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Abstract

Long Range Predictive Control (LRPC) has been applied to multi-input multi-
output processes for at least fifteen years. The fundamental problem of ali LRPC
algorithms (i.e. DMC of Cutler and Ramaker, 1980, MOCCA of Sripada and Fisher, 1985,
and GPC of Clarke et al., 1987), however, remains the degradation of control performance
in the presence of model-plant mismatch and disturbances. This thesis addresses this issue
through the concept of expert supervisory LRPC.

Expert supervisory LRPC integrates two academic fields of endeavour, namely
process controi and expert systems. The contributions of this thesis to the field of process
control are twofold. Firstly, this work identifies LRPC tuning parameters suitable for
adjustment in an on-line real-time environment for the purpose of performance tuning.
And secondly, the commercial object-oriented real-time expert system development tool,
G2 by Gensym, is used to implement a prototype LRPC performance supervisor. This
prototype performance supervisor is called the Adaptive Long range predictive control
Performance Supervisor, ALPS.

ALPS supervises the closed-loop control performance of several multivariable
processes simultaneously. ALPS is interfaced to one member of the family of LRPC
algorithms, namely constrained MGPC of Mutha (1990), in an on-line real time
environment via the G2 Standard Interface (GSI). Both ALPS and the MGPC algorithm
are generic and can be applied to multi-input multi-output processes of dimension n X m,

where n is the number of process outputs and m is the number of process inputs. ALPS



reflects the rules and procedures a seasoned process Operator uses in adjusting LRPC
tuning parameters in order to maintain user specified heuristic performance criteria.
ALPS is evaluated based upon simulation results of 2-input 2-output benchmark
problems subjected to conditions of model-plani mismatch and disturbances. These
investigations conclusively show that ALPS skilfully adjusts the LRPC tuning parameters.
ALPS monitors the actual closed-loop control performance and proficiently manipulates
the LRPC tuning parameters so as to achieve and maintain user specified closed-loop
regulatory and servo control performance. The results also indicate that the success of
ALPS depends upon the user supplied performance specifications. ALPS recognizes its
limitations and achieves and maintains the desired closed-loop contrel performance only

if the user supplies performance specifications that are realistic and achievable.
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Chapter 1

Introduction

Long Range Predictive Control strategies are enjoying widespread acceptance and
are routinely applied to full-scale industrial processes (Garcia et al., 1988, Shah et al.,
1987). Of particular interest is the fact that these controllers are insensitive to process
dead time and readily accommodate non-minimum phase plants. Dimensionally large
multivariable implementations (see Cutler and Hawkins, 1988, for a 16 x9
implementation, and Kelly et ai., 1988, for a 5 x 6 process) give LRPC techniques
rremendous clout. The main thrust of this work is to address the fundamental problem of
all LRPC algorithms which is the degradution of closed-loop control performance
subsequent to commissioning. Both model-plant mismatch (MPM) and slow changing
process dynamics cause closed-locp control performance to deteriorate. One goal of this
work is to develop a perforinance supervisor whose role is to monitor the actual closed-
loop control performance of the underlying LRPC algorithm and take appropriate actions
so as to maintain user specified control performance.

The idea of using a closed-loop control performance supervisor is not new. Minter
and Fisher (1988), through their work on commercially available expert adaptive
controllers for the Proporticnal plus Integral plus Derivative action (PID) algorithm,
conclude that the addition of a closed-loop performance supervisor to a control algorithm

yields significantly better control performance over a broader operating region. A closed-



loop performance supervisor is also considered by McIntosh (1988). He points out that
even under ideal conditions of no MPM and no disturbances, the appropriate controller
settings resulting in the desired closed-loop control performance may not always be
known a priori. His implementation of a single-input single-output (SISO) unconstrained
Generalized Predictive Control (GPC) performance supervisor illustrates that subsequent
to commissioning, the GPC tuning parameters may be adjusted on-line in order to achieve
the desired closed-loop control performance.

In recent years research efforts in the field of Artificial Intelligence (AI) have
resulted in great advances in Expert Systems (ES) technology. ES are a subset of
Knowledge Based Systermns which themselves form a large subset of AL ES allow
qualitative rules-of-thumb or heuristics, as applied by a human expert to solve domain
specific problems, to be captured and encoded into a computer program. The benefits of
this technology can be tremendous. Firstly, the captured knowiedge remains accessible
should the human expert be transferred to another department or leave the company.
Secondly, the knowledge base is easily expanded to consolidate the know-how of several
human experts thereby increasing the complexity of the problems that can be solved. And
lastly, given a particular problem the conclusions and recommendations made by an ES
are more consistent than the recommendations made by several different human experts
faced with the same problem (e.g. given a particular set of circumstances, the ES will
always conclude with the same recommendations).

Although some ES implementations in the field of process control are disclosed
in the literature (e.g. Astrém et al. 1986, Sripada er al. 1987, Aynsley et al. 1989,
Doraiswami et al. 1987, Haest et al. 1990, Dong er al. 1991), many more industrial
applications go unreported due to the proprietary nature of these systems. As each
application must reflect its own purpose, each implementation is either an off-line
application, an on-line application, or an on-line application with real-time computing.
Off-line applications operate without a direct communication link to external devices (i.e.
the user manually enters all input data). Many of these applications are decision support
systems taking the form of question and answer sessions. In these cases the ES

application prompts the user to supply all the required information. Upon termination of
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the reasoning process it is the user who, at his discretion, acts upon all or some of the
recommendations made. An application of this type is described by Dong er al. (1991).
The authors report industrial success of their system which provides decision support to
process operators during plant startup.

On-line applications address the circumstances where neither process data nor
processing conditions remain constant for a long period of time. Process control
applications in particular are time-varying due to the dynamic nature of the plant (i.e.
temperatures, pressures, and flows change with respect to time). On-line implementations
are interfaced to devices such as sensors in order to access plant data directly. Often only
a small fraction of the information is entered b, users or process operators. The ES
performs its reasoning and inferencing exploiting the history and dynamic nature of plant
data. This is usually referred to as temporal reasoning. Adams et al. (1987) present their
on-line advisory system which performs process monitoring for the purpose of fault
detection and diagnostics. This ES application, similar to most on-line advisory or
decision support systems, does not directly take actions (e.g. changing process setpoints,
or adjusting contreller tuning parameters). Rather, these systems provide intelligent
recommendations. Ultimately it is the process operator who - with the aid of the ES -
decides upon the necessary actions, and implements these actions.

In contrast to both on-line and off-line ES applications, on-line real-time ES
applications take direct action with minimal operator intervention. Process control
applications utilizing on-line real-time ES technology range frcem controller tuning,
adaptation, monitoring and diagnostics to supervision (e.g. Aynsley et al. 1989,
Doraiswami and Jiang 1989, Arzén 1989, and Astrém ez al. 1986). This thesis is devoted
exclusively to the latter of these issues, namely supervision. The primary contribution of
this thesis is the development of the Adaptive Long range predictive control Performance
Supervisor, ALPS. ALPS is implemented with the commercial real-time ES development
tool G2 and performs closed-loop control performance supervision of several
multivariable constrained LRPC algorithms. ALPS manipulates LRPC tuning parameters

in a fashion similar to a very proficient human process operator.



1.1 Objective of Study

The development and implementation of an expert LRPC control performance
supervisur integrates two academic fields of endeavour, namely process control and expert
sysiems. The contributions of this thesis to the field of process control are two fold.
Firstly, this work identifies LRPC tuning parameters suitable for adjustment in an on-line
real-time environment. Secondly, a commercial object-oriented real-time expert system
development tool is used to implement a prototype LRPC performance supervisor. This
prototype performance supervisor is called the Adaptive Long range predictive control

Performance Supervisor, ALPS. In brief, the objectives of this thesis are:

. implement one member of the family of LRPC algorithms as a
multivariable controller having n process outputs and m process inputs,
with constraints on input amplitude, incremental rate of change, and output
amplitude

. quantify LRPC tuning parameters suitable for on-line adjustment for the
purpose of performance tuning

. develop, implement, and demonstrate a LRPC performance supervisor
utilizing the commercial real-time expert system development tool G2 by
Gensyin

. evaluate the prototype LRPC performance supervisor based on benchmark

problems under cuiditions of model-piant mismatch and disturbances.



1.2 Structure of the Thesis

The structure of the thesis is outlined below with emphasis on the contributions
of this work. A more detailed introduction as well as a summary is given at the beginning
and end of each individual chapter.

Chapter 2 revicws popular multivariable LRPC algorithms (e.g. DMC, MOCCA,
MGPC) utilizing a consistent nomenclature. It is shown that parametric and non-
parametric process model predictive algorithms yield the identical control law. This result
accentuates the intimate relationship among these long range predictive control algorithms.
The chapter concludes by selecting MGPC for implementation due to its two degrees of
freedom structure (i.e. MGPC allows for separate regulatory control and servo control
performance specifications).

Chapter 3 quantifies both regulatory and serve conirol performance criteria, and
selects suitable MGPC tuning parameters. The selection of MGPC tuning parameters is
substantiated through the use of an illustrative example.

Chapter 4 focuses on the implemented LRPC performance supervisor, ALPS. It
highlights the rules and procedures utilized by ALPS to perform regulatory and servo
contro! performance tuning. In addition, this chapter provides the functional specifications
of ALPS in comparison to a generic Expert Supervisor also developed in this chap*er. The
training facilities provided by ALPS to train personnel in the use of ALPS itself, as well
as the underlying LRPC algorithms are also presented. A brief description of the
commercial object-oriented real-time expert system development tool G2, used to
implement ALPS, is also provided.

Chapter 5 demonstrates and evaluates the tuning strategies employed by ALPS.
Three benchmark problems, subjected to conditions of MPM and disturbances, are used
to investigate the performance of ALPS. These investigations show that ALPS adjusts
LRPC tuning parameters in a competent manner. The results also exemplify the

underlying assuraptions that govern the success of ALPS.



Chapter 6 draws conclusions from the results presented in this thesis and provides

suggestions for future work.



Chapter 2

Long Range Predictive Control - a unified

framework

Long range predictive control algorithms represent a family of predictive
controllers sharing several important features. This chapier nighlights these similarities
by considering non-parametric process model control algorithms as well as parametric
process model control algorithms. Dynamic Matrix Control (DMC) (Cutler and Ramaker,
1979) and Multivariable Optimal Constrained Control Algorithm (MOCCA) (Sripada and
Fisher, 1985) use step response medels in their description of the process and are
considered as examples of non-parametric LRPC algorithms. The Generalized Prcdictive
Control (GPC) (Clarke et al., 1987) uses an Auto-Regressive Integrated Moving Average
with Exogenous Inputs (ARIMAX) process model and is considered as a representative
of parametric LRPC algorithms. Parametric control al gorithms lend themselves to adaptive

implementations, however, for the purposes of this thesis GPC is considered as a fixed

parameter non-adaptive control algorithm.



2.1 Introduction to LRPC

The control laws of different LRPC algorithms initially appew to be quite

different. To a large degree these differences can be attributed tc a non-standardized

nomenclature. Upon closer inspection, the following key features can be extracted:

ii)

Process description

The mathernatical description of the process can be parametric (e.g. GPC which
uses the ARIMAX process model) or non-parametric (e.g. DMC and MOCCA

which use sicp response coefficients).
Tbjeciive function

The control action to be implemented is calculated based upon the minimization
of an objective function. This objective function is expressed in terms of the
minimization of the predicted discrepancy between the process outputs and their
respective setpoints over a finite trajectory into the future. The objective function
can be in the 1-norm, 2-norm, or ~-norm (Garcia e? al., 1989). With the addition
of input and/or output constraints the 1-norm and =>-norm objective functions yield
Linear Programming (LP) problems, and 2-norm formulations yield Quadratic

Programming ((QP) problems. Hence the form of the objective function has a

significant impact on the control law.



iii) Process output prediction

Inherent to the use of an objective function is the need for output prediction. The
minimization of the obiertive function is performed over a finite multi-step

horizon requiring long =2 prediction. The prediction algorithm must be tailored

to the specific process description selected.
iv) Finite control horizon and receding horizon control strategy

The assumption of a finite control horizon, after which all projected control
increments are assumed to be zero, greatly reduces the computational effort.
Furthermore, the use of a receding horizon control strategy, which implements

only the first control action of the solution at every iteration interval, is common
to all LRPC algorithms.

Figure 2.1 shows a simplified block diagram of the outlined LRPC strategy. The Predictor

and Control Law blocks, as shown in this figure, are considered in detail in the following
sections.



Control Law 81 Process

gl Predictor [

Figure 2.1 Simplified block diagram of LRPC strategy.
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2.2 Multivariable non-parametric LRPC

This section presents multivariable non-parametric process model LRPC

algorithms. In particular, non-parametric process models based on step response

coefficients, such as DMC and MOCCA, are considered. Details specific to DMC and

MOCCA can be found in the literature (see Cutler and Ramaker, 1980 for DMC, Sripada
and Fisher, 1985 and Li et al., 1989 for MOCCA). Although the nomenclature has been

altered to become more intuitive, the derivations follow as per Li et al. (1989).

2.2.1 The step response process model

where

The step response process model for an n-output m-input system is represented by

N
y® = ¥ G, Au(t-i) + Gyu(t-N-1) .1)
i=1

y is the deviational output vector of dimension n x 1

u is the deviational input vector of dimension m x 1

A is the difference operator, A =1 - q*

G, is the a matrix of dimension n x m, the elements of which are the step response
coefficients of the individual input-output relationships at the i sampling interval.
N is the truncation order and reflects the number of step response coefficients

taken such that Gy, is a reasonable approximation of the final or steady state value

of the process.

11



2.2.2 The objective function

The objective function to be minimized is given by:

P
min J = 3 [fe+) - w@D} T [Fe+) -wt+D]
= (2:2)

M
+ ¥ Au@+j-DTAAu(e+-1)
J=1

where
w(t+j) is a vector of setpoints of dimension n X 1 such that
W(tH) = [Wy(t4) - WotH)]T
§(t+j) is a vector of predicted outputs of dimension n x 1 such that
§@4) = [Ht+) - DT
Au(t+j) is the input vector of dimension m X 1 such that
Au(tH) = [Au(t+) ... Aug@E+DT
P is the output prediction horizon and P < N
M is the control horizon and M < P
A is the diagonal control weighting matrix of dimension m x m allowing separate

specification for each input given by:

A=l - 23)

T is the diagonal output weighting matrix of dimension n x n allowing separate

specification for each output given by:

12



T = 4

Equation 2.2 is not in its most general form. For example, output weighting and setpoint
prefiltering can also be uccommodated in this objective function. The weighting matrices

T and A can also be made a function of the prediction horizon.

2.2.3 Process output prediction

The objective function given by equation 2.2 minimizes the predicted error
between the process outputs and their respective setpoints over the prediction horizon P
into the future. This requires the calculation of the predicted process outputs ¥y along the

prediction horizon. Using the arguments of Garcia et al. (1989) this prediction can be split
into three parts such that:

F@+) = G Aut+j-1) + fie+)) + dt+)) (2.5)

where

£(t+j) is the "free" response of the process at the j'® sampling instant into the future

and consists of the predicted process outputs assuming no future changes in the

control action Au, and

G, Au(t+j-1) is the predicted process output based upon future control action yet
to be calculated, and

d(t+j) is the vector defining the effect of future disturbances.
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In order to predict the future disturbances d(t+j) consider the disturbance prediction

technique employed with DMC where:
d(t+j) = d@®
for j=1,2 ... P
and d(t) is estimated by the relationship:

de =y O - y® (2.6)

where
¥, are the measured process outputs, and

y are the process outputs as calculated with equation 2.1

Using the above definitions equation 2.5 can be rewritten in its compact form:

$=GAu + f+d @7

where
¥ is the output vector along the entire prediction horizon of dimension
(n P) x 1, and includes the impact of future control actions, and
Au is the input vector over the entire control horizon of dimension
(m M) x 1, and

G, is the dynamic matrix of the process of dimension (n P) x (m M) and consists
of

14



G, ©O 0 0 ]
G, G, o
G, G, G, ©
Gy = o 2.8)
G,
Gp1 Gpz Gps Gpu

Each G, is a submatrix of dimension n X m, the elements of which are the step

response coefficients of the i* sampling interval of each individual input-output

relationship.

The free response of the process f is obtained from:

fiz+1) u(z-N) Gy-1 G- G| Au(t-N+1)
fz+2) u(t-N+1) 0 G,, G, |Au(t-N+2)
: T UN : 1. :
t+P) u(t-N+P-1) { 0 0 Gy G, Au(z-1)
(2.9)
2.2.4 The control law
The unconstrained solution to equation 2.2 is given by:

Au®)I,, O - o][G} LG, + A]“ GIT(w - f) (2.10)
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where
w is the setpoint trajectory of dimension (P n) x 1 given by
w = [w(t+1) ... w(t+P)]”
f is the free response of dimension (P n) x 1 given by
f = [f(t+1) ... FE+P)IT
I is a matrix of P block diagonal T" matrices
A is a matrix of M block diagonal A matrices

G, is the dynamic matrix of the process given by equation 2.8

2.2.5 Extensions to non-parametric LRPC algorithms

The preceding sections present non-parametric step-response LRPC algorithms,
such as DMC and MOCCA, in their simplest form. Further research activity on these
algorithms have resulted in more sophisticated step-response LRPC algorithms. The use
of Kalman filtering techniques in disturbance prediction has been presented by Sripada
and Fisher (1985) as well as Li et al. (1989). The solution to DMC subject to constraints
(i.e. QDMC) is discussed by Garcia and Morshedi (1986).
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2.3 Mulitivariable GPC

The multivariable generalized predictive control algorithm (MGPC) uses a
parametric process model and is presented in this section. Details of this algorithm can

be found in the literature (Mohtadi et al., 1991, Shah et al., 1987, and Mutha, 1990). The
derivations follow as per Mohtadi et al. (1991).

2.3.1 The ARIMAX process model

The ARIMAX process model for an n-output m-input system is represented by

Ay = Bu(x—1)+£%(_‘l @.11)

where
A and C are diagonal pclynomial matrices of dimension n x n
B is a polynomial matrix of dimension n X m
y is the output vector of dimension n x 1
e is the noise vector of dimension n x 1 having zero-mean
u is the input vector of dimension m x 1
A is the difference operator, A=1 - q"

An arbitrary diagonal element ii of matrix A is given by:

A(q‘l) =1 +alq'l + +an‘M (2.12)

and an arbitrary element ij of matrix B is given by:

B(q"l):—.bo+b1q“l + - +b68q_63 (2.13)
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where the subscripss ii and ij have been dropped for the sake of brevity. Should any of

the input-output channels of the process have a non-zero dead-time then the leading

coefficients of the corresponding polynomial in matrix B are zero. For simplicity of the

derivations set the coefficient matrix of the noise vector to identity (e.g. C =1); the

implications of this are discussed in section 2.3.5.1 .

By setting e = O (its expected value) the ARIMAX model of equation 2.1 1 reduces

to the Auto-Regressive Moving Average (ARMA) model:

y® = AA)" BAu(t-1)

where (4 A)'B are the step response coefficients of the process.

2.3.2 The objective function

The MGPC objective function to be minimized is given by:

N;

min Jycpe = ,2;3 B+ - weDIT THE+) —wt+p)

NU
+ ¥ Au(e+j-1)TAAu(t+j-1)
j=1

where
w(t+j) is a vector of setpoints of dimension n x 1 such that

w(t+) = [wy(tH) ... w+)TT

§(t+j) is a vector of predicted outputs of dimension n X 1 such that

F+H) = [51(t45) . Fult+DT

Au(t+j) is the input vector of dimension m x 1 such that

18
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Au(t+) = [Au,(t+) ... Auy(t+HTF
N, is the minimum prediction horizon
N, is the maximum prediction horizon
NU is the control horizon
A is the diagonal control weighting matrix of dimension m X m allowing separate
specification for each input given by equation 2.3
T is the diagonal output weighting matrix of dimension n x n allowing separate

specification for each output given by equation 2.4

2.3.3 Process output prediction

The MGPC objective function given by equation 2.15 minimizes the predicted

error between the process outputs and their respective setpoints over the prediction

horizon from N, to N,. This requires the calculation of the predicted process outputs ¥ for

the prediction horizon of interest. Using the standard arguments of Mohtadi (1987) this
prediction can be split into two parts such that:

where

$=G,Au +f (2.16)

¥ is the output vector along the entire prediction horizon of dimension

(N, - N, + Dn x 1, and includes the impact of future control action(s) and

Au is the input vector over the entire control horizon of dimension

(mNU) x1

f is the "free" response of the process and is of dimension (N,-N,+1)n x 1 and
consists of the predicted process outputs assuming 1o future changes in the control

action, Au, and

G, is the dynamic matrix of the process of dimension (N, - N, + 1)n x m NU and

consists of
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Gyq ~ Gy 0 O o |
Gy ~ Gy Go O 0
G, - w0 2.17)
GO
I‘GN,-x Gy,-nu

Each G; is a2 submatrix of dimension n x m, the elements of which are the step
response coefficients of the i® sampling interval of each individual input-output

relationship.

There are two alternatives for obtaining the free response f of the process (Mutha, 1990):

« use of the matrix Diophantine identity

- - 2.
I=E AA + g7F, (2.18)

where E; and F; are matrices of Diophantine coefficients, or by using a
« recursive implementation by setting subsequent Au(t+j) = 0 and iterating over

the process model given by equation 2.14 for j=1,2 ... N,.

On-line implementations of the former Diophantine identity method would reiguie
redimensioning of E; and F; whenever the prediction horizons N, or N, are changed. The
implemented MGPC algorithm uses the latter recursive method in which there is no

permanent storage requirement.
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2.3.4 The MGPC control law

The unconstrained solution to equation 2.15 is given by:
Au@=[I, 0 - 0][G,'TG, + A" G,/ L(w - f) @.19)

where
w is the setpoint trajectory of dimension (N, - N; + 1)n x 1 given by
w = [W(t+N,) ... w(t+N)I"
f is the free response of dimension (N, - N, + 1)n x 1 given by
f = [f{t+N,) ... fE+N)]"
T is a matrix of (N, - N; + 1) block diagonal I" matrices
A is a matrix of NU block diagonal A matrices

G, is the dynamic matrix of the process given by equation 2.17

2.3.5 Extensions to the MGPC algorithm

The preceding sections presented the fundamental MGPC algorithm. As chemical
processes are subjected to measurable and unmeasurable disturbances, and since MPM is
always present to a certain degree, the MGPC algorithm is extended to include additional
tuning parameters that make this algorithm more robust. In the following sections the
disturbance tailoring matrix T, feedforward control, plus constraints on input and output

amplitudes, as well as input rate constraints are discussed.
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2.3.5.1 The disturbance rejection matrix T

The ARIMAX description of the process includes the noise term %e(t) where

the elements of the noise vector e(t) are white noise with zero-mean. By filtering e(t) with

;g- to obtain integrated (or non-stationary) colored noise, we obtain an approximation

of noise sources that behave like random steps at random times (e.g. Brownian noise).
The problem, however, is the identification of C. It is advantageous to approximate the
diagonal polynomial matrix C with a fixed estimate. The diagonal polynomial disturbance

rejection matrix T, allowing separate T(q") polynomial specifications for each output

channel, is used for this purpose:

T(g™ 0
C=T-= (2.20)
0 T ™

Thus the MGPC prediction equation 2.16 is filtered with T and becomes:

FT? = (G,Au + )T

2.21)
¥, = GgAu, + Je

i

where the subscript (=), indicates quantities filtered with T

The filtered free response, fi, is obtained by iterating the process model given by equation

2 14 as described in section 2.3.3 with the filtered values ¥, and Au, (with Au = 0).
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The control law as given by equation 2.19, however, requires the unfiliered free
response, f, of the process. This is obtained by inverse filtering the filtered free response,

f, with T' to obtain the unfiltered free response, f. This technique is given by the

relationship:
f= ff T (2.22)

The interested reader may find further information on inverse filtering in the literature

(see e.g. Clarke, 1991 for inverse filtering for the SISO GPC case).

As will be shown in the nexi chapter, the use of T significantly improves the
MGPC algorithm’s performance in the presence of MPM and allows for separate servo

and regulatory performance specifications (Mcintosh, 1988).

2.3.5.2 Feedforward Control

In the chemical process industry there are many processes that have measurable
load disturbances. Examples of measurable disturbances are the variations in feedstock
quality and flow rate. In these cases, feedforward control can significantly improve the
performance of the coatrol algorithm. For the inclusion of feedforward control with

MGPC, the reader is directed to Mutha (1990). Feedforward control is not considered
further in this thesis.
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2.3.5.3 Prefiltered Setpoints

By filtering setpoint changes with the polynomial matrix, P(q"), model-following
is achieved. P(q") is usually taken as a diagonal polynomial matrix whose elements,

P,(q"), define the inverse of the closed-loop response in the model-following context.

Prefiltered setpoints are not considered further in this thesis, for more information

on P(q") the reader is directed to Mohtadi er al. (1991).

2.3.5.4 Constraints

The MGPC objective function, given by equation 2.15, and its analytical solution,
given by equation 2.19, do not consider the physical limitations on the input vector or the
output vector. The control input vector, u(t), must always remain within its physical
operating range. A valve for example, can open only from 0% to 100%; the reflux ratio
of a distillation column can not be negative. Constraints on the process output reflect the
physical nature of the process. Take separation processes (e.g. distillation) for example,
the mole fraction of one component within a fluid mixture ranges from 0 to 1; meaning
that this fluid contains at least none of the component and at most all of the component

(e.g. is pure).

Physical limitations can be incorporated into the solution of the objective function
2.15 by mapping these as constraints onto the plane of manipulated variables, Au. The
constraints considered in this thesis are incremental input rate constraints, amplitude
constraints on the input and output vectors. The procedure of mapping input amplitude

constraints and output amplitude constraints onte input rate constraints, Au, is described
by Mutha (1990).
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Input rate constraints can be used directly without further modification and for a general

MIMO system these become:

Au_, Au(r) Au_,.
Au < Au(t+1) < Au . (2.23)

Au,| |BueNU-D | |Aug,

The input amplitude constraints are:

Ui u(?) U
Uin| (| #ED | [P (2.24)
75 u(t+NU-1) Upns

but Au(®) = u@ - u(t-1) thus equation 2.24 becomes

u_ -u@-1)] [1 0 - O] Au(® 1 [ug, ~u-D]

o ~uG-D| |11 - O] AueD Uax "B (5 95)

e ¥E-D] |11 - 1 |Au(t+NU-1) | [uw-u(t—l)_

where the dimension of the vectors are (m NU) x 1 and the dimension of the lower

diagonal matrix is (m NU) x (m NU).

The output amplitude constraints are:
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Voin S F < Vonax (2.26)

substituting equation 2.16, § = G,Au + f . into equation 2.26 gives:

Vosa ~F S Galats S Ypue = F (227)

where the vectors and matrices are dimensioned for the appropriate prediction horizons

N,, and N,, as well as the control horizon NU.

The solution to the constrained MGPC problem is obtained by minimizing the
objective function, equation 2.15, subject to the constraints given by equations 2.23, 2.25,
and 2.27 . This results in a quadratic programming (QP) problem. This QP is solved at
every control interval. Mutha (1990) provides the analytical solution of constrained
MGPC subject to output amplitude and input rate and amplitude constraints for NU = 1.

For the general case of NU # 1 the resulting QP does not have an analytical solution and

rmust be solved numerically.

The commercial quadratic optimization software package QPSOL (Gill ez al. 1984)
is used to solve this quadratic programming problem on-line. QPSOL consists of about
6.000 lines of source code written in ANSI-66 FORTRAN, and provides the user with the
warm start option. This option improves execution speed by using the previous solution

and previous set of active constraints as initial conditions for the current sampling instant.
In summary, the MGPC objective function subject to constraints on output

amplitude and input rate and amplitude results in a QP problem. This QP is solved on-line

with the software package QPSOL at every sampling interval.
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2.4 Summary

Parametric and non-parametric process model LRPC control algorithms have been
presented. DMC and MOCCA use non-parametric step-response process model
descriptions, whereas the parametric LRPC algorithm, MGPC, uses the ARIMAX process
model. The intimate relationship among parametric and non-parametric LRPC algorithms
is reflected in the objective functions and control laws by using a standard nomenclature.
Table 2.1 summarizes the most important equations presented in this chapter. This table

shows that although both LRPC algorithms have different process models, the resulting

control laws are identical.

This chapter serves to highlight the similarities among various popular LRPC
algorithms. There are, however, subtle differences among these algorithms. These
differences make sorne algorithms superior to others for particular applications. In order
to achieve the most effective expert system application the underlying LRPC algorithm
musst be flexible, robust, and capable of controlling a wide variety of chemical processes.
The LRPC algorithm selected for this task is MGPC - it has all of thesc awuibutes. This
algorithm can be thought of as a “general purpose” LRPC control algorithm as it will
control the following types of processes (Mohtadi, 1987):

a) Open-loop stable

b) Open-loop unstable

¢) Non-minimum phase.

In addition, this algorithm is attractive due to its use of a compact ARIMAX process
model and hence is easily extended to become fully adaptive. Furthermore, as will be
shown in the next chapter, MGPC allows for separate servo and regulatory control

performance specifications (i.e. it has a two degrees of freedom structure).

The next chapter presents closed-loop performance specifications and provides

insight into the use of the MGPC algorithm and its (many) tuning parameters.
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MOCCA/DMC

MGPC

Process Model

N
0 = Y G, Au(t-i) + G u(t-N-1)
e

Ay = B-(¢-1)+£ZQ

Objective Function

I 4
min J = E. [Fe )~ wle~D]T T+ —wle+D)]
’-

o
+ 3 Aw -D)TAAR(<]-1)

N
min J = Y [fee) - w(t+ DI TiFe ) —wit=)]
v,

N
+ ¥ Au(r+j-1)TAAu(e+/-1)
m

Coatrol Law

Axpd1, 0 - 0][G,"TG, + A'GC(w - f)

Ax(n=I_ 0 - 0}[G,"TG, + AI'GL(w - §)

Min. Pred. Horizon 1 NI
Max. Pred. Horizon P N2
Control Horizon M NU
Gutput Weight T r
Control Weight. A A
T

Filtering

various options (sec Li ez al., 1989)

Table 2.1 Parametric and non-parametric LRPC objective functions and control laws
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Chapter 3

Performance Tuning

The task of any control system is to meet its closed-loop control performance
specifications. Performance specifications are an important component of the control
system as they reflect the desired closed-loop response of the process in the presence of

measurement noise, model-plant mismatch (MPM), and disturbances. Performance

specifications can be expressed in terms of:

a) Performance indices which mathematically state the objective function to be
minimized or maximized. Examples are the minimization of Jygpc as given by

equation 2.15, or the minimization of the integral squared error performance index

Tg=le*®at 3.1)

where the error, e(t), is the difference between the desired process output or

setpoint and the actual process output.

b) Frequency domain criteria such as bandwidth and damping could be used in the
specification of the desired closed-loop performance. Furthermore, closed-loop

performance can be expressed in terms of the gain margin and the phase margin.
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c) Time domain criteria, ¢xamples of which are rise time, t,, settling time, t,

damping ratio, and overshoot.

The problem with using performance indices and frequency domain criteria for
performance specifications is their inherent need for detailed analysis. It is difficuit for
process operators to develop heuristics or an engineering "feel" for these criteria. It is
preferred to state the desired closed-loop response in terms of criteria that are easily

observed on-line or easily computed.

Time domain performance criteria are most widely accepted and used in industry
as they provide process control operators with friendly and intuitive specifications that are
easily understood. These performance specifications directly relate to the desired shape
of the process’ cutput allowing process operators io judge - on-line - about the " goodness”
of the control performance. Due to their wide acceptance and usage only time domain

performance specifications are considered further in this thesis.

Section 3.1 presents the most important time domain performance specifications.
Secs::- .2 distinguishes amongst the different types of disturbances encountered in any
process control application. Section 3.3 follows with an exhaustive list of tuning
guidelines for SISO GPC and MIMO GPC, as found in the literature. Constrained MIMO
GPC is also addressed. The selection of performance specifications in conjunction with
the applicable MGPC tuning parameters for implementation in the expert system is the
subject of section 3.4. Section 3.5 presents additional tuning parameters which may be

useful during process startup and process shutdown. Section 3.6 concludes this chapter

with a brief summary.
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3.1 Performance Criteria

Detailed treatment of time domain performance specifications can be found in
Seborg et al. (1989) and also in Stephanopoulos (1984). The following discussion

proceeds by considering the underdamped normalized step response shown in Figure 3.1.

Time domain performance specifications are defined as follows:

1) Overshoot: This is the ratio of a/b, where b is the final or ultimate vaiue
of the response at steady state, and ’a’ is the maximum amount of by which the

response exceeds its ultimate value.

2) Decay Ratio: This is the ratio of c/a, where c is the amount by which the

second peak exceeds the ultimate value.
3) Period of Oscillation: T is the time between two successive peaks.

4) Rise Time: t, is the amount of time the process output takes to reach a
specified output level for the first time. The specified output level is usually given
in percent of the change in steady state values. Popular values are 80% as well as
100%. A special case is 63.3% for a first order process with no dead time; as this
yields the value of its time constant T. Alternate definitions exclude the process’

dead time by defining t, as the time required for the response to rise from 10% to
90% of its final value.

4) Time to First Peak: t, is the amount of time the process output takes to

reach its first maximum value.

5) Settling Time: t, is the amount of time the process output takes to reach

within £5% of the final value and remain within this bound. A value of ¥2% is
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time

Figure 3.1 Characteristics of an underdamped unit step response.
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also frequently used.

The above performance criteria make little distinction between servo and
regulatory control objectives. Indeed, for most control algorithms once servo control
criteria are specified, the regulatory response is fixed as there is only one degree of
freedom in the design of the controller. Thus performance tuning of one degree of
freedom control algorithms is a juggling act or trade-off between regulatory and servo
control performance. MclIntosh (1988), however, shows that GPC is a two degrees of
freedom controller allowing separate servo and regulatory control specifications. To
clarify this distinction the following list provides possible servo and regulatory control
criteria:

Servo control criteria:

a) Overshoot

b) Decay Ratio

c) Period of Oscillation
d) Rise Time

e) Time to First Peak
f) Settling Time

Regulatory control criteria:
a) Decay Ratio
b) Control Signal Variance

¢) Settling Time

The final selection of performance criteria depends very much on the specific process to
be controlled. In the petro-chemical industry the majority of processes display
overdamped responses for which the decay ratio is not a suitable performance criteria. In
addition, model-plant mismatch and stochastic disturbances (i.e. measurement noise) are
invariably present in most control applications; and hence the calculation of the

performance criteria must be based on several data points to reduce the effect of
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measurement noise. In addition, a priori information regarding the particular process may

influence the final selection of performance criteria.
3.2 Types of Disturbances

Chemical processes are subject to various kinds of noise sources, ranging from
stochastic zero-mean measurement noise to Brownian motion or non-stationary, random-
walk type disturbances. This thesis considers only unmeasurable noise sources as
feedforward control can be applied to measurable disturbances. It is advantageous to
distinguish between input and output disturbances and relate these io the ARIMAX
process model. Based on the ARIMAX model

Ay(®= Bu(@-1)+ d (O + Ad®) (3.2)

the following disturbance sources are considered in this thesis:

i) d,(t) represent non-zero-mean input step disturbances, and
i) d,(t) represent stochastic output disturbances with zero-mean.

The above disturbance sources are illustrated in figure 3.2.
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Figure 3.2 Input and Output disturbance sources
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3.3 GPC Tuning Parameters

After the puincation of the single-input single-output (SISO) GPC algorithm by
Clarke et al. (1987a) research activity focused on the selection of the algorithm’s tuning
parameters. Mohtadi (1987) extended the basic GPC algorithm to include multi-input
multi-output (MIMO) systems. It is useful to review the tuning guidelines provided in the
literature for SISO GPC followed by the guidelines provided for MIMO GPC since there
are subtle yet important differences between the two. This review is followed by

observations and guidelines for constrained MIMO GPC.

3.3.1 SISO GPC Tuning Parameters

Guidelines for the selection of unconstrained SISO GPC tuning parameters have
been provided by Clarke et al. (1 987a,b), Mohtadi (1987), McIntosh (1988), and Scattolini
et al. (1990). All authors agree that the maximum output prediction horizon, N,, must be
greater than the dead time of the process and ultimately relate it to the closed-loop rise-
time, t. In the case of nonminimum-phase processes N, must also be selected sufficiently
large as to "look beyond” the initial inverse response. If the dead time of the process is
known then the minimum output prediction horizon, N,, should be set to this value. In
the case where the dead time is not known, or is variable, setting N, to 1 and setting the
control weighting, A, to a small value will result in no loss of stability. By filtering the
setpoint with a user chosen P(q’") transfer function one can obtain an approximate pole

placement controller or approximate model following (Mohtadi, 1987). Mohtadi (1987)
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and Clarke er al. (1987a,b) present the following stability criteria for limiting cases of

GPC:

Closed Loop Stability

Clarke et al. (1987b) prove that the closed-loop system is stable if the system is
observable and controllable and if

a) N, >0 ,NU=N,and A >0 or
B) N, > 0o, NU > e, and A =0 where NUSN, -n +1

where n is the number of states of the plant (i.e. n=max(3a+1,3b)).

Mean Level Control

For open-loop stable processes Clarke et al. (1987b) show that the closed-loop

poles will be placed at the same locations as the open-loop poles with
NU=N,=1,A=0,P=1withN;, = oo

Hence the GPC controller will provide a step change in control action following

a step setpoint change which will drive the process output to the setpoint with the

same dynamics as the open-loop system, but with no offset. For practical purposes

N, — oo can be replaced with a finite number equal to the settling time of the

process in terms of sample times.

State-dead-beat Control

The closed-loop system is equivalent to a stable state-dead-beat controller if the

system is observable and controllable and if

N,=n,l=0,NU=n,‘P=:l,andNZZZn-1
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where n is the number of states of the plant (Clarke et al., 1987b). Mclntosh
(1921) indicates that relaxed specifications of

NU=8a+1,N,23b+1,P=1and N,2NU+N, -1
still deliver dead-beat control.

Pole-placement Control

Mohtadi (1987) proves that the closed-lcop system is equivalent to a pole-
placement controller if the system is observable and detectable and if
N,=n,N2——>oo,andk-—>0andNU=Nzor
A=0,and NU=N,-n.
For finite horizons the above is reduced to
N,_>_n,N2~N,_>_n-1,NU=N,,and7».—>0.
where n is the number of states of the system. The closed-loop poles are placed

at the zeros of P(q").

MclIntosh (1988) points out that exact pole placement can only be achieved if the process
has no dead time. Furthermore, processes with nonminimum phase, and/or fractional
deiays, as well as , processes with pole over zero excess larger than two, will yield
discrete systems with zeros outside the unit circle. Exact model-following will attempt to
cancel these unstable zeros with unstable closed-loop poles. This is clearly not desirable,
and hence McIntosh (1988, and 1991) develops the Detuned Model Following

configuration (see below).

Subsequent to commissioning, the GPC tuning parameters may be adjusted on-line
to achieve the desired closed-loop control performance. McIntosh (1988, 1991) presents
three GPC control algorithm configurations aimed at fixing as many controller parameters

as possible, and using but one remaining parameter to tune the process’ response. The

configurations are:
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Output Horizon Configuration

For this configuration the fixed GPC parameters are

NU=1,N,=1,P=1,A=0.
The active tuning parameter, N,, is used to vary the speed of response over the
range of

d+ 1SN, S0
where d is the delay of the process in sampling intervals. For practical
implementation the above range can be reduced to
dpax +1 <N, ¢

where d_,, is the maximum expected time delay and t is the settling time of the
open-loop process in sampling intervals including the delay. If the process to be
controlled is a nonminimum phase plant, then N, must be sufficiently large such

that N, = N, where N, satisfies the relation

Ny
j=1

where g; are the process step response coefficients, and K, is the steady state gain
of the process (i.e. K, = B(1)/A(1) ).

Lambda Weighting Configuration

This strategy fixes the following parameters:
NU =8a + 1, N, = 8b + 1, N; = max( NU + N, - 1, t/T,, Np, ), P =1
where Sa and Sb are the orders of the model polynomials A(q”) and B(q")

respectively. The scalar control weighting, A, is used as the active tuning

parameter with
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0<A<oo.
A value of N, roughly equal to the rise i, & ‘iere defined as the time required
for the process output to reach 63% of the final steady state value including the
delay), will also normally be larger thai: I o

Detunied Model Following

This configuration uses P(qg") as the active tuning parameter by choosing
P(qh) = 1/M(@G"h
where M(q") is the desired closed-loop model. McIntosh (1988) provides
guidelines for selecting M(q™") and fixes
NU=8+1,N,=1,N,>d+NU,and A = 0.

Furthermore, it is recommended to set N, = t,, where ¢, is the rise time as defined
above. Following these recommendations the controller is sufficiently detuned so
as to avoid exact model following; hence circumventing the cancellation of any

open-loop zeros.

In the case of open-loop unstable processes the Lambda Weighting configuration
requires A < A, wWhere A, is the upper bound on A yielding closed-loop stability. This
is conceptually misleading as large values of A are generally considered to be
conservative. Thus McIntosh (1988) recommends the Output Horizon Configuration and

Detuned Model Following Configuration over the Lambda Weighting Configuration.

The robustness of the SISO GPC algorithm to model-plant mismatch as well as
disturbances can be greatly enhanced by the use of the T(q") polynomial without affecting
servo response characteristics (McIntosh, 1988). Clarke et al. (1987b) as well as Mohtadi
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(1987) recommend 1/T(q") equal to a fixed low-pass filter. Investigations by Mclntosh
(1988) show that

T@) =(1-¢ )
where 0.5 < ¢, < 0.95, with a defanlt value of ¢, = 0.8, yield improved performance.
Clarke and Mohtadi (1989) suggest that the degree of T(q") be equal to 8A + 1. There
is common agreement that any reasonable choice of T(a™") provides improved performance

in the presence of MPM and also reduces control effort.

In addition to improved perfiormance in the presence of MPM, the use of T
provides GPC with its twe degrees of freedom structure. MclIntosh (1988) shows that
servo and regulatory rmodes are commpletely decoupled if there is no MPM. Furthermore,
the author poirts out that given a reasonable process model, T(q") may be adjusted so as
to modify the rejection of disturbances without affecting the response to setpoint changes
significantly. This implies that both servo response and regulatory response criteria may
be specified. Intuitively, by employing a low-pass filter, high frequency components due
to unmodelled dynamics or high frequency unmeasurable load disturbances are removed
prior to prediction (recall that prediction is performed with equation 2.21). This improves
the robustness of GPC to MPM and stochastic disturbances with zero-mean (e.g.
measurement noise or stochastic output disturbances with zero-mean). The use of T(qh),
however, does adversely effect GPC’s disturbance rejection performance of non-zero-
mean noise sources. Specifically, regulatory response to non-zero-mean input step
disturbances is degraded. This drawback, albeit noticeable, is greatly overshadowed by
the advantages gained through the use of T(q™).
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3.3.2 MIMO GPC Tuning Parameters

Subsequent o the extension of GPC to multi-input muilti-output processes (€.g.
MGPC), Shah et al. (1987) show that multivariable GPC is pairing or order invariant
provided the output and control horizons are selected to be the same for each channel.
Furthermore, the authors point out that settings of N,=1,NU=1,andas N; = result
in the mean level control law (analogous to the SISO GPC case discussed in section
3.3.1). In addition, the authors point out that knowledge of the process’ interactor matrix

is not necessary provided the following sufficient but not necessary condition is applied:

N,-NU z d-1 3.4

N,=1L,P=LA=0
where d is the maximum forward shift in the interactor matrix. In other words, obeying

the above guideline guarantees that ( G,’ G, )! exists (this term appears in the control

law, equation 2.19).

Mohtadi er al. (1991) provide three guideliv:zs for selecting MIMO GPC tuning

parameters and they are listed below:

Guideline 1

There are two basic configurations for using MGPC designs:

. Set NU = 1 and adjust the properties of the controller with N,. N,
is typically set to the dominant time constant of the open-loop
system (about 10 samples, if the sample rate is chosen according
to usual rules of thumb). Different N,; for different channels will
only be necessary with systems which have widely varying
dynamics.

. Set N, to a reasonable value (= dominant time constant of the

system), use large NU (= number of oscillatory or unstable modes
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of the system, say 4) and use the properties of A and P to achieve
the desired results.

Guideline 2

With input/output based incremental models as opposed to impulse or step

response models it is always necessary to use T to improve sensitivity and

robustness. The order of T should be commensurate with A. A diagonal structure
would only be necessary if there are different noise levels at different channels or
the unmodelled dynamics is known to be highly structured. In most cases T
proportional to identity will probably suffice. The position of the poles marginally
faster than open-loop dynamics appears to yield satisfactory results. Highly
resonant and slow poles should of course be excluded. With impulse response

models T is effectively set to A, and therefore extra filtering is rarely necessary.

Guideline 3

Use v, and P to reduce high frequency coupling by rensliting the fast varying
channels. Use A to improve the control sensitivity. A ats:: »ppears to be the only
tocl to overcome problems associated with ill ce::inacd systems. A reduces the
condition number of the controller and thus helps ia ::ducing the sensitivity to

directional perturbations with ill conditioned systems.

The reader may have noticed a great degree of similarity between MIMO GPC and
SISO GPC tuning parameter guidelines. In fact, MIMO GPC Guideline 1 reflects the
Output Horizon, Lambda Weighting, and Detuned Model Following configurations of
SISO GPC. Similarly, the Mean Level Control property of MIMO GPC is analogous to
that of SISO GPC. And lastly, thz arguments presented in section 3.3.1 pertaining to the

use of T(g") for SISO GPC are also applicable to the use of T for MIMO GPC.
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3.3.3 Constrained MIMO GPC Tuning Parameters

The addition of constraints for the multi-input, multi-output GPC control algorithm
provides additional tuning parameters to meet closed-loop performance criteria. Mutha
(1990) presents his MGPC algorithm which uses input rate and amplitude constraints as

well as output amplitude constraints. Based on this algorithm he provides the following

guidelines and observations:

a) The effect of input weighting (A) is masked in the presence of tight input rate
constraints.

b) Input rate constraints handie unstable systems better than A weightng.
However, if very large A do stabilize the system then the resulting control action
is "smoother".

¢) Tight input rate constraints can be used to achieve smooth decoupling among
output channels.

d) Fixed parameter MGPC cannot achieve offset free control with large model-
plant mismatch (i.e. rrusmatch > 50% of the steady state gain) in all output
channels. A tuning guideline for selecting output weighting, T, for systems with
model-plant mismatch is to select larger output weighting terms for output
channels with higher modcl-plant mismatch.

e) If the amount of model-plant mismatch is unknown then v; should be selected

proportional to the gain of the channel.

Aithough the constrained MIMO GPC algorithm provides the user with a multitude of
tuning parameters, closed-loop stability analysis is not possible in the presence of active
constraints. This shortcoming, although serious, is overshadowed by the algorithms’ very
apparent capabilities. Recent work by Zafiriou (1991) provides some insight into the
difficulties of performing closed-loop siability analysis in the presence of active
constraints.



3.4 Selection of Performance Criteria and GPC Tuning

Parameters

The expert system implementation is applicable to a wide range of processes
requiring the performance criteria to be equally applicable to a wide range of processes.
Although most chemical processes display an overdamped response, if excited sufficiently
hard these will also display an underdamped response. Hence the servo control criteria
must accommodate both types of responses. This thesis assumes that the prediction
horizons and control horizons (i.e. N,, N,, NU) are the same for each channel as different
horizons for different channels are only necessary for processes with widely different
dynamics in each channel (Mohtadi et al. 1990). This assumption implies that servo

criteria for different output channels may not be met independently.

Disturbances in the form of measurement noise and Brownian motion are
considered as these manifest themselves in any real control application. It is desirable to
decouple output channels form each other as much as possible to reduce the effect of
external disturbances. Indeed setpoint changes in one channel act as disturbances upon all
remaining channels. The T filter implementation in this thesis is limited to T =1 T(q"),
hence one common T(q") is applied to all channels. This implies that certain regulatory

performance specifications for different input and output channels may not be met
independently.

The selection of performance criteria is based upon the desired closed-loop
response of the process as well as simplicity in detection. For the subsequent discussion
consider the non-minimum phase system with dominant off-diagonal elements, and a non-

diagonal delay matrix given by Shah er al. (1987):
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04 z™2
_ -1 _ ey
(A-‘ B) - 1-0.6z 1-0.6z (3.5)
M! z -1 0.2 z ~2

1-08z7' 1-0.8z7"

and for the purposes of model-plant mismatch consider the following:

0.48 0.8z72
_ -1 _ -1
(4B, - 1-0.66z 1-0.54z (3.6)
P 0.8z7! 0242772

1-0.72z' 1-0.88z"

Where the unit delay due to a zero order hold has been extracted from each individual
transfer function (recall the definition of the ARIMAX model as per sectien 2.3.1). The
amount of MPM consists of a 10% displacement in the pole location for every pole, and
a minimum and maximum steady state gain mismatch of 30% and 100% respectively. A

sampling time of T, = 2 seconds is used.

3.4.1 Servo Performance Criteria

Servo control performance criteria are an important aspect of the control system
as these reflect the desired closed-loop control performance during setpoint changes. In
order to apply the expert system implementation to as many processes as possible, it is
advantageous to accommodate both underdamped and overdamped processes. For this
purpose, two servo response criteria have been selected. The primary and secondary servo

response criteria, applicable to each output channel, are: rise time, and overshoot.
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The primary servo response criteria, rise time, is defined as the time required by
the process output to reach 80% of the final or steady state value the first time; and thus
includes the dead time. For digital implementations t, is measured from the first sampling
interval after a setpoint change until the 80% level is reached. In order to reduce the
effect of measurement noise, t, is calculated on-line using three data points and the central

difference derivative approximation. The on-line calculation of t, is given by:

et T, = the sampling interval, and
k., = time in samples such that
k, T, <t < (k,+ DT, and
yk) = the process output at time t = k T, and
Aw = the change in setpoint of the process,

then the derivative approximation becomes

al | WktD - yk,-D)
dtley, 2T

5

= m 3.7

hence

| 084w - y(k)

m

t = Tk

r 3 r

3.8)

For SISO systems t, is calculated directly using equation 3.8. For MIMO systems the rise

time of output channel i, namely t, is calculated in an analogous manner.

At this point is it useful to investigate the effect of the maximum output prediction
horizon and control horizon (i.e. N, NU), on the rise time, t,. For the process given by
equation 3.5, consider figure 3.3 which depicts the rise times, t,, and t,, versus N, for
given settings of NU. This figure indicates that within the calculation error given by
equation 3.7 the rise time t, is unaffected by the choice of output prediction horizon N,

if N, = 1, and NU > 1, and the constraints are not active (i.e. unconstrained solution).
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Excluded from this figure are the results obtained with NU = 4 and NU = 5 as these yield
approximately the same t as with NU = 3. Furthermore, this figure shows that by
adjusting N, the duration of t, varies from open-loop to values that exceed the responses
with settings of N, = 1 and NU > 1. Although no figures are provided, similar results are
obtained for the remaining two benchmark probiems used in chapter 5. Based on these
results, the default control and output prediction horizons, as used by the expert system,
are:
Fix NU = 1, N, = 1, and

adjust N, to meet rise time specifications.

By fixing NU = 1, upper and lower bounds on N, can be established. The lower
bound on N, is given by solving equation 3.4. This, however, requires explicit knowledge
of the process’ interactor matrix, d. Typically, d < d,,, where dy,, is the maximum
forward shift of the system’s delay matrix (both d and d,,,, include the unit delay due the
zero-order hold). Substituting d,,, into equation 3.4, and using a non-zero value for A,

yields the following conservative relationship which is used as the lower bound on N,:

N,-NU > d__~1 (3.9)

N, <d,,P=LA=110°
It can be shown that for the case of N, = d (but N, < N, of course) equation 3.4 is valid
provided d is replaced with N,. Hence in the event that N, = d,,.., €equation 3.10 is used
to obtain the lower bound on N,:

N,-NU = N,-1 (3.10)

N,2d,.P=LA=110°
Equations 3.9 and 3.10 determine the lower bound of N,. These relations do not,
however, impose any limitations on its upper bound. As the computational load is directly

proportional to N,, an upper limit resulting in essentiaily open-loop dynamics is imposed.
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This upper limit on N,, as implemented, is 40. This choice is confirmed by figure 3.3,
which shows that settings of N, = 40 and NU = 1 yield closed-loop responses with
essentially open-loop dynamics.

The sampling time, T,, impacts the initial setting of N, used during
commissioning. For implementation with the expert system T, is selected in accordance
with the usual rules of thumb (i.e. T, = 1/10 of dominant time constant) and an initial
value of N, = 10 is used consistent with guideline 1 given in section 3.3.2 . Furthermore,
the control weighting is set to a constant value of 2. = 10° for each input channel
resulting in A = I 10, where I is the identity matrix. Hence the sole purpose of control
weighting is to guard against ill conditioned systems.

The secondary serve response criteria, overshoot, consists of a user specified
percentage applied to the change in setpoint. This criteria is implemented on-line using
output constraints. Clearly t, and overshoot are conflicting specifications. For overdamped
processes which exhibit no overshoot as well as underdamped processes exhibiting little
overshoot, N, is adjusted such that only t, is met. For underdamped processes showing
large overshoot, N, is adjusted such that the overshoot does not exceed its specified limit.
Thus the overshoot specification represents the largest allowable limit if the rise time
criteria for this channel cannot be met.

In summary, the user specifies both t, and overshoot for each output channel.
However, as N, affects the speed of response of all channels their respective
specifications cannot be met independently. Hence the interpretation of the primary and

secondary servo response specifications, t, and overshoot, as applicable to MIMO

processes is:

Fix NU = 1 and adjust N, until the output channel with the most stringent t,

specification is met subject to its overshoot specification.

This statement implies that there may be specifications whereby the most stringent t,

specification is met and t, of all other output channels exceed their specifications (i.e. are
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faster than specified). The lower bound of N, is given by equations 3.9 and 3.10, and its

upper bound, as implemented, is 40.

3.4.2 Regulatory Performance Criteria

Regulatory control performance criteria are an important aspect of the control
system as these reflect the desired closed-loop control performance during steady state

operation. Three regulatory performance criteria are selected for implementation with the

expert system. The criteria are:

)] Control signal variance, o°,, this is specified for each input channel and is
calculated on-line omitting data during setpoint changes.

i1) Regulation band, r,, which is specified for each ouput channel, and represents an
upper and lower bound on the allowable drift from the desired setpoint.

iii) Maximum desirable standard deviation, Gyy,,. this is specified for the process and

places an upper limit on the permitted standard deviation for output channels (this

is equally applicable to all output channels).

The above criteria address both stochastic disturbances, typically in the form of
measurement noise, as well as Brownian motion, which is often regarded as step like
disturbances at random times. As will be shown shortly, o2, is directly related to the
amount of filtering performed with the disturbance rejection matrix, T. In contrast, the
output weighting matrix, I, is used to "focus” the GPC algorithm thereby reducing the
standard deviation of the most vigorous output channel. While r, is readily implemented
using output constraints, it places bounds on the allowable drift of output channels from
their setpoints. At this point the reader may find it useful to briefly review sections

2.3.5.1 and 2.3.5.4 which deal exclusively with T and the use of constraints.
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In order to minimize the computational load, this thesis limits the disturbance
rejection matrix to T = T(q") 1, where I is the identity matrix. Hence one commen
T(q") is applied to all channels. Of particular importance to MIMO processes is steady
state gain normalization of T(q") (i.e. T(q"' = 1) = 1). McIntosh (1988) proves that this
is not necessary for SISO processes, however, T(q") must be normalized for MIMO
processes. Through on-line simulations of MIMO processes it was observed that updating
and failing to normalize T(q") causes the GPC algorithm to erroneously detect and
compensate for large sudden steady state gain mismatches resulting in great regulatory

activity. Consequently consider T(q") given by the following normalized configuration:
1- 8T
LI 2 (3.11)
Tg™"h \l1-cg™

0.5<c <095, and 8T =1 or 2.

Based on equation 3.11, default first and second order T(q") filters are defined:

Default first order filter

1 1-¢

S S (3.12)
g™ 1-c,q7!

where ¢,=0.8, and 6T = 1.

Default second order filter
2
1 _( 1-a (3.13)
g™ 1-cq7!

where ¢,=0.8, and 8T = 2.
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For processes whose input-output relationships are approximated by first order plus time
delay continuous time transfer functions (i.e. 8A = 1) the default T(q") filters are of the

recommended order (Mclntosh 1988, Clarke and Mohtadi 1989, see also section 3.3.2).

Lower and upper bounds on T(q') are obtained by considering the range of
movement imposed on ¢, and OT. These bounds are obtained by substituting the

appropriate values for ¢, and 8T into equation 3.11. For convenience, the lower and upper
bounds are listed below:

Lower bound on T(q")

1 _ 05 (3.14)
g 1-05¢7
Upper bound on T(g™)
1 _ 00025 (3.15)

(g™ (1-095q7")

The cffect of the defanit T(q") filters on the closed-locop control performance in
the presence of Gaussian noise is shown in figure 3.4. This figure illustrates the dramatic
effect T(q'") has on 6%, Also, this figure suggests that in the absence of any T(q") filter
the GPC algorithm vigorously attempts to cancel the effect of the Gaussian noise and,
inadvertently, adds to the noise. This figure emphasizes the direct relationship among

filiering with T(q") and control signal activity.

Again consider the process given by equation 3.5 with MPM given by equation

3.6. Figure 3.5 clearly indicates that the default first order T(q™") filter easily stabilizes this
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Figure 3.4 The effect of first and second order T(q") filters on the non-minimum phase
process subject to Gaussian noise.
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Unconstrained Solution, with MPM
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Figure 3.5 The non-minimum phase process under conditions of MPM, with and
without first order default T(q") filters.
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system (recall that the amount of MPM is about 10% in the location of every pole, and
30% to 100% in the steacy state gains !). This figure substantiates the use of T(q") to

improve GPC’s robustness to MPM.

For practical implementations, ¢, is limited to 0.5 < ¢, < 0.95. Where ¢, = 0.5
represents light filtering and ¢, = 0.95 represents heavy filtering. Also, whenever the value
of c, is updated on-line estimates of filtered values for new y, and new u; are required
(i.e. replacing the values of old y, and old u, at the end of the history stack requires
previous values that have been discarded). It was found through simulations that provided
the changes in ¢, are small a good estimate for the new y, and new u, are simply the
values of the old y, and old u,. This is illustrated at the switching point from first order
to second order default T(q") filters in figure 3.4 (focus on iteration 305 of this figure).
At this location the process’ outputs appear to encounter disturbances; this however is due
to the large switch from default first order T(q") filter to default second order T(q") filter.
As will be shown in chapter 5, such "imaginary" disturbances are not encountered if

adjustments in c, are gradual, or the switching occurs from second order to firsi order
T(q™") filters.

By default, a T(q") filter will always be implemented with the constrained MIMO
GPC algorithm so as to reduce the effects of MPM. However, as T = T(@" 1, it is
apparent that the control signal variance specifications of each process input can not be

met independently. Hence the tuning guideline for T(g") is:

Tune T(q') such that the process input with the most stringent control signal

variance specification is met.

This implies that some process inputs will exceed their control signal variance

specifications (i.e. better than specified).



The regulation band, r,, serves to decouple process outputs during setpoint changes
and reduces the effect of input step disturbances, d,(t). The regulation band is specified

in percent such that the allowable bounds on y,(t) are given by:

(1-r,) < —y—‘l(;tz <(1+r) , 5+ 0 (3.16)

where b = steady state value.

In the event that b = 0, the upper and lower bounds on y,(t) are given by 4, respectively.

‘t'he use of 1, to decouple output channels during setpoint changes is show'i: in
figure 3.6. This figure illustrates the use of output constrainis to implement 1, (i.e. the
output CONSraints y; ., and ¥y mn are equal to +r, and -r,, respectively). Output y,(t) is
limited to within the regulation band during setpoint changes in y,(t). This figure also
shows how output constraints on y,(t) are updated to reflect its overshoot specifications

during setpoint changes; and, subsequently are set back to the values of the regulation
band.

Figuare 3.7 illustrates the use of r, during input step disturbance rejection. Smail
input step disturbances which do not violate r, of any output channel, are rejected in an
analogous marner to the unconstrained solution (i.e. compare results of iteration 20 with
iteration 100). On the other hand, the large input step disturbance in inout channel 2
forces this output channel to drift beyond its . Similarly, output channel 1 is forced
outside of its r, due to coupling among the channels. Comparing the results of iteration
60 with iteration 140, the use of 1, yields a marginal improvement in disturbance rejection
for both output channels. In fact, the constrained GPC algorithm fully exploits the range
of 1, to fight disturbances entering the system. Thus the use of r, results in improved

regulatory response to input step disturbances.
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Figure 3.6 Use of r, to decouple process outputs during setpoint changes.
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Figure 3.7 Use of 1, to improve regulatory control to input step disturbances.
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Output weighting, I', affects the standard deviation of process outputs, G, and is
used to focus the GPC algorithm. This tuning parameter is used to balance process
outputs by reducing o, of the most vigorous channel at a cost of increased control signal
activity. Consider figure 3.8 which was generated with the process given by equation 3.5
and simulated using Gaussian noise. While maintaining 7, = 1.0 the value of 7y, was
reduced causing output y,(t) to drift from its setp@int. Throughout this run output yo(t)
remains relatively constant (i.e. its mean and standard-deviation do not change much). As
illustrated T is an important tuning parameter in baluncing process outputs. Recall that
the scalar quadratic cost function Jygpc directly addresses setpoint tracking, however,
does not explicitly handle decoupling. I" can be exploited to balance the control
performance among individual process outputs by scaling such that under typical
operating conditions the values used within the control calculation after analog to digital
conversion as well as normalization are of similar magnitude (Mutha, 1990). This thesis

does not address process outputs of greatly dissimilar magnitudes.

In summary, three regulatory performance criteria are selected: a control signal
variance, G2, is specified for each input channel; a regulation band, r,, is specified for
each output channel; and a maximum cutput standard deviation, G, is specified for the
process. These specifications are met by adjusting appropriate GPC tuning parameters. As
shown earlier, 62, is directly related to the amount of T filtering performed. In contrast,
r, is readily implemented using output amplitude constraints and effectively decouples
process outputs during setpoint changes. In addition, the use of 1, yields improved
regulatory response to input step disturbances. The output weighting matrix, T, is used
to “"focus” the GPC algorithm thereby reducing the standard deviation of the most
vigorous output channel. Scaling is performed whenever the standard deviation of one or

more output channels approaches or exceed the Gy specification.
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Figure 3.8 Effect of output weighting I' on output drift.
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3.5 Additional GPC Tuning Parameters

The constrained MIMO GPC algorithm provides tuning parameters that may be
useful during process startup Or process shutdown. Figure 3.9 illustrates three alternatives
for implementing setpoint changes. Iterations O to 30 depict the unconstrained response
to step setpoint changes in y, (1) and y,(t). Iterations 30 to 80 show similar step setpoint
changes, however, implemented with tight input rate constraints. Tight rate constraints
prevent large sudden control actions; hence, y,(t) and y,(t) track their setpoints slowly but
steadily. Iterations 80 to 150 shows the process’ response to setpoint scheduling. Setpoint
scheduling causes the process outputs to approximately follow the shape of the setpoints
delayed by the dead time. Setpoint scheduling is implemented by gradually adjusting the

setpoint as opposed to maiing one large step like setpoint change.
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3.6 Summary

Performance specifications are of utmost importance to any control system as these
reflect the desired closed-loop response. GPC’s unique two degrees of freedom structure
allows for separate servo and regulatory control performance specifications. Time domain
criteria are selected for implementation as these are intuitive, easily observed on-line, and
easily computed. Furthermore, in order to apply the expert system implementation to as
many processes as possible both underdamped and overdamped processes are
accommodated. The servo control performance criteria consist of t_ and overshoot for each
output channel (t, uses the 80% level and includes the process’ dead time). The regulatory
control performance criteria consist of the regulation band, r,, the control signal variance,
o%,, and the maximum desirable output standard deviation, Oypas- The criteria ¢, and 1,
are specified for each input 2nd output channel respectively. A single value for Gy,,

applies equally to all process outputs.

In order to maintain the closed-loop control performance, the expert system
supervisor adjusts pertinent GPC tuning parameters in an on-line real-time environment.
Hence the appropriate performance-criteria-GPC-tuning-parameter pairings are also
identified in this chapter. Based on the studies conducted, each performance criteria is
paired with the most effective GPC tuning parameter. Upper and lower bounds are also
developed for each tuning parameter, as well as default settings for all remaining
parameters. Tabie 3.1 summarizes the servo and regulatory periormance criteria along

with the applicable GPC tuning parameters.

The expert system supervisor as well as the precise tuning strategies for adjusting

GPC parameters is the topic of chapter 4.
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Performance Criteria Performance GPC Tuning Parameter
Specification
Servo Control t, N,, (with NU = 1)
Servo Control overshoot N,, (with NU = 1)
Regulatory Control o, T(z'"), (adjust ¢, and &T)
Regulatory Control my Ymins Ymax
Regulatory Conrrol Oymax T

Table 3.1 Performance specifications with GPC tuning parameters
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Chapter 4

Supervisory LRPC

This chapter focuses on the performance supervisor whose role is to monitor the
closed-loop control performance of the underlying control algorithm and take appropriate
action so as to maintain user specified performance. The idea of using a supervisory shell
to monitor the actual closed-loop performance is not new. Indeed, Turnbull Control
Systems market their Auto-Tuning Controller which, based on the actual closed-loop
performance, calculates recommended settings for the Proportional plus Integral plus
Derivative action (PID) control algorithm. Foxborc’s Expert Adaptive Controller
(EXACT) goes one step further; it automatically updates PID controller settings once per
setpoint or disturbance transient in order to meet user specified closed-loop performance
specifications. Minter and Fisher (1988) review both of these controllers and conclude that
the addition of a closed-loop performance supervisor to a control algorithm yields

significantly better control performance over a broader operating region.

The need for a closed-loop performance supervisor is substantiated by McIntosh
(1988). He points out that model-plant mismatch causes control performance to
deteriorate. Even under ideal conditions of no MPM the controller settings required to
produce the desired performance may not always be known a priori. MclIntosh’s

implementation of a perforrance supervisor for SISO unconstrained GPC illustrates that
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subsequent to commissioning, the GPC tuning parameters need to be adjested ou-line in

order to achieve the desired closed-iocop control performance.

In recent years research activity has resulted in great advances in Expert Systems
(ES) technology. ES are a subset of Knowledge Based Systems which themselves are a
subset of Al Specifically, ES are computer programs that can solve domain specific
problems. Implementations of ES techinology for process control applications, however,
require on-line communication and real-time computing. These stringent requireiments
were a major obstacle and kept ES technology inside control research labs and well away
from "real-life" process control implementations. Major advances in computer technology
in conjunction with ES technology have paid off. Several companies now offer expert

system development tools for real-time applications (e.g. Personal Consultant Plus by

Texas Instruments, G2 by Gensym).

The application of ES technology to process control problems has resulted in
applications ranging from controller tuning, adaptation, monitoring and diagnostics, to
supervision. Astrom (1988) presents his views on the evolution of control technology and
suggests that expert systems, when incorporated into the process control environment,
represent the highest plateau of evolution. Integrating ES technology with real-time
control systems is discussed by Arzén (1989a,b), Oyen et a¢l. (1990), and by Beck and
Lauber (1990). The topic of process monitoring and advisory systems via the use of an
expert system in a real-time environment is addressed by Adams et al. (1987),
Doraiswami and Jiang (1989), and Tzouanas (1988). Betta et al. (1990) and Haest et dl.
(1990) address ES for system identification, so far, however, these are limited to off-line
applications. The use of ES to automate and implement heuristic control algorithms is
discussed by Zhongyuan (1990) and by Sripada et al. (1987). Aynsley et al. (1989)
present an ES application for fermentation control which performs supervision,

monitoring, fault detection and diagnostics. The use of a meta system 1o coordinate the
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activity among several ES and numerical processing routines is discussed by Rao er al.
(1989).

Section 4.1 presents the generic architeciure for an ES supervisor. The real-time
object oriented expert system development tool G2, which was utilized to implement a
subset of the proposed ES supervisor, is the topic of section 4.2. Section 4.3 details the
performance tuning strategies and the developed software that forms the Adaptive Long

range predictive contrel Performance Supervisor (ALPS).
4.1 Expert Supervision - an architecture

This section outlines the architecture and tasks of an ES supervisor. As seen in the
introduction to this chapter, current ES technology reaches well beyond the tuning of
LRPC algorithms. The routine task of monitoring the closed-loop performance and
subsequent fine tuning of LRPC parameters is but one component of an ES supervisor.
The architecture presented below, at first glace, may appear far reaching; but is achievable

with the current state of ES techinology.

The ES supervisor hierarchy is graphically illustrated in figure 4.1. This figure
shows that the ES supervisor resides above the control algorithms. Furthermore, the
control algorithms are external to the ES but may or may not reside within the same
physical computer. By separating the control algorithms from the ES supervisor, an extrd
degree of fault tolerance cr safety is achieved as both systems operate independently.
Also, this allows for the best utilization of ES capabilities which is symbolic processing,

linked to external routines for numerical processing.

Due to the interaction between sequential process units, where the end-product of
one unit is the feedstock to the next unit, the supervisor must interact with and monitor

the performance of several unit operations simultaneously. This strategy allows for the
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69



development of meaningful contingency operations in the event of upsets which could
affect a series of down-stream process units. Each individual process may be of dimension

n x m (i.e. MIMO processes).

The ES supervisor consists of several components:
a) Closed-loop performance supervision and LRPC tuning
b) Fault and disturbance deiection and diagnostics
¢) Conisigency operations
2y Oper-or interface

These issues are discussed in greater detail in the following sections.
4.1.1 Closed-loop performance supervision and LRPC tuning

The supervisor monitors the acrual closed-losp control performance and makes the
necessary adjustments in the LRPC tuning parameters so as to achieve the desired closed-
ioop control performance. Figure 4.2 illustrates this procedure. Notice the similarity of
this srategy with that of a conventional feedback lcop. While the LRPC algorithm
calculates process inputs based upon the error between the setpoints and the actual
process outputs, the LRPC supervisor adjusts the tuning parameters base<: upon the error

between the desired and actual closed-loop control performance.

The supervisor must take advantage of the two degrees of freedom structure which
the LRPC aigorithm permits. Performance criteria are to consist of both servo

performance criteria 7.nd regulatory performance criteria.

The supervisor must be able to recognize the limitations of the LRPC algorithms.
In the evens that the desired closed-loop performance is not achievable, either due to
unrealistic perfomm:ance specifications or due to closed-loop stability considerations

limiting furiher tuning, the supervisor should alert the process operator.
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4.1.2 Fault and disturbance detection and diagnostics

Both faults and disturbances adversely affect the closed-loop control performance.
The supervisor must be able to detect faults and disturbances and initiate diagnostics.
Once a fault or disturbance has been detected it must be verified. Subsequent to positive
verification the operator is alerted and contingency or backup mode operations are

initiated.

The intelligent representation of information is impertant. Operator warning
messages and alarms must be concise and reflect the causz of a condition as opposed to
its symptoms. For example, consider the failure of a pump which is signified by
abnormally iow pressures and flows. In this case diagnostics must reflect p: . -failure

as opposed to issuing redundant alarms indicating abnormal pressures and flowe.

4.1.3 Contingency operations

Subsequent to the detection of faults or disturbances, contingency operations may
be initiated. Contingency operations are alternate strategies of closed-loop control. In the
event of equipment failures, large disturbances, startup or shutdown, it is the task of the
supervisor to select default or backup settings for the LRPC algorithms. Furthermore, the

contingency operations reflect the best possible control strategy of the affected and

interacting processes.

4.1.4 Operator interface

The process operator represents the final or highest autherity within the process
control hierarchy. Although the ES supervisor is perceived to be fully automated in an on-
line real-time environment, ultimately it is the process operator who may overrule the ES

supervisor. Depending upon the circumstances the u;erator may find the need to turn oft
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the operation of one or more ES supervisor components (e.g. LRPC tuning, diagnostics
etc. may be turned off).

The man-machine interface is of utmost importance. Messages and
recommendations must be clear, concise, and revealing to process operators. In the area
of fault detection and diagnostics for example, the use of color-coded on-screen
schematics indicating the extent of the fault and/or diagnosis would be be very useful.

The ES supervisor must display intelligent information and, upon request, provide
additonal data.
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4.2 G2

The real-time expert system development tocl - G2 - is utilized to implement a
subset of the ES supervisor. This section provides a brief overview of the facilities and
development environment provided by G2. Although the illustrative examples in the
following sections relate directly to LRPC, G2 is not specific to process control
applications. The interested reader can find general discussions on G2 in the literature
(Moore et al. 1990, Wolfe 1987) and detailed information in the reference manuals
(Gersy:a 1990,1991). Current uses of G2 include:

» Process Control

« Computer integrated Manufacturing
« Financial Market Trading

» Automatic Testing

« Network Monitoring

» Autonomous Robots

« Simulation

- Satellite Monitoring

» Defense Systems

« Environmental Systems

« Office Decision Systems

4.2.1 Hardware Platform

G2 is available for a number of hardware platforms (e.g2. Symbolics 3600, Texas
Instruments Explorers and Microexplorers, MicroVAX VMS, Sun-3 and Sun-4, SPARC
stations, DEC stations, HP-9G00 300, 700 and 800 series, Macintosh II ) and is installed
at the Department of Chemical Engineering’s research facility on a HP-9000 model 370
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workstation which ases the HP-UX disk operating system. Two other HP-9000 series 300
workstations, namely a model 340 and a model 320, are linked to the model 370 forming
a cluster. The model 370 workstation uses the Motorola 68030 microprocessor and
operates at a clock speed of 33 MHz. The HP-UX disk operating system offers a reai-time

multi-tasking environment. The versions of the disk operating system and G2 are 7.0 and

2.1 respectively.
4.2.2 General Environmeint

G2 is a real-iime object orienied rule ased €xperi Sysicm
is written in the programming language Common Lisp. Figure 4.3 illusrrates the basic
building blocks of a rule based ES:
» rule base
» data base
- inference enginc

» user interface.

Th. .aference engine uses the rules and procedures to infer how to respond to the
conditions of variables and parameters contained in the data base. In addition 10 these
components, the G2 Standard Interface (GSI) allows the developer to link his application
to external routines. GSI is a general link to the "outside world" and is written in the
progra;:.ming language *C’. Externa! “woines ~un o< from simple data input/output
(I/O) drivers, to complex real-time applications. External applications can communicate
with G2 through GSI provided their host machines support Gensym’s Intelligent
Communication Protocol (ICP) whic: provides the handshaking. In addition, G2 provides
many built-in expressions and functions and has the facility to import simple functions

written in FORTRAN or *C’ directly into th: .pplication.
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An application of G2 to a specific domain requires the development of the
knowledge base (KB). As G2 is object oriented, development begins with the definition
of objects called classes. A class hierarchy is established by defining sub-classes which
inherit the attributes (in the simplest case attributes are variables and parameters) from
<heir superior-classes. Instances of classes are interconnected in a manner reflecting the

schematic of the physical problem under investigation. The inference engine infers and

reasons using the interconnections amori; objects.

Knowledge about objects and their interconnections is encode™ -

~ules,
fermulas, and procedures. Deep knowledge is represented in terms oi {0 and
procedures. Formulas can range from simple expressions to differential equ....c . hich

are solved numerically with either the Euler method or the fourth-order Runge-Kutta
method. Procedures are lists of actions to be performed sequentially. Heuristics or shallow
knowledge is encoded in rules. Rules can be generic (i.e. applicable to an entire class of

objects) or specific to one object. The general rorm of a generic rule is:

for any <class>
if <antecedent>

then <consequent>

A specific rule, on the other hand, does not contain the "for any <class>" statement. In
addition, rules can be forward chaining or backward chaining, and are written in an
expressive English-like syntax. The search space can be considerably nayrowed via the
use of the focus and invoke commands. A built-in application simulator is also provided
and may be used to test all or portions of a KB; or as is frequently done in diagnostics,

run a simulation in parallel with a working process to detect and diagnose faults.

The concept of real-time is represented within G2 in terms of update intervals,
validity intervals, and scan intervals. Update intervals tell G2 how frequently tc collect

data for variables. Validity intervals represent the length of time during which the current
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value of a variable remains relevant. Analysis of past data is performed with built-in
statistical functions. A scan interval is a rule attribute which directs the inference engine

to regularly invoke a particular rule. The shortest time interval is 1 second.

G2 employs a menu-driven windowing environment allowing the end-user or
developer to view many items at once. Menus are made to appear by depressing and then
releasing a mouse button (called clicking). A selection is made by clicking on the
appropriate menu choice. A particular G2 application, the KB, consists of rules, schematic
diagrams, graphs, tables, dials, object definitions, etc. which are placed on workspaces.
Workspaces dynamically adjust to the required size and can alsc be manually hidden,
moved, and scaled as required. End-user controls, which consist of action buttons, radio
buttons, check boxes, sliders, and type-in boxes, allow the end-user and developer to enter
data or commence the execution of procedures or invocation of rules merely by clicking
on the appropriate choice. G2 provides an icon editor with which the shape and color of
objects is defined. The color of objects can be changed and flashed by rules (indeed
objects can be moved on their workspaces by rules ') ard can be used to capture and
focus the attention of the end-user. A context sensitive rule editor facilitates easy rule
entry and modification. A KB can be tested and debugged using various built-in features.

This friendly and interactive environment is powerful and enjoyable to work with.
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4.3 ALPS

The Adaptive Long range predictive control Performance Supervisor - ALPS - is
implemented with the real-time expert system development tool G2 and performs
performarce tuning of several constrained MGPC algorithms simultancously. The tuning
mechanisms of ALPS as well as the constrained MGPC algorithms are generic and can
be applied to MIMO processes of any dimension n x m. To illustrate the use of ALPS,
three 2 x 2 processes have been selected and linked to ALPS using the GSI interface.
This configuration is illustrated in figure 4.4. This figure also shows the commercial
quadratic optimisation software package QPSOL which is linked to the MGPC algorithm
(recall that the general solution to the quadratic objective function subject to rate and
amplitude constraint on the inputs and amplitude constraints on the outputs yield a

quadratic programming problem, see also section 2.3.5.4).

Section 4.3.1 lists the specifications for ALPS which is a subset of the generic ES
Supervisor presented in section 4.1. Although ALPS provides many features, its emphasis
is on performance tuning of the constrained MGPC algorithms so as to maintain user
~ecified regulatory and servo control performance. Section 4.3.2 presents options that

.¢ been incorporated into ALPS for the purpose of training plant personnel in utilizing
ALPS as well as the MGPC algorithm(s). Sections 4.3.3 details the ALPS kb knowledge
base and the tuning strategies employed. To give the rcader an appreciation of the
magnitude of the developed software, table 4.1 lists the number of source code lines for
the major modules and their programming languages. The MGPC module is the generic
(i.e. of general dimension n x m) control algorithm allowing on-line updating of all
MGPC tuning parameters considered in this thesis. This module uses a mixed language
interface (FORTRAN/C) to QPSOL, and provides both the consirzined and unconstrained
solutions. The GSI-link module interfaces to actual processes or a process simulator. The
process dimension of the GSl-link is currently limited to a maximum of 2 X 2 (i.e.
processes can be of dimension 1 x 1,1 x2,2x 1, or2 x 2). Table 4.2 shows the relative

size of the developed ALPS.kb knowledge base in terms of its components. The tuning
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strategies employed by ALPS are generic to accommodate processes of dimension n x m.

The detection of the rise time is currently limited to processes with up to 2 outputs, but

is easily extended.

Module _Al‘”l‘W.Language No. lines of code
| MGPC“ —~—-{ C 3500

GSI-L.nkW' | | C 1200

QPS&E&“;‘:" FORTRAN 6000

Table 4 ¢ Programming language and size of developed source code.
(* QPSOL is a commercial software package)

Item l Guantity ?
Rules 326

Procedures 9
Formulas 7
Readouts 42

Table 4.2 Size of ALPS.kb in terms of its components.
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4.3.1 Specifications of ALPS

This secticn points out the criteria implemented as part of ALPS in comparison

to the generic specification of the ES supervisor architecture presented in section 4.1.

4.3.1.1 Closed-loop performance supervision and LRPC tuning

The closed-loop performance specificatiors utilize the MGPC algorithm’s two
degree of freedom structure. The user specifies both servo and regulatory control
performance criteria. These specifications along with the appropriate LRPC tuning

parameters are listed in table 3.1. Note that each of the three MGPC algorithms, as shown
in figure 4.4, is tuned independently.

ALPS recognizes the limitations of the MGPC algorithms. Warning messages are
issued to the process operator questioning the validity of the appropriate performance

specification whenever this specification is not met and,

e the upper bound of N, = 40 was used during the last two consecutive tuning

periods

« the lower bound of N, (given by equations 3.9 and 3.16) was reached during the
last two consecutive tuning periods

« the lower limit of the first order T(q") filter, given by equation 3.15, was
reached during the last two consecutive tuning periods

» the upper limit of the second order T(q") filter, given by equation 3.16, was used

during the last two consecutive tuning periods.
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4.3.1.2 Fault and disturbance detection and diagnostics

ALPS detects communication link failures between GSI and the externai MGPC
algorithms. In such an event ALPS closes the communication link, informs the process
operator, and continues operation with the remaining processes unaffected. No further

fault and disturbance detection is performed.

3.3.1.3 Contingency operations

Contingency operations illustrating the use of setpoint scheduling and "tight” input
rate constraints, which may be useful during process startup and shutdown, are provided.
Also, in the event of a GSI-MGPC communication link failure the switch to
manual/backup mode for the affected process is indicated with a waming message to the

process operator.
4.3.1.4 Operator interface

ALPS uses an integrated, color coded, windowing environment. This environment,
shown only in black and white due to the limitations of the screen dump facility, is shown
in figure 4.5. This figure was generated after sliding apart overlapping workspaces. Notice
that there are three workspaces for each set of functicns: manual setpoint changes by
operator, manual adjustment of output horizons and control horizons, selection of options,
selection of noise and disturbance options, and graphs. When ALPS is in use, only the
very top workspaces are in view. The operator may "leaf through" overlapping
workspaces by clicking with the mouse on action buttons (shown as oval icons). For
example, by clicking on the action button labelled Plots_2 the workspace showing the
graphs for the second process (named stripper_2, it also has the text SHELL to its right)

is pulled onto the top. Also, by clicking on the action button labelled Hide, the particular

workspace completely disappears from view.
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Figure 4.5 Integrated windowing environment provided by ALPS.
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The workspace called Developer’s Panel, at the bottom of figure 4.5, serves as the
command panel from which all workspaces can be brought into view by clicking with the
mouse. Specific information about any obiect is obtained by clicking on its icon. By
clicking on the icon of INPUT1 for example, the operator can access its attribute table
which lists all of its information in detail (this is discussed further in section 4.3.3).
Figure 4.6 is a snap-shot in time of a more typical workspace layout as seen by the
process operator. This figure also shows additional HP-UX windows. Three of these
windows are used by the MGPC algorithms (one MGPC algorithm per window, external
to G2) to display the data I/O transferred over the GSI-MGPC links. An extra HP-UX
window, which the operator can use for any additional tasks, and the real-time HP-UX
clock are also shown. This environment is efficient, allows quick access to workspaces

and their contents, and shows only the requested information.

ALPS is fully automated and keeps the process operator informed of actions
performed with appropriate messages (see the MESSAGE-BOARD workspace in figure
4.6). Also, the operator can - at any time - change setpoints and manually adjust MGPC
tuning parameters by using the provided end-user controls. Process outputs, setpoints,
regulation band r,, and inputs are displayed on graphs versus time. Readout-tables
showing the variance of process inputs, standard deviation of process outputs, etc. are also

provided. Process inputs and outputs are graphically interconnected forming a schematic

(see the Schematic workspace in figure 4.6).

The operator can disable regulatory and/or servo response tuning activities. With
both servo and regulatory response supervision disabled, the role of ALPS is reduced to
providing an interactive real-time interface between the process operator, the MGPC
algorithms, and the processes. ALPS merely schedules data I/O and the execution of the
MGPC algorithms at every sampling interval. This means that the block diagram of figure
4.1 is valid, provided the EXPERT SYSTEM SUPERVISOR block is removed.
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4.3.2 Training facilities provided 5y ALPS

This section presents the options that have been built into ALPS for the purpose
of training plant personnel. The options can be divided into two categories to facilitate
the training of:

a) ALPS, and
b) constrained MGPC.

4.3.2.1 Training in the use of ALPS

Training in the use of ALPS by plant personnel, such as engineers and process
operators, is facilitated. Personnel new to ALPS may initially disable the regulatory and
servo response supervision modes and concentrate on becoming familiar with the
interactive windowing environment. It is important to access the proper workspace for the
particular process of interest. By utilizing an external process simulator (built into the
MGPC algorithm) ALPS can be run in either real-time or simulated-time (change to
simulated-time using G2’s Timing Parameters options menu). Engineers and process
operators can now become familiar with using sliders to change setpoints, output

prediction horizons, and control horizons.

Having mastered the windowing e¢nvironment, the regulatory and servo response
supervision modes can be enabled and studied. ALPS now tunes the MGPC parameters
so as to achieve or maintain the desired closed-loop performance specifications. This can
be verified by comparing the actual performance with the specified perfermance. By
clicking on the icon named Rules (found on the Developer’s Panel) the workspaces
containing the rules responsible for tuning the MIGPC algorithms come into view.
Selecting the option "Highlight Invoked Rules"” from G2’s Run Options menu causes G2
to flash invoked rules. Thus, whenever the inference engine updates the MGPC tuning

parameters the invoked rules are flashed and can be studied in detail.
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4.3.2.2 Training in the use of constrained MGPC

ALPS has several facilities useful for learning the properties of MGPC. By using
a process simulator (see section 4.3.2.1) the following options can be utilized for any

given process, independent of other processes:

» MPM or no MPM
» T(q") filter or no T(q*) filter
« switch from first to second order T(q") filter, and vice versa

» constrained solution using QPSOL or unconstrained solution using

equation 2.19

The following disturbance sources have been implemented in order to make the process

simulations realistic:

» Input step disturbances, d (t), of a user specified amplitude can be
implemented at any input channel

» Stochastic zero-mean output disturbances with a Gaussian or Uniform
distribution, with a user specified variance, can be implemented for each

process independently.
The user may make his selection at any time using the mouse.

The power spectral densities of both the Gaussian and the Uniform noise
distributions are shown in figure 4.7. This figure was generated with MATLAB’s
spectrum command using 2048 data points and shows the log,,(power spectral density)
versus normalized frequency. The power spectral density of Gaussian noise is relatively

constant throughout its entire frequency range. In contrast, the power spectral density of
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Figure 4.7 Power spectrum of the Gaussian and Uniform noise distributions.
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Uniform noise drops off by about 2 orders of magnitude in its low frequency range. Thus
the use of Gaussian noise is recommended as it consistently excites all frequencies

throughout its spectrum.

4.3.3 The ALPS.kb knowledg- »>ase

This section details the developed knowledge base ALPS.kb. The G2 inference
ergine uaay the knowledge encoded in ALPS. .k in terms of its rules and procedures, to
condu¢ perforrnance tuning Of <ot xined MGPC subject to conditions of MPM and
disturbances. Should both the =£avi response supervision and regulatory response
supervision modes be disabled by the operator, then the role of ALPS is reduced to

providing a real-time on-line interface by scheduling activities among the external MGPC
algorithms and data I/O.

The ALPS.kb knowledge base does not reflect the most elegant or efficient use
of G2 built-in functions. Instead it utilizes as many G2 features as possible. The sections
to follow provide an overview with emphasis on the regulatory and servo control tuning
strategies employed. All rules, procedures, and formulas as used by ALPS for the purpose
of tuning are listed in appendix A. Rules, procedures, and formulas which provide the

user interface are numerous and mundane and hav: been omitted from the appendix for

the sake of brevity.

4.3.3.1 Introduction to ALPS.kb

As G2 provides an object-oriented programming environment, development of
ALPS starts with the definition of classes. Consider figure 4.8. This figure shows various
classes which are represented by triangles on the workspace named Classes. Upon

clicking on the icon of GPC_FLAG the table named "GPC_FLAG, an object definition™
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Figure 4.8 Class definitions of ALPS.kb
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appears. This table shows the attributes for this class such as: name, superior class,
attributes, color, icon definition etc. . The workspace named Instances shows five different
instances of the class GPC_FLAG, they are: FLAG_MPM, FLAG_T, FLAG_QPSOL,
FLAG_NOISE, and FLAG_GAUSSIAN_DISTRIBUTION. By clicking on the icon of
FLAG_MPM its table named "FLAG_MPM, a gpc_flag" appears. This table lists all
information on FLAG_MPM, such as its data type, last recorded value, history keeping
specification, default update interval, data server. as well as its inherited attributes,
Purpose and Varname. Notice that instances of GPC_FLAG are GSI variables and they
are used to set particular options within the (external to G2) MGPC algorithm through the
GSI-INTERFACE object GSI-1. FLAG_MPM, for example, if set to *1’ tells the MGPC
algorithm to use MPM in its control calculations, and when set to ‘0’ no MPM is used

in control calculations. The purpose of the remaining GPC_FLAG’s is easily deduced by

reconsidering section 4.3.2.2.

Through the use of superior-classes and sub-classes a hierarchy can be established.
Sub-classes inherit the attributes from their superior classes. The class definition
MIMO_PLANT in figurc 4.8 is the superior-class to 1IBY1_PLANT, 2BY2_PLANT. and
3BY3_PLANT. MIMO_PLANT is used to define attributes that are common to its sub-
classes and inherited throughout the class hierarchy. These common attributes are the
output prediction horizons and the control horizon (i.e. N,, N,, NU); as well as the
maximum delay of the MIMO process’ delay matrix, Max_delay, and the T(q") filter
parameters: Tau_over_Ts, T_filter_al, and T_filter_a2. The sub-classes 1BY1_PLANT,
2BY2 _PLANT, and 3BY3_PLANT are used to define their icons as well as stubs (i.e.
cennections) for 1 input and 1 cutput connections, 2 input and 2 output connections, and
3 input and 3 output connections respectively. Thus the naming convention adopted refers

to MIMO processes (of dimension n x m) as nBYm_PLANT.

The inference engine infers and reasons using the interconnections among objects.

Figure 4.9 shows an instance of a 2BY2_PLANT named STRIPPER connected to
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Quantity Meaning
Y y(t)
Y—ll yl.m’m
Y_hl yl.max
Ouiput weight ()"
Ysp w,(1)
Max_overshoot overshoot specification
Regulation_ ) '
tolerance 1, specification

if > 0 impiies

servo_status setpoint change

in progress
Desir:d_tr 1, specification
Obsenved_tr measured t,

Table 4.3 Attribute table OUTPUT1, a MIMO_OUTPUT

instances of MIMO_INPUT’s and MIMO_OUTPUT’s. The inference engine uses the
generic formulas, located on the workspace FORMULAS of this figure, to update the
values of Ul through Ysp2 of STRIPPER. This causes the inference engine to seek
current data from the appropriate (instance of) MIMO_INMPUT or MIMO_OUTPUT.
Furthermore, this figure shows the attribute tables of OUTPUT1, INPUT1, and STRIPPER
which are obtained by clicking on the icon of the respective objects. The attribute table
"OUTPUT]1, a mimo_output” shows all information pertaining to output channel 1 of
STRIPPER. These quantities and their meaning are listed in table 4.3. Similarly, the
attribute table "INPUT1, a mimo_input" lists all information pertaining to input channel
1 of STRIPPER. These quantities and their meaning are listed in table 4.4. Quantities

listed in attribute tables of figure 4.9 with a star (*) indicate that they have expired.
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Quantity Meaning
8] B R u,(t)
Du Au,(t-1)
u_l ) P,
U_hl 1 P
Du_li Auy
Du_hl Au,y .,
L.ambda A
Max_var_of_u o, specification

Table 4.4 Attribute table INPUT1, a MIMO_INPUT

iming is critical in real-time applications. A sampling time of T, = 2 seconds is
used for simulation purposes. All variable update intervals reflect this sampling time. The
MGPC algorithms are executed by scanning a generic rule. This causes the inference
engine to invcke this rule for each instance of a MIMO_PLANT. This rule

unconditionally executes the MGPC algorithimns as external procedure calls.

Tuning to meet servo performance criteria is initiated whenever a setpoint change
occurs. Should the process operator, or a procedure executed by the operator, perform a
setpoint change in between samnling intervals, then the servo_status parameter of this
(instance of) MIMO_OUTPUT is incremented by 1. Monitoring of t, for the particular
(instance of) MIMO_OUTPUT is initiated if its servo_status changed from 0 to 1 and the
servo_status of all other (instances of) MIMO_OUTPUT:s connected to the (instance of)
MIMO_PLANT are 0. This strategy circumvents erroneous measurements of t, obtained
due to coupling from other channels. The value of servo_swaias is decremented by 1 after
a fixed time interval. The output response is monitored during this "window” and t, is

calculated. For simulation purposes a “"window" of 30 sampling instances is used.

O
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Thereafter adjustment of N, is performed if NU =1, and all (instances of)
MIMO_OUTPUTs connected to the (instance of) MIMO_PLANT have current values for
their Observed_tr variables. Since slowly changing plant dynamics may render
Observed_tr obsolete, an expiration period is utilized. For simulation purposes an

expiration period of 10 minutes is used for all Observed_tr variables.

The ALPS.kb knowledge base has been structured in a manner reflecting its
purpose. Figure 4.10 shows the workspace hierarchy consisting of:

a) Global Supervisor
b) Regulatory Response Supervisor

¢) Servo Response Supervisor

Each of these workspaces contains the knowledge, as used by the inference engine, to
perform the global, regulatory, and servo supervisory functions. The tuning strategies used

by ALPS to adjust the MGPC parameters and the G2 features used to perform these tasks

is the subject of the following sections.
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Figure 4.10 The workspace hierarchy of ALPS.kb
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4.3.3.2 The Global Supervisor workspacc

This workspace contains rules causing the inference engine to:

monitor GSI-MGPC communication failure,

set default values for MGPC parameters,

®

detect changes in N;, N,, and NU,

additional rules that respond to selected options (see section 4.3.2.2)

A simplified example of a forward chaining rule alerting the operator and deactivating a

subworkspace in the event of a communication failure is:

if{the value of the gsi-interface-status of gsi-1 < 0)

then inform the operator for the next 30 seconds that"

e 2he e ke e ke sk o e S 3k 3¢ e s 3k 3k ke Sk 3k e 3 3 e Sk ok 5K e 2k ok s 3k 5k ke i e e 3¢k o ke 3k ¢ e vk Kk e ok s e ok Kk Ao %k

ERROR: Interface (GSI-1 has lost

its communication link.

Process Control switched to MAINUAL.

Sk 3k 3¢ 3¢ 3k 3¢ 2k ok 2 .3k e ok 3k 3k 3 ok v 3k sk s ¢ o ok 3k e 2 vk 3§ 3¢ vk ¢ 3k 3k vk 2 o vk ok k¢ e Sk ok e vk e ok ok ok ok ke ok M

and deactivate :\ie subworkspace of <name>
Note that rules detecting GSI failures can not be generic.

The genceric rule which concludes that all observed rise times of all (instances of)
MIMO_OUTPUTSs connected to an (instance of) MIMO_PLANT have become invalid
because its output horizons or control horizons have changed either manually by the

process operator or due to tuning of N, by the servo supervisor is:

98



for any MIMO_PLANT PLANT

for any MIMO_OUTPUT OUTP connected 1o PLANT

whenever the N2 of PLANT receives a value or the N1 of PLANT receives a
value or the NU of PLANT receives a value and

when ( the N2 of PLANT /= the N2 of PLANT as of 2 seconds ago or the N1 of
PLANT /= the N1 of PLANT as of 2 seconds ago or the NU of PLANT /= the
NU of PLANT as of 2 seconds ago )

then

conclude that the Observed_tr of OUTP has no current value

Where the value of 2 seconds reflects the sampling time T, = 2 seconds. This rule is
invoked by the inference engine, for example, with PLANT set to STRIPPER and OUTP
set to OUTPUT1 and OUTPUT2 (see figure 4.9).

In conclusion, the rules invcked by the inference engine located on the Global
Supervisor workspace are generic and specific forward chaining rules. In addition, this
workspace contains generic forward chaining rules utilizing the rule attributes, focal
classes and categories to respond to user selected options (see section 4.3.2.2). Generic

"initially rules" are used to set defaults.
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4.3.3.3 The Regulatory Response Supervisor workspace

This workspace contains the generic rules developed for tuning I and T(q').
Tuning to meet regulatory performance criteria is initiated periodically at fixed intervals.
Tuning 1is suspended unless the attribute servo_status of all (instances of)
MIMO_OUTPUT connected to the particular (instance of) MIMO_PLANT are 0. A
servo_status > 0 implies that a setpoint change is in progress for that particular output
channel. This strategy circumvents erroneous tuning of T(q') and I" while a setpoint
change is in progress. The tuning strategies for I" and T(q"'), along with the adopted G2

features used to implement these strategies, ai 2 the topic of the following two sections:

4.3.3.3.1 Tuning of T

Tuning of I is initiated periodically by scanning two mutually exclusive rules at
fixed intervals. The first rule fires (i.e. it is invoked by the inference engine and its
antecedent cvaluates to true causing the rule’s consequence to be executed) if a setpoint

change is in progress and sends a message to the operator. Keeping an eye on the not,
this rule is:

for any MIMO_PLANT PLANT

if(not(for every MIMG_OUTPUT OUTP connected to PLANT)
(the servo_status of OUTP = 0)))

then

inform the operator for the next 10 seconds that"

Regulation Supervisor:

Setpoint change in progress for [the name of PLANT];

hence suspending the updating of

output weighting for [the name of PLANT]"
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The second rule fires if there are no active setpoint changes and initiates tuning of I":
for any MIMO_PLANT PLANT
if(for every MIMO_OUTPUT OUTP connected to PLANT
(the servo_status of QUTP = 0))
then
start OUTPUT_WEIGHTING(PLANT)
and
inform the operator for the next 10 seconds that"
Regulation Supervisor:

Updating output weighting for [the name of PLANT]"

The above rule starts the procedure OUTPUT_WEIGHTING and sends a message to the
operator indicating that the output weighting matrix, I, is being updated. For simulation
purposes both rules are scanned every 2 minutes. The procedure QUTPUT_WEIGHTING
is listed in appendix A and it adjusts I" based on the following:

Let Oy; = the standard deviation of the i® output connected to the
process during the last 20 seconds, and
max_dev = the maximum over all o, values i=1,2...n and

Oymax = user specified constant,

then set v, to

v, = [ Omar Y 4.1y
¢ max_dev + oym}

wherei = 1,2, ... n

In the case where a lot of noise is present (i.e. G,; >> G, for i=1,2...n), equation 4.1

reduces to the simple relationship
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Y, = (0,/max_dev)*

In the other extreme, when little noise is present (i.e. O, << Oy, for i=1.2...n ) the

relationship becomes

%=1

This procedure penalizes the noisiest channel in relationship to the remaining channels.
The reasoning behind this scaling strategy is that each v, is scaled in direct relation to the
standard deviation of y, in comparison to the noisiest channel. The weighting of the
noisiest channel will always be set to unity. The square, ()%, is due to the quadratic

objective function which minimizes the sum of the squares. The point beyond which

scaling occurs is adjusted with G,,,,.

In summary, tuning of I' is accompliched by two (mutually exclusive) generic
forward chaining rules. These rules fire at specified scan intervals and invoke a procedure

to perform the adjustment of I'.

4.3.3.3.2 Tuning of T(q")

The tuning of T(q') is initiated periodically at fixed intervals. Actual tuning takes
place only if the servo_status of all (instances of) MIMO_OUTPUT’s connected to the
particular (instance of) MIMO_PLANT are O (i.e. no setpoint change is in progress). By
setting the default update interval of Tau_over_ts to 1 minute the inference engine will
seek to update Tau_over_ts at this rate. Tau_over_ts is the inverse of the normalized
break frequency of T(g') and is an auribute of each instance of a MIMO_PLANT.

Tau_over_ts is tuned according to the recommendation by MclIntosh (1988). A generic

formula performs the following:
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Let 0% () = the maximum over all input variances o%; i = 1,2..m,

during the last 10 values, and

G’ in = the minimum over all input variance specifications G;
i=12.m.
then
T T
—@®-—=0¢-1) 2 2
ARAENESEN
2
—@-D O soin
TS
with
1.442 < % < 19.496 (4.3)

L

where the relaxation factor w = 0.2, and

Tau_over_ts = 1/T,

The time deperdency (+)(t-1) and (+)(t) are the settings for the previous and current tuning
durations respectively. Tau_over_ts is related to the discrete time pole c, of the first and

second order T(q") filters by:

-z (4.4)

Thus the bounds of equation 4.3 are obtained from the limits placed on c;:

05 < ¢, <095 (4.5)
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Equation 4.2 relates the tuning parameter setting, Tau_over_ts, to the measured and
specified performance criteria 6°,.,(1), and ©?, ... Notice that equation 4.2 adjusts the
break frequency of T(q') linearly based on 1/5th of the percentage difference between the
input channel with the highest measured variance and the input channel with the smallest
input variance specification. The bounds on ¢, by equation 4.5 are consistent with the

implementation considerations given in section 3.4.2.

Once the inference engine updates Tau_over_ts, forward chaining rules are
invoked to set new T(q™) filter parameters. The GSI variables T_filter_al and T_filter_a2

are related to the second order T(q') filter by:

2
1 | tma . 1ma-e (4.6)
Ng™» (1-¢q” 1-a,97' -a,q7°

where T_filter_al = a, and

T_filter_a2 = a, .

In the case of a first order T(q") filter equation 4.6 requires a, = 0 and the square term

(»)? is replaced with unity (+). The generic formula and rules performing this are listed

in appendix A.

Forward chaining rules are used to detect whether the order of the T(q") filter
should be switched from first order to second order and vice versa. A rule that detects
that a first order T(q") filter was tuned to its upper bound (i.e. ¢, = 0.95) twice during the
last two consecutive tuning periods and hence causes a switch to the default second order

T(q™") filter given by equation 3.13 is:
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whenever the Tau_over_ts of STRIPPER receives a value

and when(the Tau_over_ts of STRIPPER = 19.496 and
t-filter-order = 1 and
the standard deviation of Tau_over_ts of STRIPPER
during the last 2 minutes = 0.)

then

conciude that the Tau_over_ts of STRIPPER = 4.481

and conclude that t-filter order = 2

and inform the operator for the next 10 seconds that"

Regulation Supervisor:

Switching to second order T filter for STRIPPER"

Note that this rule is specific to the MIMO_PLANT STRIPPER. The more complicated
generic rule is listed in the appendix. The rule detecting that a second order T(q") filter
was tuned to its lower bound (i.e. ¢, = 0.5) during the last two consecutive tuning periods
and hence switches to the default first order T(q") filter given by equation 3.12 is

analogous to the above rule and is also listed in appendix A.
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In addition to the T(q") filter tuning rules, there are two generic rules which detect
whether maxirmnum or minimum filtering was performed over the last two consecutive
tuning periods. The purpose of these rules is to inform the operator questioning the
validity of the G°, specifications. The assumption is that in order to meet user o2,
specifications the amount of filtering shculd fall between the maximum and minimum

filtering configurations given by equations 3.14 and 3.15 respectively.

In summary, tuning of T(q') is initiated by placing a default update interval on
the attribute Tau_over_ts. The inference engine uses a generic formula that adjusts the
values of Tau_over_ts, which in turn causes generic forward chaining rules 1o be invoked.
These forward chaining rules are responsible for setting the T(q*) filter parameters of the
applicable MGPC algorithm, switching the T(q") filter orders from first to second and

vice versa, and alert the operator when maximum and minimum filtering is applied over

two consecutive tuning periods.

4.3.3.4 The Servo Response Supervisor workspace

The servo response supervisor is responsible for adjusting the output constraints

Ymin @aNd ¥,,., 2s well as the output prediction horizons N, for each process. The developed

tuning strategies are discussed in detii! below.
4.3.3.4.1 Tuning strategies for r, and overshoot

The regulatory performance specification r,; represents the allowable drift in y,(t)
from its setpoint w,(t) while output channel ’i’ is at steady state (i.e. there is no setpoint

change). The servo performance specification overshoot; reflects the maximum allowable
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overshoot during setpoint changes in w;(t). Both of these specifications are implemented
using output constraints. It is apparent that unless a setpoint change is in progress output

constraints remain fixed at the following values:

Ymaxs = WiD(1+1y) @.7)
w,(t)(l —rb)

with wi(t) > 0

or
Yuming = WD(1+7y) (4.8)
VYmaxi = wl(t)(l -rb)
with w(t) < 0
and
Ymaxg = T7p (4.9)
Vong = TTp

when w(t) =0

Three generic rules are used to invoke the adjustment of output constraints for
steady state operation. Further rules having attributes focal class, and category are used
to perform the adjustments as per equations 4.7 to 4.9. For example, one generic
whenever rule fires should the servo_status attribute of any (instance of)
MIMO_OUTPUT be set to ’0’ indicating that this output channel has reached its steady

state following setpoint changes. Keeping an eye on the key word "invoke", the rule is:
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for any MIMO_OUTPUT OUT
whenever the servo_status of OUT receives 1 value
and when(the servo_status of OUT = ()

then invoke apply-output-constraints rules for OUT

When the above rule fires, the inference engine will invoke all rules having
MIMG_OUTPUT as their focal class attribute and apply-output-constraint as their
categories attribute. There are twe generic rules that have these attributies. One is to set
the output constraints in accordance to equation 4.9 and the remaining rule scts the output
constraints in accordance to equations 4.7 and 4.8 . The simplest of these two rules is:

for any MIMO_OUTPUT OUT

if ((the ysp of OUT = 0.0)

and (the servo_status of OUT = 0))

then set the y_Il of OUT to (-1*the regulaticn_tolerance of OUT)

and set the y_hl of OUT to (the regulation_tolerance of OUT)

and inform the operator for the next 10 seconds that"

Servo Supervisor:

Setting the y_I1l and y_hl of {the name of OUT]

connected to [the name of the MIMO_PLANT connected to OUT] for normal

operation"
Focal Classes MIMO_OUTPUT
Categories apply-output-constraints

If the process operator disables the servo supervision mode, all output constraints are set
to very large values (i.e. £10°%). Upon startup of ALPS, and whenever the operator enables

the servo supervision mode, the following generic rule is invoked:
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initally
for any MDVMO_PLANT PLANT
for any MIMO_OUTPUT OUTP connected to PLANT

unconditionally invoke apply-output-constraints rules for OUTP

Initially rules are useful to set defauits.

Two generic whenever rules are used to update the output constraints for setpoint
changes. One rule serves to set the y,,. for positive setpoint changes, while the remaining

rule serves to set y_,, for negative setpoint changes. The former of these rules is:

for any MIMO_OUTPUT OUT
whenever the ysp of OUT receives a value
and when( the ysp of OUT > the value of the ysp of OUT as of 1 second ago)
then set the y_hl of OUT to ( the ysp of OUT +
(the ysp of OUT - the value of the ysp of OUT
as of 2 seconds ago)*(the max_overshoot of OUT))
and inform the operator for the next 10 seconds that"
Servo Supervisor:
Updating the y_hl of [the name of OUT]
connected to [the name of the MIMO_PLANT connected to OUT]"

In summary, the knowledge on how to update output constraints during setpoint
changes as well as for steady state operation is encoded into generic forward chaining
rules and generic whenever rules. The rule attributes focal classes, and categories are also

used. Generic initially rules are used to set defaults.
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4.3.3.4.2 Output horizon tuning strategy

The tuning strategy developed to update the output prediction horizon N, is the
topic of this section. As to what N, adjustment mechanism represents the best answer to
meeting and maintaining user specified servo performance criteria is open to discussion.
The ground work of chapter 3, however, indicates that there is a strong correlation
between rise time t, and N,, provided NU = 1. The strategy implemented by ALPS is a

trade-off in terms of the accuracy of the measured rise times - corrupted by noise - and

the adjustment made in N,.

Recall N, affects the speed of response of all ouiput channels. Thus the rise time
of the i output channel, t,, is affected by the setting of N,. The guideline employed
adjusts N, such that the measured rise time of every output channel (.e. t,; for
i = 1,2...n) meets or exceeds its specification. The implicit assumption that no output
channel violates its overshoot constraint has been made, and can be supported. In the
chemical process industry very few applications require servo control specifications
displaying any amount of overshoot. Thus by providing an overshoot specification for
each channel, overshoot;, ample leeway is provided in meeting rise time criteria. This, of
course, assumes that all t ; specifications are realistic and attainable such that there is
sufficient "roem” in adjusting N, (recall that the upper limit of N, is 40 and its lower

limit is given by equations 3.9 and 3.10 }.

Tuning of N. is performed as follows:

Let = rise time specification of i output channel
= measured rise time of i output channel
At, = minimumof (¢t ;-t,;)i=12..n
N, (1) = new setting of N,
N,(t-1) = current setting of N,
N, min = smallest setting of N, consistent with equation:s 3.9 and 3.10 .
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where At, is correlated with an adjustment AN, yielding:

N,(® = Nyz-1) + AN, (4.10)

with N, ..o < N. <40

The correlation among At, and AN, was found through simulation studies conducted on
the benchmark problems (see chapter 5 for the benchmark problems). This correlation is
giver by table 4.5 and represents a trade-off between speed of convergence and sensitivity
(i.e. making AN, too big causes N, to "overshoot”). Also, table 4.5 assumes a sampling

time of T, = 2 seconds (for T, # 2 seconds, AN, may be scaled accordingly).

At, AN,
At <0 At >0
At < 1.0 0 0
1.0 < |At,| < 2.0 -1 1
2.6 £ |At,| < 4.0 -2 2
|At,] = 4.0 -5 5

Table 4.5 Correlation among At, and AN,

The above scheme is implemented with a combination of generic forward and

backward chaining rules. The following generic whenever rule starts the tuning process:
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for any MIMO_OUTPUT OUTP

for any MIMO_PLANT connected to QUTP

whenever the observed_tr of OUTP receives a value and

when ( for every MIMO_OUTPUT OUT connected to the MIMO_PLANT
(the observed_tr of OUT has a current value))

then

invoke n2-tuning-rules for the MIMO_PLANT

The above rule fires when a process output channel receives a new value for its measured
rise time and all output channels have current values of measured rise times. As the
validity interval of each measured rise time (i.e. validity interval of observed_tr) is set to
300*T, data obtained earlier is deemed no-longer-applicable as slow changing plant
dynamics make it obsolete. This implies that N, tuning occurs only when the operator
performs independent setpoint changes for each channel (i.e. one setpoint change per

process output channel to avoid interaction due to coupling) within a 300*T, time frame.

Several rules with the focal class attribute MIMO_PLANT and the categories
attribute n2-tuning-rules are used. If NU # 1 only one of these rules fires. This particular

rule alerts the operator with a message stating that tuning of N, is not possible. The rule

is:
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for any MIMO_PLANT PLANT

if (the NU of PLANT /= 1)

then

inform the operator for the next 15 seconds that"
Servo Supervisor:

The rise time of [the name of PLLANT] can
NOT be tuned as its NU # 1 rather it

is currently set to [the NU of PLANT]"

Focal Classes MIMO_PLANT

Categories n2-tuning
In the event that NU = 1 two generic rules are invoked by the inference engine. One of

these rules fires if the lower limit of N, is given by equation 3.9; and the remaining rule

fires if the lower limit of N, is given by equation 3.10 . The former of these rules is:
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for any MIMO_PLANT PLANT

if the NU of PLANT = 1 and

the N1 of PLANT < the max_delay of PLANT + 1 and

deita_N2 /=0

then in order

set the N2 of PLANT to (
min( 40, max(the N2 of PLANT + delta_N2, the max_delay of PLANT +
1))

and

inform the operator for the next 15 seconds that"
Servo Supervisor:

Updating the N2 of [the name of PLANT] and
note that N1 < max_delay + 1"

and

conclude that delta_tr has no current value and

conclude that delta N2 has no current value

Focal Classes MIMO_PLANT

Categories n2-tuning

When the inference engine invokes the above rule it will seek ali the required data to
evaluate its antecedent. Thus a current value for max_delay is obtained through the GSI
interface, and the current value of delta_N2 is obtained through backward chaining. Five

generic rules, relating delta_ N2 with delta_tr as per table 4.5, will then be invoked. One
of these rules is:
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for any MIMO_PLANT PLANT

if abs( delta_tr ) = 1.0 and abs( delta_tr ) < 2.0

then in order

conclude that delta N2 = (if delta_tr 2 0.0 then 1 else -1)
and inform the operator for the next 15 seconds that"
Servo Supervisor:

Rise times for [the name of PLANT]

are slightly OFF SPEC updating

N2 by [the value of delta_N2]"

For the antecedent to be evaluated, the inference engine must seek a value for delta_tr,
starting one additional level of backward chaining. Both levels of backward chaining are

evaluated by the inference engine when it obtains a value for delta_tr from:

for any MIMO_PLANT PLANT

unconditionally conclude that

delta_tr = (the minimum over each MIMO_OUTPUT OUTP connected to Plant
of (the desired_tr of OUTP - the observed_tr of OUTP))

Thus two levels of backward chaining are used to adjust N,.

Once the inference engine updates N,, three generic whenever rules will be
invoked. These rules perform upper and lower limit checks on N,. The upper limit of N,
is 40, and the lower limit is given by equations 3.9 or 3.10 . If a limit was reached twice
during the last two tuning periods a message is issued to the operator indicating that the
rise time specifications may not be met. The implicit assumption is that in order to meet

the closed loop rise time specifications the value of N, must fall between its upper and

lower bounds.
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In summary, the rise ime tuning scheme is based upon a heuristic correlation
between the adjustment in N, and the error between the measured and specified rise times
among all output channels. This method is implemented using generic forward and
backward chaining rules. The rule attributes focal class, and categories are also used. In
addition, generic forward chaining rules alert the process operator should N, be set to its

upper or lower limit during two consecutive tuning periods indicating that the closed-loop

performance specification may not be met.
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4.4 Summary

This chapter presented the Adaptive Long range predictive control Performance
Supervisor, ALPS. ALPS is implemented with the real-time expert sysiem development
tool GZ. The focus of ALPS is to provide closed-loop performance supervision and tuning
of several LRPC algorithms. ALPS adjusts LRPC parameters based on both closed-loop
regulatory and servo control performance. ALPS uses Gensym’s GSI interface to link to
several constrained MGPC algorithms. Both the MGPC algorithms and ALPS are generic,
and hence provide closed-loop control and supervision for processes of any dimension
n x m. Additional features for the purpose of training personnel in the use of ALPS and
the MGPC algorithms is also provided. For demonstrative purposes ALPS has been linked
to three processes each of dimension 2 x 2.

The regulatory tuning strategies used by ALPS pericdically update the output
weighting matrix T" and the disturbance rejection filter T(q'). In addition, a regulatory
band, reflecting the maximum allowable drift in process outputs, is implemented.

Servo response tuning strategies consist of updating the maximum output
prediction horizon N, (provided NU = 1), and updating output constraints in accordance
to overshoot specifications. Adjustment of N, occurs only if all process outputs have
recent values of measured rise times. ALPS measures the ¢losed-loop rise time of a
process output channel if all remaining process outputs channels remain at steady state
throughout the setpoint change. This method eliminates erroneous measurements of t, by
eliminating interactions due to coupling. This scheme is useful provided the dimension
of the MIMO processes is small (say n < 4 ).

The next chapter introduces three 2 x 2 benchmark processes used to evaluaic the
tuning strategies employed by ALPS. Both closed-loop servo and regulatory control

tuning strategies are evaluated with and without disturbances and MPM.
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Chapter §

Evaluation of ALPS

Chapter 4 introduced the Adaptive Long range predictive control Performance
Supervisor, ALPS. ALPS provides closed-loop performance supervision of several LRPC
algorithms. ALPS adjusts LRPC tuning parameters so as to achieve and maintain user-
specified closed-loop regulatory and servo control performance in the presence of MPM
and disturbances. This chapter demonstrates and evaluates the tuning strategies employed
by ALPS.

Three 2 x 2 benchmark problems are used to evaluate the tuning strategies. Both
closed-loop servo control tuning strategies and regulatory control tuning strategies are
investigated with and without disturbances and MPM.

Section 5.1 presents the three 2 x 2 benchmark problems used to evaluate ALPS’
tuning strategies. Section 5.2 presents the results of simulation studies for each benchmark

problem. Section 5.3 summarizes this chapter and recaps the servo and regulatory control

tuning strategies.
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5.1 Selection of benchmark problems

Three 2 x 2 benchmark problems, along with their performance specifications, are
presented in this section. For convenience, the processes are labelled process A, process

B, and process C.
5.1.1 Process A

Process A consists of the non-minimum phase system with dominant off-diagonal

elements and a non-diagonal delay matrix given by Shah et al. (1987):

04 z72
1-0.6z! 1-0.6z7"!
-1 - (5.1
A7 Bl z! 0.2z72

1-08z' 1-0.8z7!

For the purposes of model-plant mismatch two additional equations are considered.

Investigations involving servo response supervision use:

0.44 0922772
- -1 _ -1

um) . - 1-0.62z' 1-0.58z (5.2)
P 0.92z°! 0222772

1-0.78z! 1-0.82z7!
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Where the unit delay due to a zero order hold has been extracted from each individua!
transfer function (recall the definition of the ARIMAX model in section 2.3.1). The
amount of model-plant mismatch among equations 5.1 and 5.2 consist of 3%
displacements in the pole location for every pole, and a minimum and maximum steady

state gain mismatch of 12% and 22% respectively. Investigations involving regulatory

supervision use:

0.48 0.8z72
_ -1 _ -1
Um,, - 1-0.66z"' 1-0.54z (5.3)
P 0.82z7! 02477

1-0.72z' 1-0.88z"!

Thus the amount of model-plant mismatch among equations 5.1 and 5.3 consists of 10%

displacements in the pole location for every pole, and a minimum and maximum steady

state gain mismatch of 30% and 100% respectively.

The closed-loop performance specifications and input rate and amplitude
constraints for the servo supervision investigations are listed in table 5.1. Table 5.2 lists
the closed-loop performance specifications and input rate and amplitude constraints for
the regulatory supervision investigations. Unless stated otherwise, "tight” input rate
constraints imply settings for Au,,, and Au,, of 1/10 the values listed in tables 5.1 and

3.2. For illustrative purposes, @ sampling interval of T, = 2 seconds is used.
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Quantity | Value
AU 2 -1.0
Au,, 12 1.0
Unmin 12 -4.0
Umax 12 4.0
overshoot, , 30%
Ty 12 20%
t 12 13.0 sec
12 10%
Cymax 5.x107

Table 5.1 Process A, performance specifications (servo investigations)

Quantity Value
Aug o -1.0
Au . in 1.0

Upin 12 -4.0
Urax 12 4.0
overshoot, , 30%
Tp 12 20%
o 13.0 sec
Gy 1z 102
Oymax 0.1

Table 5.2 Process A, performance specifications (regulatory investigations)
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5.1.2 Process B

Process B is the linear model of a binary distillation column as given by Wood
and Berry (1973) (see also Berry 1973). This particular process consists of an eight tray
distillation column which separates a binary mixture of methanol and water. The process

model is given by:.

128~ -189e|
[yl(s)] _|167s+1  21s+1 [u,(s)] (5.4)
¥2(5) 6.6e” -194e™> u(5)
109s+1 144s+1

model

and for the purposes of model-plant mismatch consider:

10.1e™ -245e™™
[yl(s) | 15s+1  23s+1 u,(s) (5.5)
D] | se  —17.1e%|  [%O
O9s+1 135+1

plans

where

y,(s) is the deviation of the distillate concentration in units of %weight
from its nominal operating condition of 96%, and

y,(s) is the deviation of the bottoms concentration in units of %weight
from its nominal operating point of 0.5%, and

u,(s) is the deviation of the reflux flow from its nominal operating
condition of 1.95 lbs/min, and

u,(s) is the deviation of the reboiler steam flow from its nominal

operating condition of 1.71 1bs/min
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The units of equations 5.4 and 5.5 are (% weight)/(Ibs/min) for the process gains, and the

time constants and delays are given in minutes.

The amount of model-plant mismatch among equations 5.4 and 5.5 consist of 9%
to 17% in the displacement of the pole locations, and a minimum and maximum steady

state gain mismatch of 12% and 30% respectively.

The closed-loop performance specifications and input rate and amplitude
constraints are listed in table 5.3. Note that for the purpose of closed-loop simulations the
input amplitude constraints have been rounded up to the nearest integers. Unless stated
otherwise, "tight" input rate constraints imply settings for Au;, and Au,,, of 1/10 the

values listed in table 5.3. A sampling interval of T, = 1 minute is used.

Quantity Value

Augy -1.0
Aug, 15 1.0
Umin 12 -2.0
Umax 1.2 2.0
overshoot, , 40%
To12 30%

| SN 7.5 min
Lo g 107

O ymax 5.x103

Table 5.3 Process B, performance specifications
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5.1.3 Process C

Process C consists of the Shell heavy oil fractionator documented 1t the Shell
Process Control Workshop {see Prett and Morari 1986). The original Shell control

problem describes a 7-output, 5-input process, however, for evaluation purposes the

following 2 x 2 subset is selected:

405e%* 588¢7s

AG I SOs+1 S50s+1 u(s) (5.6)
%) |438e 720 ,(S)
33s+1 19s+1 | .,
and for the purposes of model-plant mismatch consider:
468e%”* 5585e%"
yl(s)] _ 50s+1 50s+1 ul(s)} 5.7
¥} 15312 6535 4(S)

33s+1 19s+1 plane

where

y:(s) 1is the deviation of the distillate concentration or top end point, and
y2(s) 1s the deviation of the bottoms reflux temperature, and
i,(s) 1is the deviation of the top draw, and

u,(s) is the deviation of the bottoms reflux heat duty.

The time constants and delays are given in minutes.
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The amount of model-plant mismatch among equations 5.6 and 5.7 consists of a
minimum and maximum steady state gain mismatch of 5% and 21% respectively. In

addition, the Shell control problem has the following control objectives and constraints:

Control objectives

1) The original problem (Prett and Morari 1986) specifies regulatory control of the
top draw product end point (i.e. y;(s) = 0.0 £ 0.005, and -0.5 S y,(s) <o at
steady state). But to illustrate the use of output constraints more clearly this is
increased to 0.0 + 0.05 - both y,(s) and y,(s).

2) Keep the closed-loop speed of response between 0.8 and 1.25 of the open-loop

process bandwidth.

Constraints
1) All draws must be within hard maximum and minimum bounds of 0.5 aad -0.5.
2) The bottom reflux heat duty is constrained within the hard bounds of 0.5 and -0.5.

In addition to this original specification, the top draw is also constrained to within
the hard bounds of 0.5 and -0.5.

3) All manipulated variables have maximum move size limitations of magnitude 0.05

per minute.

4) Fastest sampling time is 1 minute.

5) The bottom reflux draw temperature has a minimum value of -0.5.
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6) The top end point must be maintained within the maximum and minimum values
of 0.5 and -0.5.

The closed-loop performance specifications and input rate and amplitude
constraints, as derived from the above control objectives and control consiraints, are listed

in table 5.4. A sampling interval of T, = 8 minutes is used to reduce the number of
discrete delay sample periods.

Quantity Value
Aumin Lz ‘0.4
Aumzx 12 0.4
Unin 1.2 -0.5
Upmax 12 0.5
overshoot, , 20%
Th12 5%
t, 110 min
t, 35 min
Ty 12 2.5x10*
Oymax 5.x107

Table 5.4 Process C, performance specifications
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5.2 Evaluation of performance tuning strategies

This section presents the results of simuiation studies conducted on the 2 x 2
benchmark problems presented in section 5.1. In order to highlight each tuning strategy
and isolate its effect on the closed-loop control performance, the results are presented in

terms of the following two categories:

1) regulatory control tuning strategies, and

2) servo control tuning strategies.

Recall that ALPS performs closed-loop servo control performance tuning whenever the
precess operator initiates setpoint changes. On the other hand, ALPS perforns closed-loop

regulatory performance tuning continually.

The simulation resuits for each benchmark problem are discussed in the following

subsections.
5.2.: - -ocess A

The simulation results obtained with process A are presented in this subsection.
Tests revealing the execution speed of the MGPC algorithms were also conducted. For
all 2 x 2 problems, the MGPC execution speed ranges between 100 to 200 ms per

iteration (includes process simulation and QPSOL).

5.2.1.1 Regulatory Performance Tuning

ALPS’ regulatory performance tuning strategies adjust both T(q") and I'. The
interaction of tuning T(q") and I simultaneously is avoided by investigating each strategy

separately. This is achieved by keeping one tuning parameter fixed at its default value
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while tuning the remaining parameter. In addition, to clearly illustrate the procedure of
switching from a first order T(q") filter to a second order default T(q!) filter, a rather
large Gaussian noise variance is employed. To avoid the interaction of this large Gaussian
noise with output amplitude constraints, the use of r, is omitted throughout this section.

Consider figure 5.1 which illustrates the T(q') filter tuning strategy while
maintaining I = I, .under conditions of Gaussian ncise and no MPM. Regulatory
supervision is enabled at iteration 40. Due to the large Gaussian noise variance, initially
set to 0.15, ALPS responds by increasing the amount of filtering from the default first
order T(q") filter, having T_a, = -0.8, to its new maximum possible setting of T_a, = -
0.95 at iteration 40. Notice also the large drift in output channel 2 caused by this large
jump in the T(g") filter parameter T_a, (recall section 3.4.2). As the regulatory
performance specifications cannot be met with this first order T(q*) filter, ALPS switches
to the default second order T(q"') filter at iteration 100. This second order T(q") filter is
fine tuned to meet the closed-loop regulatory performance specifications. The closed-loop
performance specifications are met subsequent to 2 or 3 tuning periods as is indicated by
the smalil adjustments made at iterations 160 and 190. At iteration 200 the Gaur-ian noise
variance is reduced to 0.0062. ALPS responds by decreasing the amount of filtering and
ultimately switches to the default first order T(q?) filter at iteration 460. ALPS fine tunes
this first order T{q™") filter until the regulatory peiformance specifications are met at
iteration 550.

Figure 5.2 presents the T(q") filter tuning strategy while maintaining I" = I, under
conditions of Gaussian noise and MPM. At iteration 40 the regulatory supervision mode
of ALPS is activated. The large Gaussian noise variance of 0.15 causes ALPS to increase
the amount of filtering, and at iteration Y0 ALPS switches to the second order default
T(q?) filter. ALPS fine tunes the second order T(q) fiiter until the closed-loop regulatory
performance specifications are satisfied. At iteration 180 the Gaussian noise variance is
reduced to 0.002. ALPS responds to this new condition by reducing the amount of
filtering, and at iteration 400 switches to the default first order T{(q") filter. Again, ALPS

fine tunes the first order T(q') filter until the closed-loop regulatory performance

specifications are met.
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Figure 5.3 shows the I" tuning strategy while maintaining a first order
default T(q™") filter under conditions of Gzussian noise and no MPM. Consider iterations
0 to 330 where a large Gaussian noise variance is used (a Gaussian noise variance of 0.15
causes O, >> Gyu,,)- This portion of the figure indicates that at iteration 80 output
channel 2 is weighted heavier by reducing v,. The effect of these settings is shown by the
reduced variance in y, between iterations 110 and 200. At iteration 200 ALPS sets v, to
0.954, which allows the standard deviation of output channel 2 to grow. At iteration 260
ALPS weights output channel 2 heavier again by reducing v,. At iteration 340 the
Gaussian noise variance is reduced to 0.002 (a Gaussian noise variance of 0.002 causes
O,,2 = Oymay)- Throughout iterations 340 to 490 ALPS consistently weights output channel
2 heavier. At iteration 490 the Gaussian noise variance is reduced o a mere 10%. ALPS
responds to this new condition by weighting each output channel equally (i.e. setting
I'=1as 0y, << Oyyap)-

Figure 5.4 depicts the I tuning strategy while maintaining a first order default
T(q") filter under conditions of Gaussian noise and MPM. Consider the period where a
large Gaussian noise variance is used (i.e. iterations O to 350). During this period ALPS
is undecided as to which output channel should receive the heavier output weighﬁng
(specifically see iterations 80 to 250). Iterations 350 to 490 use a Gaussian noise variance
of 0.002. During this period ALPS again is undecided as to which output channel should
consistently receive the heaviest output weighting; albeit switching at a more gradual
pace. At iteration 490 the Gaussian noise variance is reduced to 10* and ALPS responds

by setting I = L.
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Figures 5.1 and 5.2 show the T(q') filter tuning strategy with I" = I under
conditions of no MPM and MPM, respectively. On the other hand, figures 5.3 and 5.4
illustrate the I' tuning strategy using a first order default T(q') filter, again under
conditions of no MPM and MPM. The “complete" regulatory tuning strategy employed
by ALPS, however, tunes both I" and T(q"). This is shown in figure 5.5 for the case of
Gaussian noise and no MPM. Initially the Gaussian noise variance is set to 0.15 and
regulatory supervision is enabled at iteration 30. ALPS increases the amount of filtering
and ultimately switches to a second order T(q") filter at iteration 110. This second order
T(q") filter is tuned until the performance specifications are met (tuning is completed in
one to two successive T(q") filter tuning periods). Similarly, ALPS adjusts the output
weighting I" albeit in an undecided manner (i.e. during successive I' tuning periods the
output weighting of each output channel is set to unity). At iteration 190 the amount of
Gaussian noise is reduced to a variance of 0.002. ALPS responds to this new condition
by reducing the amount of filtering and switches to a default firsi order T(q™") filter at
iteration 430. This first order T(q") filter is tuned until the performance specifications are
met (one to two tuning periods are required after the T(q") filter order switch occurred).
ALPS also adjusts I" during this time frame. Throughout iterations 190 to 590 ALPS
adjusts I' in a gradual manner weighting output channel 2 the heaviest. The latter portion
of this figure (i.e. iterations 400 to 600), however, shows that ALPS ultimately resets
I" = L. Although not shown in this figure, iterations beyond 600 show that ALPS fixes
Y. = 1.0 while gradually cycling vy, between the limits of 0.6 <+, < 1.0.

Figure 5.6 illustrates the regulatory tuning strategy of adjusting both I and T(q™")
under conditions of Gaussian noise and MPM. Note the similarity of this figure to figure
5.5 . Indeed, the entire discussion presented for figure 5.5 is valid for this figure albeit
the cyclical manner of I" is more pronounced. {n comparison to figure 5.5, the T(q") filter
pararneters satisfying the regulatory perfermarice specifications are tuned to values

resulting in slightly heavier filtering.
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Important conclusions can be drawn from figures 5.1 through 5.6 . These figures
show that ALPS successfully adjusts the T(q™") filter order and break frequency to achieve
and maintain the closed-loop regulatory performance criteria, 6°,, under conditions of
Gaussian noise, with and without MPM, witha and without adjusting the output weighting
I". Unfortunately, these figures also reveal a shortcoming in the I tuning strategy. Figures
5.3 through 5.6 indicate that adjusting I as ;.=:r =quation 4.1 initially does have the desired
effect (i.e. balancing the outputs such that G,; = G;, ). Subsequent adjustments in T,
according to equation 4.1 with " # I, do not achieve the desired effect as the current

value of I is not taken into account.

Regulatory performance supervision consists of tuning the T(q?) filter and I". The
role of T is to balance the LRPC algorithm such that the weighted standard deviation of
all output channels are of the same order of magnitude. Adjustments made in I', however,
also affect the control signal variance of the input channels (recall section 3.4.2). Figures
5.5 and 5.6 clearly demonstrate that any adjustments made in I" do not affect ALPS’
ability to meet the o, ,, regulatory performance specifications. In other words, any
adverse effects on o2, through tuning I are removed by adjusting the T(q) filter. Hence,
the evaluation of ALPS’ regulatory perforrance tuning strategies for the remaining

benchmark problems (processes B and C) consist of simultaneous tuning of T(ghH and T.

5.2.1.2 Servo Performance Tuning

This section focuses on the servo performance tuning strategies employed by
ALPS. Unless stated otherwise, regulatory performance supervision is disabled in order

to highlight the servo performance tuning strategy.
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Consider figure 5.7 which shows the trajectories of the output prediction horizon
N,, and the output constraints y_ . and y_... under ideal conditions (i.e. no MPM and no
measurement noise). The setpoints of y (i.e. w, and w,) are square-waves of amplitude
0.1 and sufficiently effset in time to enable each output channel to reach steady state
during a % cycle. Notice how the output constraints are updated whenever a setpoint
change occurs. For a positive setpoint change in output channel ’i’, the maximum output
constraint y, ... is updated to reflect its overshoot specification. After a fixed duration of
30 sample intervals the output constraints y; .. and y;.;, are updated to reflect the
regulation band specification r,;. This figure also shows that due to the small setpoint
changes (i.e. £0.1) the oversheot specifications result in "tighter” bounds during setpoint
changes than do the regelation band specifications. Servo supervision is enabled at
iteration O with the outwput prediction horizon initially set to N, = 30. ALPS updates N,
whenever all oatput channels have current values for their rise times t, and t_, (recall that
t,; is valid for a particular value of N, mup to a duration of 10 minutes after detection). The
values of t, and t , are included in figure 5.7 . The final value of N,, satisfying the rise

time specifications of both output channels, is N, = 11.

Figure 5.8 depicts the trajectories of the output prediction horizon N,, and output
constraints y,_,, and ¥,... under conditions of MPM. Servo supervision is enabled at
iteration O with the output prediction horizon initizlly set to N, = 20. ALPS continually
decreases N, to satisfy the servo performance specifications t, and t,,. Observe, however,
that the rise time calculation scheme, given by equation 3.8, is not without error.
Iterations 300 to 400 reveal an erroneous value of t, = 13.687 seconds (compare this
value with the data to its left and right). This value misleads ALPS to assume that both
output channels meet heir specifications with N, = 9. ALPS continues tuning in the

subsequent cycle and ultimately meets the servo performance specifications with N, = 8.
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Consider figure 5.9 which illustrates the serve performance tuning strategy applied
to process A under conditions of Gaussian necise and no MPM. Servo supervision is
enabled at iteration 0 with the output prediction horizon initially set to N, = 30. ALPS
decreases N, in order to meet the closed-loop servo performance specifications. However,
the rise time detection scheme, given by equation 3.8, is at times seriously affected by
the Gaussian noise. During iterations 150 to 250, for example, t,, is calculated to be
significantly smaller than observed. This causes ALPS to assume that the performance
specifications have been met, and hence does not update N,. This situation is encountered
again between iterations 430 to 520. In addition, consider the interval between iterations
500 to 550. During this period both calculated values of t; and t,, are smaller than
observed, causing ALPS to increase N, by 1. Ultimately ALPS meets the servo

performance criteria with a setting of N, = 11.

Figure 5.10 depicts the servo performance tuning strategy applied to process A
under conditions of Gaussian nc.~: and MPM. Servo supervision is enabled at iteration
0 with the maximum output prediction horizon initiaily set to N, = 30. ALPS continually
decreases N, in order to meet the closed-loop servo performance specifications. ALPS
tunes the output prediction horizon to its final value of N, = 8; which satisfies all serve
performance specifications. Careful examination of the calculated rise times t; and ¢,
reveals that, from time to time, these values are affected by the Gaussian noise. ALPS -

at least during this run - consistently updates N, without any apparent error.
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Important conclusions can be drawn from figures 5.7 through 5.10 . These figures
show that ALPS successfully adjusts N, to achieve and maintain the closed-loop servo
performance criteria, t, under conditions of Gaussian noise, with and without MPM. In
addition, ALPS updates the output constraints y_ ., and ¥y,.. to reflect overshoot and
regulatory band specifications. The figures also reveal that the rise time calculation
(equation 3.8) is affected by Gaussian noise. Although the net effect of Gaussian noise
on the final value of N, is nil, ALPS will respond to incorrect t, values and adjust N,

causing N, to slowly "bounce around”. A simple analog low-pass pre-filter would almost

certainly eliminate this problem.

Section 5.2.1.1 evaluates ALPS’ regulatory response supervision schemes whereas
section 5.2.1.2 focuses on ALPS’ servo response supervision procedures as applied to
process A. Typical applications of LRPC algorithms are multivariable continuous
processes such as distillation columns. Continuous processes require the LRPC algorithm
to operate throughout three distinct modes of control: plant startup, prolonged normal
operation, and ultimately plant shutdown for the purpose of maintenance. Figure 5.11
illustrates these control modes. This figure depicts the trajectories of the maximum output
prediction horizon N,, output constraints Y., and y,.,. output weighting I', and T(q™")
filter, under conditions of MPM and Gaussian noise. The setpoints of y (i.e. w, and w,)
are square-waves of amplitude 0.1 with a d.c. component of 0.5. Also, a Y2 cycle square-
wave is sufficiently long in time to allow ALPS to tune I' and T(q'). The simulation
begins with a default first order T(q") filter and N, = 15. Between iterations 0 to 30
setpoint scheduling is used to gradually increase the setpoints to values of 0.5. Notice
how y,.. is updated to reflect the overshoot specifications througlout this interval. Once

both output channels reach steady state (i.e. within 0.5*%(1 xr, ) ) ALPS updates y,,,, and
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Y... to reflect the r, specifications. Following iteration 60 both setpoints are updated
according to the square-waves discussed above. ALPS adjusts N,, I', and T(g™") in order
to meet the closed-loop servo and regulatory performance specifications. ALPS meets the
all performance specifications with N, = 8, and a first order T(q™") filter with T_a, = -
0.78. Notice that I gradually cycles (similar to figures 5.5 and 5.6). ALPS fixes vy, = 1.0
while gradually cycling v, between the limits of 0.65 < v, < 1.0. At iteration 740 both
setpoints are set to 0 using large step setpoint changes (as opposed to setpoint scheduling)
while the values of I" and T(q") are "frozen" and "tight" input rate constraints are applied.

The maximum output prediction horizon is reset to a more conservative value of N, = 10.
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In summary, both servo and regulatory supervision schemes worked very well
when applied to process A. The conclusions drawn from figures 5.1 through 5.11 clearly
show that, at least for process A, ALPS successfully adjusts the T(q") filter order and
break frequency, as well as the output prediction horizon N, to achieve and maintain the
closed-loop regulatory and servo performance specifications under conditions of Gaussian
noise, with and without MPM. Unfortunately, these figures also reveal a shortcoming in
the I" wuning strategy. Adjusting I" as per equation 4.1 does have the desired effect (i.e.
balancing the outputs such that 6,, = ©,, ) provided, however, the adjustment is made
under conditions of I’ = I. Subsequent adjustments in I', with I" # I, do not achieve the

desired effect as the current value of I' is not taken into account. Thus equation 4.1

should be altered to include the setting of I for which o¢,; i = l...n, are measured.

In addition, a simple analog low-pass filter should be used to filter "raw" data (i.e.
filter y, i = 1...n) and reduce the effect of Gaussian noise (i.e. measurement noise) on the
calculated rise times. This will almost certainly eliminate the gradual "bouncing around”
of N,.

The next section evaluates the regulatory and servo performance tuning strategies

as applied to process B.
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5.2.2 Process B

The performance and tuning of the distillation column (process B) was completed
following essentially the same procedure as for process A. Table 5.3 lists the closed-loop

regulatory and servo control performance specifications used for the investigations.

5.2.2.1 Regulatory Performance Tuning

Simultaneous tuning of I" and T(q'), under conditions of Gaussian noise and no
MPM, is illustrated in figure 5.12. Initially the Gaussian noise variance is set to 1.7x10?
and regulatory supervision is enabled at iteration 50. ALPS increases the amount of
filtering and adjusts T(q") until the performance specifications are met (tuning is
completed in 3 to 4 successive T(q") filter tuning periods, at iteration 190). Similarly,
ALPS adjusts the output weighting I albeit in an undecided manner (i.e. during
successive I tuning periods the output weighting of each output channel is set to unity).
At iteration 260 the amount of Gaussian noise is reduced. ALPS responds to this new
condition by reducing the amount of filtering until the performance specifications are met,
at iteration 500. ALPS also adjusts I" during this time frame. Throughout iterations 260
to 570 ALPS adjusts I', however, in an undecided manner. During consecutive I” tuning
periods ALPS weights alternate output channels heaviest (i.e. v, =1.0 and v, < 1.0
followed by v, < 1.0 and vy, = 1.0 etc.). Adjustments in I" are performed according to
equation 4.1, which does not take into account the current setting of I'. Iteration 360
highlights this point. Here ALPS sets v, = 1.0 and v, = 0.55, and at iteration 420 scaling
results in y; = 0.98 and vy, = 1.0. This indicates that the previous settings (i.e. y, = 1.0 and
Y, = 0.55) should have been maintained since the desired result of o, , = 6, , was indeed
achieved.

Figure 5.13 shows the effect of MPM on the regulatory tuning strategy under
conditions of Gaussian noise. Initially the Gaussian noise variance is set to 1.7x10” and

regulatory supervision is enabled at iteration 60. ALPS increases the amount of filtering
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and meets the performance specifications with T_a, = -0.946. At iteration 270 the
Gaussian noise variance is reduced to 3.0x10®. ALPS respends by reducing the amount
of filtering and meets the performance specifications with T_a, = -0.807, at iteration 550.
ALPS also adjusts the output weighting I" throughout this simulation. The results obtained
for the case of MPM are very similar to the results obtained withcut MPM. ALPS initially
adjusts T" such that the desired result of G, = ©,, is met, only to reset I' = I in the
subsequent tuning period. This of course allows o, and G, to drift apart. This indicates
that the T tuning strategy, equation 4.1, must be updated to include the current value of
I.

In summary, figures 5.12 and 5.13 show that ALPS successfully adjusts the TG
filter break frequency to achieve and maintain the closed-loop regulatory performance
criteria, ¢°,, under conditions of aussian noise, with and without MPM. In addition,
these figures reveal that the current I tuning strategy (i.e. equation 4.1) should be updated

such that the current setting of I is taken into account.

5.2.2.2 Servo Performance Tuning

Figure 5.14 illustrates the servo response tuning strategies of ALPS as applied to
process B under ideal conditons (ie. no MPM and no measurement noise). This figure
depicts the trajectories of the output prediction horizen N,, and output constraints y,,;, and
Yuu- The setpoints of y are square-waves of amplitude 0.5 and a d.c. component of 2.G .
Servo response supervision is enabled at iteration 0 with an initial value of N, = 30. The
figure shows that ALPS adjusts N, progressively until the servo performance
specifications are met with N, = 9.

Figure 5.15 illustrates the servo response tuning strategies under conditions of
Gaussian neise and MPM. Servo supervision is enabled at iteration O, with an initial value
of N, =30. This figure shows that ALPS consistently reduces N, until the servo

performance specifications are satisfied with N, = 8.
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Figures 5.14 and 5.15 clearly show that ALPS successfully adjusts N, so as to
achieve and maintain the closed-loop servo performance criteria, t, under conditions of
Gaussian noise, with and without MPM. In addition, ALPS updates the output constraints
Y and ¥y, to reflect overshoot and regulatory band specifications. These figures also
reveal that the calculation of the rise time (equation 3.8) is only marginally affected by

Gaussian noise since the gradual "bouncing around” of N, is not observed.

Sections 5.2.2.1 and 5.2.2.2 evaluate ALPS’ regulatory and servo response
supervision procedures respectively. A more typical application of ALPS, namely
simultaneous regulatory and servo response supervision, is shown in figure 5.16. The
setpoints of y (i.e. w, and w,) are square-waves of amplitude 0.5 with a d.c. component
of 2.0. In addition, a % cycle square-wave is sufficiently long in duration for ALPS to
tune I" and T(q'). The simulation begins with a default first order T(q") filter and
N, = 15. Between iterations 0 to 40 setpoint scheduling is used to gradually increase the
setpoints to values of 2.0. Throughout this period y,,,, is updated to reflect the overshoot
specifications. Once both output channels reach steady state (i.e. within 0.5*(1 tr,) )
ALPS updates y,, and y,., to reflect the 1, specifications. Following iteration 60 both
setpoints are updated according to the square-waves discussed above. ALPS adjusts N,,
I, and T(q') in order to meet the closed-loop servo and regulatory performance
specifications. ALPS tunes these parameters and meets the performance specifications
with M, = 8, and a first order T(q") filter with T_a, = -0.72. This figure also displays the
gradual cycling ot I (similar to figures 5.11, 5.12, and 5.13). At iteration 750 both
setpoints are set to O using large step setpoint changes (as opposed to setpoint
scheduling); while the values of T and T(q') are "frozen", and "dght" input rate

constraints are applied. The output prediction horizon is reset to a miore conservative
value of N, = 15.
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The regulatory and servo performance tuning strategies worked successfully when
applied to process B. Figures 5.12 through 5.16 clearly prove that ALPS successfully
adjusts the T(q") filter and output prediction horizon, N,, to achieve and maintain the
closed-loop regulatory and servo performance specifications under conditions of Gaussian
noise, with and without MPM. These figures also indicate the same shortcoming of the
I tuning strategy as was observed with process A. In additon, these figures reveal that
the calculation of the rise time (equation 3.8) is only marginally affected by Gaussian

noise since the gradual "bouncing around” of N, is not observed during servo supervision.

The next section evaluates the regulatory and servo performance tuning strategies
as applied to process C.
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5.2.3 Process C

The simulation results conducted with process C are presented in this subsection.
Table 5.4 lists the closed-loop performance specifications arid input constraints used for

the investigations.

5.2.3.1 Regulatory Performance Tuning

Consider figure 5.17 which illustrates the regulatory tuning strategy of adjusting
both I and T(q™) under conditions of Gaussian noise without MPM. Initially the Gaussian
noise variance is set to 10 and regulatory supervisicn is enabled at iteration 80. ALPS
increases the amount of filtering and adjusts T(q') until the performance specifications
are met at iteration 210. ALPS also tunes the output weighting I" which proved
particularly effective for this process. During iterations 0 to 270 for example, ALPS
adjusts I' (i.e. 7, = 1.0 and vy, = 0.55) to reduce o, relative to G, ;. At iteration 290 the
amount of Gaussian noise is reduced to a variance of 2.0x10. ALPS responds to this new
condition by reducing the amount of filtering until the performance specifications are met.
During this time ALPS adjusts I' in slowly time varying cyclical manner similar to the

results obtained for processes A and B.

Figure 5.18 depicts the regulatory tuning strategy under conditions of Gaussian
noise and MPM. Initially the Gaussian noise variance is set to 10 and regulatory
supervision is enabled at iteration 40. ALPS increases the amount of filtering and meets
the performance specifications at iteration 130. At iteration 250 the Gaussian noise
variance is reduced to 2.0x10°. ALPS responds by reducing the amount of filtering until
the performance specifications are met (at iteration 330). ALPS adjusts the output

weighting I throughout thiz zinulation in a manner analogous to the discussion presented
for figure 5.17.
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In summary, ALPS’ regulatory supervision schiemnes worked successfully when
applied to process C. ALPS skilfully adjusts the T(q') filter break frequency to achieve
and maintain the closed-loop regulatory performance specifications, 6°,, under conditions
of Gaussian noise, with and without MPM. In addition, these figures revealed the same
flaw in the I tuning strategy that was observed with processes A and B. Regardless of

its deficient tuning strategy, I" proved to be particularly effective in reducing o, , relative

to ;.

5.2.3.2 Servo Performance Tuning

Numerous simulations using process C were performed. Even under ideal
conditions of no MPM and no Gaussian noise ALPS was unable to adjust N, to meet the
closed-loop servo control specifications listed in table 5.4. Clues as to the cause of ALPS’
difficulties are revealed when considering the shape of the process’ response to a setpoint
change. The implemented LRPC algorithm readily controls this process, in fact, in
response to a setpoint change, the LRPC algorithm is able to force output channel 2 to
its new steady state in a single sample interval after the dead time (upon discretization

output channel 2 has only a i sample delay due to the zero order hold). This means that

t., is essentially invariant to N.,.

In contrast to output channel 2, output channel 1 has a very large dead time and
very slow dynamics. The implications of this are that t,, takes longer in duration than the
allowed servo response "window" (recall section 4.3.3.1, servo response window is 30

sampling instances in duration). Thus for this particular process, t,;, could not be detected.
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Simulations under conditions of MPM and Gaussian noise were also performed.
ALPS encountered the same difficulties as discussed for the case without MPM, und

hence was unable to satisfy the closed-loop servo response specifications.

In summary, ALPS’ servo response supervision knowledge was unable to tune N,
to meet the specified closed-loop servo response performance specifications. After several
simulations it was observed that, subsequent to a step setpoint change, the implemented
LRPC algorithm forced output channel 2 to its new steady state in a single sample
interval after the dead time. Thus ALPS’ heuristic N, tuning knowledge, which assumes
a strong cause-and-effect relationship among t, and N,, proved to be not applicable to this
process. Also, since output channel 1 displays a very large dead time and has very slow

dynamics, t,, could in fact riot be measured.

This section evaluated the regulatory and servo performance tuning strategies used
by ALPS as applied to process C. Figures (5.17) and (5.18) prove that ALPS successfully
adjusts the T(q™) filter to achieve and maintain the closed-loop regulatory performance
criteria under conditions of Gaussian noise, with and without MPM. These figures also
show that T is a particularly useful tuning parameter for this process. I' proved very
effective in reducing G,, relative to ;. ALPS’ servo response supervision knowledge,
on the other hand, is inappropriate for process C. ALPS inherently assumes a strict cause-
and-effect relaticnship between N, and t. This process illustrates that under certain

conditions N, may be an ineffective servo response tuning parameter.
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5.3 Summary

The studies conducted on three 2 x 2 benchmark problems included stochastic
output disturbances (Gaussian noise) : nd MPM. The results conclusively show that ALPS

effectively tunes the T(q") filter order and break frequency to achieve and maintain user

specified regulatory performance criteria.

In addition, the investigations illustrate that I' is a useful tuning parameter in
adjusting the relative standard deviations among output channels (i.e. reducing o, ; relative
to G,, or vice versa). Unfortunately, the results also reveal a shortcoming in the I tuning
strategy. Adjusting I" as per equation 4.1 does have the desired effect (i.e. balancing the
outputs such that o, ; = G, , ) provided, however, the adjustment is made under conditions
of I' = I. Subsequent adjustments in I, with I" # I, do not achieve the desired effect as
the current value of I' is not taken into account. Thus equation 4.1 should be altered to

include the setting of I" for which o,; i = 1...n, are measured.

ALPS’ servo performance tuning strategy of adjusting N, with NU =1 is also
evaluated. The investigations undoubtedly show that ALPS maintains user specified servo
performance criteria in the presence of MPM and Gaussian noise. Of particular interest
are the results obtained from process C. This process highlights the underlying

assumptions that govern the success of ALPS:

1) The user must supply performance specifications that are realistic and achievable

given the adjustment ranges of the LRPC tuning parameters.
2) The current body of servo performance tuning knowledge, encoded within ALPS

in terms of its generic rules and procedures, may prove inadequate for processes

displaying very fast and/or very slow process dynamics.
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In addition, ALPS’ servo performance tuning strategy depends upon accurate
detection of t. The current rise time detection scheme as given by equation 3.8 is
susceptible to measurement noise. A simple analog low-pass filter should be used to filter
"raw" data (i.e. y;i = 1...n) and thus reduce the effect of measurement noise on the
calculated rise times. This will almost certainly eliminate the gradual "bouncing around”

of N, occasionally observed during servo performance tuning.
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Chapter 6

Conclusions and Recommendations

This thesis focused on Supervisory LRPC for the purpose of performance tuning
in an on-line real-time environment. The major contribution of this work is the
development of the Adaptive Long range predictive control Performance Supervisor,
ALPS. ALPS is implemented with existing ES technology and monitors the closed-loop
control performance of several LRPC algorithms simultaneously. ALPS adjusts L.LRPC
tuning parameters based upon the actual closed-loop control performance visavis user
specified control performance. The tuning strategies employed by ALPS were evaluated
on MIMO benchmark processes. These investigations showed that ALPS skilfully adjusts
the controller tuning parameters. ALPS’ supervisory roles became apparent in two distinct
ways. Firstly, even under ideal conditions (i.e. no MPM and ne disturbances) the
appropriate controller settings resulting in the desired closed-loop control performance
may not always be known a priori. Thus ALPS allows commissioning of LRPC
algorithms with conservative controller settings. Subsequent to commissicning, ALPS
manipulates the appropriate LRPC tuning parameters so as to achieve the user specified
control performance. And secondly, ALPS continually monitors the actual closed-loop
control performance and fine-tunes controller settings in order to maintain the user
specified control performance in the presence of MPM and disturbances. Overall ALPS

proved to be very successful in achieving and maintaining the user specified closed-loop
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control performance. There is, of course, room for improvement. Suggestions for future

work are given in section 6.1. The main contributions of this thesis are listed below:

i. Development of the ALPS kb knowledge base

The Adaptive Long range predictive control Performance Supervisor was
developed with Gensym’s object oriented real-time expert system development tool G2.
G2 facilitates rapid prototyping and offers an exceptional development environment with
a rich set of built-in functions. This tool enables the developer to incrementally test and
expand his applications (not possible with conventional programming languages such as
FORTRAN or 'C"). First time knowledge base developers though, will find G2 to be
rather complex due to its (almost) countless number of options. G2 has a very steep
leaming curve. Once mastered, however, the developer quickly appreciates its tremendous
capabilities. End-users, on the other hand, find G2 easy to use; they merely point and
click with the mouse. It is safe to say that ALPS could not have been developed and
implemented ir as short a time frame (about 8 months) without an ES development tool.

For educational purposes ALPS was not optimized for execution speed rather
ALPS was implemented in a fashion illustrating the following features that are provided
with G2:

 forward chaining and backward chaining

» "whenever” rules and “initially” rules

» procedures

.

external procedure calls

« obiject oriented programumning
¢ formulas

« focus

e invoke

» tabular functions

« GS1

» generic and specific knowledge
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2. Development of on-line LRPC tuning guidelines

Time domain performance criteria were selected for implementation with ALPS
due to their heuristic and intuitive nature. Based on these time domain performance
criteria, regulatory and servo control tuning strategies suitable for on-line implementation
were developed. Chapter 3 lays the ground work by defining the performance criteria and
selecting appropriaiec LRPC tuning parameters. The very heart of ALPS - its tuning
strategies - are detailed in chapter 4. Overall, based on the investigations conducted on
the MIMO benchmurk problems, ALPS’ tuning strategies worked very well. ALPS does

have its limitations, though, and the following assumptions should provide some

guidelines:

1) The user must supply performance specifications that are realistic and achievable

given the adjustment ranges of the LRPC tuning paraineters.

i) The current body of servo performance tuning knowiedge, encoded within ALPS
in terms of its generic rules and procedures, may prove ifiadequate for processes
displaying very fast and/or very slow process dynamics. In addition, ALPS’ servo
performance tuning strategies are useful provided the dimension of the MIMO

process is small (say n < 4, where n is the number of output channels).
iii) The recommended improvements listed in section 6.1 should be implemented.
3. Training facilities provided with ALPS.kb

ALPS’ supervision modes may be disabled to allow the user to manually adjust
all LRPC tuning parameters in addition to performing setpoint changes. With both servo
and regulatory response supervision disabled, the role of ALPS is reduced to providing
an interactive real-time interface between the user, the LRPC algorithms, and the

processes. ALPS merely schedules data I/O and the execution of the LRPC algorithms at
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every sampling interval. The user may manually change any of the LRPC tuning
parameters on-line using the mouse. The visual impact of the this process-LRPC-operator
interface is very gripping. Data is displayed continuously and in real-time in the form of
graphs and tables; providing immediate feedback to the user. Also, note that this manual
mode of operation is useful for establishing realistic and achievable perfi:rmance
specifications (see item ’i’ above).

Optional features useful for investigating the performance of ALPS itself as well
as the underlying LRPC algorithms have been incorporated into the its knowledge base.

The following features rnay be selected on-line using the mouse:

» use of T(q") fizicr or no T(qQ™") filter
« switch from first to second order T(q") filter, and vice versa

« constrained solution using QPSOL or unconstrained solution using equation 2.19

In addition to the above, when using a process simulator (see secticn 4.3.2.1) the user

may select among the following options at any time with the mouse:

« MPM or no MPM

« input step disturbrnces, d (t), of a user specified amplitude can be implemented

at any input channel
+ stochastic zero-mean output disturbances, d(t), with a Gaussian or Normal

distribution, at a user specified variance

4. MGPC for the HP-9000 hardware platform

Software was deveioped 3 implement the constrained MGPC algorithm of Mutha
(1990) for the HP-3000 hardware platfonin. This algorithm was chosen since it has a

unique two degree of freedom structure sllowing for independent regulatory and servo
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control performance specificaiions. Furthermore, both amplitude and rate constraints can
be imposed on process inputs, and amplitude constraints can be imposed on process
outputs. This algorithm uses the commercially available quadratic optimization package
QPSOL (Gill er al. 1990), and demonstrates mixed language programming techniques
between FORTRAN and 'C’ for the HP-UX operating system.

6.1 Recommended Improvements for ALPS

1. ALPS’ servo performance tuning sirategy depends upon accurate measurements
of t. The current rise time detection scheme, given by equation 3.8, is susceptible
to measurement noise. A simple analog low-pass filter should be used to filter
"raw" data (i.e. filter y; i = 1...n) and thus reduce the effect of measurement noise
on the calculated rise times. This will almost certainly eliminate the gradual

"bouncing around” of N, occasionally observed during servo performance tuning.

2. ALPS’ T tuning strategy can alsc be improved. Regulatory performance tuning
consists of tuning the T(q') filter as well as I". The role of I is to balance the
LRPC algorithm such that the weighted standard deviation of ail output channels
are of the same order of magnitude. The current I tuning strategy, equation 4.1,
should be altered to include the setting of I' for which the standard deviations of

all output channels are measured.
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6.2 Suggestions for Future Work

1. A more thorough investigation of the effect of N}, N,, and NU, on the rise times
for MIMO processes is needed. Chapter 3 showed that the rise times are
unaffected by the choice of N, if NU > 1 and N, = 1; and the constraints are not

active. This unexpected result warrants further investigation.

2. The performance of ALPS, based on simulations conducted with MIMO
benchmark problems, was corifirmed. Experimental studies on a pilot-scale process
are in progress (Dhaliwal, 1992) and should result in further improvemen:

ALPS’ performance tuning strategies.

3. High level diagnostics strategies should be developed to exploit ALPS’ generic
architecture. Since ALPS is capable of supervising several LRPC algorithms
simultaneously, intelligent diagnostics schemes should be developed to detect and

diagnose faults among sequential process units.

4. The MGPC algorithm has beer implemented on the HP-9000 as a non-adaptive
control strategy. If a multivariable identification package is available, this
algorithm can be readily implemented as a multivariable adaptive control
algorithm. In addition, feedforward control should be added (see e.g. Mutha,
1990). These additions, however, may require the modification of ALFS’

performance tuning knowledge.
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Appendix A

This appendix lists the classes, rules, procedures, and formulas used in the
ALPS.kb knowledge base. The listing is divided into the following sections:

1; Classes

2) Procedures

3) Global Sug- ~visicn rules

4) Regulatory Supervision rules
5) Servo Supervision rules for adjusting v

< mant ymax

6) Servo Supervision rules for adjusting ™,
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1. Classes

3BY3_PLANT,

Notes

User restrictions

Class

Superior class

Attributes specific to class

Capabilities and restrictions
Change

Menu option

Inherited attributes

Default settings
Stubs

Coclor
Icon description

an object-definition
OK

none

3by3_plant
mimo_plant

ul is given by a
u2 is given by a
u3 is given by a
vl is given by a
yspl is given by
yv2 is given by a
ysp2 is given by
y3 is given by a
ysp3 is given by
none

none

a final menu choice

nl is an instance of a gpc_tunig_kncb;

n2 is an instance of a gpc_tunig_knob;

nu is an instance of a gpc_tunig_knob;
max_delay is an instance of a plant_data;
by a

quantitative-variable;
quantitative-variable;
quantitative-variable;
quantitative-variable;
a quantitative-variable;
quantitative-variable;
a quantitative-~variable;
gquantitative-variable;
a quantitative-variable

tau_over_ts is given
quantitative-variable;

t_filtexr_al is an instance of a
gpc_tunig_knob;

t_filter_a2 is an instance of a
gpc_tunig_knob

none

an input flow-pipe inlet-port-1 located at
left 130;

an input flow-pipe inlet-port-2 located at
left 200;

an input flow-pipe inlet-port-3 located at
left 27%;

an output flow-pipe outlet-port-1 located
at right 130;

an output flow-pipe outlet-port-2 located
at right 200;

an output flow-pipe outlet-port-3 located
at right 270

inherited

width 200; height 290;

black:
outline (0, 90) (0, 290) (200, 28%80)
1200, 90);
lines (306, 170) arc (48, 187) (26,
200);
lines (28, 137) arc (50, 152) (30,
170) ;
lines (135%, 136) arc (160, 152) (134,
171);
lines (136, 171) arc (158, 194) (130,
206) ;
lines (77, 158) (102, 176);
lines (77, 176) (1t., 158);

black:
outline (0, 0) (0, S0) (200, 90)
(200, 0);

black:
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1BY1__PLANT,

Notes

User restrictions

Class

Superior class

Attributes specific to ~lass

Capabilities and restrictions
Change

Menu option

Inherited attributes

Default settings
Stubs

Color
Icon description

lines

(54, 73) (54, 18) (43, 45) (2¢,
17) (29, 73);
lines (90, 18) arc (65, 43) (88, 73);
lines (96, 73) (96, 45) (76, 45);
lines (111, 18) (111, 73);
lines (111, 18) arc (130, 35) (111,
47) ;
lines (162, 17) axrc (140, 47) (166,
73)

an object-definition

OK

none

1byl_plant

mimo_plant

u is given by a quantitative-variable;
v is given by a guantitative-variable;
ysp is given by a quantitative-variable
none

none

a final menu choice

nl is an instance of a gpc_tunig_knob;
n2 is an instance of a gpc_tunig_knob;
nu is an instance of a gpc_tunig_knob;
maxXx_delay is an instance of a plant_data;

tau_over_ts is given by a
gquantitative-variable;

t_filter_al is an instance of a
gpc_tunig_knob;

t_filter_a2 is an instance of a
gpc_tunig_knob

none

an input flow-pipe located at left 120;

a1 output flow-pipe located at right 120
inherited
width 101;
black:

height 1€5;

filled rectangle (22, S0) (23, 137);
filled rectangle (73, S90) (74, 1328);
lines (40, 122) (59, 106);
lines (40, 107) (57, 122);
outline (0, 70) (0, 165) (101, 165)
(101, 70):
outline (C, 0) (0, 70) (101, 70)
(101, 0);

black:
lines (26, 48) (26, 18) (22, 34) (16,
18) (16, 18);
lines (42, 19) arc (22, 34) (42, 48);
lines (45, 48) (45, 32) {36, 32);
lines (52, 18) (52, 48);
lines (52, 18) arc (862, 27) (52, 34):
lines (79, 18) arc (68, 34) (80, 48)
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2BY2-PLANT,

Notes

User restrictions

Class

Superior class

Attributes specific to class

Capabilities and restrictions
Change

Menu option

Inherited attributes

Default settings
Stubs

Color
Icon description

an object-definition

OK

none

2by2-plant

mimo_plant

ul is given by a quantitative-variable;
u2 is given by a quantitative-variable;
vl is given by a guantitative-variable;
yspl is given by a quantitative-variable;
y2 is given by a quantitative~variable;
ysp2 is given by a quantitative-variable
none

none

a final menu choice

nl is an instance of a gpc_tunig_knob;

n2 is an instance of a gpc_tunig_knob;
nu is an instance of a gpc_tunig_knob;
max_delay is an instance of a plant_data;

tau_over_ts is given by a
quantitative-variable; ’
t_filter_al is an instance of a
gpc_tunig_knob;

t_filtexr_a2 is an instance of a
gpc_tunig_knob

none

an input flow-pipe inlet-port-1 located at
left 130;

an input flow-pipe inlet-port-2 located at
left 210;

an output flow-pipe outlet-pecrt-1 located
at right 130;

an output flow-pipe outlet-port-2 located
at right 210

inherited

width 150; height 240;

black:
ocutline (0, 91) (0, 240) (150, 240}
(150, 91);
lines (12, 142) arc (28, 133) (36,
186) ;
lines (12, 182) (36, 155);
lines (12, 182) (42, 182);
lines (104, 140) arc (126, 134) (12s6,
152);
lines (102, 184) (126, 154);
lines (102, 184) (129, 184);
lines (53, 148) (85, 167);
lines (53, 166) (88, 146);

black:
ouctline (0, 0) 0, 91) (150, 91)
(150, 0):

biack:
lines (40, 6&) (40, 18) (31, 40) (12,
18) (i8, 63};
lines (65, 18) arc (4%, 4Zz) (65, 68);
lines (71, 68) (731, 423 (56, 42);
lines (&4, 18) (84. 68);
lines (84. 18) arc (103, 32) (84,
44) ;
lines (i2v, 2y nyve (.05, 42) (129,
g
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MIMO_PLANT,

Notes

User restrictions

Class

Superior class

Attributes specific to claanx

Capabilities and resty:c¢' ions
Change

Menu option

Inherited attributes

Default settings

Stubs

Color

Icon description

MIMOQ_OoUuTpUT,

Notes

User restrictions

Class

Superior class

Attributes specific to class

Capabilities and restrictions
Change

Menu option

Inherited attributes

Default settings

Stubs

Color

Icon description

an object-definition
OK

rons:

mimo_plant

object

"1l is an instance of a gpc_tunig_knob;
nZ is an instance of a gpc_tunig_knob;

a1 is an iqstance of a gpc_tunig_knob
max_delay is an instance of a plant_data;

tau_over_ts is

given
quantitative-variable;
t_filter_al is an instance
gpc_tunig_knob;
t_filter_a2 is an instance
gpc_tunig_knob
none
none

not a final menu choice
none

none

none inherited
inherited

inherited

an obiject-definition
OK

none

mimo_output

object

Yy is given by a plant_data;

by
of

of

yv_11 is given by a gpc_tunig_knob;
y_hl is given by a gpc_tunig_knob;
outputweight is given by a gpc_tunig_knob;

ysp is given by a gpc_tunig_knob;

.

a

a

a

max_overshoot 1is given by a guantitative-

parameter;
regulation_tolerance is

given

by
by
by
by

quantitative-parameter;
servo_status is given
quantitative-parameter;
desired__trxr is given
quantitative-parameter;
observed_tr is given
quantitative-variable

none

none

a final menu choice

none

none

an input flow-pipe located at left 10
inherited

width 20; height 20;

red:

outline (9, &) (0, 20)
0);

lines (1, G;
lines (1, 20)

(19, 20);
(192, 0)
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Notes

User restrictions
Class

Superior class
Attributes specific to class

Capabilities and restrictions
Change

Menu copticn

Inherited attributes

Default settings

Stubs

Color

Icon description

PLANT_DATA,

Notes

User restrictions

Class

Superior class

Attributes specific to class

Capabilities and restrictions
Change

Menu option

Inherited attributes

Default settings

Stubs
Color
Icon description

MIMO_INPUT, an object-defirnition

OK

none

mime_input

object

u is given by a plant_data;

du is given by a plant_data;

u_1l1 is given by a gpc_tunig_knob;
u_hl is given by a gpc_tunig_knob;
du_11 is given by a gpc_tunig_knob;

du_hl is given by a gpc_tunig_knob;
lambda is given by a gpc_tunig_knob;
max_var_of_u is given by a
quantitative-parameter

none

none

a final menu choice

none

none

an cutput flow-pipe located at right 10
inherited

width 20; height 20;
blue:
outline (0, 0) (0, 20) (20, 20) (20,
0);:
lines (1, 0) (20, 20};
lines (1, 20) (20, 0)

an object~-definition

OK

none

plant_data

sensor

purpose is

varname

gsi-data-service,

none

a final menu choice

none

validity interval: 2 seconds;

default update interval: 2 seconds:;

history keeping spec: keep history with

maximum number of data points = 50

nene inherited

inherited

width 74;

dark-gray:
lines
40);

brown:

filled polygon (10,

58) (54, 38);

“SENSOR";

gsi-message-service

height 62;

(57, 42) (47, 29) (23, 29) (5,

38) (10, 58) (54,
red:
filled polygon (30,
29) (27, 18);
dark-gray:
£ill>d circle (26,
14);

18) (30, 29) (27,

14) (29, 11) (32,
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GPC_FLAG,
Notes
User restrictions
Class
Sups ™ Lor class
Att::butes specific to class

Capabilities and restrictions
Change

Menu option

Inherited attributes

Default settings

Stubs
Colorx
Icon description

filled circle (30, 12) (35, 7) (40,
12):

filled circle (38, 12) (48, 2) (58,
12)

an object-definition

OK

nene

gpc__flag

sensor

purpose is “FLAG”;

varname

gsi-data-service, gsi-message-service

none

a final menu choice

none

validity interval: indefinite;

default update interval: none

none inherited

inherited

width 100; height 92;
lines (17, 21) arc (29, 13) {42, 21);
lines (42, 21) arc {53, 28) (63, 20);
lines (19, 35) arc (30, 28) (40, 35j;
lines (40, 35) arc (53, 42) (83, 37);
lines (63, 20} (63, 37);
filled@ rectangle (14, 15) (192, 67)

GPC_TUNIG_XNOB, an object-definition

Notes

User restrictions

Class

Superior class

Attributes specific to class

Capabilities and restrictions
Change

Menu option

Inherited attributes

Default settings

Stubs
Colorx
Icon description

OK
none
gpc_tunig_knob
sensor
purpose is ®KNOB*;
varname
gsi-data-service, gsi-message-service
none
a final menu choice
none
validity interval: indefinite;
default update interval: none;
history keeping spec: keep history with
maximum number of data points = 590
none inherited
inherited
width 65; height 56;
filled circle (14, 33) (37, 10) {60,

33);
filled polygon (19. 24) (26, 15) (13,
4) (6, 13)
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GSI-INTERFACE,

Notes

User restrictions

Class

Superior c<lass

Attributes specific to class
Capabilities and restrictions
Change

Menu option

Inherited attributes
Default settings

Stubs

Color

Tcon description

OK

non
gsi
obj
ncn

L=
-interface
ect

e

an object-definition

gsi-interface-~configuration

non

e

a £inal menu choice

non
noen
non

e
2

e inherited

inherited
width 112; height 98;
outline (82, 12) (82, 8Z) (100, 32)

(106, 12);

ocutline (14, 10) (14, 81) (32, B81l)

{32, 10);
lines (32,
lines (32,
lines (69,
iines (69,
lines (<9,
lines (69,
lines {44,
lines (82,
lines (44,
lines (44,
lines (32,
lines (32,

30) (69,
20) (89,
20) (69,
30) (69,
14) (82,
37) (8z,
60) (82,
72) (43,
60) (44,
72} (44,
€6) (44,
69) (44,

30)
20)
14)
37)
253
27)

EYRRYY

CYRE YRR TR TR Y

~S o
N O
v

53);

EYRRN

wn @
N o
~

80)

a quantitative-variable

chain,

DELT2A_TR,
Options do not forward
backward chain
Notes OK
User restrictions none
Names DELTA_TR
Tracing and breakpoints default
Data type quantity
Initial value none
Last recorded value no value
History keeping spec do not keep history
Validity interval supplied

Formula

Simulation details

Initial value for simulation
Data server

Default update interval

no simulation formula yet
default

inference engine

none
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DELTA_N2,

Options

Notes

User restrictions

NMames

Tracing and breakpoints
Data type

Initial value

Last recorded value
History keeping spec
Validity interval
Formula

Simulation details
Tnitial value for simulation
Data server

befault update intexrval

a quantitative-variable
do not forward chain,
backward chain

OK

none

DELTA_N2

default

quantity

none

no vaiue

do not keep history
supplied

breadth

no simulation formula yet
default

inference engine

none
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2. Prxrocedurxes

GO_GPC, a procedure

Notes OK
User restrictions none
Tracing and breakpoints default

Default procedure priority 1

go_gpc (PLANT:class mimo_plant )

stripper:class mimo_plant;

begin

if (the name of PLANT is stripper ) then
call MIMOGPC () across GSI-1;

if (the name of PLANT is stripper_2 ) then
call MIMCGPC() across GSI-Z2;

if (the name of PLANT is stripper_3 ) then

call MIMOGPC() across GSI-3;

end

STARTUP, a procedure
Notes OK
User restrictions none
Tracing and breakpoints default

Default procedure priority 1
startup (PLANT:class mimo_plant , TYPE: text)
stripper, stripper_2,stripper_3:class mimo_plant;
INP:class mimo_input;
OUT: class mimo_output;
COUNTER: quantity:
begin
inform the operator for the next 50 seconds that *
Startup:
Startup of [the name of PLANT] initiated";
if(the name of PLANT is stripper or

the name of PLANT is stripper_2 or

the name of PLANT is stripper_3) then
begin

for OUT=each mimo_output connected to PLANT

do

conclude that the servo_status of OUT = 1
with collection time the current time - 3
seconds

end;

set the nu of PLANT tec 1;
set the nl of PLANT to 1:
set the n2 of PLANT to 10;
case (TYPE) of
"SLS": begin
for INP=each mimo_input connected to
PLANT do
set the u_hl of INP to 4.0;
set the u_ll of INP to -4.0;
set the du_hl of INP toc 1.0;
set the du_ll of INP to -1.0;
end;
end;
*SHELL" :begin
for INP=each mimo_input connected to
PLANT do
set the u_hl of INP to 0.5;
set the u_l1ll of INP to -0.5;
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set the du_hl of INP tc 0.2;
set the du_1l1 of INP to -0.2;
end;
end;

“*WOOD)" :begin
for INP=each mimo_input connected to

PLANT do

set the u_hl of INP to 10.0;
set the u_11 of INP to -10.0;
set the du_hl of INP to 1.0;
set the du_1l1 of INP to -1.0;

end;

end;
end;
for COUNTER=0. to 50. by 2.
do

if (the name of PLANT is stripper) then
begin
do in parallel
conclude that ysplprime = startup_outputl
(COUNTER) ;
conclude that ysplprime_old =
startup_outputl (COUNTER);
conclude that ysp2prime = startup_output2
(COUNTER) ;
conclude that ysp2prime_old =
startup_output2 (COUNTER) ;
set the ysp of the mimo_output connected at
the outlet-port-1 of PLANT to
startup_outputl (COUNTER);
set the ysp of the mimo_output connected at
the outlet-port-2 of PLANT to
startup_output2 (COUNTER) ;
end;
end;
if (the name of PLANT is stripper_2) then
begin
do in parailel
conclude that ysplprime_2 = startup_outputl
(COUNTER) /25.0;
conclude that vsplprime_old 2 =
startup_outputl (COUNTER)/25.0;
conclude that ysp2prime_2 = startup_output2
(COUNTER) /25.0;
conclude that ysp2prime_old_2 =
startup_output2 (COUNTER)/25.0;
set the ysp of the mimo_output connected at
the ocutlet-port-1 of PLANT to
startup_outputl (COUNTER)/25.0;
set the ysp of the mimo_output connected at
the outlet-port-2 of PLANT to
startup_output2 (COUNTER)/25.0;
end;
end;
if (the name of PLANT is stripper_3) then
begin
do in parallel
conclude that yspiprime_3 = startup_outputl
(COUNTER) /2.5;
conclude that ysplprime_old 3 =
startup_outputl (COUNTER)/2.5;
conclude that ysp2prime_3 = startup_output2

184



(COUNTER)/2.5;
conclude that ysp2prime_old_3 =
startup_output2 (COUNTER)/2.5;
set the ysp of the mimo_output connected at
the outlet-port-1 of PLANT to
startup_outputl (COUNTER)/2.%5;
set the vsp of the mimo_output connected at
the outlet-port-2 of PFLANT to
startup_output2 (COUNTER)/2.5;
end;
end;
walt for 2 seconds;
end;
inform the operator for the next 15 seconds
that"
Startup:
Waiting until all channels reach their
regulation tolerances for [the name of PLANT]";
wait until for every mimo_output CUT
connected to PLANT (
abs (the vy of 0OUT) <=
(1.+the regulation_tolerance of OUT)*
abs (the ysp of OUT) and
abs (the y of 0OUT) >=
(1. - the regulation_tolerance of OUT)*
abs{the ysp of 0OUT)
) checking every 2 seconds;
for OUT=each mimo_output connected to PLANT
do
conclude that the servo_status of OUT = 0
with collection time the current time - 3
seconds
end;
inform the operator for the next 10 seconds
that*
Startup:
Startup of {the name of PLANT] completed”;
end
else inform the operator for the next 15 seconds
that *
WARNING: startup of [the name of PLANT]}
unknown; EXITING procedure." ;

’

end

OUTPUT_WEIGHTING, a procedure
Notes OK
User restrictions none
Tracing and breakpoints default

Default procedure priority 1

output_weighting (PLANT: class mimo_plant)

max_dev: quantity;

OUT: class mime_output;

stripper, stripper_2,stripper_3:class mimo_plant;

begin

max_dev = (the maximum over each mimo_output OUTP
connected to PLANT of (the standard deviation
of the y of OUTP during the last 20 seconds)

Y

if(the name of PLANT is stripper or

the name of PLANT is stripper_3) then

begin
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for OUT=zeach mimo_output connected to PLANT
do
set the outputweight of OUT to (
(the standard deviation of the y of OUT
during the last 20 seconds + 0.1)
/ (max_dev+0.1)
)
end;
return;
end;
if (the name of PLANT is stripper_2) then
begin ‘
for OUT=z=each mimo_output connected to PLANT
do
set the outputweight of OUT to (
(the standard deviation of the ¥ of OUT
during the last 20 seconds + 0.005)
/ (max_dev+0.005)
)
end;
return;
end;
inform the operator for the next 15 seconds that °
WARNING: output_weighting( [the name of PLANT] )
unknown; EXITING procedure.™ ;

end
OBSERVE_2X2_PLANT, a procedure
Notes OK
User restrictions none
Tracing and breakpoints default

Default procedure priority 1

observe_2x2_plant (PLANT:class 2by2-plant)

QUTP:class mimo_output;

estimated_tr:quantity;

OUTPl:class mimo_output;

OUTP2:class mimo_output;

begin

allow other processing;

if( for every mimo_output OUTP connected to PLANT (
the servo_status of OUTP = 0))

then return;

if( for every mimo_output OUTP connected to PLANT (
the servo_status of OUTP - the value of the
servo_status of OUTP as of 2 seconds ago =
0))
then return;
OUTP1 =(the mimo_output
connected at the outlet-port-1 of PLANT)
OUTP2 ={the mimo_ocutput
connected at the outlet-port-2 of PLANT]};
if( the servo_status of OUTPl =0 and

the servo_status of OUTP2 =1 and (

{the servo_status of OUTP2Z -~ the value of the
servo_status of OUTP2 as of 2 seconds ago )
=1))

then begin
start find_tr (OUTP2,0UTP1);

,
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return;
end;

if ( the servo_status of OUTPl =1 and
the servo_status of OUTP2 =0 and (

(the servo_status of OUTPl ~ the value of the
sexrvo_status of OUTPl as of 2 seconds ago )
=1))

then begin
start find_tr (OUTPl, QUTP2);
return;
end;

if ((the servo_status of OUTP1l - the value of the
servo_status of OUTP1l as of 2 seconds ago ) =1)
then start servwo_wailt_cycle (QUTPLl);

if ((mhe sewin._sStatus of OUTP2Z ~ the value of the
servo_gatatuy of OUTP2 as of 2?2 -~conds ago ) =1)
then start sexwvo_wait_cycle (OOTEE: -

end

SERVO_WAIT_CYCLE, a procedure
Notes OK
User restrictions none
Tracing and breakpoints default

Default procedure priority 1
servo_wait_cycle (OUTP:class mimo_output )
begin
allow other processing;
inform the operator for the next 50 seconds
that *
servo_wait_cycle:
Entering with [the name of 0OUTP]
connected to [the name of the
mimo_plant connected to OUTP]*;

wait for 50 seconds;
conclude that the servo_status of
QUTP = (the servo_status of OUTP -~ 1);
inform the operator for the next 10 seconds
that *
servo_wait__cvcle:
Exiting with [the name of OUTP]
connected to {the name of the
mimo_plant connected to OUTP}*;

end
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FIND_TR, a procedure

Notes OK
User restrictions none
Tracing and breakpoints default

Default procedure priority 1
find_tr(0OUTPl:class mimo_ocutput,
QUTPO:class mimo_output)
old_vsp,new_ysp:quantity;
watch_for_y, loop_counter, tr:quantity;
current_y,current_y_zml:quantity;
current_y_zm2:guantity;
delta_ysp,slope:quantity;
begin
allow other processing;
inform the operator for the next 50 seconds
that *
find_tr:
Entering with [the name of OUTP1l]
connectaed to [the name of the mimo_plant
connected to OUTP1]*;
repeat
collect data
new_ysp= the ysp of OUTP1;
old_ysp =the value of the ysp of OUTP1
as of 2 second ago; end;
delta_ysp=new_ysp - old_ysp;
exit if (delta_ysp /= 0.0);
allow other processing;
end;
watch_for_y=old_ysp+0.8*delta_ysp;
collect data
current_y=the y of OUTP1l:
current_y_zml=the value of the y of OUTPl as of
seconds ago;
current_y_zm2=the value of the y of OUTPl as of
seconds ago;
end;
for loop_counter=0 to 50 by 2
do
wait for 2 seconds;
current_y_zm2=current_y_zml;
current_y_zml=current_¥;
collect data
current_y= the y of OUTP1;
end;
slope=(current_y - current_y_zm2)/4.0;
inform the operator for the next 6 seconds that
loop_counter= [loop_counter]
current_y=[current_y]
current_y_zml={current_y_zml]
current_y_zm2=[{current_y_zm2]
watch_for_y=[(watch_fox_v]
slope=[slope] ";
exit if(( if (delta_ysp > 0.0) then
(current_y > watch_for_y) else
(current_vy < watch_for_y)));
end;
tr=1loop_counter + (watch_for_ y -
current_y_zml)/slope;

wait for (50 - loop_counter);
if {(loop_counter >= 50) then
begin

188



inform the operator for the next 10 seconds
that *

find_trxr:

Exiting with [the name of OQUTP1]

connected to [the name of the mimo_plant

connected to OUTP1]

UNABLE to find tr, window expired-®;

conclude that the servo_status of OUTP1l = (the
servo_status of OUTP1 - 1);

return;

end;

if (the servo_status of OUTP1l =1 and
the servo_status of OUTP0=0) then
conclude that the observed_tr of OQUTPl = tr;

conclude that the servo_status of OUTP1 = (the
servo_status of OUTP1 -~ 1);

inform the operator for the next 10 seconds
that *

find_tr:

Exiting with [the name of OUTP1l)

connected to [the name of the mimo_plant

connected to OUTP1l} *;

end

SHUTDOWN, a procedure
Notes OK
User restrictions none
Tracing and breakpoints default

Default procedure priority 1

shutdown (PLANT:class mimo_plant , TYPE: text)
stripper, stripper_2, stripper_3:class mimo_plant;
INP:class mimo,_input;

OUT: class mimo_output;

COUNTER: quantity;

begin

inform the operator for the next 50 seconds that *
Shutdown:

shutdown of [the name of PLANT] initiated*;

if (the name of PLANT is stripper or

the name of PLANT is stripper_2 or

the name of PLANT is stripper_3) then

begin
for OUT=each mimo_output connected to PLANT
do
conclude that the servo_status of OUT = 1 with
collection time the current time - 3 seconds
end;

set the nu of PLANT to 1;

set the nl of PLANT to 1;

set the n2 of PLANT to 10;

case (TYPE) of

“SLsS": begin
for INP=each mimo_input connected to

PLANT do

set the u_hl of INP to 4.0;
set the u_1l1 of INP to -4.0;
set the du_hl of INP to 0.1;
set the du_1ll of INP to -0.1:
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end;
end;
" SHELL" :begi

for INP=each mimr_input connected to

n

PLANT do

set
set
set
set
end;
end;
*"WOOD" : begin

for INP=each mimo_input connected to

P
set
set
set
set
end;
end;

end;
if (the name of
begin
do in parallel
conclude
conclude
conclude
conclude
set the y
the ou

the u_hl of INP to 0.5;
the u_11 of INP to -0.5;
the du_hl of INP to 0.02;
the du_1ll of INP to -0.02;

LANT do

the u_hl of INP to 10.0;
the u_11 of INP to -10.0;
the du_hl of INP to 0.1;
“he du_1l1 of INP to -0.1:

PLANYT is stripper) then

that ysplprime =0.0;

that ysplprime_old =0.0;

that ysp2prime =0.0;

that ysp2prime_old =0.0;

sp of the mimo_output connected
tlet-port-1 of PLANT to 0.0;

at

set the ysp of the mimo_outpnt connected at

the ou

end;

end;

if(the name of

begin

do in parallel
concluca
conclude
conclude
conclude

tlet-port-2 of PLZNT to 0.0;

PLANT is strapper_2) then

that ysplprime_2 =0.0;
that ysplprime_old_2 =0.0;
that ysp2prime_2 =0.0;
that ysp2prime_old_2 =0.0;

set the ysp of the mimo_output connected at
the outlet-port-1l of PLANT to 0.0;
set the ysp of the mimec_output connected at
the outlet-port-2 of PLANT to (.0;

end;

end;

:f(the name of

begin

do in parallel
conclude
conclude
conclude
conclude

PLANT is stripper_3) then

that ysplprime_ 3 =0.0;
that ysplprime_old_3 =0.0;
that ysp2prime_3 =0.0;
that ysp2prime_old_3 =0.0;

set the ysp of the mimo_output connected
the outlet-port-1 of PLANT to 0.0;

set the ysp of the mimo_output connected at
the outlet-port-2 of PLANT to 0.0;

end;
end;

wait for 50 seconds;
inform the operator for the next 15 seconds that”
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Shutdown:
Waiting until all channels reach below
abs (regulation tolerances) for [the name of
PLANT] " ;
wait until for every mimo_output OUT
connected to PLANT (
the y of OUT <=
the ysp of OUT + the regulation_tolerance of OUT
and
the y of OUT >=
the ysp of OUT - the regulation_tolerance of OUT
) checking every 2 seconds;
for OUT=each mimo_output connected to PLANT

do
conclude that the servo_status of OUT = 0 with
collection time the current time - 3 seconds
end;
inform the operator for the next 10 seconds

that *
Shutdown of [the name of PLANT] completed*;
end
else inform the operator for the next 15 seconds
that *
WARNING: shutdown of [the name of PLANT]
uriknown; EXITING procedure.*®

‘

end

SWITCH_T, a procedure
Notes OK
User restrictions none
Tracing and breakpoints default

Default procedure priority 1
switch_T (PLANT: class mimo_plant,ORDER: quantity
)
stripper, stripper_2,stripper_3:class mimo_plant;
begin
case (the name of PLANT) of
stripper: begin
conclude that t-filter-order = ORDER;
end;
stripper_2: begin
conclude that t-fiiter-order_2
end;
stripper_3: begin
conclude that t-filter-order_3 = ORDER;
end;

il

ORDER;

end
end
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3. Global Supervision Rulaes

a rule
Options invecable via backward
chaining, invocable via forward
chaining, may cause data
seeking, may  cause forward
chaining
Notes OK
User restrictions none
Names none
Tracing and breakpoints default
for any mimo_plant PLANT
for any mimo_output OUT connected to PLANT
for any mimo_input INP connected to PLANT
unconditionally
set the y_hl of OUT te l.e+06 and
set the y_11 of OUT to -l.e+06 and
set the u_hl of INP to l.e+06 and
set the u_11 of INP to -1.e+06 and
set the du_hl of INP to 1l.e+06 and
set the du_11 of INP to -l.e+06
Scan interval none
Focal classes mimo_plant
Focal objects none
Categories relax-all-constraints
Rule priority 6
Depth first backward chaining precedence 1
Timeout for rule completion use default
a rule
Options invocable via backward
chaining, invocable via forward
chaining, may cause data
seeking, may
cause forward chaining
Notes oK
User restrictions none
Names none
Tracing and breakpoints default
initially

for any mimo_plant PLANT

for any mimo_ocutput OUTP connected to PLANT

for any mimo_input INP connected to PLANT

unconditionally

set the outputweight of OUTP to 1.0

and set the y_hl of OUTP to 1l.e+06

and set the y_11 of OUTP to -l.e+06

and conclude that the servo_statur >f OUTP=0
and set the lambda of INP to 1l.e-06

and set the u_hl of INP to l.e+06

and set the u_li of INP to -1l.e+06

and set the du_hl of INP to 1.e+06

and set the du_11 of INP to -1l.e+06

Scan interval none
Focal classes none
Focal objects none
Categories none
Rule priority &
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Depth first backward chaining precedence 1
Timeout for rule completion use default

a rule

Options not invocable wvia backward
chaining, not invocable via
forward chaining, may not cause
data seeking, may not cause
forward chaining

Notes OK

User restrictions’ none

Names none

Tracing and breakpecints default

for any mimo_plant PLANT
whenever the tau_over_ts
that the

tau_over_ts of PLANT =
second ago
Scan interval

of PLANT fails to receive a value then conclude

the value of the tau_over_ts of PLANT as of 1

none

Focal classes none

Focal objects none

Categories none

Rule priority 6

Depth first backward chaining precedence 1

Timeout for rule completion use default
a rule

Options not invocable via Dbackward
chaining, invocable via forward
chaining, may cause data
seeking, may cause forward
chaining

Notes oK

User restrictions none

Names none

Tracing and breakpoints default

if(the value of the gsi-interface-status
of gsi-1 « 0)

then inform the operator for the next 30 seconds that”
KhRhhkdhkhAhk ARk hkAkINdrkhaxhhkhhhkhhhkkhkkhkhkhtkhh

ERROR: Interface GSTI-1 has
lost its communicatiocen link.

Process Control switched to MANUAL.

(You must kill and restart the external
application and then click on ‘‘GO’’)

KRR AR AR IR A KA AT R T AAAT A RARNARNAAAAANRA A I AR AR AAN

and deactivate the subworkspace of instances
Scan interval

none

Focal classes none

Focal objects none
Categories none

Rule priority 1

Depth first backward chaining precedence 1

Timeout for rule completion -se default
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a rule

Options not invocable +via backward
chairing, not invocable via
forward chaining, may cause

data seeking,
may cause forward chaining

Notes OK
User restrictions none
Names none
Tracing and breakpoints default

for any mimo_plant PLANT
for any mimo_output OUTP connected to PLANT

whenever the n2 of PLANT receives a value or the nl of PLANT receives a
value

or the nu of PLANT receives a wvalue

and when (the n2 of PLANT /= the value of the n2 of PLANT as of 2 seconds
ago or

the ni of PLANT /= the wvalue of the nl of PLANT as of 2 seconds ago or

the NU of PLANT /= the value of the NU of PLANT as of 2 seconds ago)
then

conclude that the observed_tr of OUTP has no current value

Scan interval none

Focal classes none

Focal objects nene

Categories none

Rule priority 6

Depth first backward chaining precedence 1

Timeout for rule completion use default
a rule

Options not invocable via backward
chaining, invocable via forward
chaining, may cause data
seeking, may cause forward
chaining

Notes OK

User restrictions none

Names none

Tracing and breakpoints default

if (the value of the gsi-interface-status
of gsi-2 < 0)

then inform the operator for the next 30 seconds that*”
AR AT R EE R A AR R AR AKN AN TR R AR TA R ANA AR RER AN NN R AR K

ERROR: Interface GSI-2 has
lost its communication link.

Process Control switched to MANUAL.

(You must kill and restart the external
application and then click eon '‘GO’’)

A AR KA AAN AR AN ARA R A AN ARNATANARRARAAAKRAN AR AT AL A A hhw
and deactivate the subworkspace of instances-2

Scan interval none
Focal classes none
Focal objects none
Categories none
Rule priority 1
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Depth first backward chaining precedence 1
Timeout for rule completion use default

a rule

Options not invocable wvia backward
chaining, invocable via forward
chaining, may cause data
seeking, may cause forward
chaining

Notes OK

User restrictions none

Names none

Tracing and breakpoints default

if(the value of the gsi-interface-status
cf gsi-3 < 0)

then inform the operator for the next 30 seconds that*”
P L L2222 XX E R TR R A RS SRR SR L R R A B R R B &

ERROR: Interface GSI-3 has
lost its communication link.

Process Control switched to MANUAL.

(You must kill and restart the external
application and then click on ‘GO0’ ’)

A AR ERKAKRRERRRTARARN AR A ARR AR AR R ARET AT Ak hxhhn

and deactivate the subworkspace of instances-3
Scan interval

none
Focal classes none
Focal cbjects none
Categories none
Rule priority 1

Depth first backward chaining precedence 1
Timeout for rule completion use default
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4. Regulatory Supervision rules

a rule
Opticns not invocable wvia backward
chaining, not invocable via

forward chaining, may not cause
data seeking, may not cause
forward chaining

Notes OK
User restrictions none
Names none
Tracing and breakpoints defaulit

for any mimo_plant PLANT
whenever the tau_over_ts of PLANT receives a wvalue
and when (the current value of the tau_over_ ts of PLANT /= the value of
the tau_over_ts of
PLANT as of 1 second ago

and

(the name of PLANT is stripper and flagtprime =1 and t-filter-order =1
or the name of PLANT is stripper_2 and flagtprime_2 =1 and
t-filter-order_2 =1

or the name of PLANT is stripper_ 3 and flagtprime_3 =1 and

t-filter-order_3 = 1))

then set the t_filter_al of PLANT to - (exp(-{the tau_over_ts of
PLANT)~-1)) and set the
t_filter_a2 of PLANT to 0.0
and inform the operator for the next 10 seconds that *
Regulation Supervisor:
Updating the first order T filter
for [the name of PLANT]"

Szan interval none
Focal classes none
Focal objects ) none
Categories none
Rule priority 6
Depth first backward chaining precedence 1
Timeout for rule ccmpletion use default
a rule
Options not invocable +wvia backward

chaining, not invocable via
forward chaining, may not cause
data seeking, may not cause
forward chaining

Notes OK
User restrictions none
Names none
Tracing and breakpoints default

for any mimoc_plant PLANT
whenever the tau_ovar_ts of PLANT receives a value

and when (the current value of the tau_over_ts of PLANT /= the value of
the tau_over_ts of
PLANT as of 1 second ago

and
({the name of PLANT is stripper and flagtprime =1 and t-filter-order = 2)
or (the name of PLANT is stripper_2 and flagtprime_2 =1 and

t-filter-order_2 = 2)
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or (the name of
t-filter-oxrder_3 =

PLANT is
23}))

then set the t_filter_al of PLANT to

PLANT)~-1})) and set the

stripper_3

and flagtprime_3 =1 and

-2.*(exp{(-{the tau_over_ts of

t_filter_a2 of PLANT to (exp(-(the tau_over_ts of PLANT)"-1))"2

and inform the operator for the next
Regulation Supervisor:
Updating the second order T filter
for [the name of PLANT]*"
Scan interval
Focal classes
Focal objects
Categories
Rule priority
Depth first backward chaining precedence
Timeout for rule completion

Options

Notes

User restrictions

Names

Tracing and breakpoints
for any mimo_plant PLANT

10 seconds that *

none

none

none

none

6

1

use default

a rule
not invocable via backward
chaining, not invocable via

forward chaining, may not cause
data seeking, may not cause
forward chaining

OK

none

none

default

whenever the tau_over_ts of PLANT receives a value

and when (((the
t-filter-order =

name of
l1)or( the

PLANT is

name of PLANT is stripper_2 and flagtprime_2 =1 and t-filter-order_ 2 =

1)or (the name of

stripper

and flagtprime =1 and

PLANT is stripper_3 and flagtprime_3 =1 and t-filter-order_3 = 1))and

(the tau_over_ts of

PLANT =19.496) and (the standard deviation of the tau_over_ts of PLANT

during the last 2
minutes <= 2.e-3))

then conclude that the tau_over_ts of PLANT=4.481

and start switch_ T (PLANT,2)
and inform the operator for the next
Regulation Supervisor:

10 seconds that *

Switching to second order T filter for [(the name of PLANT]"

Scan interval

Focal classes

Focal objects

Categories

Rule priority

Depth first backward chaining precedence
Timecut for rule completion
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none

none

none

none

6

1

use default



a rule
Options not invocable wvia backward
chaining, not invocable via
forward chaining, may not cause
data seeking, may not cause
forward chaining

No‘ es OK
User restrictions none
Names none
Tracing and breakpoints default

for any mimo_plant PLANT
whenever the tau_over_ts of PLANT receivas a value
and when (({(the name of PLANT is stripper and flagtprime =1 and
t-filter-order = 2)or{ the

name of PLANT is stripper_2 and flagtprime_2 =1 and t-filter-order_2 =
2)or (the name of

PLANT is stripper_3 and flagtprime_3 =1 and t-filter-ordexr_3 = 2))
and (the tau_over_ts of PLANT =1.442) and (the standard deviation of the
tau_over_ts of

PLANT during the last 2 minutes <= 2.e-3)
)

then conclude that the tau_over_ts of PLANT=4.481
and start switch_T (PLANT, 1)}
and inform the operator for the next 10 seconds that -
Regulation Supervisor:
Switching to first order T filter for [the name of PLANT] "

Scan interval none

Focal classes none

Focal objects none

Categories none

Rule priority 6

Depth first backward chainiag precedence 1

Timeout for rule completion use default
a rule

Options invocable via backward
chaining, invocable via
forward chaining, may cause

data seeking, may
cause Fforward chaianing

Notes 2K ’
User restrictions none

Names none

Tracing and breakpeints default

for any mimo_plant PLANT
if (for every mimo_output OUTP connected to PLANT
(the servo_status of OUTP = 0j)
then
start OUTPUT_WEIGHTING (PLANT) and inform the operator for the next 10
seconds that *
Regulation Supervisor:
Updating output weighting for [the name of PLANT]"

Scan interval 2 minutes
Focal classes none

Focal objects none
Categories none

Rule priority 6

Depth first backward chaining precedence 1

Timeout for rule completion use default
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Options

Notes

User restrictions

Names

Tracing and breakpoints
for any mimo_plant PLANT

a rule

not invocable wvia backward
chaining, not invocable via
forward chaining, may not cause
data seeking, may not cause
forward chaining

OK

none

none

default

whenever the tau_over_ts of PLANT raceives a value

and

when ((the name of PLANT is stripper and flagtprime = 0)or(

the name of PLANT is stripper_2 and flagtprime_2 = 0)or(

the name of PLANT is stripper_3 and flagtprime_3 = 0))
then inform the operator for the next 10 seconds that *

Regulation Supervisor:
Operator selected MGPC algorithm
WITHOUT T filter; hence, the

updating the T filter for [the name of PLANT]

has been cancelled*

Scan interval

Focal classes

Focal objects

Categories

Rule priority

Depth first backward chaining precedence
Timeout for rule completion

Options

Notes

User restrictions

Names

Tracing and breakpoints
for any mimo_plant PLANT

none

none

none

none

6

1

use default

a rule

invocable via backwarxrd
chaining, invo. able via forward
chaining, may cause data
seeking, may cause forward
chaining

OK

none

none

default

if (not{for every mimo_output OUTP connected to PLANT

(the servo_status of OUTP = 0)))
then

inform the operator for the next 10 seconds that *

Regulation Supervisor:

Setpoint change in progress for [the name
hence, suspending the updating of

output weighting for [the name of PLANT]"
Scan interval

Focal classes

Focal objects

Categories

Rule priority

Depth first backward chaining precedence
Timeout for rule completion
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of PLANT] ;

2 minutes
none

none

none

6

1

use default



a rule
Options not invocable via backward
chaining, not invocable via
forward chaining, may not cause
data seeking, may not cause
forward chaining

Notes OK
User restrictions none
Names none
Tracing and breakpoints default

for any mimo_plant PLANT
whenever the tau_over_ts of PLANT receives a value
and when (((the name of PLANT is stripper and flagtprime = 1)or (
the name of PLANT is stripper_2 and flagtprime_2 = l)or (
the name of PLANT is stripper_3 and flagtprime_3 = 1))and not{for every
mimo_output OUTP
connected to PLANT
(the servo_status of OUTP = 0)))
then inform the operator for the next 10 seconds that *
Regulation Supervisor:
Setpoint change in progress for [the name of PLANT];
hence, suspending the updating of
T filter for [the name of PLANT]"

Scan interval ncne

Focal classes none

Focal objects none
Categories none

Rule priority 6

Depth first backward chaining precedence 1

Timeout for rule completion use default
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Options

Notes

User restrictions

Names i
Tracing and breakpeoints
for any mimo_plant PLANT

a rule

not invocable via Dbackward
chaining,

not invocable

via forward chaining, may not

cause data
seeking,
chaining
OK

none
none
default

whenever the tau_over_ts of PLANT receives a value

and when (((the
t-filter-order

name of PLANT
l)oxr( the

is

name of PLANT is stripper_2 and flagtprime_2

1l)or (the name of
PLANT is stripper_3 and flagtprime_ 3

tau_over_ts of

stripper and

=1 and
and (the tau_over_ts of PLANT =1.442) and (the

flagtprime

t-filter-order_3
standard deviation

PLANT during the last 2 minutes <= 2.e-3)

)

then inform the operator for the next
Regulation Supervisor:
WARNING: Applying lightest filtering
to [the name of PLANT], the specs on
the max_var on U may be too large®
Qcan interval
Focal classes
Focal objects
Categories
Rule priority
Depth first backward chaining precedence
Timeout for rule completion
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10 seconds that *

none

none

none

none

6

1

use default

=1

may not cause forward

and

=1 and t-filter-ordexr_2 =

1))
of the



Options

Notes

User restrictions

Names

Tracing and breakpoints
for any mimo_plant PLANT

a rule

not invocable via backward
chaining,

not invocable

via forward chaining, may not

cause data

seeking, may not cause forward
chaining

OK

none

none

default

whenever the tau_over_ts of PLANT receives a value

and when ({(the
t-filter-oxrder =

name of PLANT is

2)or( the

stripper

and flagtprime =1 and

name of PLEN is stripper_2 and flagtprime_2 =1 and t-filter-order_2 =

2)or (the name of
PLANT is stripper_3 and flagtprime_3
(the -au_over_ts of
PLENT =19.495)
during the last 2
minutes <= 2.e-3)}
then inform the operator for the next
Regulation Supervisor:
WARNING: Applying heaviest filtering
to [{the name of PLANT], the specs on
the max_var on U may be too small”
Scan interval
Focal classes
Focal objects
Categories
Rule priority
Depth first backward chaining precedence
Timeout for rule completion
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=1 and t-filter-order_3 =

2) )and

y and (the standard deviation of the tau_over_ts of PLANT

10 seconds that *

none

rione

none

none

6

1

use default



a generic ... :ula

Notes OK
User restrictions none
Names none

let the tau_over_ts of any mimo_plant PLANT =

{

if (for every mimo_output OUTP connected to PLANT
(the servo_status of OUTP = 0))

then (

min(19.496, max(1.442,

(the value of the tau_over_ts of PLANT as of 1
second ago)*

{1. + 0.2*(

(the maximum over each mimo_input INP connected to
PLANT of (({(the scandard deviation of the u of
INP during the last 20 seconds)"2) -

the minimum over each mimo_input INPT connected to
PLANT of (the max_var_of_u of INPT)

)/ the minimum over each mimo_input INT connected
to PLANT of (the max_var_of_u of INT)

1))

]} else (

the value of the tau_over_ts of PLANT as of 1
second ago)
)
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5. Servo Supervision rules for adjusting ¥Ya.ins Yaear

a rule
Options invocable via backward chaining,
invocable via
forward chaining, may cause data
seeking, may
cause forward chaining

Notes OK

User restrictions none
Names none
Tracing and breakpoints default
initially

for any mimo_plant PLANT
for any mimo_output OUTP connected to PLANT
unconditionally invoke apply-output-constraints rules for OUTP

3can interval none

Focal classes ncne

Focal objects none

Categories none

Rule priority 6

Depth first backward chaining precedence 1

Timeout for rule completion use default
a rule

Options not invocable via backward
chaining,

not invocable

via forward chaining, may cause
data seeking,

may cause forward chaining

Notes OK

User restrictions none
Names none
Tracing and breakpoints defaulit

for any mimo_output OUT

if ((the ysp of OUT = 0.0)

and (the servo_status of 0UT=0))

then set the y_11 of OUT te { -1.*the regulation_tolerance of OUT
)

and set the y_hl of OUT to (the regulation_tolerance of OUT

)

and inform the operator for the next 10 seconds that *

Servo Supervisor:

Setting the y_11 and y_hl of [the name of OUT]

connected to [the name of the mimo_plant connected to OUT] for
normal operation*

Scan interval none

Focal classes mimo_output

Focal objects none

Categories apply-output-~constraints
Rule priority &

Depth first backward chaining precedence 1
Timeout for rule completion use default
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a rule

Options not invocable via backwara
chaining,
not invocable
via forward chaining, may cause
data seeking,
may cause forward chaining
Notes OK
User restrictions none
Names none
Tracing and breakpoints default

for any mimo_output OUT
whenever the servo_status of JUT receives a value
and when (the sexrvo_status of OUT = 0)

then invoke apply-output-constraints rules for OUT
Scan interval

none
Focal classes none
rocal objects none
Categories : none
Rule priority 6
Depth first beckward chaining precedence 1
Timeout for rule completion use default
a rule
Options not invocable via backward
chaining,
not invocable
via forward chaining, may cause
data seeking,
may cause forward chaining
Notes OK
User restrictions none
Names none
Tracing and breakpoints default

for any mimo_output 0UT

if( (the ysp of QUT /= 0.0) and (the servo_status of OUT=0})
then set the y_11 of OUT to (if(the ysp of OUT > 0.0) then (
the ysp of OUT* (1. - the regulation_tolerance of OUT)) else(
the ysp of OUT* (1. + the regulation_tolerance of OUT))

)]
and set the y.hl of OUT to (if(the ysp of OUT > 0.0) then (
the ysp of OUT*(1l. + the regulation_tolerance of OUT)) else(
the ysp of OUT* (1. - the regulation_tolerance of OUT))

)
and inform the operator for the next 10 seconds that *
Servo Supervisor:

Setting the y_11 and y_hl of [the name of OUT]

connected to [the name of the mimo_plant connected to OUT] for
normal operation*

Scan interval

none
Focal classes mimo_output
Focal objects none

Categories
Rule priority
Depth first backward chaining precedence 1

Timeout for rule completion use default

apply-output-constraints
6

205



a rule

Options not invocakle +via backward

chaining,
not invocable

via forward <haining, may cause

data seeking,

may cause forward chajaing

Notes (0] 4
User restrictions none
Names none
Tracing and breakpoints default

for any mimo_output OUT
whenever the ysp of OUT receives a value
and when (the ysp of OUT < the value of the ysp of OUT as of 1
then set the y_11 of OUT to (the ysp of CUT + (the ysp of OUT
of the ysp of OUT
as of 2 second ago)*
(the max_overshoot of ouT))
and
inform the operator for the next 10 seconds that *
Servo Supervisor:
Updating the y_11 of [{the name of OUT]
connected to [the name of the mimo_plant connected to OUT]}*”

Scan interval none

Focal classes none

Focal objects none
Categories none

Rule priority 6

Depth first backward chaining precedence 1

Timeout for rule completion use default
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Options

Notes

User restrictions

Mames

Tracing and breakpoints
for any mimo_output CUT

whenever the ysp of OUT receives a value

a rule
not invocable via backward
chaining,
not invocable
via forward chaining, may cause
data seeking,
may cause forward chaining
OK
none
none
default

and when (the ysp of OUT > the value of the ysp of OUT as of 1 second ago)
then set the y_hl c¢f OUT to {the ysp of OUT + (the ysp of OUT - the value

of the ysp of OUT

as of 2 second ago)*
(the max_overshoot of OUT))
and

inform the operator for the next 10 seconds that *

Servo Supervisor:

Updating the y_hl of [the name of OUT]

connected to [the name of the mimo_plant connected to OUT)*"

Scan interval
Focal classes
Focal objects
Categories

Rule pricrity

Depth first backward chaining precedence

Timeout for rule completion
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none

none

none

none

[)

1

use default



6. Servo Supervision rules for adjusting N,

a rule
Options no invocable vwvia backward
chaining,
not invocabkle
via forward chaining, may cause
data seeking,
may cause forward chaining

Notes OK
User restrictiocns none
Names none
Tracing and breakpoints default

for any mimo_output OUTP

for any mimo_plant connected to OUTP

whenever the observed_tr of OUTP receives a value and when (

for every mimo_output OUT connected to the mimo_plant {the observed_tr of
OUT has a current

value))

then

invoke n2-tuning rules for the mimo_plant

Scan interval none

Focal classes none

Focal objects none

Categories none

Rule priority 6

Depth first backward chaining precedence 1

Timeout for rule completion use default
a rule

Options invocable via backward chaining,
invocable via
forward chaining, may cause data
seeking, may
cause forward chaining

Notes OK

User restrictions none

Nanies none

Tracing and breakpoints default

for any mimo_plant PLANT

if (the nu of PLANT /=1)

then

inform the operator for the next 15 seconds that *
servo supervisor:

The rise time of [the name of PLANT] can

NOT be tuned as its NU /= 1 rather

it is currently set to [the nu of PLANT])"

Scan interval none

Focal classes mimo_plant
Focal objects none
Categories n2-tuning
Rule priority 6

Depth first backward chaining precedence 1

Timeout for rule completion use default
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a rule

Options invocable via backward chaining,
invocable via
forward chaining, may cause data
seeking, may
cause forward chaining

Notes OK

User restrictions none

Names none

Tracing and breakpoints

tracing message level 3 (trace
messages at every

step)
for any mimo_plant PLANT

if( the nu of PLANT =1 and
the nl of PLANT <= the max_delay of PLANT + 1 and
delta_n2 /= 0)
then in order
set the n2 of PLANT to (
min(40,max(the n2 of PLANT + delta_n2,
the max_delay of PLANT + 1}))
and
inform the operator for the next 15 seconds that "
servo supervisor:
Updating N2 of [the name of PLANT] and
note that N1 <= max_delay + 1°
and
conclude that delta_tr has no current value and
conclude that delta_n2 has no current value
Scan interval

none

Focal classes mimo_plant

Focal objects none

Categories n2-tuning

Rule priority 6

Depth first backward chaining precedence 1

Timeout for rule completion 20 seconds
a rule

Options invocable via backward chaining,
invocable via
forward chaining, may cause data
seeking, may
cause forward chaining

Notes OK

User restrictions none

Names none

Tracing and breakpoints default

for any mimo_plant PLANT

if( the nu of PLANT =1 and
the nl of PLANT > the max_delay of PLANT + 1 and
delta_n2 /= 0)
then in order
set the n2 of PLANT to (
min{40,max(the n2 of PLANT + delta_n2,

the nl1 of PLANT)))

and

inform the operator for the next 15 seconds that °
servo supervisor:
Updating N2 of [the name of PLANT] and
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note that N1 > max_delay + 1°*

and

conclude that delta_tr has no current value and
conclude that delta_a2 has no current value

Scan interval
Focal classes
Focal objects
Categories

Rule priority

Depth first backward chaining precedence

Timeout for rule completion

none
mimo_plant
none
n2-tuning

6

1

use default

a rule

Options invocable via backward
chaining., not
invocable via
forward <chaining, may cause
data seeking, may
cause forward chaining

Notes OK

User restrictions none

Namesg none

Tracing and breakpoints default

for any mimo_plant PLANT

if abs (delta_tr) < 1.0

then

conclude that delta_n2 = 0 with expiration the current time + 1 second

and conclude that delta_tr has no current value
and inform the operator for the next 15 seconds that*

sServo supervisor:

Rise times for {the name of PLANT]

are ON SPEC"
Scan interval
Focal classes
Focal objects
Categories
Rule priority

Depth first backward chaining precedence

Timeout for rule completion

none

none

none

none

6

1

use default

a rule
Options invocable via backward
chaining, not
invocable via
forward
chaining, may
cause data
seeking, may
cause forward
chaining
Notes OK
Userxr restrictions none
Names none
Tracing and breakpoints default
for any mimo_plant PLANT
unconditionally conclude that
delta_tr = (the minimum over each mimo_output OUTP connected to PLANT of

the desired_tr of OUTP - the observed_tr of ouUTP) )



Scan interval

Focal classes

Focal objects

Categories

Rule priority

Depth first backward chaining precedence
Timeout for rule completion

Options

Notes

User restrictions

Names

Tracing and breakpoints

for any mimo_plant PLANT

if abs (delta_tr) >= 1.0
and abs (delta_tr) < 2.0
then in order conclude that

none

none

none

none

6

1

use default

a rule
invocable
chaining, not
invocable via
forward
chaining, may
cause data
seeking. may
cause forward
chaining
OK
none
none
default

via

delta_n2 = ( if delta_tr >= 0.0 then 1 else -1)
and inform the operator for the next 15 seconds that”

sServo supervisor:

Rise times for [the name of PLANT]
are slightly OFF SPEC updating

N2 by [the value of delta_n2]*"
Scan interval

Focal classes

Focal objects

Categories

Rule priority

Depth first backward chaining precedence
Timeout for rule completion

Options

Notes

User restrictions

Names

Tracing and breakpoints
for any mimo_plant PLANT
if abs (delta_tr) >= 2.0
and abs (delta_tr) < 4.0
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none

none

none

none

6

1

use default

a rule
invocable via
backward
chaining, not
invocable via
forward
chaining, may
cause data
seeking, may
cause forward
chaining
OK
none
none
default

backward



then in order conclude that
delta_n2 =

( if delta_tr >= 0.0 then 2 else -2)

and inform the operator for the next 15 seconds that*

serve supervisor:

Rise times for [the name of PLANT]
are OFF SPEC updating

N2 by [the value of delta_n2]"
Scan interval

Focal classes

Focal objects

Categories

Rule priority :

Depth first backward chaining precedence
Timeout for rule completion

Options

Notes

User restrictions

Names

Tracing and breakpoints

for any mimo_plant PLANT

if abs (delta_tr) >= 4.0
then in order conclude that

none

none

none

none

6

1

use default

a rule
invocable
chaiaing, not
invocable via
forward
chaining, may
cause data
seeking, may
cause forward
chaining
OK
none
none
default

via

delta_n2 = { if delta_tr >= 0.0 then 5 else -5)
and inform the operator for the next 15 seconds that®

servo supervisor:

Rise times for [the name of PLANT]
are badly OFF SPEC updating

N2 by [the value of delta_n2]*
Scan interval

Focal classes

Focal objects

Categories

Rule priority

Depth first backward chaining precedence
Timeout for rule completion

Options

Notes

User restrictions

Names

Tracing and breakpoints
for any mimo_plant

whenever the n2 of the mimo_plant receives a value and when (
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none

none

none

none

6

1

use default

a rule

not invocable via

backward

backward

chaining, not invocable

via forward
chaining, may
cause data
seeking, may
cause forward
chaining

OK

none

none

default



the n2 of the mimo_plant = the max_delay of the mimo_plant +1
and

the n2 of the mimo_plant =the value of the n2 of the mimo_plant as of 2
seconds ago

and the nl of the mimo_plant <= the max_delay of the mimc_plant + 1
and

the nu of the mimo_plant =1 )

then inform the operator for the next 20 seconds that *
servo supervisor:

N2 for [the name of the mimo_plant] has

been set to [the value of the n2 of the mimo_plant] twice,
this is the lower 1limit hence check

for tight rate constraints on U or

for large setpoint changes causing

interaction among channels - the

desired rise times may not be met”

Scan interval none
Focal classes none
Focal objects none
Categories none
Rule priority 6
Depth first backward chaining precedence 1
Timeout for rule completion use default
a rule
Options not invocable wvia backward
chaining,
not invocable
via forward chaining, may cause
data seeking,
may cause
forward
chaining
Notes OK
User restrictions none
Names none
Tracing and breakpoints default

for any mimo_plant
whenever the n2 of the mimo_plant receives a value
and when (
the n2 of the mimo_plant =the value of the n2 of the mimo_plant as of 2
seconds ago and the
n2 of the mimo_plant = 40)
then inform the operator for the next 15 seconds that -
servo supervisor:
N2 for [the name of the mimo_plant] has
been set to 40 twice, this is the upper
1limit of the MGPC algorithm (!) NO larger
values are possible®

Scan interval none

Focal classes none

Focal objects none
Categories none

Rule priority 6

Depth first backward chaining precedence 1

Timeout for rule completion use default
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a rule
Options not invocable via backward
chaining,
not invocable
via forward chaining, may cause
data seeking,
may cause

forward
chaining
Notes OK
User restrictions none
Names none
Tracing and breakpoints default

for any mimo_plant
whenever the n2 of the mimo_plant receives a value and when (
the n2 of the mimo_plant = the nl of the mimo_plant
and the n2 of the mimo_plant =the value of the nZ of the mimo_plant as of
2 seconds ago
and the nl of the mimo_plant > the max_delay of the mimo_plant + 1
and the nu of the mimo_plant =1 )
then inform the operator for the next 15 seconds that *
servo supervisor:
N2 for {the name of the mimo_plant] has
been set to [the value of the n2 of the mimo_plant] twice,
this is the lower limit hence check
for tight rate constraints on U or
for large setpoint changes causing

interaction among channels - the

desired rise times may not be met*

Scan interval none

Focal classes none

Focal objects none
Categories none

Rule priority 6

Depth first backward chaining precedence 1

Timeout for rule completion use default
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