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Abstract

Item Response Theory (IRT) has been extensively used in educational research
with large sample sizes and normally distributed traits. However, there are cases
in which distributions are not normal, and research has shown that the estimation
of parameters becomes problematic with non-normal data. This study investigates
the effects of skewness on parameter estimation using the Graded Response
Model (GRM) and MULTILOG. Three distribution types (extreme and moderate
skewness and a baseline condition (i.e. normal) and seven sample sizes (from n =
100 to n = 3,000) were investigated using simulations. In keeping with previous
findings, the extremely skewed distribution condition resulted in the poorest
estimates regardless of sample size. In general, the accuracy of parameter
estimation increased as sample size increased. For the normally distributed
conditions, results suggest a minimum sample size of 750 for accurate estimation.

Implications of these findings are discussed.
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Chapter One

Item Response Theory (IRT) is an approach, or family of statistical
models, used to analyze assessment item data. These models relate examinee
ability (¢) and item parameters using logistic functions. Several IRT models have
been developed to estimate examinee ability (or latent trait) and the item
parameters for items that are scored either dichotomously (i.e. only two response
categories) or polytomously (i.e. more than two response categories; Hambleton,
Swaminathan, & Rogers, 1991).

Traditionally, IRT has been used for educational applications such as
Computerized Adaptive Testing (CAT), test score equating, item analysis, and
item banking. However, due to the advantages of IRT other disciplines have
recently developed an interest in using IRT for scoring, validation, and other
psychometric analyses (Reise & Henson, 2003).

Samejima (1969) extended the two-parameter logistic dichotomous item
response theory (IRT) model to deal with ordered, categorical responses. She
developed the graded responses (GRM) model to allow IRT to be used with data
derived from polytomously-scored items included in an achievement test and
which are scored using a scoring rubric or an analytic scoring scale. Additionally,
the GRM was developed for use with assessments including likert-type response
items such as those from attitude scales, psychological inventories or clinical
assessments, where the different points along the response scale receive different
scores.

There are several applied examples in the social sciences in which the
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GRM has been used to fit item data to a model, estimate parameters, or to
generally validate assessments. The assessments used vary across educational
assessments and personality inventories to health questionnaires in which both
dichotomously- and polytomously- scored items or only polytomously-scored
items are used. Given the focus of the present study, the review of empirical
studies is limited to studies outside of education with only polytomously-scored
items. The sample sizes employed in these studies vary from 126 (Schrum &
Salekin, 2006) to 13,059 (Chernyshenko, Stark, Chan, Drasgow & Williams,
2001) and the number of items vary from 6 (Gumpel, 1999) to 198 (Walton,
2008).

Schrum and Salekin (2006) used MULTILOG to calibrate a 20 item
assessment with a 3-point graded scale and a sample size of 123. Gumpel (1999)
calibrated a six item assessment with a 4-point graded scale and sample size of
139; but the program used was not identified. de Ayala (2009) recommended a
minimum sample size of 500 for calibration using polytomous models (assuming
normally distributed € and IRT assumptions are met) and suggested that there may
be a “point of diminishing returns” (p.223) after which increasing the sample size
will not increase the accuracy of estimation. In a simulation study conducted by
Reise and Yu (1990), it was suggested that a sample size above 500 is sufficient
for calibration of a 25-item assessment under the GRM. Reise and Yu also found
that smaller sample sizes affected the estimation of item parameters but did not

affect estimation of the @ parameter.
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Research Purpose and Questions

The purpose of the present study was twofold. The first purpose was to
identify the effect of sample size and non-normal ability (&) distributions on the
accuracy and precision of the estimation of the item parameters at the test level
using the GRM and the MULTILOG program. The second purpose was to
identify the effect of sample size and non-normal ability (&) distributions on the
accuracy and precision of the estimation of the item parameters at the item level
using the GRM and the MULTILOG program.

In order to address these purposes, a simulation study was conducted in
which real data studies for distribution type and sample size were referenced to
carry out the simulation. Two factors were varied in the study: underlying 6
distribution type and sample size. The following four research questions will be
addressed using simulated data:

1) Does the shape of the underlying @ distribution have an effect on test-level
statistical outcomes for item and person parameter recovery under the
GRM using MULTILOG?

2) Does the shape of the underlying @ distribution have an effect on item-
level statistical outcomes for item and person parameter recovery under
the GRM using MULTILOG?

3) Does sample size have an effect on test-level statistical outcomes for item
and person parameter recovery under the GRM using MULTILOG?

4) Does sample size have an effect on item-level statistical outcomes for item

and person parameter recovery under the GRM using MULTILOG?
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Evaluation criteria included two outcome measures at both of the levels of
analysis. RMSEs and test-level BIAS statistics calculated across items were to
assess effects on total test scores and item-level BIAS and standard error of item
BIAS were calculated to assess item-level effects.

Delimitations

While there are several IRT programs that can be used to complete a
calibration of polytomously scored items and to estimate the latent trait parameter,
only MULTILOG with the GRM was used in the study. Comparison of different
computer programs and calibration and estimation procedures was not a purpose
of the present study. In addition, only a 5-point score scale and 20-item
assessment was simulated. This decision was made given the common use of a 5-
point response scale and the average number of items included in the studies in
the personality and health areas.

Organization of Thesis

The introduction of the research on applied and simulation-based studies
using polytomous item response theory (PIRT) models and the presentation of the
research questions was presented in Chapter One. Chapter Two contains the
literature review and the logic in support of the present research. Chapter Three
describes the methods that were used in this study including a description of the
GRM, calibration procedures, simulation conditions, and evaluation procedures
used to assess the results. Results are presented in the next two chapters. Test-
level results are presented and discussed first in Chapter 4, followed by item-level

results in Chapter 5. Lastly, Chapter Six contains a summary of the research
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findings, a discussion of the limitations of the current study, conclusions,

implications for practice and future research directions.
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Chapter Two: Review of the Literature

This chapter provides a review of the literature on parameter estimation
and recovery using the Graded Response Model (GRM, Samejima, 1969). In the
literature, there are parameter recovery studies that have incorporated three
different item formats including dichotomous items only (Bahry & Gotzmann,
2011; Drasgow, 1989; Wang & Chen, 2005), mixed-item formats including both
dichotomous and polytomously-scored items (Toland, 2008), and polytomous
items only (Dodd, 1984; Si, 2002; Sinar & Zickar, 2002; Kang, Cohen & Sung,
2009). While the dichotomous-only and mixed-item assessment formats have
been studied in great detail, polytomous-only is the focus of this study since this
item format has not been evaluated to the same extent. Thus, the review of the
literature is focussed on studies using assessments with only polytomously-scored
items.

First, a brief introduction to Item Response Theory (IRT) is provided
including a description of the GRM and the estimation process used in the
MULTILOG software (Thissen, Chen, & Bock, 2003) used in this study. This is
followed by a review of the application of IRT item parameter estimation and
parameter recovery research using the GRM with assessments with only
polytomously-scored items. The chapter concludes with a statement of the
purpose of the present research.

Overview of IRT
Item Response Theory (IRT) is an approach, or family of statistical

models, used to analyze assessment item data. These models relate examinee
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ability (¢) and item parameters using logistic functions. Several IRT models have
been developed to estimate ability or person parameters that are scored either
dichotomously (i.e. only two response categories) or polytomously (i.e. more than
two response categories; Hambleton et al., 1991). Traditionally, IRT has been
used for educational applications for Computerized Adaptive Testing (CAT), test
score equating, item analysis, and test banking. However, due to the advantages of
IRT other disciplines have recently developed an interest in using IRT for scoring,
validation, and other psychometric analyses (Reise & Henson, 2003).

IRT ability or person parameters () are not item or test dependent and
item and test characteristics are not dependent on the ability or person parameters.
This is called the property of invariance (Hambleton et al., 1991; Lord, 1980) and
means that the test and item parameters remain the same regardless of the sample
of respondents, and the ability or person parameters do not vary depending on the
test items administered or time of test provided the items are relevant to and
representative of the same domain of interest.

At the foundation of IRT is the item response function (IRF), which gives
the probability of observing a particular response to a particular item given the
examinee’s latent trait value (i.e., ability, personality trait, etc.) and the parameters
of the item. The item characteristic function (ICF) defines the expected item score
given an examinee’s ability, and the item characteristic curve (ICC) is a graphical
representation of the ICF. When considering polytomous item response models,
there is a curve for each scoring category; in this case, the curves are called

operating characteristic curves (OCC’s).
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When the test items are all scored dichotomously, there are three basic
models for analyzing the data: the one-, two-, and three-parameter logistic
models. The one-parameter (1PL) model is the most basic and involves, as the
name states, only one item parameter: the b-parameter is included in every IRT
model and is considered the difficulty parameter (Yen & Fitzpatrick, 2006). The
b-parameter is at the point on the & scale where the probability of a correct
response is equal to 0.50 and typically varies from -2.00 to 2.00 (Hambleton et al.,
1991; Yen & Fitzpatick, 2006) increasing as items become more difficult. Figure

1 is a visual representation of the effect of changes in parameter b.

The b parameter

1.0

o.n

Theta

Figure 1.1CCs showing the effect of increasing parameter b

The two-parameter model (2PL) includes a second item parameter, the
discrimination parameter, a. a is the slope of the ICC at the point of inflection and
the higher the value of a, the more sharp the discrimination (Yen & Fitzpatrick,
2006). The a-parameter is included when it is assumed that items on an

assessment vary in their discriminating power. a-parameters typically range from
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0 to 2.00 with values ranging from 0.40 to 2.50 considered good (Hambleton et
al., 1991). The b-parameter is at the point on the 4 scale where the probability of a
correct response is equal to 0.50. Figure 2 is a visual representation of changes in
a. Here, we see that as a increases, the range of & decreases for that item. That is,

the information provided by an item with a large value of a, will be greater.

a parameter

1.0
a=z 24
og -
a=.Aha
a6 -
o

04 o

0z +

a.n r :

-3 a 3
Theta

Figure 2.ICCs showing the effect of increasing parameter a

Finally, the three-parameter model (3PL) includes the c-parameter, called
the guessing or pseudo-chance parameter. This parameter was introduced to
account for the possibility that even students with low ability have some chance of
answering even difficult questions correctly. This parameter is not always
necessary, and if set to zero, equates the 3PL with the 2PL (Yen & Fitzpatrick,
2006). In the case of the 3PL model, the value of the b-parameter is dependent on
the value of the lower asymptote (c-parameter). In this case, the b-parameter is at

the point on the & scale where the probability of a correct response is equal to
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c+100 . Figure 3 is a representation of changes to parameter ¢ and the resulting

changes to the probability of an examinee’s response to an item.

C parameter

os 4

05 +

=5

04q

oz -+

0.0 T T T T T T T T T T
2 2 -1 i} 1 z 3
Theta

Figure 3.1CCs showing the effect of increasing parameter c

Although there are clear benefits to the invariance property, there are two
integral assumptions of IRT. First, there is an assumption regarding the
dimensionality of the underlying ability or trait. While there are multi-
dimensional IRT models (MIRT), the model used in this study requires that a
single trait or ability accounts for an individual’s & score. When this assumption
of the data holds, the examinees can be placed along a single, meaningful scale
(Hambleton et al., 1991).

Second, there is the assumption of local independence. When the items on
an assessment are locally independent, a response to any item is independent of a
response to any other item on the same assessment for a given individual. This
assumption allows us to determine the probability of an individual response

pattern occurring given the individual’s ability or trait level (Hambleton et al.,
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1991; Lord, 1980). It is the case that if the first assumption of unidimensionality is
met, then the assumption of local independence will also be met.

In addition to these assumptions, an assessment of model-data fit is also
important in IRT. A poorly specified model creates problems with estimating both
item parameters and @ scores. Consider the following: an analyst mistakenly
specifies a model which only specifies a- and b-parameters when in fact the data
fit a model consisting of all three item parameters. Because the c-parameter has
not been specified, the @ values may be over-estimated as the individual’s ability
to correctly guess the answer has not been taken into consideration. Guessing is
not considered to be included in ability and, as such, it should not be allowed to
unduly influence scores.

Graded Response Model

Samejima (1969) extended the 2PL dichotomous IRT model to deal with
ordered, categorical responses. She developed the graded responses (GRM)
model to allow IRT to be used with data derived from polytomously-scored items
included in an achievement test and which are scored using a scoring rubric or
analytic scoring scale and with likert-type response data used in attitude scales,
psychological inventories or clinical assessments, where the different points along
the response scale receive different scores. In essence, the GRM is an application
of the 2PL to an ordered series of dichotomous responses and specifies the
probability of responding in k or higher response categories as opposed to lower

than k response categories (e.g., for a three point scale, O vs. 1 and 2 and 0 and 1
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vs. 2; de Ayala, 2009). The probability (P) of obtaining a score (x;) or higher is

defined as:

e@Jj(6-8x))

P;] (9) = 1+eai(0-8xj) (21)

where @ is the latent trait,

a; is the discrimination parameter for item j,

dxj 1S the category boundary location for category score x;, and

Xj = {0,1...m;} where mj is the largest category score for item j. The value

of m; need not be the same for all items.

The GRM is considered as a difference model because the probability of
obtaining a specific category score x; on item j involves a two-step process.
Equation 2.1 provides the probability of attaining a category score or higher and
must be solved for each score category (i.e. x;=0,1,...m). This provides the
operating characteristic functions for the k thresholds. Next, the following

equation is used:

Pk = Px — Priq (2.2)

where Py is P;; from equation 2.1. And py gives the probability of responding in a
particular category given @ by subtracting adjacent P, (6) values. Because by
definition responding above the highest response category is px = 0.00, the
probability of responding within the highest category is equal to the highest

operating characteristic function calculated using Equation 2.1.
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Parameter Estimation Using MULTILOG*

In MULTILOG, item parameter estimation can be done in one of three
ways depending on whether 6 is assumed to be a fixed or random variable. If §is
assumed to be fixed and linearly related to the observable variable, parameters can
be estimated using nonlinear regression (Roche, Wainer & Thissen, 1975). If 8 is
assumed to be fixed but unknown, simultaneous estimation of the fixed values of
6 and item parameters is used (Bock, 1976) by dividing the examinees into
homogenous groups.

Finally, when @ is assumed to be a random unobserved variable Bock and
Aitken (1981) proposed using marginal maximum likelihood estimation (MMLE)
which integrates the unknown ability parameter out over the parameter
distributions and uses the marginal distributions to estimate item parameters.
Their reformulation of the algorithm initially proposed by Dempster, Laird and
Rubin (1977) allows for an unknown ability distribution to be estimated along
with the item parameters.

Trait Score Estimation Using MULTILOG

Trait score (6) estimation in MULTILOG can be done in one of two ways:
maximum likelihood (MLE) or expected a posteriori (EAP). The MLE of @ is the
value at which an examinee has the highest likelihood of responding given the
observed response pattern and item properties. However, in order for MLE to be
computed, an examinee must have both correct and incorrect responses on an

assessment. That is, given a dichotomous assessment, the response patterns

' PARSCALE (Muraki & Bock, 1997 ) was considered for calibration. However, when attempted
with a skewed distribution condition, the program stopped running and produced an error file due
to a lack of data in all possible categories.



Running head: PIRT parameter recovery 14

[0,0,0,0,0] and [1,1,1,1,1] will produce an estimation error when using MLE. In
contrast, the EAP procedure uses the mean of the posterior distribution rather than
the mode as in the MLE (Bock & Mislevy, 1982). In this case, all response
patterns can be used.
Empirical Studies Using the GRM

There are several applied examples in the social sciences in which the
GRM has been used to fit item data to a model, estimate parameters, or to
generally validate assessments. The assessments used vary across educational
assessments and personality inventories to health questionnaires in which both
dichotomously- and polytomously- scored items or only polytomously-scored
items are used. As mentioned early, given the focus of the present study, the
review of empirical studies is limited to studies outside of education with only
polytomously-scored items. The sample sizes employed in these studies vary from
126 (Schrum & Salekin, 2006) to 13,059 (Chernyshenko, Stark, Chan, Drasgow
& Williams, 2001) and the number of items vary from 6 (Gumpel, 1999) to 198
(Walton, Roberts, Krueger, Blonigen & Hicks, 2008).

One assessment that has been analysed more than once using Polytomous
Item Response Theory (PIRT) is the 20-item Psychopathy Checklist (PCL), both
the Revised (PCL-R; Hare, 1991) and Youth Version (PCL-YV; Forth, Kosson &
Hare, 2003) forms. PCL items are scored on a 3 point scale wherein 0 translates to
a complete absence of the behaviour, 1 translates to an occasional presence of the
behaviour and 3 translates to the continuous presence of the behaviour.

Cooke, Michie and Kosson (2001) evaluated the structural, item, and test
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generalizability of the PCL-R using IRT methods. Two samples, one with 359
participants and another with 356 participants, were calibrated using the GRM
and the computer program MULTILOG. Cooke et al. used IRT methods to
investigate Differential Item Functioning (DIF) of the PCL-R for Caucasians and
African Americans. DIF, in the context of the PCL, is expected to occur when
individuals with the same level of psychopathy from different groups have
differing probabilities of obtaining the same score on a particular item. Two PCL-
R factor models, one using 13 items and another using all 20, were calibrated for
both samples in MULTILOG using the GRM. Five items showed significant
differences across the two samples and the magnitude was small.

Bolt, Hare, Vitale & Newman (2004), also investigated DIF on the PCL-R
using three methods across four samples: male criminal offenders (n = 3,847),
female criminal offenders (n = 1,219), male psychiatric forensic patients (n =
1,246) and male criminal offenders scored only from file review (n = 2,626). Each
sample was calibrated using MULTILOG with the GRM and both item and 4
parameters were estimated. A large number of items displayed DIF in the study
but as with the results of Cooke et al. (2001) the magnitude was small.

Finally, Schrum and Salekin (2006) analysed the assessment data from a
sample of 123 responses to the PCL-YV from adolescent females from a
detention centre. They also used the GRM and MULTILOG program to calibrate
item and person parameters and to investigate item discrimination. Results
showed that items discriminated the sample of juveniles differently from other

samples.
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Health research has also seen an increase in the use of IRT for test and
item development. Cook et al. (2007) calibrated the data from 1,714 patient
responses on a two scales from a health-related quality of life (HRQOL) measure:
the general distress pool (15 items) and the physical function pool (23 items).
Three different PIRT models were compared for fit with the data: the partial credit
model (PCM; Masters, 1982), the generalized partial credit model (GPCM,;
Muraki, 1992), and the GRM, and two software programs were used:
WINSTEPS (Linacre, 2002) and PARSCALE 3 (Muraki & Bock, 1997).

In addition to item and DIF analyses using IRT, item parameters estimated
were used to simulate a computerized adaptive testing (CAT) environment with
the items from the HRQOL instrument. Results indicated that in the health
sciences, multidimensional IRT models may be of more use.

Hays, Liu, Spritzer, and Cella (2007) also calibrated sample data from 15
items assessing physical functioning from the HRQOL measure (n = 3,223) in
order to inform the creation of an item bank. MULTILOG software was used in
the calibration of data with the GRM and results indicated good fit with the
model. However, the b-parameters for the majority of the 15 items were very low
on the ¢ scale and recommendations include the creation of items more evenly
placed along the scale.

Simulation Studies Using the GRM

There are only a small number of simulated data parameter recovery

studies using PIRT models. A seminal article by Reise and Yu (1990) posits that

the minimum number of participants be 500 in order to estimate the parameters



Running head: PIRT parameter recovery 17

using the GRM when using an instrument with 5 response categories. The authors
used the MULTILOG program to estimate parameters across 36 conditions:
sample size (n = 250, 500, 1,000, and 2,000), true @ distribution (normal, uniform,
and positively skewed), and true a-parameters (poor, moderate, and average
discrimination). Outcome measures for the study included root mean square errors
(RMSE), correlations between the true and estimated parameters, and mean
comparisons between true and estimated parameters.

Reise and Yu’s results indicated that the accuracy of the recovery of a-
parameters increased across ¢ distributions from uniform to normal to positively
skewed. Five hundred examinees were necessary to bring the RMSE below 0.10,
and 1,000 examinees were need to obtain correlations between the “true’ and
estimated a-parameter values above 0.90. The results for the b-parameters were
similar to those for the a-parameters, with RMSEs decreasing with increasing
sample size and correlations between ‘true’ and estimated b-parameters increasing
with increasing sample size. Recovery of the 9 parameters was generally poorer
than the a- and b-parameters and was less affected by changes in sample size.

Sinar and Zickar (2002) used simulation methods to investigate the
influence of the inclusion of deviant items that did not assess the construct of
interest. A total of 45 conditions were calibrated: scale intercorrelations (-0.60, -
0.30, 0.00, 0.30, 0.60), a-parameters for the focal scale (low, average, and high
discrimination), and a-parameters for the scale with deviant items (low, average,
and high discrimination). They use the GRM and the MULTILOG program to

obtain parameter estimates.
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Eight ANOVASs were run to investigate the influence of deviant items on
traditional psychometric measures (classical test theory) and IRT with the
dependent variables as the change in discrimination. Results indicated that
construct irrelevant items were not significantly problematic for IRT analysis
results due to the property of invariance and that when the item pool was well-
defined an IRT model may be preferable to a classical model.

Purpose of the Study

Though developed and utilized heavily in the field of Education, IRT has
been increasingly used in the social sciences and medicine for scale analysis and
validation. When looking at large-scale assessment data in Education, large sized
samples often with scores that are approximately normally distributed is the norm.
However, as evidenced above, the recommended samples sizes were not met for
many of the studies in which PIRT was used in the social and heath sciences
areas. In addition, non-normal distributions are often seen in the social or health
sciences due to the nature of the domain that is assessed.

Schrum and Salekin (2006) used MULTILOG to calibrate a 20-item
assessment with a 3-point graded scale with a sample size of 123. Gumpel (1999)
calibrated a six-item assessment with a 4-point graded scale and sample size of
139; but the program used was not identified. de Ayala (2009) recommended a
minimum sample size of 500 for calibration using polytomous models (assuming
normally distributed € and IRT assumptions are met) and suggested that there may
be a “point of diminishing returns” (p.223) after which increasing the sample size

will not increase the accuracy of estimation. In a simulation study conducted by
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Reise and Yu (1990), it was suggested that a sample size above 500 is sufficient
for calibration of a 25-item assessment under the GRM. Reise and Yu also found
that smaller sample sizes affected the estimation of item parameters but did not
affect estimation of the 6 parameter.

Thus, the purpose of the present study was twofold. First, to identify the
effect of sample size and non-normal ability (¢) distributions on the accuracy and
precision of the estimation of the item parameters at the test level using the GRM
and the MULTILOG program at the test level. The second purpose was to
conduct the analysis and provide outcome data at the item level to obtain
information at the individual item level. Thus, the following four research
questions will be addressed using simulated data:

1) Does the shape of the underlying @ distribution have an effect on test-level
statistical outcomes for item and person parameter recovery under the
GRM using MULTILOG?

2) Does the shape of the underlying @ distribution have an effect on item-
level statistical outcomes for item and person parameter recovery under
the GRM using MULTILOG?

3) Does sample size have an effect on test-level statistical outcomes for item
and person parameter recovery under the GRM using MULTILOG?

4) Does sample size have an effect on item-level statistical outcomes for item
and person parameter recovery under the GRM using MULTILOG?

The test simulated and the rationale for each factor it’s levels is presented in

Chapter Three.
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Chapter Three: Method

The simulation methods used in this research study are presented in this
chapter. First, the independent variables investigated are described and the
rationale for the levels chosen for these variables is presented. Second,
descriptions of the processes carried out to simulate and calibrate the data for the
study are described. Finally, the outcome measures used to evaluate the accuracy
and precision of the estimates produced using the GRM and the MULTILOG
program are described.

Independent Variables

Two independent factors were considered: type of underlying latent trait
distribution (0) and sample size.

Underlying latent trait distribution (6). The type of underlying latent trait
distribution (0) was varied in this study because it has been shown that in some
cases, the shape of the distribution of 4 can affect parameter estimation (Reise &
Yu, 1990; Toland, 2008). In order to accurately represent the type of data that
one would collect with a clinical assessment, the level of negative skewness was
varied for the underlying @ distribution. As the program WinGen3 (Han, 2007)
was used, it was not possible to have complete control over the exact value of the
skewness statistic. However, three levels of skewness were considered: extreme
negative, moderate negative, and no skewness (i.e., normal).

Sample size. Sample size was chosen as a factor because, as shown in the
previous chapter, research has shown that sample size does have an effect on the

accuracy and precision of item parameter estimation (de Ayala, 2009; Drasgow,
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1989; Seong, 1990; Reise &Yu, 1990). Seven sample sizes were investigated (n =
100, 250, 500, 750, 1,000, 1,500, 3,000). These sample sizes represent those
found in applied literature and those generally found in clinical assessment
situations where PIRT has been used. Of particular note are the two smallest
sample sizes, which have been used in applied research studies and do not meet
the recommendations provided by de Ayala (2009).

The three distribution shapes were crossed with the seven sample sizes to
yield a 3 x 7 research design.
Data Generation and Calibration

The first step in the simulation was to generate item parameters for the 20
item assessment using WinGen3. The 20 a-parameters were simulated using a
uniform distribution with a range of 0.400 to 2.500. The values of a-parameters
typically range from 0 to 2.00 with values ranging from 0.40 to 2.50 considered
good (Hambleton et al., 1991). The b1-, b2-, b3-, and b4-location parameters were
simulated using a normal distribution (M=0.000, SD=1.000) and they ranged from
-2.00 to 2.00 since this is the typical range for b-parameters (Hambleton et al.,
1991; Yen & Fitzpatick, 2006). The item parameters used for the simulation are
reported in Table 1 and are similar to those found in applied literature
(Chernyshenko et al., 2001; Cooke et al., 2001; Schrum & Salekin, 2006). Next,
three population distributions were sampled using WinGen3 to create ¢
distributions for each sample size. Two degrees of negative skewness developed
using the 2-parameter beta distribution in an attempt to model the different

distributions of clinical scores on a diagnostic instrument. Parameters of the
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population beta distributions were varied to keep the value of skewness at
approximately -0.500 for the moderately-skewed conditions and -1.000 for the

Table 1

Item Parameters for 20-Item Assessment

Parameters
a- b1- b2- b3- b4-
Item 1 0.735 -0.482 -0.073 0.121 2.030
Item 2 0.596 -0.750 1.112 1.643 2.343
Item 3 2.400 -1.090 -0.054 0.288 1.916
Item 4 0.637 -2.116 -0.420 0.481 0.987
Item 5 1.594 -0.779 -0.314 0.874 1.602
Item 6 1.804 -2.090 -1.360 -0.461 1.631
Item 7 0.629 -1.206 0.779 0.900 1.469
Item 8 1.252 -0.542 0.024 0.549 1.019
Item 9 1.372 -1.447 -0.786 -0.443 0.847
Item 10 1.522 -1.646 -1.585 -1.231 0.515
Item 11 2.376 -0.398 0.845 1.694 1.973
Item 12 1.204 -1.911 0.161 1.373 1.410
Item 13 2.466 -1.044 0.070 0.121 0.523
Item 14 0.833 -1.058 0.273 0.518 0.585
Item 15 1.793 0.223 0.426 0.730 0.998
Item 16 0.413 -2.044 -1.132 -0.292 0.866
Item 17 1.511 -0.706 -0.049 0.942 1.308
Item 18 1.857 -1.384 -0.505 0.474 1.399
Item 19 1.877 -0.987 -0.004 0.796 1.633
Item 20 2.440 -0.419 0.854 1.190 1.723
Mean 1.466 -1.094 -0.082 0.513 1.339

extremely skewed distributions. The normal distribution (approximately M =
0.000, SD = 1.000) was used as a baseline. Tables 2 and 3 contain the descriptive
statistics for the normal distribution for each sample size (Table 2) and both
skewed distribution conditions for each sample size (Table 3). In order to obtain

stable results, 1,000 replications of each condition were conducted.
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Table 2

Descriptive Statistics for all Normal Distribution Conditions

Distribution Sample Size Mean (M) Standard Deviation Skewness Kurtosis

Normal 100 0.088 1.074 0.040 0.020
Normal 250 0.055 1.046 -0.130 0.350
Normal 500 0.060 0.951 0.010 -0.080
Normal 750 0.016 1.004 0.060 0.110
Normal 1000 -0.019 1.015 0.010 -0.200
Normal 1500 0.039 1.022 0.070 -0.030
Normal 3000 -0.012 0.988 -0.030 -0.060

Appendix ‘A’ contains the MULTILOG syntax used for the estimation of
item parameters. The “RANDOM” command was used for marginal maximum
likelihood (MMLE) parameter estimation, with “INDIVIDUAL” indicating the
input format is individual item response vectors. Convergence was set to 0.001
with 500 calibration cycles in order to allow the software time to come to
convergence. As MULTILOG does not produce an error message in the output
parameter file, all output was utilized in calculating the outcome measures. Since
MMLE uses the empirical @ distribution rather than making theoretical
assumptions and inconsistencies due to problematic local maxima when
estimating item parameters are eliminated (Bock & Aitkin, 1981).

Further, since the item parameters are estimated separately from ability,
calibration using MMLE is more efficient than Joint Maximum Likelihood
Estimation (JMLE) which estimates item and person parameters simultaneously

(de Ayala, 2009). In addition, whereas MMLE has been shown to improve
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accuracy of estimation for shorter instruments, JMLE has been shown to produce

biased estimates for instruments 15 items or shorter (Lord, 1983, 1986).

Table 3

Descriptive Statistics for all Skewed Conditions

Beta
Parameters
Distribution ~ Sample o B Mean  Standard Skewness Kurtosis
Size (M) Deviation
Moderate 100 3 2 0.640 1.143 -0.550 -0.280
Negative
Moderate 250 4 2 0.993 1.119 -0.480 -0.360
Negative
Moderate 500 5 2 1.334 0.875 -0.500 -0.210
Negative
Moderate 750 4 2 0.989 1.029 -0.480 -0.220
Negative
Moderate 1000 5 2 1.303 0.945 -0.560 -0.150
Negative
Moderate 1500 5 2 1.234 0.974 -0.530 -0.170
Negative
Moderate 3000 5 2 1.270 0.932 -0.510 -0.320
Negative
Extreme 100 6 2 1.591 0.859 -1.050 0.960
Negative
Extreme 250 8 2 1.819 0.769 -1.080 0.770
Negative
Extreme 500 10 2 1.965 0.647 -1.090 1.570
Negative
Extreme 750 8 2 1.794 0.775 -0.970 0.740
Negative
Extreme 1000 10 2 2.013 0.611 -0.970 0.880
Negative
Extreme 1500 10 2 1.990 0.641 -1.000 0.890
Negative
Extreme 3000 10 2 2.001 0.619 -1.000 1.040
Negative

Appendix ‘B’ contains the MULTILOG syntax used to calibrate the

person parameters (0). The “SCORE” command computes & scores, using
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Maximum A Posteriori (MAP) estimation as default. MAP is a Bayesian approach
to parameter estimation that uses an iterative method and a continuous prior
distribution. Bayesian estimation procedures can be used for any response pattern,
including those with ‘perfect’ (all correct or incorrect) response patterns, unlike
maximum likelihood procedures which demand both correct and incorrect
responses in an individual’s response set. The possibility of perfect response
patterns when dealing with extremely skewed distributions is large. Thus using a

Bayesian approach was necessary for this study.

Data Analysis

Once all the MULTILOG runs were completed, the item and person
parameters were read back into SAS (Version 9.2) and four outcome measures
were presented: Root Mean Square Errors (RMSES) across the 20 items by
replication, Test-Level BIAS averaged across all 20 items and replications, Item-
Level BIAS for each item across replications, and frequencies of non-convergence
for each condition. The syntax used to combine the results into SAS and calculate
the outcome measures is presented in Appendix ‘C’. In order to gain a true sense
of the outcomes from an applied PIRT calibration wherein there are no ‘true’
parameters to use in a calibration procedure, estimated parameters were not scaled
to the ‘true’ parameter scale for the purposes of this study.

RMSEs were calculated in three stages as follows:
Step 1: The MSE, was calculated across the 20 assessment items for each

replication:



Running head: PIRT parameter recovery 26

20 (72 )? (3.2)
msk, = Tl bl

where &, = the estimated parameter for item i on replication r, and
&; = the ‘true’ parameter for item i.

Step 2: The mean MSE,. was calculated across the 1000 replications:

_ 3199 sk, 42

MSE 999

Step 3: The square root of the MSE  is equal to the RMSE across the 20 items for
the 1000 replications.

The RMSE is the most commonly used and recommended statistic for
parameter recovery studies such as this (Sass, Schmitt, & Walker, 2008; Seong,
1990; Stone, 1992; Tate, 1995). And the RMSE is also highly interpretable
(Harwell, Stone, Hsu, & Kirisci, 1996) as it is calculated in parameter units. Thus,
an RMSE = 1 translates to an absolute difference of one parameter unit between
the estimated and ‘true’ parameters.

The second outcome measure to be used in this study is the average

estimate of bias (BIAS). Test-Level BIAS is defined by:

1 1000 1 20
_ 1 3 33
BIAS 100021 20 1(El fl)] (3:3)
r= =

i

where ¢&; = the ‘true’ parameter value for item i, and

&,= the estimated parameter for item i.
Test-level BIAS provides information regarding the direction and magnitude of

bias for an estimated parameter relative to the corresponding ‘true’ parameter.
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Item-Level BIAS was also calculated for each item across the 1,000

replications to aid in interpretation. These statistics were calculated as follows:

27%2(:)[0('51 - é:i)z (33)

BIAS; = 595

where §; = the ‘true’ parameter value for item i, and

a

&;= the estimated parameter for item i.

Item-Level BIAS provides item-level information regarding the magnitude of the
BIAS in item parameter estimates. The standard error (S.E.) of Item-Level BIAS
was also calculated and provides information regarding the precision of those
estimates.

Non-Convergence Frequencies

Before moving to the presentation of results in the next two chapters, it is
first necessary to address the issue of non-convergence during the calibration
phase. Problems were encountered, especially when the distribution was
extremely negatively skewed and for the smaller sample sizes.

Table 4 shows the percentage of replications that did not converge when
calibrating the data using MULTILOG. As shown, non-convergence was an issue
with small sample sizes regardless of the distribution type. The default criterion
for convergence for MULTILOG is set at 0.001. As shown in Table 4, in 51.4%
of the replications failed to converge for the extreme negative (EN) distribution
with n = 100 and this decreased to 11.4% with n = 3,000. The non-convergence
for the moderate negative skewed (MN) distributions and normal distributions

were more comparable with non-convergence for 26.8% and 26.9%, with n =
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100 and 0.00% with n = 3,000.

Table 4

Percentages of Replications Without Convergence with Criterion Set at 0.01 and
0.001

Distribution Type Sample Size Criterion =0.001 Criterion =0.01

Normal 100 26.90% 9.20%
250 21.50% 16.50%

500 2.50% 1.90%

750 0.60% 0.30%

1000 0.10% 0.10%

1500 0.00% 0.00%

3000 0.00% 0.00%

Moderate Negative 100 26.80% 6.20%
250 40.00% 12.60%

500 16.30% 8.00%

750 3.00% 1.00%

1000 0.90% 0.10%

1500 0.30% 0.00%

3000 0.00% 0.00%

Extreme Negative 100 51.40% 9.80%
250 38.70% 34.00%

500 20.70% 9.80%

750 14.50% 2.90%

1000 20.10% 3.90%

1500 16.10% 1.90%

3000 11.40% 0.30%

Using a less conservative criterion of 0.01, the non-convergence rates
decreased substantially. For example, for the EN distribution, the non-
convergence rate was 9.80% with n = 100 and 0.30% with n = 3,000. Likewise,

the non-convergence rates were reduced for the MN and normal distributions. For
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example, the non-convergence rates for the MN distribution was 6.2% with n =
100 and 0.0% with n = 1,500 and n = 3,000.

However, a feature of MULTILOG is to provide an estimate of the
parameter of interest after the last completed cycle in the iterative procedure used
(MML in this case). All 1,000 parameter estimates for each condition were
included the calculation of the outcome measures. In such cases where the
convergence criterion was not met, it is not known whether the estimates provided
at the end of the 500 calibration cycles were over, under, or accurate estimates. As
a result, the mean outcome measures provided may be too large, too small or
correct. Non-convergence was taken into consideration when interpretations of

the outcome measures were made.
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Chapter Four: Results and Discussion - Test Level Analysis

The results of the simulations are presented in this and the next chapter.
The current chapter presents results at the test level, whereas chapter 5 contains
results at the item level. Results are presented in both chapters for each of the
parameters separately. The RMSE and test level bias measures were used at the
test level, and the item level BIAS and standard error of the BIAS were used at
the item level. Each chapter concludes with general comments across conditions.
a-parameters

RMSE. With the notable exception of n = 500, the RMSEs for the a-
parameters decreased in general for each distribution as the sample size increased
(Figure 1.). As shown, the values of RMSE for all three distributions were large
for n = 100 but dropped significantly for n = 250. As suggested above, RMSEs
unexpectedly increased for n = 500, particularly for the MN distribution and the
normal distribution conditions. There is no clear reason for this latter result.
Beginning with n = 750, the RMSEs for the MN distribution and the normal
distribution conditions were essentially the same and all less than 0.20. In
contrast, the RMSEs for the EN distribution conditions were larger, varying from
0.32 to 0.52 across the four larger sample sizes.

Test-Level BIAS. As with the RMSE, the test-level BIAS results show the
accuracy of the recovered parameters increased across all distribution conditions

as sample size increased with a spike at n = 500 (Figure 2.). Note that as the
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Figure 4. RMSEs of ‘true’ and estimated a-parameters by condition.

subtraction for both BIAS measures was computed ‘true’ minus estimated,
a negative BIAS indicates an overestimate and a positive BIAS indicates an
underestimate. With one exception (EN, n = 250), the a-parameter was
overestimated for the three smaller sample size conditions.

Continuing with the four larger sample size, the test level bias for the a-
parameter was slightly underestimated for the MN distribution and the normal
distribution conditions for n = 750, and essentially zero for the remaining three
sample sizes. In contrast, the test level bias for the EN distribution conditions was
0.25 for n = 750, after which it increased to close to 0.50 for the three larger
sample sizes.

bl-parameters
RMSE. As shown in Figure 3, and unlike the case for the test-level a-

parameter, the RMSEs for the b1-location parameter differed across the three
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Figure 5.BIAS of ‘true’ and estimated a-parameters by condition.

distributions. RMSEs for the EN distribution conditions are all larger than

the RMSEs for the MN distribution conditions which, with the exception of n
=100, are all larger than the RMSEs for the normal distribution. The same spike in
error occurs for the n=500 sample size with both the EN and MN distributions as
with the a-parameter.

As expected, the RMSEs consistently decreased from 0.52 to close to zero
for the normal, or baseline distribution conditions. In contrast, RMSEs increased
for the EN and MN distribution conditions as the sample size increased from 100
to 500, then decreased for n = 750 in essentially parallel ways. The RMSEs then
increased for both EN and MN distribution conditions, but more so for the EN
distribution, at n = 1,000. After this point, values for the two distributions
diverged from each other, with the RMSE remaining close to 1.40 for the MN
distribution conditions, while the RMSEs for the EN distribution conditions

varying between 3.62 and 4.04.
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Figure 6.RMSE:s of ‘true’ and estimated b1-parameters by condition.

Test-Level BIAS. As with the RMSE, the test-level BIAS for the bl-
location parameter differed across the three distributions. And as with the RMSE,
the BIAS was greatest for the EN distribution, followed in by the MN distribution
and the normal distribution conditions. While the test-level BIAS was essentially
zero across the seven sample sizes for the normal distribution, it increased for the
EN and MN distribution conditions as the sample size increased from 100 to 500,
then decreased for n = 750 in the same ways. BIAS then increased for both EN
and MN distribution conditions, but more so for the EN distribution at n = 1,000.
After this point, values for the two distributions diverged from one other, with the
BIAS varying between 1.23 and 1.38 for the MN distribution and between 3.22
and 3.51 for the EN distribution conditions.

Test-Level BIAS. As with the RMSE, the test-level BIAS for the bl-
location parameter differed across the three distributions. And as with the RMSE,

the BIAS was greatest for the EN distribution, followed in by the MN distribution
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Figure 7.BIAS of ‘true’ and estimated b1-parameters by condition.
and the normal distribution conditions. While the test-level BIAS was essentially
zero across the seven sample sizes for the normal distribution, it increased for the
EN and MN distribution conditions as the sample size increased from 100 to 500,
then decreased for n = 750 in the same ways. BIAS then increased for both EN
and MN distribution conditions, but more so for the EN distribution at n = 1,000.
After this point, values for the two distributions diverged from one other, with the
BIAS varying between 1.23 and 1.38 for the MN distribution and between 3.22
and 3.51 for the EN distribution conditions.
b2-parameters

RMSE. As shown in Figure 5, the RMSEs for the b2-location parameter
differed across the three distributions in the same way as for the b1-parameters.
RMSEs for the EN distribution conditions are all larger than RMSEs for the MN
distribution conditions which are all larger than the RMSEs for the normal

distribution. As expected, the RMSEs consistently decreased from 0.79 to close to
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zero for the normal distribution conditions. In contrast, RMSEs increased for the
EN and MN distribution conditions as the sample size increased from 100 to 500,
then decreased for n = 750 in essentially parallel ways. The RMSEs then
increased for both EN and MN distribution conditions in similar ways with the
RMSE staying close to 1.30 for the MN distribution conditions, and between 3.20
and 3.48 for the EN distribution conditions.

Test-Level BIAS. As with the RMSE, the test-level BIAS for the b2-
location parameter differed across the three distributions (Figure 6). And as with
the RMSE, the BIAS was greatest for the EN distribution, followed in by the MN
distribution and the normal distribution conditions. b2-parameters were
overestimated for the n = 100 and n = 250 sample sizes for the normal distribution
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Figure 8.RMSEs of ‘true’ and estimated b2-parameters by condition.

overestimated for the n = 100 and n = 250 sample sizes for the normal distribution
conditions, and from n = 500 as sample size increased BIAS was essentially zero.

For the EN and MN distribution conditions BIAS increased as the sample
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size increased from 100 to 500, then decreased for n = 750 in the same way.
BIAS then increased for both EN and MN distribution conditions, more so for the
EN distribution at n = 1,000. After this point, values for the two distributions
diverged from one other, with the BIAS varying between 1.24 and 1.33 for the
MN distribution and between 3.05 and 3.26 for the EN distribution conditions.
b3-parameters

RMSE. As shown in Figure 7, the RMSEs for the b3-location parameter
differed across the three distributions differently than both the b1- and b2-

parameters. However, as with the other b-parameters, RMSEs for the EN
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Figure 9.BIAS of ‘true’ and estimated b2-parameters by condition.

distribution conditions are all larger than RMSEs for the MN distribution
conditions which are all larger than the RMSEs for the normal distribution. As in
all cases, the RMSEs consistently decreased from 2.55 to close to zero for the
normal distribution conditions.

In contrast, RMSEs for the MN distribution conditions also steadily
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Figure 10.RMSEs of ‘true’ and estimated b3-parameters by condition.

decreased from 2.67 at n = 100 to 0.99 at n = 750 and then increased slightly to
1.31 at n = 3,000. In contrast, for the EN distribution conditions the RMSE
increased from 3.92 at n = 100 to 4.89 at n = 250 and then decreased again to 2.22
at n = 750. At that point, the RMSE varied between 2.78 and 2.94 for the
remaining EN distribution conditions.

Test-Level BIAS. As with the RMSE, the test-level BIAS for the b3-
location parameter differed across the three distributions (Figure 8). And as with
the RMSE, the BIAS was greatest for the EN distribution, followed in by the MN
distribution and the normal distribution conditions. b3-parameters were
overestimated for the n = 100 and n = 250 sample sizes for the normal distribution
conditions, and from n = 500 as sample size increased BIAS was essentially zero.
For the EN and MN distribution conditions BIAS increased as the sample size
increased from 100 to 500, then decreased for n = 750 in the same way. BIAS

then increased for both EN and MN distribution conditions, more so for the
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Figure 11.BIAS of ‘true’ and estimated b3-parameters by condition.

EN distribution at n = 1,000. After this point, values for the two distributions
levelled out, with the BIAS varying between 1.24 and 1.31 for the MN
distribution and between 2.70 and 2.86 for the EN distribution conditions.
b4-parameters

RMSE. As shown in Figure 7, the RMSEs for the b4-location parameter
differed across the three distributions in a similar pattern to the b3-parameters. As
with the other b-parameters, RMSEs for the EN distribution conditions are all
larger than RMSEs for the MN distribution conditions which are all larger than
the RMSEs for the normal distribution. And as in all cases, the RMSESs
consistently decreased from 2.28 to close to zero for the normal distribution

conditions.

In contrast, RMSEs for the MN distribution conditions steadily decreased
from 2.38 at n = 100 to 1.02 at n = 750 and then increased slightly to 1.27 at n =

3,000. Similarly, for the EN distribution conditions the RMSE increased from
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Figure 12.RMSEs of ‘true’ and estimated b4-parameters by condition.

3.14 at n =100 to 3.25 at n = 250 and then decreased again to 1.95 at n = 750. At
that point, the RMSE varied between 2.32 and 2.41 for the remaining EN
distribution conditions.

Test-Level BIAS. As with the RMSE, the test-level BIAS for the b4-
location parameter differed across the three distributions (Figure 8) in similar
ways to the b3-parameter. And as with the RMSE, the BIAS was greatest for the
EN distribution, followed in by the MN distribution and the normal distribution
conditions. b4-parameters were overestimated at n = 100 for the normal
distribution conditions, and from n = 250 as sample size increased BIAS was
essentially zero.

For the EN and MN distribution conditions BIAS increased as the sample
size increased from 100 to 500, then decreased for n = 750 in the same way.
BIAS then increased for both EN and MN distribution conditions, more so for the

EN distribution at n = 1,000. After this point, values for the two distributions
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Figure 13.BIAS of ‘true’ and estimated b4-parameters by condition.

levelled out, with the BIAS varying between 1.24 and 1.27 for the MN
distribution and between 2.31 and 2.38 for the EN distribution conditions.
Theta (6)

RMSE. Compared to the item parameters at the test level and as shown in
Figure 11, the values of the RMSEs for 8 are much less variable and except for n
= 1,000 and, particularly, n = 3,000 essentially equal for the normal, MN, and EN
distribution conditions. The values ranged from 0.33 parameter units for sample
size 100 to 0.42 for n = 1,000. However, while the RMSE stayed the same for n=
3,000, the RMSE increased to 0.80 units for the EN distribution and,
unexpectedly, to 1.22 units for the MN distribution.

BIAS. In contrast to the RMSEs for 4, the BIAS in the § estimates were
more variable across the seven sample sizes and three distributions Figure 12).

Whereas BIAS for the normal distribution was, with the exception of n = 750,
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Figure 14. RMSEs of ‘true’ and estimated @ by condition.
essentially unchanged (0.20 units), the patterns of BIAS for the MN and EN

distributions varied across the sample sizes. For example, the BIAS for the MN
distribution was greater for n = 100 and n = 500 (0.15 vs. 0.05 and 0.10 vs. 0.0,
respectively). And the BIAS was essentially equal for n = 250 (0.22), 750 (0.22)
and 1,500 (0.22). At n = 1,000, for the EN distribution condition BIAS was
greater than for the MN distribution (0.26 vs. 0.23) but at n = 3,000 BIAS for the
MN distribution condition was much greater than for the EN condition (0.27 vs.
0.96). With one exception (bias =0 for EN, n = 500) 6 was consistently
underestimated.
Summary

In general, and as expected, the normal distribution conditions produced
better test-level results than either skewed distribution across the seven sample
sizes (see Appendix D). Additionally, aside from & estimates, the EN distribution

conditions produced the poorest results overall. Recovery of the a-parameters
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showed the most consistent improvement as the sample size increased across all
distribution conditions, and b3- and b4-location parameters were more accurately
recovered than bl- and b2- location parameters. The RMSEs for the normal and
MN distribution conditions were comparable across sample sizes and all three
distribution conditions were comparable when n was small. The BIAS results
revealed that for the EN and MN distribution conditions, locations parameters
were in general overestimated. In the case of the a-parameters, they tended to be
overestimated at small sample sizes and underestimated with larger sample sizes.
As with the RMSEs, the test-level BIAS results for normal and MN were
comparable across sample size and for n = 100 all three distribution conditions

were comparable.
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Chapter 5: Results and Discussion - Item Level Analysis

As indicated in the previous chapter, the results at the item level are
presented in this chapter. As in Chapter 4, the results are presented for each of the
parameters separately. However, the results in this chapter include the item level
BIAS and standard error of the BIAS. The chapter also concludes with general
comments across conditions.
a-parameters

Tables 5, 6 and 7 contain the item BIAS and standard error of the item
BIAS for the a-parameters across all sample sizes for the normal distribution,
MN, and EN conditions. As with the test level results, unexpected results were
obtained for n = 500 for all three distributions. While the largest BIAS for all
items and the three distributions was for n = 100, the BIAS was smallest for the
EN distribution and more similar for the MN and normal distributions.

There was less BIAS at n = 250 than at n = 100, and greater BIAS was
observed for the EN distribution followed in turn by the MN distribution and the
normal distribution conditions. And while generally the size of BIAS decreased as
the sample size increased for the MN and normal distributions, BIAS increased as
sample size increased for the EN distribution conditions. Further, the decrease
noted for the MN and normal distribution conditions was greater for the normal
distribution than for the MN distribution. BIAS was less than or equal to 0.05
with three exceptions for the normal distribution, n>750, nine exceptions for

the MN distribution, n>1,000, and for no items for the EN distribution.
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Further inspection of the full set of BIAS values reveals that the amount of
BIAS was also dependent upon item: larger ‘true’ a-parameters tended to result in
greater bias. However, while the standard error of the BIAS generally decreased
as the sample size increased across the 20 items for all three distribution
conditions, the standard errors tended to be close in value or larger than their
corresponding bias except for the n = 100 for the MN and normal distribution
conditions. Consequently, when the value of the BIAS was divided by it’s
standard error for n> 250, the results suggest that the BIAS values were not
significantly different from zero for these two distributions. In contrast the
standard errors for the BIAS across EN distribution conditions tended to be less
that their corresponding BIAS, resulting in the ratio of the BIAS to it’s standard
error being large, suggesting that the BIAS was significantly different from zero

for these conditions.
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Table 5

Item-Level Bias for a-parameters Under the Normal Conditions

n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000

Item 1 Bias -0.623  -0.039  -0.440 -0.005 -0.016  -0.019 0.005

(S.E.) (0.281) (0.135) (0.109) (0.082) (0.070) (0.058)  (0.040)
ltem 2 Bias  -0.501  -0.038  -0.357  -0.005 -0.009 -0.016  0.008
(S.E.) (0.242)  (0.136) (0.100) (0.078) (0.063) (0.055)  (0.038)
ltem 3Bias  -2.115  -0.124 -1471 -0.030 -0.059 -0.050  0.020
(S.E.) (0.898) (0.252) (0.290) (0.143) (0.126) (0.097)  (0.070)
ltem 4 Bias  -0.527  -0.037  -0.383  -0.004 -0.013 -0.018  0.008
(S.E.) (0.244)  (0.131) (0.097) (0.074) (0.066) (0.053) (0.037)
ltem 5Bias  -1.372  -0.073  -0.960  -0.020  -0.034  -0.037  0.017
(S.E.) (0.472) (0.183) (0.174) (0.101) (0.089) (0.072)  (0.049)
ltem 6 Bias  -1.616  -0.113  -1.091 -0.021  -0.040  -0.048  0.019
(S.E.) (0592) (0.211) (0.213) (0.116) (0.096) (0.079)  (0.054)
ltem 7 Bias  -0491 -0.032 -0.375 -0.007 -0012 -0.014  0.008
(S.E.) (0.258)  (0.133) (0.100) (0.075) (0.062) (0.052)  (0.039)
ltem 8 Bias  -1.074 -0.071L -0.746  -0.008  -0.026 -0.029  0.013
(S.E.) (0.375) (0.169) (0.143) (0.096) (0.082) (0.068)  (0.046)
ltem 9 Bias  -1.164 -0.084 -0.818 -0.002 -0027 -0.029  0.010
(S.E.) (0.391) (0.175) (0.158) (0.093) (0.083) (0.068)  (0.048)
Item 10 Bias  -1.243  -0.063  -0.919  -0.011  -0.034 -0.038  0.015
(S.E.) (0.569) (0.207) (0.194) (0.103) (0.095) (0.076)  (0.052)
ltem 11 Bias -2.226  -0.113  -1427 -0.021 -0.060 -0.063  0.026
(S.E.) (0.945) (0.267) (0.288) (0.142) (0.126) (0.100)  (0.074)
ltem 12 Bias  -0.943  -0.018  -0.720  -0.006  -0.028  -0.032  0.012
(S.E.) (0.447)  (0.186) (0.152) (0.091) (0.080) (0.064)  (0.043)
ltem 13 Bias -2.001  -0.127  -1.518 -0.010  -0.067 -0.050  0.018
(S.E.) (0.945) (0.315) (0.304) (0.157) (0.125) (0.108) (0.074)
ltem 14 Bias  -0.612  -0.037  -0496  -0.004 -0.019  -0.020  0.007
(S.E.) (0.357) (0.160) (0.114) (0.084) (0.068) (0.060) (0.042)
ltem 15 Bias -1.551  -0.086 -1.083  -0.014  -0.036 -0.049  0.019
(S.E.) (0.655) (0.234) (0.227) (0.126) (0.119) (0.097)  (0.063)
ltem 16 Bias  -0.356  -0.023  -0.243  -0.006  -0.009  -0.012  0.004
(S.E.) (0.218)  (0.132) (0.090) (0.073) (0.063) (0.052)  (0.037)
ltem 17 Bias  -1.276  -0.066  -0.909  -0.012  -0.032 -0041  0.016
(S.E.) (0.433) (0.181) (0.164) (0.098) (0.083) (0.073)  (0.049)
ltem 18 Bias  -1.587  -0.112  -1.125  -0.014  -0.044  -0.046  0.019
(S.E) (0.522) (0.193) (0.190) (0.111) (0.096) (0.077) (0.052)
ltem 19 Bias -1.620  -0.090  -1.128  -0.017  -0.045  -0.045  0.017
(S.E.) (0.545) (0.193) (0.190) (0.109) (0.096) (0.078)  (0.056)

ltem 20 Bias  -2.229  -0.119  -1.479  -0.024  -0.057 -0.065  0.025
(S.E) (0.930) (0.266) (0.294) (0.146) (0.131) (0.105) (0.076)
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Table 6

Item Bias for a-parameters Across Moderate Negative Conditions

n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000

Item 1 Bias -0.698 -0.099 -0.374 -0.027 0.014 0.008 0.044

(S.E.) (0.280) (0.140) (0.104) (0.080) (0.067)  (0.057)  (0.040)
ltem 2 Bias  -0.566 -0.089 -0.295 -0.016  0.014 0013  0.035
(S.E.) (0.235) (0.131) (0.098) (0.075) (0.065)  (0.053)  (0.038)
ltem 3 Bias  -2.669 -0.399 -1.281 -0.126  0.003  0.000  0.103
(S.E.) (1.054) (0.295) (0.311) (0.147) (0.132)  (0.101)  (0.071)
ltem 4 Bias  -0.627 -0.095 -0.341 -0.033  0.009  0.006  0.033
(S.E.) (0.260) (0.141) (0.110) (0.078) (0.069)  (0.056)  (0.040)
ltem 5 Bias  -1.588 -0.271 -0.878 -0.084 -0.003  -0.003  0.063
(S.E.) (0.482) (0.196) (0.180) (0.106) (0.090)  (0.074)  (0.054)
ltem 6 Bias  -1.878 -0.297 -0.985 -0.091  0.005  -0.005  0.080
(S.E.) (0.716) (0.223) (0.252) (0.123) (0.103)  (0.092)  (0.062)
ltem 7 Bias  -0.564 -0.086 -0.325 -0.028  0.008 0011  0.034
(S.E.) (0.273) (0.141) (0.104) (0.081) (0.065)  (0.055)  (0.039)
ltem 8 Bias  -1.244 -0.210 -0.699 -0.071 -0.004  -0.008  0.046
(S.E.) (0.407) (0.181) (0.166) (0.092) (0.087)  (0.069)  (0.049)
ltem 9 Bias  -1.433 -0.230 -0.780 -0.086 -0.019  -0.020  0.040
(S.E.) (0.482) (0.184) (0.191) (0.104) (0.093)  (0.074)  (0.053)
ltem 10 Bias -1.531 -0.225 -0.876 -0.097 -0022  -0.035  0.033
(S.E.) (0.669) (0.244) (0.247) (0.124) (0.107)  (0.088)  (0.061)
ltem 11 Bias -2.387 -0.379 -1.288 -0.104  0.003  0.002  0.104
(S.E.) (0.880) (0.278) (0.264) (0.139) (0.125)  (0.096)  (0.073)
ltem 12 Bias -1.078 -0.138 -0.661 -0.063 -0.001  0.003  0.052
(S.E.) (0.472) (0.223) (0.154) (0.093) (0.082)  (0.065)  (0.047)
ltem 13 Bias -2.560 -0.463 -1.463 -0.224 -0.107  -0.095  0.009
(S.E.) (1.284) (0.413) (0.433) (0.193) (0.160)  (0.135)  (0.092)
ltem 14 Bias -0.702  -0.093 -0.463 -0.042 0001  -0.003  0.035
(S.E.) (0.396) (0.203) (0.137) (0.087) (0.074)  (0.064)  (0.045)
Item 15 Bias -1.828 -0.319 -1.035 -0.120 -0.029  -0.033  0.039
(S.E.) (0.696) (0.249) (0.233) (0.132) (0.114)  (0.091)  (0.065)
Item 16 Bias -0.396 -0.056 -0.217 -0.015  0.005  0.003  0.024
(S.E.) (0.217) (0.132) (0.098) (0.076) (0.068)  (0.051)  (0.038)
ltem 17 Bias -1.518 -0.250 -0.855 -0.081 -0017  -0.013  0.053
(S.E.) (0.491) (0.195) (0.186) (0.107) (0.090)  (0.075)  (0.053)
ltem 18 Bias -1.875 -0.328 -1.069 -0.111 -0023  -0.027  0.055
(S.E.) (0.610) (0.219) (0.222) (0.117) (0.105)  (0.082)  (0.062)
ltem 19 Bias -1.942 -0.317 -1.045 -0.105 -0.009  -0.014  0.068
(S.E.) (0.603) (0.217) (0.218) (0.116) (0.102)  (0.083)  (0.057)

ltem 20 Bias -2.428 -0.431 -1371 -0.128 -0015  -0.022  0.077
(S.E) (0.836) (0.305) (0.287) (0.150) (0.127)  (0.102)  (0.074)
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Table 7

Item Bias for a-parameters Across Extreme Negative Conditions

n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000

Item 1 Bias -0.446  0.153  -0.107  0.166 0.271 0.250 0.270

(S.E.) (0.310) (0.147) (0.111) (0.080) (0.075)  (0.058)  (0.043)
ltem 2 Bias  -0.371 0131 -0.082 0140 0223 0204  0.222
(S.E.) (0.263) (0.133) (0.098) (0.075) (0.069)  (0.056)  (0.039)
ltem 3 Bias  -1.821 0421 -0.490 0484 0823 0751  0.821
(S.E.) (1.039) (0.257) (0.297) (0.147) (0.127)  (0.108)  (0.071)
ltem 4 Bias  -0.443 0.127 -0.116 0135 0225 0211  0.230
(S.E.) (0.291) (0.139) (0.121) (0.084) (0.076)  (0.060)  (0.044)
ltem5Bias  -1.270 0260 -0.378 0306 0535 0490  0.532
(S.E.) (0.590) (0.195) (0.180) (0.108) (0.098)  (0.079)  (0.052)
ltem 6 Bias  -1.426 0320 -0.388 0358 0615 0560  0.615
(S.E.) (0.813) (0.218) (0.232) (0.125) (0.113)  (0.092)  (0.060)
ltem 7 Bias  -0.394  0.125 -0.110 0136 0222 0205  0.220
(S.E.) (0.304) (0.146) (0.111) (0.084) (0.072)  (0.058)  (0.047)
ltem 8 Bias  -1.053 0.196 -0.329 0232 0414 0378 0411
(S.E.) (0.516) (0.181) (0.179) (0.103) (0.096)  (0.076)  (0.053)
Item 9 Bias  -1.156 0201 -0.393 0.237 0439 0401  0.436
(S.E.) (0.638) (0.203) (0.223) (0.113) (0.111)  (0.084)  (0.058)
Item 10 Bias -1.466 0222 -0.489 0247 0466 0424  0.462
(S.E.) (0.996) (0.249) (0.318) (0.151) (0.153)  (0.104)  (0.080)
ltem 11 Bias -1.844 0418 -0508 0466 0801 0730  0.799
(S.E.) (0.873) (0.253) (0.250) (0.133) (0.122)  (0.099)  (0.066)
ltem 12 Bias -0.808  0.256  -0.270 0.228  0.400 0370  0.410
(S.E.) (0.646) (0.204) (0.177) (0.128) (0.140)  (0.104)  (0.056)
Item 13 Bias -1.878 0.300 -0.935 0309 0656 0579  0.646
(S.E.) (1.938) (0.547) (0.832) (0.233) (0.242)  (0.180)  (0.113)
ltem 14 Bias -0.439  0.177 -0.189 0.164 0286 0258  0.286
(S.E.) (0.555) (0.201) (0.152) (0.094) (0.094)  (0.070)  (0.048)
Item 15 Bias -1.629  0.226  -0.549 0292 0543 0491 0548
(S.E.) (0.949) (0.252) (0.260) (0.137) (0.129)  (0.097)  (0.070)
Item 16 Bias -0.271  0.080 -0.070 0.091  0.152 0140  0.148
(S.E.) (0.249) (0.131) (0.106) (0.082) (0.070)  (0.055)  (0.039)
ltem 17 Bias -1.241 0232 -0.389 0.282 0492 0452  0.491
(S.E.) (0.620) (0.198) (0.187) (0.111) (0.101)  (0.082)  (0.054)
ltem 18 Bias -1.589 0273 -0.498 0332 0592 0529  0.587
(S.E.) (0.773) (0.217) (0.228) (0.123) (0.115)  (0.090)  (0.061)
Item 19 Bias -1.481 0.307 -0475 0352 0622 0558  0.615
(S.E.) (0.680) (0.199) (0.213) (0.118) (0.111)  (0.086)  (0.060)

Item 20 Bias -2.099 0.364 -0.639 0442 0775 0703  0.778
(S.E) (1.018) (0.263) (0.282) (0.144) (0.130)  (0.106)  (0.066)
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bl-parameters

Tables 8, 9 and 10 contain the item BIAS and standard error of the item
BIAS for the b1-parameters across all sample sizes for the normal distribution,
MN, and EN conditions. As with the test level results, unexpected results were
obtained for n = 500 for all three distributions. The largest BIAS for all items with
the normal distribution conditions was when n = 500. However, in contrast to the
a-parameters, the MN and EN conditions were more similar to one another and
for both distribution condition, BIAS increased as sample size increased.

The greatest amount of BIAS was observed for the EN distribution
followed in turn by the MN distribution and the normal distribution conditions.
And while generally the size of BIAS decreased as the sample size increased for
the normal distributions, BIAS increased as sample size increased for the EN and
MN distribution conditions. Further, the increase noted for the MN and EN
distribution conditions was more extreme for the EN distribution than for the MN
distribution. BIAS was less than or equal to 0.05 with two exceptions for the
normal distribution, n>750, but for no items for both the EN and MN
distribution conditions.

Further inspection of the full set of BIAS values reveals that the amount of
BIAS was also dependent upon item: items which had b1- and b2-parameters very
close in value had much larger BIAS, particularly when sample size was small. As
with the a-parameters, the standard error of the BIAS generally decreased as the
sample size increased across the 20 items for all three distribution conditions, and

in this case, the standard errors tended to be close in value or larger than their
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corresponding bias only for the normal distribution conditions where n > 100.
For the MN and EN distribution conditions most standard errors were smaller
than the BIAS values.

Consequently, when the value of the BIAS was divided by it’s standard
error for n> 250, the results suggest that the BIAS values were not significantly
different from zero for the normal distribution conditions. In contrast the standard
errors for the BIAS across EN and MN distribution conditions tended to be less
that their corresponding BIAS, resulting in the ratio of the BIAS to its standard
error being large, suggesting that the BIAS was significantly different from zero

for these conditions.
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Table 8

Item Bias for b1-parameters Across Normal Conditions

n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000

Item 1 Bias 0.083 0.048 0.119 0.033 -0.013 0.043 0.007

(S.E.) (0.328) (0.200) (0.115) (0.123) (0.102)  (0.080)  (0.060)
Item 2 Bias 0117 0056 0137 0036 -0.013 0033  0.011
(S.E.) (0.301) (0.296) (0.139) (0.165) (0.133) (0.114)  (0.081)
Item 3 Bias 0065 0.037 0154 0025 -0.030 0032  0.009
(S.E.) (0.159) (0.098) (0.077) (0.059) (0.050)  (0.040)  (0.028)
ltem 4 Bias 0093 0051 0242 0051 -0.023 0005  0.033
(S.E.) (0.508) (0.494) (0.231) (0.278) (0.239)  (0.179)  (0.135)
ltem 5 Bias 0080 0042 0137 0021 -0.021 0034  0.007
(S.E.) (0.161) (0.116) (0.085) (0.067) (0.058)  (0.047)  (0.035)
ltem 6 Bias 0047 -0.029 0231 0015 -0.043 0004  0.023
(S.E.) (0.326) (0.195) (0.138) (0.121) (0.097)  (0.080)  (0.054)
Item 7 Bias 0085 0058 0171 0033 -0.015 0030  0.019
(S.E.) (0.352) (0.397) (0.159) (0.190) (0.154) (0.124)  (0.093)
ltem 8 Bias 0093 0049 0121 0024 -0.012 0036  0.006
(S.E.) (0.171) (0.126) (0.084) (0.075) (0.063) (0.052)  (0.038)
Item 9 Bias 0060 0006 0180 0031 -0.031 0022  0.012
(S.E.) (0.206) (0.173) (0.109) (0.104) (0.087)  (0.071)  (0.052)
ltem 10 Bias  -1.766 -0.855 0.059 0019  -0.037 0015  0.019
(S.E.) (1.982) (2.273) (0.794) (0.243) (0.088)  (0.071)  (0.054)
ltem 11 Bias ~ 0.097  0.059 0111 0027 -0.015 0038  0.005
(S.E.) (0.138) (0.080) (0.065) (0.045) (0.039) (0.031)  (0.022)
ltem 12 Bias  0.101  0.022 0.229 0032 -0.035 0010  0.020
(S.E.) (0.331) (0.259) (0.150) (0.141) (0.115)  (0.093)  (0.070)
ltem 13 Bias  0.074 0036 0154 0029 -0.030 0032  0.008
(S.E.) (0.161) (0.101) (0.076) (0.055) (0.047)  (0.041)  (0.026)
ltem 14 Bias ~ 0.048 0017 0161 0037 -0.028 0027  0.013
(S.E.) (0.292) (0.334) (0.126) (0.143) (0.112)  (0.095)  (0.069)
ltem 15 Bias ~ 0.134  0.069 0.066 0027  -0.002  0.050  -0.004
(S.E.) (0.164) (0.086) (0.069) (0.049) (0.044) (0.035)  (0.025)
ltem 16 Bias  0.142 0210 0.269 0077  -0.002 0033  0.037
(S.E.) (0.766) (0.918) (0.347) (0.441) (0.351)  (0.292)  (0.209)
ltem 17 Bias ~ 0.088 0050 0.134 0025 -0.018 0034  0.005
(S.E.) (0.164) (0.119) (0.077) (0.066) (0.056)  (0.047)  (0.035)
ltem 18 Bias  0.064 0008 0172 0025 -0.036 0024  0.012
(S.E.) (0.189) (0.133) (0.091) (0.077) (0.065)  (0.054)  (0.039)
ltem 19 Bias ~ 0.071L 0039 0148 0026 -0.026 0030  0.009
(S.E.) (0.159) (0.111) (0.080) (0.064) (0.052)  (0.045)  (0.032)

Item 20 Bias ~ 0.102 0058 0113 0026 -0.015  0.036  0.004
(S.E) (0.138) (0.075) (0.065) (0.043) (0.038)  (0.030)  (0.022)
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Table 9

Item Bias for b1-parameters Across Moderate Negative Conditions

n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000

Item 1 Bias 0.363  0.850  1.570  0.956 1.283 1.262 1.386

(S.E.) (0.381) (0.302) (0.208) (0.169) (0.182)  (0.147)  (0.121)
Item 2 Bias 0369 0.826 1646 00961 1311 1289  1.405
(S.E.) (0.341) (0.392) (0.276) (0.237) (0.255)  (0.206)  (0.163)
ltem 3 Bias 0242 0710 1603 0876 1229 1222  1.353
(S.E.) (0.200) (0.133) (0.196) (0.090) (0.095)  (0.076)  (0.072)
ltem 4 Bias 0263 0699 1781 0865 1328 1289 1473
(S.E.) (0.560) (0.579) (0.473) (0.361) (0.388) (0.301)  (0.241)
ltem 5 Bias 0326 0762 1556 0904 1240 1234 1351
(S.E.) (0.207) (0.149) (0.164) (0.098) (0.105)  (0.083)  (0.076)
ltem 6 Bias 0359 0.623 2584 0845 1264 1225  1.422
(S.E.) (0.743) (0.282) (1.202) (0.182) (0.207)  (0.168)  (0.138)
ltem 7 Bias 0321 0771 1680 0926 1297 1300  1.419
(S.E.) (0.409) (0.450) (0.338) (0.284) (0.279)  (0.238)  (0.175)
ltem 8 Bias 0368 0.802 1529 0916 1243 1234 1344
(S.E.) (0.224) (0.170) (0.159) (0.104) (0.117)  (0.092)  (0.083)
Item 9 Bias 0230 0687 1641 0864 1225 1213 1363
(S.E.) (0.265) (0.226) (0.280) (0.150) (0.161)  (0.130)  (0.108)
ltem 10 Bias  -1.916 -1.804 -1.287 0435 0757  1.077  1.349
(S.E.) (2.100) (3.146) (2.559) (1.667) (1.806)  (0.941)  (0.193)
ltem 11 Bias  0.392  0.819 1506 0923  1.235 1234  1.330
(S.E.) (0.191) (0.105) (0.116) (0.062) (0.064)  (0.053)  (0.052)
ltem 12 Bias  0.288  0.705 1.787 0857 1250 1252  1.416
(S.E.) (0.388) (0.389) (0.519) (0.197) (0.208)  (0.175)  (0.135)
ltem 13 Bias ~ 0.245 0.692 1576 0858  1.196  1.193  1.319
(S.E.) (0.202) (0.134) (0.180) (0.089) (0.095)  (0.076)  (0.073)
ltem 14 Bias ~ 0.293  0.699  1.603 0907  1.257  1.248  1.382
(S.E.) (0.355) (0.412) (0.273) (0.195) (0.203) (0.171)  (0.139)
ltem 15 Bias ~ 0.455  0.904 1448 0955 1240 1232  1.310
(S.E.) (0.254) (0.095) (0.094) (0.061) (0.062)  (0.048)  (0.046)
ltem 16 Bias  0.354 0913  1.839 0963  1.384 1312 1505
(S.E.) (0.810) (1.051) (0.655) (0.588) (0.635)  (0.455)  (0.357)
ltem 17 Bias ~ 0.332 0779 1539 00910  1.230  1.225  1.344
(S.E.) (0.216) (0.148) (0.159) (0.099) (0.104)  (0.084)  (0.072)
ltem 18 Bias ~ 0.224  0.678  1.664 0.863  1.225  1.204  1.357
(S.E.) (0.231) (0.180) (0.383) (0.117) (0.135) (0.106)  (0.094)
ltem 19 Bias 0279 0728 1577 0.888  1.232 1221  1.350
(S.E.) (0.208) (0.145) (0.178) (0.093) (0.103)  (0.083)  (0.072)

ltem 20 Bias  0.388  0.806  1.499 0918  1.230  1.223  1.323
(S.E) (0.189) (0.099) (0.117) (0.063) 1.283  (0.054)  (0.051)




Running head: PIRT parameter recovery 52

Table 10

Item Bias for b1-parameters Across Extreme Negative Conditions

n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000

Item 1 Bias 1.475 2.628  3.222 2.515 3.580 3.322 3.479

(S.E.) (1.200) (0.990) (0.495) (0.427) (0.699)  (0.474)  (0.359)
Item 2 Bias 1799 2790 3414 2670 3812 3500  3.678
(S.E.) (0.877) (1.611) (0.639) (0.606) (1.050) (0.645)  (0.468)
Item 3 Bias 1945 2707 4.054 2507 3754 3415  3.552
(S.E) (1.260) (0.893) (1.190) (0.302) (0.779)  (0.496)  (0.304)
ltem 4 Bias 1729 2594 3948 2967  3.965  4.052  4.424
(S.E) (2.239) (3.260) (1.432) (1.143) (2.956) (1.498)  (0.727)
ltem 5 Bias 1299 2428 3158 2438 3476 3249  3.406
(S.E.) (1.239) (0.500) (0.704) (0.272) (0.407)  (0.300)  (0.206)
ltem 6 Bias 1315 2975 1341 3.095 3420  3.809  4.048
(S.E.) (2.390) (2.782) (2.691) (1.078) (4.454) (2.580)  (1.662)
ltem 7 Bias 1793 2742 3521 2730 3934 3618  3.779
(S.E.) (1.136) (1.762) (0.738) (0.721) (1.010) (0.699)  (0.548)
ltem 8 Bias 1476 2399 2943 2380  3.348 3132  3.277
(S.E.) (0.582) (0.475) (0.356) (0.287) (0.444)  (0.309)  (0.223)
Item 9 Bias 1.838 2606 3.774 2560  3.799 3475  3.664
(S.E) (2.153) (0.886) (1.862) (0.391) (0.655) (0.435)  (0.315)
ltem 10 Bias  -3.334 -4.305 -2506 -1.350 -1.613  -0231  2.019
(S.E.) (4.799) (5.284) (4.602) (4.321) (5.258) (4.959)  (3.921)
ltem 11 Bias ~ 1.490 2.319 2.867 2316  3.229  3.024  3.182
(S.E.) (0.394) (0.297) (0.319) (0.175) (0.291)  (0.208)  (0.142)
ltem 12 Bias ~ 2.133  2.806 4.195 2758 4122  3.824  4.054
(S.E.) (3.543) (2.075) (1571) (0.576) (0.896) (0.636)  (0.410)
ltem 13 Bias ~ 1.740 2430 3.745 2337  3.343 3113  3.239
(S.E.) (1.013) (0.836) (1.111) (0.307) (0.750)  (0.454)  (0.254)
ltem 14 Bias 1417 2451 3.277 2575 3757  3.441  3.649
(S.E) (3.410) (1.786) (0.645) (0.513) (0.835) (0.564)  (0.409)
ltem 15 Bias ~ 1.285  2.159  2.627 2159  2.873 2723  2.843
(S.E.) (0.935) (0.327) (0.183) (0.155) (0.247) (0.170)  (0.115)
ltem 16 Bias ~ 1.257  2.304 3.701  3.002  3.247  4.097  4.392
(S.E.) (3.760) (4.355) (2.636) (2.124) (4.769) (2.171)  (1.127)
ltem 17 Bias 1511  2.398  3.052 2406  3.401  3.179  3.333
(S.E.) (0.611) (0.446) (0.484) (0.271) (0.402)  (0.299)  (0.211)
ltem 18 Bias ~ 2.302  2.725 4237 2540 3721  3.413  3.603
(S.E.) (1.584) (1.014) (1.315) (0.351) (0.971)  (0.400)  (0.290)
ltem 19 Bias ~ 1.705 2511 3578 2454 3546 3280  3.468
(S.E.) (0.952) (0.590) (1.143) (0.272) (0.444)  (0.300)  (0.233)

ltem 20 Bias 1472 2275 2.837 2294 3180 2978  3.132
(S.E) (0.417) (0.267) (0.298) (0.174) (0.290)  (0.213)  (0.139)
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b2-parameters

Tables 11, 12 and 13 contain the item BIAS and standard error of the item
BIAS for the b2-parameters across all sample sizes for the normal distribution,
MN, and EN conditions. As with the test level results, unexpected results were
obtained for n = 500 for all three distributions. The largest BIAS for all items with
the normal distribution conditions was with n = 500. As with the b1-parameters,
the MN and EN conditions were more similar to one another and for both
distribution condition, and BIAS increased as sample size increased.

The greatest amount of BIAS was observed for the EN distribution
followed in turn by the MN distribution and the normal distribution conditions.
And while generally the size of BIAS decreased as the sample size increased for
the normal distributions, BIAS actually increased as sample size increased for the
EN and MN distribution conditions. Further, the increase noted for the MN and
EN distribution conditions was more extreme for the EN distribution than for the
MN distribution but less extreme than for the b1-parameters. BIAS was less than
or equal to 0.05 with eight exceptions for the normal distribution, n> 750, but for
no items for both the EN and MN distribution conditions.

Further inspection of the full set of BIAS values reveals that the amount of
BIAS was also dependent upon item: items which had b1- and b2-parameters very
close in value had much larger BIAS, particularly when sample size was small. As
with the a- and b1-parameters, the standard error of the BIAS generally decreased
as the sample size increased across the 20 items for all three distribution

conditions, and in this case, the standard errors tended to be close in value or
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larger than their corresponding bias only for the normal distribution conditions
where n > 100. For the MN and EN distribution conditions most standard errors
were smaller than the BIAS values.

Consequently, when the value of the BIAS was divided by it’s standard
error for n> 250, the results suggest that the BIAS values were not significantly
different from zero for the normal distribution conditions. In contrast the standard
errors for the BIAS across EN and MN distribution conditions tended to be less
that their corresponding BIAS, resulting in the ratio of the BIAS to its standard
error being large, suggesting that the BIAS was significantly different from zero

for these conditions.
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Table 11

Item Bias for b2-parameters Across Normal Conditions

n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000

Item 1 Bias 0.033 0.053 0.090 0.031 -0.007 0.049 0.002

(S.E.) (1.122) (0.179) (0.101) (0.107) (0.093) (0.073)  (0.052)
Item 2 Bias 0157 0069 -0.007 0015 -0.003 0067  -0.020
(S.E.) (0.309) (0.319) (0.154) (0.195) (0.158) (0.122)  (0.095)
Item 3 Bias 0.28 0064 0075 0026 -0005  0.047  0.000
(S.E.) (0.135) (0.069) (0.064) (0.041) (0.036)  (0.029)  (0.021)
ltem 4 Bias 0.08 0060 0.121 0036 -0011 0039  0.005
(S.E.) (0.237) (0.231) (0.116) (0.134) (0.115) (0.088)  (0.066)
ltem 5 Bias 0.04 0055 0.103 0026 -0014 0042  0.002
(S.E.) (0.150) (0.097) (0.072) (0.055) (0.048)  (0.040)  (0.030)
ltem 6 Bias 0056 0010 0.174 0018 -0.033 0020  0.013
(S.E.) (0.184) (0.135) (0.091) (0.078) (0.065)  (0.054)  (0.038)
ltem 7 Bias  -0.783 -0.237 0017 0.035 0005 0062  -0.017
(S.E.) (3.336) (4.877) (0.129) (0.157) (0.132) (0.102)  (0.077)
ltem 8 Bias 0117 0066 0078 0024 -0.003 0048  -0.001
(S.E.) (0.153) (0.113) (0.076) (0.068) (0.056)  (0.044)  (0.033)
Item 9 Bias 0085 0036 0135 0032 -0020 0033  0.007
(S.E.) (0.175) (0.123) (0.086) (0.073) (0.063)  (0.051)  (0.038)
ltem 10 Bias  1.688 0749 0299 0031 -0.036 0016  0.018
(S.E.) (1.836) (2.008) (0.673) (0.217) (0.085) (0.068)  (0.052)
ltem 11 Bias  0.153  0.094 0023 0.029 0008 0067  -0.012
(S.E.) (0.154) (0.078) (0.069) (0.049) (0.043)  (0.034)  (0.025)
ltem 12 Bias ~ 0.060 -0.042 0.066 0018 -0.005  0.052  -0.003
(S.E.) (0.187) (0.275) (0.081) (0.097) (0.065)  (0.046)  (0.035)
ltem 13 Bias  -0.399 -0.051 0074 0024 -0.004 0047  0.000
(S.E.) (1.218) (0.784) (0.062) (0.039) (0.035)  (0.029)  (0.020)
ltem 14 Bias ~ -0.310 -0.096 0.060 0.023 -0.007 0051  -0.005
(S.E.) (1.034) (1.038) (0.092) (0.099) (0.084) (0.070)  (0.048)
ltem 15Bias  0.143  0.077  0.053 0.027 0001 0055  -0.005
(S.E.) (0.163) (0.087) (0.072) (0.052) (0.045) (0.035)  (0.027)
ltem 16 Bias ~ 0.141  0.130 0181 0058 -0.006  0.043  0.020
(S.E.) (0.519) (0.570) (0.225) (0.296) (0.234)  (0.195)  (0.136)
ltem 17 Bias ~ 0.119 0062 0082 0023 -0.007 0048  -0.001
(S.E.) (0.152) (0.095) (0.070) (0.055) (0.048)  (0.039)  (0.028)
ltem 18 Bias  0.095 0050 0118 0.025 -0.018  0.038  0.004
(S.E.) (0.152) (0.089) (0.072) (0.054) (0.045) (0.037)  (0.026)
ltem 19 Bias  0.115 0068 0084 0027 -0.007 0048  -0.001
(S.E.) (0.138) (0.082) (0.067) (0.047) (0.041) (0.034)  (0.023)

ltem 20 Bias ~ 0.147  0.093 0022 0029 0008 0069  -0.011
(S.E) (0.150) (0.084) (0.071) (0.049) (0.043)  (0.034)  (0.025)
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Table 12

Item Bias for b2-parameters Across Moderate Negative Conditions

n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000

Item 1 Bias 0.246  0.871 1517  0.967 1.272 1.256 1.359

(S.E.) (1.413) (0.582) (0.172) (0.146) (0.151) (0.124)  (0.101)
Item 2 Bias 0527 0990 1362 0981 1244 1236  1.279
(S.E.) (0.244) (0.208) (0.125) (0.125) (0.116) (0.091)  (0.073)
Item 3 Bias 0419 0879 1471 0945 1241 1234 1317
(S.E.) (0.290) (0.084) (0.094) (0.053) (0.052)  (0.042)  (0.042)
ltem 4 Bias 0399 0.855 1551 0934 1278 1258  1.368
(S.E.) (0.289) (0.313) (0.242) (0.193) (0.206)  (0.166)  (0.130)
ltem 5 Bias 0378 0824 1512 0929 1242 1237  1.335
(S.E.) (0.189) (0.122) (0.127) (0.081) (0.080)  (0.066)  (0.063)
ltem 6 Bias 0234 0687 1697 0873 1246 1227  1.383
(S.E.) (0.242) (0.180) (0.589) (0.120) (0.130)  (0.107)  (0.093)
ltem 7 Bias ~ -0.351 0578 1407 0979 1250 1246  1.29
(S.E.) (3.311) (4.785) (0.131) (0.120) (0.117) (0.094)  (0.075)
ltem 8 Bias 0433 0876 1474 0945 1245 1238  1.324
(S.E.) (0.195) (0.133) (0.118) (0.079) (0.090)  (0.071)  (0.062)
Item 9 Bias 0295 0772 1551 0896 1233 1219  1.342
(S.E.) (0.415) (0.171) (0.177) (0.112) (0.117) (0.094)  (0.082)
ltem 10 Bias ~ 2.003 2502 3.371 1146 1532 1277  1.347
(S.E.) (1.866) (2.384) (1.963) (1.231) (1.279) (0.694)  (0.187)
Item 11 Bias 0531 0987 1.398 00996  1.255  1.250  1.305
(S.E.) (0.168) (0.072) (0.069) (0.042) (0.040) (0.033)  (0.032)
ltem 12 Bias ~ 0.399  0.817 1462 0955 1246 1247  1.327
(S.E.) (0.211) (0.265) (0.116) (0.086) (0.084)  (0.070)  (0.059)
ltem 13 Bias  -0.310 0531 1405 0936  1.224 1220  1.301
(S.E.) (1.319) (1.307) (0.498) (0.054) (0.051) (0.042)  (0.041)
ltem 14 Bias ~ -0.042 0317 1454 00958 1249 1246  1.318
(S.E.) (1.449) (6.147) (0.136) (0.107) (0.111) (0.092)  (0.074)
ltem 15 Bias ~ 0.492 0932 1431 0967 1242 1237  1.306
(S.E.) (0.236) (0.088) (0.087) (0.056) (0.055)  (0.044)  (0.041)
ltem 16 Bias ~ 0.397 0940 1.695 00962  1.341  1.288  1.441
(S.E.) (0.585) (0.762) (0.479) (0.429) (0.467) (0.338)  (0.266)
ltem 17 Bias ~ 0.420 0.866 1474 0944 1238 1236  1.323
(S.E.) (0.193) (0.116) (0.113) (0.074) (0.076)  (0.061)  (0.055)
ltem 18 Bias  0.361 0793 1516 0914 1230 1222  1.331
(S.E.) (0.193) (0.114) (0.127) (0.072) (0.079)  (0.066)  (0.061)
ltem 19 Bias  0.429  0.867 1474 0942 1241 1235  1.322
(S.E.) (0.182) (0.102) (0.104) (0.064) (0.063) (0.053)  (0.048)

ltem 20 Bias 0533 0993  1.391 0997  1.253 1249  1.303
(S.E) (0.167) (0.067) (0.071) (0.042) (0.039) (0.031)  (0.031)
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Table 13
Item Bias for b2-parameters Across Extreme Negative Conditions

n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000
Item 1 Bias 1.024 2.428 3.008 2.386 3.321 3.104 3.239
(S.E) (2.893) (1.536) (0.403) (0.358) (0.582)  (0.401)  (0.301)
Item 2 Bias 1.512 2.105 2424  2.023 2.607 2.475 2.545
(S.E) (0.345)  (0.457) (0.232) (0.228) (0.366)  (0.247)  (0.172)
Item 3 Bias 1.319 2.194 2.723  2.225 3.021 2.842 2.975
(S.E. (0.941) (0.330) (0.227) (0.138) (0.224) (0.163)  (0.106)
Item 4 Bias 1.640 2.656 3.135  2.480 3471 3.263 3.428
(S.E) (0.701)  (1.050) (0.579) (0.545) (0.779) (0.566)  (0.428)
Item 5 Bias 1.672 2.315 2882 2321 3.234 3.034 3.174
(S.E) (0.890) (0.379) (0.318) (0.212) (0.328)  (0.239)  (0.160)
Item 6 Bias 5.061 3.512 9.064  2.605 3.993 3.549 3.737
(S.E) (5.960) (3.052) (5.498) (0.357) (1.204) (0.469)  (0.309)
Item 7 Bias 0.324 1.579 2558  2.103 2.745 2.610 2.681
(S.E) (4.218)  (4.759) (0.297) (0.284) (0.427) (0.304)  (0.234)
Item 8 Bias 1.480 2.265 2731 2.244 3.055 2.884 3.003
(S.E) (0.450) (0.355) (0.248) (0.221) (0.346)  (0.245)  (0.170)
Item 9 Bias 1.365 2.406 3.070  2.396 3.434 3.193 3.348
(S.E) (2.433) (0.693) (1.667) (0.295) (0.483) (0.335)  (0.239)
Item 10 Bias 2.826 4.991 4777  4.680 6.374 5.428 4.529
(S.E) (19.556) (3.618) (6.820) (2.597) (3.026) (2.742) (2.216)
Item 11 Bias 1.498 2.087 2466  2.057 2.631 2.526 2.612
(S.E) (0.248)  (0.128) (0.108) (0.095) (0.138)  (0.106)  (0.061)
Item 12 Bias 1.455 2.183 2.733  2.207 3.003 2.851 2.976
(S.E) (0.398) (0.447) (0.265) (0.269) (0.425) (0.292)  (0.172)
Item 13 Bias -0.591 0.212 0974 1974 2.391 2.600 2.807
(S.E) (1.859) (2.969) (2.342) (1.032) (1.762) (0.843)  (0.109)
Item 14 Bias -0.510 0.446 2674 2217 2.999 2.813 2.942
(S.E) (10.250) (15.212) (0.536) (0.285) (0.484)  (0.333)  (0.230)
Item 15 Bias 1.588 2.143 2559 2118 2.780 2.648 2.754
(S.E) (0.794) (0.272) (0.160) (0.136) (0.219) (0.152)  (0.102)
Item 16 Bias 2.107 3.173 3.624  2.875 4,191 3.806 3.865
(S.E) (1.861) (1.810) (1.082) (1.163) (1.443) (1.045)  (0.780)
Item 17 Bias 1.493 2.250 2.768  2.253 3.063 2.899 3.022
(S.E) (0.422) (0.314) (0.234) (0.198) (0.299) (0.221)  (0.151)
Item 18 Bias 1.543 2.309 2981 2324 3.250 3.027 3.185
(S.E.) (0.764)  (0.334) (0.922) (0.208) (0.339)  (0.229)  (0.161)
Item 19 Bias 1.481 2.236 2.734  2.235 3.038 2.858 2.995
(S.E) (0.359)  (0.250) (0.198) (0.161) (0.255) (0.174)  (0.123)
Item 20 Bias 1.488 2.069 2444  2.050 2.597 2.498 2.587
(S.E) (0.256)  (0.127) (0.103) (0.090) (0.133)  (0.103)  (0.055)
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b3-parameters

Tables 14, 15 and 16 contain the item BIAS and standard error of the item
BIAS for the b3-parameters across all sample sizes for the normal distribution,
MN, and EN conditions. As with the test level results, unexpected results were
obtained for n = 500 for all three distributions. The largest BIAS for all items with
the normal distribution conditions was with n = 100. As with the b1- and b2-
parameters, the MN and EN conditions were more similar to one another and for
both distribution conditions, and BIAS increased as sample size increased.

The greatest amount of BIAS was observed for the EN distribution
followed in turn by the MN distribution and the normal distribution conditions.
And while generally the size of BIAS decreased as the sample size increased for
the normal distributions, BIAS actually increased as sample size increased for the
EN and MN distribution conditions. Further, the increase noted for the MN and
EN distribution conditions was more extreme for the EN distribution than for the
MN distribution but less extreme than for the b1- and b2-parameters. BIAS was
less than or equal to 0.05 with nine exceptions for the normal distribution,
n>750, but for no items for both the EN and MN distribution conditions.

Further inspection of the full set of BIAS values reveals that the amount of
BIAS was also dependent upon item: items which had b3- and b4-parameters very
close in value had much larger BIAS, particularly when sample size was small. As
with the a-, b1- and b2-parameters, the standard error of the BIAS generally
decreased as the sample size increased across the 20 items for all three

distribution conditions, and in this case, the standard errors tended to be close in



Running head: PIRT parameter recovery 59

value or larger than their corresponding bias only for the normal distribution
conditions where n > 100. For the MN and EN distribution conditions most
standard errors were smaller than the BIAS values.

Consequently, when the value of the BIAS was divided by it’s standard
error for n> 250, the results suggest that the BIAS values were not significantly
different from zero for the normal distribution conditions. In contrast the standard
errors for the BIAS across EN and MN distribution conditions tended to be less
that their corresponding BIAS, resulting in the ratio of the BIAS to its standard
error being large, suggesting that the BIAS was significantly different from zero

for these conditions.
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Table 14
Item Bias for b3-parameters Across Normal Conditions

n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000
Item 1 Bias 0.208 0.060 0.074  0.028 -0.004 0.053 -0.001
(S.E) (1.124) (0.178) (0.098) (0.107) (0.092)  (0.072)  (0.053)
Item 2 Bias 0.156 0.079  -0.050 0.010 0.001 0.074 -0.029
(S.E) (0.396) (0.426) (0.199) (0.249) (0.201)  (0.158)  (0.122)
Item 3 Bias 0.135 0.069 0.062 0.027 -0.001 0.052 -0.003
(S.E.) (0.140)  (0.072) (0.064) (0.042) (0.036)  (0.029)  (0.022)
Item 4 Bias 0.127 0.075 0.047 0.035 -0.005 0.055 -0.008
(S.E.) (0.241)  (0.220) (0.116) (0.131) (0.112) (0.085)  (0.068)
Item 5 Bias 0.156 0.094 0.018 0.033 0.010 0.066 -0.011
(S.E) (0.163) (0.111) (0.079) (0.066) (0.058)  (0.047)  (0.035)
Item 6 Bias 0.095 0.045 0.111 0.024 -0.016 0.037 0.004
(S.E) (0.147) (0.087) (0.071) (0.054) (0.046)  (0.036)  (0.026)
Item 7 Bias 1.073 0.136 0.007 0.033 0.006 0.063 -0.018
(S.E) (3.369) (4.926) (0.135) (0.164) (0.137)  (0.105)  (0.081)
Item 8 Bias 0.134 0.079 0.042 0.026 0.004 0.059 -0.008
(S.E) (0.165) (0.121) (0.077) (0.077) (0.066)  (0.048)  (0.037)
Item 9 Bias 0.102 0.052 0.112 0.029 -0.015 0.039 0.003
(S.E) (0.157) (0.108) (0.078) (0.063) (0.056)  (0.045)  (0.034)
Item 10 Bias 0.271 0.146 0.177 0.031 -0.030 0.022 0.012
(S.E) (0.430) (0.382) (0.116) (0.090) (0.071)  (0.055)  (0.043)
Item 11 Bias -0.042 0.113 -0.036 0.035 0.021 0.093 -0.027
(S.E) (1.279) (0.122) (0.096) (0.078) (0.065)  (0.052)  (0.041)
Item 12 Bias -5590 -2968 -0.388 -0.176  -0.007 0.079 -0.019
(S.E) (6.633) (6.682) (2.302) (1.893) (0.573) (0.075)  (0.056)
Item 13 Bias 0.675 0.184 0.069 0.024 -0.003 0.048 0.000
(S.E) (1.240) (0.796) (0.062) (0.039) (0.035)  (0.029)  (0.021)
Item 14 Bias -5.022  -1510 0.039 0.023 -0.002 0.056 -0.009
(S.E) (11.168) (9.068) (0.097) (0.108) (0.093)  (0.076)  (0.053)
Item 15 Bias 0.149 0.085 0.029 0.027 0.005 0.063 -0.010
(S.E) (0.165) (0.099) (0.075) (0.059) (0.051)  (0.041)  (0.030)
Item 16 Bias 0.122 0.074 0.103 0.037 -0.014 0.052 0.005
(S.E) (0.348) (0.365) (0.159) (0.198) (0.167)  (0.131)  (0.094)
Item 17 Bias 0.126 0.090 0.017 0.025 0.011 0.071 -0.014
(S.E) (0.593) (0.121) (0.082) (0.073) (0.062) (0.051)  (0.036)
Item 18 Bias 0.145 0.084 0.049 0.025 0.001 0.057 -0.007
(S.E) (0.149) (0.086) (0.068) (0.052) (0.046)  (0.035)  (0.026)
Item 19 Bias 0.150 0.091 0.024 0.029 0.008 0.067 -0.010
(S.E) (0.152)  (0.094) (0.076) (0.055) (0.048)  (0.040)  (0.029)
Item 20 Bias 0.158 0.100 -0.002 0.030 0.015 0.080 -0.017
(S.E) (0.160) (0.093) (0.077) (0.058) (0.051)  (0.041)  (0.030)
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Table 15
Item Bias for b3-parameters Across Moderate Negative Conditions

n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000
Item 1 Bias 0.629 0.921 1492 0.971 1.267 1.253 1.346
(S.E) (1.414) (0.573) (0.156) (0.132) (0.137) (0.113)  (0.091)
Item 2 Bias 0.571 1.034 1.279  0.987 1.222 1.219 1.242
(S.E) (0.289) (0.227) (0.123) (0.148) (0.119)  (0.099)  (0.075)
Item 3 Bias 0.479 0.911 1.448  0.959 1.245 1.237 1.312
(S.E) (0.268)  (0.076) (0.083) (0.047) (0.046)  (0.038)  (0.038)
Item 4 Bias 0.480 0.937 1.440  0.963 1.256 1.243 1.316
(S.E.) (0.238)  (0.208) (0.152) (0.126) (0.133)  (0.105)  (0.085)
Item 5 Bias 0.538 0.987 1.394  0.991 1.251 1.247 1.297
(S.E) (0.176)  (0.084) (0.077) (0.055) (0.049)  (0.041)  (0.037)
Item 6 Bias 0.369 0.807 1516  0.915 1.241 1.231 1.341
(S.E) (0.197)  (0.120) (0.131) (0.077) (0.081) (0.067)  (0.059)
Item 7 Bias 1.380 1.149 1391 0.982 1.247 1.243 1.289
(S.E) (3.286)  (4.939) (0.123) (0.117) (0.112) (0.089)  (0.073)
Item 8 Bias 0.493 0.945 1423 0.972 1.247 1.240 1.305
(S.E) (0.181)  (0.111) (0.095) (0.067) (0.069)  (0.054)  (0.048)
Item 9 Bias 0.396 0.814 1.520 0.915 1.236 1.225 1.330
(S.E) (0.426) (0.150) (0.146) (0.094) (0.100)  (0.080)  (0.069)
Item 10 Bias 0.641 1.009 1.842 0.912 1.265 1214 1.337
(S.E) (1.366)  (0.501) (0.897) (0.237) (0.252)  (0.157)  (0.154)
Item 11 Bias 0.602 1.097 1.313 1.029 1.254 1.254 1.269
(S.E) (0.269)  (0.073) (0.056) (0.046) (0.037)  (0.033)  (0.027)
Item 12 Bias -4.804 -2.534 1.307 0.954 1.244 1.241 1.273
(S.E) (7.383)  (9.179) (0.783) (1.237) (0.058)  (0.048)  (0.040)
Item 13 Bias 1.100 1.181 1498  0.940 1.225 1.221 1.301
(S.E) (1.217)  (1.149) (0.386) (0.053) (0.049)  (0.041)  (0.040)
Item 14 Bias -4.808 -3.084 1426  0.968 1.247 1.244 1.306
(S.E) (11.713) (15.524) (0.121) (0.098) (0.098)  (0.080)  (0.064)
Item 15 Bias 0.518 0.971 1406  0.984 1.248 1.244 1.300
(S.E) (0.170)  (0.079) (0.075) (0.051) (0.048)  (0.039)  (0.036)
Item 16 Bias 0.434 0.965 1.567  0.969 1.298 1.264 1.381
(S.E) (0.414) (0.521) (0.337) (0.299) (0.324) (0.236)  (0.188)
Item 17 Bias 0.533 0.998 1.385 0.994 1.249 1.246 1.293
(S.E) (0.172)  (0.089) (0.077) (0.056) (0.050)  (0.042)  (0.037)
Item 18 Bias 0.486 0.930 1427 0.971 1.244 1.240 1.307
(S.E) (0.169) (0.083) (0.083) (0.053) (0.051) (0.042)  (0.040)
Item 19 Bias 0.528 0.980 1.397  0.987 1.251 1.244 1.302
(S.E) (0.168)  (0.079) (0.076) (0.048) (0.046)  (0.036)  (0.034)
Item 20 Bias 0.569 1.038 1.364 1.016 1.258 1.255 1.294
(S.E) (0.166)  (0.066) (0.062) (0.040) (0.035)  (0.029)  (0.028)
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Table 16
Item Bias for b3-parameters Across Extreme Negative Conditions

n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000
Item 1 Bias 2.225 2.501 2914 2324 3.197 2.999 3.125
(S.E) (2.686) (1.473) (0.368) (0.327) (0.535) (0.364)  (0.276)
Item 2 Bias 1.445 1.890 2.138 1.836 2.251 2.180 2.221
(S.E) (0.290)  (0.334) (0.161) (0.174) (0.231) (0.165)  (0.111)
Item 3 Bias 1.591 2.165 2.637 2172 2.904 2.748 2.868
(S.E. (0.805) (0.267) (0.192) (0.124) (0.192) (0.144)  (0.090)
Item 4 Bias 1.551 2.315 2.697  2.195 2.927 2.787 2.901
(S.E) (0.439) (0.648) (0.367) (0.340) (0.505) (0.369)  (0.277)
Item 5 Bias 1.493 2.065 2447  2.052 2.623 2.520 2.600
(S.E) (0.263) (0.172) (0.120) (0.115) (0.172)  (0.129)  (0.080)
Item 6 Bias 1.569 2.363 2948  2.357 3.317 3.096 3.263
(S.E) (0.829)  (0.356) (0.394) (0.207) (0.344)  (0.244)  (0.178)
Item 7 Bias 2.720 2.788 2502  2.065 2.673 2.547 2.612
(S.E) (4.174)  (4.815) (0.274) (0.261) (0.390)  (0.280)  (0.215)
Item 8 Bias 1.476 2.139 2549 2120 2.786 2.656 2.748
(S.E) (0.305) (0.259) (0.187) (0.166) (0.257) (0.187)  (0.125)
Item 9 Bias 1.920 2.356 2989  2.320 3.260 3.049 3.186
(S.E) (1.486) (0.625) (0.892) (0.250) (0.416) (0.286)  (0.201)
Item 10 Bias 6.763 4.551 8.421  2.870 4.128 3.636 3.598
(S.E) (6.187)  (4.630) (6.166) (1.034) (1.295) (0.675)  (0.476)
Item 11 Bias 1.504 1.910 2.155 1.861 2.218 2.171 2.208
(S.E) (0.190)  (0.086) (0.071) (0.069) (0.087)  (0.068)  (0.032)
Item 12 Bias -1.444 -0.429 2.183 1.821 2.352 2.288 2.353
(S.E.) (5.079) (7.977) (1.155) (1.583) (0.263) (0.187)  (0.074)
Item 13 Bias 2.778 3.589 3.629  2.250 3.106 2.735 2.788
(S.E.) (1507) (2.420) (1.477) (0.821) (1.304) (0.663)  (0.104)
Item 14 Bias -5.384 -7.390 2434 2151 2.859 2.698 2.810
(S.E.) (15.095) (43.014) (2.162) (0.249) (0.419)  (0.293)  (0.200)
Item 15 Bias 1.497 2.077 2463  2.056 2.641 2.533 2.621
(S.E) (0.481) (0.178) (0.127) (0.116) (0.179) (0.127)  (0.082)
Item 16 Bias 1.866 2.789 3.185  2.553 3.599 3.315 3.369
(S.E) (1.246)  (1.333) (0.810) (0.848) (1.072) (0.772)  (0.576)
Item 17 Bias 1.500 2.051 2409 2.031 2.567 2.478 2.554
(S.E.) (0.262)  (0.178) (0.123) (0.120) (0.170)  (0.126)  (0.080)
Item 18 Bias 1.462 2.125 2558 2125 2.778 2.643 2.749
(S.E.) (0.292)  (0.184) (0.148) (0.126) (0.198)  (0.140)  (0.090)
Item 19 Bias 1.489 2.082 2464  2.063 2.651 2.533 2.624
(S.E) (0.265)  (0.157) (0.119) (0.108) (0.161) (0.114)  (0.076)
Item 20 Bias 1.507 2.006 2.336 1.980 2.449 2.370 2.439
(S.E) (0.227)  (0.099) (0.087) (0.075) (0.109)  (0.086)  (0.042)
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b4-parameters

Tables 17, 18 and 19 contain the item BIAS and standard error of the item
BIAS for the b4-parameters across all sample sizes for the normal distribution,
MN, and EN conditions. As with the test level results, unexpected results were
obtained for n = 500 for all three distributions. The largest BIAS for all items with
the normal distribution conditions was with n = 100. As with the b1-, b2- and b3-
parameters, the MN and EN conditions were more similar to one another and for
both distribution conditions, and BIAS increased as sample size increased.

The greatest amount of BIAS was observed for the EN distribution
followed in turn by the MN distribution and the normal distribution conditions.
And while generally the size of BIAS decreased as the sample size increased for
the normal distributions, BIAS actually increased as sample size increased for the
EN and MN distribution conditions. Further, the increase noted for the MN and
EN distribution conditions was more extreme for the EN distribution than for the
MN distribution but less extreme than for the b1-, b2- and b3-parameters. BIAS
was less than or equal to 0.05 with four exceptions for the normal distribution,
n>750, but for no items for both the EN and MN distribution conditions.

Further inspection of the full set of BIAS values reveals that the amount of
BIAS was also dependent upon item: items which had b3- and b4-parameters very
close in value had much larger BIAS, particularly when sample size was small. As
with the a-, b1- and b2-parameters, the standard error of the BIAS generally
decreased as the sample size increased across the 20 items for all three

distribution conditions, and in this case, the standard errors tended to be close in
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value or larger than their corresponding bias only for the normal distribution
conditions where n > 100. For the MN and EN distribution conditions most
standard errors were smaller than the BIAS values.

Consequently, when the value of the BIAS was divided by it’s standard
error for n> 250, the results suggest that the BIAS values were not significantly
different from zero for the normal distribution conditions. In contrast the standard
errors for the BIAS across EN and MN distribution conditions tended to be less
that their corresponding BIAS, resulting in the ratio of the BIAS to its standard
error being large, suggesting that the BIAS was significantly different from zero

for these conditions.
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Table 17
Item Bias for b4-parameters Across Normal Conditions

n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000
Item 1 Bias 0.185 0.092 -0.077 0.018 0.019 0.086 -0.027
(S.E) (0.405) (0.390) (0.207) (0.233) (0.192) (0.152)  (0.118)
Item 2 Bias 0.154 0.080 -0.114 0.000 0.004 0.086 -0.043
(S.E) (0.557) (0.577) (0.271) (0.329) (0.264)  (0.210)  (0.163)
Item 3 Bias 0.175 0.122  -0.043 0.039 0.024 0.094 -0.026
(S.E.) (0.217) (0.146) (0.110) (0.085) (0.075)  (0.058)  (0.047)
Item 4 Bias 0.134 0.080 0.010 0.034 0.000 0.065 -0.015
(S.E.) (0.287) (0.273) (0.140) (0.161) (0.141)  (0.108)  (0.085)
Item 5 Bias 0.185 0.112 -0.034 0.037 0.022 0.085 -0.020
(S.E) (0.211) (0.161) (0.107) (0.096) (0.085)  (0.066)  (0.050)
Item 6 Bias 0.172 0.116 -0.033 0.033 0.019 0.087 -0.023
(S.E) (0.202) (0.149) (0.101) (0.087) (0.075)  (0.060)  (0.045)
Item 7 Bias 0.314 0.109 -0.036 0.025 0.010 0.071 -0.027
(S.E) (0.708)  (0.968) (0.175) (0.209) (0.177)  (0.133)  (0.107)
Item 8 Bias 0.155 0.092 0.010 0.026 0.012 0.068 -0.014
(S.E) (0.196) (0.154) (0.092) (0.095) (0.080)  (0.059)  (0.045)
Item 9 Bias 0.144 0.097 0.019 0.026 0.006 0.066 -0.010
(S.E) (0.181) (0.126) (0.087) (0.076) (0.067)  (0.053)  (0.040)
Item 10 Bias 0.146 0.089 0.046 0.026 0.004 0.057 -0.007
(S.E) (0.162) (0.108) (0.076) (0.064) (0.054)  (0.045)  (0.032)
Item 11 Bias 0.387 0.116  -0.052 0.038 0.025 0.102 -0.032
(S.E) (1.207) (0.150) (0.112) (0.092) (0.078)  (0.062)  (0.049)
Item 12 Bias -2.097 -1.182 -0.319 -0.096 -0.002 0.080 -0.019
(S.E.) (7.441) (6.731) (1.986) (1.741) (0.483) (0.076)  (0.057)
Item 13 Bias 0.172 0.098 0.046 0.026 0.004 0.057 -0.004
(S.E) (0.166) (0.119) (0.066) (0.045) (0.038)  (0.031)  (0.022)
Item 14 Bias -4590 -1.284 0.033 0.022 -0.001 0.057 -0.009
(S.E) (10.976) (7.574) (0.101) (0.110) (0.095) (0.078)  (0.055)
Item 15 Bias 0.157 0.094  0.009 0.029 0.008 0.071 -0.012
(S.E) (0.176) (0.116) (0.083) (0.068) (0.059)  (0.048)  (0.034)
Item 16 Bias 0.105 0.004 0.001 0.017 -0.012 0.062 -0.016
(S.E) (0.431) (0.480) (0.200) (0.254) (0.215)  (0.163)  0.127
Item 17 Bias 0.143 0.096 -0.006 0.026 0.015 0.079 -0.018
(S.E) (0.509) (0.145) (0.093) (0.087) (0.075) (0.059)  0.043
Item 18 Bias 0.169 0.120 -0.019 0.029 0.019 0.082 -0.021
(S.E) (0.186) (0.125) (0.093) (0.081) (0.067) (0.052)  0.040
Item 19 Bias 0.171 0.112 -0.032 0.031 0.022 0.086 -0.023
(S.E) (0.205) (0.143) (0.104) (0.085) (0.073)  (0.058)  0.045
Item 20 Bias 0.176 0.107 -0.039 0.031 0.025 0.094 -0.027
(S.E) (0.201) (0.126) (0.100) (0.080) (0.067)  (0.054)  0.042
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Table 18
Item Bias for b4-parameters Across Moderate Negative Conditions

n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000
Item 1 Bias 0.607 1.089 1.230 1.011 0.019 1.217 1.215
(S.E) (0.306) (0.239) (0.118) (0.141) (0.192) (0.097)  (0.072)
Item 2 Bias 0.627 1.101 1.166  0.992 0.004 1.200 1.193
(S.E) (0.372) (0.315) (0.165) (0.205) (0.264)  (0.135)  (0.101)
Item 3 Bias 0.629 1.128 1.285 1.035 0.024 1.251 1.259
(S.E) (0.182)  (0.081) (0.058) (0.048) (0.075)  (0.033)  (0.027)
Item 4 Bias 0.519 0.985 1.377  0.981 0.000 1.235 1.286
(S.E.) (0.239) (0.197) (0.120) (0.114) (0.141) (0.085)  (0.070)
Item 5 Bias 0.603 1.078 1.321 1.022 0.022 1.246 1.267
(S.E) (0.186)  (0.093) (0.065) (0.059) (0.085)  (0.042)  (0.034)
Item 6 Bias 0.603 1.088 1.319 1.024 0.019 1.251 1.268
(S.E) (0.182)  (0.092) (0.061) (0.056) (0.075)  (0.038)  (0.031)
Item 7 Bias 0.721 1.018 1.315 0.996 0.010 1.227 1.255
(S.E) (0.635)  (1.021) (0.111) (0.133) (0.177) (0.087)  (0.065)
Item 8 Bias 0.544 1.005 1.378 0.994 0.012 1.243 1.288
(S.E) (0.179)  (0.107) (0.079) (0.064) (0.080)  (0.044)  (0.041)
Item 9 Bias 0.526 0.984 1.394  0.990 0.006 1.243 1.295
(S.E) (0.177)  (0.100) (0.085) (0.060) (0.067)  (0.045)  (0.039)
Item 10 Bias 0.497 0.973 1430 0.977 0.004 1.238 1.302
(S.E) (0.180)  (0.115) (0.095) (0.065) (0.054)  (0.051)  (0.058)
Item 11 Bias 0.633 1.126 1.275 1.034 0.025 1.247 1.251
(S.E) (0.277)  (0.081) (0.058) (0.052) (0.078)  (0.036)  (0.028)
Item 12 Bias -3.194 -2.441 1.321  0.956 -0.002 1.240 1.271
(S.E.) (7.142)  (8.944) (0.777) (1.203) (0.483)  (0.049)  (0.040)
Item 13 Bias 0.533 0.974 1423 0.972 0.004 1.236 1.298
(S.E) (0.192)  (0.149) (0.084) (0.048) (0.038)  (0.034)  (0.033)
Item 14 Bias -4.653 -2.868 1419 0.970 -0.001 1.244 1.303
(S.E) (11.630) (14.495) (0.117) (0.097) (0.095)  (0.078)  (0.063)
Item 15 Bias 0.544 1.006 1.382 1.000 0.008 1.248 1.295
(S.E) (0.172)  (0.078) (0.070) (0.051) (0.059)  (0.036)  (0.033)
Item 16 Bias 0.507 0.988 1.390 0.976 -0.012 1.233 1.299
(S.E) (0.333) (0.315) (0.176) (0.181) (0.215) (0.141)  (0.105)
Item 17 Bias 0.571 1.044 1.352 1.011 0.015 1.248 1.280
(S.E) (0.173)  (0.093) (0.071) (0.057) (0.075)  (0.040)  (0.036)
Item 18 Bias 0.589 1.060 1.347 1.019 0.019 1.254 1.282
(S.E) (0.177)  (0.079) (0.063) (0.051) (0.067) (0.037)  (0.031)
Item 19 Bias 0.607 1.088 1.320 1.026 0.022 1.251 1.270
(S.E) (0.177)  (0.083) (0.061) (0.054) (0.073) (0.037)  (0.029)
Item 20 Bias 0.607 1.108 1.312 1.033 0.025 1.258 1.274
(S.E) (0.169)  (0.074) (0.059) (0.045) (0.067) (0.032)  (0.026)
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Table 19
Item Bias for b4-parameters Across Extreme Negative Conditions

n=100 n=250 n=500 n=750 n=1000 n=1500 n=3000
Item 1 Bias 1.426 1.763 1.947 1.717 2.002 1.968 1.994
(S.E) (0.290)  (0.290) (0.127) (0.151) (0.162)  (0.118)  (0.083)
Item 2 Bias 1.342 1.599 1.768 1.586 1.790 1.794 1.793
(S.E) (0.350) (0.429) (0.174) (0.218) (0.218)  (0.163)  (0.117)
Item 3 Bias 1.496 1.850 2.059 1.802 2.109 2.075 2.099
(S.E) (0.176)  (0.085) (0.064) (0.065) (0.081)  (0.059)  (0.029)
Item 4 Bias 1.514 2.129 2456  2.039 2.620 2.517 2.604
(S.E.) (0.336) (0.457) (0.258) (0.243) (0.364)  (0.263)  (0.195)
Item 5 Bias 1.495 1.910 2174 1.871 2.249 2.197 2.236
(S.E) (0.206)  (0.115) (0.080) (0.084) (0.106)  (0.082)  (0.048)
Item 6 Bias 0.199 1.914 2174 1.871 2.244 2.191 2.235
(S.E) (0.199)  (0.108) (0.081) (0.073) (0.099)  (0.077)  (0.041)
Item 7 Bias 1.667 2.012 2.223 1.892 2.331 2.252 2.297
(S.E) (0.797)  (1.094) (0.185) (0.183) (0.253) (0.184)  (0.138)
Item 8 Bias 1.482 2.039 2375  2.008 2.545 2.450 2.517
(S.E.) (0.252)  (0.197) (0.135) (0.126) (0.191) (0.138)  (0.089)
Item 9 Bias 1.494 2.068 2441  2.038 2.622 2.507 2.585
(S.E.) (0.277)  (0.206) (0.152) (0.126) (0.209)  (0.146)  (0.095)
Item 10 Bias 1.478 2.198 2542 2127 2.778 2.643 2.720
(S.E) (0.319) (0.272) (0.185) (0.179) (0.262)  (0.176)  (0.129)
Item 11 Bias 1.493 1.837 2.033 1.787 2.068 2.043 2.063
(S.E) (0.175)  (0.085) (0.064) (0.065) (0.076)  (0.062)  (0.028)
Item 12 Bias 1.722 -0.532 2.163 1.808 2.332 2.270 2.334
(S.E.) (5527) (8.221) (1.238) (1.635) (0.252)  (0.180)  (0.071)
Item 13 Bias 1.545 2.287 2572  2.083 2.691 2.552 2.642
(S.E.) (0.362) (0.477) (0.197) (0.163) (0.282)  (0.193)  (0.076)
Item 14 Bias -5.921 -2.784 2374 2131 2.823 2.667 2.774
(S.E) (16.244) (17.350) (2.539) (0.239) (0.401) (0.282)  (0.191)
Item 15 Bias 1.510 2.030 2.378  2.002 2.520 2.429 2.504
(S.E) (0.397) (0.145) (0.107) (0.100) (0.149) (0.105)  (0.066)
Item 16 Bias 1.610 2.256 2564 2123 2.789 2.640 2.678
(S.E) (0.603) (0.730) (0.425) (0.443) (0.568)  (0.420)  (0.309)
Item 17 Bias 1.504 1.974 2280 1.942 2.388 2.320 2.376
(S.E) (0.224) (0.137) (0.097) (0.099) (0.132) (0.097)  (0.059)
Item 18 Bias 1.502 1.958 2.251 1.925 2.347 2.280 2.332
(S.E.) (0.209) (0.110) (0.083) (0.081) (0.111)  (0.081)  (0.044)
Item 19 Bias 1.505 1.906 2.165 1.870 2.236 2.186 2.225
(S.E) (0.197)  (0.100) (0.076) (0.074) (0.096)  (0.072)  (0.040)
Item 20 Bias 1.507 1.903 2.140  1.858 2.202 2.157 2.192
(S.E) (0.185)  (0.081) (0.067) (0.065) (0.082)  (0.064)  (0.029)
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Summary

Item-level analyses provide some insight into the test-level results. While
reporting BIAS at the test level and RMSEs can tell us something about the ability
to recover total test scores using the GRM and MULTILOG, these test level
results do not provide information about which items may or may not be
problematic. In contrast, the item level results provide in-depth information.

Items with larger ‘true’ a-parameter values (above 1.20) tended to be
overestimated to a larger degree than that those items with smaller ‘true’ a-
parameters.

Three items were particularly problematic for b-parameter estimation;
items 10, 12, and 14. For item 10, the b1- and b2-parameters were within 0.06 of
one another and particularly when there were smaller sample sizes (n = 100, 250)
MULTILOG produced estimates that were much larger than the ‘true’ values.
Similarly, items 12 and 14 within 0.04 and 0.07 respectively, of one another and
both the b3- and b4-parameters for these items were greatly overestimated. ‘True’
b-parameters that were lower in value on the 4 scale were also poorly recovered in

the skewed distributions
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Chapter 6: Summary, Limitations and Future Directions

This chapter is organized in five sections. First, a summary of the research
questions and methods used in this study is provided. Test-level and item-level
results are then summarized and discussed in the second section and limitations of
the current study are identified in the third section. Conclusions and implications
for practice are discussed in the fourth section and directions for future research
are provided in the last section.
Research Design and Methods Summary

Currently, one of the most popular methods used in calibrating
polytomous data in education is the use of the GRM as executed in MULTILOG.
However, with the expanding scope of use of polytomous item response theory
(PIRT) in the social and health sciences not much time has been spent on
discussing the possible effect of the non-normal distributions and small sample
sizes common in these areas. Thus, the purpose of the current study was to
conduct a simulation study to inform applied research regarding the use of PIRT
with non-normal data, particularly when sample sizes are small, which is so often
the case in clinical studies.

Four research questions were addressed:

1) Does the shape of the underlying @ distribution have an effect on test-level
statistical outcomes for item and person parameter recovery under the

GRM using MULTILOG?,
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2) Does the shape of the underlying @ distribution have an effect on item-
level statistical outcomes for item and person parameter recovery under
the GRM using MULTILOG?,
3) Does sample size have an effect on test-level statistical outcomes for item
and person parameter recovery under the GRM using MULTILOG?, and
4) Does sample size have an effect on item-level statistical outcomes for item
and person parameter recovery under the GRM using MULTILOG?
Previous simulation studies suggested a minimum sample size of 500 for
accurate parameter estimation under the GRM (Reise & Yu, 1990). However, the
recommended samples sizes were not met for many of the studies in which PIRT
was used in the social and heath science areas. Consequently, a range of seven
sample sizes (100, 250, 500, 750, 1,000, 1,500, and 3,000) crossed three
distribution shapes (normal (to act as a baseline), moderate negatively skewed
(MN), and extremely negatively skewed (EN)) were considered. The number of
replications of each of the 21 conditions was 1,000. RMSEs and test-level BIAS
were calculated across items to assess the effect for sample size and distribution
shape on total test scores and item-level BIAS and standard error of item BIAS
were calculated to assess the effect of sample size and distribution shape at the
item level.
Results Summary

Test level. Aside from 6 estimates, the EN distribution conditions
produced the poorest results overall. At the test level, recovery of the a-

parameters showed the most consistent improvement as the sample size increased
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across all distribution conditions, and b3- and b4-location parameters were more
accurately recovered than b1- and b2- location parameters. Test-level BIAS
results revealed that for the EN and MN distribution conditions, locations
parameters were in general underestimated.

The test-level results indicated that the shape of the underlying 6
distribution does in fact have an effect on the accuracy of parameter estimation.
The results also indicated that the 4 distribution factor interacted with sample size
and the value of the ‘true’ parameter. In general, and as expected, the normal
distribution conditions produced better test- and item-level results than either
skewed distribution across the seven sample sizes.

In addition, as with other simulation results (de Ayala, 2009; Reise & Yu,
1990), test-level results for the study showed that generally, as sample size
increased, the accuracy of the recovered parameters increased at n = 750, after
which accuracy tended to be constant for the normal distribution and at n = 1,000
after which the accuracy tended to be constant for the MN and EN distributions.
Further, the accuracy of the estimated parameters is acceptable for the normal
distribution condition when n > 750 but no acceptable sample size was found in
this study for the MN or the EN conditions.

de Ayala (2009) and Reise and Yu (1990) suggested a minimum sample
size of 500 for accurate parameter estimation using the GRM. However,
unexplained results were obtained in the present study and attempts to correct the
situation were futile (see Limitations). But the results of the present study suggest

a minimum sample size of 750 with normally distributed data. Given extreme
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distributions of ability are found in personality and health research (see Bolt et al.,
2004 and Cooke et al., 2001 for examples) additional research is needed to
determine how to best handle situations in which is the distribution of the latent
trait is extremely skewed.

Item level. As might be expected, the item level results agreed with the
test level results but provided the reason and clarity for the test level results. For
example, the a-parameter estimates for the extreme skewed distribution for each
item were uniformly large, thus accounting for the large a-parameter estimates at
the test level. The a-parameter estimates for the items with larger ‘true’ a-
parameter values (above 1.20) tended to be overestimated to a larger degree than
items with smaller ‘true’ a-parameters.

Three items were particularly problematic for b-parameter estimation:
items 10, 12, and 14. These items each had two adjacent b-parameters which
‘true’ values that were very close in value. This caused problems with calibration
of the data. In addition, across all 20 items, with b-parameters with ‘true’ values at
locations along the @ scale where there was very little response data had much
larger item BIAS. By looking at the test-level results b-parameters appear to be
poorly recovered yet when item-level BIAS is investigated it can be seen that this
is a result of three problematic items causing error in estimation.

The results of item-level analyses have not been provided in the literature
to this point, possibly because of the number of pages needed to present the
results. But the results of the present study reveal the item level data do shed some

light on the test-level results. While reporting BIAS at the test level can tell us
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how accurate the score is overall and RMSE can tell us something about the
precision of the total test score, authors should provide summary information
about the characteristics of the items used to obtain the total score and if it was
necessary to remove items that were found to be problematic.

Limitations of Present Study

Many of the replications for the conditions with small sample size and
with the EN distribution condition did not converge even though default option
for the number of calibration cycles was increased to 500 (see Table 4, Chapter
3). For example, of the 1,000 replications for the EN distribution condition and n
=100, 51.4% did not meet the convergence criterion set for this study (0.001).
Increasing the criterion to 0.01 decreased this percentage substantially with at
most 34.0% of the replications not converging with the EN distribution condition
and n = 250. Due to this problem with convergence, as mentioned in Chapter 3,
the outcome measures provided me be too large, too small or correct.

As mentioned above, unexplained values were obtained when estimating
the a-parameter when n = 500 for all three distributions and at some, but not all,
of the b-locations for the MN and EN distributions. As well, the ability estimates
for the MN distribution with n = 3,000 were not as expected. To investigate these
situations more thoroughly, three more datasets with 1,000 replications with n =
500 were generated and the analyses repeated for each. Results of these analyses
were not consistent and inconclusive. There is no readily apparent explanation for
why this happened and therefore, the results with n = 500 were essentially

disregarded.
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Conclusions and Implications for Practice

The results suggest that when completing a PIRT analysis with small
samples or non-normal data, it is necessary to interpret the results of an item
calibration with caution, particularly when the distribution is markedly negatively
skewed. It is necessary for researchers using PIRT item calibration to have a
complete statistical description of their data before deciding on whether or not to
proceed with the analysis.

When using the GRM with MULTILOG to calibrate the items, the sample
size should be at least 750 if scores on the latent trait of interest are normally
distributed. Results derived from samples that are moderately or extremely
negatively skewed may be unsatisfactory. It is essential that researchers are
thorough in their initial assessment of the data to be calibrated.

Lastly, as mentioned above, while reporting BIAS at the test level can tell
us how accurate the score is overall and RMSE can tell us something about the
precision of the total test score, authors should provide summary information
about the characteristics of the items used to obtain the total score and how items
found to be problematic were handled.

Future Directions

As indicated in the identification of limitations, it is recommended that
another program (such as SAS and R) be used to generate data with conditions
similar to those used in this study to possibly aid in explanation of the
unexpected results obtained in the present study. Additionally, the current study

considered a 20 item, 5 point likert-type scale assessment. Given that test length
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can affect calibration, the number of items should be varied. Also, the greater the
number of score categories for an item, the greater the number of item parameters
estimated, which in turn requires larger sample sizes. Given 3- and 7-point likert
type items are often used in social science or health science assessment studies,
the influence of sample size as well as distribution shape should be assessed with
the intent of determining the minimum sample size required and the maximum

skewness allowed.
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Appendix ‘A’

repl.MLG -

ESTIMATION OF ITEM PARAMETERS FOR N=100
>PROBLEM RANDOM, INDIVIDUAL, NEXAMINEES=100, NITEMS=20,
NCHARS=9,

NGROUPS=1, DATA='C:\Multilog\repl.dat';
>TEST ALL, GRADED,
NC=(5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5) ;
>EST NC=500, ICRIT=0.001, CCRIT=0.001;
>SAVE;
>END;

5

12345
11111111111111111111
22222222222222222222
33333333333333333333
A44444444444444444444
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(9A1,20A1)
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Appendix ‘B’

repl.MLG -

ESTIMATION OF THETA SCORES FOR N=100
>PROBLEM SCORE, INDIVIDUAL, NEXAMINEES=100, NITEMS=20,
NCHARS=9,

NGROUPS=1, DATA='C:\Multilog\repl.dat';
>TEST ALL, GRADED,
NC=(5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5) ;
>EST NC=500, ICRIT=0.001, CCRIT=0.001;
>SAVE;
>END;
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Appendix ‘C’

¥macro results
(start, stop, cond, item, sample, item2, type) ;
ods listing close;

data pirt.truepars&cond;

infile "C:\sasfiles\&item\pars.wgi" firstobs=1
dlm='09"'x;

input item model $ cats truea truebl trueb2 trueb3
trueb4;

run;

data pirt.estparsé&cond;

sdo value=&start S$to &stop;

infile "C:\sasfiles\results\&cond\rep&value..par"
firstobs=1 obs=&item2;

input @6 aest 7.5 @17 blest 8.5 @28 b2Z2est 9.5 (@40 b3est
9.5 @53 bdest 8.5;

item= N ;

rep=&value;

output;

send;

run;

proc sort;
by item;
run;

data work.allparsBIAS&cond;
merge pirt.truepars&cond pirt.estpars&cond;
by item;

diff a true est=truea-aest;

diff bl true est=truebl-blest;

diff b2 true est=trueb2-bZest;

diff b3 true est=trueb3-b3est;

diff b4 true est=truebd-bdest;

run;

proc means data=pirt.allparsBIAS&cond;
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var diff a true est diff bl true est diff b2 true est
diff b3 true est diff b4 true est;

by item;

output out=pirt.itemBIAS&cond;

run;

proc sort data=work.allparsBIAS&cond;
by rep;
run;

proc means data=work.allparsBIAS&cond noprint;

var diff a true est diff bl true est diff b2 true est
diff b3 true est diff b4 true est;

by rep;

output out=work.BIAS&cond;

run;

data work.BIAS&cond;

set work.BIAS&cond;
if STAT ="MEAN";
run;

ods pdf file="C:\sasfiles\results\BIASparsé&cond..pdf";
proc means data=work.BIAS&cond;

var diff a true est diff bl true est diff b2 true est
diff b3 true est diff b4 true est;

title "BIAS for the parameters for &cond and &type";
run;

ods pdf close;

data work.allparsé&cond;
merge pirt.trueparsé&cond pirt.estpars&cond;
by item;
absdiff a true est=abs(truea-aest);
absdiff bl true est=abs(truebl-blest);
absdiff b2 true est=abs (truebZ2-bZest
absdiff b3 true est=abs (trueb3-b3est
absdiff b4 true est=abs (truebd4-bidest
square a true est=(truea-aest)**2;
square bl true est=(truebl-blest)**2;
square b2 true est=(trueb2-bZest)**2;

.
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square b3 true est=(trueb3-b3est) **2;
square b4 true est=(truebd-bdest) **2;
run;

proc sort data=work.allparsé&cond;
by rep;
run;

proc means data=work.allparsé&cond noprint;
var square a true est square bl true est
square b2 true est square b3 true est
square b4 true est;

by rep;

output out=work.averagemlgé&cond;

run;

data work.averagemlgé&cond;

set work.averagemlgé&cond;
if STAT ="MEAN";
avg a true est=sqgrt(square a true est);
if avg a true est=. then avg a true est=0;
avg bl true est=sqrt(square bl true est);
avg b2 true est=sqrt (square b2 true est);
avg b3 true est=sqrt (square b3 true est);
avg b4 true est=sqrt (square b4 true est);
if avg bl true est=. then avg bl true est=0;
if avg b2 true est=. then avg b2 true est=0;
if avg b3 true est=. then avg b3 true est=0;
if avg b4 true est=. then avg b4 true est=0;
run;

ods pdf file="C:\sasfiles\results\RMSEparé&cond..pdf";

proc means data=work.averagemlgé&cond;

86

var avg_a true est avg bl true est avg b2 true est

avg b3 true est avg b4 true est;

title "Root Mean Square Errors of the parameters for

&cond and &type";
run;
ods pdf close;

data pirt.truetheta&cond;



Running head: PIRT parameter recovery 87

infile "C:\sasfiles\TTheta\&type\&sample..wge"
firstobs=1 dlm='09"'x;

input obs ttheta;

run;

data pirt.esttheta&cond;

%do value=&start %to &stop;

infile "C:\sasfiles\thetaresults\&cond\rep&value..sco"
firstobs=1;

input @5 esttheta 6.3 @16 se 5.3 @23 obs 4.0;
rep=&value;

output;

send;

run;

data pirt.allthetaBIAS&cond;
merge pirt.truetheta&cond pirt.esttheta&cond;
by obs;

diff theta true est=ttheta-esttheta;

proc sort data=pirt.allthetaBIAS&cond;

by rep;

run,

proc means data=pirt.allthetaBIAS&cond noprint;
var diff theta true est;

by rep:;

output out=pirt.BIAStheta&cond;

run;

data pirt.BIASthetaé&cond;
set pirt.BIAStheta&cond;
if STAT ="MEAN";

runy;

ods pdf
file="C:\sasfiles\results\BIASthetasé&cond. .pdf";
proc means data=pirt.BIAStheta&cond;

var diff theta true est;

title "BIAS for thetas for &cond and &type";
run;

ods pdf close;
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data pirt.alltheta&cond;
merge pirt.truetheta&cond pirt.esttheta&cond;
by obs;
absdiff theta true est=abs(ttheta-esttheta);
square theta true est=(ttheta-esttheta) **2;
run;

proc sort data=pirt.allthetaé&cond;
by obs;
run;

proc means data=pirt.alltheta&cond noprint;
var square theta true est;

by obs;

output out=pirt.averagetheta&cond;

run,

data pirt.averagetheta&cond;
set pirt.averagetheta&cond;
if STAT ="MEAN";
avg theta true est=sqrt(square theta true est);
if avg theta true est=. then avg theta true est=0;
run;

ods pdf file="C:\sasfiles\results\RMSEtheta&cond..pdf";
proc means data=pirt.averagethetaé&cond;
var avg_theta true est;
title "Root Mean Square Errors of theta for &cond and
&type";
run,
ods pdf close;
ods listing;

proc sort data=pirt.allthetaé&cond;
by rep;
run;

proc datasets library=work nolist kill;
run;
$mend results;
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Appendix ‘D’

90

4.50
4.00
3.50
3.00
2.50
2.00
1.50
1.00
0.50
0.00

RMSE

N

N\

Se—>~_____

o—)é\(‘\o

=@==23-parameter
== bl-parameter
==Db2-parameter

—

b3-parameter

Extreme
Negative

Moderate Normal
Negative

Distribution

b4-parameter

Figure 1. Root Mean Square Errors of parameters by distribution type for n=100.

5.00
4.50
4.00
3.50
3.00
2.50
2.00
1.50
1.00
0.50
0.00

RMSE

a\

AN

AN

SN

=@==23-parameter

== bl-parameter
==Db2-parameter
=>&=b3-parameter

<& =
Extreme Moderate Normal
Negative Negative
Distribution

b4-parameter

Figure 2. Root Mean Square Errors of parameters by distribution type for n=250.
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Figure 3. Root Mean Square Errors of parameters by distribution type for n=500.
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Figure 4. Root Mean Square Errors of parameters by distribution type for n=750.
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Figure 5. Root Mean Square Errors of parameters by distribution type for

n=1000.
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Figure 6. Root Mean Square Errors of parameters by distribution type for n=1500.
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Figure 7. Root Mean Square Errors of parameters by distribution type for n=3000.



