
  

University of Alberta 
 

 

 

Polytomous item response theory parameter recovery: An investigation of non-

normal distributions and small sample size 

 
by 

 

Louise Marie Bahry 
 

 

 

 

A thesis submitted to the Faculty of Graduate Studies and Research  

in partial fulfillment of the requirements for the degree of  

 

 

Master of Education 

in 

Measurement, Evaluation and Cognition 
 

 

 

 

Department of Educational Psychology 
 

 

 

 

 

©Louise Marie Bahry 

Spring 2012 

Edmonton, Alberta 

 

 

 

 

 
Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis 

and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is 

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users 

of the thesis of these terms. 

 

The author reserves all other publication and other rights in association with the copyright in the thesis and, 

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or 

otherwise reproduced in any material form whatsoever without the author's prior written permission. 



Running head: PIRT Parameter Recovery  

Abstract 

Item Response Theory (IRT) has been extensively used in educational research 

with large sample sizes and normally distributed traits. However, there are cases 

in which distributions are not normal, and research has shown that the estimation 

of parameters becomes problematic with non-normal data. This study investigates 

the effects of skewness on parameter estimation using the Graded Response 

Model (GRM) and MULTILOG. Three distribution types (extreme and moderate 

skewness and a baseline condition (i.e. normal) and seven sample sizes (from n = 

100 to n = 3,000) were investigated using simulations. In keeping with previous 

findings, the extremely skewed distribution condition resulted in the poorest 

estimates regardless of sample size. In general, the accuracy of parameter 

estimation increased as sample size increased. For the normally distributed 

conditions, results suggest a minimum sample size of 750 for accurate estimation. 

Implications of these findings are discussed. 
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Chapter One 

 Item Response Theory (IRT) is an approach, or family of statistical 

models, used to analyze assessment item data. These models relate examinee 

ability (θ) and item parameters using logistic functions.  Several IRT models have 

been developed to estimate examinee ability (or latent trait) and the item 

parameters for items that are scored either dichotomously (i.e. only two response 

categories) or polytomously (i.e. more than two response categories; Hambleton, 

Swaminathan, & Rogers, 1991).  

 Traditionally, IRT has been used for educational applications such as 

Computerized Adaptive Testing (CAT), test score equating, item analysis, and 

item banking. However, due to the advantages of IRT other disciplines have 

recently developed an interest in using IRT for scoring, validation, and other 

psychometric analyses (Reise & Henson, 2003).  

 Samejima (1969) extended the two-parameter logistic dichotomous item 

response theory (IRT) model to deal with ordered, categorical responses.  She 

developed the graded responses (GRM) model to allow IRT to be used with data 

derived from polytomously-scored items included in an achievement test and 

which are scored using a scoring rubric or an analytic scoring scale. Additionally, 

the GRM was developed for use with assessments including likert-type response 

items such as those from attitude scales, psychological inventories or clinical 

assessments, where the different points along the response scale receive different 

scores.  

 There are several applied examples in the social sciences in which the   
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GRM has been used to fit item data to a model, estimate parameters, or to 

generally validate assessments. The assessments used vary across educational 

assessments and personality inventories to health questionnaires in which both 

dichotomously- and polytomously- scored items or only polytomously-scored 

items are used. Given the focus of the present study, the review of empirical 

studies is limited to studies outside of education with only polytomously-scored 

items. The sample sizes employed in these studies vary from 126 (Schrum & 

Salekin, 2006) to 13,059 (Chernyshenko, Stark, Chan, Drasgow & Williams, 

2001) and the number of items vary from 6 (Gumpel, 1999) to 198 (Walton, 

2008).  

 Schrum and Salekin (2006) used MULTILOG to calibrate a 20 item 

assessment with a 3-point graded scale and a sample size of 123. Gumpel (1999) 

calibrated a six item assessment with a 4-point graded scale and sample size of 

139; but the program used was not identified. de Ayala (2009) recommended a 

minimum sample size of 500 for calibration using polytomous models (assuming 

normally distributed θ and IRT assumptions are met) and suggested that there may 

be a “point of diminishing returns” (p.223) after which increasing the sample size 

will not increase the accuracy of estimation. In a simulation study conducted by 

Reise and Yu (1990), it was suggested that a sample size above 500 is sufficient 

for calibration of a 25-item assessment under the GRM.  Reise and Yu also found 

that smaller sample sizes affected the estimation of item parameters but did not 

affect estimation of the θ parameter. 
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Research Purpose and Questions 

 The purpose of the present study was twofold. The first purpose was to 

identify the effect of sample size and non-normal ability (θ) distributions on the 

accuracy and precision of the estimation of the item parameters at the test level 

using the GRM and the MULTILOG program. The second purpose was to 

identify the effect of sample size and non-normal ability (θ) distributions on the 

accuracy and precision of the estimation of the item parameters at the item level 

using the GRM and the MULTILOG program.   

 In order to address these purposes, a simulation study was conducted in 

which real data studies for distribution type and sample size were referenced to 

carry out the simulation. Two factors were varied in the study: underlying θ 

distribution type and sample size. The following four research questions will be 

addressed using simulated data: 

1) Does the shape of the underlying θ distribution have an effect on test-level 

statistical outcomes for item and person parameter recovery under the 

GRM using MULTILOG? 

2) Does the shape of the underlying θ distribution have an effect on item-

level statistical outcomes for item and person parameter recovery under 

the GRM using MULTILOG? 

3) Does sample size have an effect on test-level statistical outcomes for item 

and person parameter recovery under the GRM using MULTILOG? 

4) Does sample size have an effect on item-level statistical outcomes for item 

and person parameter recovery under the GRM using MULTILOG? 
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 Evaluation criteria included two outcome measures at both of the levels of 

analysis.  RMSEs and test-level BIAS statistics calculated across items were to 

assess effects on total test scores and item-level BIAS and standard error of item 

BIAS were calculated to assess item-level effects.  

Delimitations 

 While there are several IRT programs that can be used to complete a 

calibration of polytomously scored items and to estimate the latent trait parameter, 

only MULTILOG with the GRM was used in the study. Comparison of different 

computer programs and calibration and estimation procedures was not a purpose 

of the present study. In addition, only a 5-point score scale and 20-item 

assessment was simulated. This decision was made given the common use of a 5-

point response scale and the average number of items included in the studies in 

the personality and health areas. 

Organization of Thesis 

 The introduction of the research on applied and simulation-based studies 

using polytomous item response theory (PIRT) models and the presentation of the 

research questions was presented in Chapter One. Chapter Two contains the 

literature review and the logic in support of the present research.  Chapter Three 

describes the methods that were used in this study including a description of the 

GRM, calibration procedures, simulation conditions, and evaluation procedures 

used to assess the results. Results are presented in the next two chapters. Test-

level results are presented and discussed first in Chapter 4, followed by item-level 

results in Chapter 5. Lastly, Chapter Six contains a summary of the research 
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findings, a discussion of the limitations of the current study, conclusions, 

implications for practice and future research directions.   
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Chapter Two: Review of the Literature 

 This chapter provides a review of the literature on parameter estimation 

and recovery using the Graded Response Model (GRM, Samejima, 1969).  In the 

literature, there are parameter recovery studies that have incorporated three 

different item formats including dichotomous items only (Bahry & Gotzmann, 

2011; Drasgow, 1989; Wang & Chen, 2005), mixed-item formats including both 

dichotomous and polytomously-scored items (Toland, 2008), and polytomous 

items only (Dodd, 1984; Si, 2002; Sinar & Zickar, 2002; Kang, Cohen & Sung, 

2009).  While the dichotomous-only and mixed-item assessment formats have 

been studied in great detail, polytomous-only is the focus of this study since this 

item format has not been evaluated to the same extent.  Thus, the review of the 

literature is focussed on studies using assessments with only polytomously-scored 

items.  

 First, a brief introduction to Item Response Theory (IRT) is provided 

including a description of the GRM and the estimation process used in the 

MULTILOG software (Thissen, Chen, & Bock, 2003) used in this study. This is 

followed by a review of the application of IRT item parameter estimation and 

parameter recovery research using the GRM with assessments with only 

polytomously-scored items. The chapter concludes with a statement of the 

purpose of the present research.  

Overview of IRT 

 Item Response Theory (IRT) is an approach, or family of statistical 

models, used to analyze assessment item data. These models relate examinee 
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ability (θ) and item parameters using logistic functions.  Several IRT models have 

been developed to estimate ability or person parameters that are scored either 

dichotomously (i.e. only two response categories) or polytomously (i.e. more than 

two response categories; Hambleton et al., 1991).  Traditionally, IRT has been 

used for educational applications for Computerized Adaptive Testing (CAT), test 

score equating, item analysis, and test banking. However, due to the advantages of 

IRT other disciplines have recently developed an interest in using IRT for scoring, 

validation, and other psychometric analyses (Reise & Henson, 2003).  

 IRT ability or person parameters (θ) are not item or test dependent and 

item and test characteristics are not dependent on the ability or person parameters. 

This is called the property of invariance (Hambleton et al., 1991; Lord, 1980) and 

means that the test and item parameters remain the same regardless of the sample 

of respondents, and the ability or person parameters do not vary depending on the 

test items administered or time of test provided the items are relevant to and 

representative of the same domain of interest.  

At the foundation of IRT is the item response function (IRF), which gives 

the probability of observing a particular response to a particular item given the 

examinee’s latent trait value (i.e., ability, personality trait, etc.) and the parameters 

of the item. The item characteristic function (ICF) defines the expected item score 

given an examinee’s ability, and the item characteristic curve (ICC) is a graphical 

representation of the ICF. When considering polytomous item response models, 

there is a curve for each scoring category; in this case, the curves are called 

operating characteristic curves (OCC’s). 
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When the test items are all scored dichotomously, there are three basic 

models for analyzing the data: the one-, two-, and three-parameter logistic 

models. The one-parameter (1PL) model is the most basic and involves, as the 

name states, only one item parameter: the b-parameter is included in every IRT 

model and is considered the difficulty parameter (Yen & Fitzpatrick, 2006). The 

b-parameter is at the point on the θ scale where the probability of a correct 

response is equal to 0.50 and typically varies from -2.00 to 2.00 (Hambleton et al., 

1991; Yen & Fitzpatick, 2006) increasing as items become more difficult. Figure 

1 is a visual representation of the effect of changes in parameter b.  

 
Figure 1.ICCs showing the effect of increasing parameter b 

The two-parameter model (2PL) includes a second item parameter, the 

discrimination parameter, a. a is the slope of the ICC at the point of inflection and 

the higher the value of a, the more sharp the discrimination (Yen & Fitzpatrick, 

2006). The a-parameter is included when it is assumed that items on an 

assessment vary in their discriminating power. a-parameters typically range from 
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0 to 2.00 with values ranging from 0.40 to 2.50 considered good (Hambleton et 

al., 1991). The b-parameter is at the point on the θ scale where the probability of a 

correct response is equal to 0.50. Figure 2 is a visual representation of changes in 

a. Here, we see that as a increases, the range of θ decreases for that item. That is, 

the information provided by an item with a large value of a, will be greater. 

 
Figure 2.ICCs showing the effect of increasing parameter a 

Finally, the three-parameter model (3PL) includes the c-parameter, called 

the guessing or pseudo-chance parameter. This parameter was introduced to 

account for the possibility that even students with low ability have some chance of 

answering even difficult questions correctly. This parameter is not always 

necessary, and if set to zero, equates the 3PL with the 2PL (Yen & Fitzpatrick, 

2006). In the case of the 3PL model, the value of the b-parameter is dependent on 

the value of the lower asymptote (c-parameter). In this case, the b-parameter is at  

the point on the θ scale where the probability of a correct response is equal to 
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100

2

c 
. Figure 3 is a representation of changes to parameter c and the resulting 

changes to the probability of an examinee’s response to an item. 

 
Figure 3.ICCs showing the effect of increasing parameter c 

 Although there are clear benefits to the invariance property, there are two 

integral assumptions of IRT. First, there is an assumption regarding the 

dimensionality of the underlying ability or trait. While there are multi-

dimensional IRT models (MIRT), the model used in this study requires that a 

single trait or ability accounts for an individual’s θ score. When this assumption 

of the data holds, the examinees can be placed along a single, meaningful scale 

(Hambleton et al., 1991). 

 Second, there is the assumption of local independence. When the items on 

an assessment are locally independent, a response to any item is independent of a 

response to any other item on the same assessment for a given individual. This 

assumption allows us to determine the probability of an individual response 

pattern occurring given the individual’s ability or trait level (Hambleton et al., 
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1991; Lord, 1980). It is the case that if the first assumption of unidimensionality is 

met, then the assumption of local independence will also be met. 

 In addition to these assumptions, an assessment of model-data fit is also 

important in IRT. A poorly specified model creates problems with estimating both 

item parameters and θ scores. Consider the following: an analyst mistakenly 

specifies a model which only specifies a- and b-parameters when in fact the data 

fit a model consisting of all three item parameters. Because the c-parameter has 

not been specified, the θ values may be over-estimated as the individual’s ability 

to correctly guess the answer has not been taken into consideration. Guessing is 

not considered to be included in ability and, as such, it should not be allowed to 

unduly influence scores.  

Graded Response Model   

 Samejima (1969) extended the 2PL dichotomous IRT model to deal with 

ordered, categorical responses.  She developed the graded responses (GRM) 

model to allow IRT to be used with data derived from polytomously-scored items 

included in an achievement test and which are scored using a scoring rubric or 

analytic scoring scale and with likert-type response data used in attitude scales, 

psychological inventories or clinical assessments, where the different points along 

the response scale receive different scores. In essence, the GRM is an application 

of the 2PL to an ordered series of dichotomous responses and specifies the 

probability of responding in k or higher response categories as opposed to lower 

than k response categories (e.g., for a three point scale, 0 vs. 1 and 2 and 0 and 1 
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vs. 2; de Ayala, 2009). The probability (P) of obtaining a score (xj) or higher is 

defined as:  

    
       

          

             , (2.1) 

where θ is the latent trait,  

αj is the discrimination parameter for item j, 

δxj is the category boundary location for category score xj, and  

xj = {0,1…mj} where mj is the largest category score for item j. The value 

of mj need not be the same for all items. 

 The GRM is considered as a difference model because the probability of 

obtaining a specific category score xj on item j involves a two-step process. 

Equation 2.1 provides the probability of attaining a category score or higher and 

must be solved for each score category (i.e. xj = 0,1,…m). This provides the 

operating characteristic functions for the k thresholds. Next, the following 

equation is used: 

       
      

  (2.2) 

where   
  is    

  from equation 2.1. And pk gives the probability of responding in a 

particular category given θ by subtracting adjacent Pk
*
(θ) values. Because by 

definition responding above the highest response category is pk = 0.00, the 

probability of responding within the highest category is equal to the highest 

operating characteristic function calculated using Equation 2.1. 
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Parameter Estimation Using MULTILOG
1
 

 In MULTILOG, item parameter estimation can be done in one of three 

ways depending on whether θ is assumed to be a fixed or random variable.  If θ is 

assumed to be fixed and linearly related to the observable variable, parameters can 

be estimated using nonlinear regression (Roche, Wainer & Thissen, 1975). If θ is 

assumed to be fixed but unknown, simultaneous estimation of the fixed values of 

θ and item parameters is used (Bock, 1976) by dividing the examinees into 

homogenous groups.  

 Finally, when θ is assumed to be a random unobserved variable Bock and 

Aitken (1981) proposed using marginal maximum likelihood estimation (MMLE) 

which integrates the unknown ability parameter out over the parameter 

distributions and uses the marginal distributions to estimate item parameters. 

Their reformulation of the algorithm initially proposed by Dempster, Laird and 

Rubin (1977) allows for an unknown ability distribution to be estimated along 

with the item parameters.  

Trait Score Estimation Using MULTILOG 

 Trait score (θ) estimation in MULTILOG can be done in one of two ways: 

maximum likelihood (MLE) or expected a posteriori (EAP). The MLE of θ is the 

value at which an examinee has the highest likelihood of responding given the 

observed response pattern and item properties. However, in order for MLE to be 

computed, an examinee must have both correct and incorrect responses on an 

assessment. That is, given a dichotomous assessment, the response patterns 

                                                           
1
 PARSCALE (Muraki & Bock, 1997 ) was considered for calibration. However, when attempted 

with a skewed distribution condition, the program stopped running and produced an error file due 

to a lack of data in all possible categories.  
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[0,0,0,0,0] and  [1,1,1,1,1] will produce an estimation error when using MLE. In 

contrast, the EAP procedure uses the mean of the posterior distribution rather than 

the mode as in the MLE (Bock & Mislevy, 1982). In this case, all response 

patterns can be used. 

Empirical Studies Using the GRM 

 There are several applied examples in the social sciences in which the 

GRM has been used to fit item data to a model, estimate parameters, or to 

generally validate assessments. The assessments used vary across educational 

assessments and personality inventories to health questionnaires in which both 

dichotomously- and polytomously- scored items or only polytomously-scored 

items are used. As mentioned early, given the focus of the present study, the 

review of empirical studies is limited to studies outside of education with only 

polytomously-scored items. The sample sizes employed in these studies vary from 

126 (Schrum & Salekin, 2006) to 13,059 (Chernyshenko, Stark, Chan, Drasgow 

& Williams, 2001) and the number of items vary from 6 (Gumpel, 1999) to 198 

(Walton, Roberts, Krueger, Blonigen & Hicks, 2008).  

 One assessment that has been analysed more than once using Polytomous 

Item Response Theory (PIRT) is the 20-item Psychopathy Checklist (PCL), both 

the Revised (PCL-R; Hare, 1991) and Youth Version (PCL-YV; Forth, Kosson & 

Hare, 2003) forms. PCL items are scored on a 3 point scale wherein 0 translates to 

a complete absence of the behaviour, 1 translates to an occasional presence of the 

behaviour and 3 translates to the continuous presence of the behaviour.  

 Cooke, Michie and Kosson (2001) evaluated the structural, item, and test 
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generalizability of the PCL-R using IRT methods. Two samples, one with 359 

participants and another with 356 participants, were calibrated using the GRM 

and the computer program MULTILOG. Cooke et al. used IRT methods to 

investigate Differential Item Functioning (DIF) of the PCL-R for Caucasians and 

African Americans. DIF, in the context of the PCL, is expected to occur when 

individuals with the same level of psychopathy from different groups have 

differing probabilities of obtaining the same score on a particular item. Two PCL-

R factor models, one using 13 items and another using all 20, were calibrated for 

both samples in MULTILOG using the GRM. Five items showed significant 

differences across the two samples and the magnitude was small.   

 Bolt, Hare, Vitale & Newman (2004), also investigated DIF on the PCL-R 

using three methods across four samples: male criminal offenders (n = 3,847), 

female criminal offenders (n = 1,219), male psychiatric forensic patients (n = 

1,246) and male criminal offenders scored only from file review (n = 2,626). Each 

sample was calibrated using MULTILOG with the GRM and both item and θ 

parameters were estimated. A large number of items displayed DIF in the study 

but as with the results of Cooke et al. (2001) the magnitude was small.  

  Finally, Schrum and Salekin (2006) analysed the assessment data from a 

sample of 123 responses to the PCL-YV from adolescent females from a 

detention centre. They also used the GRM and MULTILOG program to calibrate 

item and person parameters and to investigate item discrimination. Results 

showed that items discriminated the sample of juveniles differently from other 

samples.  



Running head: PIRT parameter recovery 16 

 Health research has also seen an increase in the use of IRT for test and 

item development. Cook et al. (2007) calibrated the data from 1,714 patient 

responses on a two scales from a health-related quality of life (HRQOL) measure: 

the general distress pool (15 items) and the physical function pool (23 items). 

Three different PIRT models were compared for fit with the data: the partial credit 

model (PCM; Masters, 1982), the generalized partial credit model (GPCM; 

Muraki, 1992), and the GRM, and two software programs were used:  

WINSTEPS (Linacre, 2002) and PARSCALE 3 (Muraki & Bock, 1997).  

 In addition to item and DIF analyses using IRT, item parameters estimated 

were used to simulate a computerized adaptive testing (CAT) environment with 

the items from the HRQOL instrument. Results indicated that in the health 

sciences, multidimensional IRT models may be of more use.  

 Hays, Liu, Spritzer, and Cella (2007) also calibrated sample data from 15 

items assessing physical functioning from the HRQOL measure (n = 3,223) in 

order to inform the creation of an item bank. MULTILOG software was used in 

the calibration of data with the GRM and results indicated good fit with the 

model. However, the b-parameters for the majority of the 15 items were very low 

on the θ scale and recommendations include the creation of items more evenly 

placed along the scale.   

Simulation Studies Using the GRM 

 There are only a small number of simulated data parameter recovery 

studies using PIRT models. A seminal article by Reise and Yu (1990) posits that 

the minimum number of participants be 500 in order to estimate the parameters 
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using the GRM when using an instrument with 5 response categories. The authors 

used the MULTILOG program to estimate parameters across 36 conditions: 

sample size (n = 250, 500, 1,000, and 2,000), true θ distribution (normal, uniform, 

and positively skewed), and true a-parameters (poor, moderate, and average 

discrimination). Outcome measures for the study included root mean square errors 

(RMSE), correlations between the true and estimated parameters, and mean 

comparisons between true and estimated parameters. 

 Reise and Yu’s results indicated that the accuracy of the recovery of a-

parameters increased across θ distributions from uniform to normal to positively 

skewed. Five hundred examinees were necessary to bring the RMSE below 0.10, 

and 1,000 examinees were need to obtain correlations between the ‘true’ and 

estimated a-parameter values above 0.90. The results for the b-parameters were 

similar to those for the a-parameters, with RMSEs decreasing with increasing 

sample size and correlations between ‘true’ and estimated b-parameters increasing 

with increasing sample size. Recovery of the θ parameters was generally poorer 

than the a- and b-parameters and was less affected by changes in sample size.  

 Sinar and Zickar (2002) used simulation methods to investigate the 

influence of the inclusion of deviant items that did not assess the construct of 

interest. A total of 45 conditions were calibrated: scale intercorrelations (-0.60, -

0.30, 0.00, 0.30, 0.60), a-parameters for the focal scale (low, average, and high 

discrimination), and a-parameters for the scale with deviant items (low, average, 

and high discrimination). They use the GRM and the MULTILOG program to 

obtain parameter estimates.   
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 Eight ANOVAs were run to investigate the influence of deviant items on 

traditional psychometric measures (classical test theory) and IRT with the 

dependent variables as the change in discrimination. Results indicated that 

construct irrelevant items were not significantly problematic for IRT analysis 

results due to the property of invariance and that when the item pool was well-

defined an IRT model may be preferable to a classical model.  

Purpose of the Study 

 Though developed and utilized heavily in the field of Education, IRT has 

been increasingly used in the social sciences and medicine for scale analysis and 

validation. When looking at large-scale assessment data in Education, large sized 

samples often with scores that are approximately normally distributed is the norm. 

However, as evidenced above, the recommended samples sizes were not met for 

many of the studies in which PIRT was used in the social and heath sciences 

areas. In addition, non-normal distributions are often seen in the social or health 

sciences due to the nature of the domain that is assessed.    

 Schrum and Salekin (2006) used MULTILOG to calibrate a 20-item 

assessment with a 3-point graded scale with a sample size of 123. Gumpel (1999) 

calibrated a six-item assessment with a 4-point graded scale and sample size of 

139; but the program used was not identified. de Ayala (2009) recommended a 

minimum sample size of 500 for calibration using polytomous models (assuming 

normally distributed θ and IRT assumptions are met) and suggested that there may 

be a “point of diminishing returns” (p.223) after which increasing the sample size 

will not increase the accuracy of estimation. In a simulation study conducted by 
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Reise and Yu (1990), it was suggested that a sample size above 500 is sufficient 

for calibration of a 25-item assessment under the GRM.  Reise and Yu also found 

that smaller sample sizes affected the estimation of item parameters but did not 

affect estimation of the θ parameter. 

 Thus, the purpose of the present study was twofold. First, to identify the 

effect of sample size and non-normal ability (θ) distributions on the accuracy and 

precision of the estimation of the item parameters at the test level using the GRM 

and the MULTILOG program at the test level. The second purpose was to 

conduct the analysis and provide outcome data at the item level to obtain 

information at the individual item level. Thus, the following four research 

questions will be addressed using simulated data: 

1) Does the shape of the underlying θ distribution have an effect on test-level 

statistical outcomes for item and person parameter recovery under the 

GRM using MULTILOG? 

2) Does the shape of the underlying θ distribution have an effect on item-

level statistical outcomes for item and person parameter recovery under 

the GRM using MULTILOG? 

3) Does sample size have an effect on test-level statistical outcomes for item 

and person parameter recovery under the GRM using MULTILOG? 

4) Does sample size have an effect on item-level statistical outcomes for item 

and person parameter recovery under the GRM using MULTILOG? 

The test simulated and the rationale for each factor it’s levels is presented in 

Chapter Three.  
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Chapter Three: Method 

 The simulation methods used in this research study are presented in this 

chapter. First, the independent variables investigated are described and the 

rationale for the levels chosen for these variables is presented. Second, 

descriptions of the processes carried out to simulate and calibrate the data for the 

study are described. Finally, the outcome measures used to evaluate the accuracy 

and precision of the estimates produced using the GRM and the MULTILOG 

program are described.  

Independent Variables 

 Two independent factors were considered: type of underlying latent trait 

distribution (θ) and sample size. 

 Underlying latent trait distribution (θ).  The type of underlying latent trait 

distribution (θ) was varied in this study because it has been shown that in some 

cases, the shape of the distribution of θ can affect parameter estimation (Reise & 

Yu, 1990; Toland, 2008).  In order to accurately represent the type of data that 

one would collect with a clinical assessment, the level of negative skewness was 

varied for the underlying θ distribution. As the program WinGen3 (Han, 2007) 

was used, it was not possible to have complete control over the exact value of the 

skewness statistic. However, three levels of skewness were considered: extreme 

negative, moderate negative, and no skewness (i.e., normal). 

Sample size. Sample size was chosen as a factor because, as shown in the 

previous chapter, research has shown that sample size does have an effect on the 

accuracy and precision of item parameter estimation (de Ayala, 2009; Drasgow, 
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1989; Seong, 1990; Reise &Yu, 1990). Seven sample sizes were investigated (n = 

100, 250, 500, 750, 1,000, 1,500, 3,000). These sample sizes represent those 

found in applied literature and those generally found in clinical assessment 

situations where PIRT has been used. Of particular note are the two smallest 

sample sizes, which have been used in applied research studies and do not meet 

the recommendations provided by de Ayala (2009).  

The three distribution shapes were crossed with the seven sample sizes to 

yield a 3 x 7 research design. 

Data Generation and Calibration 

 The first step in the simulation was to generate item parameters for the 20 

item assessment using WinGen3. The 20 a-parameters were simulated using a 

uniform distribution with a range of 0.400 to 2.500. The values of a-parameters 

typically range from 0 to 2.00 with values ranging from 0.40 to 2.50 considered 

good (Hambleton et al., 1991). The b1-, b2-, b3-, and b4-location parameters were 

simulated using a normal distribution (M=0.000, SD=1.000) and they ranged from 

-2.00 to 2.00 since this is the typical range for b-parameters (Hambleton et al., 

1991; Yen & Fitzpatick, 2006). The item parameters used for the simulation are 

reported in Table 1 and are similar to those found in applied literature 

(Chernyshenko et al., 2001; Cooke et al., 2001; Schrum & Salekin, 2006). Next, 

three population distributions were sampled using WinGen3 to create θ 

distributions for each sample size. Two degrees of negative skewness developed 

using the 2-parameter beta distribution in an attempt to model the different 

 distributions of clinical scores on a diagnostic instrument.  Parameters of the 



Running head: PIRT parameter recovery 22 

population beta distributions were varied to keep the value of skewness at 

approximately -0.500 for the moderately-skewed conditions and -1.000 for the  

Table 1  

Item Parameters for 20-Item Assessment 

 Parameters 

 a- b1- b2- b3- b4- 

Item 1 0.735 -0.482 -0.073 0.121 2.030 

Item 2 0.596 -0.750 1.112 1.643 2.343 

Item 3 2.400 -1.090 -0.054 0.288 1.916 

Item 4 0.637 -2.116 -0.420 0.481 0.987 

Item 5 1.594 -0.779 -0.314 0.874 1.602 

Item 6 1.804 -2.090 -1.360 -0.461 1.631 

Item 7 0.629 -1.206 0.779 0.900 1.469 

Item 8 1.252 -0.542 0.024 0.549 1.019 

Item 9 1.372 -1.447 -0.786 -0.443 0.847 

Item 10 1.522 -1.646 -1.585 -1.231 0.515 

Item 11 2.376 -0.398 0.845 1.694 1.973 

Item 12 1.204 -1.911 0.161 1.373 1.410 

Item 13 2.466 -1.044 0.070 0.121 0.523 

Item 14 0.833 -1.058 0.273 0.518 0.585 

Item 15 1.793 0.223 0.426 0.730 0.998 

Item 16 0.413 -2.044 -1.132 -0.292 0.866 

Item 17 1.511 -0.706 -0.049 0.942 1.308 

Item 18 1.857 -1.384 -0.505 0.474 1.399 

Item 19 1.877 -0.987 -0.004 0.796 1.633 

Item 20 2.440 -0.419 0.854 1.190 1.723 

Mean 1.466 -1.094 -0.082 0.513 1.339 

extremely skewed distributions. The normal distribution (approximately M = 

0.000, SD = 1.000) was used as a baseline. Tables 2 and 3 contain the descriptive 

statistics for the normal distribution for each sample size (Table 2) and both 

skewed distribution conditions for each sample size (Table 3). In order to obtain 

stable results, 1,000 replications of each condition were conducted.  
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Table 2  

Descriptive Statistics for all Normal Distribution Conditions 

Distribution Sample Size Mean (M) Standard Deviation Skewness Kurtosis 

Normal 100 0.088 1.074 0.040 0.020 

Normal 250 0.055 1.046 -0.130 0.350 

Normal 500 0.060 0.951 0.010 -0.080 

Normal 750 0.016 1.004 0.060 0.110 

Normal 1000 -0.019 1.015 0.010 -0.200 

Normal 1500 0.039 1.022 0.070 -0.030 

Normal 3000 -0.012 0.988 -0.030 -0.060 

 Appendix ‘A’ contains the MULTILOG syntax used for the estimation of 

item parameters. The “RANDOM” command was used for marginal maximum 

likelihood (MMLE) parameter estimation, with “INDIVIDUAL” indicating the 

input format is individual item response vectors. Convergence was set to 0.001 

with 500 calibration cycles in order to allow the software time to come to 

convergence. As MULTILOG does not produce an error message in the output 

parameter file, all output was utilized in calculating the outcome measures. Since 

MMLE uses the empirical θ distribution rather than making theoretical 

assumptions and inconsistencies due to problematic local maxima when 

estimating item parameters are eliminated (Bock & Aitkin, 1981).  

 Further, since the item parameters are estimated separately from ability, 

calibration using MMLE is more efficient than Joint Maximum Likelihood 

Estimation (JMLE) which estimates item and person parameters simultaneously 

(de Ayala, 2009). In addition, whereas MMLE has been shown to improve 
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accuracy of estimation for shorter instruments, JMLE has been shown to produce 

biased estimates for instruments 15 items or shorter (Lord, 1983, 1986).  

Table 3  

Descriptive Statistics for all Skewed Conditions  

  Beta 

Parameters 

    

Distribution Sample 

Size 

α β Mean 

(M) 

Standard 

Deviation 

Skewness Kurtosis 

Moderate 

Negative 

100 3 2 0.640 1.143 -0.550 -0.280 

Moderate 

Negative 

250 4 2 0.993 1.119 -0.480 -0.360 

Moderate 

Negative 

500 5 2 1.334 0.875 -0.500 -0.210 

Moderate 

Negative 

750 4 2 0.989 1.029 -0.480 -0.220 

Moderate 

Negative 

1000 5 2 1.303 0.945 -0.560 -0.150 

Moderate 

Negative 

1500 5 2 1.234 0.974 -0.530 -0.170 

Moderate 

Negative 

3000 5 2 1.270 0.932 -0.510 -0.320 

Extreme 

Negative 

100 6 2 1.591 0.859 -1.050 0.960 

Extreme 

Negative 

250 8 2 1.819 0.769 -1.080 0.770 

Extreme 

Negative 

500 10 2 1.965 0.647 -1.090 1.570 

Extreme 

Negative 

750 8 2 1.794 0.775 -0.970 0.740 

Extreme 

Negative 

1000 10 2 2.013 0.611 -0.970 0.880 

Extreme 

Negative 

1500 10 2 1.990 0.641 -1.000 0.890 

Extreme 

Negative 

3000 10 2 2.001 0.619 -1.000 1.040 

 Appendix ‘B’ contains the MULTILOG syntax used to calibrate the 

person parameters (θ). The “SCORE” command computes θ scores, using 
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Maximum A Posteriori (MAP) estimation as default. MAP is a Bayesian approach 

to parameter estimation that uses an iterative method and a continuous prior 

distribution. Bayesian estimation procedures can be used for any response pattern, 

including those with ‘perfect’ (all correct or incorrect) response patterns, unlike 

maximum likelihood procedures which demand both correct and incorrect 

responses in an individual’s response set. The possibility of perfect response 

patterns when dealing with extremely skewed distributions is large. Thus using a 

Bayesian approach was necessary for this study.  

Data Analysis 

 Once all the MULTILOG runs were completed, the item and person 

parameters were read back into SAS (Version 9.2) and four outcome measures 

were presented: Root Mean Square Errors (RMSEs) across the 20 items by 

replication, Test-Level BIAS averaged across all 20 items and replications, Item-

Level BIAS for each item across replications, and frequencies of non-convergence 

for each condition. The syntax used to combine the results into SAS and calculate 

the outcome measures is presented in Appendix ‘C’. In order to gain a true sense 

of the outcomes from an applied PIRT calibration wherein there are no ‘true’ 

parameters to use in a calibration procedure, estimated parameters were not scaled 

to the ‘true’ parameter scale for the purposes of this study.  

 RMSEs were calculated in three stages as follows: 

Step 1: The MSEr. was calculated across the 20 assessment items for each 

replication: 
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where      = the estimated parameter for item i on replication r, and 

              = the ‘true’ parameter for item i.  

Step 2: The mean MSEr. was calculated across the 1000 replications: 

        
      

    
   

   
 

(3.2) 

 

Step 3: The square root of the MSE.. is equal to the RMSE across the 20 items for 

the 1000 replications.  

 The RMSE is the most commonly used and recommended statistic for 

parameter recovery studies such as this (Sass, Schmitt, & Walker, 2008; Seong, 

1990; Stone, 1992; Tate, 1995). And the RMSE is also highly interpretable 

(Harwell, Stone, Hsu, & Kirisci, 1996) as it is calculated in parameter units. Thus, 

an RMSE = 1 translates to an absolute difference of one parameter unit between 

the estimated and ‘true’ parameters. 

 The second outcome measure to be used in this study is the average 

estimate of bias (BIAS). Test-Level BIAS is defined by: 

      
 

    
  

 

  
          

  

   

 

    

   

 (3.3) 

where      = the ‘true’ parameter value for item i, and 

    = the estimated parameter for item i.   

Test-level BIAS provides information regarding the direction and magnitude of 

bias for an estimated parameter relative to the corresponding ‘true’ parameter.  
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 Item-Level BIAS was also calculated for each item across the 1,000 

replications to aid in interpretation. These statistics were calculated as follows: 

        
         

     
   

   
  (3.3) 

where     = the ‘true’ parameter value for item i, and 

    = the estimated parameter for item i.   

Item-Level BIAS provides item-level information regarding the magnitude of the 

BIAS in item parameter estimates. The standard error (S.E.) of Item-Level BIAS 

was also calculated and provides information regarding the precision of those 

estimates.  

Non-Convergence Frequencies 

Before moving to the presentation of results in the next two chapters, it is 

first necessary to address the issue of non-convergence during the calibration 

phase.  Problems were encountered, especially when the distribution was 

extremely negatively skewed and for the smaller sample sizes. 

Table 4 shows the percentage of replications that did not converge when 

calibrating the data using MULTILOG. As shown, non-convergence was an issue 

with small sample sizes regardless of the distribution type. The default criterion 

for convergence for MULTILOG is set at 0.001. As shown in Table 4, in 51.4% 

of the replications failed to converge for the extreme negative (EN) distribution 

with n = 100 and this decreased to 11.4% with n = 3,000. The non-convergence 

for the moderate negative skewed (MN) distributions and normal distributions  

were more comparable with non-convergence for 26.8% and 26.9%, with n = 
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100 and  0.00%  with n = 3,000.  

Table 4  

Percentages of Replications Without Convergence with Criterion Set at 0.01 and 

0.001 

Distribution Type  Sample Size Criterion = 0.001 Criterion = 0.01 

Normal 

 

 

 

 

 

 

 

100 26.90% 9.20% 

250 21.50% 16.50% 

500 2.50% 1.90% 

750 0.60% 0.30% 

1000 0.10% 0.10% 

1500 0.00% 0.00% 

3000 0.00% 0.00% 

Moderate Negative 

 

 

 

 

 

  

100 26.80% 6.20% 

250 40.00% 12.60% 

500 16.30% 8.00% 

750 3.00% 1.00% 

1000 0.90% 0.10% 

1500 0.30% 0.00% 

3000 0.00% 0.00% 

Extreme Negative   100 51.40% 9.80% 

250 38.70% 34.00% 

500 20.70% 9.80% 

750 14.50% 2.90% 

1000 20.10% 3.90% 

1500 16.10% 1.90% 

3000 11.40% 0.30% 

Using a less conservative criterion of 0.01, the non-convergence rates 

decreased substantially. For example, for the EN distribution, the non-

convergence rate was 9.80% with n = 100 and 0.30% with n = 3,000. Likewise, 

the non-convergence rates were reduced for the MN and normal distributions. For 
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example, the non-convergence rates for the MN distribution was 6.2% with n = 

100 and 0.0% with n = 1,500 and n = 3,000.  

However, a feature of MULTILOG is to provide an estimate of the 

parameter of interest after the last completed cycle in the iterative procedure used 

(MML in this case). All 1,000 parameter estimates for each condition were 

included the calculation of the outcome measures. In such cases where the 

convergence criterion was not met, it is not known whether the estimates provided 

at the end of the 500 calibration cycles were over, under, or accurate estimates. As 

a result, the mean outcome measures provided may be too large, too small or 

correct. Non-convergence was taken into consideration when interpretations of 

the outcome measures were made.  



Running head: PIRT parameter recovery 30 

Chapter Four: Results and Discussion - Test Level Analysis 

 The results of the simulations are presented in this and the next chapter. 

The current chapter presents results at the test level, whereas chapter 5 contains 

results at the item level. Results are presented in both chapters for each of the 

parameters separately.  The RMSE and test level bias measures were used at the 

test level, and the item level BIAS and standard error of the BIAS were used at 

the item level. Each chapter concludes with general comments across conditions.  

a-parameters 

 RMSE. With the notable exception of n = 500, the RMSEs for the a-

parameters decreased in general for each distribution as the sample size increased 

(Figure 1.). As shown, the values of RMSE for all three distributions were large 

for n = 100 but dropped significantly for n = 250. As suggested above, RMSEs 

unexpectedly increased for n = 500, particularly for the MN distribution and the 

normal distribution conditions. There is no clear reason for this latter result. 

Beginning with n = 750, the RMSEs for the MN distribution and the normal 

distribution conditions were essentially the same and all less than 0.20. In 

contrast, the RMSEs for the EN distribution conditions were larger, varying from 

0.32 to 0.52 across the four larger sample sizes.   

 Test-Level BIAS. As with the RMSE, the test-level BIAS results show the 

accuracy of the recovered parameters increased across all distribution conditions 

as sample size increased with a spike at n = 500 (Figure 2.). Note that as the 
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Figure 4.RMSEs of ‘true’ and estimated a-parameters by condition. 

 subtraction for both BIAS measures was computed ‘true’ minus estimated, 

a negative BIAS indicates an overestimate and a positive BIAS indicates an 

underestimate. With one exception (EN, n = 250), the a-parameter was 

overestimated for the three smaller sample size conditions.  

 Continuing with the four larger sample size, the test level bias for the a-

parameter was slightly underestimated for the MN distribution and the normal 

distribution conditions for n = 750, and essentially zero for the remaining three 

sample sizes.  In contrast, the test level bias for the EN distribution conditions was 

0.25 for n = 750, after which it increased to close to 0.50 for the three larger 

sample sizes. 

  b1-parameters 

 RMSE. As shown in Figure 3, and unlike the case for the test-level a-

parameter, the RMSEs for the b1-location parameter differed across the three 
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Figure 5.BIAS of ‘true’ and estimated a-parameters by condition. 

distributions. RMSEs for the EN distribution conditions are all larger than 

the RMSEs for the MN distribution conditions which, with the exception of n 

=100, are all larger than the RMSEs for the normal distribution. The same spike in 

error occurs for the n=500 sample size with both the EN and MN distributions as 

with the a-parameter.  

 As expected, the RMSEs consistently decreased from 0.52 to close to zero 

for the normal, or baseline distribution conditions. In contrast, RMSEs increased 

for the EN and MN distribution conditions as the sample size increased from 100 

to 500, then decreased for n = 750  in essentially parallel ways. The RMSEs then 

increased for both EN and MN distribution conditions, but more so for the EN 

distribution, at n = 1,000. After this point, values for the two distributions 

diverged from each other, with the RMSE remaining close to 1.40 for the MN 

distribution conditions, while the RMSEs for the EN distribution conditions 

varying between 3.62 and 4.04.    

-1.75 

-1.50 

-1.25 

-1.00 

-0.75 

-0.50 

-0.25 

0.00 

0.25 

0.50 

100 250 500 750 1000 1500 3000 
B

IA
S 

Sample Size 

Extreme Negative 

Moderate Negative 

Normal 



Running head: PIRT parameter recovery 33 

 

Figure 6.RMSEs of ‘true’ and estimated b1-parameters by condition. 

 Test-Level BIAS. As with the RMSE, the test-level BIAS for the b1-

location parameter differed across the three distributions. And as with the RMSE, 

the BIAS was greatest for the EN distribution, followed in by the MN distribution 

and the normal distribution conditions. While the test-level BIAS was essentially 

zero across the seven sample sizes for the normal distribution, it increased for the 

EN and MN distribution conditions as the sample size increased from 100 to 500, 

then decreased for n = 750  in the same ways. BIAS then increased for both EN 

and MN distribution conditions, but more so for the EN distribution at n = 1,000. 

After this point, values for the two distributions diverged from one other, with the 

BIAS varying between 1.23 and 1.38 for the MN distribution and between 3.22 

and 3.51 for the EN distribution conditions. 

 Test-Level BIAS. As with the RMSE, the test-level BIAS for the b1-

location parameter differed across the three distributions. And as with the RMSE, 

the BIAS was greatest for the EN distribution, followed in by the MN distribution 
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Figure 7.BIAS of ‘true’ and estimated b1-parameters by condition. 

and the normal distribution conditions. While the test-level BIAS was essentially 

zero across the seven sample sizes for the normal distribution, it increased for the 

EN and MN distribution conditions as the sample size increased from 100 to 500, 

then decreased for n = 750  in the same ways. BIAS then increased for both EN 

and MN distribution conditions, but more so for the EN distribution at n = 1,000. 

After this point, values for the two distributions diverged from one other, with the 

BIAS varying between 1.23 and 1.38 for the MN distribution and between 3.22 

and 3.51 for the EN distribution conditions. 

b2-parameters 

 RMSE. As shown in Figure 5, the RMSEs for the b2-location parameter 

differed across the three distributions in the same way as for the b1-parameters. 

RMSEs for the EN distribution conditions are all larger than RMSEs for the MN 

distribution conditions which are all larger than the RMSEs for the normal 

distribution. As expected, the RMSEs consistently decreased from 0.79 to close to 

-0.50 

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

3.50 

4.00 

100 250 500 750 1000 1500 3000 

B
IA

S 

Sample Size 

Extreme Negative 

Moderate Negative 

Normal 



Running head: PIRT parameter recovery 35 

zero for the normal distribution conditions. In contrast,  RMSEs increased for the 

EN and MN distribution conditions as the sample size increased from 100 to 500, 

then decreased for n = 750  in essentially parallel ways. The RMSEs then 

increased for both EN and MN distribution conditions in similar ways with the 

RMSE staying close to 1.30 for the MN distribution conditions, and between 3.20 

and 3.48 for the EN distribution conditions.     

 Test-Level BIAS. As with the RMSE, the test-level BIAS for the b2-

location parameter differed across the three distributions (Figure 6). And as with 

the RMSE, the BIAS was greatest for the EN distribution, followed in by the MN 

distribution and the normal distribution conditions. b2-parameters were 

overestimated for the n = 100 and n = 250 sample sizes for the normal distribution 

 

Figure 8.RMSEs of ‘true’ and estimated b2-parameters by condition. 

overestimated for the n = 100 and n = 250 sample sizes for the normal distribution 

conditions, and from n = 500 as sample size increased BIAS was essentially zero.  
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size increased from 100 to 500, then decreased for n = 750  in the same way. 

BIAS then increased for both EN and MN distribution conditions, more so for the 

EN distribution at n = 1,000. After this point, values for the two distributions 

diverged from one other, with the BIAS varying between 1.24 and 1.33 for the 

MN distribution and between 3.05 and 3.26 for the EN distribution conditions. 

b3-parameters  

 RMSE. As shown in Figure 7, the RMSEs for the b3-location parameter 

differed across the three distributions differently than both the b1- and b2-

parameters. However, as with the other b-parameters, RMSEs for the EN  

 

Figure 9.BIAS of ‘true’ and estimated b2-parameters by condition. 

distribution conditions are all larger than RMSEs for the MN distribution 
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Figure 10.RMSEs of ‘true’ and estimated b3-parameters by condition. 

decreased from 2.67 at n = 100 to 0.99 at n = 750 and then increased slightly to 
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Figure 11.BIAS of ‘true’ and estimated b3-parameters by condition. 

EN distribution at n = 1,000. After this point, values for the two distributions 

levelled out, with the BIAS varying between 1.24 and 1.31 for the MN 

distribution and between 2.70 and 2.86 for the EN distribution conditions. 

b4-parameters 

 RMSE. As shown in Figure 7, the RMSEs for the b4-location parameter 

differed across the three distributions in a similar pattern to the b3-parameters. As 

with the other b-parameters, RMSEs for the EN distribution conditions are all 

larger than RMSEs for the MN distribution conditions which are all larger than 

the RMSEs for the normal distribution. And as in all cases, the RMSEs 

consistently decreased from 2.28 to close to zero for the normal distribution  

conditions. 

 In contrast, RMSEs for the MN distribution conditions steadily decreased 

from 2.38 at n = 100 to 1.02 at n = 750 and then increased slightly to 1.27 at n = 
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Figure 12.RMSEs of ‘true’ and estimated b4-parameters by condition. 

3.14 at n = 100 to 3.25 at n = 250 and then decreased again to 1.95 at n = 750. At 

that point, the RMSE varied between 2.32 and 2.41 for the remaining EN 

distribution conditions.  

 Test-Level BIAS. As with the RMSE, the test-level BIAS for the b4-

location parameter differed across the three distributions (Figure 8) in similar 

ways to the b3-parameter. And as with the RMSE, the BIAS was greatest for the 

EN distribution, followed in by the MN distribution and the normal distribution 

conditions. b4-parameters were overestimated at n = 100 for the normal 

distribution conditions, and from n = 250 as sample size increased BIAS was 

essentially zero.  

 For the EN and MN distribution conditions BIAS increased as the sample 

size increased from 100 to 500, then decreased for n = 750  in the same way. 

BIAS then increased for both EN and MN distribution conditions, more so for the 

EN distribution at n = 1,000. After this point, values for the two distributions 
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Figure 13.BIAS of ‘true’ and estimated b4-parameters by condition. 

levelled out, with the BIAS varying between 1.24 and 1.27 for the MN 

distribution and between 2.31 and 2.38 for the EN distribution conditions. 

Theta (θ) 

  RMSE. Compared to the item parameters at the test level and as shown in 

Figure 11, the values of the RMSEs for θ are much less variable and except for n 

= 1,000 and, particularly, n = 3,000 essentially equal for the normal, MN, and EN 

distribution conditions.  The values ranged from 0.33 parameter units for sample 

size 100 to 0.42 for n = 1,000. However, while the RMSE stayed the same for n= 

3,000, the RMSE increased to 0.80 units for the EN distribution and, 

unexpectedly, to 1.22 units for the MN distribution.  

 BIAS. In contrast to the RMSEs for θ, the BIAS  in the θ estimates were 

more variable across  the seven sample sizes and three distributions Figure 12). 

Whereas BIAS for the normal distribution was, with the exception of n = 750, 
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Figure 14.RMSEs of ‘true’ and estimated θ by condition. 

essentially unchanged (0.20 units), the patterns of BIAS for the MN and EN 

distributions varied across the sample sizes. For example, the BIAS for the MN 

distribution was greater for n = 100 and n = 500 (0.15 vs. 0.05 and 0.10 vs. 0.0, 

respectively). And the BIAS was essentially equal for n = 250 (0.22), 750 (0.22) 

and 1,500 (0.22). At n = 1,000, for the EN distribution condition BIAS was 

greater than for the MN distribution (0.26 vs. 0.23) but at n = 3,000 BIAS for the 

MN distribution condition was much greater than for the EN condition (0.27 vs. 

0.96). With one exception (bias =0 for EN, n = 500) θ was consistently 

underestimated. 

Summary 

 In general, and as expected, the normal distribution conditions produced 

better test-level results than either skewed distribution across the seven sample 

sizes (see Appendix D). Additionally, aside from θ estimates, the EN distribution 

conditions produced the poorest results overall. Recovery of the a-parameters 
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Figure 15.BIAS of ‘true’ and estimated θ by condition. 

showed the most consistent improvement as the sample size increased across all 

distribution conditions, and b3- and b4-location parameters were more accurately 

recovered than b1- and b2- location parameters. The RMSEs for the normal and 

MN distribution conditions were comparable across sample sizes and all three 

distribution conditions were comparable when n was small. The BIAS results 

revealed that for the EN and MN distribution conditions, locations parameters 

were in general overestimated. In the case of the a-parameters, they tended to be 

overestimated at small sample sizes and underestimated with larger sample sizes. 

As with the RMSEs, the test-level BIAS results for normal and MN were 

comparable across sample size and for n = 100 all three distribution conditions 

were comparable.  
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Chapter 5: Results and Discussion - Item Level Analysis  

As indicated in the previous chapter, the results at the item level are 

presented in this chapter. As in Chapter 4, the results are presented for each of the 

parameters separately.  However, the results in this chapter include the item level 

BIAS and standard error of the BIAS. The chapter also concludes with general 

comments across conditions. 

a-parameters  

 Tables 5, 6 and 7 contain the item BIAS and standard error of the item 

BIAS for the a-parameters across all sample sizes for the normal distribution, 

MN, and EN conditions. As with the test level results, unexpected results were 

obtained for n = 500 for all three distributions. While the largest BIAS for all 

items and the three distributions was for n = 100, the BIAS was smallest for the 

EN distribution and more similar for the MN and normal distributions.  

 There was less BIAS at n = 250 than at n = 100, and greater BIAS was 

observed for the EN distribution followed in turn by the MN distribution and the 

normal distribution conditions. And while generally the size of BIAS decreased as 

the sample size increased for the MN and normal distributions, BIAS increased as 

sample size increased for the EN distribution conditions. Further, the decrease 

noted for the MN and normal distribution conditions was greater for the normal 

distribution than for the MN distribution. BIAS was less than or equal to 0.05 

with three exceptions for the normal distribution, 750n  ,  nine exceptions for 

the MN distribution, 1,000n  , and for no items for the EN distribution.  
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 Further inspection of the full set of BIAS values reveals that the amount of 

BIAS was also dependent upon item: larger ‘true’ a-parameters tended to result in 

greater bias. However, while the standard error of the BIAS generally decreased 

as the sample size increased across the 20 items for all three distribution 

conditions, the standard errors tended to be close in value or larger than their 

corresponding bias except for the n = 100 for the MN and normal distribution 

conditions. Consequently, when the value of the BIAS was divided by it’s 

standard error for 250n  , the results suggest that the BIAS values were not 

significantly different from zero for these two distributions. In contrast the 

standard errors for the BIAS across EN distribution conditions tended to be less 

that their corresponding BIAS, resulting in the ratio of the BIAS to it’s standard 

error being large, suggesting that the BIAS was significantly different from zero 

for these conditions. 
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Table 5 

Item-Level Bias for a-parameters Under the Normal Conditions   

 n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000 

Item 1 Bias -0.623 -0.039 -0.440 -0.005 -0.016 -0.019 0.005 

(S.E.) 
 

(0.281) (0.135) (0.109) (0.082) (0.070) (0.058) (0.040) 

Item 2 Bias -0.501 -0.038 -0.357 -0.005 -0.009 -0.016 0.008 

(S.E.) 
 

(0.242) (0.136) (0.100) (0.078) (0.063) (0.055) (0.038) 

Item 3 Bias -2.115 -0.124 -1.471 -0.030 -0.059 -0.050 0.020 

(S.E.) 
 

(0.898) (0.252) (0.290) (0.143) (0.126) (0.097) (0.070) 

Item 4 Bias -0.527 -0.037 -0.383 -0.004 -0.013 -0.018 0.008 

(S.E.) 
 

(0.244) (0.131) (0.097) (0.074) (0.066) (0.053) (0.037) 

Item 5 Bias -1.372 -0.073 -0.960 -0.020 -0.034 -0.037 0.017 

(S.E.) 
 

(0.472) (0.183) (0.174) (0.101) (0.089) (0.072) (0.049) 

Item 6 Bias -1.616 -0.113 -1.091 -0.021 -0.040 -0.048 0.019 

(S.E.) 
 

(0.592) (0.211) (0.213) (0.116) (0.096) (0.079) (0.054) 

Item 7 Bias -0.491 -0.032 -0.375 -0.007 -0.012 -0.014 0.008 

(S.E.) 
 

(0.258) (0.133) (0.100) (0.075) (0.062) (0.052) (0.039) 

Item 8 Bias -1.074 -0.071 -0.746 -0.008 -0.026 -0.029 0.013 

(S.E.) 
 

(0.375) (0.169) (0.143) (0.096) (0.082) (0.068) (0.046) 

Item 9 Bias -1.164 -0.084 -0.818 -0.002 -0.027 -0.029 0.010 

(S.E.) 
 

(0.391) (0.175) (0.158) (0.093) (0.083) (0.068) (0.048) 

Item 10 Bias -1.243 -0.063 -0.919 -0.011 -0.034 -0.038 0.015 

(S.E.) 
 

(0.569) (0.207) (0.194) (0.103) (0.095) (0.076) (0.052) 

Item 11 Bias -2.226 -0.113 -1.427 -0.021 -0.060 -0.063 0.026 

(S.E.) 
 

(0.945) (0.267) (0.288) (0.142) (0.126) (0.100) (0.074) 

Item 12 Bias -0.943 -0.018 -0.720 -0.006 -0.028 -0.032 0.012 

(S.E.) 
 

 

(0.447) (0.186) (0.152) (0.091) (0.080) (0.064) (0.043) 

Item 13 Bias -2.001 -0.127 -1.518 -0.010 -0.067 -0.050 0.018 

(S.E.) 
 

(0.945) (0.315) (0.304) (0.157) (0.125) (0.108) (0.074) 

Item 14 Bias -0.612 -0.037 -0.496 -0.004 -0.019 -0.020 0.007 

(S.E.) 
 

(0.357) (0.160) (0.114) (0.084) (0.068) (0.060) (0.042) 

Item 15 Bias -1.551 -0.086 -1.083 -0.014 -0.036 -0.049 0.019 

(S.E.) 
 

(0.655) (0.234) (0.227) (0.126) (0.119) (0.097) (0.063) 

Item 16 Bias -0.356 -0.023 -0.243 -0.006 -0.009 -0.012 0.004 

(S.E.) 
 

(0.218) (0.132) (0.090) (0.073) (0.063) (0.052) (0.037) 

Item 17 Bias -1.276 -0.066 -0.909 -0.012 -0.032 -0.041 0.016 

(S.E.) 
 

(0.433) (0.181) (0.164) (0.098) (0.083) (0.073) (0.049) 

Item 18 Bias -1.587 -0.112 -1.125 -0.014 -0.044 -0.046 0.019 

(S.E.) 
 

(0.522) (0.193) (0.190) (0.111) (0.096) (0.077) (0.052) 

Item 19 Bias -1.620 -0.090 -1.128 -0.017 -0.045 -0.045 0.017 

(S.E.) 
 

(0.545) (0.193) (0.190) (0.109) (0.096) (0.078) (0.056) 

Item 20 Bias -2.229 -0.119 -1.479 -0.024 -0.057 -0.065 0.025 

(S.E.) (0.930) (0.266) (0.294) (0.146) (0.131) (0.105) (0.076) 
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Table 6 

Item Bias for a-parameters Across Moderate Negative Conditions   

 n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000 

Item 1 Bias -0.698 -0.099 -0.374 -0.027 0.014 0.008 0.044 

(S.E.) (0.280) (0.140) (0.104) (0.080) (0.067) (0.057) (0.040) 

Item 2 Bias -0.566 -0.089 -0.295 -0.016 0.014 0.013 0.035 

(S.E.) (0.235) (0.131) (0.098) (0.075) (0.065) (0.053) (0.038) 

Item 3 Bias -2.669 -0.399 -1.281 -0.126 0.003 0.000 0.103 

(S.E.) (1.054) (0.295) (0.311) (0.147) (0.132) (0.101) (0.071) 

Item 4 Bias -0.627 -0.095 -0.341 -0.033 0.009 0.006 0.033 

(S.E.) (0.260) (0.141) (0.110) (0.078) (0.069) (0.056) (0.040) 

Item 5 Bias -1.588 -0.271 -0.878 -0.084 -0.003 -0.003 0.063 

(S.E.) (0.482) (0.196) (0.180) (0.106) (0.090) (0.074) (0.054) 

Item 6 Bias -1.878 -0.297 -0.985 -0.091 0.005 -0.005 0.080 

(S.E.) (0.716) (0.223) (0.252) (0.123) (0.103) (0.092) (0.062) 

Item 7 Bias -0.564 -0.086 -0.325 -0.028 0.008 0.011 0.034 

(S.E.) (0.273) (0.141) (0.104) (0.081) (0.065) (0.055) (0.039) 

Item 8 Bias -1.244 -0.210 -0.699 -0.071 -0.004 -0.008 0.046 

(S.E.) (0.407) (0.181) (0.166) (0.092) (0.087) (0.069) (0.049) 

Item 9 Bias -1.433 -0.230 -0.780 -0.086 -0.019 -0.020 0.040 

(S.E.) (0.482) (0.184) (0.191) (0.104) (0.093) (0.074) (0.053) 

Item 10 Bias -1.531 -0.225 -0.876 -0.097 -0.022 -0.035 0.033 

(S.E.) (0.669) (0.244) (0.247) (0.124) (0.107) (0.088) (0.061) 

Item 11 Bias -2.387 -0.379 -1.288 -0.104 0.003 0.002 0.104 

(S.E.) (0.880) (0.278) (0.264) (0.139) (0.125) (0.096) (0.073) 

Item 12 Bias -1.078 -0.138 -0.661 -0.063 -0.001 0.003 0.052 

(S.E.) (0.472) (0.223) (0.154) (0.093) (0.082) (0.065) (0.047) 

Item 13 Bias -2.560 -0.463 -1.463 -0.224 -0.107 -0.095 0.009 

(S.E.) (1.284) (0.413) (0.433) (0.193) (0.160) (0.135) (0.092) 

Item 14 Bias -0.702 -0.093 -0.463 -0.042 0.001 -0.003 0.035 

(S.E.) (0.396) (0.203) (0.137) (0.087) (0.074) (0.064) (0.045) 

Item 15 Bias -1.828 -0.319 -1.035 -0.120 -0.029 -0.033 0.039 

(S.E.) (0.696) (0.249) (0.233) (0.132) (0.114) (0.091) (0.065) 

Item 16 Bias -0.396 -0.056 -0.217 -0.015 0.005 0.003 0.024 

(S.E.) (0.217) (0.132) (0.098) (0.076) (0.068) (0.051) (0.038) 

Item 17 Bias -1.518 -0.250 -0.855 -0.081 -0.017 -0.013 0.053 

(S.E.) (0.491) (0.195) (0.186) (0.107) (0.090) (0.075) (0.053) 

Item 18 Bias -1.875 -0.328 -1.069 -0.111 -0.023 -0.027 0.055 

(S.E.) (0.610) (0.219) (0.222) (0.117) (0.105) (0.082) (0.062) 

Item 19 Bias -1.942 -0.317 -1.045 -0.105 -0.009 -0.014 0.068 

(S.E.) (0.603) (0.217) (0.218) (0.116) (0.102) (0.083) (0.057) 

Item 20 Bias -2.428 -0.431 -1.371 -0.128 -0.015 -0.022 0.077 

(S.E.) (0.836) (0.305) (0.287) (0.150) (0.127) (0.102) (0.074) 
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Table 7  

Item Bias for a-parameters Across Extreme Negative Conditions   

 n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000 

Item 1 Bias -0.446 0.153 -0.107 0.166 0.271 0.250 0.270 

(S.E.) (0.310) (0.147) (0.111) (0.080) (0.075) (0.058) (0.043) 

Item 2 Bias -0.371 0.131 -0.082 0.140 0.223 0.204 0.222 

(S.E.) (0.263) (0.133) (0.098) (0.075) (0.069) (0.056) (0.039) 

Item 3 Bias -1.821 0.421 -0.490 0.484 0.823 0.751 0.821 

(S.E.) (1.039) (0.257) (0.297) (0.147) (0.127) (0.108) (0.071) 

Item 4 Bias -0.443 0.127 -0.116 0.135 0.225 0.211 0.230 

(S.E.) (0.291) (0.139) (0.121) (0.084) (0.076) (0.060) (0.044) 

Item 5 Bias -1.270 0.260 -0.378 0.306 0.535 0.490 0.532 

(S.E.) (0.590) (0.195) (0.180) (0.108) (0.098) (0.079) (0.052) 

Item 6 Bias -1.426 0.320 -0.388 0.358 0.615 0.560 0.615 

(S.E.) (0.813) (0.218) (0.232) (0.125) (0.113) (0.092) (0.060) 

Item 7 Bias -0.394 0.125 -0.110 0.136 0.222 0.205 0.220 

(S.E.) (0.304) (0.146) (0.111) (0.084) (0.072) (0.058) (0.047) 

Item 8 Bias -1.053 0.196 -0.329 0.232 0.414 0.378 0.411 

(S.E.) (0.516) (0.181) (0.179) (0.103) (0.096) (0.076) (0.053) 

Item 9 Bias -1.156 0.201 -0.393 0.237 0.439 0.401 0.436 

(S.E.) (0.638) (0.203) (0.223) (0.113) (0.111) (0.084) (0.058) 

Item 10 Bias -1.466 0.222 -0.489 0.247 0.466 0.424 0.462 

(S.E.) (0.996) (0.249) (0.318) (0.151) (0.153) (0.104) (0.080) 

Item 11 Bias -1.844 0.418 -0.508 0.466 0.801 0.730 0.799 

(S.E.) (0.873) (0.253) (0.250) (0.133) (0.122) (0.099) (0.066) 

Item 12 Bias -0.808 0.256 -0.270 0.228 0.400 0.370 0.410 

(S.E.) (0.646) (0.204) (0.177) (0.128) (0.140) (0.104) (0.056) 

Item 13 Bias -1.878 0.300 -0.935 0.309 0.656 0.579 0.646 

(S.E.) (1.938) (0.547) (0.832) (0.233) (0.242) (0.180) (0.113) 

Item 14 Bias -0.439 0.177 -0.189 0.164 0.286 0.258 0.286 

(S.E.) (0.555) (0.201) (0.152) (0.094) (0.094) (0.070) (0.048) 

Item 15 Bias -1.629 0.226 -0.549 0.292 0.543 0.491 0.548 

(S.E.) (0.949) (0.252) (0.260) (0.137) (0.129) (0.097) (0.070) 

Item 16 Bias -0.271 0.080 -0.070 0.091 0.152 0.140 0.148 

(S.E.) (0.249) (0.131) (0.106) (0.082) (0.070) (0.055) (0.039) 

Item 17 Bias -1.241 0.232 -0.389 0.282 0.492 0.452 0.491 

(S.E.) (0.620) (0.198) (0.187) (0.111) (0.101) (0.082) (0.054) 

Item 18 Bias -1.589 0.273 -0.498 0.332 0.592 0.529 0.587 

(S.E.) (0.773) (0.217) (0.228) (0.123) (0.115) (0.090) (0.061) 

Item 19 Bias -1.481 0.307 -0.475 0.352 0.622 0.558 0.615 

(S.E.) (0.680) (0.199) (0.213) (0.118) (0.111) (0.086) (0.060) 

Item 20 Bias -2.099 0.364 -0.639 0.442 0.775 0.703 0.778 

(S.E.) (1.018) (0.263) (0.282) (0.144) (0.130) (0.106) (0.066) 
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b1-parameters 

 Tables 8, 9 and 10 contain the item BIAS and standard error of the item 

BIAS for the b1-parameters across all sample sizes for the normal distribution, 

MN, and EN conditions. As with the test level results, unexpected results were 

obtained for n = 500 for all three distributions. The largest BIAS for all items with 

the normal distribution conditions was when n = 500.  However, in contrast to the 

a-parameters, the MN and EN conditions were more similar to one another and 

for both distribution condition, BIAS increased as sample size increased.   

 The greatest amount of BIAS was observed for the EN distribution 

followed in turn by the MN distribution and the normal distribution conditions. 

And while generally the size of BIAS decreased as the sample size increased for 

the normal distributions, BIAS increased as sample size increased for the EN and 

MN distribution conditions. Further, the increase noted for the MN and EN 

distribution conditions was more extreme for the EN distribution than for the MN 

distribution. BIAS was less than or equal to 0.05 with two exceptions for the 

normal distribution, 750n  , but for no items for both the EN and MN 

distribution conditions.  

 Further inspection of the full set of BIAS values reveals that the amount of 

BIAS was also dependent upon item: items which had b1- and b2-parameters very 

close in value had much larger BIAS, particularly when sample size was small. As 

with the a-parameters, the standard error of the BIAS generally decreased as the 

sample size increased across the 20 items for all three distribution conditions, and 

in this case, the standard errors tended to be close in value or larger than their 
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corresponding bias only for the normal distribution conditions where      . 

For the MN and EN distribution conditions most standard errors were smaller 

than the BIAS values. 

 Consequently, when the value of the BIAS was divided by it’s standard 

error for 250n  , the results suggest that the BIAS values were not significantly 

different from zero for the normal distribution conditions. In contrast the standard 

errors for the BIAS across EN and MN distribution conditions tended to be less 

that their corresponding BIAS, resulting in the ratio of the BIAS to its standard 

error being large, suggesting that the BIAS was significantly different from zero 

for these conditions. 
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Table 8  

Item Bias for b1-parameters Across Normal Conditions   

 n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000 

Item 1 Bias 0.083 0.048 0.119 0.033 -0.013 0.043 0.007 

(S.E.) (0.328) (0.200) (0.115) (0.123) (0.102) (0.080) (0.060) 

Item 2 Bias 0.117 0.056 0.137 0.036 -0.013 0.033 0.011 

(S.E.) (0.301) (0.296) (0.139) (0.165) (0.133) (0.114) (0.081) 

Item 3 Bias 0.065 0.037 0.154 0.025 -0.030 0.032 0.009 

(S.E.) (0.159) (0.098) (0.077) (0.059) (0.050) (0.040) (0.028) 

Item 4 Bias 0.093 0.051 0.242 0.051 -0.023 0.005 0.033 

(S.E.) (0.508) (0.494) (0.231) (0.278) (0.239) (0.179) (0.135) 

Item 5 Bias 0.080 0.042 0.137 0.021 -0.021 0.034 0.007 

(S.E.) (0.161) (0.116) (0.085) (0.067) (0.058) (0.047) (0.035) 

Item 6 Bias 0.047 -0.029 0.231 0.015 -0.043 0.004 0.023 

(S.E.) (0.326) (0.195) (0.138) (0.121) (0.097) (0.080) (0.054) 

Item 7 Bias 0.085 0.058 0.171 0.033 -0.015 0.030 0.019 

(S.E.) (0.352) (0.397) (0.159) (0.190) (0.154) (0.124) (0.093) 

Item 8 Bias 0.093 0.049 0.121 0.024 -0.012 0.036 0.006 

(S.E.) (0.171) (0.126) (0.084) (0.075) (0.063) (0.052) (0.038) 

Item 9 Bias 0.060 0.006 0.180 0.031 -0.031 0.022 0.012 

(S.E.) (0.206) (0.173) (0.109) (0.104) (0.087) (0.071) (0.052) 

Item 10 Bias -1.766 -0.855 0.059 0.019 -0.037 0.015 0.019 

(S.E.) (1.982) (2.273) (0.794) (0.243) (0.088) (0.071) (0.054) 

Item 11 Bias 0.097 0.059 0.111 0.027 -0.015 0.038 0.005 

(S.E.) (0.138) (0.080) (0.065) (0.045) (0.039) (0.031) (0.022) 

Item 12 Bias 0.101 0.022 0.229 0.032 -0.035 0.010 0.020 

(S.E.) (0.331) (0.259) (0.150) (0.141) (0.115) (0.093) (0.070) 

Item 13 Bias 0.074 0.036 0.154 0.029 -0.030 0.032 0.008 

(S.E.) (0.161) (0.101) (0.076) (0.055) (0.047) (0.041) (0.026) 

Item 14 Bias 0.048 0.017 0.161 0.037 -0.028 0.027 0.013 

(S.E.) (0.292) (0.334) (0.126) (0.143) (0.112) (0.095) (0.069) 

Item 15 Bias 0.134 0.069 0.066 0.027 -0.002 0.050 -0.004 

(S.E.) (0.164) (0.086) (0.069) (0.049) (0.044) (0.035) (0.025) 

Item 16 Bias 0.142 0.210 0.269 0.077 -0.002 0.033 0.037 

(S.E.) (0.766) (0.918) (0.347) (0.441) (0.351) (0.292) (0.209) 

Item 17 Bias 0.088 0.050 0.134 0.025 -0.018 0.034 0.005 

(S.E.) (0.164) (0.119) (0.077) (0.066) (0.056) (0.047) (0.035) 

Item 18 Bias 0.064 0.008 0.172 0.025 -0.036 0.024 0.012 

(S.E.) (0.189) (0.133) (0.091) (0.077) (0.065) (0.054) (0.039) 

Item 19 Bias 0.071 0.039 0.148 0.026 -0.026 0.030 0.009 

(S.E.) (0.159) (0.111) (0.080) (0.064) (0.052) (0.045) (0.032) 

Item 20 Bias 0.102 0.058 0.113 0.026 -0.015 0.036 0.004 

(S.E.) (0.138) (0.075) (0.065) (0.043) (0.038) (0.030) (0.022) 
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Table 9  

Item Bias for b1-parameters Across Moderate Negative Conditions   

 n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000 

Item 1 Bias 0.363 0.850 1.570 0.956 1.283 1.262 1.386 

(S.E.) (0.381) (0.302) (0.208) (0.169) (0.182) (0.147) (0.121) 

Item 2 Bias 0.369 0.826 1.646 0.961 1.311 1.289 1.405 

(S.E.) (0.341) (0.392) (0.276) (0.237) (0.255) (0.206) (0.163) 

Item 3 Bias 0.242 0.710 1.603 0.876 1.229 1.222 1.353 

(S.E.) (0.200) (0.133) (0.196) (0.090) (0.095) (0.076) (0.072) 

Item 4 Bias 0.263 0.699 1.781 0.865 1.328 1.289 1.473 

(S.E.) (0.560) (0.579) (0.473) (0.361) (0.388) (0.301) (0.241) 

Item 5 Bias 0.326 0.762 1.556 0.904 1.240 1.234 1.351 

(S.E.) (0.207) (0.149) (0.164) (0.098) (0.105) (0.083) (0.076) 

Item 6 Bias 0.359 0.623 2.584 0.845 1.264 1.225 1.422 

(S.E.) (0.743) (0.282) (1.202) (0.182) (0.207) (0.168) (0.138) 

Item 7 Bias 0.321 0.771 1.680 0.926 1.297 1.300 1.419 

(S.E.) (0.409) (0.450) (0.338) (0.284) (0.279) (0.238) (0.175) 

Item 8 Bias 0.368 0.802 1.529 0.916 1.243 1.234 1.344 

(S.E.) (0.224) (0.170) (0.159) (0.104) (0.117) (0.092) (0.083) 

Item 9 Bias 0.230 0.687 1.641 0.864 1.225 1.213 1.363 

(S.E.) (0.265) (0.226) (0.280) (0.150) (0.161) (0.130) (0.108) 

Item 10 Bias -1.916 -1.804 -1.287 0.435 0.757 1.077 1.349 

(S.E.) (2.100) (3.146) (2.559) (1.667) (1.806) (0.941) (0.193) 

Item 11 Bias 0.392 0.819 1.506 0.923 1.235 1.234 1.330 

(S.E.) (0.191) (0.105) (0.116) (0.062) (0.064) (0.053) (0.052) 

Item 12 Bias 0.288 0.705 1.787 0.857 1.250 1.252 1.416 

(S.E.) (0.388) (0.389) (0.519) (0.197) (0.208) (0.175) (0.135) 

Item 13 Bias 0.245 0.692 1.576 0.858 1.196 1.193 1.319 

(S.E.) (0.202) (0.134) (0.180) (0.089) (0.095) (0.076) (0.073) 

Item 14 Bias 0.293 0.699 1.603 0.907 1.257 1.248 1.382 

(S.E.) (0.355) (0.412) (0.273) (0.195) (0.203) (0.171) (0.139) 

Item 15 Bias 0.455 0.904 1.448 0.955 1.240 1.232 1.310 

(S.E.) (0.254) (0.095) (0.094) (0.061) (0.062) (0.048) (0.046) 

Item 16 Bias 0.354 0.913 1.839 0.963 1.384 1.312 1.505 

(S.E.) (0.810) (1.051) (0.655) (0.588) (0.635) (0.455) (0.357) 

Item 17 Bias 0.332 0.779 1.539 0.910 1.230 1.225 1.344 

(S.E.) (0.216) (0.148) (0.159) (0.099) (0.104) (0.084) (0.072) 

Item 18 Bias 0.224 0.678 1.664 0.863 1.225 1.204 1.357 

(S.E.) (0.231) (0.180) (0.383) (0.117) (0.135) (0.106) (0.094) 

Item 19 Bias 0.279 0.728 1.577 0.888 1.232 1.221 1.350 

(S.E.) (0.208) (0.145) (0.178) (0.093) (0.103) (0.083) (0.072) 

Item 20 Bias 0.388 0.806 1.499 0.918 1.230 1.223 1.323 

(S.E.) (0.189) (0.099) (0.117) (0.063) 1.283 (0.054) (0.051) 
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Table 10 

Item Bias for b1-parameters Across Extreme Negative Conditions   

 n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000 

Item 1 Bias 1.475 2.628 3.222 2.515 3.580 3.322 3.479 

(S.E.) (1.200) (0.990) (0.495) (0.427) (0.699) (0.474) (0.359) 

Item 2 Bias 1.799 2.790 3.414 2.670 3.812 3.500 3.678 

(S.E.) (0.877) (1.611) (0.639) (0.606) (1.050) (0.645) (0.468) 

Item 3 Bias 1.945 2.707 4.054 2.507 3.754 3.415 3.552 

(S.E.) (1.260) (0.893) (1.190) (0.302) (0.779) (0.496) (0.304) 

Item 4 Bias 1.729 2.594 3.948 2.967 3.965 4.052 4.424 

(S.E.) (2.239) (3.260) (1.432) (1.143) (2.956) (1.498) (0.727) 

Item 5 Bias 1.299 2.428 3.158 2.438 3.476 3.249 3.406 

(S.E.) (1.239) (0.500) (0.704) (0.272) (0.407) (0.300) (0.206) 

Item 6 Bias 1.315 2.975 1.341 3.095 3.420 3.809 4.048 

(S.E.) (2.390) (2.782) (2.691) (1.078) (4.454) (2.580) (1.662) 

Item 7 Bias 1.793 2.742 3.521 2.730 3.934 3.618 3.779 

(S.E.) (1.136) (1.762) (0.738) (0.721) (1.010) (0.699) (0.548) 

Item 8 Bias 1.476 2.399 2.943 2.380 3.348 3.132 3.277 

(S.E.) (0.582) (0.475) (0.356) (0.287) (0.444) (0.309) (0.223) 

Item 9 Bias 1.838 2.606 3.774 2.560 3.799 3.475 3.664 

(S.E.) (2.153) (0.886) (1.862) (0.391) (0.655) (0.435) (0.315) 

Item 10 Bias -3.334 -4.305 -2.506 -1.350 -1.613 -0.231 2.019 

(S.E.) (4.799) (5.284) (4.602) (4.321) (5.258) (4.959) (3.921) 

Item 11 Bias 1.490 2.319 2.867 2.316 3.229 3.024 3.182 

(S.E.) (0.394) (0.297) (0.319) (0.175) (0.291) (0.208) (0.142) 

Item 12 Bias 2.133 2.806 4.195 2.758 4.122 3.824 4.054 

(S.E.) (3.543) (2.075) (1.571) (0.576) (0.896) (0.636) (0.410) 

Item 13 Bias 1.740 2.430 3.745 2.337 3.343 3.113 3.239 

(S.E.) (1.013) (0.836) (1.111) (0.307) (0.750) (0.454) (0.254) 

Item 14 Bias 1.417 2.451 3.277 2.575 3.757 3.441 3.649 

(S.E.) (3.410) (1.786) (0.645) (0.513) (0.835) (0.564) (0.409) 

Item 15 Bias 1.285 2.159 2.627 2.159 2.873 2.723 2.843 

(S.E.) (0.935) (0.327) (0.183) (0.155) (0.247) (0.170) (0.115) 

Item 16 Bias 1.257 2.304 3.701 3.002 3.247 4.097 4.392 

(S.E.) (3.760) (4.355) (2.636) (2.124) (4.769) (2.171) (1.127) 

Item 17 Bias 1.511 2.398 3.052 2.406 3.401 3.179 3.333 

(S.E.) (0.611) (0.446) (0.484) (0.271) (0.402) (0.299) (0.211) 

Item 18 Bias 2.302 2.725 4.237 2.540 3.721 3.413 3.603 

(S.E.) (1.584) (1.014) (1.315) (0.351) (0.971) (0.400) (0.290) 

Item 19 Bias 1.705 2.511 3.578 2.454 3.546 3.280 3.468 

(S.E.) (0.952) (0.590) (1.143) (0.272) (0.444) (0.300) (0.233) 

Item 20 Bias 1.472 2.275 2.837 2.294 3.180 2.978 3.132 

(S.E.) (0.417) (0.267) (0.298) (0.174) (0.290) (0.213) (0.139) 
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b2-parameters 

 Tables 11, 12 and 13 contain the item BIAS and standard error of the item 

BIAS for the b2-parameters across all sample sizes for the normal distribution, 

MN, and EN conditions. As with the test level results, unexpected results were 

obtained for n = 500 for all three distributions. The largest BIAS for all items with 

the normal distribution conditions was with n = 500.  As with the b1-parameters, 

the MN and EN conditions were more similar to one another and for both 

distribution condition, and BIAS increased as sample size increased.   

 The greatest amount of BIAS was observed for the EN distribution 

followed in turn by the MN distribution and the normal distribution conditions. 

And while generally the size of BIAS decreased as the sample size increased for 

the normal distributions, BIAS actually increased as sample size increased for the 

EN and MN distribution conditions. Further, the increase noted for the MN and 

EN distribution conditions was more extreme for the EN distribution than for the 

MN distribution but less extreme than for the b1-parameters. BIAS was less than 

or equal to 0.05 with eight exceptions for the normal distribution, 750n  , but for 

no items for both the EN and MN distribution conditions.  

 Further inspection of the full set of BIAS values reveals that the amount of 

BIAS was also dependent upon item: items which had b1- and b2-parameters very 

close in value had much larger BIAS, particularly when sample size was small. As 

with the a- and b1-parameters, the standard error of the BIAS generally decreased 

as the sample size increased across the 20 items for all three distribution 

conditions, and in this case, the standard errors tended to be close in value or 
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larger than their corresponding bias only for the normal distribution conditions 

where      . For the MN and EN distribution conditions most standard errors 

were smaller than the BIAS values. 

 Consequently, when the value of the BIAS was divided by it’s standard 

error for 250n  , the results suggest that the BIAS values were not significantly 

different from zero for the normal distribution conditions. In contrast the standard 

errors for the BIAS across EN and MN distribution conditions tended to be less 

that their corresponding BIAS, resulting in the ratio of the BIAS to its standard 

error being large, suggesting that the BIAS was significantly different from zero 

for these conditions. 
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Table 11  

Item Bias for b2-parameters Across Normal Conditions 

 n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000 

Item 1 Bias 0.033 0.053 0.090 0.031 -0.007 0.049 0.002 

(S.E.) (1.122) (0.179) (0.101) (0.107) (0.093) (0.073) (0.052) 

Item 2 Bias 0.157 0.069 -0.007 0.015 -0.003 0.067 -0.020 

(S.E.) (0.309) (0.319) (0.154) (0.195) (0.158) (0.122) (0.095) 

Item 3 Bias 0.128 0.064 0.075 0.026 -0.005 0.047 0.000 

(S.E.) (0.135) (0.069) (0.064) (0.041) (0.036) (0.029) (0.021) 

Item 4 Bias 0.108 0.060 0.121 0.036 -0.011 0.039 0.005 

(S.E.) (0.237) (0.231) (0.116) (0.134) (0.115) (0.088) (0.066) 

Item 5 Bias 0.104 0.055 0.103 0.026 -0.014 0.042 0.002 

(S.E.) (0.150) (0.097) (0.072) (0.055) (0.048) (0.040) (0.030) 

Item 6 Bias 0.056 0.010 0.174 0.018 -0.033 0.020 0.013 

(S.E.) (0.184) (0.135) (0.091) (0.078) (0.065) (0.054) (0.038) 

Item 7 Bias -0.783 -0.237 0.017 0.035 0.005 0.062 -0.017 

(S.E.) (3.336) (4.877) (0.129) (0.157) (0.132) (0.102) (0.077) 

Item 8 Bias 0.117 0.066 0.078 0.024 -0.003 0.048 -0.001 

(S.E.) (0.153) (0.113) (0.076) (0.068) (0.056) (0.044) (0.033) 

Item 9 Bias 0.085 0.036 0.135 0.032 -0.020 0.033 0.007 

(S.E.) (0.175) (0.123) (0.086) (0.073) (0.063) (0.051) (0.038) 

Item 10 Bias 1.688 0.749 0.299 0.031 -0.036 0.016 0.018 

(S.E.) (1.836) (2.008) (0.673) (0.217) (0.085) (0.068) (0.052) 

Item 11 Bias 0.153 0.094 0.023 0.029 0.008 0.067 -0.012 

(S.E.) (0.154) (0.078) (0.069) (0.049) (0.043) (0.034) (0.025) 

Item 12 Bias 0.060 -0.042 0.066 0.018 -0.005 0.052 -0.003 

(S.E.) (0.187) (0.275) (0.081) (0.097) (0.065) (0.046) (0.035) 

Item 13 Bias -0.399 -0.051 0.074 0.024 -0.004 0.047 0.000 

(S.E.) (1.218) (0.784) (0.062) (0.039) (0.035) (0.029) (0.020) 

Item 14 Bias -0.310 -0.096 0.060 0.023 -0.007 0.051 -0.005 

(S.E.) (1.034) (1.038) (0.092) (0.099) (0.084) (0.070) (0.048) 

Item 15 Bias 0.143 0.077 0.053 0.027 0.001 0.055 -0.005 

(S.E.) (0.163) (0.087) (0.072) (0.052) (0.045) (0.035) (0.027) 

Item 16 Bias 0.141 0.130 0.181 0.058 -0.006 0.043 0.020 

(S.E.) (0.519) (0.570) (0.225) (0.296) (0.234) (0.195) (0.136) 

Item 17 Bias 0.119 0.062 0.082 0.023 -0.007 0.048 -0.001 

(S.E.) (0.152) (0.095) (0.070) (0.055) (0.048) (0.039) (0.028) 

Item 18 Bias 0.095 0.050 0.118 0.025 -0.018 0.038 0.004 

(S.E.) (0.152) (0.089) (0.072) (0.054) (0.045) (0.037) (0.026) 

Item 19 Bias 0.115 0.068 0.084 0.027 -0.007 0.048 -0.001 

(S.E.) (0.138) (0.082) (0.067) (0.047) (0.041) (0.034) (0.023) 

Item 20 Bias 0.147 0.093 0.022 0.029 0.008 0.069 -0.011 

(S.E.) (0.150) (0.084) (0.071) (0.049) (0.043) (0.034) (0.025) 
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Table 12  

Item Bias for b2-parameters Across Moderate Negative Conditions 

 n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000 

Item 1 Bias 0.246 0.871 1.517 0.967 1.272 1.256 1.359 

(S.E.) (1.413) (0.582) (0.172) (0.146) (0.151) (0.124) (0.101) 

Item 2 Bias 0.527 0.990 1.362 0.981 1.244 1.236 1.279 

(S.E.) (0.244) (0.208) (0.125) (0.125) (0.116) (0.091) (0.073) 

Item 3 Bias 0.419 0.879 1.471 0.945 1.241 1.234 1.317 

(S.E.) (0.290) (0.084) (0.094) (0.053) (0.052) (0.042) (0.042) 

Item 4 Bias 0.399 0.855 1.551 0.934 1.278 1.258 1.368 

(S.E.) (0.289) (0.313) (0.242) (0.193) (0.206) (0.166) (0.130) 

Item 5 Bias 0.378 0.824 1.512 0.929 1.242 1.237 1.335 

(S.E.) (0.189) (0.122) (0.127) (0.081) (0.080) (0.066) (0.063) 

Item 6 Bias 0.234 0.687 1.697 0.873 1.246 1.227 1.383 

(S.E.) (0.242) (0.180) (0.589) (0.120) (0.130) (0.107) (0.093) 

Item 7 Bias -0.351 0.578 1.407 0.979 1.250 1.246 1.296 

(S.E.) (3.311) (4.785) (0.131) (0.120) (0.117) (0.094) (0.075) 

Item 8 Bias 0.433 0.876 1.474 0.945 1.245 1.238 1.324 

(S.E.) (0.195) (0.133) (0.118) (0.079) (0.090) (0.071) (0.062) 

Item 9 Bias 0.295 0.772 1.551 0.896 1.233 1.219 1.342 

(S.E.) (0.415) (0.171) (0.177) (0.112) (0.117) (0.094) (0.082) 

Item 10 Bias 2.003 2.502 3.371 1.146 1.532 1.277 1.347 

(S.E.) (1.866) (2.384) (1.963) (1.231) (1.279) (0.694) (0.187) 

Item 11 Bias 0.531 0.987 1.398 0.996 1.255 1.250 1.305 

(S.E.) (0.168) (0.072) (0.069) (0.042) (0.040) (0.033) (0.032) 

Item 12 Bias 0.399 0.817 1.462 0.955 1.246 1.247 1.327 

(S.E.) (0.211) (0.265) (0.116) (0.086) (0.084) (0.070) (0.059) 

Item 13 Bias -0.310 0.531 1.405 0.936 1.224 1.220 1.301 

(S.E.) (1.319) (1.307) (0.498) (0.054) (0.051) (0.042) (0.041) 

Item 14 Bias -0.042 0.317 1.454 0.958 1.249 1.246 1.318 

(S.E.) (1.449) (6.147) (0.136) (0.107) (0.111) (0.092) (0.074) 

Item 15 Bias 0.492 0.932 1.431 0.967 1.242 1.237 1.306 

(S.E.) (0.236) (0.088) (0.087) (0.056) (0.055) (0.044) (0.041) 

Item 16 Bias 0.397 0.940 1.695 0.962 1.341 1.288 1.441 

(S.E.) (0.585) (0.762) (0.479) (0.429) (0.467) (0.338) (0.266) 

Item 17 Bias 0.420 0.866 1.474 0.944 1.238 1.236 1.323 

(S.E.) (0.193) (0.116) (0.113) (0.074) (0.076) (0.061) (0.055) 

Item 18 Bias 0.361 0.793 1.516 0.914 1.230 1.222 1.331 

(S.E.) (0.193) (0.114) (0.127) (0.072) (0.079) (0.066) (0.061) 

Item 19 Bias 0.429 0.867 1.474 0.942 1.241 1.235 1.322 

(S.E.) (0.182) (0.102) (0.104) (0.064) (0.063) (0.053) (0.048) 

Item 20 Bias 0.533 0.993 1.391 0.997 1.253 1.249 1.303 

(S.E.) (0.167) (0.067) (0.071) (0.042) (0.039) (0.031) (0.031) 
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Table 13  

Item Bias for b2-parameters Across Extreme Negative Conditions 

 n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000 

Item 1 Bias 1.024 2.428 3.008 2.386 3.321 3.104 3.239 

(S.E.) (2.893) (1.536) (0.403) (0.358) (0.582) (0.401) (0.301) 

Item 2 Bias 1.512 2.105 2.424 2.023 2.607 2.475 2.545 

(S.E.) (0.345) (0.457) (0.232) (0.228) (0.366) (0.247) (0.172) 

Item 3 Bias 1.319 2.194 2.723 2.225 3.021 2.842 2.975 

(S.E.) (0.941) (0.330) (0.227) (0.138) (0.224) (0.163) (0.106) 

Item 4 Bias 1.640 2.656 3.135 2.480 3.471 3.263 3.428 

(S.E.) (0.701) (1.050) (0.579) (0.545) (0.779) (0.566) (0.428) 

Item 5 Bias 1.672 2.315 2.882 2.321 3.234 3.034 3.174 

(S.E.) (0.890) (0.379) (0.318) (0.212) (0.328) (0.239) (0.160) 

Item 6 Bias 5.061 3.512 9.064 2.605 3.993 3.549 3.737 

(S.E.) (5.960) (3.052) (5.498) (0.357) (1.204) (0.469) (0.309) 

Item 7 Bias 0.324 1.579 2.558 2.103 2.745 2.610 2.681 

(S.E.) (4.218) (4.759) (0.297) (0.284) (0.427) (0.304) (0.234) 

Item 8 Bias 1.480 2.265 2.731 2.244 3.055 2.884 3.003 

(S.E.) (0.450) (0.355) (0.248) (0.221) (0.346) (0.245) (0.170) 

Item 9 Bias 1.365 2.406 3.070 2.396 3.434 3.193 3.348 

(S.E.) (2.433) (0.693) (1.667) (0.295) (0.483) (0.335) (0.239) 

Item 10 Bias 2.826 4.991 4.777 4.680 6.374 5.428 4.529 

(S.E.) (19.556) (3.618) (6.820) (2.597) (3.026) (2.742) (2.216) 

Item 11 Bias 1.498 2.087 2.466 2.057 2.631 2.526 2.612 

(S.E.) (0.248) (0.128) (0.108) (0.095) (0.138) (0.106) (0.061) 

Item 12 Bias 1.455 2.183 2.733 2.207 3.003 2.851 2.976 

(S.E.) (0.398) (0.447) (0.265) (0.269) (0.425) (0.292) (0.172) 

Item 13 Bias -0.591 0.212 0.974 1.974 2.391 2.600 2.807 

(S.E.) (1.859) (2.969) (2.342) (1.032) (1.762) (0.843) (0.109) 

Item 14 Bias -0.510 0.446 2.674 2.217 2.999 2.813 2.942 

(S.E.) (10.250) (15.212) (0.536) (0.285) (0.484) (0.333) (0.230) 

Item 15 Bias 1.588 2.143 2.559 2.118 2.780 2.648 2.754 

(S.E.) (0.794) (0.272) (0.160) (0.136) (0.219) (0.152) (0.102) 

Item 16 Bias 2.107 3.173 3.624 2.875 4.191 3.806 3.865 

(S.E.) (1.861) (1.810) (1.082) (1.163) (1.443) (1.045) (0.780) 

Item 17 Bias 1.493 2.250 2.768 2.253 3.063 2.899 3.022 

(S.E.) (0.422) (0.314) (0.234) (0.198) (0.299) (0.221) (0.151) 

Item 18 Bias 1.543 2.309 2.981 2.324 3.250 3.027 3.185 

(S.E.) (0.764) (0.334) (0.922) (0.208) (0.339) (0.229) (0.161) 

Item 19 Bias 1.481 2.236 2.734 2.235 3.038 2.858 2.995 

(S.E.) (0.359) (0.250) (0.198) (0.161) (0.255) (0.174) (0.123) 

Item 20 Bias 1.488 2.069 2.444 2.050 2.597 2.498 2.587 

(S.E.) (0.256) (0.127) (0.103) (0.090) (0.133) (0.103) (0.055) 
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b3-parameters 

 Tables 14, 15 and 16 contain the item BIAS and standard error of the item 

BIAS for the b3-parameters across all sample sizes for the normal distribution, 

MN, and EN conditions. As with the test level results, unexpected results were 

obtained for n = 500 for all three distributions. The largest BIAS for all items with 

the normal distribution conditions was with n = 100.  As with the b1- and b2-

parameters, the MN and EN conditions were more similar to one another and for 

both distribution conditions, and BIAS increased as sample size increased.   

 The greatest amount of BIAS was observed for the EN distribution 

followed in turn by the MN distribution and the normal distribution conditions. 

And while generally the size of BIAS decreased as the sample size increased for 

the normal distributions, BIAS actually increased as sample size increased for the 

EN and MN distribution conditions. Further, the increase noted for the MN and 

EN distribution conditions was more extreme for the EN distribution than for the 

MN distribution but less extreme than for the b1- and b2-parameters. BIAS was 

less than or equal to 0.05 with nine exceptions for the normal distribution, 

750n  , but for no items for both the EN and MN distribution conditions.  

 Further inspection of the full set of BIAS values reveals that the amount of 

BIAS was also dependent upon item: items which had b3- and b4-parameters very 

close in value had much larger BIAS, particularly when sample size was small. As 

with the a-, b1- and b2-parameters, the standard error of the BIAS generally 

decreased as the sample size increased across the 20 items for all three 

distribution conditions, and in this case, the standard errors tended to be close in 
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value or larger than their corresponding bias only for the normal distribution 

conditions where      . For the MN and EN distribution conditions most 

standard errors were smaller than the BIAS values. 

 Consequently, when the value of the BIAS was divided by it’s standard 

error for 250n  , the results suggest that the BIAS values were not significantly 

different from zero for the normal distribution conditions. In contrast the standard 

errors for the BIAS across EN and MN distribution conditions tended to be less 

that their corresponding BIAS, resulting in the ratio of the BIAS to its standard 

error being large, suggesting that the BIAS was significantly different from zero 

for these conditions. 
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Table 14  

Item Bias for b3-parameters Across Normal Conditions 

 n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000 

Item 1 Bias 0.208 0.060 0.074 0.028 -0.004 0.053 -0.001 

(S.E.) (1.124) (0.178) (0.098) (0.107) (0.092) (0.072) (0.053) 

Item 2 Bias 0.156 0.079 -0.050 0.010 0.001 0.074 -0.029 

(S.E.) (0.396) (0.426) (0.199) (0.249) (0.201) (0.158) (0.122) 

Item 3 Bias 0.135 0.069 0.062 0.027 -0.001 0.052 -0.003 

(S.E.) (0.140) (0.072) (0.064) (0.042) (0.036) (0.029) (0.022) 

Item 4 Bias 0.127 0.075 0.047 0.035 -0.005 0.055 -0.008 

(S.E.) (0.241) (0.220) (0.116) (0.131) (0.112) (0.085) (0.068) 

Item 5 Bias 0.156 0.094 0.018 0.033 0.010 0.066 -0.011 

(S.E.) (0.163) (0.111) (0.079) (0.066) (0.058) (0.047) (0.035) 

Item 6 Bias 0.095 0.045 0.111 0.024 -0.016 0.037 0.004 

(S.E.) (0.147) (0.087) (0.071) (0.054) (0.046) (0.036) (0.026) 

Item 7 Bias 1.073 0.136 0.007 0.033 0.006 0.063 -0.018 

(S.E.) (3.369) (4.926) (0.135) (0.164) (0.137) (0.105) (0.081) 

Item 8 Bias 0.134 0.079 0.042 0.026 0.004 0.059 -0.008 

(S.E.) (0.165) (0.121) (0.077) (0.077) (0.066) (0.048) (0.037) 

Item 9 Bias 0.102 0.052 0.112 0.029 -0.015 0.039 0.003 

(S.E.) (0.157) (0.108) (0.078) (0.063) (0.056) (0.045) (0.034) 

Item 10 Bias 0.271 0.146 0.177 0.031 -0.030 0.022 0.012 

(S.E.) (0.430) (0.382) (0.116) (0.090) (0.071) (0.055) (0.043) 

Item 11 Bias -0.042 0.113 -0.036 0.035 0.021 0.093 -0.027 

(S.E.) (1.279) (0.122) (0.096) (0.078) (0.065) (0.052) (0.041) 

Item 12 Bias -5.590 -2.968 -0.388 -0.176 -0.007 0.079 -0.019 

(S.E.) (6.633) (6.682) (2.302) (1.893) (0.573) (0.075) (0.056) 

Item 13 Bias 0.675 0.184 0.069 0.024 -0.003 0.048 0.000 

(S.E.) (1.240) (0.796) (0.062) (0.039) (0.035) (0.029) (0.021) 

Item 14 Bias -5.022 -1.510 0.039 0.023 -0.002 0.056 -0.009 

(S.E.) (11.168) (9.068) (0.097) (0.108) (0.093) (0.076) (0.053) 

Item 15 Bias 0.149 0.085 0.029 0.027 0.005 0.063 -0.010 

(S.E.) (0.165) (0.099) (0.075) (0.059) (0.051) (0.041) (0.030) 

Item 16 Bias 0.122 0.074 0.103 0.037 -0.014 0.052 0.005 

(S.E.) (0.348) (0.365) (0.159) (0.198) (0.167) (0.131) (0.094) 

Item 17 Bias 0.126 0.090 0.017 0.025 0.011 0.071 -0.014 

(S.E.) (0.593) (0.121) (0.082) (0.073) (0.062) (0.051) (0.036) 

Item 18 Bias 0.145 0.084 0.049 0.025 0.001 0.057 -0.007 

(S.E.) (0.149) (0.086) (0.068) (0.052) (0.046) (0.035) (0.026) 

Item 19 Bias 0.150 0.091 0.024 0.029 0.008 0.067 -0.010 

(S.E.) (0.152) (0.094) (0.076) (0.055) (0.048) (0.040) (0.029) 

Item 20 Bias 0.158 0.100 -0.002 0.030 0.015 0.080 -0.017 

(S.E.) (0.160) (0.093) (0.077) (0.058) (0.051) (0.041) (0.030) 
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Table 15  

Item Bias for b3-parameters Across Moderate Negative Conditions 

 n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000 

Item 1 Bias 0.629 0.921 1.492 0.971 1.267 1.253 1.346 

(S.E.) (1.414) (0.573) (0.156) (0.132) (0.137) (0.113) (0.091) 

Item 2 Bias 0.571 1.034 1.279 0.987 1.222 1.219 1.242 

(S.E.) (0.289) (0.227) (0.123) (0.148) (0.119) (0.099) (0.075) 

Item 3 Bias 0.479 0.911 1.448 0.959 1.245 1.237 1.312 

(S.E.) (0.268) (0.076) (0.083) (0.047) (0.046) (0.038) (0.038) 

Item 4 Bias 0.480 0.937 1.440 0.963 1.256 1.243 1.316 

(S.E.) (0.238) (0.208) (0.152) (0.126) (0.133) (0.105) (0.085) 

Item 5 Bias 0.538 0.987 1.394 0.991 1.251 1.247 1.297 

(S.E.) (0.176) (0.084) (0.077) (0.055) (0.049) (0.041) (0.037) 

Item 6 Bias 0.369 0.807 1.516 0.915 1.241 1.231 1.341 

(S.E.) (0.197) (0.120) (0.131) (0.077) (0.081) (0.067) (0.059) 

Item 7 Bias 1.380 1.149 1.391 0.982 1.247 1.243 1.289 

(S.E.) (3.286) (4.939) (0.123) (0.117) (0.112) (0.089) (0.073) 

Item 8 Bias 0.493 0.945 1.423 0.972 1.247 1.240 1.305 

(S.E.) (0.181) (0.111) (0.095) (0.067) (0.069) (0.054) (0.048) 

Item 9 Bias 0.396 0.814 1.520 0.915 1.236 1.225 1.330 

(S.E.) (0.426) (0.150) (0.146) (0.094) (0.100) (0.080) (0.069) 

Item 10 Bias 0.641 1.009 1.842 0.912 1.265 1.214 1.337 

(S.E.) (1.366) (0.501) (0.897) (0.237) (0.252) (0.157) (0.154) 

Item 11 Bias 0.602 1.097 1.313 1.029 1.254 1.254 1.269 

(S.E.) (0.269) (0.073) (0.056) (0.046) (0.037) (0.033) (0.027) 

Item 12 Bias -4.804 -2.534 1.307 0.954 1.244 1.241 1.273 

(S.E.) (7.383) (9.179) (0.783) (1.237) (0.058) (0.048) (0.040) 

Item 13 Bias 1.100 1.181 1.498 0.940 1.225 1.221 1.301 

(S.E.) (1.217) (1.149) (0.386) (0.053) (0.049) (0.041) (0.040) 

Item 14 Bias -4.808 -3.084 1.426 0.968 1.247 1.244 1.306 

(S.E.) (11.713) (15.524) (0.121) (0.098) (0.098) (0.080) (0.064) 

Item 15 Bias 0.518 0.971 1.406 0.984 1.248 1.244 1.300 

(S.E.) (0.170) (0.079) (0.075) (0.051) (0.048) (0.039) (0.036) 

Item 16 Bias 0.434 0.965 1.567 0.969 1.298 1.264 1.381 

(S.E.) (0.414) (0.521) (0.337) (0.299) (0.324) (0.236) (0.188) 

Item 17 Bias 0.533 0.998 1.385 0.994 1.249 1.246 1.293 

(S.E.) (0.172) (0.089) (0.077) (0.056) (0.050) (0.042) (0.037) 

Item 18 Bias 0.486 0.930 1.427 0.971 1.244 1.240 1.307 

(S.E.) (0.169) (0.083) (0.083) (0.053) (0.051) (0.042) (0.040) 

Item 19 Bias 0.528 0.980 1.397 0.987 1.251 1.244 1.302 

(S.E.) (0.168) (0.079) (0.076) (0.048) (0.046) (0.036) (0.034) 

Item 20 Bias 0.569 1.038 1.364 1.016 1.258 1.255 1.294 

(S.E.) (0.166) (0.066) (0.062) (0.040) (0.035) (0.029) (0.028) 
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Table 16  

Item Bias for b3-parameters Across Extreme Negative Conditions 

 n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000 

Item 1 Bias 2.225 2.501 2.914 2.324 3.197 2.999 3.125 

(S.E.) (2.686) (1.473) (0.368) (0.327) (0.535) (0.364) (0.276) 

Item 2 Bias 1.445 1.890 2.138 1.836 2.251 2.180 2.221 

(S.E.) (0.290) (0.334) (0.161) (0.174) (0.231) (0.165) (0.111) 

Item 3 Bias 1.591 2.165 2.637 2.172 2.904 2.748 2.868 

(S.E.) (0.805) (0.267) (0.192) (0.124) (0.192) (0.144) (0.090) 

Item 4 Bias 1.551 2.315 2.697 2.195 2.927 2.787 2.901 

(S.E.) (0.439) (0.648) (0.367) (0.340) (0.505) (0.369) (0.277) 

Item 5 Bias 1.493 2.065 2.447 2.052 2.623 2.520 2.600 

(S.E.) (0.263) (0.172) (0.120) (0.115) (0.172) (0.129) (0.080) 

Item 6 Bias 1.569 2.363 2.948 2.357 3.317 3.096 3.263 

(S.E.) (0.829) (0.356) (0.394) (0.207) (0.344) (0.244) (0.178) 

Item 7 Bias 2.720 2.788 2.502 2.065 2.673 2.547 2.612 

(S.E.) (4.174) (4.815) (0.274) (0.261) (0.390) (0.280) (0.215) 

Item 8 Bias 1.476 2.139 2.549 2.120 2.786 2.656 2.748 

(S.E.) (0.305) (0.259) (0.187) (0.166) (0.257) (0.187) (0.125) 

Item 9 Bias 1.920 2.356 2.989 2.320 3.260 3.049 3.186 

(S.E.) (1.486) (0.625) (0.892) (0.250) (0.416) (0.286) (0.201) 

Item 10 Bias 6.763 4.551 8.421 2.870 4.128 3.636 3.598 

(S.E.) (6.187) (4.630) (6.166) (1.034) (1.295) (0.675) (0.476) 

Item 11 Bias 1.504 1.910 2.155 1.861 2.218 2.171 2.208 

(S.E.) (0.190) (0.086) (0.071) (0.069) (0.087) (0.068) (0.032) 

Item 12 Bias -1.444 -0.429 2.183 1.821 2.352 2.288 2.353 

(S.E.) (5.079) (7.977) (1.155) (1.583) (0.263) (0.187) (0.074) 

Item 13 Bias 2.778 3.589 3.629 2.250 3.106 2.735 2.788 

(S.E.) (1.507) (2.420) (1.477) (0.821) (1.304) (0.663) (0.104) 

Item 14 Bias -5.384 -7.390 2.434 2.151 2.859 2.698 2.810 

(S.E.) (15.095) (43.014) (2.162) (0.249) (0.419) (0.293) (0.200) 

Item 15 Bias 1.497 2.077 2.463 2.056 2.641 2.533 2.621 

(S.E.) (0.481) (0.178) (0.127) (0.116) (0.179) (0.127) (0.082) 

Item 16 Bias 1.866 2.789 3.185 2.553 3.599 3.315 3.369 

(S.E.) (1.246) (1.333) (0.810) (0.848) (1.072) (0.772) (0.576) 

Item 17 Bias 1.500 2.051 2.409 2.031 2.567 2.478 2.554 

(S.E.) (0.262) (0.178) (0.123) (0.120) (0.170) (0.126) (0.080) 

Item 18 Bias 1.462 2.125 2.558 2.125 2.778 2.643 2.749 

(S.E.) (0.292) (0.184) (0.148) (0.126) (0.198) (0.140) (0.090) 

Item 19 Bias 1.489 2.082 2.464 2.063 2.651 2.533 2.624 

(S.E.) (0.265) (0.157) (0.119) (0.108) (0.161) (0.114) (0.076) 

Item 20 Bias 1.507 2.006 2.336 1.980 2.449 2.370 2.439 

(S.E.) (0.227) (0.099) (0.087) (0.075) (0.109) (0.086) (0.042) 
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b4-parameters 

 Tables 17, 18 and 19 contain the item BIAS and standard error of the item 

BIAS for the b4-parameters across all sample sizes for the normal distribution, 

MN, and EN conditions. As with the test level results, unexpected results were 

obtained for n = 500 for all three distributions. The largest BIAS for all items with 

the normal distribution conditions was with n = 100.  As with the b1-, b2- and b3-

parameters, the MN and EN conditions were more similar to one another and for 

both distribution conditions, and BIAS increased as sample size increased.   

 The greatest amount of BIAS was observed for the EN distribution 

followed in turn by the MN distribution and the normal distribution conditions. 

And while generally the size of BIAS decreased as the sample size increased for 

the normal distributions, BIAS actually increased as sample size increased for the 

EN and MN distribution conditions. Further, the increase noted for the MN and 

EN distribution conditions was more extreme for the EN distribution than for the 

MN distribution but less extreme than for the b1-, b2- and b3-parameters. BIAS 

was less than or equal to 0.05 with four exceptions for the normal distribution, 

750n  , but for no items for both the EN and MN distribution conditions.  

 Further inspection of the full set of BIAS values reveals that the amount of 

BIAS was also dependent upon item: items which had b3- and b4-parameters very 

close in value had much larger BIAS, particularly when sample size was small. As 

with the a-, b1- and b2-parameters, the standard error of the BIAS generally 

decreased as the sample size increased across the 20 items for all three 

distribution conditions, and in this case, the standard errors tended to be close in 
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value or larger than their corresponding bias only for the normal distribution 

conditions where      . For the MN and EN distribution conditions most 

standard errors were smaller than the BIAS values. 

 Consequently, when the value of the BIAS was divided by it’s standard 

error for 250n  , the results suggest that the BIAS values were not significantly 

different from zero for the normal distribution conditions. In contrast the standard 

errors for the BIAS across EN and MN distribution conditions tended to be less 

that their corresponding BIAS, resulting in the ratio of the BIAS to its standard 

error being large, suggesting that the BIAS was significantly different from zero 

for these conditions. 
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Table 17  

Item Bias for b4-parameters Across Normal Conditions 

 n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000 

Item 1 Bias 0.185 0.092 -0.077 0.018 0.019 0.086 -0.027 

(S.E.) (0.405) (0.390) (0.207) (0.233) (0.192) (0.152) (0.118) 

Item 2 Bias 0.154 0.080 -0.114 0.000 0.004 0.086 -0.043 

(S.E.) (0.557) (0.577) (0.271) (0.329) (0.264) (0.210) (0.163) 

Item 3 Bias 0.175 0.122 -0.043 0.039 0.024 0.094 -0.026 

(S.E.) (0.217) (0.146) (0.110) (0.085) (0.075) (0.058) (0.047) 

Item 4 Bias 0.134 0.080 0.010 0.034 0.000 0.065 -0.015 

(S.E.) (0.287) (0.273) (0.140) (0.161) (0.141) (0.108) (0.085) 

Item 5 Bias 0.185 0.112 -0.034 0.037 0.022 0.085 -0.020 

(S.E.) (0.211) (0.161) (0.107) (0.096) (0.085) (0.066) (0.050) 

Item 6 Bias 0.172 0.116 -0.033 0.033 0.019 0.087 -0.023 

(S.E.) (0.202) (0.149) (0.101) (0.087) (0.075) (0.060) (0.045) 

Item 7 Bias 0.314 0.109 -0.036 0.025 0.010 0.071 -0.027 

(S.E.) (0.708) (0.968) (0.175) (0.209) (0.177) (0.133) (0.107) 

Item 8 Bias 0.155 0.092 0.010 0.026 0.012 0.068 -0.014 

(S.E.) (0.196) (0.154) (0.092) (0.095) (0.080) (0.059) (0.045) 

Item 9 Bias 0.144 0.097 0.019 0.026 0.006 0.066 -0.010 

(S.E.) (0.181) (0.126) (0.087) (0.076) (0.067) (0.053) (0.040) 

Item 10 Bias 0.146 0.089 0.046 0.026 0.004 0.057 -0.007 

(S.E.) (0.162) (0.108) (0.076) (0.064) (0.054) (0.045) (0.032) 

Item 11 Bias 0.387 0.116 -0.052 0.038 0.025 0.102 -0.032 

(S.E.) (1.207) (0.150) (0.112) (0.092) (0.078) (0.062) (0.049) 

Item 12 Bias -2.097 -1.182 -0.319 -0.096 -0.002 0.080 -0.019 

(S.E.) (7.441) (6.731) (1.986) (1.741) (0.483) (0.076) (0.057) 

Item 13 Bias 0.172 0.098 0.046 0.026 0.004 0.057 -0.004 

(S.E.) (0.166) (0.119) (0.066) (0.045) (0.038) (0.031) (0.022) 

Item 14 Bias -4.590 -1.284 0.033 0.022 -0.001 0.057 -0.009 

(S.E.) (10.976) (7.574) (0.101) (0.110) (0.095) (0.078) (0.055) 

Item 15 Bias 0.157 0.094 0.009 0.029 0.008 0.071 -0.012 

(S.E.) (0.176) (0.116) (0.083) (0.068) (0.059) (0.048) (0.034) 

Item 16 Bias 0.105 0.004 0.001 0.017 -0.012 0.062 -0.016 

(S.E.) (0.431) (0.480) (0.200) (0.254) (0.215) (0.163) 0.127 

Item 17 Bias 0.143 0.096 -0.006 0.026 0.015 0.079 -0.018 

(S.E.) (0.509) (0.145) (0.093) (0.087) (0.075) (0.059) 0.043 

Item 18 Bias 0.169 0.120 -0.019 0.029 0.019 0.082 -0.021 

(S.E.) (0.186) (0.125) (0.093) (0.081) (0.067) (0.052) 0.040 

Item 19 Bias 0.171 0.112 -0.032 0.031 0.022 0.086 -0.023 

(S.E.) (0.205) (0.143) (0.104) (0.085) (0.073) (0.058) 0.045 

Item 20 Bias 0.176 0.107 -0.039 0.031 0.025 0.094 -0.027 

(S.E.) (0.201) (0.126) (0.100) (0.080) (0.067) (0.054) 0.042 
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Table 18  

Item Bias for b4-parameters Across Moderate Negative Conditions 

 n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000 

Item 1 Bias 0.607 1.089 1.230 1.011 0.019 1.217 1.215 

(S.E.) (0.306) (0.239) (0.118) (0.141) (0.192) (0.097) (0.072) 

Item 2 Bias 0.627 1.101 1.166 0.992 0.004 1.200 1.193 

(S.E.) (0.372) (0.315) (0.165) (0.205) (0.264) (0.135) (0.101) 

Item 3 Bias 0.629 1.128 1.285 1.035 0.024 1.251 1.259 

(S.E.) (0.182) (0.081) (0.058) (0.048) (0.075) (0.033) (0.027) 

Item 4 Bias 0.519 0.985 1.377 0.981 0.000 1.235 1.286 

(S.E.) (0.239) (0.197) (0.120) (0.114) (0.141) (0.085) (0.070) 

Item 5 Bias 0.603 1.078 1.321 1.022 0.022 1.246 1.267 

(S.E.) (0.186) (0.093) (0.065) (0.059) (0.085) (0.042) (0.034) 

Item 6 Bias 0.603 1.088 1.319 1.024 0.019 1.251 1.268 

(S.E.) (0.182) (0.092) (0.061) (0.056) (0.075) (0.038) (0.031) 

Item 7 Bias 0.721 1.018 1.315 0.996 0.010 1.227 1.255 

(S.E.) (0.635) (1.021) (0.111) (0.133) (0.177) (0.087) (0.065) 

Item 8 Bias 0.544 1.005 1.378 0.994 0.012 1.243 1.288 

(S.E.) (0.179) (0.107) (0.079) (0.064) (0.080) (0.044) (0.041) 

Item 9 Bias 0.526 0.984 1.394 0.990 0.006 1.243 1.295 

(S.E.) (0.177) (0.100) (0.085) (0.060) (0.067) (0.045) (0.039) 

Item 10 Bias 0.497 0.973 1.430 0.977 0.004 1.238 1.302 

(S.E.) (0.180) (0.115) (0.095) (0.065) (0.054) (0.051) (0.058) 

Item 11 Bias 0.633 1.126 1.275 1.034 0.025 1.247 1.251 

(S.E.) (0.277) (0.081) (0.058) (0.052) (0.078) (0.036) (0.028) 

Item 12 Bias -3.194 -2.441 1.321 0.956 -0.002 1.240 1.271 

(S.E.) (7.142) (8.944) (0.777) (1.203) (0.483) (0.049) (0.040) 

Item 13 Bias 0.533 0.974 1.423 0.972 0.004 1.236 1.298 

(S.E.) (0.192) (0.149) (0.084) (0.048) (0.038) (0.034) (0.033) 

Item 14 Bias -4.653 -2.868 1.419 0.970 -0.001 1.244 1.303 

(S.E.) (11.630) (14.495) (0.117) (0.097) (0.095) (0.078) (0.063) 

Item 15 Bias 0.544 1.006 1.382 1.000 0.008 1.248 1.295 

(S.E.) (0.172) (0.078) (0.070) (0.051) (0.059) (0.036) (0.033) 

Item 16 Bias 0.507 0.988 1.390 0.976 -0.012 1.233 1.299 

(S.E.) (0.333) (0.315) (0.176) (0.181) (0.215) (0.141) (0.105) 

Item 17 Bias 0.571 1.044 1.352 1.011 0.015 1.248 1.280 

(S.E.) (0.173) (0.093) (0.071) (0.057) (0.075) (0.040) (0.036) 

Item 18 Bias 0.589 1.060 1.347 1.019 0.019 1.254 1.282 

(S.E.) (0.177) (0.079) (0.063) (0.051) (0.067) (0.037) (0.031) 

Item 19 Bias 0.607 1.088 1.320 1.026 0.022 1.251 1.270 

(S.E.) (0.177) (0.083) (0.061) (0.054) (0.073) (0.037) (0.029) 

Item 20 Bias 0.607 1.108 1.312 1.033 0.025 1.258 1.274 

(S.E.) (0.169) (0.074) (0.059) (0.045) (0.067) (0.032) (0.026) 
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Table 19  

Item Bias for b4-parameters Across Extreme Negative Conditions 

 n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000 

Item 1 Bias 1.426 1.763 1.947 1.717 2.002 1.968 1.994 

(S.E.) (0.290) (0.290) (0.127) (0.151) (0.162) (0.118) (0.083) 

Item 2 Bias 1.342 1.599 1.768 1.586 1.790 1.794 1.793 

(S.E.) (0.350) (0.429) (0.174) (0.218) (0.218) (0.163) (0.117) 

Item 3 Bias 1.496 1.850 2.059 1.802 2.109 2.075 2.099 

(S.E.) (0.176) (0.085) (0.064) (0.065) (0.081) (0.059) (0.029) 

Item 4 Bias 1.514 2.129 2.456 2.039 2.620 2.517 2.604 

(S.E.) (0.336) (0.457) (0.258) (0.243) (0.364) (0.263) (0.195) 

Item 5 Bias 1.495 1.910 2.174 1.871 2.249 2.197 2.236 

(S.E.) (0.206) (0.115) (0.080) (0.084) (0.106) (0.082) (0.048) 

Item 6 Bias 0.199 1.914 2.174 1.871 2.244 2.191 2.235 

(S.E.) (0.199) (0.108) (0.081) (0.073) (0.099) (0.077) (0.041) 

Item 7 Bias 1.667 2.012 2.223 1.892 2.331 2.252 2.297 

(S.E.) (0.797) (1.094) (0.185) (0.183) (0.253) (0.184) (0.138) 

Item 8 Bias 1.482 2.039 2.375 2.008 2.545 2.450 2.517 

(S.E.) (0.252) (0.197) (0.135) (0.126) (0.191) (0.138) (0.089) 

Item 9 Bias 1.494 2.068 2.441 2.038 2.622 2.507 2.585 

(S.E.) (0.277) (0.206) (0.152) (0.126) (0.209) (0.146) (0.095) 

Item 10 Bias 1.478 2.198 2.542 2.127 2.778 2.643 2.720 

(S.E.) (0.319) (0.272) (0.185) (0.179) (0.262) (0.176) (0.129) 

Item 11 Bias 1.493 1.837 2.033 1.787 2.068 2.043 2.063 

(S.E.) (0.175) (0.085) (0.064) (0.065) (0.076) (0.062) (0.028) 

Item 12 Bias 1.722 -0.532 2.163 1.808 2.332 2.270 2.334 

(S.E.) (5.527) (8.221) (1.238) (1.635) (0.252) (0.180) (0.071) 

Item 13 Bias 1.545 2.287 2.572 2.083 2.691 2.552 2.642 

(S.E.) (0.362) (0.477) (0.197) (0.163) (0.282) (0.193) (0.076) 

Item 14 Bias -5.921 -2.784 2.374 2.131 2.823 2.667 2.774 

(S.E.) (16.244) (17.350) (2.539) (0.239) (0.401) (0.282) (0.191) 

Item 15 Bias 1.510 2.030 2.378 2.002 2.520 2.429 2.504 

(S.E.) (0.397) (0.145) (0.107) (0.100) (0.149) (0.105) (0.066) 

Item 16 Bias 1.610 2.256 2.564 2.123 2.789 2.640 2.678 

(S.E.) (0.603) (0.730) (0.425) (0.443) (0.568) (0.420) (0.309) 

Item 17 Bias 1.504 1.974 2.280 1.942 2.388 2.320 2.376 

(S.E.) (0.224) (0.137) (0.097) (0.099) (0.132) (0.097) (0.059) 

Item 18 Bias 1.502 1.958 2.251 1.925 2.347 2.280 2.332 

(S.E.) (0.209) (0.110) (0.083) (0.081) (0.111) (0.081) (0.044) 

Item 19 Bias 1.505 1.906 2.165 1.870 2.236 2.186 2.225 

(S.E.) (0.197) (0.100) (0.076) (0.074) (0.096) (0.072) (0.040) 

Item 20 Bias 1.507 1.903 2.140 1.858 2.202 2.157 2.192 

(S.E.) (0.185) (0.081) (0.067) (0.065) (0.082) (0.064) (0.029) 
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Summary 

 Item-level analyses provide some insight into the test-level results. While 

reporting BIAS at the test level and RMSEs can tell us something about the ability 

to recover total test scores using the GRM and MULTILOG, these test level 

results do not provide information about which items may or may not be 

problematic. In contrast, the item level results provide in-depth information.  

Items with larger ‘true’ a-parameter values (above 1.20) tended to be 

overestimated to a larger degree than that those items with smaller ‘true’ a-

parameters.  

 Three items were particularly problematic for b-parameter estimation; 

items 10, 12, and 14. For item 10, the b1- and b2-parameters were within 0.06 of 

one another and particularly when there were smaller sample sizes (n = 100, 250) 

MULTILOG produced estimates that were much larger than the ‘true’ values. 

Similarly, items 12 and 14 within 0.04 and 0.07 respectively, of one another and 

both the b3- and b4-parameters for these items were greatly overestimated.  ‘True’ 

b-parameters that were lower in value on the θ scale were also poorly recovered in 

the skewed distributions  
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Chapter 6: Summary, Limitations and Future Directions 

 This chapter is organized in five sections. First, a summary of the research 

questions and methods used in this study is provided. Test-level and item-level 

results are then summarized and discussed in the second section and limitations of 

the current study are identified in the third section. Conclusions and implications 

for practice are discussed in the fourth section and directions for future research 

are provided in the last section.  

Research Design and Methods Summary 

 Currently, one of the most popular methods used in calibrating 

polytomous data in education is the use of the GRM as executed in MULTILOG. 

However, with the expanding scope of use of polytomous item response theory 

(PIRT) in the social and health sciences not much time has been spent on 

discussing the possible effect of the non-normal distributions and small sample 

sizes common in these areas. Thus, the purpose of the current study was to 

conduct a simulation study to inform applied research regarding the use of PIRT 

with non-normal data, particularly when sample sizes are small, which is so often 

the case in clinical studies.  

 Four research questions were addressed: 

1) Does the shape of the underlying θ distribution have an effect on test-level 

statistical outcomes for item and person parameter recovery under the 

GRM using MULTILOG?,  
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2) Does the shape of the underlying θ distribution have an effect on item-

level statistical outcomes for item and person parameter recovery under 

the GRM using MULTILOG?,  

3) Does sample size have an effect on test-level statistical outcomes for item 

and person parameter recovery under the GRM using MULTILOG?, and  

4) Does sample size have an effect on item-level statistical outcomes for item 

and person parameter recovery under the GRM using MULTILOG? 

 Previous simulation studies suggested a minimum sample size of 500 for 

accurate parameter estimation under the GRM (Reise & Yu, 1990). However, the 

recommended samples sizes were not met for many of the studies in which PIRT 

was used in the social and heath science areas. Consequently, a range of seven 

sample sizes (100, 250, 500, 750, 1,000, 1,500, and 3,000) crossed three 

distribution shapes (normal (to act as a baseline), moderate negatively skewed 

(MN), and extremely negatively skewed (EN)) were considered. The number of 

replications of each of the 21 conditions was 1,000.  RMSEs and test-level BIAS 

were calculated across items to assess the effect for sample size and distribution 

shape on total test scores and item-level BIAS and standard error of item BIAS 

were calculated to assess the effect of sample size and distribution shape at the 

item level.  

Results Summary 

 Test level. Aside from θ estimates, the EN distribution conditions 

produced the poorest results overall. At the test level, recovery of the a-

parameters showed the most consistent improvement as the sample size increased 
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across all distribution conditions, and b3- and b4-location parameters were more 

accurately recovered than b1- and b2- location parameters. Test-level BIAS 

results revealed that for the EN and MN distribution conditions, locations 

parameters were in general underestimated.  

The test-level results indicated that the shape of the underlying θ 

distribution does in fact have an effect on the accuracy of parameter estimation. 

The results also indicated that the θ distribution factor interacted with sample size 

and the value of the ‘true’ parameter. In general, and as expected, the normal 

distribution conditions produced better test- and item-level results than either 

skewed distribution across the seven sample sizes.  

In addition, as with other simulation results (de Ayala, 2009; Reise & Yu, 

1990), test-level results for the study showed that generally, as sample size 

increased, the accuracy of the recovered parameters increased at n = 750, after 

which accuracy tended to be constant for the normal distribution and at n = 1,000 

after which the accuracy tended to be constant for the MN and EN distributions. 

Further, the accuracy of the estimated parameters is acceptable for the normal 

distribution condition when        but no acceptable sample size was found in 

this study for the MN or the EN conditions. 

de Ayala (2009) and Reise and Yu (1990) suggested a minimum sample 

size of 500 for accurate parameter estimation using the GRM. However, 

unexplained results were obtained in the present study and attempts to correct the 

situation were futile (see Limitations). But the results of the present study suggest 

a minimum sample size of 750 with normally distributed data. Given extreme 
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distributions of ability are found in personality and health research (see Bolt et al., 

2004 and Cooke et al., 2001  for examples) additional research is needed to 

determine how to best handle situations in which is the distribution of the latent 

trait is extremely skewed.  

 Item level.  As might be expected, the item level results agreed with the 

test level results but provided the reason and clarity for the test level results. For 

example, the a-parameter estimates for the extreme skewed distribution for each 

item were uniformly large, thus accounting for the large a-parameter estimates at 

the test level.  The a-parameter estimates for the items with larger ‘true’ a-

parameter values (above 1.20) tended to be overestimated to a larger degree than 

items with smaller ‘true’ a-parameters. 

 Three items were particularly problematic for b-parameter estimation: 

items 10, 12, and 14. These items each had two adjacent b-parameters which 

‘true’ values that were very close in value. This caused problems with calibration 

of the data. In addition, across all 20 items, with b-parameters with ‘true’ values at 

locations along the θ scale where there was very little response data had much 

larger item BIAS. By looking at the test-level results b-parameters appear to be 

poorly recovered yet when item-level BIAS is investigated it can be seen that this 

is a result of three problematic items causing error in estimation.       

 The results of item-level analyses have not been provided in the literature 

to this point, possibly because of the number of pages needed to present the 

results. But the results of the present study reveal the item level data do shed some 

light on the test-level results. While reporting BIAS at the test level can tell us 
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how accurate the score is overall and RMSE can tell us something about the 

precision of the total test score, authors should provide summary information 

about the characteristics of the items used to obtain the total score and if it was 

necessary to remove items that were found to be problematic.  

Limitations of Present Study 

 Many of the replications for the conditions with small sample size and 

with the EN distribution condition did not converge even though default option 

for the number of calibration cycles was increased to 500 (see Table 4, Chapter 

3). For example, of the 1,000 replications for the EN distribution condition and n 

= 100, 51.4% did not meet the convergence criterion set for this study (0.001). 

Increasing the criterion to 0.01 decreased this percentage substantially with at 

most 34.0% of the replications not converging with the EN distribution condition 

and n = 250. Due to this problem with convergence, as mentioned in Chapter 3, 

the outcome measures provided me be too large, too small or correct.  

 As mentioned above, unexplained values were obtained when estimating 

the a-parameter when n = 500 for all three distributions and at some, but not all, 

of the b-locations for the MN and EN distributions. As well, the ability estimates 

for the MN distribution with n = 3,000 were not as expected. To investigate these 

situations more thoroughly, three more datasets with 1,000 replications with n = 

500 were generated and the analyses repeated for each. Results of these analyses 

were not consistent and inconclusive. There is no readily apparent explanation for 

why this happened and therefore, the results with n = 500 were essentially 

disregarded. 
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Conclusions and Implications for Practice 

 The results suggest that when completing a PIRT analysis with small 

samples or non-normal data, it is necessary to interpret the results of an item 

calibration with caution, particularly when the distribution is markedly negatively 

skewed. It is necessary for researchers using PIRT item calibration to have a 

complete statistical description of their data before deciding on whether or not to 

proceed with the analysis.  

 When using the GRM with MULTILOG to calibrate the items, the sample 

size should be at least 750 if scores on the latent trait of interest are normally 

distributed. Results derived from samples that are moderately or extremely 

negatively skewed may be unsatisfactory. It is essential that researchers are 

thorough in their initial assessment of the data to be calibrated.  

 Lastly, as mentioned above, while reporting BIAS at the test level can tell 

us how accurate the score is overall and RMSE can tell us something about the 

precision of the total test score, authors should provide summary information 

about the characteristics of the items used to obtain the total score and how items 

found to be problematic were handled. 

Future Directions 

 As indicated in the identification of limitations, it is recommended that 

another program (such as SAS and R) be used to generate data with conditions 

similar to those used in this study to possibly aid in  explanation of  the 

unexpected results obtained in the present study. Additionally, the current study 

considered a 20 item, 5 point likert-type scale assessment. Given that test length 
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can affect calibration, the number of items should be varied. Also, the greater the 

number of score categories for an item, the greater the number of item parameters 

estimated, which in turn requires larger sample sizes. Given 3- and 7-point likert 

type items are often used in social science or health science assessment studies, 

the influence of sample size as well as distribution shape should be assessed with 

the intent of determining the minimum sample size required and the maximum 

skewness allowed.  
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Appendix ‘A’ 

rep1.MLG - 

               ESTIMATION OF ITEM PARAMETERS FOR N=100 

>PROBLEM RANDOM, INDIVIDUAL, NEXAMINEES=100, NITEMS=20, 

NCHARS=9, 

         NGROUPS=1, DATA='C:\Multilog\rep1.dat'; 

>TEST ALL, GRADED, 

NC=(5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5); 

>EST NC=500, ICRIT=0.001, CCRIT=0.001; 

>SAVE; 

>END; 

5 

12345 

11111111111111111111 

22222222222222222222 

33333333333333333333 

44444444444444444444 

55555555555555555555 

(9A1,20A1) 
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Appendix ‘B’ 

rep1.MLG - 

              ESTIMATION OF THETA SCORES FOR N=100 

>PROBLEM SCORE, INDIVIDUAL, NEXAMINEES=100, NITEMS=20, 

NCHARS=9, 

         NGROUPS=1, DATA='C:\Multilog\rep1.dat'; 

>TEST ALL, GRADED, 

NC=(5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5); 

>EST NC=500, ICRIT=0.001, CCRIT=0.001; 

>SAVE; 

>END; 

5 

12345 

11111111111111111111 

22222222222222222222 

33333333333333333333 

44444444444444444444 

55555555555555555555 

(9A1,20A1) 
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Appendix ‘C’ 

%macro results 

(start,stop,cond,item,sample,item2,type); 

ods listing close; 

 

data pirt.truepars&cond; 

infile "C:\sasfiles\&item\pars.wgi" firstobs=1 

dlm='09'x; 

input item model $ cats truea trueb1 trueb2 trueb3 

trueb4; 

run; 

 

data pirt.estpars&cond; 

%do value=&start %to &stop; 

infile "C:\sasfiles\results\&cond\rep&value..par" 

firstobs=1 obs=&item2; 

input @6 aest 7.5 @17 b1est 8.5 @28 b2est 9.5 @40 b3est 

9.5 @53 b4est 8.5; 

item=_N_; 

rep=&value; 

output; 

%end; 

run; 

 

proc sort; 

by item;  

run; 

 

data work.allparsBIAS&cond; 

 merge pirt.truepars&cond pirt.estpars&cond; 

 by item; 

diff_a_true_est=truea-aest; 

diff_b1_true_est=trueb1-b1est; 

diff_b2_true_est=trueb2-b2est; 

diff_b3_true_est=trueb3-b3est; 

diff_b4_true_est=trueb4-b4est; 

run; 

 

proc means data=pirt.allparsBIAS&cond; 
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var diff_a_true_est diff_b1_true_est diff_b2_true_est 

diff_b3_true_est diff_b4_true_est; 

by item; 

output out=pirt.itemBIAS&cond; 

run; 

 

proc sort data=work.allparsBIAS&cond; 

by rep; 

run; 

 

proc means data=work.allparsBIAS&cond noprint; 

var diff_a_true_est diff_b1_true_est diff_b2_true_est 

diff_b3_true_est diff_b4_true_est; 

by rep; 

output out=work.BIAS&cond; 

run; 

 

data work.BIAS&cond; 

 set work.BIAS&cond; 

if _STAT_="MEAN"; 

run; 

 

ods pdf file="C:\sasfiles\results\BIASpars&cond..pdf"; 

proc means data=work.BIAS&cond; 

var diff_a_true_est diff_b1_true_est diff_b2_true_est 

diff_b3_true_est diff_b4_true_est; 

title "BIAS for the parameters for &cond and &type";  

run; 

ods pdf close; 

 

data work.allpars&cond; 

 merge pirt.truepars&cond pirt.estpars&cond; 

 by item; 

absdiff_a_true_est=abs(truea-aest); 

absdiff_b1_true_est=abs(trueb1-b1est); 

absdiff_b2_true_est=abs(trueb2-b2est); 

absdiff_b3_true_est=abs(trueb3-b3est); 

absdiff_b4_true_est=abs(trueb4-b4est); 

square_a_true_est=(truea-aest)**2; 

square_b1_true_est=(trueb1-b1est)**2; 

square_b2_true_est=(trueb2-b2est)**2; 
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square_b3_true_est=(trueb3-b3est)**2; 

square_b4_true_est=(trueb4-b4est)**2; 

run; 

 

proc sort data=work.allpars&cond; 

by rep; 

run; 

 

proc means data=work.allpars&cond noprint; 

var square_a_true_est square_b1_true_est 

square_b2_true_est square_b3_true_est 

square_b4_true_est; 

by rep; 

output out=work.averagemlg&cond; 

run; 

 

data work.averagemlg&cond; 

 set work.averagemlg&cond; 

if _STAT_="MEAN"; 

avg_a_true_est=sqrt(square_a_true_est); 

if avg_a_true_est=. then avg_a_true_est=0; 

avg_b1_true_est=sqrt(square_b1_true_est); 

avg_b2_true_est=sqrt(square_b2_true_est); 

avg_b3_true_est=sqrt(square_b3_true_est); 

avg_b4_true_est=sqrt(square_b4_true_est); 

if avg_b1_true_est=. then avg_b1_true_est=0; 

if avg_b2_true_est=. then avg_b2_true_est=0; 

if avg_b3_true_est=. then avg_b3_true_est=0; 

if avg_b4_true_est=. then avg_b4_true_est=0; 

run; 

 

ods pdf file="C:\sasfiles\results\RMSEpar&cond..pdf"; 

proc means data=work.averagemlg&cond; 

 var avg_a_true_est avg_b1_true_est avg_b2_true_est 

avg_b3_true_est avg_b4_true_est; 

title "Root Mean Square Errors of the parameters for 

&cond and &type"; 

run; 

ods pdf close; 

 

data pirt.truetheta&cond; 
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infile "C:\sasfiles\TTheta\&type\&sample..wge" 

firstobs=1 dlm='09'x; 

input obs ttheta; 

run; 

 

data pirt.esttheta&cond; 

%do value=&start %to &stop; 

infile "C:\sasfiles\thetaresults\&cond\rep&value..sco" 

firstobs=1; 

input @5 esttheta 6.3 @16 se 5.3 @23 obs 4.0; 

rep=&value; 

output; 

%end; 

run; 

 

data pirt.allthetaBIAS&cond; 

 merge pirt.truetheta&cond pirt.esttheta&cond; 

 by obs; 

diff_theta_true_est=ttheta-esttheta; 

proc sort data=pirt.allthetaBIAS&cond; 

by rep; 

run; 

 

proc means data=pirt.allthetaBIAS&cond noprint; 

var diff_theta_true_est; 

by rep; 

output out=pirt.BIAStheta&cond; 

run; 

 

data pirt.BIAStheta&cond; 

 set pirt.BIAStheta&cond; 

if _STAT_="MEAN"; 

run; 

 

ods pdf 

file="C:\sasfiles\results\BIASthetas&cond..pdf"; 

proc means data=pirt.BIAStheta&cond; 

var diff_theta_true_est; 

title "BIAS for thetas for &cond and &type";  

run; 

ods pdf close; 
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data pirt.alltheta&cond; 

 merge pirt.truetheta&cond pirt.esttheta&cond; 

 by obs; 

absdiff_theta_true_est=abs(ttheta-esttheta); 

square_theta_true_est=(ttheta-esttheta)**2; 

run; 

 

proc sort data=pirt.alltheta&cond; 

by obs; 

run; 

 

proc means data=pirt.alltheta&cond noprint; 

var square_theta_true_est; 

by obs; 

output out=pirt.averagetheta&cond; 

run; 

 

data pirt.averagetheta&cond; 

 set pirt.averagetheta&cond; 

if _STAT_="MEAN"; 

avg_theta_true_est=sqrt(square_theta_true_est); 

if avg_theta_true_est=. then avg_theta_true_est=0; 

run; 

 

ods pdf file="C:\sasfiles\results\RMSEtheta&cond..pdf"; 

proc means data=pirt.averagetheta&cond; 

 var avg_theta_true_est; 

title "Root Mean Square Errors of theta for &cond and 

&type"; 

run; 

ods pdf close; 

ods listing; 

 

proc sort data=pirt.alltheta&cond; 

by rep; 

run; 

 

proc datasets library=work nolist kill; 

run; 

%mend results; 
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Appendix ‘D’ 

 

 

Figure 1. Root Mean Square Errors of parameters by distribution type for n=100. 

 

Figure 2. Root Mean Square Errors of parameters by distribution type for n=250. 
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Figure 3. Root Mean Square Errors of parameters by distribution type for n=500. 

 

Figure 4. Root Mean Square Errors of parameters by distribution type for n=750. 
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Figure 5. Root Mean Square Errors of parameters by distribution type for 

n=1000. 

 

Figure 6. Root Mean Square Errors of parameters by distribution type for n=1500. 
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Figure 7. Root Mean Square Errors of parameters by distribution type for n=3000. 
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