (COLT), pages 255–270, 2002.

E. Even-Dar, M. Kearns, Y. Mansour, and J. Wortman. Regret to the best
vs. regret to the average. Machine Learning, 72(1-2):21–37, 2008.

R. H. Farrell. Asymptotic behavior of expected sample size in certain one
sided tests. The Annals of Mathematical Statistics, 35(1):36–72, 1964.

T. Gabel and M. Riedmiller. Distributed policy search reinforcement learning
for job-shop scheduling tasks. International Journal of Production Research,
50(1):41–61, 2011.

V. Gabillon, M. Ghavamzadeh, and A. Lazaric. Best arm identification: A
unified approach to fixed budget and fixed confidence. In Advances in Neural
Information Processing Systems (NIPS), 2012.

V. Gabillon, A. Lazaric, M. Ghavamzadeh, R. Ortner, and P. Bartlett. Im-
proved learning complexity in combinatorial pure exploration bandits. In
Proceedings of the 19th International Conference on Artificial Intelligence
and Statistics, pages 1004–1012, 2016.

J. Garćıa and F. Fernández. A comprehensive survey on safe reinforcement
learning. Journal of Machine Learning Research, 16:1437–1480, 2015.

A. Garivier. Informational confidence bounds for self-normalized averages and
applications. arXiv preprint arXiv:1309.3376, 2013.

T. L. Graves and T. L. Lai. Asymptotically efficient adaptive choice of control
laws in controlled markov chains. SIAM Journal on Control and Optimiza-
tion, 35(3):715–743, 1997.

M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combi-
natorial Optimization. Springer, 2 edition, 1993.

M. Hutter and J. Poland. Adaptive online prediction by following the per-
turbed leader. Journal of Machine Learning Research, 6:639–660, 2005.

K. Jamieson, M. Malloy, R. Nowak, and S. Bubeck. lil’ ucb : An optimal
exploration algorithm for multi-armed bandits. In Proceedings of the Annual
Conference on Learning Theory (COLT), 2014.

K.-S. Jun, K. Jamieson, R. Nowak, and X. Zhu. Top arm identification in
multi-armed bandits with batch arm pulls. In The 19th International Con-
ference on Artificial Intelligence and Statistics (AISTATS), 2016.

S. Kalyanakrishnan and P. Stone. Efficient selection of multiple bandit arms:
Theory and practice. In Proceedings of International Conference on Machine
Learning (ICML), 2010.

114

S. Kalyanakrishnan, A. Tewari, P. Auer, and P. Stone. PAC subset selection in
stochastic multi-armed bandits. In Proceedings of International Conference
on Machine Learning (ICML), 2012.

Z. Karnin, T. Koren, and O. Somekh. Almost optimal exploration in multi-
armed bandits. In Proceedings of International Conference on Machine
Learning (ICML), 2013.

E. Kaufmann and S. Kalyanakrishnan. Information complexity in bandit sub-
set selection. In Proceedings of the Annual Conference on Learning Theory
(COLT), 2013.

E. Kaufmann, O. Cappé, and A. Garivier. On the complexity of best arm iden-
tification in multi-armed bandit models. The Journal of Machine Learning
Research, 2015a. (to appear).

E. Kaufmann, A. Garivier, and O. Cappé. On the complexity of best arm
identification in multi-armed bandit models. Journal of Machine Learning
Research, 2015b. To appear.

T. Kocák, G. Neu, M. Valko, and R. Munos. Efficient learning by implicit
exploration in bandit problems with side observations. In Advances in Neural
Information Processing Systems 27 (NIPS), pages 613–621, 2014.

T. Kocák, G. Neu, and M. Valko. Online learning with noisy side observations.
In International Conference on Artificial Intelligence and Statistics, pages
1186–1194, 2016.

J. Komiyama, J. Honda, and H. Nakagawa. Regret lower bound and optimal
algorithm in finite stochastic partial monitoring. In Advances in Neural
Information Processing Systems, pages 1783–1791, 2015.

W. M. Koolen. The Pareto regret frontier. In Advances in Neural Information
Processing Systems, pages 863–871, 2013.

B. H. Korte and J. Vygen. Combinatorial optimization: theory and algorithms.
Springer, 3 edition, 2006.

T. Lattimore. The Pareto regret frontier for bandits. In Advances in Neural
Information Processing Systems, 2015a. To appear.

T. Lattimore. Optimally confident UCB : Improved regret for finite-armed ban-
dits. Technical report, 2015b. URL http://arxiv.org/abs/1507.07880.

T. Lattimore, A. György, and C. Szepesvári. On learning the optimal waiting
time. In P. Auer, A. Clark, T. Zeugmann, and S. Zilles, editors, Algorithmic
Learning Theory, volume 8776 of Lecture Notes in Computer Science, pages
200–214. Springer International Publishing, 2014. ISBN 978-3-319-11661-7.

L. Li, R. Munos, and C. Szepesvári. Toward minimax off-policy value estima-
tion. In Proceedings of the Eighteenth International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 608–616, 2015.

T. Lin, B. Abrahao, R. Kleinberg, J. Lui, and W. Chen. Combinatorial partial
monitoring game with linear feedback and its applications. In Proceedings
of the 31st International Conference on Machine Learning (ICML), pages
901–909, 2014.

115

http://arxiv.org/abs/1507.07880

Y.-E. Liu, T. Mandel, E. Brunskill, and Z. Popović. Towards automatic ex-
perimentation of educational knowledge. In SIGCHI Conference on Human
Factors in Computing Systems (CHI 2014), pages 3349–3358. ACM Press,
2014.

L. Lovász. On the ratio of optimal integral and fractional covers. Discrete
mathematics, 13(4):383–390, 1975.

S. Magureanu, R. Combes, and A. Proutiere. Lipschitz bandits: Regret lower
bounds and optimal algorithms. In Proceedings of The 27th Conference on
Learning Theory (COLT), pages 975–999, 2014.

S. Mannor and O. Shamir. From bandits to experts: on the value of side-
observations. In Advances in Neural Information Processing Systems 24
(NIPS), pages 684–692, 2011.

S. Mannor and J. N. Tsitsiklis. The sample complexity of exploration in the
multi-armed bandit problem. The Journal of Machine Learning Research,
5:623–648, 2004.

G. Neu. Explore no more: Improved high-probability regret bounds for non-
stochastic bandits. In Advances in Neural Information Processing Systems,
pages 3150–3158, 2015.

E. Paulson. A sequential procedure for selecting the population with the largest
mean from k normal populations. The Annals of Mathematical Statistics,
35(1):174–180, 1964.

R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a
sub-constant error-probability PCP characterization of NP. In STOC, pages
475–484, 1997.

V. Rieser and O. Lemon. Learning effective multimodal dialogue strategies
from Wizard-of-Oz data: Bootstrapping and evaluation. In ACL-08: HLT,
pages 638–646, 2008.

A. Sani, G. Neu, and A. Lazaric. Exploiting easy data in online optimization.
In Advances in Neural Information Processing Systems, pages 810–818, 2014.

A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer,
2003.

P. Slavik. Approximation Algorithms for Set Cover and Related Problems.
PhD thesis, State University of New York at Buffalo, 1998. AAI9833643.

Y. Sui, A. Gotovos, J. Burdick, and A. Krause. Safe exploration for opti-
mization with Gaussian processes. In Proceedings of the 32nd International
Conference on Machine Learning (ICML-15), pages 997–1005, 2015.

V. Vazirani. Approximation algorithms. Springer, 2001.

Y. Wu, A. György, and C. Szepesvári. On identifying good options under
combinatorially structured feedback in finite noisy environments. In Pro-
ceedings of the 32nd International Conference on Machine Learning (ICML-
15), pages 1283–1291, 2015a.

116

Y. Wu, A. György, and C. Szepesvári. Online learning with gaussian pay-
offs and side observations. In Advances in Neural Information Processing
Systems, pages 1360–1368, 2015b.

Y. Wu, R. Shariff, T. Lattimore, and C. Szepesvári. Conservative bandits.
In Proceedings of the 33nd International Conference on Machine Learning
(ICML-16), 2016. To appear.

Y. Zhou, X. Chen, and J. Li. Optimal pac multiple arm identification with
applications to crowdsourcing. In Proceedings of International Conference
on Machine Learning (ICML), 2014.

117

	Introduction
	Online learning
	Different objectives
	Pure exploration
	Regret minimization
	Conservative bandits

	Summary of contributions

	Pure Exploration with Multi-option Probes
	Preliminaries
	Notation
	Problem Formulation
	Set Multi-Cover Problems

	Finding the Best Option
	Successive Elimination with Probes
	An Alternative Algorithm to Find the Best Option

	PAC Subset Selection
	Strong PAC Subset Selection
	Average PAC Subset Selection

	Summary

	Regret Minimization with Gaussian Side Observations
	Problem Formulation
	Notation

	Lower Bounds
	A General Finite Time Lower Bound
	A Relaxed Lower Bound

	Algorithms
	An Asymptotically Optimal Algorithm
	A Minimax Optimal Algorithm

	Summary

	Conservative Bandits
	Conservative Multi-Armed Bandits
	Conservative Exploration

	The Stochastic Setting
	The Budget Constraint
	BudgetFirst — A Naive Algorithm
	Conservative UCB
	Considering the Expected Regret and Budget
	Learning an Unknown 0

	The Adversarial Setting
	Lower Bound on the Regret
	Experiments
	Summary

	Conclusions and Future Work
	Bibliography

