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Abstract

Chronic Kidney Disease (CKD) affects huge number of people in the world. One

of the significant side effects of this infection is the inability to maintain the body’s

red blood cell production (RBC), and along these lines, the mass of a protein called

hemoglobin inside the body. The wellbeing of these patients crumbles and over time

they become anemic. Recently, exogenous erythropoietin stimulating agents have

turned into the standard for treating anemia during CKD. The pharmaceutical works

greatly well for what it is intended to do. The issue with this situation is the failure of

the doctor’s to have the capacity to pick an appropriate dose for every patient. The

dosing protocols are not standardized crosswise over hospitals, and huge numbers

of the dosings regimens are ineffectively designed. In that capacity, many patients’

hemoglobin levels are inadequately controlled. The poor hemoglobin control in CKD

patients is well documented in the literature. Automated anemia management based

on feedback is one approach to address this issue. A relaible model is very important

in the design of the control system.

In this thesis, the objectives are (1) to present an artificial patient simulator

developed exclusively based on measurement noise and time-varying parameters in

Pharmacokinetics and Pharmacodynamics (PKPD) model, (2) performance assess-

ment of non-linear constrained ARX model (C-ARX), and (3) hemoglobin modeling

technique with modified constrained ARX modeling (C-ARX) method utilizing ad-

ditional measurment such iron saturation and white blood cell (WBC) count. The

hemoglobin response modeling methods are compared on a clinical data containing

167 patients. It will be demonstrated that the new modeling method offers better

modeling results to the previously developed C-ARX model.
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Chapter 1

Introduction

1.1 Motivation

Chronic Kidney Disease (CKD) is assessed to affect about 10% of the world’s

populace (A. Levey and Coresh, 2007). There are a few phases of CKD that pa-

tients can be classified into, with the most extreme stage being categorized as End

Stage Renal Disease (ESRD). A huge number of individuals/patients worldwide are

classified as ESRD patients, what’s more, numerous experience dialysis treatment or

kidney transplants subsequently (W. Couser et al., 2011). More than 80% of chronic

kidney disease patients that get treatment are in affluent nations that approach all

inclusive human services and have huge elderly populaces (V. Jha and Iseki, 2013).

The elderly populace is expanding at a high rate in developing countries, for exam-

ple, China and India and the quantity of interminable kidney patients is expected to

increment extremely in the coming years (V. Jha and Iseki, 2013).

One of the significant side effects of CKD is the powerlessness to generate endoge-

nous erythropoietin, which is body’s hormone to manage the generation of body’s red

blood cells (RBCs). RBCs contain hemoglobin, a protein which is essential to human

survival. Hemoglobin is incharge for binding to oxygen and conveying it throughout

the body tissues and organs. Since without oxygen tissue will die, therefore, main-

taining hemoglobin is necessary. When the endogenous generation of erythropoietin

drops considerably, these patients suffers with anemia disease, which is described as

decreased hemoglobin and RBC mass in the body. During the 1980s researchers un-

derstood effect of recombinant human erythropoietin (rHuEPO) that helps manage

the creation of RBCs and subsequently hemoglobin. In this period, kidney patients
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bearing anemia began experiencing erythropoietin stimulating agent (ESA) therapy.

After the initial discovery of rHuEPO, many alternate drugs have been developed to

increase RBCs production, examples include epoetin-alfa (EPO), methoxy polyethy-

lene glycol-epoetin beta, darbepoetin-alfa, etc (McAllister, 2017). In this thesis, all

analysis is done based on EPO as a stimulating agent (ESA) therapy.

Clinicians have demonstrated that while a low level of hemoglobin moves the pa-

tient towards anemia, but a higher level of hemoglobin more than 13.0 g/dL can build

the danger of mortality risk for the patients already suffering from CKD (M. Ros-

ner, 2008; Z. Jing et al., 2012; A. Singh et al., 2006). Subsequently, effective tech-

niques are required to decide the proper dosage of erythropoietin stimulating agent

to keep hemoglobin within target amount. Numerous Anemia Management Proto-

cols (AMPs) utilized by clinicians, depend on the set of rules made by clinicians

which are based on past experiences or retrospective studies. These methods are not

consistent between hospitals and often results in incorrect drug dose to the patient.

In a previous study (McAllister, 2017), it was found that out of 167 cases about

56% of patients suffered oscillations in hemoglobin because of imprecise drug dose.

Figure 1.1 shows two such patients where target hemoglobin control zone is 9.5 to

11 g/dL (McAllister, 2017). These one-size-fits-all convention methods for rHuEPO

administration are generally imprecise, tedious, and non-robust and as a result, the

patient’s hemoglobin levels are often poorly controlled. Therefore, new methods are

required to avoid the mortality effect associated with high levels of hemoglobin, at

the same time decreasing anemia effects. Assessed by National Kidney Foundation,

10% of the worldwide population is affected by CKD and millions of people die every

year due to unaffordable access to treatment (National Kidney Foundation, 2017).

Treatment associated with CKD costs the United States 48 billion dollars per year

(National Kidney Foundation, 2017) for the treatment of (< 1%) fraction population

(P. Damien et al., 2016). Hence, the potential for the opportunity for cost savings

becomes important while enhancing the well-being of patients health.
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Figure 1.1: Actual clinical data showing patients undergoing hemoglobin cycling

(McAllister, 2017)

The ideal hemoglobin target is still under discussion (Singh, 2007) yet for the most

part lies between 9.5 and 12.0 g/dL for CKD patients. In McAllister, 2017 a range

of 9.5 to 11.0 g/dL was used for control zone.

One of the physician’s protocol has been shown in Figure 1.3 from one of the

hospitals with sensitive information removed. It can be seen that the one-size fit

rule protocol is only sensitive to patient’s weight and all other guidelines have been

ignored. Classical and zone model predictive controller (ZMPC) were compared in

McAllister, 2017 and recommended a weighted recursive least square ZMPC that uses

a funnel-shaped control zone, Figure 1.2.
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(McAllister, 2017)
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Figure 1.3: Physician’s Protocol for dosing Epoetin-alfa
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1.2 Contributions

The target of this thesis was to investigate and improve several innovations for

the usage of an automatic dosage optimizer for the administration of exogenous drug

dosage for patients suffering with anemia in end-stage renal disease. The application

could be executed in programming projects to automatically collect past measure-

ments from the patient database, obtain a specific patient model, and recommend

an enhanced EPO dosing regimens to the numerous patients undergoing end-stage

renal disease treatment. This thesis aims to improve existing modeling techniques

and relates mathematical models with biological systems in the human body to make

mathematical models more acceptable to medical professionals. This thesis is in con-

tinuation of future work identified in McAllister, 2017 and cover three sections. First,

model performance assessment for constrained ARX model (C-ARX) developed by

(J. Ren et al., 2017). Second, incorporating additional measurements such as Iron

Saturation and White Blood Cell Counts (WBCs) in constrained ARX model iden-

tification. Third, a designed artificial patient simulator which based on biological

systems. Overall, this thesis aims to improve health for CKD patients by helping

clinicians to make a better decision with epoetin-alfa (EPO) dosing regimens.

1.3 Thesis outline

Chapter 2 focuses on model performance assessment for constrained ARX model

(C-ARX) developed by (J. Ren et al., 2017). This chapter begins with preliminaries

for existing mathematical modeling for anemia using EPO, introduction to the prob-

lem description of model performance assessment. It follows data pre-processing and

then four classification techniques are introduced in detail including Principal Com-

ponent Analysis (PCA), Partial Least Square - Discriminant Analysis (PLS-DA), Lin-

ear Discriminant Analysis (LDA), and combination of PCA-LDA. These classification

techniques are used on patients actual clinical data along with modeling parameters

identified from C-ARX to analyze the decision whether patients original data is good

enough to identify constrained ARX model. This chapter shows that classification

the technique developed by combining PCA and LDA is the most effective way to
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decide modelling for original data. It will be also shown how classification accuracy

for PCA-LDA can be increased by outliers detection from original data. Outlier de-

tection section can be used as guidelines for the patients where C-ARX model will

not result into good hemoglobin prediction model and C-ARX model should not be

used for those patients until patient’s original data return to normal range.

Chapter 3 focuses on future work identified in (McAllister, 2017). This includes

incorporating additional measurements such as iron saturation, White Blood Cell

Counts (WBCs), and ferritin level. The chapter begins with an introduction to phys-

ical significance of additional parameters followed by modeling techniques to update

the constrained ARX model developed by developed by J. Ren et al., 2017. Improved

model identification was done in three parts. First, by introducing Saturation Iron in

the model. Second, by sequentially optimizing with Iron Saturation and WBC, and

third by simultaneous optimization with Iron Saturation and WBC. It will be shown

that simultaneous optimization or sequential optimization with Iron Saturation, or

original constrained ARX model can be used under different conditions to improve

model performance.

In chapter 4, an artificial patient simulator is discussed in detail that has been

designed based on biological systems by identifying future work in McAllister, 2017.

The artificial patient mimic real life disturbances that can happen to CKD patients

and have been paired with parameters identified in pharmacokinetics and pharmaco-

dynamics (PKPD) model (Y. Chait et al., 2014). The chapter begins with motivation

and interpreting PKPD model parameters, followed by different scenarios that CKD

patients suffer. Later, it was discussed that how by manipulating the physical pa-

rameters, and by tuning process disturbance and measurement can relate to change

in patient health. Actual clinical figures are compared with simulated figures to show

how the developed simulator can be explained to professionals in the medical industry.

Chapter 5 identifies some future work and considerations for this project. Most

specially is controller performance assessment with the developed artifical patient

simulator. Other future research areas identified are hemoglobin response modeling

with iron saturation and introducing iron dosage, and actual MCH in Modelling.
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Chapter 2

Model Performance Assessment of
Constrained ARX model

2.1 Introduction

The aim of this chapter is model performance assessment of constrained ARX

model (C-ARX) developed in J. Ren et al., 2017. C-ARX model did not always result

into a good model, therefore, model performance assessment of C-ARX was required.

There were two data sets used in this assessment. The first data set contains 1-3 years

of clinical data for 145 patients and second data set contains 209 patients. Hemoglobin

values were typically taken approximately 2 weeks apart, while ESA dosing was done

typically once per week. Using these data sets assessment parameters were identified

using raw data and C-ARX model. These parameters were then used to explore

various classification techniques. The chapter starts with preliminaries required for

hemoglobin modeling, followed by problem description and classification techniques.

2.2 Constrained autoregressive with exogenous in-

puts model (C-ARX)

In J. Ren et al., 2017, an Autoregressive with Exogenous Inputs (ARX) modeling

approach was developed. It was shown that the developed C-ARX modeling strategy

had better performance than PKPD whilst being less complex at the same time.

The developed C-ARX model has one ‘a’ parameter and 20 ‘bk’ parameters. The

‘bk’ parameters are constrained to follow a particular shape. The model structure is
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presented in Equation (2.1)

Hgbt+1 −Hgbss =a1 (Hgbt −Hgbss) . . .

+
20∑
k=1

bk (EPOt−k+1 − EPOss) + et
(2.1)

where Hgbss and EPOss are the steady state hemoglobin and the erythropoietin

respectively. Parameter estimation of the above model is done by formulating it as a

(MINLP) and is outlined in Equation (2.2).

min

tf∑
t=1

[Hgbt −Hgbt,actual]2 (2.2a)

s.t.−Kzk + 0.001 ≤ k − tpeak ≤ K(1− zk) ∀k = 1, . . . , K (2.2b)

−M(1− zk) ≤ α(k − 1)− bk(tpeak − 1) ≤M(1− zk) ∀k = 1, . . . , K (2.2c)

−Mzk ≤ α exp−β(k−tpeak)−bk ≤Mzk ∀k = 1, . . . , K (2.2d)

7.0 ≤ Hgbt ≤ 15.0 ∀t (2.2e)

7.0 ≤ Hgbss ≤ 11.0 (2.2f)

0.7 ≤ a1 ≤ 0.99 (2.2g)

0 ≤ EPOss (2.2h)

b1 = 0 bk ≥ 0 ∀k = 2, . . . , K (2.2i)

bk ≥ 0.1 k = kpeak 1.1 ≤ tpeak ≤ 3.9 (2.2j)

α ≥ 0.1 β ≥ 0.05 zk ∈ {0, 1} (2.2k)

The objective function (Equation (2.2a)) is sum of square errors between ac-

tual hemoglobin and proposed hemoglobin level by the model. The Equation (2.2b)

enforces the constrain on the binary variable zk that are introduced to represent

whether a time occasion k is equivalent to after the peak time (zk = 0) or before the

peak time (zk = 1). Equation (2.2c) constrains model parameters bk before the peak

time and Equation (2.2d) constrains after the peak time. Equation (2.2e) constrains

hemoglobin values within reasonable values. Equations (2.2f) and (2.2h) constrain

steady state hemoglobin and erythropoietin respectively. Equations (2.2g), (2.2i),

(2.2j), and (2.2k) constrain range for model parameters.
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2.3 Problem description for model performance as-

sessment

Analysis of Constrained ARX model (C-ARX) developed in (J. Ren et al., 2017)

on 145 patients showed that 35 patients did not result into the good model. For

these 35 patients, either model dynamics did not capture actual data dynamics, or

residuals were too high, or patient did not had enough process excitation to be clas-

sified as a good model. Typically for the model performance, one looks at the 1-step

prediction residual only (Clements and Hendry, 2005), but residuals always may not

accuratly guide regarding good model performance. For instance, if a paitent had

no EPO dosages it’s 1-step resduals may still be lower, leading to missclassification

as a ‘good model’. Considering other parameters such as predicting 8-step ahead,

checking process excitation, and assessing overall other parameters that could affect

model performance is important. This led to the motivation for the work that under

what scenarios model developed by C-ARX will not result in good model. There are

two objectives as follow:

1. To determine the most significant variables in describing the dynamics of hemoglobin,

which is the variable used in EPO dosage determination.

2. To develop a method to assess model performance automatically using the vari-

ables determined in the first objective.

2.4 Data Selection and Preprocessing

There was two datasets used. First data set had 167 patients and second data

set had 310 patients. After removing patients which did not have enough data points

(less than 60 weeks of data) or missing data, the first data set was reduced to 145

patients and second data set to 209 patients. Dataset two (209 patients) was used as

training dataset which includes training and cross-validation, whereas data set one

(145 patients) was used as a test set for prediction.

For the reason of simplicity, it was assumed that weekly hemoglobin measure-

ments and weekly EPO dosages are available. The clinically ideal Hgb measurement
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frequency for CKD patients is 4 times each month (A. Gaweda et al., 2010). Since

the available data does not have a weekly measurement, data must be re-sampled.

Generally, Hgb measurement is bi-weekly, but measurement and EPO dosing could

vary drastically over the patient’s past history. Ordinarily, the dosing was done each

week, yet it was normal to see a patient not getting a dosage for a long time, or

get numerous measurements around the same time. The patient information utilized

had each aggregate medication dosage in worldwide units administered in multiples

of thousands. The week by week total of dosages went from 0 IU to as high as 45 000

IU.

As proposed by McAllister, 2017 it is required to use re-sampled data into weekly

intervals. Figure 2.1 contains a pictorial case where the first information is appeared

in blue and the re-examined information focuses are appear in red (McAllister, 2017).

The weekly hemoglobin measurement was estimated by linear interpolation and EPO

dosages were clubbed together for weekly dosages by taking the total of the present

days EPO dosage and the past 6 days of dosages.
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Figure 2.1: Patient Data Resampling Example
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2.4.1 Performance related variable selection

Different statistic indices/variables were calculated based on the patients’ raw

data and the prediction residulas of C-ARX models. This includes 1-step mean, 1-

step standard error, 8-step mean, 8-step standard error, 1-step standard deviation,

8-step standard deviation, raw data input signal to noise ratio (SNR), raw data output

SNR, average EPO dose, patient weight, sum of b parameters, input-output means

and standard deviations and cross-correlations at different lags. After various trials

and analysis, following set of variables were found to affect model quality significantly.

The following section describes each parameter used:

1. Mean hemoglobin 1-step prediction error:

Hemoglobin 1-step prediction errors are calculated by predicting hemoglobin

1-week ahead using compare function in MATLAB. Mean hemoglobin 1-step

prediction error is calculated by taking mean of all 1-step prediction errors.

2. Standard error of hemoglobin 1-step prediction errors:

It is the standard deviation of the sampling distribution (hemoglobin 1-step

prediction errors) of the mean. The formula for the hemoglobin 1-step prediction

errors is:

σM = σ/
√
N (2.3)

where σ is the standard deviation of all the hemoglobin 1-step prediction errors

and N is the sample size (length of weekly data).

3. Mean hemoglobin 8-step prediction error: Hemoglobin 8-step prediction

errors are calculated by predicting hemoglobin 8-week ahead using compare

function in MATLAB. Mean hemoglobin 8-step prediction error is calculated

by taking mean of all 8-step prediction errors.

4. Standard error of hemoglobin 8-step prediction errors: It is the standard

deviation of the sampling distribution (hemoglobin 8-step prediction errors) of

the mean.The formula for the standard error of the mean is:

σM = σ/
√
N (2.4)
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where σ is the standard deviation of the hemoglobin 8-step prediction errors

and N is the sample size (length of weekly data).

5. 1-step standard deviation: It is the standard deviation of all the hemoglobin

1-step prediction errors.

6. 8-step standard deviation: It is the standard deviation of all the hemoglobin

8-step prediction errors.

7. Sum of b parameters: It is the sum of all b parameters. The formula for the

sum of b parameters is:

sumb =
20∑
k=1

bk (2.5)

8. Raw data input mean: It is the mean of all raw data EPO dosages for a

particular patient.

RawInputm =
1

N

N∑
t=1

EPOt (2.6)

9. Raw data input standard deviation: It is the standard deviation of all raw

data EPO dosages for a particular patient.

10. Raw data output mean: It is the the mean of all raw data Hgb measurements

available for a particular patient.

11. Raw data output standard deviation: It is the standard deviation of all

raw data Hgb measurements available for a particular patient.

12. Cross correlation function with lag from 1 to 5: The normalized cross-

covariance between input sequence (EPO) and output (Hgb) was estimated with

lags from 1 to 5 for Cross Correlation Function (CCF). Since EPO dosage do

not have immidiate effect on Hgb and the delay time varies for different patients

(Y. Chait et al., 2014), CCF at lag 0 was not considered. The normalized cross-

covariance (CCF) between EPO and Hgb was calculated with the following
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equation:

γxy(l) = E[(EPO(n)− EPOss)(Hgb(n− l)−Hgbss)]

ρxy(l) =
γxy(l)√
σ2
EPOσ

2
Hgb

(2.7)

where E is the expectation, ρxy(l) is CCF at different lags, γxy(l) is cross-

covariance, σ2
EPO and σ2

Hgb are variances of resampled input and output sequence

respectively, and l is lag between EPO and Hgb.

2.4.2 Output lables

To identify unacceptable model or acceptable model manually, the following sets

of rules were used:

• If the magnitude of many hemoglobin 8-step prediction residuals are larger than

+/-4, then a model is classified as an un-acceptable model

• If only a few of hemoglobin 8-step prediction residuals lie outside [-3, 3], then

the model is classified as an acceptable model

• If there is not enough process excitation for input, classify as an un-acceptable

model

• If model trend captures overall dynamics of actual data, classify as an acceptable

model

• For an acceptable model, b parameters should increase and then decrease

• If the model has insignificant b parameters, classify as an un-acceptable model

• For an acceptable model, the sum of b parameters should be a positive number

These sets of rules gave 35 number of patients that resulted in unacceptable models

from 145 patients in the first data set. Same sets of rules were used on the second

data set. Table 2.1 summarizes output variable classification. Un-Acceptable models

are referred to as 1 and acceptable models as 2.
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Table 2.1: Number of acceptable and un-acceptable models for classification

Data Set Use Data Set Number Un-Acceptable(1) Acceptable(2)

Test set Data Set1 (145 patients) 35 110

Training & Validation set Data Set2 (209 patients) 58 151

2.4.3 Data pre-processing

Table 2.2 summarizes range for different parameters in training set considered for

model performance assessment. It can be observed that range for 16 parameters varies

between 10−3 to 104. In order to reduce the effect of parameter magnitude different

scaling methods were explored. Mean centering, auto-scaling, and range scaling was

performed on the given data sets (Varmuza and Filzmoser, 2016).

• Mean centering: Mean centered variables were obtained by subtracting (arith-

metic) mean of that parameter from all its values.

xmcij = xij − x̄(j) (2.8)

where xmcij denotes mean-centered variable, xij is original parameter value, x̄(j)

is the mean value of that parameters, and i and j denotes patient number and

variable number respectively. Figure 2.2 compares average mean centering value

of patients on all 16 variables with raw data.

Figure 2.2: Raw Data vs Mean Centering
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• Auto scaling: Auto scaled variables were obtained by subtracting (arithmetic)

mean of that parameter from all its values and dividing with standard deviation.

xasij =
xij − x̄(j)

sj
(2.9)

where xasij denotes auto-scaled variables and sj denotes the standard deviation of

particular parameter. Figure 2.3 compares average autoscaled value of patients

on all 16 variables with raw data. All variables have been scaled from -1 to 1

magnitude.

Figure 2.3: Raw Data vs Autoscaling

• Range scaling: Range scaled variables were obtained by subtracting minimum

value of that parameter from all its values and dividing with range of that

paramenter.

xrsij =
xij − xminj

xmaxj − xminj

(2.10)

where xrsij denotes range-scaled variable, xmaxj and xminj are the maximum and

minimum value of that parameter value respectively. Figure 2.4 compares aver-

age rangescaled value of patients on all 16 variables with raw data. All variables

have been scaled from 0 to 1 magnitude. Range scaling method is explored to

develop a linear model where all variables have same sign and comparable range.

From the linear model, the sign and magnitude of the variable coefficient can

signify type of effect it has on acceptable and unacceptable models. Final model

is presented in section 2.5.3.
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Figure 2.4: Raw Data vs Range-scaling

Table 2.2: Typical range of classification parameters

Parameter Mean value Maximum value Minimum value

Mean hemoglobin 1-step
prediction error

0.004928128 0.754402476 -0.124849983

Standard error of hemoglobin
1-step prediction errors

0.029762618 0.078696285 0.012047212

Mean hemoglobin 8-step
prediction error

0.016819267 2.328439753 -0.654064857

Standard error of hemoglobin
8-step prediction errors

0.077186815 0.236298302 0.028154658

Hemoglobin 1-step standard
deviation

0.345067575 0.805860099 0.150469632

Hemoglobin 8-step standard
deviation

0.89680054 2.26649369 0.35165157

Sum of b parameters 0.200381319 0.656762826 0.1052625

Raw data input mean 9902.373837 67744.3609 96.15384615

Raw data input standard
deviation

6912.050218 26187.45193 295.7515556

Raw data output mean 10.45171206 12.85642144 6.925118062

Raw data output standard
deviation

1.004450741 2.203163287 0.429544064

CCF-1 0.017629412 0.387128672 -0.649816969

CCF-2 0.13032664 0.505736702 -0.585552352

CCF-3 0.218403739 0.627986624 -0.535734877

CCF-4 0.282901634 0.713663735 -0.493193028

CCF-5 0.322943242 0.787268265 -0.443107178
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2.5 Classification techniques

Different classification methods were used for C-ARX model assessment to classify

acceptable models (2) and un-acceptable models (1) mentioned in section 2.4.2. This

section analyzes training as well as the test set on each of the following classifica-

tion technique. Classification techniques handle class labels (supervised techniques)

and define a mathematical model between descriptive variables and qualitative out-

put variable (Ballabio and Consonni, 2013). In this section, exploratory analysis is

presented, followed by supervised techniques to improve classification accuracy.

2.5.1 Exploratory analysis with principal component analy-
sis (PCA)

PCA is a customary multivariate statistical method normally used to decrease

the number of predictive variables and solve multi-colinearity problems. Principal

component analysis finds un-correlated directions that can be utilized to summarize

the original data without loosing too much information (Maitra and Yan, 2008).

In current patient data sets 1-step mean, 8-step mean communicate the similar

type of information for model residuals. Similarly, 1-step standard error, 8-step stan-

dard error are effectively saying the same thing and capture variability in hemoglobin.

Due to the existence of correlation PCA can be helpful to convert data to un-correlated

variables. It might be suitable to transform the original set of variables to uncorrelated

axes called PCs. These new axes (variables) will be a linear combination of original

variables and are determined in order of importance such that first principal com-

ponent captures maximum variation in the original dataset. Also, with PCA linear

dimension reduction is possible which identifies orthogonal directions for maximum

variational directions (Suryanarayana and Mistry, 2016).

Equations (2.11) to (2.15) (Jauregui, 2012) describe logical principle behind PCA.

If matirx A contains n samples and m variables (Equation (2.11)), the mean of all

variables can be stored in a single vector ~µ (Equation (2.12)). After centering the

data matrix A can be transformed to B (Equation (2.13)) so that each variables have

a mean as zero. Equation (2.14) defines the covariance matrix S (m x m symmetric
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matrix) which is orthogonally diagnolized in Equation (2.15).

A = [ ~x1, ~x2, ~x3, ...., ~xn] (2.11)

~µ =
[ ~x1 + ~x2 + ....+ ~xn]

n
(2.12)

B = [ ~x1 − ~µ|....| ~xn − ~µ|] (2.13)

S =
1

n− 1
BBT (2.14)

S~vi = λi~vi (2.15)

where λ1 ≥ λ2 ≥ ...λm ≥ 0 be the eigenvalues of S (in decreasing order) with cor-

responding orthonormal eigenvectors ~u1, ~u2, , ... ~um. These eigenvectors are known as

prinicpal components of the data set and sum of eigenvalues (λ1 + λ2 + ...+ λm = T )

describes total variance of the data set A. Jauregui, 2012 summarized following sets

of interpretation that can be drawn from PCA:

• The first direction ~u1 (the first principal component/direction) explains maxi-

mum variance (λ1) for the data set and contributes λ1
T

variance. Similary, ~u2

(the second principal component/direction) contributes λ2
T

variance.

• The eigenvectors ~u1, ~u2, , ... ~um are new uncorrelated directions corresponds to

new variables for the data set.

• If initial λi’s are much bigger than all other eignevalues, dimension reduction is

possible.

Analysis on dataset 1

PCA on data set 1 with original parameters gave some separation on new uncor-

related PC directions. Eigenvalues for PCA on this data set are:

[35.25, 25.62, 13.43, 8.06, 7.61, 5.95, 2.38, 0.77, 0.49, 0.25, 0.10, 0.02, 0.005]

It can be seen that the first components contribute 35% of the variance. This can

be observed in Figure 2.5, where some separation can be seen on PC1. Because of

only small contribution toward total variance, more than one PC direction need to

be considered.
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Figure 2.5: Raw Separation in 1-dimension. (.) unacceptable, ♦ acceptable model

Increasing more PC components improves separation of data and some common

features can be observed. The first two components contributes 61% of the variance,

whereas adding the third PC cumulates to 74% of the variance. This can be observed

in Figures 2.6 and 2.7, where more separation can be seen between classes.
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Figure 2.6: Raw Separation in 2-dimension. (.) unacceptable, ♦ acceptable model
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Limitation with PCA on clinical data set

Although PCA helped to transform correlated parameters to orthogonal PC com-

ponents, there was no mention of class labels in Equations (2.11) to (2.15) (Jauregui,

2012). For this reason, PCA is also called as unsupervised technique (Jolliffe, 1986).

From Figures 2.5 to 2.7 it can be seen that the two classes have some overlap for

model classification. This can be assigned to the limitation of PCA as it was not

trained with class labels. Therefore, supervised techniques in next sections (PLS-DA

and LDA) were expected to increase this separation.

2.5.2 Partial least squares-discriminant analysis (PLS-DA)

PLS-DA is a linear classification technique to use the power of discriminant analy-

sis along with least square regression. In PLS-DA original data variability is modeled

with Latent Variable (LVs), linear combinations of original parameters, which per-

mits graphical perception and comprehension of the distinctive patterns and relations

with scores and loadings. Linear combination of original variables gives coefficient of

loadings which decide the LVs. Loadings represent the effect of each variable on LV.

Scores are the new coordinates of samples in LV space (Ballabio and Consonni, 2013).

Equations (2.16) to (2.18) (Wold et al., 2001) describes principle behind PLS-DA.

If X denotes measurement matrix with n samples and m variables and Y denotes
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class labels (n x 1), then X-scores which are latent variables (LVs) are calculated

as linear combination of original variables. W contains weights that combines with

original variables for LVs.

T = XW ∗

X = TP ′ + E

Y = UC ′ +G

(2.16)

T and U are scores on X and Y . P and C corresponds to loadings. X-scores are good

predictors of Y so that Y-residuals (F ) are “small”, i.e.:

Y = TC ′ + F (2.17)

E and F represent residuals on X and Y respectively. Equations (2.16) to (2.17) can

be re-written as

Y = XW ∗C ′ + F = XB + F

B = W ∗C ′
(2.18)

B represents “PLS-regression coefficients”. Once Y is calculated, a threshold can be

defined to minimize number of false positives and false negatives. This threshold can

be moved to either side based on requirement of process.

Selection of latent variables from training set

Data set 2 was used as training set. Optimum number of LVs were calculated using

cross validation (CV) procedure. For patient data set total number of samples (209)

in training set 10 CV groups were used. Figures 2.8a and 2.8b show plot of CV error

to find optimal number of LVs. Figures 2.8a and 2.8b correspond to mean centering

and autoscaling methods respectively. Error rate cv is calculated as Equation (2.19).

error rate cv =
No. of misclassifications

N
(2.19)

In Figure 2.8a minimum error rate is 0.1617 with six LVs. Similarly, with mean-

centering error rate decreases from 0.36 to 0.17 with 3 LVs. Increasing LVs further

do not reduce the error rate. Since autoscaling scaled variables to the same range of

magnitude, autoscaling with 6 LVs was used for developing regression model.
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Figure 2.8: Optimal number of LVs with 10 cross validation groups

PLS-DA model calculation and analysis

Once the optimal number of the component has been decided, PLS-DA regression

model can be calculated selecting 6 LVs with autoscaling and 10 Cross-validation

group. Table 2.3 shows the confusion matrices obtained from training.

Table 2.3: Confusion Matrix for training set

Actual/Predicted Un-Acceptable(P) Acceptable(N)

Un-Acceptable(P) 47 (TP) 11 (FN)

Acceptable(N) 17 (FP) 134 (TN)

where TP (True Positive) is the number of unacceptable models predicted correctly

and TN (True Negative) is the number of acceptable models predicted correctly. FN

(False Negative) is the number of unacceptable models that are predicted as accept-

able and FP (False Postive) is the number of acceptable models that are predicted as

unacceptable (Ballabio and Consonni, 2013). Senstivity (Sn) is calculated as TP/(TP

+ FN). Senstivity close to 1 represents model ability to recognize unacceptable model.

In contrast, specificity (Sp) is calculated as TN/(FP + TN), higher the specificity bet-

ter the model is to recognize acceptable model. The ratio of (TP + TN) to (Total

Models) is ratio of correct assignments, which is called accuracy (Ballabio and Con-

sonni, 2013). Table 2.4 summarize Sn, Sp, and accuracy for training set.
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Table 2.4: Error rates in training

Accuracy Senstivity Specificity

0.87 0.81 0.89

For the patient data set, it is required to have high sensitivity because all un-

acceptable models should be classified as un-acceptable. This is due to the risk

of using a bad model for a particular patient. For acceptable model, in case it is

classified as unacceptable model, physician will has to wait for more data and keep

using the previous model until the new acceptable model is available.

Besides accuracy, sensitivity, and specificity, ROC (Receiver Operating Charac-

teristics) graphical tools can be used to assess classification quality. ROC curves are

shown in Figure 2.9 which are drawn as plot between sensitivity vs 1-specificity. For

perfect separation, left-hand top corner would be reached with ROC area (Ballabio

and Consonni, 2013). As expected ROC area under the curve (AUC) is not equal to

1 but classification results are still acceptable with AUC of 0.95. The curve on the

right-hand side shows Sensitivity and Specificity with changing threshold. The point

where both lines cut each other is the point where the number of FP and FN are

minimized. From the figure, the optimum threshold for PLS-DA classification is 0.04.

This means that ycali greater than 0.04 will be classified as an acceptable model.

The last important statistics for PLS-DA is the amount of variance explained by

LVs. From Figure 2.10 it can be seen that 6 LVs corresponds to 92% of the variance on

measurement data, X, which is a good approximation of original data. The explained

variance with 6 LVs on Y (class data) is 20% and not much addition to variance by

following LVs. This is quite common with PLS-DA where acceptable classification

model can be found without explaining much variance (Ballabio and Consonni, 2013).
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Scores plot on LV1 and LV2 are shown in Figure 2.11. Total variance explained

with these two components is 47%.
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Figure 2.11: Score plot with first two LVs retaining 47% of variance

Figures 2.12a and 2.12b show regression coefficients for class 1 and class 2 re-

spectively. Since there are no un-assigned sample, regression coefficents are simply

negative of one another.
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Figure 2.12: Regression coefficents from PLS-DA for both classes
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Test set performance analysis

Dataset 1 is used as the test set and was kept separate from datset 2. Dataset

1 contains 145 sample patients with 35 un-acceptable models and 110 acceptable

models. Since these samples were not used for PLS-DA model calculation, they will be

used now to assess predictive ability of the built model. Tables 2.5 and 2.6 summarize

performance on test set. Accuracy, sensitivity, and specificity are comparable with

training set results. Therefore, PLS-DA model developed can be considered as reliable

and stable.

Table 2.5: Confusion Matrix for test set

Actual/Predicted Un-Acceptable(P) Acceptable(N)

Un-Acceptable(P) 28 (TP) 7 (FN)

Acceptable(N) 16 (FP) 94 (TN)

Table 2.6: prediction error rates

Accuracy Senstivity Specificity

0.84 0.80 0.85

Limitation with PLS-DA results on clinical data set

Although PLS-DA results gave 84% accuracy for class-separation, higher perfor-

mance was expected. Since we would not like to use bad model for actual patients,

greater than 90% accuracy was targeted for higher confidence to use classification

techniques. In text section, another technique: combination of Principal Component

Analysis along with Linear Discriminant Analysis is explored to achieve high accuracy

performance.

2.5.3 Principal component analysis - Linear discriminant anal-
ysis (PCA-LDA)

Similar to PCA, Fisher Linear Discriminant Analysis (also called as Linear Dis-

criminant Analysis (LDA)) is another tool used for classification. LDA is closely

related to PCA and both methods are linear. In PCA, the mean square error be-

tween original data and projected data on new transformations is minimized (Li and
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Wang, 2017). Also, PCA is a un-supervised technique which does not take into ac-

count class labels (Jolliffe, 1986). But for LDA, matrix transformation is done by

maximizing the ratio of between-class variance to within-class variance. This goal in-

creases the separation between classes at the same time reducing within class variation

(Li and Wang, 2017).

LDA model theory

Li and Wang, 2017 explains LDA as follows from Equations (2.20) to (2.26). If y

is output variable and X is measurment matrix with m - dimensional samples:

X = [x1, x2, ...xm] (2.20)

and N1 of total samples belong to class-1 and N2 belong to class-2. LDA seeks to

obtain y by projecting X onto a line with slope θ slope as:

y = θTX (2.21)

Mean vector of two classes in X-space (µ) will be as follow:

µk =
1

Nk

∑
i∈Ck

xi where k =1,2 (2.22)

and in y-space (µ̂k):

µ̂k =
1

Nk

∑
i∈Ck

y(i) =
1

Nk

∑
i∈Ck

θTxi = θTµk where k =1,2 (2.23)

LDA maximizes variance between classes as distance between class means (µk)

as:

µ̂2 − µ̂1 = θT (µ2 − µ1) (2.24)

and minimizes within class-variance (sk) for each class as:

ŝ2k =
∑
i∈Ck

(y(i) − µ̂k)2 where k =1,2 (2.25)

Then, according to LDA definition - maximizing the ratio of between-class variance

to within-class variance, objective function (J(θ)) is defined as follow:

J(θ) =
(µ̂2 − µ̂1)

2

(ŝ21 + ŝ22)
(2.26)
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PCA-LDA algorithm

PCA followed by LDA is often used technique when discriminant power lies in first

few orthogonal components of PCA (Næs and Mevik, 2001). First, PCA is performed

on the whole data set and then LDA is used on new orthogonal directions given by

PCA. Goal for the patient data set is to increase class separation so that correct model

should be used for real patients. This technique often result into better classification

result.

Preliminary data analysis to detect un-acceptable model

Figures 2.13 and 2.14 contains a plot of all sixteen range scaled variables on the

training set. The black line roughly separates outliers, patients which are generally

unacceptable. These cut-off on the training set will be used to detect unacceptable

models.
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(b) 1-step standard error
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(c) 8-step mean
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(d) 8-step standard error
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(e) 1-step standard deviation
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(f) 8-step standard deviation
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(h) raw data input mean

Figure 2.13: preliminary data separation based on magnitude of variables (1 to 8)
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(a) raw data input std deviation
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(b) raw data output mean
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(c) raw data output std deviation
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(d) CCF 1
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(g) CCF 4

0 20 40 60 80 100 120 140 160 180 200
samples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
C

F-
5

Class 1
Class 2

(h) CCF 5

Figure 2.14: Data separation based on magnitude of variables (9 to 16). Variables are
range scaled. Black line is rough separation above which models are generally un-acceptable

30



Selection of PC components from training set

The optimal number of LVs were calculated and presented in Figure 2.15. Similar

to PLS-DA cross-validation was performed on the training set using 10 CV groups. It

can be observed that error rate is minimum with 11 PC components. After 11 com-

ponents error rate increases. Therefore, 11 PC components were used for subsequent

LDA analysis.
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Figure 2.15: Optimal Number of PC components

From Figure 2.16 it can be seen that 11 PC components corresponds to more than

99% of variance, which justifies most of the information retained from original data.
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Figure 2.16: Amount of variance explained by selected PC components
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PCA-LDA calculation for binary classification

Once the optimal number of PC components have been decided, LDA can be

performed using the orthogonal PC components. Once PCA is done, let L be number

new PC directions. Scores on new PC directions can be found as:

T = XL (2.27)

where X is original scaled data matrix, L: loadings from PCA. Let µ1 and µ2 be mean

vector for two classes, T1 and T2 are scores for class-1 and class-2. S1 and S2 be

covariance matrices of T1 and T2, then with-in class scatter matrix, Sw:

Sw =
S1N1 + S2N2

N
(2.28)

where N is total number of samples, N1 of which belong to class-1 and N2 to class-2.

LDA separates binary classes by projecting samples onto line (Xiong and Cherkassky,

2005):

y = a0 + a′1T
′

where, ao = log(p1/p2)−
1

2
(µ1 + µ2)

′S−1w (µ1 + µ2)

a1 = S−1w (µ1 + µ2)

(2.29)

p1 and p2 are empirical frequencies of each class in training set

pi =
Ni

N
where, i =1,2 (2.30)

with back substitution, y can be founds as a function of original parameters in Equa-

tion (2.31)

y = a0 + bX ′

where, b = a′1L
′

(2.31)

From the above model sample will be assigned to class 1 if y > 0 and to class 2

otherwise. The final PCA-LDA model coefficients are shown in Figure 2.17. It can

be seen that high 8-step error standard deviation contributes towards un-acceptable

model, followed by raw-output mean. All cross-correlation functions found to have

negative coefficents except CCF5.
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Figure 2.17: PCA-LDA model coefficients, range scaled X

Confusion matrix for the above PCA-LDA model along with preliminary data

analysis from Figures 2.13 and 2.14 is summarized in Table 2.7.

Table 2.7: PCA-LDA Confusion Matrix for training set

Actual/Predicted Un-Acceptable(P) Acceptable(N)

Un-Acceptable(P) 41 (TP) 17 (FN)

Acceptable(N) 7 (FP) 144 (TN)

The overall performance of training set in terms of accuracy, senstivity, and speci-

ficity is presented in Table 2.8. Specificity has increased by 10% as compared to

PLS-DA model presented in Table 2.4, whereas sensitivity to recognize un-acceptable

model has to decreased to 0.71 against 0.80 with PLS-DA. But overall performance

accuracy has increased from 84% to 89%.

Table 2.8: PCA-LDA error rates in training

Accuracy Senstivity Specificity

0.89 0.71 0.95

Test set performance analysis

Tables 2.9 and 2.10 summarizes performance on test set (Data set 2). Accuracy,

senstivity, and specificity is comparable and better than training set results. There-

fore, PCA-LDA model developed can be considered as reliable and stable.
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Table 2.9: PCA-LDA Confusion Matrix for test set

Actual/Predicted Un-Acceptable(P) Acceptable(N)

Un-Acceptable(P) 31 (TP) 4 (FN)

Acceptable(N) 6 (FP) 104 (TN)

Table 2.10: PCA-LDA prediction error rates

Accuracy Senstivity Specificity

0.93 0.89 0.95

2.6 Conclusions

In this chapter, three different classification techniques were explored. These

classification techniques were used for model performance assessment for constrained

ARX model. Performance assessment was done on 209 clinical patient data set and

the prediction was done on another 145 patients. Exploratory analysis with Principal

Component Analysis (PCA) gave some separation between the two classes, but not

very distinctive separation because of its limitation, being un-supervised technique.

Partial Least Square-Discriminant Analysis (PLS-DA) gave better performance than

PCA with six LVs explaining 92% of the variance in the original data matrix. Overall

accuracy of assigning the new patient to the correct class with PLS-DA is 84%. PLS-

DA prediction performance for the acceptable model (specificity) and un-acceptable

model (sensitivity) are 80% and 85% respectively. The final technique explored was

PCA-LDA. This combination of principal component analysis and linear discriminant

analysis gave better overall performance than PLS-DA and PCA. Overall prediction

accuracy got increased to 93%, specificity to 95%, but sensitivity to 89%.

Taken altogether, in order to predict whether C-ARX model will result in an ac-

ceptable model or unacceptable model, it is recommended to use PCA-LDA technique

because of its simplicity and high prediction accuracy.
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Chapter 3

System Identification with Iron
Level and WBC

3.1 Introduction

This chapter is focused on system identification of hemoglobin models with addi-

tional parameters to improve constrained ARX model developed by J. Ren et al., 2017.

This includes adding additional parameters such as Iron Saturation (TSAT) (also

known as transferrin saturation), White-Blood-Cells (WBC), and Ferritin level in the

constrained optimization problem. These measurements were available for clinical

data set 1 (167 patients). Improved model identification was done in three parts:

first, by introducing TSAT in the model; second, by optimizing with TSAT along

with WBC; and third by including serum ferritin instead of TSAT. It will be shown

that simultaneous optimization, or sequential optimization with TSAT, or original

constrained ARX model can be used under different conditions to improve model

performance.

From Figure 1.3 it can be observed that physicians monitor TSAT and ferritin

levels before EPO dosage initiation. This explains the dependancy of hemoglobin level

on TSAT and ferritin. In the following sub-sections, literature review is presented for

considering TSAT, WBC, ferritin, and iron dosage in hemoglobin modeling.

3.1.1 Iron saturation and ferritin serum level

Iron level in CKD patients is very important. Due to frequent blood testing,

hemodialysis and other tests, CKD patients suffer from the iron loss that can range
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from 1.5 to 3 g/yr (Kalantar-Zadeh et al., 2006). Erythropoietin treatment without

sufficient iron level in the body does not raise hemoglobin level. On the other hand,

iron supplementation without EPO dosage is unsuccessful because erythropoietin acts

as a contractual worker to make Hgb level in blood veins (Kalantar-Zadeh et al., 2006).

Iron level stored in the body is reflected by TSAT and serum ferritin. TSAT is

calcualted from serum level and Total Iron Binding Capacity (TIBC) as shown in

Equation (3.1) (Group et al., 2001).

TSAT =
serum iron × 100

TIBC
(3.1)

Ferritin or serum ferritin is also reflector of iron storage in human body. Ferritin is a

cell in blood (called as blood cell protein) containing iron in it. It is mainly present

in bone marrow, liver, spleen, etc (Walters et al., 1973). A comparision is presented

between TSAT and serum ferritin advantages and limitations by (Kalantar-Zadeh et

al., 2006) in Table 3.1.

Table 3.1: Comparision between TSAT and serum ferritin

Iron Store label Advantages Limitations

TSAT
More sensitive and reliable

than ferritin

Denominator (TIBC) can be
low due to other reasons such

as malnutirtion and/or
inflammation

Serum ferritin
Low level highly signify iron

deficiency

Moderately high values can
be because of

non-iron-related scenarios

National Kidney Foundation recommends a TSAT levels between 20 to 50% and

serum ferritin level between 100 to 800 ng/mL for patients suffering from CKD (Na-

tional Kidney Foundation Anemia Working Group et al., 2001). They also found that

increase in TSAT beyond 50% or serum ferritin level increase to 800 ng/mL, CKD

patients do not respond to hemoglobin level with increase in EPO dosage. Also,

TSAT and serum are recommended to be monitored every 3 to 6 months.

On the other hand, World Health Organisation (WHO) demonstrated that ferritin

level greater than 200 ng/mL for men and 150 ng/mL for women are related to

iron overdose (Organization et al., 2011). This leads to deceptive information from

fascinating TSAT and serum ferritin level. Uncertainty in this information concludes
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that there is no specific range that than is generalized to all patients. The optimal

range of TSAT and ferritin level can be different for different patients. For this reason,

in subsequent sections, TSAT and ferritin were set as optimization variables to find

the optimal range for a particular patient. A high iron level is associated with no

effect on EPO, whereas a low level of iron is assumed to have less effective exogenous

EPO level. Since both ferritin and TSAT reflects stored iron in the body (National

Kidney Foundation Anemia Working Group et al., 2001), only one was introduced in

the optimization problem each time.

3.1.2 Exogenous iron dosing

CKD patients commonly suffer from iron deficiency, especially if they undergo

hemodialysis. This can be due to different reasons such as loss of blood from frequent

blood tests, blood loss during dialysis, blood loss in the intestine, etc. Also, epoetin

dosing treatment increases erythropoiesis activity rate, which subsequently increases

the demand for iron. This increased demand along with blood loss, aggravates the

trouble of keeping up sufficient iron level (Ferritin 100 to 800 ng/mL and TSAT 20 to

50%) in the body (National Kidney Foundation Anemia Working Group et al., 2001).

The National Kidney Foundation made recommendations for iron dosing consid-

ering following issues (National Kidney Foundation Anemia Working Group et al.,

2001):

1. The iron requirements and significance of keeping iron status at the satisfactory

level.

2. Evaluation of iron level: sensitivity of TSAT and serum ferritin to detect defi-

ciency of iron and/or iron overload.

3. An evaluation for the mode of iron treatment: oral versus IV iron

4. Administering IV iron and potential risk factors

5. Overload by iron dosing (National Kidney Foundation Anemia Working Group

et al., 2001).
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The clinical data set used in subsequent sections had intermittent dosings of iron.

Patients have 100 mg of IV iron every other day on an average over 2 weeks and then

dosing was stopped and started again when TSAT or ferritin level falls below the

recommended level. This resonates with guideline F. mentioned by National Kidney

Foundation (National Kidney Foundation Anemia Working Group et al., 2001), where

IV iron is given if TSAT falls below 20% and/or ferritin below 100ng/mL at each

hemodialysis for 8 to 10 doses. IV iron could be included in modeling for a multi-input-

multi-output (MIMO) system where IV iron and exogenous EPO could be considered

as input and hemoglobin and TSAT as outputs. This model was motivated from

Gaweda et al., 2014, which is based on iron cycle and erythropoietin cycle in body

Figure 3.1 (Gaweda et al., 2014).

Figure 3.1: Mathematical models of ESA and/or IV iron dosing, taken from

(Gaweda et al., 2014)

3.1.3 White blood cell level (WBC)

When a patient undergoes Complete Blood Count (CBC), examination shows red

blood cells count, hemoglobin, hematocrit, WBC, and platelets in the blood. Around
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1% of total blood volume are WBCs. The role of WBCs is to fight against infection

and demolish microbes and germs that infect by entering the body (George-Gay and

Parker, 2003). WBCs are also called as leukocytes. There are total five different

types of WBCs in body (George-Gay and Parker, 2003): Neutrophils, Basophils,

Eosinophils, Lymphocytes, and Monocytes. With the help of these five types of

cells, WBC drives human response system (George-Gay and Parker, 2003). Units of

measurement for WBCs is K/µL and normal range is 4.5 to 10 K/µL (George-Gay

and Parker, 2003).

Elevated WBC level

The elevated level of WBC count greater than 11 K/µL WBC count is called

leukocytosis. If there is an acute infection, bone marrow starts increased production

of WBCs in blood. Leukocytosis is the most common type of infection. Also, WBC

count greater than 10,000 has been related to high mortality rates (George-Gay and

Parker, 2003). Hence, in subsequent sections effect of elevation in WBC levels is

negatively associated with hemoglobin and WBC is also selected as optimization

variables. Opposite to iron level in body, high WBC level is associated with less

effective EPO.

3.2 System identification to improve existing C-

ARX model

In this section, C-ARX model developed by J. Ren et al., 2017 will be used as

a base model and measurements such as TSAT, ferritin, and WBC will be used

to include and to improve model performance on hemoglobin. The frequency of

measurement of these additional parameters are every 2 to 3 months.

For the purpose of simplicity and consistency, to compare modeling results with

J. Ren et al., 2017, it is expected that the week by week hemoglobin estimations

are present. Ideally, clinical sampling of hemoglobin is four times in each month

(A. Gaweda et al., 2010). The raw clinical data used for the model update is same

that was used by J. Ren et al., 2017 and was re-sampled. The EPO dosing time

also varied for different patients with general dosing frequency being weekly. From
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Figures 3.2 and 3.3, it can be observed that TSAT, ferritin, and WBC have smaller

measurement frequency than Hgb and EPO. For this reason, re-sampled values were

used for all parameters in modeling, where Hgb, TSAT, ferritin, and WBC values were

linearly interpolated from original data. Drug dosages (EPO and IV iron dosing) were

re-sampled into a week by week fashion by taking the aggregate of the present day

drug level and the past 6 days of measurements. Also, from Figures 3.2 and 3.3, it

can be seen that ferritin and TSAT measurements are not available at the beginning

of data as well as towards the end. For this reason, modeling was carried out from the

first available measurement of TSAT and ferritin till the last available measurement,

and rest of the data was excluded from modeling. This approach decreases the amount

of data available for modeling but 80 to 100 weeks of data is available, which is good

enough for model identification.

From Figure 3.2, low iron level and high WBC can be observed at the beginning

of treatment, whereas EPO dosages are ramping up, meaning EPO is not effective if

WBC and iron are not optimal in the body. Similarly, from Figure 3.3, low iron and

high EPO level can be observed between 600 to 700 days, where hemoglobin level is

decreasing.
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Figure 3.2: Clinical data for patient No.2
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Figure 3.3: Clinical data for patient No.14
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3.2.1 Introducing TSAT in the model

As mentioned in section 3.1.1 erythropoiesis without sufficient iron level in the

body do not raise hemoglobin level (Kalantar-Zadeh et al., 2006). According to our

methodology, EPO dosage will not be effective in such cases, if TSAT values are lower,

and EPO will be moderately effective at moderate TSAT values, and 100% effective

if TSAT values are saturated and above the threshold required for the particular

patient. This could be understood mathematically with sigmoid function presented

in Equation (3.2).

γ1 =
1

1 + e−a(TSAT−c) (3.2)

where a = slope of sigmoid function (0.01 ≤ a ≤ 5), c = threshold cut-off when

γ1 = 0.5 (5 ≤ c ≤ 50). Figures 3.4a to 3.5b shows different sigmoid functions

by varying slope and threshold cut-off. Once the γ1 is calculated, effective EPO is

calculated as follow:

EPOeffective = EPO × γ1 (3.3)
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Figure 3.4: Sigmoid function at different slopes for calculating γ1 from TSAT
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Figure 3.5: Sigmoid function at different slopes for calculating γ1 from TSAT

Modified C-ARX problem with TSAT

The C-ARX problem developed by J. Ren et al., 2017 with [1 8 1] model order in

ARX was used with additional parameter TSAT. The constrained problem is similar

to section 2.2, where the ARX model had one ‘a’ parameter, eight ‘bk’ parameters,

and one sample delay. The ‘bk’ parameters were constrained to follow particular

shape. The modified model structure is presented in Equation 3.4 with γ1 included

in optimization problem Equation (3.5).

Hgbt+1 −Hgbss =a1 (Hgbt −Hgbss) . . .

+
8∑

k=1

bk (γ1EPOt−k+1 − EPOss) + et
(3.4)

where Hgbss and EPOss are steady state hemoglobin and erythropoietin respectively.

The overall problem is mixed integer non linear programming problem (MINLP). The

objective function is the sum of square errors between actual hemoglobin and proposed

hemoglobin level by the model.

min

tf∑
t=1

[Hgbt −Hgbt,actual]2 (3.5a)

s.t.−Kzk + 0.001 ≤ k − tpeak ≤ K(1− zk) ∀k = 1, . . . , K (3.5b)

−M(1− zk) ≤ α(k − 1)− bk(tpeak − 1) ≤M(1− zk) ∀k = 1, . . . , K (3.5c)
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−Mzk ≤ α exp−β(k−tpeak)−bk ≤Mzk ∀k = 1, . . . , K (3.5d)

γ1 =
1

1 + e−a(TSAT−c) (3.5e)

7.0 ≤ Hgbt ≤ 15.0 ∀t (3.5f)

7.0 ≤ Hgbss ≤ 11.0 (3.5g)

0.7 ≤ a1 ≤ 0.99 (3.5h)

0 ≤ EPOss (3.5i)

b1 = 0 bk ≥ 0 ∀k = 2, . . . , K (3.5j)

bk ≥ 0.1 k = kpeak 1.1 ≤ tpeak ≤ 3.9 (3.5k)

α ≥ 0.1 β ≥ 0.05 zk ∈ {0, 1} (3.5l)

Similar to McAllister, 2017, to decrease the computational time, the MINLP was

changed to the number of nonlinear programmings (NLP) optimizations. This was

performed by all three combinations of zk that are constrained on tpeak. The cost

function of all three problems was compared and the lowest one was picked as the

best model solution to that particular patient. As mentioned in McAllister, 2017,

IPOPT gave more robust solution for the regular C-ARX problem, optimization for

modified problems was also done using IPOPT solver. For each patient, first 50% of

the data was used as training data set and last 50% as validation data set.

Comparing regular C-ARX and modified C-ARX

Figures 3.6 and 3.7 compares the same clinical patient with regular C-ARX and

modified C-ARX. It can be seen that the model performance for modified C-ARX

model in Figure 3.7 is 30% better in training and 6% improved in validation portion.

Detailed comparisions of results for all the patients are provided in section 3.3. From

137 available patients, 74 patients got improvement in performance in training as well

as validation by a minimum of 5%. Average improvement rate for patients is 10%,

whereas addition of TSAT did not improve performance for the rest 37 patients. For

some patients, improvement rate is higher than 30% and can be seen in Figures 3.8

and 3.9. In regular C-ARX sigmoid function parameters were forced to unity.
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Figure 3.6: Regular C-ARX modeling for patient No. 5

0 10 20 30 40 50 60 70 80 90 100
Week

0

2

4

6

EP
O

(IU
)

×104 Patient 5

0 10 20 30 40 50 60 70 80 90 100
Week

6

8

10

12

14

H
gb

(g
/d

L)

actual
proposed model

0 10 20 30 40 50 60 70 80 90 100
Week

0

0.5

1

γ
1

Figure 3.7: Modelfied C-ARX modeling with TSAT for patient No. 5
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Figure 3.8: Regular C-ARX modeling for patient No. 19
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Figure 3.9: Modelfied C-ARX modeling with TSAT for patient No. 19

46



3.2.2 Introducing TSAT along with WBC

As mentioned in section 3.1.1 and 3.1.3, iron saturation and WBC plays a key

role for maintaining hemoglobin in the body. Elevated WBC level represent infection

in the body (George-Gay and Parker, 2003). Also, erythropoiesis without sufficient

iron level in the body do not raise hemoglobin level (Kalantar-Zadeh et al., 2006).

Similar to TSAT, according to our methodology, EPO dosage will not be effective

in such cases, if TSAT values are lower, and WBC levels are too high. EPO will be

100% effective if TSAT and WBC are under control for a particular patient. WBC

effect could be understand in similar to TSAT effect with negative ‘a’ parameter and

different range for ‘c’ parameter. This could be understood mathematically with the

sigmoid function presented in Equation (3.6).

γ2 =
1

1 + e−g(WBC−f) (3.6)

where g = slope of sigmoid function (−5 ≤ g ≤ −0.01), f = threshold cut-off when

γ2 = 0.5 (5 ≤ f ≤ 50).
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Figure 3.10: sigmoid function at different cut-offs for calculating γ1 from TSAT

Figures 3.10a and 3.10b compares sigmoid function for TSAT and WBC side by side.

Once the γ1 and γ2 are calculated, effective EPO is calculated as follow:

EPOeffective = EPO × γ1 × γ2 (3.7)
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Modified C-ARX problem with TSAT and WBC

The modified C-ARX problem developed from Equation (3.5), model was further

modified to include WBC as an optimization variable. Modeling with TSAT and

WBC was performed in two different ways as follow:

1. Simultaneous optimization

2. Sequential optimization

Based on the initial solution provided to the IPOPT solver, either of the optimizations

could be solved. Equation (3.8) lists down the calculation of γ1 and γ2 respectively.

γ1 =
1

1 + e−a(TSAT−c)

γ2 =
1

1 + e−g(WBC−f)

(3.8)

Comparing C-ARX, simultaneous, and sequential optimization

For simultaneous optimization, the initial solution from C-ARX was used in the

second step to simultaneously optimize the parameters - a, c, g, f ; along with the other

parameters. The total number of parameters in this case are 18.

For sequential optimization, the initial solution from C-ARX was used in the

second step to optimize the parameters a and c simultaneously. The best solution

from the second step was then used for the third step to optimize the parameter g

and f ; along with the other parameters. The total number of parameters in this case

are 18. The advantage with this approach is that the solution is always expected to

improve in training because of sequential optimization, whereas computational time

increases because of the three steps in optimizations.

The modified model structure for C-ARX with simultaneous/sequential optimiza-

tion could be obtained by including Equations (3.8) in an appropriate fashion. Fig-

ures 3.11, 3.12, and 3.13 compare the original C-ARX modeling, simultaneous and

sequential optimization problems respectively. It can be seen that the original C-ARX

problem has a higher sum of square errors (SSEs) both for the training and validation,

whereas simultaneous and sequential optimizations resulted approximately in a 30%

improvement in training and 10% and 7% in validation for simultaneous/sequential
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optimization respectively. Table 3.2 summarizes the SSE results and computational

time for this particular patient.
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Figure 3.11: Regular C-ARX modeling for patient No. 20
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Figure 3.12: Simultaneous C-ARX optimization for patient No. 20
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Figure 3.13: Sequential C-ARX optimization for patient No. 20
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Table 3.2: Comparision between regular, simultaneous, and sequential C-ARX optimiza-
tion for patient No. 20

Problem SSE training SSE Prediction Computational time

Regular C-ARX 15.76 9.91 43.28

Simultaneous C-ARX optimization 9.56 8.84 147.99

Sequential C-ARX optimization 9.61 9.14 74.73

It was found that both sequential and simultaneous optimizations with additional

parameters (TSAT and WBC) always resulted in a better performance because of

the increased degrees of freedom (dof). This improvement varies from patient to

patient, where some patients had more than 30% improvement and some patient did

not improve and SSE relatively stayed the same as the original C-ARX problem. The

increased dof also place models at a risk of overfitting the data. The cumulative

results for 137 patients are presented in Table 3.3.

3.2.3 Introducing ferritin along with WBC

As mentioned in section 3.1.1 both TSAT and the serum ferritin are markers for

the amount of iron stored in the body. To evaluate which measurement is better for

modified C-ARX modeling, optimization with ferritin was also performed. Similar to

section 3.2.1 ferritin was used to evaluate the sigmoid function to calculate effective

EPO. Modeling was performed for two cases. First, only introducing ferritn in the

regular C-ARX problem. Second, simultaneous C-ARX optimization with ferritin and

WBC. Results for this section are presented in Table 3.3, where it can be observed that

TSAT is a better indicator to be used in the modified C-ARX modeling as compared

to ferritin, since performance with TSAT is better for the overall SSE of patients.

This could be understood mathematically with the sigmoid function presented in

Equation (3.9).

γ1 =
1

1 + e−a(ferritin−c)
(3.9)

where a = slope of the sigmoid function (0.01 ≤ a ≤ 5), c = threshold cut-off when

γ1 = 0.5 (5 ≤ c ≤ 500). Figure 3.14 show a sigmoid function at a slope of 0.1 and a

threshold cut-off of 50. Once the γ1 is calculated, the effective EPO is calculated as
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follows:

EPOeffective = EPO × γ1 (3.10)
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Figure 3.14: Sigmoid function for ferritin with slope 0.1 and threshold 50

3.3 Results

Table 3.3 summarizes the overall modeling results for all the modeling methods

that were explored in this chapter.

Table 3.3: Modeling results between different modified versions of the C-ARX models

Training Validation
Modeling method SSE % improvement SSE % improvement
Regular C-ARX 575.99 – 1002.53 –

Modified C-ARX TSAT 534.68 7.17 1006.98 -0.44
Simultaneous C-ARX TSAT,WBC 512.68 10.99 1017.92 -1.53

Sequential C-ARX TSAT,WBC 513.45 10.85 1050.27 -4.76
Modified C-ARX ferritin 556.40 3.4 1037.34 -3.4

Simultaneous C-ARX ferritin,WBC 560.56 2.68 1025.68 -2.31
Simultaneous C-ARX ferritin,WBC 560.56 2.68 1025.68 -2.31

After performing different modeling techniques, it was found that not a single

modeling method gives the best performance for all the patients. Therefore, it was

explored how to select the best method for each patient. For this work, training

was performed on the first 50% of the data using four modeling techniques: regular
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C-ARX, modified C-ARX with TSAT, and modified C-ARX with TSAT and WBC

(both simultaneous and sequential). These four methods were then used on the next

25% of the data (validation set) and the best-performed method was used to perform

modeling on the last 25% of the prediction set. This will ensure selection of the best

modeling technique from all the available methods. On an average computational

time increased from 30 seconds (regular C-ARX) to 180 seconds (sequential C-ARX).

Tables 3.4 and 3.5 summarize results for the best selected model.

Table 3.4: Modeling results to pick best modified versions of C-ARX models

Modeling method Training Validation No. of models included
Regular C-ARX 610.8 509.53 129

Modified C-ARX TSAT 566.46 532.67 129
Simultaneous C-ARX TSAT,WBC 568.55 566.09 129

Sequential C-ARX TSAT,WBC 559.36 554.57 129
Best picked from validation – 488.81 129

Table 3.5: Comparision between regular and the best picked modified C-ARX

Validation Prediction
Modeling method SSE % improvement SSE % improvement

Regular C-ARX 509.53 – 477.5 –

Best picked 488.81 4.07 450.86 5.59

3.4 Conclusions

It was found that TSAT is a more reliable marker for the iron level in the body as it

gave better modeling results as compared to ferritin. Model performance increased in

training by including parameters such as TSAT and WBC, but validation performance

is susceptible to the overfitting of data because of higher dof. It is recommended

to perform four different optimizations and pick the best because of the reasonable

computational time. It is recommended to use 75% portion of the available data

as training and the remaining 25% as the validation data set and choose the best

model out of the four, based on validation performance. This methodology ensures

the selection of the best model to predict new data.
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Chapter 4

Artificial Patient Simulator Design

4.1 Introduction

This chapter focus on patient simulator design. This was identified as a future

work in McAllister, 2017 by identifying disturbances which have biological signifi-

cance. The chapter starts with preliminaries which discuss existing physical hemoglobin

model for CKD patients, followed by motivation and physical interpretation of PKPD

model parameters, followed by identification of different infections/scenarios that

CKD patients can suffer. Later, it was presented how by manipulating the PKPD

parameters, tuning process disturbances and measurement noise can relate to change

in patient health. The last section of this chapter presents simulated results to com-

pare the developed simulator with the actual patient health. Dataset 1, containing

clinical data of 167 patients, was used for this chapter to compare artificial simulator

with actual data.

4.1.1 Existing physical model

Physiological relevant mathematical models (PKPD) for hemoglobin response

modeling in chronic kidney disease was developed by Y. Chait et al., 2014. Later,

J. Ren et al., 2017 simplified and improved the mathematical model using constrained

ARX model.

Pharmacokinetic and pharmacodynamics model

Pharmacokinetic is the investigation of the movement of drug inside the body,

while pharmacodynamics is the study of the effects that medications have on the body.
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The PKPD model developed by Y. Chait et al., 2014 is a continuous time model of

delayed differential equations. The model has 8 unique patient-specific parameters.

The model parameters are represented in the Table 4.1 (McAllister, 2017, Y.Chait et

al., 2014). The system of continuous time delayed differential equation is represented

in Equation (4.1).

Table 4.1: Model parameters descriptions for the PK/PD Model

Parameter Description

Hen Hemoglobin Level due to Endogenous Erythropoietin
µ Mean RBC life span
V Maximal clearance rate
Km Exogenous erythropoietin level that produces half maximal clearance rate
α Linear clearance constant
S Maximal RBC production rate stimulated by EP
C Amount of EP that produces half maximal RBC production rate
D Time required for EPO-stimulated RBCs to start forming

Een =
CHen

µ KH S −Hen

(4.1a)

dE(t)

dt
=
−V E(t)

Km + E(t)
− α E(t) + dose(t) (4.1b)

dR(t)

dt
=

S (Een + E(t−D))

(C + Een + E(t−D))
− 4

x1(t)

µ2
(4.1c)

dx1(t)

dt
= x2(t) (4.1d)

dx2(t)

dt
=

S (Een + E(t−D))

(C + Een + E(t−D))
− 4

x1(t)

µ2
− 4

x2(t)

µ
(4.1e)

Ep = E(t−D) + Een (4.1f)

hgb(t) = R(t)KH (4.1g)

where the state E(t) represent the pool of exogenous erythropoietin, R(t) is total

population of RBCs within the body, and x1(t) and x2(t) are system internal states.

Ep is total sum of exogenous and endogenous EPO level. KH is mean corpuscular

hemoglobin, MCH (average amount of hemoglobin per RBC). Range for KH is 27-33

pg/cell, and an average fixed value of 27.5 pg/cell is used as mentioned in Y. Chait
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et al., 2014. Hemoglobin values are calculated from state R(t) by multiplying it with

KH value. Equation (4.2) represents the initial conditions used for the model that

have been formulated by McAllister, 2017 that uses previous two Hgb measurements

(hgb1 & hgb2) at time measurements (t1 & t2).

Ṙ0 =
(hgb2 − hgb1)
KH(t2 − t1)

(4.2a)

E(0) = 0 (4.2b)

R(0) =
hgb1
KH

(4.2c)

x1(0) =
µ(Hen − µ KH Ṙ0)

4KH

(4.2d)

x2(0) = R(0) − 4 x1(0)

µ
(4.2e)

4.1.2 Motivation

The artificial patient simulator design is motivated from future work identified

in McAllister, 2017, where the simulator design was based on static PKPD model

along with data driven noises such as random measurement noise, integrating ramp

disturbances, and reoccuring step distrubances. This kind of simulator is hard to

explain to a medical professional as it does not relate to biological systems of human

health. Also the static PKPD simulator design assumes constant parameters whereas

these parameters have physical meaning and do not remain constant. Therefore, static

PKPD model can give misleading results. In our work, we also used the physical model

(PKPD model) inside simulator. However, instead of keeping the parameters static

we considered time-varying parameters that caputres changes in physical condition

of patient.

Therefore, to design an efficient simulator which can explain physical disturbances

in patient health, the knowledge gap between existing PKPD model and type of

diseases that CKD patients suffer needed to be bridged. For this kind of simulator,

it might be important to have government endorsement to use of patient simulator

as an acceptable tool for pre-clinical trials. This request would be similar to the one

for Type 1 Diabetes. The UVA PADOVA Type 1 Diabetes Simulator is an FDA
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approved simulator in USA (C. Man et al., 2014), and it replaces animal trials and

is sufficient for pre-clinical trials.

4.1.3 Physical interpretation of PKPD parameters

There are eight parameters in the PKPD model. This section describes each of

them further with their physical interpretation of the type of effect they can have on

patient health.

1. V - maximal clearance rate (IU/day):

Filtration is an important function of kidneys. The analogy for V used in med-

ical terminology is glomerular filtration rate (GFR). Solute filtration/transport

decreases as maximal clearance rate decreases (Schwartz and Furth, 2007).

Clearance is calculated from excretion rate and plasma concentration by di-

viding drug elimination with plasma concentration. It reflects the rate at which

waste products are cleared from the body by kidney process (Schwartz and

Furth, 2007). Total clearance from the body includes renal, salivary, respi-

ratory, etc. Clearance rate measures how fast the body can eliminate drug

(Harvison, 2007).

The mean value of V was found to be 1654.66 IU/day with a standard deviation

of 10.24 IU/day. In layman words, higher the V, the faster the drug will be

cleared from the body.

2. Km - Exogenous EPO level that produces half maximal clearance rate

(IU):

Also known as ED50 is the drug dose that produces 50% (half-maximal) effect

(Toutain, 2002). Stronger the drug, lower the ED50. Different drugs have

different kinetics, some of them have first-order kinetics while some have zero-

order kinetics.

For 154 patients, the mean value of Km is 76.52 IU with the standard deviation

of 7.32 IU.

3. α - Linear clearance constant:
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The physical meaning of Alpha is related to V. For 154 patients, the mean value

of Alpha is 0.26 with standard deviation of 0.17.

4. S - maximal RBC production rate stimulated by Ep (cell/day/dL):

The physical meaning of S is maximum RBCs that can be produced by the

combined effect of exogenous and endogenous EPO level (Ep = En + E).

Mathematically, both V and S have the same meaning, but appear in different

equations. For 154 patients, the mean value of S is 0.0034 with a standard

deviation of 0.0294.

5. C - Amount of Ep that produces half maximal RBC production rate

(IU):

Mathematically, C has same the meaning as of Km but C depends on Ep (= En

+ E), whereas Km depends only on Exogenous dose.

For 154 patients, the mean value of C is 22.56 with a standard deviation of 9.78.

6. µ - Mean RBC life span (Days):

As opposed to the adult RBC lifespan of 120 days, the life span of RBC cells

produced by erythrocyte is only 60 to 90 (Pearson, 1967). µ represents life-

expectancy of RBC cells.

For 154 patients, mean RBC life span is: 92.84 days with a standard deviation

of 23.95 days.

7. D - Time required for EPO-stimulated RBCs to start forming:

D is the total time needed for cells stimulated by progenitor to advance through

various stages to fully develop into RBCs (Y. Chait et al., 2014).

For 154 patients, the mean value of D is 6.33 days with the standard deviation

of 0.1059 days.

8. Hen - Hemoglobin Level due to Endogenous Erythropoietin(g/dL):

Hen is the Hemoglobin Level due to endogenous erythropoietin. In literature,

the general range of Hen is 4.1 - 9.5 g/dL (Y. Chait et al., 2014).
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For 154 patients, the mean value of Hen was 6.99 g/dL (slightly on the higher

side as compared to literature value) with a standard deviation of 3.01 g/dL.

Table 4.2 summarizes PKPD model parameters used for simulator design that

are calculated using non-linear least square regression in McAllister, 2017. After

outliers removal from 167 patients (where these parameters had negative values

i.e, opposite to their physical meaning), 154 patients were considered for further

analysis.

Table 4.2: Model parameters range for 154 patients on the PK/PD Model

Parameter Mean value Min value Max value Standard deviation

V (IU/day) 1654.02 1615.78 1680.45 7.32

Km (IU) 76.51 35.87 105.92 6.52

α 0.26 0.003 1.28 0.134

S (cells/day/dL) 0.006 0.0003 0.019 0.002

C (IU) 23.03 0.49 92.26 8.31

µ (Days) 92.33 47.68 197.40 18.29

D (Days) 6.33 6.29 6.69 0.050

Hen (g/dL) 7.13 0.59 13.08 2.35

4.2 Identification of disturbances

This section considers various real-life scenarios that can happen to patients and

analysis of actual clinical figures for disturbance identification. Table 4.3 summarizes

different types of scenarios considered. In clinical figures, Hgb measurement frequency

is every two weeks.

Table 4.3: Types of disturbances

Type Pattern in data Physical scenario

I Sharp drop in Hgb / Step change Blood Loss

II Hgb remains constant, EPO level increases EPO resistant

III Hgb remains constant, EPO level decreases EPO supporter

V Hgb ramping down, EPO ramping up Infections

4.2.1 Blood loss

Blood loss is the type of disturbance when CKD patients loose blood during

hemodialysis, internal bleeding, frequent blood testing, etc. In those cases, patient
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hemoglobin falls sharply. Analyzing clinical figures step change in hemoglobin was

found in patients and following Figures 4.1 and 4.2 are two of such examples. In

Figure 4.1 patient suffers a sharp drop in Hgb from 11 to 7 g/dL in 1 week and jumps

back in next week. This type of fast recovery in Hgb is rare with only erythropoiesis

treatment because the system has delay and it takes D days for cells to progress

into RBCs. It was assumed that this type of recovery is possible by other treatment

methods such as transfusion.

Figure 4.1: Clinical figure of Patient No. 28; blood loss near 600 days

Figure 4.2: Clinical figure of Patient No. 31; two subsequent blood loss scenarios
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In Figure 4.1, it can also be observed that patient used less EPO drug dose after

600 days, which reinforced the assumption of patient receiving transfusions. In Figure

4.2, patient suffers two subsequent drops in Hgb at an interval of approximately 200

days. Also highlighted portion of the figure has 3 measurements at the same time,

which confirms the sharp drop in Hgb within 2 weeks. After analyzing 167 clinical

figures it was found that small blood loses (10 to 25%) drop was quite often, whereas

large blood loss up to 25 to 50% drop in Hgb was observed in 3 cases.

It was expected that if PKPD model (Y. Chait et al., 2014) is perfect, it should

capture model dynamics as well these step disturbances. Figure 4.3 and 4.4 shows

PKPD proposed model against original data. It can be seen that in Figure 4.3

proposed model did not capture step disturbance and in Figure 4.4 model performance

near blood loss instance is poor.
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Figure 4.3: Patient 28: PKPD model vs actual data; unable to capture blood losses
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Figure 4.4: Patient 31: PKPD model vs actual data; unable to capture blood losses

Figure 4.5: Clinical figure of Patient No. 49: not enough measurements
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In some cases either enough actual data was not available between Hgb measure-

ments or Hgb drop was slow, those cases were not considered as blood loss, one such

example is presented above in Figure 4.5 where at day 616 Hgb is 11.2 g/dL, and

then at day 644 Hgb drops down to 8 g/dL.

4.2.2 Drug resistance

It was observed in some clinical figures that the average drug use in first half and

later half was quite different. Some patients slowly started using higher average EPO

level as compared to before, whereas Hgb levels remained at the same. These types

of patients were classified as drug resistance.

Figures 4.6 and 4.7, shows two cases of drug resistance, where EPO dose started

ramping up after some time and Hgb level stayed relatively the same. Similarly, in

Figure 4.7 drug usage in the later half of data is three times higher than initial EPO

usage whereas Hgb level oscillates between 9 to 11 g/dL.

Figure 4.6: Clinical figure of Patient No. 6; drug resistance after 600 days
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Figure 4.7: Clinical figure of Patient No. 93; drug resistance after 600 days

Figure 4.8 and 4.9 visualize performance of PKPD versus actual data, where

regular PKPD have poor performance. It was found that model identified from first

50% data was not able to fit last 50% of validation data.
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Figure 4.8: Patient 6:PKPD model vs actual data; unable to capture drug resistance
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Figure 4.9: Patient 93: PKPD model vs actual data; unable to capture drug resistance

4.2.3 Drug supporter

Opposite to drug resistance scenario, it was observed in some clinical figures that

EPO usage significantly decreased after some time. This was attributed to the fact

that the patient no longer need a high dosage of the drug. In these cases, EPO starts

ramping down but hemoglobin level stayed at the same level. Figures 4.10 and 4.11

explain drug supporter scenarios, where in Figure 4.10 EPO continue ramping down

and after 500 days EPO usage is very low. Similarly, in Figure 4.10 patient hgb rise

and goes toward higher end and physician started reducing EPO usage.

When regular PKPD optimization was performed on these patients, it was found

that regular PKPD trained from initial 50% of data could not capture validation por-

tion. Figures 4.12 and 4.13 summarize modeling figures for EPO supporter scenarios.

This ensures that constant parameters values do not capture model dynamics.
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Figure 4.10: Clinical figure of Patient No. 139; drug supporter after 500 days

Figure 4.11: Clinical figure of Patient No. 158; drug supporter after 500 days
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Figure 4.12: Patient 139: PKPD model vs actual data; unable to capture drug supporter
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Figure 4.13: Patient 158: PKPD model vs actual data; unable to capture drug supporter
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4.2.4 Infections

EPO and Hgb have positive correlation according to PKPD model with the effect

of EPO starting with one week delay. But it was observed in some clinical figures that

EPO ramps upwards but Hgb ramps downwards, this is opposite to what is expected

from drug dosage. After segregating these patients it was also observed that some

patients had a longer period where EPO-Hgb had a negative correlation and some

patients had a smaller period. These are called short infections and long infections.

Examples of each infection are given below. Short infections are 1 to 3 months long

and long infections 3 to 5 months.

Short infections and long infections

Patients who had 1 to 3 months of negative Hgb-EPO correlation, they were

classified as short infections. Figure 4.14 is such an example, where the highlighted

section had EPO ramping down and Hgb ramping upwards. Figure 4.15 is PKPD

modeled data comparison with actual data. Figure 4.16 is a long infection and figure

4.17 compares PKPD with actual data.

Figure 4.14: Clinical figure of Patient No. 53; short infection between 200 to 400 days
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Figure 4.15: Patient No. 53 PKPD model vs actual data unable to capture short infection

Figure 4.16: Clinical figure of Patient No. 16; long infection between 0 to 200 days
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Figure 4.17: Patient 16 PKPD model vs actual data unable to capture long infection

4.3 Simulator design

The patient simulator in following figure 4.18 was designed by incorporating dif-

ferent disturbances and using physician protocol inside the controller.

Figure 4.18: Patient simulator design: PKPD model along with disturbances as simulator
and physican protocol as controller
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PKPD model eight parameters were time-varied to design type of disturbances dis-

cussed in previous section. Three type of disturbances were considered while designing

the simulator: process disturbance, measurement noise, and change in parameters.

4.3.1 Process disturbance

Although PKPD model is a physical model, it deviates from actual data and has

a significant sum of squares square errors. This can be attributed to the fact that

the differential equations in Equation (4.1) in PKPD model have some error. The

four states in this model are inter-related, therefore, 10% of RBCs from last week was

added as pt to R(t) (Equation (4.3)) which propagates to other states E(t), x1(t),

and x2(t).

dR(t)

dt
=

S (Een + E(t−D))

(C + Een + E(t−D))
− 4

x1(t)

µ2
+ p(t) (4.3a)

p(t) = 0.1×R(t− 1) (4.3b)

4.3.2 Measurement noise

Since measurement of Hgb is not perfect and there can be error in meaurement

(McAllister, 2017), measurement noise (Wk) was added to Hgbk which was drawn

from N(0, 0.1662) distribution that correspond to ±0.5 g/dL.

4.3.3 Change in parameters

Time varying parameters were created that could capture change in patient health

as mentioned in section 4.2. This section explains how each disturbance was created.

Probabilities of occurance for each type of disturbances were assigned based on actual

clinical data and summarized in Table 4.4.

1. Blood loss: Blood loss scenarios are created by a step change in RBC popula-

tion. These disturbances are called as acute disturbances (AD), some of them

are small (10 to 25% of blood loss) and some of them are a large AD, resulting
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into 25 to 50% of blood loss. Analysing the actual clinical data, higher prob-

ability was assigned to a small AD than a large AD, as summarized in Table

4.4.

2. Drug resistance: These scenarios are created by linearly ramping down S

parameter (due to the decrease in maximal RBC production rate stimulated by

Ep) andHen parameter (drop in the endogenous level of hemoglobin). Since drug

resistance is a slow process, restrictions of occurence was assigned to prevent

frequent occurence of drug resistance scenarios.

3. Drug supporter: Opposite to drug resistance scenarios, these cases are gen-

erated by linearly ramping up S and Hen parameters.

4. Infections: Short and long infections are attributed to the fact of a decrease

in S parameter, or drop in RBC life span (µ parameter), and/or drop in the

endogenous level of hemoglobin (Hen parameter). All parameters are changed

linearly with time (Equation (4.4)) and probabilities of occurence were assigned

based on actual clinical data.

S = S + S ×N t− t2
t1 − t2

(4.4a)

µ = µ+ µ×N t− t2
t1 − t2

(4.4b)

Hen = Hen +Hen ×N
t− t2
t1 − t2

(4.4c)

where N is change in fractional change in parameter, t1 and t2 are start and end

time (week) of disturbance, and t is current time (week). In the current simu-

lator after specifying amount of drop required in Hgb and type of disturbance

required, change in patient figures can be produced.

Table 4.4: Frequency of occurnace of each scenario

Physical scenario Probability

Small AD (10 to 25%) 0.10

Big AD (25 to 50%) 0.05

EPO resistant 0.05

EPO supporter 0.05

Short infections 0.25

Long infections 0.05
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4.4 Simulation figures

After designing the simulator, figures similar to actual clinical data were obtained

and presented below. These figures are close to actual clinical figures and can be

compared with different scenarios presented in section 4.2. Figure 4.19 show a blood

loss example where a step change was given to RBC population near 500 day and

patient suffered blood loss and is recovering slowly after blood loss. Figures 4.20 and

4.21 show drug resistance and drug suppporter examples where average EPO usage

in second half is quite different than first half of the data. Figure 4.22 is an simulated

patient example who was made to suffer an infection disturbance near 200 day.

Figure 4.19: Blood loss occuring at day 500 and patient recovering slowly after blood loss
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Figure 4.20: Patient suffering from drug resistant after day 600

Figure 4.21: Patient recovering and responding as drug supporter in 2nd half of the data
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Figure 4.22: Patient suffering with infection near day 200

It was observed in some clinical figures that some patients suffers from more than

one above mentioned disturbance, one such example is provided in Figure 4.23 where

patient suffers with drug resistance and then recovering back with EPO ramping

downwards (drug support scenario).

Figure 4.23: Clinical figure: patient suffering drug resistance followed by drug support
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Some simulated figures are presented below where mutliple disturbances where

added to the patient simulator.

Figure 4.24: Simulated figure: patient suffering blood loss followed by drug resistance

Figure 4.25: Simulated figure: patient suffering drug resistance followed by drug support
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4.5 Conclusions

Through this chapter, it was targeted to design an artificial patient simulator

which has time-varying parameters to explain the change in patient health. Since

parametric disturbances are easy to explain than data-driven disturbances, artificial

patient simulator designed with this methodology is more likely to be accepted by

medical professionals. After approval from concerned authority, this simulator can

be used to rule out ineffective scenarios prior to human use and/or as an equivalent

to animal trial.
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Chapter 5

Future Work

5.1 Introduction

This chapter summarizes future work identified for this project.

5.1.1 Performance assessment of artificial patient simulator

Testing of artificial patient simulator. The current patient simulator relies on time-

varying parameters along with adding process disturbances and measurement noises.

Performance assessment of developed artificial patient simulator is the next step and

compare performance with data-driven patient simulator developed by McAllister,

2017. Once this comparison is done it can be compared and submitted for FDA

approval similar to as it was done for UVA PADOVA Type 1 Diabetes (C. Man et

al., 2014).

5.1.2 MIMO model identification

The foundation of CKD hemoglobin model is considering different effects as pa-

tients take iron supplements along with EPO. Since patients suffer iron disturbances,

it is interesting to see how iron level in the body also varies along with hemoglobin.

As explained in section 3.1.2 Gaweda et al., 2014 work motivated our work to explore

MIMO system based on iron cycle and erythropoietin cycle in the body, Figure 3.1.

Based on preliminary literature review we developed a MIMO model structure. In

current data set frequency of measurement of Iron saturation is every other month

which we found not appropriate for MIMO model as the iron level in the body could

change a lot because of various disturbances suffered by CKD patients. Following
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model could be the preliminary multi-input multi-output (MIMO) system structure

with TSAT and hemoglobin as system outputs with exogenous EPO and Iron IV as

system inputs.

We simplified Gaweda et al., 2014 model and converted into two-input and two-

output system, where both systems interact with each other. Figure 5.1 explains the

simplified model developed. Model equations are presented in Equations (5.1) and

(5.2) where unconstrained ARX model is developed for the MIMO system.

Figure 5.1: MIMO model stucture based on iron cycle and erythropoietin cycle

Output 1: Hemoglobin

Hgbt+1 −Hgbss =a1 (Hgbt −Hgbss) . . .

+
8∑

k=1

bk (EPOt−k+1 − EPOss) + c (TSATt − TSATss) + et

(5.1)

Output 2: TSAT level

TSATt+1 − TSATss =d1 (TSATt − TSATss) . . .

+
8∑

k=1

ek (Iront−k+1 − Ironss) + ft
(5.2)

After receiving appropriate data in which TSAT is measured at a higher frequency,

MIMO model structure could be tested.
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5.1.3 Using additional parameters

The foundation of any controller is system model. The model that uses more in-

formation and analyze different scenarios help decrease uncertainty, increases degrees

of freedom, but at the same time possesses the risk of overfitting the data. Similar

to TSAT, WBC, ferritin measurements are available for MCH, hematocrit, and urea

level in the body. Understanding effect of these parameters could help them including

in model identification and improve modeling results. Currently PKPD model uses

average value 29.5 for MCH (Y. Chait et al., 2014), a wiser choice will be including

interpolated values of MCH.
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