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Abstract

This thesis explores the use of multivariate statistical techniques in developing tools for 

property modeling and monitoring of a high pressure ethylene polymerization process. In 

polymer industry, many researchers have shown, mainly in simulation studies, the 

potential of multivariate statistical methods in identification and control of 

polymerization process. However, very few, if any, of these strategies have been 

implemented. This work was done using data collected from a commercial high pressure 

LDPE/EVA reactor located at AT Plastics, Edmonton. The models or methods developed 

in the course of this research have been validated with real data and in most cases, 

implemented in real time.

One main objective of this PhD project was to develop and implement a data based 

inferential sensor to estimate the melt flow index of LDPE and EVA resins using 

regularly measured process variables. Steady state PLS method was used to develop the 

soft sensor model. A detailed description of the data preprocessing steps are given that 

should be followed in the analysis of industrial data. Models developed for two of the 

most frequently produced polymer grades at AT Plastics have been implemented. The 

models were tested for many sets of data and showed acceptable performance when 

applied with an online bias updating scheme.
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One observation from many validation exercises was that the model prediction becomes 

poorer with time as operators use new process conditions in the plant to produce the same 

resin with the same specification. During the implementation of the soft sensors, we 

suggested a simple bias update scheme as a remedy to this problem. An alternative and 

more rigorous approach is to recursively update the model with new data, which is also 

more suitable to handle grade transition. Two existing recursive PLS methods, one based 

on NIPALS algorithm and the other based on kernel algorithm were reviewed. In 

addition, we proposed a novel RPLS algorithm which is based on the Krylov 

Controllability based PLS theory. It was found that the new method is much faster, and 

hence is suitable for time varying system containing many variables.

Finally, we present a data based monitoring scheme to detect the onset of decomposition 

in a LDPE reactor. This novel method combines PCA and an energy balance around the 

reactor. This relatively simple method was able to detect the onset of decomposition with 

reasonable lead time. The method has been implemented at the plant where it is being 

used as an additional monitoring tool to ensure safe reactor operation.
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Chapter 1 

Introduction

1.1 Introduction

Use of polymers has been growing steadily in many industrial fields, such as automobile, 

food, apparel, electronics, etc. 1995 world production of plastics was estimated at about 

100 million tons (Kiparissides, 1996). In the US, a five fold growth of plastics in two 

decades (1974-1994) was reported (Rodriguez 1996). With the growth of plastics use in 

Asia, it is expected that the tremendous growth will continue. This tremendous growth of 

the polymer industry was attained by exploring new and various plastic applications. For 

example, polypropylene (PP) is now used for almost all automobiles. Soft drink bottles 

made from polyethylene terephthalate (PET) have almost completely superseded glass 

bottles, and polyethylene (PE) plastic bags have replaced the paper bags at grocery stores. 

Consumers are learning that many plastic products are made from the same polymer. For 

example, PP used for a core material of instrumentation panel of cars is also used for car 

batteries, indoor, outdoor carpeting, and polyolefin intimate apparel. PE can be used in 

producing simple shopping bags and food wrappers to heavy-duty crates and even armor 

plating for bullet-proof vests. For each use, specific properties of the polymer are needed. 

In order to meet the demand for such diverse applications of the same base polymer, the 

polymer industries are producing many different grades of high quality polymers.

In recent years, the pressure from customers for greater grade variation and product 

diversification has been growing while specification of polymer quality has become 

increasingly severe. In our competitive world, it is now extremely important for polymer 

industries to develop technology that can tailor polymer properties and control production 

plants to maximize product quality as well as production performance and safety. This

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



thesis deals with some of these issues related to polymer properties and polymer plant 

safety with emphasis given to high pressure polyethylene processes.

1.2 Polyethylene: Manufacturing Processes and the Product

Polyethylene (PE) is the most widespread and the most studied material in the field of 

polymers. The world production of PE in 2001 was approximately 50xl06 tons. 35% of 

this production was low density polyethylene (LDPE), produced in high-pressure 

processes, and 65% was high density polyethylene (HDPE) and linear low density 

polyethylene (LLDPE) produced in low-pressure reactors (Chemical Economic 

Handbook, 2002). PE resins are essentially linear polymers with ethylene molecules as 

the main building block, although most PE molecules also contain branches in their 

chains. A wide variety of PE resins are produced industrially with differing molar masses, 

origins and types of branching, and uniformity of branching distribution. However, 

density and degree of branching are the two most important physical and molecular 

characteristics of PE and largely determine their end applications. Accordingly, the 

following grouping is adopted based on density:

LDPE (low density polyethylene): density range from 0.91 to 0.925 g/cm3 

MDPE (medium density polyethylene): density range from 0.926 to 0.94 g/cm3 

HDPE (high density polyethylene): density range from 0.941 to 0.965 g/cm3

The density of PE is determined by the degree of short chain branching (SCB). The lower 

the degree of SCB, the higher is the density. Typical branching frequency in LDPE is 10- 

40 SCB and 0.3-3 LCB (long chain branching) per 1000 backbone carbon atoms, 

respectively.

Polyethylene is commercially produced by chain growth polymerization using either of 

the two major processes: high-pressure free radical polymerization, and low pressure 

coordination polymerization process.

2
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Free radical polymerization is carried out at very high pressure (1000-3500 atm) and high 

temperature (140-330 °C) in supercritical ethylene in presence of free radical initiators 

like peroxides, azo compounds or oxygen. The product is LDPE. Copolymerization with 

a-olefins and other polar monomers, such as vinyl acetate is also possible. The high 

pressure process was first discovered in 1933 at the ICI laboratories. Commercial 

manufacture of LDPE began in the United Kingdom in 1938 and in the United States in 

1943.

Coordination polymerization process has been developed more recently (between 1950 

and 1976) for the production of HDPE, MDPE and LLDPE (linear low density 

polyethylene). The reaction is carried out at relatively low pressure (8-80 atm) and 

temperature (less than 150°C) using a transition metal catalyst (Ziegler-Natta, Phillips or 

supported metal oxides type). Three commercial processes have been developed for the 

catalytic polymerization: solution process, liquid slurry (suspension) process, and gas 

phase process.

PE is probably the most diverse polymer used in numerous fields of applications. Each 

different type of PE resin has a wide area of application. For example, LDPE produced in 

high pressure process is a very versatile polymer that is used in a wide range of product 

applications where its balance of strength, stretch, clarity, sealing, low temperature 

impact, and adhesion characteristics brings value. HDPE dominates the market of blow 

molded and injection molded products. LLDPE produced in low pressure process is 

widely used in film market because of its balance of toughness, puncture resistance, and 

stiffness. It competes with HDPE and LDPE in many fields of applications because of its 

superior properties for the applications. Selection of the type of PE resin for any specific 

application therefore depends on a balance between cost and resin properties. Table 1-1 

summarizes the key differences between the high pressure process and the low pressure 

gas phase process. An industrial study conducted by Nexant Ltd. in 2001 showed that 

although the investment cost and the energy costs are higher for LDPE compared to the 

low pressure processes, these costs are offset by the higher comonomer cost required by 

the low pressure process and higher operating efficiency of the high pressure process.

3
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The cash cost for producing 1 ton of PE is less for the high pressure process. Table 1-2 

shows a comparative summary of different types of polyethylene. Excellent reviews on 

this topic can be found in Kiparissides et al. (1993), Ebsworth (2001) and Kissin (2001).

Table 1-1 Eligh pressure process versus low pressure process

High pressure process Gas phase process

Reactor residence time 2-3 min (tubular) 1-4 h

20-40 s (autoclave)

Grade change flexibility Higher Lower

Monomer cost Lower Higher

Energy cost Higher Lower

Investment cost Higher Lower
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Table 1-2: Comparative summary o f  different Polyethylene resins

LDPE HDPE LLDPE
Process High pressure (800- 

1000 atm), high 
temperature (132- 
332°C), free radical 
polymerization

Slurry and gas phase 
polymerization using 
catalyst at low pressure 
(8-80 atm), low 
temperature (<150°C)

Gas phase, solution or slurry 
process using Ziegler Natta, 
Phillips, or metallocene catalyst

Density
gm/cm3

0.915-0.94 0.941-0.96 0.915-0.925

Molecular
weight
(gm/mol)

about 500 (waxy) 
to 60000 (tougher 
products)

about 100 (wax) to 
several millions 
(UHMWPE)*

50,000-200,000, narrow mol. 
weight distribution

Melt
temperature
(°C)

105 -115 128-136 120-130

Optical
property

More transparent Opaque or translucent Transparent or opaque, depending 
on branching uniformity

Branching Both short and long 
chain branches are 
present

Linear polymer. Linear polymer. May contain 
small number of branches 
introduced by copolymerization 
with a -olefins

Use Largest application 
in thin film (food 
packaging, trash 
can liners etc), also 
used in extrusion 
coating. LDPE 
copolymers 
dominate the 
market for 
adhesives and 
sealants

Largest use (40%) is in 
blow-molded products 
(bottles, toys, drums 
etc). Next largest (20%) 
use is injection-molded 
products (toys, food 
containers, crates etc). 
Films such as plastic 
bag used in food stores, 
supermarkets etc. 
represent the third 
largest market for 
HDPE

Film is the largest application 
(grocery, trash bags, non 
packaging applications in 
industrial sheeting, agricultural 
mulch film, and high clarity films 
used in medical applications and 
food packaging). Next largest use 
is injection-molded products for 
household. Also used for blow 
molding (toys, large square edged 
containers such as tanks). LLDPE 
competes with HDPE in this area 
of application because LLDPE 
has much superior environmental 
stress cracking resistance, and 
lower gas permeability

*Ultra high molecular weight po yethylene
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1.3 High Pressure LDPE/EVA Process Technology

LDPE’s discovery was the unexpected result of an experiment undertaken in the course 

of fundamental research. In the early 1930’s without a direct commercial target in view, 

ICI in England decided to evaluate the effect of ultra high pressure on 50 chemical 

reactions. An experiment was carried out compressing ethylene gas to 1400 bar. A white 

solid was formed in the heavy steel vessel, which proved to be LDPE. ICI’s Fawcett and 

Gibson were credited with the discovery and acquired a patent in 1936.

The original reactor was based on an autoclave process using back mixing of the hot 

reactants with cold incoming ethylene to keep the reactants stable. Later, a tubular reactor 

process was developed with a plug flow system. In general, polymer produced using 

tubular reactors result is a narrower molecular weight distribution as compared to the 

autoclave process. Currently both types of reactor systems are in use commercially. The 

overall process for the tubular and the autoclave reactor system are very similar except 

for the design of the reactor itself. The two reactor technologies have the capabilities of 

producing different products for different end use markets.

A tubular LDPE reactor, which is in essence, a plug flow reactor, consists of a spiral 

wrapped metallic pipe with a large length to diameter ratio. Total length of the reactor 

ranges from 500 to 1500 m, and internal diameters can be up to 60 mm. The entire length 

of the reactor is divided into preheating, reaction and cooling zones. Compressed 

ethylene gas is injected through the reactor inlet. Additional amounts of the reactant and 

initiator are fed through the side feed points along the reactor length. The heat of 

polymerization reaction is removed by an increase in ethylene temperature, by injection 

of the cold ethylene feed stream, and by heat transfer through the reactor walls to a closed 

loop water jacket cooling system. Approximately one half of the total heat of reaction is 

removed through the wall resulting in a non-isothermal reactor. The temperature and flow 

rate of each coolant stream entering each zone is used to control the temperature profile , 

in the reactor, to maximize ethylene conversion and to optimize product properties. 

Conversion achieved with this technology ranges from 20 to 30% per pass.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



An autoclave reactor is a constantly stirred long vessel with a length to diameter ratio 

close to 20. The vessel is equipped with an agitator to promote good mixing. The reactor 

is usually subdivided into different zones. Cold ethylene and initiator solution are fed to 

the different injection points in the reactor. The multiple zones allow for manipulation of 

the temperature profile for tailoring of product properties. Reaction conditions can be 

separately adjusted in each zone to produce polymers with a wide molecular weight 

distribution. Autoclave reactors behave like an adiabatic continuous stirred tank reactor 

(CSTR). Addition of the cooler, which is essentially the flow of fresh feed of ethylene 

and initiator solution, balances the heat of polymerization.

It should be mentioned that most industrial LDPE reactors also produce a number of 

grades of ethylene vinyl acetate copolymer (EVA). Vinyl acetate has the same reactivity 

ratio as ethylene and the polymer EVA is produced using the same free radical 

mechanism as LDPE. EVA copolymers are widely used in elastic films. In addition, 

owing to their low sealing temperature, high polarity and superior optical property, they 

are also used in specialty film, foam, adhesive, and extrusion applications. Because of the 

diverse applications of LDPE and EVA products, the demand for these polymers is 

steadily growing. Sixty years after its discovery, demand for LDPE produced by the high 

pressure process continues to grow at 2% annual growth rate (Schuster, 2006).

1.4 Modeling and Control o f Polymerization Processes

Molecular and morphological properties of a polymer product strongly influence its 

physical, chemical, rheological and mechanical properties as well as the end use 

properties. This makes product quality a much more complicated issue in polymerization 

processes than in simple chemical systems involving small molecules (Kiparissides 1996, 

2004). Polymer resins can be sold only if they meet a set of specifications, which are 

defined in terms of end use properties such as impact strength, melt index etc. In recent 

years increasing demand for product diversification in the polymer industry has resulted 

in more stringent specifications requirements in these properties. Due to the difficulty in 

measuring many fundamental molecular properties, parameters which are conveniently

7
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measured and thought to be directly related to various end uses are usually reported in the 

specifications rather than the fundamental molecular properties (e.g. melt index or 

intrinsic viscosity are reported in lieu of the number average molecular weight, Mn, or 

weight average molecular weigh, Mw). A major difficulty in applying advanced and 

automatic control to polymerization reactors arises from the lack of online measurement 

of polymer properties.

In the polyolefin industry, polymer grades are specified based on values of density and a 

rheological parameter known as melt index. The melt index value (MI), which has a loose 

inverse relation to weight average molecular weight, is the weight of a molten resin that 

flows through a capillary die under a particular stress at a specified temperature (190°C 

for polyethylene) for 10 minutes. MI indicates the viscosity of the polymer melt. Online 

measurement of MI is difficult since it requires close human intervention. Even though 

online hardware sensors have advanced, the use of new sensors has been largely limited 

to laboratory reactors (Chien and Penlidis 1990, Kiparissides et al. 1998). As a result, in 

most plants, MI is evaluated off-line and only infrequently, using a manual analytical test. 

Therefore, the process has to operate without any real time quality indicator between 

successive measurements. The production of multiple grades of polymer products from 

the same reactor, common for polymerization reactors, is an additional complication, as it 

requires frequently changing reactor-operating conditions. Due to the lack of online 

estimates of product quality, grade changeover typically is a manual operation in most 

plants, and results in relatively large settling time and/or overshoots. Consequently, a 

significant amount of off-specification polymer resins are produced. From economic and 

environmental points of view, it is critical to reduce the amount of off-grade material. 

This requires sophisticated control systems that are able to provide optimal grade 

changeover trajectories. The most important factor in developing such a system is the 

modeling and prediction of quality parameters.

Consequently, a model for estimating polymer properties such as melt index (M3), 

density etc. using routinely measured process conditions would be extremely useful as an 

online sensor. Such a relationship, or model, that captures the dynamics between the

8
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process and the product quality variables is often known as a “soft-sensor” since 

computer software is used to calculate the controlled variable versus using physical 

instruments. In addition to work as an online estimator, it would allow for optimal 

scheduling of grade sequence to avoid any mismatch of product quality during grade 

transitions. Researchers have attempted first principles modeling of polymerization 

processes to estimate end use properties. However, development of a detailed model 

derived from first principles, which is capable of continuously predicting melt index from 

process operating conditions for any polymerization process is not a trivial task. The 

difficulties involved are the large number of complex and simultaneous reactions and the 

need to estimate a large number of kinetic parameters. To overcome these difficulties, 

some researchers considered empirical neural network models as an alternative. 

However, neural network models provide no physical insight about the underlying 

process. Data based multivariate statistical regression methods are considered as a viable 

alternative solution to the problem.

While accurate estimation of polymer properties is essential, ensuring safe and consistent 

operation of the plant is also of utmost importance in the modem day competitive market. 

This is particularly crucial for the high pressure polymerization processes that operate 

under supercritical operating conditions. These reactors require constant monitoring and 

control in order to minimize any undesirable process excursion that may lead to 

catastrophic accidents. The production of low-density polyethylene (LDPE) is one such 

example. During the course of the polymerization reaction, significant amount of heat is 

liberated as ethylene double bonds are converted to single bonds. The heat of 

polymerization is roughly 22 kcal/mol, but since molecular weight of ethylene is low, this 

heat of polymerization is high on a weight basis. This makes the removal of heat of 

reaction critical on a commercial scale. Under specific conditions outside the normal 

operating range in the reactor, ethylene can undergo a highly exothermic decomposition 

reaction and produce carbon, hydrogen and methane. This reaction causes a sharp 

increase in reactor temperature and pressure and may result in significant economic loss. 

Therefore, industrial high pressure polymerization reactors are always looking for 

efficient tools that would be able to detect the occurrence of such unexpected events

9
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ahead of time. There is a significant opportunity for the application of data based 

multivariate statistical process control strategy to detect and diagnose abnormal shifts in 

such critical processes. Moreover, in a diverse process plant, where various grades of 

products are manufactured, these tools are also helpful for product quality control.

1.5 Introduction to Multivariate Statistical Methods

With the development of computer and data storage facilities, nearly every industrial 

process now routinely collects and stores massive amounts of data on many process 

variables. Variables such as temperature, pressure, flow rate, etc. are usually measured 

very frequently, whereas product quality variables such as polymer molecular weight, 

melt index, density (p), long chain branching (LCB), short chain branching (SCB), 

conversion (x), etc. are measured infrequently. Yet, product quality variables are much 

more important to the polymer engineer and to the customer. Efficient utilization of the 

large pool of process variable data can lead to significant improvement in two areas. First, 

frequently measured process variables can be used to infer the quality variables and an 

inferential control scheme can be developed. Second, the data can be used to monitor the 

performance of the process over time for fault detection. In both situations, multivariate 

statistics play a major role.

Let us consider two sets of measurements X (of size N*n) and Y (of size Nxm). X block 

represents process or causal variables such as temperature, pressure, flow rate 

measurements etc. Y represents quality variables such as molecular weight, product 

purity, melt index etc. In many fields of science and engineering, we are often interested 

to predict the quality variables Y using the routine process variables X with a linear 

model given by:

Y = XC +Noise 1-1

Such models may be useful in applications such as inferential control. This linear 

estimator can also be used to model dynamic systems if lagged values of the input and the 

outputs are included in the X block. In any case, most of the parameter estimation 

problems that we encounter in engineering practice can be reduced to this simple model 

form.

10
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The ordinary least squares (OLS) solution of the above system of linear equations is 

given by

C0LS=(x tx Y x t Y 1-2

A necessary condition for existence of this solution is that XTX must be invertible. 

Mathematically, this is only possible if X is a full column rank, i.e., contains only a set of 

independent variables. Such an approach creates problems in the presence of correlated 

process measurements which is often the case with industrial data. In this case, the X 

matrix becomes rank deficient and in the extreme situation the inverse may not exist. 

Even if the inverse can be computed, the variance of the estimated parameters will be 

large indicating that the estimator is unstable. This is known as colinearity or ill 

conditioning problem of the ordinary least squares method. Moreover, in the OLS 

solution, it is seen that no attention is paid to the correlation structure of Y. No attempt is 

taken to reduce the dimension of the X space, which may be required to ensure numerical 

stability when dealing with redundant measurements. Thus the OLS procedure focuses 

exclusively on the model fit (predictions) while no consideration is given to the 

numerical stability aspects of the linear regression problem.

Poor performance of the routinely used OLS procedure in the presence of correlated 

measurements makes it necessary to look for other available choices. Several multivariate 

statistical techniques such as PCA (Principal Component Analysis), PCR (Principal 

Component Regression), and PLS (Partial Least Squares) etc. have been proposed that 

overcome the shortcomings of OLS. These methods circumvent the collinearity problem 

by constructing or relating latent or virtual variables which are linear combinations of the 

original variables. For example, instead of using X and Y directly, we define linear 

combinations (or latent variables) of the columns of X and Y as follows: 

tf = Xji , linear combination of X 

My = Ylj, linear combination of Y

The subscript i denotes the ith linear combination of the corresponding space. Further 

analysis is then performed with these latent or pseudo variables, which are orthogonal 

and hence uncorrelated to each other. Thus the collinearity problem is overcome.

11
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Moreover, in presence of correlations among variables, usually only the first k (k « n )  

linear combinations are sufficient to capture most of the variability in the signal space. 

Therefore incorporating only these few latent variables in the analysis proves sufficient 

which reduces the dimension of the X space and compresses the data.

The philosophy governing the choice of the latent variables for the X space differentiates 

these methods. If the goal is to perform data compression and knowledge extraction from 

only the process variables (X block), then PCA is an appropriate technique. If a 

numerically stable linear model of the system is sought, then PCR, PLS, CVA (canonical 

variance analysis) etc are the available choices. In the latter application, two attributes are 

of major importance for the estimator (i) numerical stability (ii) obtaining good fit of the 

data. The linear combinations must account for the maximum variation of X and must 

correlate well with the variables in the Y space to achieve the objectives of model 

stability and goodness of fit. Each of the multivariate methods accomplishes a different 

level of balance between these two goals. More details on the theoretical aspects of these 

methods will be provided in later chapters of this thesis.

In industrial data, or data obtained from any real process, correlations among variables 

arise from multiple measurements of the same variable using different sensors, or from 

linear relationships among variables arising from mass or energy balances. When such 

data is used for building inferential models, ordinary least square regression will usually 

fail due to colinearity problem as explained earlier. Similarly, when performing the task 

of process monitoring, application of univariate monitoring tools to analyze such data 

may produce misleading results. Use of univariate statistical process control (SPC) charts 

is still quite common in many process industries. Univariate SPC charts such as EWMA 

(exponentially weighted moving average), CUSUM etc. are used to monitor key process 

variables in order to detect the occurrence of abnormal situations. By detecting the source 

of this abnormality, improvements in process operation in terms of safety, waste 

reduction etc. and consequently product quality can be realized. When such a univariate 

approach is used to analyze multivariate data, interaction between the variables is not
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taken into account. This not only results in misleading process information but also 

makes the interpretation and diagnosis tasks difficult.

It is in these contexts that multivariate statistical methods such as PCA and PLS are 

finding increased use in the analysis and archiving of industrial data sets. They have been 

proven a robust alternative for handling large number of ill-conditioned, highly correlated 

variables. In essence, these methods can be considered as a data compression technique 

where the total variance of the process is condensed into a very low dimensional latent 

subspace. Instead of dealing with the original correlated variables, analysis is performed 

on the latent variables, which are uncorrelated by construction. This data compression 

feature provides a low dimensional window into the process and facilitates the tasks of 

modeling, monitoring and fault detection (Kresta et ah, 1991). In addition, when these 

tools are used for modeling a non-linear process, process non-linearity can be 

incorporated in the model (if known from process knowledge) by including appropriate 

non-linear terms in the model or by incorporating non-linear inner relationships for PLS. 

Consequently, PCA and PLS have found numerous applications in areas of chemometrics, 

process monitoring, and identification. Some examples include the use of PLS to analyze 

and monitor an industrial ceramic melter (Wise et ah, 1991), and online estimation of 

quality variables in a desulfurization process (Dayal et ah, 1997a, 1997b; Miletic et ah, 

2004) etc. Numerous articles have been published by researchers from both industry and 

academia on how PCA can be applied to industrial data for process monitoring (Ricker 

1988; MacGregor et ah, 1991; Qin and McAvoy 1992; Qin, 1993; Wise and Gallagher, 

1996; Kourti and MacGregor, 1998 etc.).

MacGregor and co-workers have done some excellent work with simulated data to show 

the potential of PCA and PLS in identification and control of polymerization process 

(Duchesne et ah, 2002; Jaeckle & MacGregor, 1998; Skagerberg et ah, 1992, etc.). 

However, in the polymer industry very few industrial applications of PCA and PLS have 

been published. One of the earliest works on the application of PCA on industrial 

polymerization process was published by Moteki and Arai (1988). The main focus of 

their work was to utilize PCA technique towards improving the understanding of the
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behavior of a high pressure polymerization process for product quality design. Other 

examples include the use of PCA and PLS for monitoring and product quality prediction 

for a batch emulsion polymerization process (Neogi and Schlags, 1998), monitoring a 

batch polymerization reactor (Kourti et ah, 1996), and monitoring of polymerization and 

spray drying processes (Hergeth Wolf-Dieter et ah, 2003). However, few of these papers 

give process details, details on data processing techniques, and validation of the methods 

with real data.

1.6 Organization of the Thesis

The main purpose of this research was to investigate the potential of applying data based 

multivariate statistical methods to develop modeling and monitoring tools for high 

pressure polymerization processes. We focused on data based methods such as PLS and 

PCA. This work was done in direct collaboration with a plastics producer (AT Plastics 

Inc.) that produces a variety of LDPE and EVA products using free radical 

polymerization. All the analyses were performed using data collected from an industrial 

high pressure autoclave reactor located at the AT Plastics plant site at Edmonton. 

Through an extensive literature review and discussion with the plant personnel, three 

main areas have been identified where potential of the data based statistical methods 

could be tested:

1. development of data based inferential models to infer polymer quality parameters

2. data based adaptive modeling for time varying processes

3. development of monitoring techniques to detect decomposition for high pressure 

polymerization reactors

The chapters of this thesis are arranged in accordance with its objectives. A brief 

literature review on polymer fundamentals is given in chapter 2. Recent developments in 

the area of polymer property modeling are discussed with emphasis given on the high 

pressure processes. A number of challenging issues are identified that merit further 

research.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 presents an industrial application of a PLS-based soft sensor for predicting 

melt flow index for a polyethylene plant. A brief description of the process and special 

operating conditions are given. Some difficulties associated with data based modeling of 

any industrial process are discussed. In particular, issues related to data acquisition, data 

quality assessment, and model implementation strategies are covered.

Steady state linear or non linear data based models are in many cases sufficient to capture 

the process behavior within reasonable acceptance limits. However for time varying 

dynamic systems, the model developed from steady state data may become invalid when 

the process is running under significantly different operating conditions as compared with 

the model. As explained earlier, most industrial polymerization reactors produce many 

grades of products and hence involve grade transition. The process dynamics 

significantly changes during some of these transitions. In such case, the steady state 

model needs to be adapted to capture the new input-output correlation structure. Chapter 

4 presents a recursive PLS based modeling strategy which is based on krylov 

controllability based PLS theory (De Ruscio, 2000). Existing recursive modeling 

techniques are also reviewed and compared with the proposed method. Application 

results of these methods to model some grade transitions are presented for the specific 

LDPE reactor.

In addition to ensuring product specifications, it is of utmost importance to ensure safe 

operation of the process. High pressure LDPE reactors often run into an undesirable 

situation known as decomposition, which may result in catastrophic consequences. A 

novel monitoring scheme for the detection of decomposition in high pressure LDPE 

reactor is proposed in chapter 5. The method combines an overall reactor energy balance 

and PCA to monitor the energy balance closure error which gives an indication of any 

impending decomposition in the reactor. Finally a summary of the results obtained during 

the course of this work and recommendations for future work are presented in Chapter 6.
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Chapter 2

Review: Polymer Property Modeling

2.1 Introduction

A significant amount of research has been done in the area of control, monitoring, and 

modeling of polymerization reactors. Results obtained from this collective research have 

greatly contributed to understand how the reactor operating conditions affect molecular 

and end use properties. A comprehensive review of all available literature is beyond the 

scope of this work and only some of the topics pertinent to this work will be covered in 

this chapter. The focus of this chapter will be on the modeling aspects of the 

polymerization processes, particularly, on developing inferential systems for polymer 

properties. This is a very active research area in polymerization reactor control. Excellent 

reviews on this topic have been done by several researchers (Ray, 1985; MacGregor et 

ah, 1984; Kiparissides, 1996; Ohshima and Tanigaki, 2000 etc.). This chapter starts with 

some basic but necessary background information on polymer and polymerization 

processes. The state of the art in quality control systems for polymer production 

processes is discussed. A detailed review of published literature on modeling 

polymerization reactors and developing inferential schemes for predicting end use 

properties of LDPE and related polymers is presented. Since the main focus of this PhD 

project is high pressure ethylene polymerization processes, emphasis is given on 

synthesis methods and modeling approaches related to high pressure polyethylene 

process.

Part o f the review material presented in this chapter was published in Sharmin R., Sundararaj, U., Shah, S., Vande 

Griend, L., Sun, Y., Inferential sensors for estimation o f polymer quality parameters: Industrial application o f  a PLS- 

based soft sensor for a LDPE plant, Chemical Engineering Science, 61, 6372-6384, (2006).
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2.2 Polymer and Polymerization Processes

A polymer is a macromolecule made up of large numbers of smaller repeating units. The 

reaction in which monomers combine to form polymer is termed polymerization. 

Polymers can be classified according to any of the following criteria: chemical nature of 

monomers, molecular structure of polymers, polymer chain growth mechanism, or type 

of polymerization process, polymer texture during use, area of application and so on. 

Some of these classifications that are relevant to this project are reviewed next (Rudin, 

1999).

Homopolymer and copolymer: Homopolymer is a macromolecule derived from a single 

monomer. Their structure can be represented by multiple repetition of a single type of 

repeat unit, also known as structural unit. Example includes polyethylene, which is made 

by linking many molecules of ethylene. A copolymer contains structural units of two or 

more different monomers. For example, ethylene and vinyl acetate are combined by free 

radical polymerization process. The product is ethylene vinyl acetate (EVA) copolymer.

CH2=C H 2— * "T CH2— CH2-hn

(a)

H

+  C H2- C H 2^ C H 2- C + m

O
I
c= o  
I

c h 3

(b)

Figure 2-1: (a) Polymerization of ethylene into Polyethylene; (b) Structure of Ethylene 

Vinyl Acetate copolymer obtained from polymerization of ethylene and vinyl acetate
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Step growth and chain growth polymerization: Based on the mechanism of polymer chain 

growth, polymerization reactions can be classified as step growth polymerization and 

chain growth polymerization. It is possible to place most polymerization processes in one 

of these two classes, each having distinct characteristics. In step growth process, the 

growth of polymer molecule proceeds via a stepwise intermolecular reaction. It involves 

successive reactions between pairs of mutually reactive functional groups which initially 

are provided by the monomers. Only one type of reaction is involved in the 

polymerization process. Consider the reaction between terephthalic acid and ethylene 

glycol, both of which are bifunctional:

HOOC—(o)— COOH + HOCH2CH2OH ---- ►

HOOC— ( o ) ~  COOCH2CH2OH + h 2o

The product of this reaction is an ester which possesses one carboxylic acid end group 

and one hydroxyl end group. This dimer therefore can react with other molecules of 

terephthalic acid, ethylene glycol or the dimer itself leading to the formation of 

difunctional trimers or difunctional tetramer. The formation of linear polyesters in this 

manner is a typical example of step growth polymerization process and is represented in 

general as follows (here Ri and R2 represent any divalent group, usually hydrocarbon): 

mHOOC-Ri-COOH + nHO-R2-OH -*■ H[-OOC-Ri-COO-R2-]„OH + (2n-l)H20

In chain growth polymerization, growth of a polymer molecule is caused by a kinetic 

chain or reaction (hence the name chain growth). Chain growth polymerization involves 

reaction of monomers with active centers that may be free radicals, ions, or polymer 

catalyst bonds. The process is usually initiated by some external source (energy, highly 

active compounds, or catalysts). The reaction is allowed to proceed under conditions in 

which monomers cannot react with each other without the intervention of an active center. 

Chain growth polymerization can be carried out by free radical, ionic or coordination 

processes. Table 2-1 shows a schematic illustration of the fundamental differences in 

reaction mechanism between step growth and chain growth polymerization.
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Table 2-1: Polymerization mechanism in step and chain polymerizations (modified from

Young and Lovell, 2002)

Formation of Step polymerization Chain polymerization

Dimer M + M —> M-M I + M - > I - M  

I-M  + M —> I-M -M

Trimer M -M  + M —>• M -M -M I-M -M  + M -> I-M -M -M

Tetramer M -M -M  + M ->• M -M -M -M  

M -M  + M -M  -> M -M -M -M

I-M -M -M  + M -» I-M -M -M - 

M

VI: molecule of monomer, I: initiator species

Among the three processes used for chain polymerization, free radical process is the most 

widely practiced method and is used almost exclusively for the preparation of polymers 

from monomers of the general structure CH2=CRiR2. The process is usually much less 

sensitive to the effect of adventitious impurities than ionic chain growth reactions. The 

basic reaction steps involved in the synthesis of polymers by free radical process are 

briefly summarized next.

Free radicals are independently existing species which possess an unpaired electron and 

are highly reactive with short lifetimes. In free radical polymerization each polymer 

molecule grows by addition of monomer to a terminal free radical reactive site known as 

an active center. The overall reaction can be divided into three distinct stages, namely, 

initiation, propagation and termination.

Initiation: This stage involves creation of active center and usually takes place in two 

steps. First, free radicals are introduced into the system. The most common method of 

generating free radicals involves the use of a thermolabile compound called initiator, 

which decomposes to yield two free radicals at the reaction temperature.

I^>2R*

Here the initiator I  decomposes to yield two radicals R*. Organic compounds with bond 

dissociation energies in the range of 100-165 KJ/mol that contain the 0 - 0  peroxide 

linkage are used as initiators using thermal decomposition method. Other methods of
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producing free radicals include redox reactions, photochemical initiation etc. Once free 

radicals are formed, the initiation reaction follows if a radical R* adds to a monomer. 

Initiation reaction in the free radical polymerization of ethylene to form low density 

polyethylene is represented as:

R* + CH2-CH 2 -> R-CH2-CH 2*

The above reaction is generally written asR* +M  —> AT*, where M denotes a monomer 

and AT* denotes a monomer ended radical.

Propagation: This step involves the growth of the polymer chain by rapid sequential 

addition of the monomer to the active center. There are two major propagation reactions 

under the conditions of most free radical polymerizations. These are addition and atom 

transfer reactions.

Addition reactions: successive monomer additions after the initiation step can be 

represented as

AT* + AT -*  AT*

AT* + AT -»  AT*

AT* +

Here AT, represents the radical . Each reaction in the sequence involves the

addition of a monomer to a monomer ended radical. The time required for each monomer 

addition is of the order of milli seconds. Thus several thousands of additions can take 

place in a few seconds.

Atom transfer reactions: Radicals can undergo other reactions as well as monomer 

addition. Atom transfer reaction usually involves transfer of a hydrogen or halogen atom. 

In free radical polymerization, these reactions are known as chain transfer reactions. 

Growth of the macroradical is terminated by transfer of an atom to the macroradical from 

some other species present in the reaction mixture. The donor species itself becomes a 

radical in the process and the kinetic chain of reaction is not terminated if this new radical 

can add monomer. In general, transfer of a hydrogen atom between a macroradical 

AT* and a transfer agent TH is written as AT* + TH -> M nH  + T *. The transfer agent TH
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can be a monomer, solvent, initiator, polymer or any other substance in the reaction 

mixture. The new radical T can reinitiate by combining with a monomer M in the 

following sequence:

T* + M  ->Af* -+ M \ - »  >M*n

Chain transfer reactions usually results in a reduction in the number average degree of 

polymerization ( xn). Chain transfer to polymer has no effect on xn, but it eventually 

produces branched polymers.

Termination. In this step, the growth of a polymer chain is terminated by mutual 

annihilation of two radicals. Such termination can occur if two radicals combine to form 

a paired electron bond as in:

H H H H
I I  I I

/W V \C H 2 — c* + -C — CH2 A A M  ► AAAACH2 — C — C — CH2 A A M

|o )  (o )

This process is called termination by combination and is represented 

asM*n +M*m —>■ M nlm . Alternatively two radicals can form two new molecules by a 

disproportionation reaction in which a hydrogen atom is transferred. Generally, for this 

case, M * + M*m —>■ M m + M n.

In free radical polymerization, polymer chain microstructure and polymer molecular 

weight distribution are largely independent of the initiation mechanism and initiator type. 

One can therefore often predict details of polymer chain microstructure and MWD as a 

function of reaction variables such as temperature and concentration of species without a 

detailed knowledge of the initiation mechanism.

Linear and Branched Polymers: Depending on the molecular architecture, polymers are 

classified as linear and branched polymers. Polymer produced in both step growth and 

chain growth process may be linear or nonlinear in structure. In a linear polymer, each 

repeating unit is linked solely in a linear manner to two other units. Examples include
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polystyrene, poly(methyl methacrylate), and linear low-density polyethylene (LLDPE). 

Linear polymers may contain short branches, which are part of the monomer structure 

such as those in LLDPE. Branched polymers are those in which the polymer contains 

polymerized branches. Branching occurs either because at least one of the monomers 

have functionality higher than two or polymerization process itself produces additional 

branching points in a polymer made with bifunctional monomers. A major example of the 

second type of branched polymer is polyethylene that is made from free radical 

polymerization at temperature between 100~300°C, and pressure of 1000-3000 atm. 

Depending on the reaction conditions, these polymers contain 20 to 30 short chain 

branches (ethyl and butyl branches) per 1000 carbon atoms and one or a few much longer 

branches per molecule. They differ sufficiently in properties from linear polyethylene 

such that the two materials are generally not used for the same applications.

T

Figure 2-2: Linear and Branched Polymer

2.3 Quality Control in Polymer Industry

Molecular and morphological properties of a polymer product strongly influence its 

physical, chemical, rheological and mechanical properties as well as end use properties. 

This makes product quality a much more complicated issue in polymerization process 

than in conventional reactions involving short molecules. Figure 2-3 and Table 2-2 

describe some qualitative relationships between molecular properties, mechanical and 

chemical properties, and processability of the polymer (Ohshima and Tanigaki, 2000). It 

is evident that end use properties depend strongly on the polymer low-order and high 

order structure as well as their distributed nature of variables (molecular weight 

distribution etc.). For example, hardness of polymer depends on polymer crystallinity that
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is determined by stereoregulanty of polymer. A linear polymer with small side groups is 

highly crystalline. The presence of bulky but regular side groups in a linear polymer 

results in low crystallinity. Bulky and random side group present in a linear polymer 

makes them non-crystalline. Similarly, the morphological form of a HiPP polymer is 

often a key variable of end use properties, and it depends on particle size distribution, 

polymer composition distribution, and processing history in the extruder. Polymers differ 

from small sized compounds in that they are polydisperse or heterogeneous in molecular 

weight. MWD of a polymer is a record of the kinetic history of the reactions which 

occurred during its formation (Clay and Gilbert, 1995). Therefore it is an important 

source of information about the kinetic processes that have taken place in polymerization 

systems. Control of molecular weight and MWD is often used to improve certain desired 

mechanical and physical properties of a polymer product.
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from Ohshima and Tanigaki, 2000)
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Table 2-2: Relationship between molecular and physical properties o f polymer (adapted from Ohshima and Tanigaki, 2000)

Molecular structure ---------- ► Molecular
weight
(Mw)

Molecular
weight
distribution

Branching
chemicals

Degree o f 
branching

Degree of 
branching 
distribution

Long chain 
branching

Mechanical
and
chemical
properties

Transparency X X X X X

Tensile strength X X X X X X

Impact strength X X X X X X

Rigidity/Flexibility X X

Heat resistance X X

Cold resistance X X X X X

Chemical resistance X X X X X X

Heat seal X X X X X

Processability Bubble stability X X X

Draw down X X X

Extrusion torque X X X



In industrial settings, polymer resins typically need to be approved using a quality control 

protocol. Resins can be sold only if they meet a set of specifications which are defined in 

terms of end use properties such as impact strength, melt index, density etc. Due to the 

difficulty in measuring many fundamental molecular properties, those parameters, which 

are conveniently measured and thought to be directly related to various end uses, are 

usually reported rather than fundamental molecular properties (eg. MI or intrinsic 

viscosity is reported in lieu of number average molecular weight M„, or weight average 

molecular weight Mw). However, online measurement of these end use properties is time 

consuming and requires close human intervention. Some advancement was made in 

developing on-line sensors to measure polymer properties at the extruder units. On-line 

sensors for rheological properties such as viscosity and yield stress were developed 

(Broadhead et al., 1993). Using fiber optic linked devices, such as Raman and NIR, new 

sensors were also developed for monitoring polymer properties (Kettiy and Hansen, 

1995; Chien and Penlidis, 1990; Kiparissides et al., 1998). Among them, near infrared 

(MR) spectroscopy has greatly expanded capabilities with the help of recent advances in 

chemometrics. Watari et al., (1996) utilized the M R to measure the density of 

polyethylene on-line. However, use of these online sensors is very limited and until now, 

in most polymer plants, these properties are usually measured offline, and are available 

infrequently.

Lack of online estimates of key quality variables makes the quality control of polymer 

plants difficult. Consequently, a model for estimating polymer quality parameters using 

current process conditions would be very useful for online inferences. Moreover, it is 

indispensable to have deeper understanding about how the end use properties are affected 

by molecular structure, molecular weight distribution and operating conditions of each 

processing units, in order to determine the operating conditions for each individual 

processing unit. The quantitative representation of the relationship is called the quality 

model. To construct a quality control system for a polymerization plant it is crucial to 

develop such quality models which can describe the relationship among end user 

properties and polymer properties, and molecular structures and processing history.
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Recent literature on this topic suggests that development of inferential system for 

polymer properties is a very active research area in polymerization reactor control (Chan 

et a l, 1993; McAuley, 1990; Kiparissides et al., 1993; Zabisky et a l, 1992; Chan and 

Nascimento, 1994; Skagerberg et al., 1992 etc). The models used to infer polymer 

properties can be roughly categorized into three groups: (1) mechanistic models 

developed from first principles, (2) black box models using neural networks, and (3) 

statistical models using multivariate statistical tools. A brief review of research work 

published in these three areas is presented next.

2.3.1 First principles models

A major objective of the polymer reactor modeling is to understand how the reaction 

mechanism, physical transport phenomena, reactor type and reactor operating conditions 

affect the polymer quality of the final product. A large number of computer models have 

been developed for high-pressure LDPE reactors over the past two decades. Table 2-3 

summarizes some of the major publications on LDPE reactor modeling. These models 

differ in various degrees of complexity but the fundamental approach taken by different 

researchers is very similar. First, the entire reactor length is divided into a large number 

of small discrete segments. Then, a set of elementary reactions is chosen to describe the 

polymerization process for each segment. These include initiation, propagation, and 

termination steps. Next, the differential equations describing (a) mass balances of various 

“living” and “dead” polymer chains, monomer, initiator, solvents, (b) energy balances for 

the reaction mixture and the cooling (or heating) fluid, (c) molecular properties (long 

chain branching, short chain branching, comonomer content etc.) and (d) velocity along 

the reactor are formulated and solved simultaneously. The number of molar balance 

equations that need to be solved depends on the degree of polymerization, and the total 

number of equations can be as high as 104. Several mathematical techniques have been 

proposed in order to reduce the infinite set of differential equations to a lower order 

system which can be solved numerically (Ray, 1972; Mills, 1986, etc.) out of which, 

method of moments (Hulburt and Katz, 1964) is the most widely applied. Solution of 

these coupled non-linear ODE’s gives fractional conversion of various species, 

temperature profile, moments of chain length distribution of living and dead chains along
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the reactor length. Fundamental molecular properties such as number and weight average 

molecular weight, long and short chain branching, and comonomer composition can be 

derived from the polymer moments. Some of the modeling works summarized in Table 2- 

3 are discussed in more detail next.

Using this approach, Kiparissides et al., (1993) developed a comprehensive reactor model 

for a LDPE tubular reactor and derived temperature profile, conversion, and polymer 

properties such as Mn, Mw, SCB, and LCB along the reactor length. To estimate the melt 

index and density, the following empirical relationships were incorporated in the model: 

log M I a ' b LCB + c log M w; Density - a  \ p  SCB 

Through extensive simulation, their model examined the effect of varying initiator 

efficiency and fouling factor on reactor operation and properties. The simulated 

temperature profiles at different times were compared with actual measurements.

Chan et al., (1993) also developed a mathematical model to study free radical 

polymerization and copolymerization in high-pressure autoclave reactors producing 

LDPE and EVA. They used actual industrial recipes to simulate the temperature profile, 

comonomer composition, total initiator flowrate, and % conversion for two grades of 

LDPE and EVA resins produced in industry. Their result showed good agreement with 

the properties measured for the industrially produced resins. However, it should be noted 

that comparisons are only made on an average cumulative value of these properties. The 

model parameters were tuned separately to match the data for the two types of resins.
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Table 2-3: Summary o f literature on high pressure LDPE reactor modeling

References Reactor
Type

Summary

Feucth et al, 
(1985)

Vessel Detailed mathematical model on autoclave reactors. 
Prediction of molecular properties of LDPE

Marini & 
Georgakis 
(1984a,b)

Vessel Investigation of mixing phenomena in LDPE reactors. 
Prediction of initiator productivity and polymer quality.

Tilger and Luft 
(1988)

Tubular Two-dimensional dynamic model developed for high 
pressure LDPE reactor. Variation of physical properties 
along the reaction coordinate is considered.

Zabisky et al., 
(1992).

Tubular A copolymerization model for tubular reactor is proposed. 
Model used to simulate operation of commercial reactor.

Kiparissides et 
al., (1993)

Tubular A comprehensive mathematical model is developed for 
homopolymerization of ethylene in a 2-zone tubular 
reactor with intermediate feed

Verros et al., 
(1993)

Tubular A mathematical model based on double moments is 
employed to calculate the molecular weight and 
compositional changes for copolymerization of ethylene 
in a 2-zone tubular LDPE reactor

Chan et al., 
(1993)

Vessel A copolymerization model for vessel reactor is developed. 
Two phase flow and gel formation from cross linking 
reactions are taken into account. Model is used to 
simulate the operation of commercial reactors.

Ham and Rhee, 
1996

Vessel A two-compartment four-cell simulation model is 
developed to investigate reactor performance represented 
by monomer conversion and reactor temperature. Polymer 
properties such as Mw and polydispersity (PD) are also 
predicted.

Pladis and
Kiparissides,
1998

Vessel A comprehensive mathematical model is developed to 
calculate joint molecular weight-long chain branching 
distribution of highly branched polymers produced in free 
radical process. Effect of polymerization temperature, 
CTA concentration, and reactor residence time 
distribution on MWD of LDPE is investigated.

Zhou etal., 
2001

Tubular/
Vessel

Detail mathematical model for LDPE reactor is developed 
using method of moments and computational fluid 
dynamics. Prediction of monomer conversions, 
polydispersity, radical distribution, and MWD. Influence 
of initiator concentration and inlet temperature on 
conversion and PD is investigated.

Alleyne, 2006 Vessel A comprehensive first principles model is developed to 
predict product qualities for steady state and grade 
transition. Effect of imperfect mixing, and gell effect was 
investigated.
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Computer models provide a sound basis to mathematically describe the high-pressure 

LDPE reactors. These models give excellent insight into how reactor configuration, 

reaction kinetics and reactants affect various operating conditions and polymer properties. 

The following remarks hold for implementing a model to predict polymer quality:

1. The molecular balance equations require the reaction rate constants for all the 

elementary reactions. In addition, the effect of the reactor operating conditions on 

physical, thermodynamic and transport properties of the reaction mixture must be 

known. For any comprehensive modeling study, the resulting parameter set that 

needs to be evaluated either from experiment, or from established literature, 

becomes too large to manage.

2. Given a set of reactor operating conditions, continuous prediction of properties 

related to the end use of polymer such as MI, is not straight forward using these 

models. No explicit relationship between the end use properties and the operating 

conditions can be obtained. It is not clear how these models can be applied online 

for real time quality estimation.

McAuley and MacGregor (1991) developed a theoretically based model for the 

production of HDPE in a fluidized bed reactor to relate Mw and comonomer composition 

using online temperature and gas composition measurements. An empirical relationship 

between Mw and MI was incorporated into this model:

In (Ml) = kn 1 1 A

T Tr
+ 3.51n k f r + k ^  r  1

. 8 2 [V ,] [V ,] [m ,]

Here [Mi], [M2], [M3], [H2], [I], and [R] are concentration of monomer, comonomers, 

hydrogen, cocatalyst, and impurities in the gas phase in the reactor. Parameters kj to k4 

and Ay were estimated using steady state offline data. The remaining model parameters 

were updated using offline MI measurements by recursive prediction error method 

(RPEM). The model was able to capture melt index and density of HDPE resins during 

both steady state operation and grade transitions. This model was later used (sometime
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with minor modifications) by many researchers in their study of HDPE and LLDPE 

reactors (Ogawa et al., 1999; Ohshima et al., 1995; Ohshima and Tanigaki, 2000; Sato et 

al., 2000). Direct application of this model for LDPE production is not suitable for two 

reasons:

1. HDPE is produced using a coordination polymerization process where 

copolymerization of ethylene and a-olefins are carried out in a fluidized bed reactor 

at low pressure using a heterogeneous Ziegler-Natta or supported metal oxide 

catalyst. LDPE Production is performed in a free radical high-pressure 

polymerization process using initiators. The basic reaction mechanisms are quite 

different.

2. One major assumption used in McAuley’s model is the uniform mixing of the 

reactants in the gas phase of the reactor, which allows them to use a uniform 

temperature and gas composition throughout the reactor. Georgakis and Marini 

(1982) studied the mixing pattern in LDPE autoclave reactors. The initiator tends to 

decompose near the feed points and not in the bulk of the reactor; therefore, less 

polymerization occurs compared to what would have been achieved if there were 

uniform distribution of initiators throughout the reactor. This results in non-uniform 

composition and develops a temperature gradient along the reactor. Another 

practical issue that is worth mentioning is that the gas composition inside the 

reactors usually cannot be measured for high-pressure LDPE reactors. Essentially, it 

is not feasible to obtain gas samples from a reactor that is operating at pressures 

above 1200 atm.

In a recent work Alleyne (2006) developed a comprehensive first principles model for 

high pressure stirred autoclave reactor in a LDPE/EVA polymerization plant. The model 

included unit process based equation of state thermodynamics and full free radical 

kinetics for all reacting components and was used to predict reactor temperatures, 

conversion, final product qualities such as comonomer content and melt index. 

Theoretical additions made by other researchers such as Trommsdorff (gel) effect, and
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effect of imperfect mixing were incorporated into this model. Validation results were 

shown for the steady state reactor, steady state full plant model, and dynamic full plant 

model. The steady state model was validated with actual plant data for a number of 

grades of product. The dynamic model was validated using data from a typical grade 

transition in the plant. The model showed an excellent fit with experimental data in all 

cases. Finally, the model was used to develop optimal grade transition policies which 

were implemented in the actual plant. Although a great majority of the reactor models 

published in the literature were built using computer programs such as FORTRAN, 

MATLAB, or SIMULINK, this model was built using a commercial software package 

(Aspen Polymer plus) in close collaboration with the plant personnel to ensure that it was 

practical, usable and sustainable. This is an excellent contribution towards modeling of 

high pressure polyethylene reactors.

2.3.2 Black Box Models: Use of Neural Networks

There is a significant potential for employing neural networks in chemical engineering 

applications since all major chemical processes are highly non-linear. Neural networks 

have the ability to approximate any continuous non-linear functions and have been 

applied to non-linear process monitoring (Bhat and McAvoy, 1990; Qin and McAvoy, 

1992; Chan and Nascimento, 1994; Zhang et a l, 1998; Rallo et a l, 2002 etc.). They 

possess the ability to leam what happens in a process without actually modeling the 

physical and chemical laws that govern the system. The success in obtaining a reliable 

and robust network depends strongly on the available set of data, the choice of process 

variables and its training domain (Bhatriya and Whiteley, 2001). Table 2-4 summarizes 

some of the major publications on application of neural networks in polymerization 

processes.
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Table 2-4: Summary o f  literature on Neural Network based modeling o f  polymerization

processes

Reference System Summary

Chan and Nascimento, 

1994

LDPE tubular 

reactor, industrial 

study

Neural network is used to model melt 

index, density, Mn, Mw, and 

conversion

Ohshimaef a/., 1995 HDPE reactor, 

industrial case study

Melt index is predicted using artificial 

neural net (L°° wave net). The model 

by McAuley and MacGregor (1991) 

is used for input selection

Goiochen et a l, 1995 Batch MMA reactor, 

laboratory scale 

study

Polymer chain length is estimated 

from concentration and conversion 

data using extended Kalman filter and 

neural network.

Zhang et a l, 1998; 

Zhang, 1999

Batch MMA1 

reactor, simulation 

study

Bootstrap aggregated neural network 

is used to estimate Mn and Mw

Ogawa et al., 1999 HDPE slurry reactor, 

industrial case study

MI estimated using L°° wave net 

(same model as in Ohshima et al, 

1995). The inferential system is 

combined with a quality control 

system that utilizes a two degrees of 

freedom cascaded MPC2.

Rallo et al., 2002 LDPE tubular 

reactor, industrial 

case study

Single grade and composite neural 

network models are built using fuzzy 

ARTMAP neural system. Details on 

data preprocessing is given.

MMA: methyl methacrylate 

2 MPC: Model predictive controller
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In an application related to polymerization reactors, Chan and Nascimento (1994) used a 

back propagation neural network to model free radical polymerization in a high pressure 

LDPE tubular reactor. They used the reactor pressure, mass flow rate of monomers and 

initiator feeds, and feed temperature to model temperature profile along the reactor, melt 

index, density, Mn, Mw and monomer conversion. Industrial data was used to train the 

network. The results show good agreement for all the properties for one single grade. It 

should be mentioned that the network was not applied for continuous estimation of any of 

these properties. Instead, they compared a cumulative average value for one LDPE resin. 

In a more recent work, Rallo et al., (2002) employed a predictive fuzzy ARTMAP neural 

system to estimate MI for six different LDPE grades produced in a tubular reactor. 

Sensitivity analysis with self-organizing maps was used to select the most relevant 

process features and to reduce the number of input variables to the model. They 

developed separate models for each grade and a composite model for all six grades. 

These models could successfully capture the time trend for polymer properties at steady 

state and during grade transitions.

The above discussion shows that neural networks appear to be quite an attractive method 

to infer polymer quality, but in practice, only a very limited number of industrial 

applications have been reported. One disadvantage in using neural networks for data 

mining is its slow learning process. The technique usually requires a large sample size 

and trial and error. Therefore, training can be quite time consuming. Another 

disadvantage is that neural networks do not give explicit knowledge representation in the 

form of rules, or some other easily interpretable output. The model is implicit, and 

knowledge is hidden in the network structure and optimized weights between the nodes. 

The individual relationships between the input and the output variables are not developed 

by using any engineering judgment, therefore the model tends to be like a black box. That 

is, the input-output table has no analytical basis. This is the major reason why there is 

very limited acceptability of this method in industrial practice, particularly in 

polymerization processes. It may be possible to train a neural net using data generated 

from a valid mechanistic model. This approach could be beneficial in applications such as
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product design using model inversion techniques. However, to the best of author’s 

knowledge, no such application has been published.

2.3.3 Data based Statistical Models

Multivariate statistical methods such as PCA, PCR and PLS have been successfully 

applied to solve a wide range of multivariate problems in chemometrics, and have 

recently gained importance in chemical engineering. An important aspect of these robust 

regression techniques is their ability to handle large number of ill-conditioned, highly 

correlated variables. Ordinary least square regression will usually fail in these cases. 

Consequently, these methods have gained rapid acceptance and utilization in industry. 

Examples include the use of PLS to analyze and monitor an industrial ceramic melter 

(Wise et a l, 1991), monitoring a batch polymerization reactor (Kurti et a l, 1996), and 

online estimation of quality variables in a desulfurization process (Dayal and MacGregor, 

1997a, 1997b; Miletic etal., 2004).

In polymerization processes, the use of multivariate statistical methods to develop 

inferential models is limited to mainly simulation studies. A series of articles has been 

published by MacGregor & co-workers and Kiparissides & co-workers in this area. 

Skagerberg et a l, (1992) and MacGregor et a l, (1994) demonstrated the use of PLS in a 

simulation study, to model Mw, Mn, LCB, SCB, and concentration of vinyl and 

vinylidene groups for a single grade of LDPE produced in a tubular reactor using the 

reactor temperature profile and the solvent flow rates as the input. Although their model 

was shown to perform well, it was only applicable to a single grade. The results were not 

validated with any real plant data. In addition, the issue of multiple grades and grade 

changes, which are very common to polymerization reactors, was not covered in their 

work.

Since many chemical processes exhibit nonlinear behavior, a number of non linear PLS 

algorithms have been developed to capture the true nonlinear dynamics. These algorithms 

use different nonlinear approaches to model the inner relationship between each pair of 

input- output latent variables. Lor example, Wold et a l,  (1989) proposed a quadratic
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function for mapping the inner relationships in PLS. In a more recent study, Jaeckle and 

MacGregor (1998) used a PLS based method to find a window of operating conditions to 

obtain a product with a desired set of quality specifications. As a starting point of their 

methodology, which is known as inverse PLS modeling, they developed a non linear PLS 

model for Mw, Mn, LCB, SCB and conversion for the production of LDPE in a tubular 

reactor. The inputs for their model included reactor pressure, feed temperature, initiator 

and solvent flow rates. Nonlinear inner relationships were used to model the input-output 

latent variables pair, although the nature of the nonlinearity was not explicitly mentioned 

in their work. Martin et a l, (1999) reported a similar application of inverse PLS to a pilot 

scale batch methyl methacrylate (MMA) suspension polymerization reactor. In both cases 

(Jaeckle and MacGregor, 1998; Martin et ah, 1999), the entire data were generated using 

a simulation model developed by Kiparissides et a l, (1993) and no validation with 

industrial data was done. Jaeckle and MacGregor’s (1998) model was developed using 

data combined from nine LDPE grades from the same family of products (e.g. film grade 

polyethylene). Unfortunately they give little detail about the pre-processing steps, which 

are crucial when dealing with non-stationary data. In a recent study Jaeckle and 

MacGregor (2000) applied the inverse PLS method on historical data taken from two 

industrial polymerization processes. Although the method was not implemented, the 

results could serve as a starting point for further experimentation.

In addition to the three basic modeling strategies explained so far, another more recent 

trend in polymer property modeling is noticed where the statistical methods are combined 

with machine learning methods such as artificial neural networks (ANN). Data based 

methods such as PCA and PLS are more suitable for modeling linear stationary processes 

whereas neural network has found wide applications in process identification due to its 

excellent ability in representing arbitrary nonlinear relationships. Therefore, it is expected 

that one method will complement the other when used in combination. In support of this 

proposition, Qin and McAvoy (1992) proposed neural network based PLS (NNPLS) 

where a neural net is used to model the nonlinear inner relationships. Baffi et a l, (1999a, 

b) modified the input weights updating procedure of the quadratic PLS proposed by Wold 

et a l, (1989) and neural network based PLS algorithms proposed by Qin and McAvoy
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(1992). These modifications were proven to improve the modeling capabilities over the 

original nonlinear PLS algorithms as evidenced from some interesting applications in 

polymerization processes.

In a recent work by Shi et al., (2006), a novel soft sensor architecture was proposed for 

an industrial propylene polymerization process. The method combines artificial neural 

network (ANN) with independent component analysis (ICA) and a multi-scale analysis 

(MSA) to infer melt index of polypropylene from available process variables. ICA is a 

general purpose projection technique in which the observed random data, usually 

containing highly correlated variables, are linearly transformed into components that are 

maximally independent from each other (Hyvarinen and Oja, 2000; Hyvarinen, 2002). In 

this study, ICA was used to select relevant features needed as input to the model. In 

addition, it helped in reducing the dimension of the input space, which simplified the 

neural architecture and reduced the time required for training. Next, multi-scale analysis 

(MSA) was applied to obtain more information from the data and reduce the system 

uncertainties. MSA uses wavelets and corresponding scaling functions basis functions to 

decompose a set of data into components described by wavelet coefficients. Signal 

decomposition with MSA has near optimal properties in a wide range of non- 

homogenous function spaces (Baseville et ah, 1992; Li et ah, 2004). Finally radial basis 

function (RBF), which is a typical feed forward type artificial neural network (ANN), 

was used to model the nonlinear relationship between MI and the process inputs. The 

results showed acceptable prediction capability for both training and test data sets. The 

results also suggested that the use of ICA in combination of the neural network (ICA- 

MSA-RBF) models results in improved predictive performance as compared to the neural 

network model developed with the original variables. The paper provides sufficient 

details about the data collection and preprocessing techniques such as scaling, duration of 

training data etc. which are often ignored in the literature involving real plant data. The 

method seems to have promising potential for practical use. However, the results 

presented suggest that the analysis was performed with a single grade of product. Hence 

issues of multiple grades, grade transitions, and practical considerations during 

implementation etc were not discussed.
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However, the neural network based nonlinear PLS methods suffer from criticisms such as 

over fitting the data and lack of model interpretability. In order to improve model 

interpretability, Bang et a l, (2003) proposed to incorporate the fuzzy Takagi-Sugeno 

(FTS) model for the inner mapping, named as fuzzy PLS. In a more recent work Liu (in 

press) developed a soft sensor algorithm for a nonlinear time varying process by 

combining PCA, fuzzy c-means clustering, and FTS modeling. The underlying principle 

of this method is that a nonlinear system can be decomposed into several local 

subsystems using fuzzy c-means clustering method meanwhile building a linear model 

for each local subset assuming that the local input/output relationship is linear. PCA was 

used to eliminate collinearity and reduce the input variable dimensions. Next, FCM was 

used to decompose the operating space into several local regions. And finally FTS model 

is used to build a local linear model for each region. The method was successfully applied 

to predict melt index data from a high pressure polymerization process producing three 

different grades of polymer product.

2.4 Summary: Challenges & Motivation

Development of detailed first principles model for free radical polymerization is not a 

trivial task. The difficulties involved are the large number of complex and simultaneous 

reactions, poor understanding of flow patterns in the reactor and poor understanding of 

heat and mass transfer of the polymer monomer mixtures, and the need to estimate a large 

number of kinetic parameters. Although a great number of papers have been published on 

the modeling of LDPE reactors, a consistent set of kinetic rate constants has not been 

established in the open literature. This may be attributed to the complexity of the reaction 

mechanism, the large number of kinetic parameters to be identified experimentally, and 

the wide range of experimental conditions over which the kinetic parameters are 

estimated. The dependence of thermodynamic and transport properties of the reaction 

mixture (i.e., density, specific heat, viscosity, thermal conductivity) on pressure, 

temperature and composition must be known in any comprehensive modeling study. In 

light of these difficulties many researchers consider empirical neural network models as 

an easier alternative. However, it provides no physical insight about the underlying
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process. Therefore, due to limited acceptability of this approach, in this work, we will 

focus on data based statistical methods.

Although there is great potential for applying PLS to inferential modeling, it is evident 

from the available literature that very little work has been done in the area of 

polymerization. To the best knowledge of the author, no industrial application of PLS has 

been published to infer polymer quality parameters. However, a number of challenging 

issues are involved in direct application of PLS to model polymerization processes. A 

major complexity arises from frequent grade changes required to produce a large number 

of different products. Even for a single reactor system, operating conditions and polymer 

properties can vary over a wide range. Polymer quality parameters such as MI are 

believed to have non-linear relationships with operating conditions, but the explicit nature 

of non-linearity is still unknown. Bremner and Rudin (1990) developed an empirical 

relationship to relate MI with Mw for LLDPE and HDPE. Their model had some validity 

for linear polymers of similar molecular polydispersivity and processing histoiy. For 

branched polymers (LDPE), they concluded that the situation is more complex, and no 

general relationship can be obtained unless the rheology of the polymer can be 

characterized. The process dynamics also change during grade transition. Sato et al., 

(2000) examined grade transition through a simulation study and showed that the process 

gain can change greatly due to product change. These issues suggest that a single PLS 

model will be insufficient to capture the true process dynamics unless it is developed 

within an adaptive framework.

It should also be pointed out that there are some inherent difficulties in data based models 

using closed loop industrial data as opposed to the data generated from simulation. The 

data acquisition and preprocessing, and proper variable selection can be very demanding 

and time consuming. Process knowledge has to be intelligently combined in this step for 

model success. There is a significant lack of literature on data based statistical models for 

polymerization processes. A limited number of articles concerned with grade transition 

do not clearly describe the data preprocessing techniques, which is vital for the ultimate 

success of the model. For example, the issue of scaling in this case is still an unresolved
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problem. Another disturbing aspect of the previous work is the tendency to evaluate the 

model performance based on the training data set rather than applying the model to a new 

data set that is unseen by the model (Chan and Nascimento, 1994; Qin, 1998). In terms of 

research needs, much work remains to be done before a generalized framework can be 

accepted for data based modeling of time varying non-linear processes.
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Chapter 3 

Data Based Inferential Modeling

3.1 Introduction

Multivariate statistical tools such as PLS and PCA have been used to analyze data for 

process monitoring and developing inferential models in a variety of disciplines such as 

science, social science, engineering and medicine. Although application of these methods 

in the field of polymer is not too wide spread, it is interesting to note that perhaps the first 

application of the PCA technique in an industrial setting was reported by Moteki and Arai 

(1986), who used it to derive optimal operating conditions to synthesize specific polymer 

grades. Since then many researchers have demonstrated through numerous simulation 

studies that there is great potential for application of latent variable based regression 

techniques to predict polymer quality parameters using available process data. However, 

process nonlinearity, poorly known nature of relationship between final polymer quality 

with reaction conditions, and the inherent difficulties associated with dealing with 

industrial data pose some challenge to the direct application of these techniques. To the 

best knowledge of the author, no industrial application of PLS has been published to 

model polymer quality parameters. In this work, PLS was used to build a soft sensor to 

predict melt flow index using routinely measured process variables.

Some of the results in this chapter was published in Sharmin R., Sundararaj, U., Shah, S., Vande Griend, L., Sun, Y., 

Inferential sensors for estimation o f polymer quality parameters: Industrial application o f  a PLS-based soft sensor for a 

LDPE plant, Chemical Engineering Science, 61, 6372-6384, (2006).
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The study was conducted using data collected from an industrial autoclave reactor, which 

produces low-density polyethylene (LDPE) and ethylene vinyl acetate (EVA) copolymer 

using free radical polymerization. This chapter provides a detailed description of the 

various steps involved in the soft sensor development starting from data collection to the 

final implementation of the model. A brief overview of the PLS theory is presented. 

Some difficulties associated with the analysis of industrial data are also discussed.

3.2 Partial Least Squares: Theory

Partial least squares or projection to latent structures (PLS) technique is a robust 

alternative to the ordinary least squares (multiple linear regression) method in the 

analysis of correlated data. This is a latent variable based method used for the linear 

modeling of the relationship between a set of response variables Y (of size Nxk) and a set 

of predictor variables X (of size Nxn). The linear model can be represented as follows:

Y = X C  + E (3-1)

In PLS, the objective is to arrive at a stable estimate of C while performing data 

compression on both the X and Y blocks. The correlation stmcture between the X and Y 

blocks is considered in the estimation procedure. The latent variables for the X block are 

constructed with reference to the Y space. Therefore a compromise solution is reached 

that takes into consideration both the stability (through constructing uncorrelated latent 

variables) and the model fit aspects (through the construction of the X block latent 

variables with reference to the Y space) of the regression problem (Lakshminarayanan 

1997).

The ordinary least squares solution of C is given by

C = (x tx Y x t Y (3-2)

A common problem with this solution is that XTX  can become ill-conditioned and the 

inverse may not exist when X  contains many correlated variables. PLS regression is used 

to overcome this problem (Lakshminarayanan et ah, 1997; Di Ruscio, 2000) in the 

following manner:
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We can define

/j -  Xwj (3-3)

where ti is the latent variable in X-space and

w, = F/j (3-4)

where w, is the latent variable in Y-space. z, and ut are also known as the scores vectors 

in X and Y space respectively. w1 and /, are weight vectors of unit length that will 

maximize the covariance between /, and u}. The estimation of the weight vectors can be 

considered as a solution of the following constrained optimization problem (Hoskuldsson, 

1988):

Objective: Find a linear combination of X and a linear combination of Y that have the 

maximum covariance between them.

Objective Function: max{wjrLXF/j}

Constraints:

wf Wj = 1

llh =1

Solution: vr, is the first left singular vector and U is the first right singular vector of XrY.

In view of the above formulation, the PLS procedure can be analyzed as an eigenvalue 

eigenvector problem. The weight vectors for each PLS dimension can be obtained from a 

singular value decomposition (see Appendix 1) of the covariance matrix XTY. In fact, 

Hoskuldsson (1988) showed mathematical proof that PLS is an eigenvalue-eigenvector 

problem where u, I, t, and w are eigenvectors corresponding to the largest eigenvalue of 

YYTX X T, Y TX X TY , XX tYYt , and X r FTr X respectively.
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In order to get orthogonal X  scores, slightly rotated X  loading vectors are defined as

P l = X Ttx / ( t f t j  (3-5)

Y loadings qi are the same as 7-weights //. Geometrically, the loading vectors pi  and qi  

are the direction cosines of the dominant directions within the data set and are obtained 

by maximizing the covariance between X and Y. The first set of scores vectors // and ui 

are interpreted as the projection of the X and Y data respectively onto the loading vectors 

pi and qi. The procedure of obtaining scores vectors ti and ui from X and Y is known as 

the PLS outer model and is depicted by the block “PLS OUTER MODEL (1)” in Figure 

3-1.

Next, the matrices X and Y are indirectly related through their scores by an “Inner 

Model” which is just a univariate linear regression of t/ on ui

Mj = txbx + n,; => Mj = txbj (3-6)

The least square solution for bj is given by u[tl /{t[tx). The quantity u^/l can be 

interpreted as the portion of the Y data that has been predicted by the first PLS dimension. 

In doing so, the tlPx portion of X data has been used up. Next, denoting Eo = X and F0 = 

Y, the residuals are computed via a matrix deflation process (shown as dark squares in 

Figure 3-1):

Ei = X  -  qp[ = E 0 -  txp l  (3-7)

Fy = Y  - uxq \  = Y - b p d  = F 0 - (3-8)

Successive PLS vectors (the scores and loading vectors and the inner relations) can be 

obtained for the deflated X and Y matrices. The procedure is continued (with the 

residuals computed at each stage) until all of the PLS dimensions (n) are extracted. The 

overall PLS algorithm is shown schematically in Figure 3-1.

In practice only a limited number of PLS dimensions (say r, usually r « n )  are required to

give a reasonable fit between X and Y data. The number of PLS dimensions is

determined based on the percentage variance explained, or by cross validation technique 

(explained in the PCA section). The directions considered irrelevant in the data sets,
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which arise from noise and redundancies, are confined to the error matrices Er and Fr. 

Thus the entire procedure can be seen as decomposing X and Y data into a sum of series 

of rank one matrices as follows:

X = txPTx + t2p T2 + ••• + trPTr + Er = TPt + Er (3-9)

Y = uxqf  + u2qT2 + --- + urqTr + Fr = UQT + Fr (3-10)

In order to obtain the PLS estimates of the parameter C of the linear model shown in Eq 

3-1, we proceed from Eq 3-10 as Y =UQT + Fr =TBQt +Fr . Therefore, if r PLS 

dimensions are retained in the final model, prediction of Y is given by:

Y = TBQt 

= iti l*2 \ - " \ t r]BQT 
= [XWj I Exw2 I ••• I Er__xwr]BQT 

= [xwx \ ( x  - t xp l)w 2 \ - \  Er_xwr]BQT 

= [Xwx I (x  -  Xwxp[  )vv2 I ••• I Er_xwr]BQr

= [Xwx I x ( l n -  vv, p ]  Jw2 I - 1 Er_xwr]BQT 

= x [ w x \ (/„ ~ w xp f)w 2 I • • • I Er_xwr]BQT 

= X  k*  I w*2 I • • • I w*r }bQT 

= XW *BQT

Therefore, PLS estimate of C is given by

Cpls -  W*BQt (3-11)

Here W* e 9Txr = [w*x I w*2 1• • • I w*] with w* = ]^ [(/„ -  whp l  jw, , B e  W xr is a diagonal
h=l

matrix containing bi s as the diagonal elements, i.e., B -  diag[bx b2 ••• br]e Ol™'', 

and Q e  9t*xr = \qx I q2 I • • • I qr \ is the matrix of Y loadings.

The pioneering work in PLS was done by H. Wold in the late sixties (Wold, 1966). Since 

then, much literature has emerged to describe PLS theory and many algorithms have been 

proposed (Geladi and Kowalski, 1986; Hoskuldsson, 1988; Lindgren et al., 1993; Dayal
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and MacGregor, 1997). A tutorial description of PLS along with a simple example has 

been provided by Geladi and Kowalski (1986a, b). Manne (1987) and Hoskuldson (1988) 

provide an excellent analysis of the mathematical properties of the algorithm. The 

different PLS algorithms differ mainly in the iterative manner in which the eigenvectors 

are calculated. In this work, NIPALS (Non-Linear Iterative Partial Least Squares) 

algorithm (Geladi and Kowalski 1986a) was used to develop the basic PLS models. 

NIPALS is a robust procedure for solving eigenvalue eigenvector related problems where 

the eigenvectors are calculated in a partial fashion, one at a time, until all variance in the 

data structure is explained. For each new dimension, the information explained by the last 

component is subtracted from the data matrices X and Y to create residuals on which 

subsequent dimensions are calculated by the same procedure (Lindgren et al., 1993). For 

practical application of the PLS algorithm, it may be necessary to scale the X and Y 

blocks suitably in view of the fact that the measurement units can be grossly different. 

Without proper scaling, the PLS latent variables may be significantly biased towards 

variables with larger magnitude. Scaling may be performed with some a priori knowledge, 

e.g. assigning larger weights to some key variables. Often all variables are auto scaled 

(mean centered and scaled to unit variance). The scaled X and Y blocks are then 

processed by the PLS algorithm. A summary of the NIPALS algorithm is given below.

PLS Algorithm:

1. Start with mean centered, and scaled X and Y; set E0 = X ; F() = Y

2. For each component: ustan = some Yj

w' -  u'X / u'u
3. In the X block: <W new =  W o ld l \ W old

t = Xw

4. In the Y block:
q' = t'Y / t't

< Q n e *  =  Q m  ' b 'o l c  

u = Yqt q'q

5. Check for convergence

6. p ' — t'X / t't
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10. Find regression coefficient b for inner relation: b -  u't/t't

11. Calculate deflated X and Y: j  h h~l h^ h' h 1
\ F H = F ^ - b kh Q H ^  = Fh\

12. Go to step 2 for the next component.

Once the PLS model is obtained using data collected from normal plant operations, it can 

be used for predicting the quality variables in an inferential framework. The PLS matrices 

(scores and loadings) can also be used for fault detection and isolation. It should be noted 

that the predictions provided by the PLS model are reliable as long as the plant-model 

mismatch is insignificant. In case of time-varying plants, it may be necessary to use 

recursive versions of the PLS algorithm.

3.3 Process Description

In this work, an industrial autoclave reactor at AT Plastics (Edmonton, Canada) was 

studied. The plant uses ICI high-pressure technology for polymerization of ethylene to 

LDPE and copolymerization of ethylene and vinyl acetate to EVA copolymers. The plant 

has been in operation for over five decades and is a major supplier of specialty polymer 

resins in North America. The data for this work was collected from the most recently 

built reactor unit (known as R-5, the fifth reactor) at the plant. The unit produces more 

than 35 grades of LDPE and EVA resins and is controlled using a TDC3000 Honeywell 

DCS. Figure 3-2 shows a simplified process flow diagram.

The four-zone reactor has a nominal capacity of 750L. Ethylene gas enters the reactor 

through four separate streams. Free radical initiators are injected continuously into each 

zone of the reactor to control the exothermic polymerization reaction at selected 

temperature levels. The reactor is equipped with an axial stirrer and thermocouples along 

the reactor length. The reactor operates at a pressure in the range of 1000 to 3000 atm and
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achieves about 20% conversion in a single pass. After separation from the unreacted 

gases in the high pressure separator and extrusion hopper, molten polymer is fed into a 

single screw extruder which forces the polymer to an underwater pelletizing unit in which 

polymer is cut into solid pellets.

Ethylene gas separated from the high pressure separator is recycled through a series of 

coolers and cyclone separators to the suction of the secondary compressor. Cyclone 

separators are used to separate any low molecular weight polymer from the recycle gas. 

Any ethylene separated from the extrusion hopper is compressed in a booster compressor, 

and finally mixed with fresh ethylene at the suction of the primary compressor. Off-gas 

from the extrusion hopper is partially purged in order to control the accumulation of 

impurities in the system. The same unit also produces ethylene vinyl acetate copolymers 

(EVA) when vinyl acetate monomer is added to the system.

In addition to the major processing units shown in Figure 3-2, the polymer plant is also 

equipped with a train of heat exchangers. These are used primarily to cool various feed 

and product gas streams and can be broadly classified as follows:

• Inter-stage coolers: cools the feed gas as it passes from the 1st stage to the 2nd 

stage of the secondary compressor

• Feed gas cooler: cools the hot feed gas exiting from the secondary compressor 

before it enters the reactor

• Product cooler: cools the product stream from the reactor before it enters the high 

pressure separator

• Return gas cooler: cools the hot effluent gas from the high pressure separator 

before it enters the 1st stage of the secondary compressor

The recycle gas exiting from the high-pressure separator contains small amount of low 

molecular weight polymer. Upon cooling, these low melting point polymers are deposited 

as a solid scale on the internal surfaces of the tubes in the return gas coolers. The same 

phenomena take place in the suction and discharge piping of the secondary compressor,
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the inter-coolers, feed gas coolers and product coolers. This results in increased pressure 

drop and a higher fouling factor, which affect conversion and plant throughput. In order 

to remove these scales from the tube surfaces, occasionally, the coolers are operated at 

temperatures significantly higher than the normal operating temperatures. At this 

condition the scale melts and is swept away with the feed or product gases, leaving the 

heat exchange surfaces clean. This procedure is known as cooler cooking and is 

performed as a routing maintenance operation in the plant during normal plant operation. 

Cooler cooking is also carried out during a number of grade transition operations. The 

product made during cooler cooking is off-grade material.

A trickle sampler is used to direct a small amount of polymer pellets to the quality control 

lab where quality parameters such as melt index, comonomer (vinyl acetate) content, film 

quality etc. are measured continuously. These measurements are used for taking 

instantaneous corrective actions required for maintaining grade specifications. 

Fundamental molecular properties such as MWD are measured in the product analysis lab 

for each batch of product. The plant uses an online rheometer (Gottfert ®) that measures 

MI continuously and the value is stored in a computer database called the historian. At 

steady state, this equipment provides an accurate measure of MI, but during grade 

transition, the estimates are often erroneous. For many grade changes, the equipment is 

taken offline to change the capillary die and no measurement is taken. In addition, due to 

an inappropriate calibration technique used to store data in the historian, all MI values are 

stored only as a two-digit number (see section 4.6 for detail). This made interpretation of 

the available MI data during large grade transitions extremely difficult. A manual 

analytical test is also performed in this lab at an irregular frequency to experimentally 

measure MI. These spot measurements are used to update the online measurements for 

any bias correction, and also during grade transition to make decisions about changing 

process conditions. Points worth mentioning about the analytical measurement include 

irregular sampling rate leading to many missing data and manual recording of the data on 

log sheet with reliable/unreliable time stamp. For these reasons, online MI values have 

been used in this work for building the softsensor after appropriate scaling.
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Figure 3-2: Polymerization process flow diagram 

3.4 Grade Transition and Modeling strategy

To meet the current market demand for diverse products, while at the same time, trying to 

minimize the equipment cost, it is usual that most polymer plants will produce many 

grades of products by changing their reactor operating conditions. The common practice 

for product scheduling in most plants is as follows. Soon after the specification of the 

desired polymer is given by the customers, polymer quality that the individual processing 

unit produces is specified appropriately. Operating conditions are then determined for
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each unit to meet the specified quality. Taking plant stability into account, a production 

schedule is determined so as to meet the demand while keeping the inventory cost low. 

Following the determined schedule, safe and quick changeover operations are performed 

by a sophisticated control system.

The complexity of operating procedures during grade change depends upon the 

differences in the product recipes. Product changeover usually consists of partially 

overlapping activities, i.e. phasing out the previous product, adapting and changing over 

to the new product, and developing analytical procedures to determine the new product 

quality. Generally, the grade transition is achieved by continuously changing the catalyst, 

modifiers and other operating conditions. In certain cases when the recipes are widely 

different, particularly with regard to the catalyst type, grade transition requires temporary 

reactor shutdown and then restarting. Process complexity is increased when another 

operation such as a cooler cook is done simultaneously with the grade change to 

minimize downgrade material. In the current project, the plant produces more than 26 

grades of LDPE and EVA products with a melt index ranging from as low as 0.3 to as 

high as 2200. The vinyl acetate content in the EVA copolymer can vary from 16-40%. As 

a result of frequent grade transitions, the plant operation becomes increasingly complex. 

In summary, modeling of this process is a not a trivial task for the following critical 

factors (Piovoso and Pearson, 1992; Kumar, 2001)

• Multiple grades are manufactured by the same process unit based on current 

market demand

• Unscheduled changeovers or special operating procedures (such as cooler 

cooking) are used to revive operating efficiency

• Modifications are sometimes done to the standard operating procedure for a grade

• Effect of unplanned disturbances

In view of the above mentioned complexities, a decision had to be made about the type of 

the soft sensor model that would be suitable for such a diverse plant. The approach taken 

during this research project was to develop a number of composite models that would be
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applicable over a range of melt index values. These models include both the steady state 

and grade transition regions. A number of single grade models were also developed. Only 

those grades which are manufactured frequently in the plant were selected for model 

building. It is worth mentioning that the appropriate length of the training data required to 

build any model depends on whether we intend to build a composite model or a model for 

single grade product. In both cases, plant production history was studied to select the 

duration and length of the data. The usual time length for producing any particular grade 

of polymer varies from 2-7 days at the plant. Several batches of data, each having length 

ranging from 2-7 days, was collected to build single grade models. For composite 

models, data over one month period were collected. In this work fast rate of data storage 

placed an upper limit on the length of the training data.

3.5 Data Acquisition and Preprocessing

Three basic steps in any data based modeling or monitoring scheme are data collection, 

data preprocessing and development of the model. Though it has received little attention 

in the literature, data preprocessing can be the key to the success or failure of the final 

application. Many publications on modeling and monitoring of industrial processes start 

with statements such as “Assume that the data is available in a matrix X”. However, in 

most cases, data from an industrial process does not exist in a form that is suitable for use 

by softwares which are used to build monitoring and soft sensor applications. A large 

amount of data preprocessing is required in order to pre-treat the data and transform it in 

a usable form as is assumed in such statements. In reality, more than 80% of the time 

required to develop online monitoring and soft sensor applications is spent in data 

preprocessing and data quality analysis (Raghavan, 2004). The following sections 

summarize the procedure of data collection and the preprocessing steps followed in this 

work.

3.5.1 Data Collection

An OPC server (Object linking and embedding for Process Control) was used to access 

data from the Universal Control Network (UCN) of a Honeywell TDC3000 DCS. The 

OPC servers used Microsoft’s OLE technology to communicate with clients and permits
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standards for real-time data exchange between Windows based software applications and 

process control hardware. The data communication between the server and the DCS was 

via two RS-232 serial interface cards installed on one of the marshalling cabinets on the 

Universal control Network of the DCS. Offline process data for a total of 48 variables 

was queried from the server using Structured Query Language (SQL) program files. 

These included all major process variables from the reactor, and product quality variables 

such as Melt Index, Vinyl Acetate content (mass%), etc. Additional variables were 

collected from all other important processing units of the plant, which included variables 

from the compressors, product cooler, product separators, and the extruder sections. A list 

of these variables is given in Appendix-2. Data for all 48 variables were accessed at every 

second and saved in a database folder. As a standard practice in the process industry, 

special operations and events are logged by the plant personnel in a shift wise fashion 

(one shift is 12 hours). The same approach was found to be advantageous in data 

collection. Therefore, one data folder was created to store the data for one shift, which 

contains 48 separate files for each variable. However, the original process data was 

collected in a form, which was incompatible with the format required for any data 

processing software (i.e., MATLAB, Excel, or ProcessDoc). A sample representation of 

one of these data files as collected from the plant site is shown in Table 3-1. A 

MATLAB code was written to select only the numerical values from the 3rd column from 

each file and paste them into one large data matrix. Thus one data matrix was generated 

for each shift’s operation. The columns of the matrix represented the variables and the 

rows represented the measurements at different sampling instants.

Table 3-1: Sample of the data as collected from the plant site

Tagname: TI51015.PV 

ip_trend_time ip_trend_value ip_trend_qstatus

01-MAR-02 06:00:00.2 192.160 Good

01-MAR-02 06:00:01.2 192.160 Good

01-MAR-02 06:00:02.3 192.160 Good

01-MAR-02 06:00:03.3 192.160 Good

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.5.2 Assessing Data Quality

Any data based modeling or monitoring task starts with the stored process data retrieved 

from the plant historian. Most industrial historians use some built-in data preprocessing 

functions for reasons such as minimizing data storage cost, improving the quality of the 

data from univariate display point of view etc. Some of these preprocessing steps 

introduce unwanted changes in the original data, which may alter the results obtained 

from multivariate analysis when we use the processed data. Moreover, the data may be 

corrupted with outliers and noise thus reducing the signal to noise ratio. Therefore, it is 

important to asses the quality of the data before performing tasks such as building static 

or dynamic inferential models or monitoring schemes using such data. Assessment of 

data quality is an important step which includes determination of the extent of data 

compression, estimating quantization effects, and outlier detection and smoothing. These 

steps are briefly described in the following sections.

Analysis o f  Data Compression: Process data stored in the historian can be a valuable 

source of information for activities such as development of inferential sensors, minimum 

variance control loop benchmarking, fault detection, data reconciliation etc. However, 

due to hardware and network bandwidth limitations it is difficult to store and retrieve 

large quantities of data. Therefore, in most plants, data compression is used to reduce the 

costs of storage of historical data and transmission of process data through a 

telecommunications link. A variety of data compression algorithms, many of them based 

on piecewise linear interpolation, are now being used by industrial historians. Some 

examples include box car algorithm, backward slope, swinging door algorithm etc. The 

swinging door algorithm (Inc, 2002) which is one of the most commonly used algorithms 

is illustrated in Figure 3-3. More detail on this method is available in Thronhill et al., 

2004.

Although data compression is useful from a data storage point of view, it has hidden costs 

if the data become unsuitable for their intended purposes. Thornhill et al. (2004) 

concluded that compression induces changes to many basic statistical properties of the 

data such as altering the mean and variances. It adversely affects the results obtained
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from multivariate statistical analysis, process monitoring studies and inferences obtained 

from control loop performance assessment. A quantitative measure of compression 

present in any data is given by compression factor (CF) which is defined as follows:

Number o f samples in original signal 
Number o f samples in compressed signal

It has been demonstrated by Thornhill et al. (2004) that data with CF > 3 are not suitable 

for data driven analyses. Several techniques have been proposed by researchers to 

estimate the compression factor. In this work, the algorithm presented in Thornhill et al. 

(2004) was used. The results indicated very high compression in the data, with a 

minimum CFmjn = 6.

® 4

time

Figure 3-3: Illustration of swinging door compression. Black circles represent archived 

spot values. Values with open circles are not archived. At time step 5 (point ye) the lower 

door (dotted line) opens up wider than parallel showing that a new trend started at y<i.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A thorough investigation of the historian’s data storage procedure revealed that the 

historian only stores new data every 6 seconds and uses zero order hold for intermediate 

values. Process variables are sampled in the plant using a sampling time of either 1 

second (for flow, pressure, and temperature) or 12 minutes (for composition 

measurements from GC). However, values are displayed on the DCS at every second 

using a zero order hold device. Due to technical limitation, the historian takes 6 seconds 

to collect all 48 tags. For example, in the first second the first 8 tags are accessed; in the 

next second, next 8 tags are accessed while the values for the first eight tags remain 

constant at their previous levels. In this way, in 6 seconds, all 48 tags are accessed and 

stored in the historian. In the seventh second, the historian goes back to measure the first 

set of 8 tags and the cycle repeats. Therefore, even for a variable that changes rapidly 

(such as flowrate), there will be many straight-line segments where at least six values will 

remain constant (see Figure 3-4), resulting in a minimum compression factor of six. For a 

slowly changing variable (composition, temperature), the length of the straight-line 

segments may be even larger. Any compression detection algorithm will falsely indicate 

the presence of data compression if this particular feature of data storage is ignored. 

Therefore, it is concluded that the data obtained was essentially compression free and can 

be used in any data based analysis. However, since the data is updated at every 6 seconds, 

this should be the minimum down sampling rate.
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Figure 3-4: Plot of fresh feed flow rate shows how the data is stored in the historian

Data limits and quantization: During creation of a new tag in the historian, it is a 

common practice to define upper and lower limits on the values. If the physical variable 

exceeds these limits, the actual value is tmncated to these pre-defined limits and is stored. 

In statistical literature this phenomena is defined as data censoring (Gupta, 1952). During 

data collection, care should be taken to note these limits for each variable of interest. 

These limits should be set to meaningful values such as the range of the measuring 

instrument.

Data quantization is defined as the minimum step size used for descretization in the data. 

Quantization results from two factors namely, the data storage allotment in the historian, 

i.e., the number of bytes allotted to each data point and the physical capabilities of the 

instrument. Data storage has become relatively inexpensive in recent days. Hence, data 

quantization due to storage limitation is generally not a big problem. However variables
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might get quantized due to limitation of the measuring instrument. Figure 3-5 shows an 

example of highly quantized data originating from a gas chromatograph. In this case, 

quantization resulted from physical limitations of the instrument.

Before proceeding with further analysis, it is important to look for these effects in the 

data as it may affect the results of the analysis. It is safer to discard the tags which are 

subjected to high degree of quantization and censoring. If it is believed that the variable 

might have significant influence in the model building, then appropriate measures should 

be taken to compensate for these effects. For example, it might be necessary to use 

inferential strategies to predict the value of the sensor reading when it gets censored. The 

expectation maximization algorithm (Dempster et al, 1977) provides one such strategy. If 

one does find out that a particular variable behaves in a discrete fashion because of 

physical or storage limitation, it might be necessary to resort to discrete or hybrid 

regression techniques (Raghavan, 2004).

1.13

1.125
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1.115

0 500 1 000 1 500 2000 2500 3000 3500 4000
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Figure 3-5: Example of data quantization
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Outlier Detection and Smoothing: Process measurements are often corrupted with 

random noise which is typically concentrated in the high frequency regions of the signal. 

Low signal to noise ratio leads to reduced resolution and may cause false alarms during 

process monitoring. The same effect is observed if “bad data” or outliers are present in 

the measurements. Outliers are observations that do not follow the statistical distribution 

of the bulk of the data, and consequently may lead to erroneous results with respect to 

statistical analysis. A common method used to detect outliers can be represented as 

follows: a sample point x is regarded as an outlier if it satisfies \ x - t \  > k v , where t is a

measure of data location (mean or expected value), v is a measure of the scatter (standard 

deviation), and k is a predefined value (k = 3, for 3-sigma method). Outliers may be 

generated by sensor fault, process fault, or human-related errors. Outliers can lead to 

model misspecification, biased parameter estimation, poor forecasts, and wrong analysis 

results and should be removed before any data based analysis. In this work, we used a 

revised Martin and Thompson (MT) filter-cleaner algorithm (Liu et a l ,  2004) to detect 

and replace the outliers. The method includes an on-line outlier-resistant estimate of the 

process model and combines it with a modified Kalman filter to detect and “clean” 

outliers. This method was used for the following reasons:

• a priori knowledge of the process model is not required

• robust to autocorrelated and even nonstationary process data

• it tries to only clean (i.e., detects outliers and replaces them with expected values) 

outliers and preserves all other information in the data

• simple and easy to implement

The effect of random noise was reduced by filtering the data using an exponentially 

weighted moving average (EWMA) low pass filter that removes high frequency 

fluctuations. This filter can be represented by a 1st order transfer function as follows:

y{t )  =  x { t ) - T f ^ -  (3-12)
J dt
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Here x(t) is the raw measurement at time t, y(t) is the filtered value at the same instant, 

and Tj is filter time constant. Using backward difference to approximate the derivative in 

Eq 3-12, we write,

yn = *« - * f r y » - y n-
At

After simplification, we get,

y„ = a x n + { l - a ) y n_l

(3-13)

(3-14)

Here a  = f  <7V ‘ 1 + -L
v A b

. The filter time constant ^  is usually selected based on the frequency

range of noise associated with the signal. It should be chosen such that it is much smaller 

than the dominant time constant of the process. In this application, the residence time in 

the reactor, which was close to 42 seconds for most grades of product, was chosen as the 

dominant time constant. Accordingly, a value of 1} = 4 was selected. Using this value of 

Tf, Eq 3-12 was discretized and used as the model equation for the EWMA filter:

y« -0.85x„ +0.15yn_j (3-15)

It should be noted that a higher value of Tj gives more smoothing, which may be desirable 

if we want higher resolution. However, in this case we compromise on the prediction 

time of faults since a dynamic lag is introduced (Seborg and Mellichamp, 2004). Some 

fine tuning of the filter parameter was carried out based on the noise level of the data. 

Manual removal of some bad data and outliers was accomplished using the plant daily 

event log sheets where any special events, faults, etc. that occurred during the operation 

are recorded.

3.5.3 Sorting for In-line Pumps

Each zone of the reactor is supplied by its own catalyst injection pump and is backed by 

another back-up pump. Therefore, a total of eight catalyst pumps are used for this 

purpose, but only four of them are on line at any one point in time. Outputs from all eight 

pumps were collected in the raw data. Therefore, we needed to identify which pump was 

on line during each day’s operation, and keep only the data corresponding to that pump.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.5.4 Calculation of mass flow rate

It is expected that the total reactor feed should play an important role in affecting the 

product quality. However, this quantity was not measured at the plant. A first principles 

model to estimate the mass flow rate through the secondary compressor was provided by 

the plant personnel and was used successfully in previous work by Kumar et al. (2003). 

rrhis model estimates the mass flow rate of the discharge gas from the secondary 

compressor using the compressor suction and the discharge conditions. The same model 

was used in this work to calculate the mass flow rate. This additional derived variable 

was appended to the last column of the original data matrix.

3.5.5 Time delay estimation

It is important in any data based modeling exercise to appropriately time shift the data 

according to the time delay between different processing units to maximize the 

correlation in the data matrix. Using mass flow rates, equipment dimensions, and piping 

dimensions, the time delay was estimated from the feed points to the MI measurements 

taken at the lab. The procedure for calculating time delay is summarized in Appendix-3. 

Some of the estimates are shown in Table 3-2.

Table 3-2: Estimated Transport Delay

Units Estimated delay (sec)

Reactor 42

Reactor to product cooler 1

Product cooler 27

Product cooler to inlet of high pressure separator 1.2

High pressure separator 176

High Pressure separator to low pressure hopper 45

Extruder 262

Pelletizer to trickle sample collector 10

Lab Extrader 180
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Finally, as mentioned earlier, for PLS modeling, it is essential to use some scaling 

method. In this application, the data was scaled by removing the mean and dividing by 

the standard deviation. Coefficients obtained from models based on both scaled and 

unsealed data indicated that, when the data was not scaled, variables with large numerical 

values heavily dominated the model. Variables with large numerical values in most cases 

also exhibit larger standard variations than variables with smaller numerical values of the 

same data set. Therefore, one should expect that PLS on unsealed variables is dominated 

by those variables.

3.6 Results from PLS Models

Because of the wide range of melt index covered by the various polymer grades, we 

initially selected two intervals, one from the high MI range and one from the low MI 

range, and built two composite models that would be valid for each interval. The final 

data matrices, after completion of all preprocessing steps, were used for model building. 

Variables that were collected from the fresh ethylene feed point up to the reactor were 

used as input to the PLS model. All setpoints and variables measured downstream from 

the reactor were discarded. The model structure is as follows:

ln{M7(*)} = (f - t dJ +  a2x2 (t -  tdi \..anxn (f -  tdm) (3-16)

where xi to x„ are process variables, td is the time delay between sensor i and MI

analyzer in the lab, and a, are PLS regression coefficients. All models were written as 

MATLAB codes using MATLAB’s PLS toolbox. It should be noted that results on model 

performances shown in this chapter and in all subsequent chapters in this thesis are based 

on validation data.

One composite model (high MI) was developed using data collected from four grades of 

polymer having melt index ranging from 6 to 110. Online steady state data was used for 

model building. Figure 3-6 shows the prediction from this model. The correlation 

coefficient between the actual and the predicted values was 0.99 indicating the goodness 

of fit. Another PLS model was developed by combining data for four polymer grades 

having low melt index (between 2 and 7). The model contains one output and 22 input
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variables. Both steady state and transient data were used in model building and the data 

was appropriately time shifted using the estimated time delay. Figure 3-7 shows the 

prediction from this model. The correlation coefficient between the actual and the 

predicted values was 0.82. The spikes in the true MI values in Figure 3-7 represent large 

overshoot during grade transition. Also in some instants, product quality deviated 

significantly from target values due to some abrupt change in operating conditions. The 

model was able to capture some of these trends.
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Figure 3-6: Prediction from high MI PLS model
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Figure 3-7: Prediction from low MI PLS model

It is important to note that although correlation coefficients between the actual and the 

predicted values are quite high over the entire range of MI, the predictive capability of 

these composite models are not as good for stationary data segments. For example, in 

Figure 3-7, if we focus on each grade separately, correlation coefficients are only 0.33, 

0.88, 0.49, and 0.25 for grade 1, 2, 3, and 4 respectively. This implies that although the 

universal models capture large variation in MI between grades, small variation within a 

grade are not well captured. It should be noted that often, large overshoots in MI values 

occur during grade transitions. When steady state data are combined with transient data 

that contain large variability, prominent peaks during transition tend to mask smaller 

variation during steady state operation. This is the reason why the composite models 

show poor performance during production of the single grades. In order to overcome this 

deficiency, we built separate steady state models for each single grade. The universal
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models would be used for grade transition only; and once steady state was reached, the 

appropriate single-grade model would be used for estimation of MI.

A single grade PLS model was built using the data for grade-D (see Figure 3-6). This 

EVA product has a target melt index of 6. Figure 3-8 shows the model prediction. 14 PLS 

dimensions captured 93.7% variance in X and explained 73% variance in Y. The 

correlation coefficient between the predicted and the true MI values for validation data 

set is 0.70 compared to 0.30 obtained from the composite model.
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Figure 3-8: PLS model prediction for grade-D

Figure 3-9 shows model prediction for the PLS model developed using data from grade-C 

only (see Fig 3-6). The model captures the variation in melt index quite well, and results 

in a correlation coefficient of 0.7 when applied to validation data set.
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Another single grade PLS model was developed for one specialized grade of EVA 

product with high MI (grade-E, not shown in Fig 3-6). The target melt index for the grade 

is 480. The plant operators sometimes find it difficult to maintain the MI within 

specification. We developed the softsensor to predict MI for this grade. Figure 3-10 

shows the model prediction. The model with 25 PLS dimensions captured 99% variance 

in X and explained 94% variance in Y. It captures the timely variation in melt index quite 

well, and, when applied to validation data set, results in a correlation coefficient of 0.7, 

although there is a bias. It may be mentioned in this regard that significant variations in 

the process operating conditions were observed between different batches of data for this 

particular grade of product. This made it difficult to ensure that the training and the 

validation data sets had similar variability, which is required for good prediction ability 

of the PLS models. Moreover, since the target melt index is high, it increases the 

uncertainty associated with the measured melt index values. These factors resulted in 

large bias in the predicted melt index values.
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Figure 3-9: PLS model prediction for grade-C 
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Figure 3-10: PLS model prediction for grade-E 

3.7 Model Implementation: Need for Updating

Although the single grade PLS models showed acceptable performance for a number of 

grades of polymer, before implementing the models in real time, it was important to 

validate the models with data other than the training data set. A model built with a limited 

amount of data from one production campaign was used to predict properties during a 

different production campaign of the same grade of polymer. The model developed for 

Grade-D (in Fig 3-8) was applied to three data sets collected from three different 

production campaigns for the same grade. Note that the elapsed time between when the 

model was first built and tested and the new data sets are 3, 4, and 15 months 

respectively. Figure 3-11 shows the model prediction for these new data sets. It is clear 

from this figure that model performance deteriorates over time. It was observed that the 

variation in the data is significantly different at these different times. Examples of
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changes in process variables with time are shown in Figure 3-12. For certain product 

recipes, the plant operators use the reactor pressure as a manipulated variable to control 

polymer properties. This can result in significant variation in pressure for different 

batches of data as is evident in Figure 3-12(a). To some extent, ethylene feed gas 

temperature depends on the ambient temperature and therefore shows seasonal variation 

as seen in Figure 3-12(b). Similar variations were noticed in a number of process 

variables for the three sets of data. Since PLS is a technique which is based on covariance 

among variables, it is important that the training data and the validation data have similar 

variability, i.e., the covariance structure of the data does not change over time. Therefore, 

it is important to update the model periodically to account for variation in the data (eg. 

ambient temperature variations at different times of the year may affect the variability in 

process conditions).
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prediction

3  15
T3
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Figure 3-11(a): Model validation with three new data sets for Grade-D (after 3 months)
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Figure 3-11(b): Model validation with three new data sets for Grade-D (after 4 months)
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Figure 3-11(c): Model validation with three new data sets for Grade-D (after 15 months)
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Figure 3-12(a): Variation in reactor pressure
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Another point worth mentioning is that in all cases, validation data was scaled using 

mean and standard deviation of the training data. Therefore, the model that was applied 

for prediction was:

’ y

= c
r x - x ^

PLS (3-17)

Here X and Y are validation data set, X 1, Y1 are the mean of the training data set, and Sy, 

Sx are the standard deviation of the training data set. However, if the validation data were 

scaled using the mean of validation data and standard deviation of the training data, the 

following model would result:
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' y - y2'
\  S y  J

=  r
PLS

r X - X 2^ 

V J

(3- 18)

Here X 2 and Y2 are means of X and Y blocks of the validation data set. Using the mean 

of validation data in building the PLS model suggests that periodic updating of the mean 

value of process variables is required during implementing the models. This can be easily 

accomplished by using a bias updating scheme to correct for the changing mean value. 

An improved result was obtained with this revised scaling. Figure 3-13 shows a 

comparison of two scaling techniques for the first data set, which is taken after three 

months as showed in Figure 3-11(a).
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Figure 3-13: Model validation new data set for Grade-D: a) scaling factors taken from 

training data, b) scaling factor taken from validation data

It is evident that in order to successfully apply such models to a time-varying process, 

they must have some adaptive capability. Here we suggest a simple bias update scheme 

using spot values of melt index. Initially, the original PLS model is used for estimating 

MI. After a specified time interval, a bias term was calculated which is defined as the 

difference between the true MI value and the model prediction. This bias is added as a
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correction term during the next specified time window. A feasible implementation 

strategy is as follows:

Let Y(t) represent the true MI value as measured using the rheometer. Y(t) represents the 

model prediction at time t. Therefore initially (at t = 0),

Y(t) - X ( t ) x b  (3-19)

At t = T,

bias(T) = Y ( t ) -  X ( t ) x b  (3-20)

For T < t < 2T,

Y(t) = X ( t ) x b  + bias(T) (3-21)

This procedure resulted in excellent prediction for all polymer grades. To illustrate an 

example, five new sets of data were collected for the production of Grade D. The elapsed 

time between when the model was first built and tested and the new data sets are 4, 5, 13, 

14, and 15 months respectively. Figure 3-14 shows the prediction with and without the 

bias update.
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Figure 3-14: Model performance for Grade D after 4, 5,13, 14, and 15 months (from top 

to bottom) without update (Left); with bias update at every hour (Right); (solid line: true

MI, dashed line: model prediction)

Analytical samples of MI collected from the lab can also be used to update the bias 

correction on the output. However, irregular sampling in this case will result in less 

uniformity in the correction term. Nevertheless, the results obtained by updating the 

model using the lab samples are also promising as shown in Figure 3-15.
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Figure 3-15: Prediction versus Lab MI samples: a) without bias update and b) with bias

update

Models developed for two of the most frequent EVA grades were implemented at the 

plant in July 2006. The plant currently uses a Honeywell TDC 3000 DCS and an Aspen 

Tech’s Infoplus21 historian to collect and store all the process data. A number of 

programs scripts were written using visual basics language to translate the MATLAB 

based model into an Aspen Tech Calculation script which is suitable for online use in the 

historian. Figure 3-16a and Figure 3-16b show the prediction from one of these models as 

compared to the MI values measured at the lab. The time difference between when the 

model was built and these e implementation results are 9 months (for Figure 3-16a), and 

11 months (for Figure 3-16b). The model can quite successfully predict the actual MI 

using the bias update scheme. Even when the model shows minor deviation from the true 

value, the difference between the predicted and the actual MI are within acceptable range. 

The major advantage of using this soft sensor is that it predicts the MI values using the 

reactor conditions. The estimated delay between the reactor and the quality control lab is 

at least ten minutes. Therefore, current MI measurements at the plant (both online 

rheometer and analytical samples) are taken 1 0  minutes after the soft sensor predicts the 

value using data from the reactor. Therefore, the soft sensor will give the operator
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reasonable time to take corrective action in case of a mismatch between the desired and 

the true MI values. This provides a powerful tool to perform product quality adjustments 

on-line just when there is an excursion in the reactor, resulting in better product for the 

customer, decreased material waste and reduced cost for the production plant.
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Figure 3-16a: Online implementation result for softsensor developed for grade D (July

2006)
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Figure 3-16b: Online implementation result for softsensor developed for grade D (Nov

2006)

3.8 Summary

In this chapter, we showed how PLS can be used to develop a soft-sensor to predict melt 

flow index using routinely measured process variables from an LDPE-EVA plant. Issues 

of data acquisition and preprocessing are discussed. The results indicated that melt index 

can be successfully predicted using this relatively simple statistical tool. It was observed 

that the model prediction becomes poorer with time as operators use new process 

conditions in the plant to produce the same resin with the same specification. Poor 

prediction results when the new conditions deviate significantly from the data with which 

the model was trained. We suggested a simple bias update scheme as a remedy to this 

problem. An alternative and more rigorous approach is to recursively update the model 

with new data, which will be described in the following chapter. Although we presented 

the method for modeling MI using PLS in this chapter, the method is general and can be 

applied to any other industrial data.
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Chapter 4 

Recursive PLS for Time Varying 

Processes

4.1 Introduction

Many industrial processes demonstrate time varying behavior due to reasons such as 

change of product grades, catalyst deactivation, equipment aging, sensor and process 

drifts, process changes incurred as a result of preventative maintenance and cleaning etc. 

(Gallagher et al., 1997; Li el al., 2000). A polymerization reactor is a typical example of 

a time variant system because of the multiple grades of polymer products obtained from 

the same reactor. During grade transition, reactor operating conditions are significantly 

changed over a course of time that can vary from two to six hours. Usually the polymer 

produced during this period is off specification and is sold at a lower cost in the market, 

reprocessed or discarded. In order to minimize the amount of off-specification product, it 

is important to accurately know the final quality of the polymer during this period so that 

operating conditions can be manipulated to move the process in the right direction. The 

main focus of this chapter is modeling of polymer property during grade transition.

One important property that is modeled in this work is melt index (MI). A data based 

PLS model for predicting properties, such as melt index, which is developed using steady 

state data collected from a single grade may be inadequate to explain the dynamic nature 

of the plant. A major limitation of such traditional steady-state PLS based modeling is 

that the model is time-invariant, while the real process is time-varying. The time-varying 

characteristics of industrial process data include: (i) changes in the mean; (ii) changes in 

the variance; and (iii) changes in the correlation structure among variables, including 

changes in the number of latent variables needed to model the system. When a time
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invariant PLS model is used for prediction or monitoring of real processes, erroneous 

prediction and false alarms often result, which significantly compromise the reliability of 

the inferential or monitoring systems.

In order to accurately model a time varying process, adaptive modeling strategies are 

required. A number of recursive partial least squares (RPLS) modeling approaches have 

been published in the literature. The main idea of this adaptive modeling strategy is to 

initially build a static model using an initial set of data. Then, as the process changes, the 

initial model has poor capability in prediction or monitoring. Therefore, new information 

is “added” to the old model to build an updated model, which would then adequately 

represent the new operation conditions. This chapter presents a comparative review of all 

the existing RPLS techniques. A new RPLS method based on a novel interpretation of 

PLS using the so called controllability matrix is also presented.

The remaining part of this chapter is organized as follows: a brief summary of the 

recursive PLS theories is presented at the beginning; a detailed review of the RPLS 

algorithms follows; some examples of the dynamic nature of grade transition for a 

LDPE/EVA reactor is shown; and finally, application results from all RPLS algorithms 

are presented to model a EVA grade transition.

4.2 Recursive PLS Theories: an Overview

In many applications of data analysis, given a set of process variables, our objective is to 

relate a subset of those variables (known as response variables) to the rest o f the process 

variables (known as explanatory variables). This is generally known as regression. 

Consider a process represented by the following regression model:

y 0(k) = CTxo(k) (4-1)

Where x0(k)e  9L and y a(i)e !K m are the noise free explanatory variables and response

variables respectively, at observation number k. C e 91lxm represents the model parameter 

matrix. Assuming that a series of data is collected from the process described by Eqn (4- 

1 ) and the data are corrupted by noise, each measurement may be written as:
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x(k )=x0(k)+v{k) (4-2)

y{k)= y 0(k)+w(k)  (4-3)

Where v(k) and w(k) are independent Gaussian distributed random noise vectors with

zero mean and covariance matrices Sv e  91M and Sw e 9Jmxm respectively. Substituting

Eqn (4-2) and (4-3) into Eqn (4-1) gives:

y{k) = CTx(k)+ e(k) (4-4)

where e(k) = w(k) -  C! v(k) accounts for the effects of measurement noise on the inputs

and the outputs and follows a multivariate Gaussian distribution with zero mean and

covariance Se e 9 tmxm given by Se = Sw + CTSVC (Johnson & Wichem, 1998). Using N

observations k = 1,...,N, we can define an input X  e91,Vx/ and output 7 e s) lN' p data 

matrix as follows

X = [xr (l) xr (2) ... xr ( # ) f  (4-5)

7 = [ / ( ! )  / ( 2 )  -  /(7 V )f  (4-6)

E = [eT(1) er (2) -  eT {N)J (4-7)

where the subscript 1 and N represent the time instants of the first and the last samples 

respectively. Accordingly, the relationship in Eqn (4-4) can be written as the following 

linear matrix equation:

Y = X C  + E  (4-8)

A number of regression techniques such as ordinary least squares (OLS), principal 

component regression (PCR), partial least squares (PLS) etc. have been developed to get 

an estimate of C. Originally proposed by Wold (1966) for regression of linear time 

invariant (LTI) systems with correlated input variables, partial least squares regression 

has been widely applied in many fields for process modeling and monitoring. For 

example, PLS regression methods have been used in chemometrics (Lindberg et al, 1983; 

Wold et al., 1984; Geladi and Kowalski, 1986; Fuller et al ,  1988; Martin and Naes 

1989), in steady state process modeling (Piovoso and Owens, 1991), and in dynamic 

modeling (Ricker 1988; Wise and Ricker 1990; MacGregor et a l ,  1991; Nomikos and
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MacGregor 1995). PLS was also used in subspace (dynamic) system identification (Di 

Ruscio, 1997) to compute a basis for the observability matrix, which is the basis of most 

subspace identification algorithms.

In most of the reported applications, PLS has been used as a batch wise modeling 

approach. In other words, a batch of offline process data are collected, then the PLS 

regression is carried out on the whole batch of data. The model thus developed is then 

applied to predict future process outputs. While this approach is acceptable for static 

systems where the operating conditions do not change significantly, it will fail for 

dynamic or time varying processes. For such applications, it is therefore necessary to 

update the regression model using new data as they become available.

Recently a number of recursive algorithms for PLS have been published in the literature. 

These algorithms are developed as an extension of a basic PLS algorithm. As mentioned 

earlier, PLS was first developed as an iterative technique which involves calculation of 

eigenvalues and eigenvectors from the covariance matrix of the data. This is known as 

the NIPALS (Non linear iterative partial least squares) algorithm. In developing this 

theory, emphasis was given on numerical robustness and prediction capability of the 

model while less focus was given on computational efficiency. Helland et al. (1991) were 

the first to develop a recursive algorithm for PLS (RPLS), which was entirely based on 

the NIPALS algorithm. In their RPLS algorithm, an initial PLS model is built using a set 

of data in matrices X and Y. The model is updated at each new observation xnew and y new. 

In the updated data matrix, which is used to build the updated model, X and Y are 

replaced by a compact representation using the X and Y scores calculated from the 

previous model. This keeps the size of the updated matrix constant. Qin (1993, 1998) 

later developed block-wise RPLS based on Helland’s original RPLS algorithm and 

included a moving window and a forgetting factor adaptation scheme for online 

implementation.

With the advancement of computers and data storage facilities in the 1990’s, PLS was 

being applied to large data matrices containing large number of samples of many
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variables. Lindgren et al,, (1993) developed a faster PLS algorithm known as the kernel 

algorithm, which was particularly advantageous for handling large data sets. In the kernel 

algorithm, X-scores (»»’) are computed as the eigenvectors corresponding to the largest 

eigenvalue of the matrix XTYYTX using the power method or singular value 

decomposition (SVD). The remaining PLS vectors are then directly calculated from X X, 

XtY and w. Subsequent PLS dimensions are obtained from the deflated covariance 

matrices XTX and XTY instead of deflated X and Y (as in the original NIPALS

algorithm). Dayal (1996) and Dayal & MacGregor (1997a, 1997b) developed an

exponentially weighted RPLS algorithm based on the kernel algorithm. Exponentially 

weighted RPLS method is based on the following covariance updating equations:

{ x Tx ) t = l t( x Tx ) ^ + x l Xl (4-9a)

fpCTY \ = A i ( x TY \ . 1+xJyt (4-9b)

Here xt and yt are new observation at time t, (XTX)t and (XTY)t are updated covariance 

matrices at time t, and A, is a forgetting factor (0 < A < 1). At each new sample, the 

covariance matrices are updated as in Eqn (4-9), and a new PLS model is developed from 

the updated matrices.

Recently, Di Ruscio (2000) has developed a novel PLS algorithm by using the Krylov 

controllability matrix (KCM) of process data. This novel algorithm completely avoids 

SVD and deflation operations on any matrix. In addition it has been shown that the KCM 

based PLS algorithm gives smaller prediction errors than the existing PLS algorithms for 

MIMO (multiple input multiple output) process. By extending Di Ruscio’s work, this 

chapter proposes a recursive version of Di Ruscio’s algorithm for MIMO time varying 

processes. Since neither SVD nor deflation is involved, the newly developed RPLS 

algorithm is mathematically feasible and computationally efficient.

In all the RPLS algorithms mentioned so far, the basic idea is to start with a process 

model built from a limited amount of historical data. As the process moves to a different 

operating region, new data are collected. Information content in the new data is added
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with the old model and a model updating step is initiated. The updated model is then used 

to predict future output values. In the following sections, we present a detailed 

comparative review of all available RPLS algorithms.

4.3 RPLS based on NIPALS Algorithm

The common classical PLS algorithm is based on further development of the NIPALS 

(non-linear iterative partial least squares) method presented by Wold in 1966. NIPALS is 

a robust procedure for solving eigenvector-eigenvalue related problems where the 

eigenvectors (components, factors) are calculated in a partial fashion, one at a time until 

all variance in the data structure is explained. For each new dimension, the information 

explained by the last component is subtracted from the data matrices X and Y to create 

residuals, from which subsequent dimensions are calculated by the same procedure 

(Lindgren el al. 1993). Given input and output data matrices X and Y, we may construct 

a linear model of the form given by Eqn (4-8)

Y = X C  + E  (4-8)

Here C and E are the coefficient and noise matrices respectively. If PLS is used to 

estimate C, X and Y are decomposed into bilinear terms:

X  = txp[  +E} (4-10)

Y = u r f + F ,  (4-11)

Where t} and iii are known as X scores and Y scores vectors. They are calculated as a 

linear combinations of X and Y such that /, = Xw}, and w, = 7/', . w, and j ] are the 

corresponding weight vectors defining the linear combination, p , and qx are X and Y 

loading vectors. It has been proven that u, j ,  t, and w are eigenvectors corresponding to 

the largest eigenvalue of YYTXXT, YTXXTY, XXTYYT, and XTYYTX respectively. In the 

NIPALS algorithm, estimation of these loading and scores vectors is presented as an 

eigenvalue-eigenvector problem. Eqn (4-10) and (4-11) represent the PLS outer model. 

The latent score vectors are then related by a linear inner model

ul =bltl +rl (4-12)

here b} is called the inner model coefficient which is determined from a univariate linear 

regression of u on t. After completing the calculation of the first set of vectors, which
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represent the first PLS dimension, the second set of vectors are calculated by 

decomposing residuals Ei and Fj. The procedure is repeated until all the factors are 

calculated. In the original algorithm, the weights vector w and the loading vector p are 

usually normalized to have unit length. Helland et al. (1991) and Qin (1998) have slightly 

modified the basic algorithm by normalizing t instead of w and p. The basic batch wise 

NIPALS algorithm (with this modification) is summarized in Table 4-1.

Table 4-1: Batch wise NIPALS algorithm for PLS

1. Scale X and Y to zero mean and unit variance

2. Initialize Eo = X, Fo = Y, and h = 0

3. Let h = h + 1, and Uh = any column of Fh-i

4. Iterate until convergence:

ul uh

.  _  E f>-iw h
h  ~  il 1 7

\\E h -lW h

F t t=  r h - \ 'h

l l F r  /  I  I h ~ l k \\

Uh ~  E h - \ (lh

F t t
5. Calculate X loading p h = hf 1 h = E rh_xth

h  h
f  t

6. Find inner model bh = * h = u'h th
h  h

7. Calculate the residuals

E h = E h-1 — hPh 

Eh = E h-\ ~ bhthqh

8 . Return to step 3 until all factors are calculated.
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Let us consider that the data pair X and Y has / inputs and p  outputs with N samples. If 

the rank of X is r, then it can be proved (Qin, 1988) that

Er =Er+1 = =E,=  0  (4-13)

This result indicates that the maximum number of factors that is retained in a PLS model 

does not exceed r. It was also shown by Qin (1998) that the output residual F; is 

orthogonal to the scores of the previous factors th, i.e. tThF̂  = 0 , for i> h .  A recursive

version of PLS which is based on the algorithm shown in Table 4-1 is developed by 

utilizing these two specific properties of the residual matrices E and F.

Using an initial set of data X and Y, one can derive a PLS model using the algorithm 

given in Table 4-1, where number of PLS dimensions calculated in the model is equal to 

the rank of X. The model is represented as follows:

(4-14)

Where

T = [t„tx, . .. ,tr]

W = [w1w2 ,-wy]

P = \PuPl>''’’Pr]

B = diag$l,bu ---,br}

Q = bu%,-,<lr]

Therefore, X and Y can be written as

X  = t,p[ + t2p T2 + • • • + trp Tr +Er = TPt +Er = TPt (4-15)

Y = u^ql + u2q2 4 t u rqTr + Fr

= +t2b2q2 + — + trbrqTr +Fr =TBQt + /y
(4-16)
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By minimizing the squared residuals ||7 -  XC||2, we have X rJfC = X JY . From this, we 

can derive an expression for the PLS regression coefficient

Cp u = ( x t x ) x t Y  (4-17)

Where (.)+ denotes the generalized inverse defined by the PLS algorithm. An explicit 

expression of the PLS regression coefficient is given by

Cpu = W*BQt (4-18)

where W* = [>r]*,n'*,---,iv*j, and w* =nfr -  whp Th ^ . When a new data pair {Xi, Y i} is
h=1

available, we are interested in updating the PLS model using the augmented data matrices

. The resulting PLS model isX  —new
“x - ~Y~

andT , =new
7 j .

fPLS _ 
new

X

X,
X

A,

X f
(4-19)

Since the columns of T are orthonormal, the following relation can be derived using the 

results in Eqn (4-15) and (4-16):

X rX  = P T t TPt  = P P T (4-20)

X t Y = P T t  ( tB Q t  + Fr)=  P T t TBQt  + P T TFr = PBQT (4-21)

Therefore the expression for the PLS coefficient becomes,

C,PLS P T 

X ,

P T 

X ,

+ /
P T 

X ,

T  r
B Q T (4-22)

By comparing Eqn (4-19) and (4-22) the following theorem can be derived:
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Theorem 4-1: Given a PLS model { X j }  FLS >{T\W,P,B,Q}, and a new data block

P l 
X ,

{Xj, yi}, performing PLS regression on data pair 

regression model as performing PLS regression on the data pair

BO'1
Y,

results in the same

'X  ' 'y "
?

Proof of theorem 4-1 can be found in Qin (1998). This theory is the basis for the NIPALS 

based recursive PLS method. Instead of using the old and the new data to update the 

model, the RPLS algorithm updates the model using the old model and the new data. A 

block wise RPLS algorithm with a moving window approach is summarized in Table 4-2.

Table 4-2: NIPALS based block wise RPLS algorithm

1. Formulate the data matrices {X, Y}. Scale the data to zero mean and unit 

variance or as otherwise specified with a set of weights.

2. Derive a PLS model using algorithm given in Table 4-1:

{X , Y }— FLS >{r,W,P,B,Q).  Carry out the algorithm until ||Yfr|| <£■(£■ is the 

error tolerance).

3. Select window size N, collect next N samples. During the collection, continue 

to use the initial model for prediction. The data collected during N samples 

areXi and Yi.

4. Scale Xi and Yi in the same way as in step 1.

5. Formulate updated data matrices X :

6 . Build PLS model using updated X and Y. Use this new model for prediction in 

the next window of samples.

> r "
, Y  =

'BQT~

_Y^ _
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4.4 RPLS based on Kernel Algorithm

The kernel algorithm for PLS was developed due to a growing need for a faster PLS 

algorithm to deal with large data matrices. The algorithm, which is a collective result of 

the research work by Joreskog & Wold (1982), Hoskuldsson (1988), and Lindgren et al. 

(1993) is now known as a faster alternative to the NIPALS algorithm. Applying 

traditional PLS to large data matrices often becomes demanding in terms of both memory 

requirement and computational time. The Kernel algorithm presents an alternative 

method to calculate all the crucial parameters in a PLS model using a small kernel (this 

will be defined later) and covariance matrices.

One common objective of using PLS is usually to understand the influence of X on Y and 

to develop a model for predictive purposes. The final result from the traditional PLS 

algorithm (such as NIPALS) is a set of weights (w, j) and loadings (p, q) which may be 

converted into a set of regression coefficients for predictive purposes. An expression for 

the PLS regression coefficient is given by:

It is evident from Eq. 4-23 that the regression coefficient can be estimated using only the 

PLS weights and loading matrices, and that the scores are not needed for its estimation. 

Therefore it is theoretically possible to estimate PLS regression coefficients without 

calculating any scores. Since the size of the loading and the weight matrices are 

considerably smaller than the scores, a faster PLS algorithm will result by avoiding 

calculation of any scores. This is the basis for developing the kernel algorithm for PLS. 

This approach is advantageous for dealing with matrices with large number of 

observations as compared to variables.

It has been mentioned earlier that the vectors w, q, t, and u can be determined as 

eigenvectors corresponding to the largest eigenvalues of the following matrices:

C = W(Pt W )'1Qt (4-23)

waj = (x tYYtx )w (4-24)

(4-25)
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ta3 = (xXTYYT)t 

ua4 = ^ Y tX X t )u

(4-26)

(4-27)

The square matrices (YYTXXT, YTXXTY, XXTYYT, and XTYYTX) shown in Eqn (4-24) 

to (4-27) are known as kernel matrices. Note that the kernel matrix XTYYTX in Eqn (4- 

24) has the smallest size(/x/) . Therefore eigenvector-eigenvalue decomposition of this 

matrix using the power method or using singular value decomposition (SVD) will be the 

least computationally intensive. Once the weight vectors w are determined, the loadings 

required in estimating the PLS coefficient can be calculated through some simple 

manipulation of the variance (XTX) and the covariance (XTY) matrices. In estimating the 

q and p  matrices using the original NIPALS algorithm (refer to PLS algorithm in section 

3-2), the following relationships are used:

X score: t -  Xw (4-28)

X loading: p  = (4-29)

Y loading: q = (4-30)
i t

Substituting Eqn (4-28) in (4-29) and (4-30) results in the following relationships:

Y x )
(X Tx )wP T = Wr h  : v  (4-31)w 1

( « 2 )
w  1( x Tx)w

Therefore the first PLS set of factors ( w,, p x, qx) are calculated from Eqn (4-24), (4-31), 

and (4-32) using only XTYYTX, and XTX, and XTY. For estimating the next PLS 

dimension, these matrices must be updated by substituting the deflated Ej matrix in X. 

Updating Y is not necessary for computing a PLS regression solution as was shown by 

Hoskuldsson (1988). Deflation of X is accomplished by:
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Ex = X - t xp l  = X  - Xwxp[

P TX (4-33)

Eqn (4-33) shows that a / x / square matrix {i - w xp x ) updates X to / i , . Using the rules of
"-p rT - y  <-p

matrix multiplication, it is possible to update X YY X, X X, and X Y for the next 

dimension by direct multiplication. The general equation for updating becomes:

{x ty y t * ) „ ,=  [l-w.pl J (x’YrTx),(i-w,pl) 

(xTx)„,= (/ -  W.pl J(xTx)lf - wy„) 

(xTr ) ,^ ( i - w y J ( x Tr).

(4-34)

(4-35)

(4-36)

This is the end of the algorithm for the first dimension. The updated matrices are used for 

estimating the next dimension. For each new dimension, the weight and the loading 

vectors wa , qa , and p a are stored in separate matrices W, Q, and P. Finally these

matrices are used to estimate the PLS regression coefficient according to Eqn (4-23). The 

complete kernel algorithm is given in Table 4-3.
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Table 4-3: Kernel Algorithm for PLS

1 . Start with mean centered and scaled data X, and Y, and set a = 1

2 . Compute the kernel and covariance matrices

( x ry ) ^ x r XY

{ x rYYrx ) . ^ ( x ^ l 4 x rY l

3. Determine wa as the eigenvector corresponding to the largest eigenvalue of

(XTYYTX)a using power method

4. Calculate pa, and qa using Eqn (4-31) and (4-32)

5. Update the kernel and covariance matrices using Eq (4-34), (4-35), and (4-36)

6 . Store wa, qa, and p a in W, Q, and P matrices and set a = a +1

7. Go back to step 3 for the next dimension

The important feature of this algorithm is that the original data matrices X and Y are only 

used once to formulate the kernel and the covariance matrices. These later matrices are of 

much smaller size as compared to X and Y. Furthermore, deflation of X and Y is replaced
T* T T T*by updating X YY X, X X, and X Y, which is accomplished by direct matrix 

multiplications. In the calculation of the regression coefficients, the scores vectors are not 

required and are not calculated. Lindgren et al. (1993) showed in a simulated application 

that these features made the kernel algorithm much faster than the NIPALS algorithm.

In later work, De Jong and Ter Braak (1994), and Dayal and MacGregor (1997) proposed 

some modifications to the original kernel algorithm. The original algorithm took 

advantage of the fact that deflation of Y is optional; hence the kernel theory was based on 

deflation of only the X matrix. Later, it was shown in their work that either X or Y needs 

to be deflated in the kernel algorithm such that:

(x ty ) ^ =  X TaYal} = X Ta+lYa (4-37)

Based on this result the original kernel algorithm was modified slightly. In the modified 

algorithm, only XTY was deflated instead of deflating both XTX and XTY. Using the
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definitions of the loadings given in Eqn (4-31) and (4-32), and through some simple 

algebraic manipulations, the deflation of XTY can be simplified to:

(xrr)n^(xTr ) - Py,l)lt,) (4-38)

By comparing Eqn (4-38) with Eqn (4-36), it can be seen that the computational effort in 

the deflation step in the original algorithm is reduced by avoiding the multiplication of 

XTX and XTY with (/ -  wa / / ) .  Note that the kernel matrix XTYYTX and covariance 

matrix XTX are formulated only once and are not deflated anywhere in the procedure. 

Moreover, updating XTY using Eqn (4-38) involves calculation of the X scores t. In order 

to accommodate the undeflated XTX and XTYYTX, and to facilitate the computation of t 

from the original X data, some further modifications were proposed. We can define t 

according to the original NIPALS theory as:

h = = Xwx

t2 = X 2w2 = x(l - wlP( )w2

tA=x(l- wlPl  \l -  w2p T2 )•••(/- wA_xp TA_x )wa

(4-39)

Further we can define

rx =wx

= (I ~ Wl P l ) W2 (4-40)

rA = \ I ~ W2Pl

Note that the columns of the R matrix can be sequentially computed from the following 

recursive relationships:

r\ =w\
T T (4-41)

rt =wt - p x wtrx - p 2w,r2 -------

This results in further improvement in computational efficiency of the modified 

algorithm as compared to computing r using Eqn (4-40). Now the score vectors T can be 

directly computed from the original X as follows:

T = XR  (4-42)

[h h =  r2 -  rA] (4-43)
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Finally, if  X is not being deflated, then Eqn (4-31) and (4-32) in step 4 of the kernel 

algorithm (Table 4-3) need to be modified so that the loading vectors p a and qacm  be

computed using the non-deflated or original X-matrix. The complete algorithm is 

summarized in Table 4-4. The modified kernel algorithm was shown to be much faster 

than the original algorithm.

Based on the modified kernel algorithm Dayal and Macgregor (1997a, 1997b) proposed 

an exponentially weighted recursive version of PLS theory. The algorithm starts with a 

block of process data X and Y, from which a PLS model is calculated using the kernel 

algorithm. Once a pair of new observations x and y become available, the covariance 

matrices are updated according to the following relationships:

{ x r x ) ,  = Z , ( x T x) ,_ ,+x j  x,

{ x rr ) , = x , ( x TY h + x ! y ,

Here xt and yt represent the new observation at time t, (X7X)t and (XTY)t are updated 

covariance matrices at time t, and A. is a forgetting factor (0 < X < 1). The magnitude of X 

determines how fast the old data are discounted by the new model. At each new sample, 

the covariance matrices are updated as in Eqn (4-9), and a new PLS model is developed 

from the updated matrices. The steps involved in implementation of a sample wise RPLS 

algorithm are shown in Table 4-5.
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Table 4-4: Modified Kernel algorithm for PLS

1. Start with mean centered and scaled data X, and Y, and set a = 1

2. Compute the kernel and covariance matrices

( x Tx ) = X T x X

( x TY ) = X T x Y

(x ty y tx ) = ( x ty ) A x ty I

3. Compute wa as the eigenvector corresponding to the largest eigenvalue of

(x ty y tx \

4. Compute ra as follows:

rx =wl

ra ~ W a ~  P\ ~ Pi W ari -------Pl-\W M  O > \

5. Compute p a and qa:

o 
^ II

 ̂
'w

'
•-3 * 

*

« i = 4 K 4 -r! ( x rx y ■

6 . Deflate { x Tr \ t, =(x ’ y \ - p . q ’M u )

W = [w, w2 ■■■ wa ]

n c+ P = \Pl Pi -  Pa] 7. Store r ■,
Q = m  <i2 ••• qa\
R ~ V\ ri -  ra]

8 . Set a = a +1 and go to step 2 for next dimension

9. After computing all latent factors, regression

coefficient CPLS = w (p tw ) ' q T = RQT
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Table 4-5: Sample wise RPLS based on modified kernel algorithm

1. Collect mean centered and scaled data block X and Y

2. Compute Cpls using the modified kernel algorithm

3. At each new observation xt and yt, update the covariance matrices ( x Tx ) t 

and (X tY) t as shown in Eqn (4-9)

4. Let X TX  = { x Tx ) t and X TY = {x ty \

5. Compute a new set of CPLs using updated covariance matrices

As a final comment on the modified kernel algorithm, we see that although the deflation 

of X is not explicit in the theory, it is implicit in the calculation of the score vectors. 

Instead of using the original X in calculating higher scores (t2, t3, ..., tA), residuals in X 

space are used. These residuals are calculated from a set of vectors (r2, r3, ..., rA). 

Comparing Eqn (4-40) with Eqn (4-33) we may conclude that computation of r is 

equivalent to deflation of X.

4.5 KCM based PLS Theory and RPLS Extensions

Since the introduction of PLS in the early sixties, PLS has been presented in the literature 

as an iterative algorithm, i.e. partial or piece-wise linear regression. The PLS solution is 

usually presented in terms of the score vectors, loading vectors, weighting vectors, and 

various iterative orthogonalization (deflation) processes, in addition to the solution for the 

matrix of regression coefficients. In a recent study, Di Ruscio (2000) has interpreted the 

PLS algorithm from a very different perspective. It was shown that the basic PLS 

algorithm is non-iterative and can be computed as the optimal solution to a prediction 

error minimization problem. There exists a very simple and non-iterative algorithm for 

computing the PLS solution in terms of some weighting vectors only.

In this section, we will present a brief description of the PLS theory based on Krylov 

controllability matrix. We start with a brief review of some basic definitions from linear
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algebra which are essential in the development of this theory. Later we present a 

recursive PLS algorithm based on the controllability based PLS theory.

4.5.1 Eigenvalue, Eigenvector & Cayley Hamilton Theorem

A real or complex number X is called an eigenvalue of the n x n real matrix A if there 

exists a nonzero vector x such that

Ax = Xx (4-44)

Any nonzero vector x satisfying Eqn (4-44) is called a (right) eigenvector of A associated 

with eigenvalue X . In order to find the eigenvalues of A, we write,

Ax = Xx = XIx (4-45)

(A -  XI )x = 0 (4-46)

Here I is a n x n  identity matrix. Eqn (4-46) is a homogenous equation. If the matrix 

(A -  XI) is nonsingular, then the only solution of Eqn (4-46) ia x = 0. Therefore in order 

to obtain a nonzero solution for x, (A - X I ) must be singular or have a determinant of 

zero. We define the determinant of ( A - X I ) as

A (^)=det( A - XI )  (4-47)

Eqn (4-47) is a monic polynomial of degree n with real coefficients and is called the

characteristic polynomial of A. Eigenvalues of A are obtained as the solution of the

polynomial equation as follows:

A(X) = det(A - X l ) =  0 (4-48)

By expanding Eqn (4-47), we obtain

A(/l) = det(^4 -  Xl) = X” + a, Xn~l + • ■ • + a n_x X + a n (4-49)

The Cayley Hamilton theorem states that a matrix satisfies its own characteristic 

polynomial. Therefore, according to this theory,

A(A) = A" + a ,A n-] + • • • + a n_,A + a nI  = 0 (4-50)
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4.5.2 Krylov/Controllability Matrix

In linear algebra, the Krylov matrix K(x, A, j) is defined as

K {x ,A ,j)= \x  Ax A 2x ••• v4;“'x] (4-51)

In the control literature, the Krylov matrix is known as the controllability matrix. Let us 

consider the n-dimensional p-input state equation for a linear time invariant system:

x -  Ax + Bu (4-52)

Where A and B are n x n  and n / p  real constant matrices. For this system, the 

n xn p  matrix defined in Eqn (4-53) is known as the controllability matrix.

C = [B AB A2B ... An lB] (4-53)

The system defined by (A,B) is said to be controllable if C is full row rank (i.e., rank(C) 

-  n), hence the name controllability matrix.

Di Ruscio (2000) pointed out that there exists a relationship between the PLS weighting 

matrix w and a so called Krylov matrix. It is known that the problem of computing many 

orthogonal decompositions have an equivalent problem of computing subspaces for a 

Krylov matrix. Correspondence with Krylov matrices and orthogonal decompositions are 

pointed out in Golub and Van Loan (1986). Krylov subspaces and PLS are also discussed 

in Helland (1988).

4.5.3 Krylov controllability matrix based PLS algorithm

Consider an input data matrix X e 91N"'1 and output data matrix Y e 91Nxp consisting of N 

samples of /inputs and p outputs. Let us define the variance and the covariance matrices 

as follows:

2* = (4-54)
N  N

Using the definitions of the Krylov matrix given in (Eqn 4-51), we can formulate a 

Krylov controllability matrix (KCM) for the matrix pair {2^ ,2^  } as follows:

= [ ( £ , ) " £ „  f e , r s . t r  -  (S v )S „  S „  ]<=*** (4-55)
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For the system represented by Eqn (4-8), if Xx has a rank /, i.e XA. is full column rank,

the least square solution of C is given by,

Cu = ( ^ ) " '2 jt (4-56)

Since Zx is a 1x1 real matrix, its characteristic polynomial is given by

A1 + er, Al~l + • • • + A + a ; = 0  (4-57)

Where A > 0 is an eigenvalue of X , , , and cq’s are coefficients of the characteristic

polynomial. Consequently it follows from the Cayley Hamilton theorem that

X̂ - X x -f- • • • + ~\~ cc ̂1 — 0

=0 (4-58)

In Eqn. (4-58), a . ^ 0 ,  j = 1,..., / is the j* coefficient of the polynomial. (Xx )° = 7), 

where / ,  denotes an /x/identity matrix. It turns out from rearrangement of Eqn. (4-58) 

that

1 = ---- \l x + a ll,x 1 ] +--- + a l_l?,x \at

orJ / / = - - | s Ary + ^ : > ^ y ^ ]a l L 1_l 1

= L > / ( /X ^ y +1_' (4-59)

Where a*{i) is the ith element of a* = —— [l a, ••• at_2 ar/_1]r fo r /e  [l,/]. Hence
oc;

multiplying Eqn (4-59) by (Xv )_1 leads to

(Z x Y  = ^ i=ia M x J - '  (4-60)

Eventually substituting Eqn. (4-60) in Eqn. (4-56) results in

= ( E x ) - , ( E „ ) = 2 ' . i « ; 0 X ^ ) W ( S a t )
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■ ■ C ols ~ (4-61)

<*iW P

Where K, =e9?r , , 'is  the Krylov controllability matrix of pair {ZY,ZYK}as defined in

Eqn (4-55), and ® is the Kronecker tensor product. Therefore the ordinary least square 

solution C o l s  can be expressed in terms of the controllability matrix of the 

pair and the coefficients of the characteristic polynomial. This solution is based

on the assumption that ~LX is non-singular.

If Z Y is singular, its inverse no longer exists. For this case, a PLS solution can not be 

written in terms of Ki as in this case this matrix will be rank deficient. However as proved 

by Di Ruscio (2000), one can still use a truncated Cayley Hamilton series to obtain an 

optimal approximation of(Z v ) 1. Let us denote the rank of Z v as R( £ v ). We can choose 

an integer /0 such that I . Now define a reduced controllability matrix

K l} for the matrix pair {ZY, Exr } as follows:

K,, -  (Z ,)E „  (4-62)

Now, using /0, we can write a truncated Cayley Hamilton series similar to Eqn (4-58).

'Lxla +  a j E j /0-1 +  — I- al̂ 'Lx + a ̂ 1 = 0

or, ( S j °  (4-63)

Rearranging Eqn (4-63) as was done in deriving Eqn (4-60), an estimate for (XTX)_1 can 

be obtained from ' ! , <(*Xs - Here <  (i)is the ith element of vectora;* e 9l‘a. In 

this case the PLS estimate of C is
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w h e r e e  . Therefore, the PLS solution can also be expressed in similar 

way as the ordinary least squares solution. The number of columns /0 in the reduced 

controllability matrix K t can in principle be taken as the effective rank of the Krylov 

matrix K , . In fact, it is proved in Di Ruscio (2000) that the column space of the 

weighting matrix W computed by the PLS algorithm and the column space of the reduced 

controllability matrix A',, coincide. In the next section we will explain how the

coefficients of the characteristic polynomial are estimated.

4.5.4 Optimal Estimation of a]

In line with the least squares criteria, the parameter vector is determined such that the

prediction error matrix will have the minimum squared Frobenius norm (Di Ruscio, 

2000). An estimate of the prediction error matrix can be obtained as follows:

Where e  9LVy;' is the f 1 submatrix for j = 1, - J o ,  we rewrite Eqn (4-65) as

(4-65)

Defining

(4-66)

Y - X C  = Y - (4-67)

We further define

(4-68)
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Where Fec(-)is the column vector operator of a matrix. For instance, VeciY) e iR'Vp is a 

column vector constructed from the data matrix Y by sequentially stacking each column 

of Y onto one another. Applying the column vector operator VecQ to Eqn (4-67) leads to

Vec(Y -  XC) = Vec(Y)-D kocl (4-69)

As a consequence, minimizing the squared Frobenius norm of error matrix Y-XC in Eqn 

(4-67) is equivalent to minimizing the squared 2-norm of Vec(Y)~ D^a*^ in the preceding

equation. The least squares solution to this minimizing problem can be readily obtained 

as follows:

r D , J ' D [ M y )  <4 -7 0 )

Where the choice of la ensures the existence of {pjDj ) '. The complete PLS algorithm is 

summarized in Table 4-6.
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Table 4-6: Summary o f  Krylov controllability matrix (KCM) based PLS algorithm

1. Start with data matrix X e 3?Nxl, and Y e 91N x p

X X X Y
2. Calculate IX  -  ■ -  - ; E™ =

x N - 1 ^  N - 1

3. Choose an integer lo<l and construct a reduced controllability matrix K lo as 

follows:

K u = [& * ) '"% > • ( Z ,  y ^ 2 Z „  ... 1 , 1 , ,  I „ J e

4. Calculate Plo = XK k = [p(1) : P (2) : ••• : P (/o) je  y{NxI°p ; here P is a block

matrix with elements P !l> e  4? N'p .

5. Using a vector operator which stack each column of P"1 onto one another, 

formulate a long matrix from as follows:

D/o = Yec{pm ) i Vec(p{2)) i • • • i Vec{pw  )j e 9?Npxt*

6. Calculate a[ = (P)'laDln)“’ D'k Vec(F) e W k

7. Estimate PLS regression coefficient C as: CPLS -  K,

■ ; e v

a ’M ,

E »
/xp

4.5.5 Modified KCM based PLS theory and RPLS

It must be mentioned that although the KCM based PLS theory presented in Table 4-6 

has a sound theoretical basis, it runs into some numerical problem. The problem is more 

pronounced with industrial data corrupted with noise. It was found that appropriate 

choice of l0 is crucial for the numerical stability of the algorithm. Di Ruscio (2000) 

suggested /0 to be equal to the rank of the complete controllability matrix K t . However 

this choice of l0 results in rank deficient , which in turn makes the inverse of 

(Aj A „) * non existent. A practical solution for the choice of /0 is proposed as follows:
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/„ must be chosen such that DZo is full column rank, hence inverse ofD' DZ) exists. During

implementation of this algorithm, we can select lo by successively adding one column to 

K k , followed by construction of Plo and D,a and checking the rank of DIf) matrix at each

step. The process is continued until Dlo becomes rank deficient. We select an lQ such that

Dj is of full column rank, but />/(|+l is rank deficient.

Even when using the above method to choose l0, this algorithm may often result in ill 

conditioned K  matrix due to round off errors when computing large powers of X x • It 

turns out that often l0«  /, which results in poor prediction. A higher value of /0 is 

obtained with scaled data. Thus scaling improved the numerical stability of this algorithm 

to some extent.

To make the algorithm numerically robust, one can perform a QR decomposition of the 

Krylov matrix. QR decomposition (also known as the orthogonal-triangular 

decomposition) of a matrix expresses the matrix as the product of a real orthonormal or 

complex unitary matrix and an upper triangular matrix. This factorization is useful for 

both square and rectangular matrices. Performing QR decomposition on K lo results in:

^  (4-71)

Here QK e iK^/oP is an orthonormal and RK e  9?iopx,°pis an upper triangular matrix. Di 

Ruscio (2000) pointed out that the usual algorithm for computing the PLS weighting 

matrix W presented in the literature is equivalent to computing an orthogonal basis 

matrix (with orthonormal columns) for the column space of the Krylov matrix. This basis 

is equivalent to the orthogonal matrix QK obtained from QR decomposition of the 

controllability matrix. The QR decomposition is a numerically stable method for 

computing the column space of K t . Moreover, the problem of computing an orthogonal

basis for the controllability subspace may be better conditioned as compared to explicitly 

forming the controllability matrix. By using (^.instead of K ls in all subsequent steps of

the algorithm, the ill conditioning problem of the Krylov matrix can be avoided. However,

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



it still does not guarantee that the inverse of D'j Dt will exist if  we use Qk as an 

approximation of K ; in the calculations (steps 4, 5, and 6 in Table 4-6). Instead, we 

suggest performing a QR decomposition of the D,o matrix as follows:

D1o =QdRd (4-72)

Here QD e 4?Np'!° is orthonormal, and RD e l R ^ i s  an upper triangular matrix. Now, an 

estimate of Cpis can be written as follows:

a,, =(QTDQDy D ; V ec(r) (4-73)

Finally, we calculate, C p ls  using Eqn (4 -6 4 ) . Note that, for univariate Y , Pt =Dt . 

Therefore, in that case, we perform QR decomposition on Plt> instead ofD,o. Table 4-7

summarizes a modified version of the KCM based PLS algorithm that has better 

numerical properties.
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Table 4-7: Modified Krylov controllability matrix (KCM) based PLS algorithm

1. Start with mean centered and unit variance scaled data matrix X e , and

Y e $iNxp

2. Calculate Z x = X>X ;
* N - 1 ** N - l

3. Initialized = [ ], P = [ ], and D = [ ]

4. Set a = 1

5. Calculate

^ = l ( z , r ' 2 „  k \

P -  \XK P]

D  = [Fec(p) D] 

r = rank(D)

6. If r = a , set a = a +1 and go to step 5, otherwise set l0 = a - 1 and go to step 7

7. Formulate the reduced controllability matrix as shown in step 3 in Table 4-6

8. Calculate P/f = XQ^ and = Vec{Plo)

9. Perform QR decomposition of D,o such that = QDRD

10 Calculate a h = (q I}Q, ) 1 /),' Vec(Y) e 9? lr‘

AOL '

11. Estimate PLS regression coefficient C as follows: CPLS = K,o

a l„ p

Using the modified algorithm shown in Table 4-7, a block wise recursive PLS algorithm 

may be developed. Implementation o f the block wise RPLS algorithm may be done in a 

similar manner as the NIPALS based RPLS method. The complete RPLS algorithm for 

online implementation can be summarized in the following steps:
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a) Start with an initial block of data X and Y, having N samples of I inputs and p 

outputs

b) Mean center the data and scale to unit variance

c) Calculate an initial estimate of CPLs using the algorithm presented in Table 4-7

d) When new data are available, select a window size w; select the data block to be 

used for updating; denote the new data as Xi and Yi

e) Estimate updated covariance matrices T,x „ew and XAT „evv using scaling parameters

obtained from the previous block

f) Follow steps 3 to 11 in Table 4-7 and get an updated estimate of CpLs,new

g) Repeat with new data blocks

It is important to note some characteristic features of this RPLS method as compared to 

the NIPALS and the kernel based methods presented earlier. The difference between this 

algorithm and the existing RPLS algorithm can be summarized as follows:

1. The PLS calculation is performed using the Krylov controllability theory, which 

is quite different from the NIPALS and the kernel algorithm.

2. This algorithm is non-iterative. Both NIPALS and kernel algorithms for PLS are 

iterative for multivariate Y

3. Even for univariate Y, the PLS solution is obtained directly from the Krylov 

controllability matrix and the coefficients of the characteristic polynomial. In the 

NIPALS and the kernel algorithm, the PLS vectors are calculated one at a time, in 

an iterative manner.

4. This algorithm completely avoids any deflation and singular value decomposition. 

Both NIPALS and kernel algorithms involve these operations.

Since no deflation, SVD, and iteration are involved, it is expected that this algorithm will 

result in much faster implementation compared to the other existing methods.
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4.6 Grade Transition, Data Quality & Artifacts of MI Readings

In most polymer plants, it is common to produce many product grades using a single 

reactor. The LDPE/EVA reactor that is studied in this project produces 26 grades of EVA 

copolymer on a regular basis. Melt Index for these various products range from as low as 

0.3 to as high as 2000. To accomplish this change in MI, operating conditions such as 

reactor pressure, temperature, initiator composition and type, propylene concentration 

etc. are varied over a wide range. The change from one MI grade to another is called 

grade transition. Duration of a grade transition usually depends on the difference in the 

final properties of the two products.

A major obstacle encountered in this work was obtaining reliable grade transition data. 

The MI estimated by the online analyzer is stored in the historian as a 4-20mA 

(milliampere) signal. During storage of the data, all MI values are scaled to a two digit 

number ranging between 0 - 99.99. This is a pre-defined setting of the data storage 

facility at the plant, which was designed at the time the MI analyzer was installed. For 

those grade changes where the true value of MI falls within this range, there is no 

discrepancy between the stored value and that obtained from the analyzer. If true MI > 

99.99 then the stored value does not match the real value of MI.

However, even for MI < 99.99, often the MI value estimated by the analyzer is not 

reliable during transition. This is due to the fact that the operators sometime manually 

change the die in the online MI unit. The equipment is set on standby mode for this 

duration. The stored MI value is kept constant at its previous level using a zero order hold 

or stored as zero during the standby mode. The data collected during such grade 

transition thus shows many constant segments, missing values or false spikes, which 

should be discarded from the training data. Figure 4-1 shows a trend plot of Melt Index 

during an EVA grade transition. This is one of the most common product changes that 

take place at the plant. The target change in melt index is from 6 to 4. The duration of this 

change was 1.5 hours. Since the magnitude of the actual MI for both grades falls within 

the range (0 - 99.99), these values are stored in the historian without any scaling
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distortion. However, even then, the data during transition was of poor quality, and 

contaminated with many false values.
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Figure 4-1: Melt Index Change during a Grade Transition from 6 to 4 MI. Note the time 

when MI is constant due to the standby mode.

The problem is more pronounced during grade change where melt index undergoes an 

order of magnitude change (such as from MI < 100 to MI > 100). Since online melt index 

values are always stored in the historian as number between 0 and 100, this creates 

confusion in cases where true melt index is higher than 100. Figure 4-2 shows M3 values 

during a grade change operation where the MI changes from 6 to 445. Due to inaccurate 

scaling, stored MI values for the final grade shows a value around 44.5 whereas the 

actual value is near 445. In addition, the values during the transition are erratic due to this 

data storage technique. This makes the interpretation of the data in the transient region 

extremely difficult. This problem persisted throughout the project in spite of repeated
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recommendations made to the plant personnel to rectify the scaling issue. As a result, the 

data during the transition had to be collected carefully. Only transitions with small 

changes in MI were considered for this work. Significant effort was given to make sure 

that the data was reliable. As a result, only a limited amount of good quality data was 

available to model grade transition. In should be mentioned that very recently a melt 

index soft sensor based on data from the production extruder developed by Alleyne, 2006 

has been implemented at the plant. Melt index obtained from this softsensor model are 

stored accurately in the historian without any scaling problem. However, the work 

presented in this thesis was completed before implementation of this new softsensor. It 

may be mentioned in this regard that the PLS based soft sensor developed in this work is 

based on reactor operating conditions; hence it shows the MI values approximately 10-12 

minutes before the extruder based soft sensor.

gradechange from 2810A to 2842AC

100

30

500100 200 300 400 600
sample

Figure 4-2: Online Melt Index during a grade change from 6 to 445 MI

ill
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4.7 Modeling Grade Transition

In chapter 3, we showed a simple bias updating scheme for implementation of the PLS 

based melt index soft sensor. The method was shown to be adequate to rectify small 

operational changes during production of the same polymer grade. However, during 

product changes, the process often moves to a very different operating condition. A 

model built from steady state data will not be applicable during transient period. In order 

to examine how a static model performs during grade transition, a dataset was collected 

containing 11 inputs and one output variable. Inputs for the model included fresh feed 

flow rates (ethylene, VA, and propylene), reactor zone temperatures and reactor pressure. 

Sampling time for the data collection was 5 seconds. The data included measurement of 

all variables during steady production of the initial and the final grade before and after 

transition, as well as transient data during the transition. All preprocessing steps 

described in Chapter 3 such as checking for data compression, filtering, outlier detection 

were followed.

Figure 4-3 shows a plot of property changes during an EVA grade transition that included 

relatively large change in MI and VA. The desired change in MI was from 150 to 30 and 

the comonomer (vinyl acetate) content was changed from 23% to 19% (by mass). Figure 

4-4 and 4-5 show the changes in the manipulated variables that were made in order 

accomplish these property changes.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



180

160

140

120

100

80

60

40

20

ti

_J_______________I_______________ I_______________I_______________ [_______________I__

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
sam p les

24

22

20

c
©

|  18
<>

16

14

12 _ l _______________ I_______________I_______________L_

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
sam p les

Figure 4-3: Change in product properties during grade transition; Top: change in melt 

index; Bottom: Change in Vinyl Acetate content
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Figure 4-4: Changes in scaled reactor pressure (Top) and reactor temperature (Bottom)

during grade transition
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Figure 4-5: Changes in propylene (Top) and VA mass flow rate (Bottom) during grade

transition
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From approximately sample # 5000, reactor pressure and flow rate of propylene started to 

change. Subsequently the comonomer flow rate and the rate of initiator addition into the 

reactor were manipulated resulting in the desired changes in the melt index and the 

comonomer content. Duration of the transition was about 6 hours. A PLS model was built 

using the first 5000 samples collected from the initial grade having a melt index of 150. 

This model was then applied to predict MI during and after the transition. Figure 4-6 

shows the prediction from the model, which completely failed to predict the transition. 

When the model quality deteriorates significantly, bias update using spot values of the 

melt index is not a practical solution. It is evident that a new model should be built or the 

old model needs to be updated using data taken from the transition, in order to include the 

process changes. A similar result is obtained when a constant PLS model was used to 

predict a relatively smaller grade transition (6 MI to 4 MI). This was the motivation for 

using the adaptive PLS modeling techniques.
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Figure 4-6: Prediction from a constant PLS model during and after grade transition
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4.8 Implementation o f the RPLS Algorithms

In this section we present the results obtained from implementation of the three RPLS 

methods discussed in the earlier sections. For ease of comparison, the same set of data 

was used in all cases. The data set includes an EVA grade transition operation where MI 

changes from 6 to 4. Comonomer content of the products was changed from 28% to 26% 

(by mass). Duration of the grade transition was approximately three hours. The initial and 

the target grades of polymers were fairly similar in properties. A transition with a 

relatively small change in properties was selected for this analysis for reasons explained 

in section 4.6. In order to accomplish the property changes (in terms of MI and VA 

content), mass flow rate of the comonomer and the reactor pressure were used as the 

manipulated variables. Initiator flow rates into the reactor were also changed which 

resulted in changes in the reactor temperatures. Propylene was not used in any of these 

two products; hence flow rate of propylene was not included in the data. The final data 

set contained 12 inputs and one output variable.

4.8.1 NIPALS based RPLS Method: Results

The RPLS algorithm based on the NIPALS method was first applied on the test data set. 

The data consisted of 1350 samples of 12 inputs and 1 output variable. Sampling time for 

data collection was one minute. A moving window of fixed length was used for the 

adaptive implementation. An initial PLS model was built using the first 120 samples 

(corresponding to 2 hours). A window length of 10 (10 samples) was selected to collect 

new blocks of data and subsequently update the model at the end of each window. The 

initial model denoted as model-1, was used for prediction for the next 10 samples 

(sample#121-130). Next, model-1 was updated by combining it with the samples 

collected in the past ten minutes. This updated model (denoted as model-2) was used for 

prediction for the next window of samples (sample#131-140). Again, model updating 

was performed by combining model-2 with sample #131-140 and was used for prediction 

during the next 10 samples, and this process was repeated.

A question that is not answered definitively in any data based modeling with non- 

stationary data is how the data should be scaled. Neither Helland et al. (1991) nor Qin
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(1998) explain any adaptive scaling technique in their algorithm. Two suggestions on 

data scaling found in their work are as follows:

Scale the first block of the data to zero mean and unit variance or using any other 

predefined scaling constants. These scaling parameters can be used to scale all 

subsequent data blocks. But for a time varying process, the mean and variance may 

change over time. Therefore, scaling factors obtained from the initial block of data will 

not make subsequent data blocks zero mean and unit variance. However, the RPLS 

algorithm is still expected to work with data whose variance may change over time.

The other option is not to mean center or scale the data. However, if the mean of each 

variable in the data matrices is not zero, the input-output relationship has to be modified 

with the following general linear relationship:

y i = CTXl+d = [cT d][xj  i f  (4-74)

Where x, and y, represent the ith row of X and Y respectively, d  e 91p is a vector of 

intercepts for the general linear model. Therefore to model data with non zero mean, the 

RPLS algorithm can be applied on the data pair{ [X l] Y).  Herel e is a vector 

whose elements are all one.

Based on these different approaches for data scaling, we considered the following three 

cases:

a. data without any scaling

b. data with constant scaling parameters

c. data with variable scaling parameters

In each case the performance of the model was measured by estimating the mean square 

error of prediction and the R2 value. These performance indices are defined as follows:

'5'N (y ~ y  YMSE  = ^  (4-75)
N
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(y — y  )2
R 2 =  J _ y j  (4-76)

N  /  — \ 2  y ’,=,(>■> - y )

Here y, and represents the actual and the predicted output at observation number i. y  

represents the mean value of y. Figure 4-7 shows the results obtained in the first case. In 

this case the data was not scaled, but a unity column was appended to the X block to 

handle non-zero mean. The length of the initial training block of the data was 120. A 

moving window of 10 samples was used throughout this application. The solid line in 

Figure 4-7 shows the actual MI values obtained from the lab. The dotted line shows the 

result when model-1 was used for predicting MI for the entire range of data without 

performing any updating. The R2 value was found to be -2.96, indicating very poor 

performance of the model. The mean squared error for prediction was 4.03. The constant 

PLS model performed poorly in predicting the product change. The dashed line shows the 

predicted values obtained with the RPLS algorithm. In this case, the R2 value was found 

to be 0.92. The mean squared error (MSE) for prediction was 0.0814. It is clear that 

updating the model with a new block of data improves the predictive capability of the 

PLS models. All the PLS and RPLS algorithms were written as MATLAB codes and 

were run on a Pentium-4 3.2 GHz desktop processor. The time elapsed for running the 

RPLS algorithm on the entire data set (having 1350 samples of 12 inputs and one output) 

was 2.6 seconds.

In the 2nd case, the initial block of data was scaled to zero mean and unit variance before 

PLS model building. The mean and variance of this initial block was used to mean center 

and scale all subsequent blocks of data at each updating step. Figure 4-8 shows the results 

from the RPLS algorithm using the scaled data. The dotted line shows the results from 

the constant PLS model built with auto scaled data. The dashed line shows the results 

from the RPLS algorithm. Table 4-8 shows the calculated R2 value and the mean squared 

error (MSE) for the constant PLS model and the RPLS models. The prediction quality 

between the first two cases was comparable as seen by visual inspection, R2 value and the 

MSE values.
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In the 3rd case study, the initial block of data is auto scaled using the mean and variance 

calculated from the same block. The mean and the variance from this block of data were 

used as the scaling parameters for the second data block. Each subsequent block of data 

was mean centered and scaled by scaling parameters calculated from the previous block 

of data. Figure 4-9 shows the results obtained using this scaling technique. Again, the 

solid, dotted and the dashed lines represent the actual MI, predictions from a constant 

PLS model, and RPLS algorithm respectively. The RPLS algorithm in this case results in 

much improved prediction when compared to the first two cases. Table 4-8 shows that 

the R2 value and the MSE are significantly improved using variable scaling parameters.

From the three cases, it may be concluded that data scaling has significant impact on 

model performance. Adaptive scaling seems to produce the best result. This method is 

quite feasible for practical implementation. It was found that when the basic NIPALS 

algorithm for PLS is used for modeling, scaling gives very reasonable results based on 

the amount of variance explained by each LV. This makes the selection of number of 

latent variables more logical.

In this regard, it is worth mentioning that in the RPLS algorithm, decision on how many 

latent variables (or PLS factors) to retain in the model was made based on the Frobenius 

norm of deflated X. PLS factors were calculated until ||is||« 0. This resulted in including

all the LY’s for the present data set. The RPLS algorithm includes the maximum possible 

number of PLS factors which is given by the rank of X (r = Rank(X)). However, when 

dealing with noisy data, rank determination using commercial software such as 

MATLAB is not a foolproof method and often gives erroneous results. Even when r 

factors are used in the PLS model, the PLS regression approaches the ordinary least 

squares solution. Qin (1998) has mentioned this issue in his work, which was also 

verified by Wang et al., (2003). Qin (1998) suggested that the number of factors for 

model updating should make the input residual E close to zero, while the number of 

factors for prediction should be determined by cross validation. This is a confusing 

statement as the updated model which is developed by combining recent and past data is 

intended to be used for predicting future output values. The model should be used for its
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intended applications without any modification. A rather disturbing fact in Qin’s (1998) 

work was that he only showed the results of the RPLS algorithms using the training data. 

The updated models were not used for making prediction but rather refitting the training 

data. The results shown in this section use the input residuals as the only criteria for 

selecting the LVs at each updating step. The updated model was used without 

modification for predicting the future MI values during the subsequent window. Any 

modification to the initial model would make theorem 4-1 invalid. Therefore, we feel that 

the results shown here represent the most appropriate way of applying the method for 

predicting future output values in an adaptive framework.
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Figure 4-7: Results from the NIPALS based RPLS algorithm on unsealed data
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Figure 4-8: Results from the NIPALS based RPLS algorithm on scaled data with constant

scaling parameters
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Figure 4-9: Results from the NIPALS based RPLS algorithm on scaled data with variable

scaling parameters

Table 4-8: Summary of NIPALS based RPLS Model Performance

Scaling type Modeling

method

R2 Value MSE CPU Time 

(seconds)

Case 1 PLS -2.96 4.0295 -

RPLS 0.9199 0.0814 2.50

Case 2 PLS -2.70 3.7601 -

RPLS 0.9190 0.0823 2.60

Case 3 PLS -2.70 3.7601 -

RPLS 0.9791 0.0243 2.04
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4.8.2 Kernel based RPLS Method: Results

The original kernel based RPLS algorithm was developed using a sample wise updating 

scheme. The algorithm starts with an initial model which is trained using a finite number 

of samples. This model is used for predicting future outputs. As new measurements of the 

output variables become available (from lab analysis etc.), the model is updated at each 

of these output samples.

Regarding the issue of mean centering and scaling the variables for PLS model, Dayal & 

MacGregor (1997) suggested similar approaches as presented for the NILAPS based 

RPLS method in the previous section. For a time varying process, they suggested an 

adaptive calculation of the standard deviation of each process variable. At each sampling 

interval, the updated standard deviation can be computed from the updated {xTx \
matrix. In this way, no extra memory or computational effort is required to store the 

standard deviation of the variables for each updating step.

The same data set that was used in the previous section was used for implementing the 

kernel based RPLS algorithm. The following two cases were considered based on the 

frequency of updating:

- RPLS with sample wise updating

- RPLS with block wise updating

In each case, a unity column was added with the X block and the data was used without 

scaling. The first 120 samples were used for building an initial PLS model. The number 

of PLS factors to be retained in the model was determined using cross validation. This 

resulted in retaining 8 factors in the initial model. In the first case study, the model was 

updated at each subsequent output sample. This resulted in almost perfect agreement 

between the actual and the predicted values of MI. Figure 4-10 shows the results obtained 

from the sample wise updating. The prediction obtained from the constant PLS model 

built from the initial data set is also shown in the same plot. The R2 value estimated from 

the constant PLS model and the RPLS model were -2.83 and 0.9959 respectively. MSE 

for prediction was estimated as 3.898 and 0.004 from PLS and RPLS method. The 

model’s ability to predict well is quite expected as the updated model is used only to
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make a one step ahead prediction. While this results in excellent performance in terms of 

prediction, this is not a very practical solution for online implementation. This will be 

very computationally intensive for large data matrices.
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Figure 4-10: Results from the kernel based RPLS algorithm using sample wise updating

In the 2nd case study, we selected a moving window of 10 samples. The initial model 

which was built using the first 120 samples was used to predict MI during samples 121- 

130. At sample # 130, the covariance matrices were updated using all the data collected 

during the window. An updated PLS model was built using the new covariance matrices 

and was used for predicting during the next window of samples. Figure 4-11 shows the 

results obtained using this approach. Table 4-9 shows a summary of the performance of 

the RPLS model for the two types of updating schemes. Using the moving window 

approach, the quality of the model becomes slightly worse than the first case as seen from 

visual inspection and R2 values between the actual and the predicted values. Mean
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squared error for prediction is comparable in both cases. However, the block wise 

updating is much faster than the sample wise updating scheme. Hence, this is a more 

reasonable method for online implementation as the computational effort for updating the 

model at each sample particularly if the data matrix contains many variables may become 

considerably large.
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Figure 4-11: Results from the kernel based RPLS algorithm using block wise updating

Table 4-9: Summary of Kernel based RPLS Model Performance

Frequency of 

Updating

Modeling

method

R2 Value MSE CPU Time 

(seconds)

Sample wise 

update

PLS -2.83 3.898 -

RPLS 0.9959 0.004 2.00

Block wise 

update

PLS -2.83 3.898 -

RPLS 0.9413 0.0596 1.42
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4.8.3 KCM based RPLS Method: Results

In this section we present the results obtained from application of the controllability 

based RPLS algorithm on the same data matrix. Similar to the other two methods, the 

first 120 samples were used to build an initial model using the KCM based PLS 

algorithm. A moving window of 10 samples was used for recursive updating of the model 

as outlined in section 4.5.5. The Krylov matrix K t was constructed using one column at

a time approach. This resulted in retaining 5 columns in K, which is equivalent to the 

number of PLS factors in the previous RPLS methods. Figure 4-12 shows the results 

from the RPLS algorithm. The RPLS algorithm can successfully predict the data during 

transition compared to the case when the initial model is used without performing any 

updating. The R2 value was -0.68 and 0.89 using the constant PLS and the RPLS method 

respectively. MSE for predicted MI was 1.24 and 0.134 for the PLS and RPLS methods 

respectively. It should be noted that when the KCM based RPLS method was used, the 

quality of model prediction was poorer than the NIPALS based and the kernel based 

RPLS algorithms. This assessment of quality is mainly in terms of the lower R2 value and 

the higher MSE resulting from the KCM based approach. However, it should be noted 

that both NIPALS based and kernel based methods contained more factors. Moreover, the 

KCM based method requires the least time for computation. It is even faster than the 

kernel based RPLS algorithm.

In applications where more emphasis is given on better prediction than the speed of the 

algorithm, a shorter window length may be used. In a second case study, a shorter 

window length of 5 samples was used for updating the RPLS model. This resulted in 

some improvement in prediction as evident from a lower MSE and a slightly higher R2 

value. Time required to run the algorithm was slightly greater. Figure 4-13 shows the 

results obtained with the shorter window length. Table 4-10 summarizes the performance 

of the RPLS models using different moving window lengths.

As a final comment on model performance, it should be mentioned that the time required 

for running each algorithm may seem quite negligible for a high performance desktop 

computer. However, actual time required for online implementation of the algorithms in
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industrial settings will be much higher due to hardware limitations and data transmission 

delays. The Krylov based RPLS algorithm will be a more appropriate alternative in this 

regard.
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Figure 4-12: Results from the KCM based RPLS algorithm using a moving window

length of 1 0
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Figure 4-13: Results from KCM based RPLS algorithm using a moving window length of

5

Table 4-10: Summary of Controllability Matrix based RPLS Model Performance

Length of 

moving 

window

Modeling

method

R2 Value MSE CPU Time 

(seconds)

w = 1 0 PLS -0.6896 1.2385 -

RPLS 0.8942 0.1340 1.03

w = 5 PLS -1.559 2.6020 -

RPLS 0.9053 0.0963 1.16
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4.9 Summary

In this chapter we presented a detailed theoretical review of all the existing recursive 

partial least squares algorithms used to model time varying systems. Some minor 

modifications were suggested for both the NIPALS and kernel based RPLS algorithms to 

make them more suitable for practical implementation. In addition, a new interpretation 

of PLS using a controllability matrix based approach has been introduced. A number of 

modifications were suggested to make the original KCM based PLS algorithm 

numerically robust. A block wise RPLS method was suggested based on the modified 

version of the controllability based PLS. Three recursive algorithms were applied to 

model melt index of EVA polymer during a small grade transition operation. All the 

RPLS methods were successful to predict the transient data. RPLS based on NIPALS 

algorithm shows good performance when applied with variable scaling. This method is 

simple to implement online and can be considered for industrial use. Although kernel 

algorithm was shown to be faster than the NIPALS algorithm for the basic PLS model 

building, for cases where only one predicted variable is involved, this results in negligible 

improvement in terms of computational efficiency since no iteration is necessary for 

computing the PLS vectors. Moreover, updating the model at each new sample can be 

quite computationally expensive and unfeasible for online applications. RPLS based on 

KCM resulted in a very fast approach with the least number of PLS factors. This method 

is expected to have much industrial importance in modeling time varying linear systems.

It was observed from an extensive literature review on PLS and RPLS algorithms that the 

developed theories are seldom validated with real data collected from continuous 

processes. An important contribution from this chapter is that it reduces the gap between 

theory and its practical implementation. The work presented in this chapter is the first 

attempt to apply the RPLS theories to model a complex industrial polymerization process.
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Chapter 5 

PCA Based Reactor Monitoring

5.1 Introduction

High pressure LDPE reactors operate under supercritical conditions. Normal operating 

pressure in these reactors can reach 3500 atm. Therefore, it is extremely important to 

monitor their performance in order to prevent any abnormal situations. An undesirable 

and catastrophic phenomenon that happens sporadically in high pressure polyethylene 

reactors is known as ethylene decomposition. This is a highly explosive exothermic 

reaction that leads to significant damage to the process and cause significant economic 

loss. Therefore, any monitoring strategy capable of detecting decomposition in high 

pressure ethylene reactors will be of great industrial importance.

In this chapter, we present a monitoring method for an autoclave reactor using an overall 

reactor energy balance. An appropriately formulated energy balance shows the sources of 

heat generation and means of removal of heat from the reactor and should close within 

reasonable limits when the process is running under normal conditions. If  excess heat is 

generated inside the reactor, and the heat is not removed as soon as it is being generated, 

this may eventually lead to decomposition. In such cases, the energy balance closure 

error would increase and this would give an indication of an impending decomposition. 

However, for many practical systems encountered in chemical industries, all the 

necessary information required to formulate the balance equation may not be available.

Part o f  the material presented in this chapter has been submitted to: Sharmin R., Shah, S.L., Sundararaj, U., A  PCA 

based Fault Detection Scheme for an Industrial High Pressure Polyethylene Reactor, M acromolecular Reaction  

Engineering, 2007.
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For example, for the LDPE reactor, flow rates and the chemical identity of all inlet and 

outlet streams, heat capacity of reactants and products at supercritical conditions, the 

extent of reaction etc. are not readily available from routine operating data. For such 

cases, solving the balance equation with unknown parameters may be considered as a 

model identification or parameter estimation exercise. Multivariate statistical techniques 

such as principal component analysis (PCA) can be used as a model identification tool to 

solve this problem.

Principal component analysis was introduced by Pearson (1901) and later extended by 

Hotelling (1947). Kresta et al. (1991) and MacGregor el al. (1991) developed the method 

further and explained the basic methodology to use PCA as a monitoring tool for 

continuous processes. Formulated as a multivariate process control task, these 

applications use PCA to extract a few independent components from a set of correlated 

process data and use the components to monitor the process operation. The application 

and use of PCA in process monitoring has been demonstrated by many researchers 

through simulation (Kasper and Ray, 1992; Ku and Georgakis, 1995; Raich and Cinar, 

1995; Luo et al, 1999 etc.) and industrial case studies (Wise et al. 1991; MacGregor and 

Kourti, 1995; Li et a l, 2000 etc.). Among few published papers on the application of 

statistical process monitoring to polymerization processes, some examples include the 

use of PCA for fault detection and isolation in an LDPE reactor (Kumar et al, 2003), 

monitoring an industrial polymerization reactor (Piovoso, 1992), and product quality 

design for a high pressure polymerization process using statistical techniques (Moteki & 

Arai, 1998). Although primarily used as a compression tool, in recent days, PCA is 

gaining importance as a model identification technique (Ku et al., 1995; Cao and Gertler, 

2004, Gertler and Cao, 2004; Narasimhan and Shah, 2007 etc.). In this project, we used 

PCA to identify the energy balance relationship for an autoclave reactor, and then 

monitored the closure error from the balance equation to detect abnormal behavior. The 

study was conducted using data collected from a number of decomposition incidents that 

took place in an industrial LDPE/EVA autoclave reactor located at AT Plastics Inc., 

Edmonton, Canada.
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The remaining sections of this chapter are arranged as follows: a short description of 

decomposition in high pressure polyethylene reactors is given; this is followed by an 

overview of PCA and its application in fault detection and model identification; next a 

description of the process, data collection, and formulation of an overall reactor energy 

balance are explained; finally, results from a number of case studies are presented.

5.2 Decomposition in High Pressure LDPE Rectors

LDPE and EVA are commercially produced by high-pressure free radical polymerization 

of ethylene. The reaction is carried out at pressures ranging from 1000-3500 atm and 

temperatures ranging from 140-330°C in tubular or stirred autoclave reactors in presence 

of free radical initiators like peroxides, azo compounds or oxygen. The principal steps 

involved in both processes include initiation, propagation and termination. Propylene is 

sometimes used as a chain transfer agent for the termination steps. Polymerization of 

ethylene is a highly exothermic process with a standard heat of reaction of 807 Cal/g of 

ethylene polymerized (Mannan, 2006). The overall reactions for the formation of LDPE 

and EVA can be written as follows:

CH2=CH2  * - fC H 2-C H 2A-n

H

CH2=CH2 + CH2=CH ---- ► + C H 2-C H 2^ f C H 2- C + m

O O
I I
c=o c=o
I I

c h 3 c h 3

Figure 5-1: Polymerization of ethylene into polyethylene (top), and polymerization of 

ethylene and vinyl acetate to form ethylene vinyl acetate copolymer (bottom)
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Under normal operating conditions in the polymerization reactors ethylene can undergo 

two further exothermic reactions where ethylene is decomposed into carbon, hydrogen 

and methane.

CH2=CH2 -> 2 C + 2H2 

CH2=CH2 -> CH4 + C

Above 350°C, the decomposition reaction becomes faster than the polymerization 

reaction. Heat released and the consequent temperature rise leads to very rapid and 

complete decomposition unless heat can be removed as fast as it is being generated. The 

final temperature of the products of a complete adiabatic decomposition is 1200-1400°C 

higher than the starting temperature. At constant volume, the corresponding pressure rise 

with methane as the major product varies from about four to six times when the starting 

pressure is about 2 0 0 0  atm.

Although both ethylene and propylene can decompose explosively, propylene usually 

requires severe conditions to decompose while ethylene is usually handled under 

conditions where such an event can be initiated (Britton et al., 1986). For example, 

ethylene may react with contaminants such as oxygen and hydrogen, which can lead to a 

thermal runaway and finally a decomposition explosion. A thermal runaway is a result of 

thermal rate acceleration of an exothermic reaction system from any temperature at which 

the rate of heat gain exceeds the rate of heat loss from the system. It is the principal 

initiator of decomposition in heated equipments. Alternatively, ethylene may directly 

decompose by a point source of energy, by a flame, by sudden compression in presence 

of a diatomic gas, or a sudden excess of catalyst. Since decomposition occurs over a very 

short time interval (on the order of seconds), there is no practical way to control the 

pressure and temperature once a decomposition has initiated. To protect the reactor from 

bursting, the vessels are protected by bursting discs which are designed to fail at a 

pressure slightly above the normal working pressure. The reactor contents are safely and 

quickly discharged to atmosphere via blast pipes if a decomposition reaction develops 

and the pressure and temperature begin to rise.
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Decomposition, which is commonly known as “decomp” in the polymer industry, occurs 

less frequently in tubular reactors because of their larger cooling surface. Autoclave 

reactors, however, experience such accidents sporadically. While the advanced control 

systems used in most polymerization reactors and the industrial product recipes guarantee 

the production of large volume, low cost polymers, the threat of experiencing a thermal 

runaway is always present for autoclave reactors. It is hard to predict decomposition 

because of extremely fast dynamics of such events (Zhang et al., 1996).

5.3 Principal Component Analysis: Theory

Principal component analysis (PCA) is a data based multivariate statistical technique, 

which was developed primarily to explain the variance-covariance structure of a set of 

correlated variables through a few linear combinations of these variables. Usually data 

collected from most industrial processes contain redundancy due to multiple 

measurements of the same variable or due to constraints or linear relationships between 

variables. PCA separates this redundancy by decomposing the data into a few key 

independent components, which will describe the major trends in the process, thereby 

reducing the number of variables to be monitored.

Let X  e  91Nxn represent a data matrix consisting of N  measurements of n variables. The 

basic idea of PCA is to find n linear combinations of the original variables. By 

construction, these linear combinations (also known as latent or virtual variables, 

principal components, or scores) are uncorrelated to each other. If the original n variables 

are correlated, then it is possible to summarize most of the variability present in the n- 

variable space in terms of a lower k-dimensional subspace (k<n). If a substantial amount 

of the variability present in the original data set is accounted for by these k new variables 

(or principal components), then only these principal components can be retained for 

further analysis. Let us assume that we are interested in forming the following linear 

combinations:
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f, = p }ix] + p h2x2 + --- + p ]nxn =Xp] 

t2 = p 2Axx + p X2x2 + -- + Pxnxn =Xp2
(5-1)

K = Pn,lX 1 + Pn,2X2 + •" + Pn,nXn = XP n

In compact form, the above system of equations can be represented as T -  XP , 

whereP = [p, \ p 2 | ••• | p n). Here, ti ’s are known as the principal components andp, ’s

are known as the loading vector, which represent the weights attached to each X variable. 

Each loading vector is calculated such that the variance in corresponding principal 

component is maximized. The first principal component /, accounts for the maximum 

variance in the data, the second principal component t2 accounts for the maximum 

variance that has not been accounted for by the first principal component, and so on. 

Some constraints need to be placed to the loading vectors to achieve this objective. These 

are given by

The first constraint is used to fix the scale of the new variable since it is possible to 

increase the variance of a linear combination just by scaling the weights. The second 

constraint ensures the orthogonality of the principal components. Given the data matrix X, 

the mathematical problem of calculating the weight vectors p l to p n can be approached 

in terms of the following optimization problem:

Objective: Find a linear combination of the X variables that has the maximum variance 

amongst all possible linear combinations.

Objective Junction: max{/>,

Constraint: p l p] = 1

1/2Solution: p ] is the first left singular vector of

P i  Pi = 1; (i =1,2, ... ,n) (5-2)

and

PiT Pt = 0 - , ( i * k ) (5-3)
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Note that p l explained portion of X is represented as Xp]p ]T = t}p x , which when 

removed from X produces a deflated matrix Ex . Therefore, £j is constructed by

extracting the information captured by the first PC from the original data as follows:

E ] = X - t ]P]T (5-4)

Ex is treated as X to construct the second principal component^ = Xp2. t2 is the linear 

combination of the X variables which has the next highest variance subject to the 

conditions of being orthogonal to the first linear combination. It can be shown that p 2 is

the second left singular vector of S ^ 12. The process is repeated until all the loading and

score vectors are extracted. Finally, when we obtain n orthogonal combinations, we may 

write,

X = txp x + t2p 2T + ...tnp j  (5-5)

Thus, we can consider PCA as a technique that decomposes a data matrtix X into a sum 

of rank-one matrices. In practice, the first few scores are sufficient to capture most of the 

variability in the data. Therefore,

X  = txPx + t2p 2 + ...tkPkT +Ek = TkPk + Ek (5-6)

While writing the above equation, it is assumed that all the insignificant information in 

the data set is confined to the matrix E (which lumps the PCA dimensions k+1 through n). 

It is sufficient to monitor only the first k scores, thereby reducing the number of original 

variables for monitoring purpose. Therefore, one main idea behind PCA is data 

compression and knowledge extraction.

The loading matrix P  can be calculated from a singular value decomposition (see 

Appendix 1) of the covariance matrix^ = X T X  /(N  -  l)as follows:

S = PAPt ; P e i R"*"; A e 9 T x” (5-7)

The loading vectors are the orthonormal column vector of the matrix PT. A is the 

covariance matrix of the principal components. This is a diagonal matrix which contains 

the nonnegative real eigenvalues of decreasing magnitude ( A, > X2 >....> An > 0 )  along 

its main diagonal with zero off-diagonal elements. PCA calculation using SVD on the
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covariance matrix is equivalent to performing singular value decomposition (SVD) on the 

original data matrix X (Chiang el a l, 2000) such that

X = U A V t ; U e m NxN; A e M Nxn-, V e 9t”x” (5-8)

The loading vectors are in this case the orthonormal eigenvectors in the columns of 

By construction, since loading vectors are orthogonal to each other, the scores are 

orthogonal or uncorrelated.

5.3.1 Fault detection using PCA

The PCA model constructed using data collected from normal plant operation can be 

used to perform online monitoring of the process. The “normal” PCA model of the 

process is used as a reference against which future plant operations are compared. 

Graphical tools such as the scores plot, loading plots and contribution plots are 

commonly used to determine the out-of-control status (fault detection) and the underlying 

causes for the abnormal event (fault isolation). In addition, two collective test statistics 

known as the Hotelling T2 and the Q statistics are calculated from the data and are used 

for monitoring. A brief overview of these tools is provided in the following sections.

Scores plots: The scores plot is a description of the principal component scores for any 

two PCA dimensions (e.g. tj versus tj). They form a two dimensional monitoring chart 

which indicate the relationship between the various samples. Two similar samples by 

virtue of their similar scores will lie close to each other in the scores plot. It is easy to 

conclude that all data points that are similar in nature tend to cluster together in the scores 

plot. The control limit contour depicting the normal operating region is an ellipse (joint 

confidence region). Any abnormal shift in the process variables (whether the basic 

correlations between variables remain intact or not) is clearly indicated in the scores plot 

because the projected scores move out of the operating zone. The scores plots are thus 

excellent tools to detect abnormal process behavior.

The scores for all n principal component can be plotted against each other. However, 

plotting them for the first few components is usually adequate. Once an abnormal
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situation is detected by the scores plots, a loadings plot (e.g. pi versusP2) may be sued for 

fault isolation.

SPE or the Q Statistic. If  no abnormal shift occurs in the process but the correlation 

structure breaks down, the scores plot will not be able to detect the fault. To avoid this, a 

third dimension showing the squared prediction error (SPE) is calculated. In order to 

compute the SPE it is necessary to define the error which can also be viewed as the 

model plant mismatch. If  this mismatch gets larger it is an indication that the PCA model 

no longer reflects the current status of the plant. If  the process variables deviate from 

normal values but retain the correlation structure found during acceptable plant operation, 

then the SPE will not be large. It is apparent that the SPE is a useful measure to detect 

process upsets.

Let xnew denote a new multivariate observation (a vector of dimension 1 x n ). This 

observation can be projected onto the hyperplane defined by the PCA loading vectors to 

obtain the score value tnew = xnewP. tnew is the 1 x n vector of scores from the model and P 

is the n x  k  matrix of loadings determined from the normal plant data. The PCA model 

prediction for xnew is given by xnew = tnewP T = xnewPPT. Thel x n dimensional error vector

is given by enm, = xmw -  x ^ fro m  which the SPE can be calculated aseTnewenew. The SPE 

can be considered as a scalar measure of the plant model mismatch. A small value of SPE 

indicates that the model is still a good representation of the plant. A large SPE value 

indicates otherwise. Should a large SPE value occur, the process operators should be 

notified, and the fault diagnostics procedure must be initiated.

The SPE, which is also known as the Q-Statistic or the Rao-statistic, employs the portion 

of the observation space corresponding to the (n-k) smallest singular values. The 

distribution of the Q-statistic has been approximated by Jackson and Mudholkar (1979):

e « = * i
| |  | <92/?o(/2q l)

ex el
(5-9)
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Where, di = kllcrf  °  j obtained from a singular value decomposition of the data

2q Q
matrix X, h0 = 1----- -y- , and ca is the normal deviate corresponding to the (1- a )

3&2

percentile. Given a level of significance a , the threshold for the Q-statistic can be 

computed using Eq. 5-9 and be used to detect faults. The Q statistic measures the random 

variations of the process, for example, that associated with measurement noise. A 

violation of the threshold would indicate that the random noise has significantly changed.

It may be added that the n principal components can be plotted individually and used as a 

monitoring chart in a manner similar to the univariate Shewhart chart. In this case, each 

of the charts represents monitoring of a group of original variables rather than a single 

process variable. By examining the n individual score plots and with a knowledge of the 

loading matrix (or a loading plot), it is possible to pinpoint the cause(s) for the 

abnormality. In this case, SPE must be monitored individually using a univariate 

procedure.

Loading plots: To help in isolating the reasons for abnormalities in process operation, it 

is necessary to interrogate the underlying PCA model. Some of these methods are 

discussed in MacGregor et al., (1994). One common fault isolation technique is the use 

of the loadings plot which shows the relationship between the process variables in exactly 

the same way as the scores plot exhibits the relationship between the observations. All 

variables sharing the same information content (i.e. correlated variables) tend to cluster 

together. Such clusters of variables usually dominate different PCA dimensions.

If abnormal scores are noticed for any particular PCA dimension, the variable cluster(s) 

that dominate the dimension may be responsible for the unusual event. Loadings plots 

help in visualizing these variable clusters.

Contribution plots: The SPE values computed above can also be utilized in an effective 

manner for fault isolation. The fractional contribution of each process variable to the 

overall SPE can be computed as
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*  = S P E ;(i= 1 ’2’- ’n) ( 5 ' 1 0 )

where SPE, denoted the square of the ith element of the error vector enew. If the fractional 

contribution of any variable is significant then it is very likely the cause for the 

abnormality. This is the basis of the contribution plot concept proposed by Miller et al., 

(1993). It should be remembered that although an unambiguous answer regarding the 

source of the fault is not provided by either the loadings or the contribution plots, they 

definitely provide a focal point for detecting the possible causes.

T2 Statistic: The overall measure of variability in a process is given by a quantity which is 

defined as:

7’2 =(x,-x).S ' '(x, - x f  (5-11)

Where xi e iR”' 1 is a vector of n variables observed at time instant i, and S  is the

covariance calculated from the data. The statistic (also known as Hotelling T2) is a 

quantity indicating the overall conformance of an individual observation vector to its 

mean or an established standard. This is a multivariate generalization of the Student t-test 

and gives a single answer to the question “is the process in control?” Assuming that the 

observations are randomly sampled from a multivariate normal distribution, and known 

population mean and covariance, the T2 statistic follows a j 2 distribution with n degrees 

of freedom. Then, the threshold for f 2 is given by,

Tici(a)= x K " )  (5-12)

When the actual covariance matrix is unknown and is estimated from the historical data, 

the upper control limit of the T2-stati stic is derived as follows:

Tu2cl(<x)= (5‘13)

WhereFa(n ,N -n )is the 100(l-a)% critical point of the F  distribution with n and (N-n) 

degrees of freedom (MacGregor and Kourti, 1995). Because the covariance matrix can be
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ill-conditioned for correlation and collinearity between the variables, the I2-statistic is 

also calculated using the first few scores and eigenvalues. Assuming data to be mean 

centered 72-statistic is given by (Imtiaz et ah, 2006),

T 2 = t Tr A rtr (5-14)

where Ar is a diagonal matrix containing the r  largest eigenvalues A . T2 statistic is

therefore not affected by the inaccuracies of the smaller eigenvalues and better suited to 

represent the normal behavior of the process.

The T2 and Q statistics along with their appropriate thresholds detect different types of 

faults, and the advantages of both statistics can be utilized by employing the two 

measures together. To simplify the fault detection task Raich and Cinar (1996) suggested 

the following combined statistic

(5, 5)
Qct UCL \ a )

where k  e  (0,l) is a constant. Therefore if the statistic is less than 1 the process is 

considered to be normal. Excellent reviews on the theory and application of PCA can be 

found in Jackson (1991), and Chiang et al., (2001).

5.3.2 PCA based Model Identification

In industrial data, process variables may often be related through some constraints or 

linear relationships such as a component mass balance or energy balance equation. 

Consider X  e 9TVx” represent a set of N  measurement on n variables. Let these variables 

be related through a set of m independent linear constraints such that

A X = 0 , (5-16)

where A m'n is a constraint matrix. To identify A is equivalent to finding the null 

space of the data matrix. This is also the non trivial solution of Eq. 5-16. Due to the 

presence of the constraints, X  is a rank deficient matrix with a rank r = n - m ,  i.e., X  

spans a n-m dimensional subspace of R„ (denoted as Vx). Furthermore, the rows of A span 

a m dimensional subspace of R„ denoted as Vc which is orthogonal to Vx. Therefore if R„ 

can be decomposed into two orthogonal subspaces, one of which defines Vx and the other
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Vc, this would solve the identification problem. Singular value decomposition of X  will 

result in:

X = U A V t ; w h e r e , U e n NxN- A e n Nxn-V (5-17)

The diagonal elements of the matrix A will have
2 2 2 2 2 2 entries 2, ,A2 Ar > 0 = Ar+1 , l r+2 . The transpose of the right singular vectors

associated with the zero singular values define a basis for Vc and is a solution for the 

constraints matrix A

PCA can be applied to solve the above problem by finding the orthonormal eigenvectors 

of the covariance matrix S. It is easy to observe that S has a rank of n-m. Thus it will have 

n-m non-zero eigenvalues while the rest of the eigenvalues are zero. The model is 

obtained from the eigenvectors associated with the zero eigenvalues.

It is well known that an exact model can be identified using the above theory only in the 

ideal case, when the measurements are not corrupted with noise. Random errors in the 

measurements will convert S into a full rank matrix and also convert the zero eigenvalues 

to non zero but small eigenvalues. However, if the noise level is low, and signal to noise 

ratio (SNR) is high, then we can still use this method by selecting the eigenvector 

corresponding to the small non zero eigenvalues. The following simple simulation 

example illustrates the identification method.

Figure 5-2: Model Identification for a mixing node
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Consider a simple example where two streams of liquid water having flow rates F2, 

and temperatures T) and T2 respectively are mixed. The product stream has a flow rate F3 

and temperature T3. An energy balance for the mixing node may be written as

Fi Cp (Ti-Tref) + F2 Cp (T2-Tref) = F3 Cp (T3-Tref) (5-18)

Assuming Tref = 0, and constant heat capacity Cp for water at moderate temperature and 

pressure, Eq. 5-18 reduces to:.

F i T i+ F 2T2 = F3T3 (5-19)

Three sets of data with different signal to noise ratio were generated for the above 

example. Each data set had 1000 realizations of Fi, F2, F3, T2, T2, and T3 where the 

following mass and energy balance equations hold:

F3 = Fi + F 2

T3 = (F1T1 + F2T2)/F3

In order to simulate the true values of variables at each time instant, a set of independent 

flow (Fi and F2) and temperature (Tj and T2) variables were chosen. The true values of 

independent variables were simulated by adding normally distributed random fluctuations 

to their base values. The true values of the dependent variables (F3 and T3) were 

calculated such that they satisfy the mass and energy balance equations. The mean values 

of variables and the standard deviations of the fluctuations are given in Table 5-1. In the 

simulation procedure, the measured values of variables were simulated by adding 

normally distributed random noise to their true values. The standard deviations of 

measurement errors are also given in Table 5-1. A measure of signal to noise ratio (SNR) 

is given by the ratio of standard deviation of the signal fluctuations to the standard 

deviation of noise.

Next, PCA was applied to: X = [FiTiF2T2 F3T3], The results of PCA analysis are 

summarized in Table 5-1.
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It should be noted that PCA is a scale dependent technique and often requires proper 

scaling in order to obtain reasonable results. Particularly when the variables have 

different units and vary over a wide range of magnitude, it is common practice to remove 

the means from the variables and scale with the standard deviation of the data. It is shown 

by Narasimhan and Shah (2007) that in the noise-free case PCA can result in an exact 

basis for Vc, even if the data is auto-scaled. However, if we apply scaling to 

measurements corrupted with noise, then no simple relationship can be obtained between 

the eigenvectors of the scaled covariance matrix and those of the unsealed raw data, and 

model identification is not at all straightforward. Therefore, when applying this theory to 

real industrial data, one has to be careful about the level of excitement present in the data, 

the source of the variables in the process and their physical significance. If the signal to 

noise ratio is high and the variables have comparable units and magnitudes, it is better to 

do the analysis with unsealed data.
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Table 5-1: PCA based model identification using noisy data

SNR Variable True values Std
of

noise

Eigen­
values

Last
eigen­
vector

Comment

Mean Std of 
fluctuations

50
(high)

FI 1 0 1 0 .1 2490000
715
0.76

0.57
0.57
-0.57

Exact
model
found

F2 2 0 1 0 .1

F3 - - 0 .1

T1 2 0 1 0 .1

T2 50 1 0 .1

T3 0 0 .1

1 0

(medium)
FI 1 0 1 . 0 0 0.5 2490000

750
19.5

-0.59
-0.57
0.57

Close to 
exact 
model

F2 2 0 0.99 0.5
F3 - 1 . 0 0 0.5
T1 2 0 0.99 0.5
T2 50 0.96 0.5
T3 0.98 0.5

2 FI 1 0 1 0.5 2490000 -0.83 Exact
(low) F2 2 0 1 0.5 1150 -0.35 model not

F3 - - 0.5 386 0.43 found
T1 2 0 1 0.5
T2 50 1 0.5
T3 - - 0.5

5.4 Process description

An industrial LDPE/EVA autoclave reactor at AT Plastics (Edmonton, Canada) was 

studied for this project. A brief description of the process was given in section 3.3 of this 

thesis. The plant uses ICI high-pressure technology for the polymerization of ethylene to 

LDPE and copolymerization of ethylene and vinyl acetate to EVA copolymers by free 

radical polymerization. Figure 5-3A shows a photograph of the reactor before it was 

installed. Figure 5-3B shows a cross section of the same reactor. A schematic of feed and 

initiator flow arrangement is shown in Figure 5-3C.

The reactor vessel is cylindrical in shape with a nominal capacity of 750L and a length to 

diameter ratio of 10:1. It is equipped with an axial stirrer and thermocouples along the 

reactor length. The stirrer ensures good mixing and uniform heat distribution in the
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reaction mixture. The reaction space is divided into four separate reaction zones by 

means of three baffles attached to the stirrer. Ethylene gas is supplied to the reactor from 

the secondary compressor through four separate gas steams. Free radical initiators are 

injected continuously into each zone of the reactor to control the exothermic 

polymerization reaction at selected temperature levels. The reactor operates at a pressure 

in the range of 1000 to 3000 atm and achieves about 20% conversion in a single pass. 

After separation from the unreacted gases in the high pressure separator and extrusion 

hopper, molten polymer is sent to the extrusion, drying and packaging units. Ethylene gas 

separated from the high pressure separator is recycled to the suction of the secondary 

compressor. Any entrapped ethylene separated from the extrusion hopper is compressed 

in a booster compressor, and finally mixed with fresh ethylene at the suction of the 

primary compressor. The same unit also produces ethylene vinyl acetate copolymers 

(EVA) when vinyl acetate is added to the system.

Figure 5-3A: Autoclave reactor at AT Plastics (note the scale by comparing the van in

front of the reactor)
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To ensure safe operation of the reactor vessel, some critical process variables are 

constantly being monitored by the operators. These include the reactor zone temperatures, 

pressure, and catalyst pump loading. In addition, the feed temperature, feed gas pressure, 

feed composition, polymer melt temperature at the reactor exit etc. are also recorded. 

Composition of the feed gas is analyzed using a gas chromatograph before it enters the 

reactor. These variables along with process variables from all other units at the plant are 

stored in a data historian. The plant uses a Honeywell TDC 3000 DCS and an Aspen 

Tech’s Infoplus21 historian to collect and store all the process data. Almost all of the 

critical variables such as pressure, temperature and fresh feed flow rates etc. are sampled 

at every second and stored in the historian without any compression. The historian is 

large enough to store three years of measured process data without compression.
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Figure 5-3B: Cross Section of the Reactor
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Figure 5-3C: Schematic o f  the Autoclave reactor configuration
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5.5 Formulation of Overall Heat Balance around the Reactor

Polymerization of ethylene is an exothermic reaction, which generates heat. In order to 

maintain a sufficiently high reaction rate, the feed gas needs to be heated to the reaction 

temperature. During start up, the reactor is heated externally using hot air, but as the 

reaction proceeds, heat released from polymerization is absorbed by the cold incoming 

feed gas. In addition to this, viscous dissipation from the reaction mixture due to the 

rotation of the stirrer generates heat. The bottom zones of the reactor wall are surrounded 

by a hot oil jacket. Temperature of the hot oil is maintained approximately at the same 

level as the reactor temperature, hence is may be assumed that heat loss through the 

bottom zones are negligible. However, a small amount of heat is lost from the top zone of 

the reactor, which is not surrounded by the oil jacket. Therefore, heat removal from the 

reactor is achieved mainly by sensible heat transfer to the feed gas and the products, and 

to a smaller extent, by heat loss through the wall. During steady state, the reactor 

operation can be considered as auto thermal, where the main source of heat generation 

inside the reactor is the polymerization reaction, and the principal means of heat removal 

is by the sensible heat absorbed by the cold feed and the products.

To formulate a steady state overall energy balance for the reactor, consider the energy 

balance equation for any open system at steady state as a starting point:

AH + AEK +AEP = Q - W S (5-20)

here,

AH = rate of change of enthalpy of the reacting mixture

AEk = rate of change of kinetic energy; since the linear velocities of the inlet and exit 

streams are similar (typical inlet and exit stream velocities are 11.14 and 12.03 m/s at 

inlet and exit respectively) AEK is neglected

AEP = rate of change of potential energy; since there is no significant change of 

elevation, we can neglect AEP

Q = rate of heat transfer to the system from the surroundings
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Ws = shaft work done by the system on the surroundings, since no shaft work is 

considered for the reactor Ws is neglected. (The compressor is pressurizing the gas into 

the reactor but we consider only the reactor as the system).

The following steps are required as part of the standard procedure of calculating AH  for 

any reactive system:

1. Choose reference conditions: If heat of polymerization reaction is known at 

temperature Tr and pressure Pr , then choose all compounds at the inlet and the 

outlet of the reactor at Tr and P, as the reference condition

2. Calculate extent of reaction £ from mass balance

3. Calculate specific enthalpy of each component H i in the inlet and the outlet 

stream relative to the reference condition. If the effect of pressure on Cp is ignored,
T

then H i is calculated as H,  = j CpdT
Tr

4. Calculate AH  using: AH = £AH°r + ^ n outH out- ^ h inH in . Here, AH 1’ is the

heat of reaction at reference condition, H m and H out are specific enthalpies of

each component in the inlet and outlet streams relative to the reference conditions, 

and n is molar or mass flow rates of components

For most of the polymer grades produced at the plant, the major reactants are ethylene, 

VA, and propylene. The reactor outlet stream mainly contains polymer (LDPE or EVA), 

and unreacted ethylene and VA. In addition, liquid solutions of free radical initiator are 

continuously added into the reactor. The product from the reactor contains the solvent, 

and small amount of inert gases such as methane, ethane, and CO2 (produced from 

decomposition of peroxide initiator). However, it can be assumed that the initiators are 

completely consumed in the reaction and the masses of solvents and initiators are usually 

small compared to the reactants and products. Hence they are ignored in all mass and 

energy balances. Considering the major components AH is calculated as follows:
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AH  = &H°r + X  ho J i out ~ Z

r  +  M e th y le n e s ^ e th y le n e  ^ VI VA +  ™  EVA H  EVa )  exit

ethylene^ethylene ' ^ ^ V ' J ^  1 ]  ^p ro p y le n e ^p r o p y le n e )m le t

T T T

■ %AH° + (methylenes J CpefhyhmdT  + ^  j CpVAdT  + w£K1 J CpEVAdT)eXn
Tr Tr Tr

T T

ethyhnes \ C P  ethylene ^ V A | CpVAdT  + mpropylmeJ" ̂ ~ P  p r o p y l e n e ^ T ) inlet

Tr Tr Tr

(5-21)

Defining Qwau as the rate of heat loss through reactor wall, and g v,„Ter as the rate of heat 

generation by the stirrer, and using Eq-18, the final form of the balance equation is as 

follows:

T T T

r + Methylenes ethylene^T + MyA j C p vAd T  + M  t:VA J  C p EVAd T ) ^
Tr Tr Tr

T T T

M eth y len es  J ethylene^'^ ' ^ ^VA J^ PI ̂ propylene J  ̂'pp r o p y l e n e ) inlet — Qstirrer QwaU
Tr Tr Tr

(5-22)

5.6 Order of Magnitude Analysis

In order to determine the relative importance of the terms in Eq. 5-22, we performed an 

order of magnitude analysis by developing a simplified steady state energy balance for 

the production of LDPE. In this case, the feed stream contains only ethylene and the 

product stream contains LDPE and unreacted ethylene. For simplicity, it was assumed 

that the heat capacities of ethylene and polyethylene are the same and constant over the 

temperature range inside the reactor. AH is estimated as:
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ah = ^ h {: + Y s J 1** -  2 > > A
* © A . A

^  fe ed g a s^p ro d u ct fe e d g a s^ fe ed g a s

— EjtsH r 4* W feetfgaJ'-'p iethylem^<I'reaCt0r _exit ^ 'r e f )  ^ f e e d g a s ^  p,ethylene feedgas ^  'ref )

.. AH £,AHr + ffl feecjgasC pethyler,e{TreaCtor exit Tfeedgas) (^"23)

Extent o f reaction E, is defined as the total mass of ethylene that takes part in the reaction. 

If X represents single pass fractional conversion, then £ = mfeedgasX  . Using this 

relationship, we obtain,

X/\i I . + litjeedgasCpethylene ̂ reactor exit f̂eedgas) Qstirrer Qwall ^ 24)

In order to get an estimate of each term in Eq. 5-24, we used some average representative 

values for feed gas flow rate, conversion, power input to the stirrer, and temperature 

difference across the reactor. Using A/ / ' 1 = 807 Cal/g ethylene polymerized, CpMhylem =

0.6Cal/g °C, and average thermal conductivity of the reactor wall, Kwau =100 Cal/m2 s °C, 

we obtained:

™feedgasXW°r = 2.83x1 (T  J/hr

^ feedgaŝ p,ethylenê d'reactor exit f̂eedgas) 2.17x10 J/hr

Assuming that the power input to the stirrer roughly represents the heat generated by its 

rotation, Qstirrer = 4.5x108 J/hr. On an average summer day when the ambient temperature

is 20 °C, Qwau = 1.8 x 108 J/hr. On an average winter day when the ambient temperature 

i s -20 °C, Qwaii = 2.3 x lO 8 J/hr.

It can be concluded from the above analysis that heat generated by the stirrer rotation and 

heat loss through the reactor wall are of much smaller magnitude as compared to the heat 

of reaction and the sensible heat transfer terms. Also, Qwau and Qstirrer are of similar 

magnitude and tend to cancel each other. Therefore, these terms can be safely ignored 

from the balance equation. In order to calculate the remaining terms in Eq. 5-22 on a 

continuous basis, the following information was required:
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1. Molar (or mass) flow rates of all reactants and products

2. Heat capacity of each compound (C2 H4 , PE, EVA, VA, propylene) and their 

dependency with temperature and pressure

3. Heat of reaction of polymerization for different grades of EVA

The following sections briefly explain how these quantities were estimated.

Total flow rate: Mass flow rate of fresh ethylene, VA and propylene is measured at the 

feed point of each of these streams, but the total mass flow into the reactor is not 

measured in the plant. A first principles model to estimate the mass flow rate through the 

secondary compressor was provided by the plant personnel and was used successfully in 

a previous work by Kumar et al. (2003). The same model was used in this work to 

calculate the mass flow rate.

Single pass conversion: Although it was known from ICI process documents that average 

single pass conversion varies from 16-20%, no online measurement of this quantity was 

available at the plant. Two methods were employed to estimate conversion value online. 

The mass of total polymer produced in every batch is measured at the storage silo located 

further downstream from the reactor. A measure of ethylene conversion in the reactor 

was calculated from the total mass of polymer and total flow rate of ethylene into the 

reactor. However, this method will result in significant lag due to the distance between 

the reactor and the storage silo. An alternative way was to estimate this value from mass 

flow rate measurements of fresh ethylene feed and reactor feed. This method, which is 

explained in Figure 5-4, is based on steady state flow. In this simplified block diagram, 

all flow rates represent mass of ethylene. Assuming small amount of ethylene loss in the 

separator, conversion can be calculated from 01F 1/F3, where a  is a loss factor. Here Fi 

represents fresh ethylene flow rate, which is measured in the plant. F3 is the mass of 

ethylene into the reactor, which was estimated using the total mass flow and the feedgas 

compositions. This method gave reasonable results with negligible lag and was used for 

this analysis.
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ReactorCompressor Separator

Figure 5-4: Block diagram to estimate conversion

Thermodynamic data: One difficulty encountered in this work was finding the 

appropriate heat capacity value of the components at supercritical conditions. This is 

common for many industrial processes, where accurate heat capacity data may not be 

readily available in standard heat capacity tables and charts. To overcome this difficulty, 

we used an average heat capacity of each compound, which is closest to the true value at 

the reactor condition. Some excellent sources of thermodynamic data for hydrocarbons 

used include Gaur & Wunderlich, 1981, and Nehzat, 1980. In addition, industrial 

databases often document thermodynamic data related to their particular process. For this 

work, Aspen Tech’s thermodynamic database was used to obtain Cp values for the gas 

mixture at reactor exit conditions. However, such data base is of proprietary nature and is 

not available for general use. Where no reliable source was found, an average heat 

capacity for supercritical fluid was assumed to be the same as the corresponding ideal gas 

heat capacity (Perry’s Chemical Engineering Handbook). Heat capacity of propylene at 

supercritical conditions was approximated using this method. Although this does not 

represent the true value, it gives a much closer estimate as compared to the corresponding 

liquid heat capacity. The variation of Cp with pressure and temperature was assumed 

unknown. There is also some uncertainty associated with heat of reaction of EVA 

products as this will depend on the particular grade of polymer. We used an average 

value of 807 Cal/g of ethylene polymerized, which is quite accurate for LDPE. To 

accommodate for the uncertainties, the heat balance equation is then modified, where 

each term in Eq. 5-22 is decomposed into a known and an unknown (or a poorly known) 

part:
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reaction

ethylenes propylene propylene

(5-25)

By denoting the known term as H, and the unknown (or poorly known) terms as a; the 

above equation can be simplified as:

a xH x + a 2H 2 +... + a nH n = 0 (5-26)

Now the problem of formulating the energy balance is reduced to solving Eq. 5-26 for the 

unknown a ’s. PCA was used as a model identification tool to find a solution

5.7 PCA Model Development

A number of data sets which included fresh feed flow rates, feed gas composition, reactor 

feed temperature, and temperature of each reaction zone were collected from the plant 

site. As explained, the total feed flow rate and the fractional conversion values were 

calculated and appended to the data matrix. Component mass flow rates at reactor inlet 

and exit were estimated from mass balance equations. Before proceeding to model 

building, as a standard data pre-processing technique, the data was checked for 

compression, quantization, and the need for filtering. Industrial data is often compressed 

when stored in the historian, primarily to save storage space. A measure of compression 

in sampled data is given by what is defined as a ‘compression factor’. Thronhill et al., 

(2004) suggested that a compression factor higher than three will destroy the variance- 

covariance structure of the data and should not be used for any data based analysis. 

However, as mentioned earlier, all recent data in the plant is stored without any 

compression and could be used for further analysis. The variables which were used in this 

analysis were mostly collected from the reactor or areas close to the reactor. Some of 

these variables are usually well controlled within safe limits during normal operation, 

hence the signal to noise ratio was sufficiently high. The feed flow rate and conversion 

were among the estimated variables and had higher level of noise as measurements from 

many different sections of the plant were required for their estimation. These variables 

were filtered using a low pass EWMA filter.
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Normal data from three different batches of EVA production were combined to form the 

training data set for PC A model. PLS toolbox in MATLAB was used to perform the basic 

PCA calculations. All known terms in Eq. 5-25 (shown within first bracket) were 

calculated. An average heat capacity value for the product was used for the reactor exit 

stream. Therefore, in Eq. 5-25, the three terms for components in the reactor exit were 

condensed into one; hence the X matrix for PCA had five columns. As explained earlier, 

selection of appropriate number of PC is often not a straightforward task when dealing 

with industrial data. In this study we used the relative magnitude of eigenvalues as a 

criterion to choose how many PC’s to retain in the model. This is equivalent to using the 

variance explained by each PC as the selection criteria. It was observed that the second 

PC was small enough to use as representative of the heat balance error. The signs of the 

loading vector corresponding to the 2nd PC were in close agreement with Eq. 5-25. More 

details on selection of the appropriate PC will be given in the next section. Next, a 95% 

confidence interval was calculated for this score vector using the normal data which gave 

an upper and a lower bound for the selected PC. These limits were considered as the safe 

operation limit for the reactor. If the score which is an estimate of closure error exceeds 

the upper bound, then it was assumed that excess heat is generated inside the reactor 

which was not being removed by the feed streams. Figure 5-5 shows the selected score 

variable corresponding to PC2 that represents the heat balance error calculated from the 

normal data along with the estimated safety limits.
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Figure 5-5: Energy balance closure error as estimated from the normal PCA model

5.8 Choice o f Appropriate PC

In this section we present some results obtained from a detailed analysis on a criterion for 

selection of the appropriate PC. The analysis was performed with data collected from an 

EVA grade which did not contain any propylene. Therefore, the data matrix for PCA 

model development had four columns instead of five. Normal data from three batches of 

production of the same grade were combined to form the training data for this analysis. 

All standard data preprocessing steps were followed as described before. We emphasize 

the following points for clarity:

• No scaling was used

• An average heat capacity value was used to calculate component enthalpies

• Standard heat of ethylene homo-polymerization was used to approximate heat of 

EVA copolymerization

• Variation of heat capacity with temperature and pressure and variation of heat of 

reaction with different comonomer content (weight % of vinyl acetate) was 

assumed unknown
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The data matrix was configured as follows: X = [Hreactjon Hmjx H Va  H ethyiene]- 

Table 5-2 gives some details on how each of these terms was calculated. Average 

magnitudes of these terms during normal operation are also shown.

Table 5-2: Calculation of various terms in X matrix

Term Calculation formula Average magnitude (J/hr)

Hreaction F. (conversion). (AHR) 24500

Hmix F.Cpmix.Tmix 21500

Hva F.(Xva).(Cp ,va).Tva 100

Hethyiene F. (Xethylene)- (Cp,ethylene)-Tethylene 550

Here,

Hreaction = heat released by polymerization reaction

Hmix = enthalpy of the product stream relative to reference condition

Hva = enthalpy of vinyl acetate feed relative to reference condition

Hethy = enthalpy of ethylene feed relative to reference condition

F = total mass flow through the reactor

X; = mass fraction of different components in total flow

Plot of each column in X matrix is shown in Figure 5-6. Different segments in Figure 5-6 

represent different batches of data. The data contains sufficient amount of variability, 

which makes them suitable to use for model identification. Closer observation of this 

figure shows strong correlation among the mixture, VA and ethylene enthalpies. For 

better comparison, the data in X was scaled by dividing each column with its maximum

value such that the range of each column is between 0 and 1. Figure 5-7 shows a plot of

the scaled variables in X. The correlations among Hm;x, HVa, and Hethy are quite apparent 

in Figure 5-7.
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If  we assume that all the thermodynamic parameters used in the above calculations are 

exact, then a theoretical value of the heat balance closure error may be obtained as 

follows:

Closure Error Hreaction [Hmix - Hva “ Hethy] (5-27)

Note that even during normal operation, the error will be non-zero to account for heat 

loss terms which were neglected in developing this relationship. One data set was 

collected where decomposition took place. All four variables in X matrix were calculated 

for this new data set. The error was calculated according to Eq. 5-27 and is plotted in 

Figure 5-8. This figure will be used later for validating the selected PCA model.

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.5

9U£

-0.5
o

L U
Q)
3W
o
o

-1.5

-2.5
0 4000 6000 8000 10000 120002000

sample

Figure 5-8: Theoretical value of closure error calculated from mechanistic model (Eq. 5-

27)

Next, PCA was applied to the data matrix X. Eigenvalues of the covariance matrix of X 

and individual and cumulative variances explained by each principal component are 

shown in Table 5-3. Table 5-4 shows the loading vectors (eigenvectors of the covariance 

matrix) corresponding to each PC. Figures 5-9(a) to 5-9(d) show the scores calculated for 

the normal PCA model. It is observed that three eigenvalues corresponding to the last 

three PC’s are quite small compared to the first eigenvalue (Figure 5-10). It is expected 

that only one relationship, which is the desired energy balance equation for the reactor 

exists among the H variables constituting the X matrix. Then theoretically we should 

expect to have only one “small” eigenvalue from eigen decomposition of the covariance 

matrix of X. However, it should be noted that in calculating the last three columns of X, 

the following two mass balance equations were utilized:

Total mass balance: Fi + F2 = F (5-28)

Component balance: Fi = xi F (5-29)
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Where Fi and F2 are mass flowrates of ethylene and vinyl acetate in the feed stream, F is 

the flowrate of the reactor product stream, and xi represents ethylene mass fraction in the 

total flow. Inclusion of these mass balance relationships in the data matrix will result in 

correlated component enthalpy terms. Although the purpose of this analysis is to 

approximate the overall heat balance relationship among all the enthalpy terms, rather 

than finding any explicit relationship among the component enthalpy terms, this will 

result in three smaller eigenvalues in the PCA analysis (as was observed in Table 5-3). 

The problem is now to judiciously choose the correct principal component.

Table 5-3: Results from the normal PCA Model

Principal

component

Eigenvalue of 

covariance(X)

% Variance 

captured by this PC

Cumulative % 

variance captured

1 1.14e+009 99.99 99.99

2 9.12e+004 0.01 100.00

3 2.38e+003 0.00 100.00

4 1.43e+000 0.00 100.00

Table 5-4: Loading vectors from the normal PCA Model

Pi P2 P3 P4

-0.7476 0.6608 0.0667 0.0001

-0.6639 -0.7464 -0.0454 0.0023

-0.0035 0.0058 -0.0946 -0.9955

-0.0196 0.0781 -0.9922 0.0948

After careful investigation of the eigenvectors, the 2nd PC was selected as representative 

of the heat balance error for the following reasons:

1. Percentage variance captured by the 2nd PC is negligible (relative magnitude of 

eigenvalue corresponding to this PC is small)
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2. The signs of the 2nd loading vector agree with what is expected from the 

theoretical model (see Eq. 5-27).

3. Relative magnitudes of the weightings on the 2nd loading vector also seem 

reasonable. Heat of polymerization reaction and the enthalpy of the product 

stream are the major contributors to the overall reactor heat balance. The enthalpy 

of the feed streams (ethylene and VA) should have less effect in the heat balance 

equation because feed temperature is lower compared to the product temperature. 

Enthalpy of ethylene feed stream should be higher than enthalpy of VA stream 

since ethylene flow rate is almost 3 times higher that VA flow rate. All of these 

theoretical observations are supported by the weightings of the 2nd loading vector.
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Figure 5-9(a): 1st PC from normal PCA model
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Figure 5-9(c): 3rd PC from normal PCA model
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Next, a new data set containing decomposition was used to validate the PCA model. The 

new validation scores calculated from the PCA model are shown in Figures 5-11(a) 

through 5-11(d)
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Figure 5-11(a): 1st PC from validation data
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Figure 5-11(d): 4th PC from validation data

By comparing Figure 5-8, and Figure 5-11(b), we observe that the variation of error 

calculated from the theoretical model and the PCA model is exactly the same. These two 

figures are plotted again in Figure 5-12 and the similarity is clearly seen. This is another 

reason for selecting the 2nd PC as representative of the closure error. From the similarity 

in the above two cases, we may consider the mechanistic model (where approximate 

values of Cps are used) for monitoring and disregard the PCA model altogether. While 

this may seem feasible, the PCA model was chosen for the rest of the analysis for the 

following reasons:

The PCA model results in much smaller magnitude (orders of magnitude smaller) 

of the error compared to the mechanistic model. The thermodynamic property 

values used in the analytical expression are not known accurately and therefore 

this closure error has larger bounds. Projection of the data onto the loadings 

vector corresponding to the PC2 dominates the composite residual error and has
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the correct signs. Therefore this vector is taken as a proxy vector of the energy 

balance closure error.

In any case, the thermodynamic property values are likely to change with 

different grades. Since an important objective of this work is to monitor the 

reactor under different operating conditions and because it is possible to obtain 

the loadings vector in the residual space very easily from data sets in different 

operating regimes, the PCA based monitoring scheme has been found to be more 

practical and robust.
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Figure 5-12(a): Error calculated from theoretical model (Error = Hreaot -  Hm;x + E I v a  +  

Hethy) assuming AHR and Cp values are perfect; (b) Error calculated from PCA model 

(Error = 0.66Hreact -  0.74Hmix + 0.0058HVa + 0.078Hethy) assuming uncertain AHR and Cp
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As a final test to ensure the appropriate selection of PC, we looked at the squared 

prediction error (SPE), which is the linear combination of all errors resulting from PCs 

that span the null space. When one PC is retained in the PCA model, SPE or the Q- 

statisic is estimated as follows:

SPE = { x  -  txp Tx ' J [ x  -  t}p f  ) (5-30)

Figure 5-13(a) shows SPE calculated for the validation data set. The variation of SPE is 

found to be quite similar to PC2 (see Figure 5-11(b)). Figure 5-13(b) shows a closure 

view of the SPE plot near decomposition. SPE starts to increase sharply at sample 

number 6780, the same time when PC2 (which is taken as a representative of the energy 

balance closure error) starts to increase. Therefore, monitoring SPE with a 1-PC model 

gives identical result as monitoring PC2 alone. Figure 5-13(c) shows a zoom in plot of 

PC2. This feature was checked for each of the case studies presented in this paper and 

similar result was obtained.
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Figure 5-13(a): Squared Prediction Error (SPE) calculated from the PCA model
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Figure 5-13(b): Zoom in of the SPE plot where the decomposition occurs
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Figure 5-13(c): Zoom in of PC2 for validation data near the fault
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5.9 Results and Discussion

Once the model was identified, the next step was to use the model for detecting abnormal 

situations. Four sets of data, each of which contained some known faults, were used for 

validating the model. In the first two data sets, decomposition took place, followed by 

reactor shutdown. In the other two sets, the reactor temperature showed abnormal 

behavior which was similar to situations where decomposition took place. However, in 

these cases, the reactor recovered through operator intervention without any serious 

consequences.

Figure 5-14(a) shows the energy balance closure error from the first validation data set 

and Figure 5-14(b) shows a zoom-in of the same data near the fault. The data set 

contained 10800 samples of several measurements from the reactor and was collected 

using one second sampling interval. Decomposition took place near sample #5590, 

known from the plant history. A closer look into Figure 5-14(b) shows that at sample 

number around 5420 (170 seconds before the fault), heat balance closure error exceeded 

the safety limits and continued to increase until decomposition took place. Careful 

investigation of all important variables around the reactor revealed that ethylene 

conversion in the reactor suddenly increased after sample #5420, almost three minutes 

prior to the accident (Figure 5-14(c)). However, reactor temperatures as recorded by the 

thermocouples remained constant even though ethylene conversion began to change. 

After sample #5550, about 50 seconds before the fault, the lower zone temperatures 

showed an abnormal decreasing trend (Figure 5-14(d)). At the same time, the initiator 

flow rates were increased in order to compensate for the observed change (Figure 5- 

14(e)). Mid zone reactor temperature rapidly increased 40 seconds after this corrective 

measure was taken and resulted in decomposition at sampling time 5590. The sudden 

increase in ethylene conversion in the reactor resulted in an increase in heat generation 

which was not obvious from monitoring the reactor temperature records. The closure 

error, which shows the combined effect of heating and cooling inside the reactor was able 

to detect the change with reasonable lead time. Discussion with plant personnel suggests 

that three minutes would have given the operators sufficient time to bring an emergency 

reactor shutdown in effect, thus the decomposition could have been avoided.
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Figure 5-14: (a) Energy balance closure error estimated from the PCA model for case 

study 1; (b) zoomed in region where fault occured
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Figure 5-14(c): Ethylene Conversion during decomposition (Case study 1)
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Figure 5-14(d): Reactor temperature profile during decomposition (Case study 1)
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Figure 5-14(e): Initiator Flow rates during decomposition (Case study 1)

In the second case study, decomposition took place in a very similar manner during 

production of the same grade of EVA copolymer as in case study 1. The data matrix 

contained 8000 samples collected with a one second sampling interval. Decomposition 

occurred during steady production of the polymer at approximately sample #6834. Figure 

5-15(a) and 5-15(b) showthe estimated closure error from the model for this data set. The 

error started to increase at sample #6780 and went beyond the safety limit after sample 

#6800, which was 34 seconds before the decomposition. In this case, the reactor 

temperatures were among the only variables which showed abnormality. The lower zone 

temperatures (Figure 5-15(c)) started to decrease almost 42 seconds before the accident. 

The operators increased the initiator flow rate (Figure 5-15(d)) approximately at the same 

time and the final result was decomposition.
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Figure 5-15: (a) Energy balance closure error estimated from the PCA model for case 

study 2; (b) zoomed in region where fault occured
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Figure 5-15(c): Reactor temperature during decomposition (Case study 2)
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Figure 5-15(d): Initiator flow rates during decomposition (Case study 2)
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In the 3rd case study, data was collected from an event when an abnormal trend was 

noticed in the reactor temperature. Figure 5-16(a) and 5-16(b) show the closure error as 

calculated from the model which increased far beyond the threshold limit indicating the 

presence of an abrupt fault. The lower zone temperatures (Figure 5-16(c)) in the reactor 

started to decrease after sample #9420 in a similar manner as the previous two cases. The 

closure error started to violate the threshold limit at the same time instant. However, the 

initiator flow rates (Figure 5-16(d)) and the reactor pressure were manipulated in order to 

rectify this situation and the operation was brought back to normal without a need for 

shutdown.
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Figure 5-16: (a) Energy balance closure error estimated from the PCA model for case 

study 3; (b) zoomed in region where fault occured
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In case study 4 (Figure 5-17), the polymer produced was a different one than the product 

with which the normal model was developed. An EVA copolymer with slightly lower 

melt index and vinyl acetate content was being produced. The model was applied to test 

its applicability to different grades. The results showed that the same model was able to 

capture the trend in heat balance quite successfully. In this case, the operators noticed an 

abnormal decreasing trend in the lower zone temperatures (Figure 5-17(c)) as was seen in 

the cases where decomposition followed. The heat balance error (Figure 5-17(a), 5-17(b)) 

went beyond the safety limit at sample time 9285, about 30 seconds before the 

temperature decrease began. The closure error increased suddenly as the temperature 

began to decrease (after sample 9315), confirming the presence of an abnormal situation. 

However, instead of taking any major correcting action, the reactor was shut down 

temporarily to avoid any possible decomposition. In this case study it was observed that 

the estimated ethylene conversion in the reactor showed significant variation (see Figure 

5-17(d)) from the steady state value for an extended period before operators finally 

decided to shutdown the reactor. This was caused by variation in fresh ethylene flow rate 

into the process. Approximately 18 minute before this event, the closure error went 

beyond the lower limit quite significantly because of a reduction in ethylene conversion 

in the reactor resulting in reduced heat generation. This was followed by an increase in 

conversion above its nominal value, which caused the closure error to exceed the upper 

safety limit. Throughout these changes, the reactor temperature remained almost constant, 

failing to show the effect of variation in ethylene conversion. Although this case did not 

lead to decomposition, if the closure error was being monitored in addition to monitoring 

the temperature, the operators could detect the unusual situation earlier.
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Figure 5-17: (a) Energy balance closure error estimated from the PCA model for case 

study 4; (b) zoomed in region where fault occured
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Results of these four case studies clearly show the capability of this method to detect 

abnormal situations in the reactor. In all cases, the closure error violated the safety limit 

with reasonable lead time to give warning of an impending fault. One possible cause for 

the decomposition incidents studied in this work might be imperfect mixing inside the 

reactor, which leads to creation of local hot spots. These hot spots may remain undetected 

by the limited number of thermocouples used to monitor the reactor temperature in the 

plant. It should be emphasized that it is easier to see the deviation from the normal 

operation by monitoring the closure error as compared to monitoring the reactor 

temperature alone. In situations where the reactor temperature was the only indication of 

abnormality, while all other reactor variables remained approximately constant, the error 

could be used as a confirmation of an impending fault.

It was observed in these case studies that during normal operation, a number of samples 

of the estimated closure error showed deviation from safe limits producing false alarms. 

This is quite common particularly for industrial case studies where the normal models 

can distinguish drastically abnormal conditions or large faults from the general normal 

trend; however when applied to new normal data sets collected over a longer period of 

time, the safe limits may be falsely violated frequently. This is due to the fact that, in 

industrial processes, plants often run at various ranges and combinations of inputs which 

are all considered normal, yet they can be different from the training data. For this 

particular polymerization process, two important inputs required to build the model 

include feed gas temperature and ethylene conversion in the reactor. Strong seasonal 

variation was observed in feed gas temperature. Single pass conversion also varied in a 

range of 15-20% for various batches of data. It is important that the training data should 

include all possible ranges of such variability; otherwise the model will be prone to false 

alarms. Imtiaz et a l, (2005) and Raich & Cinar (1996) have discussed this situation with 

real data and suggested the use of a combined statistic where the T2 and the Q statistics 

from the PCA model are combined and monitored (see section 5.3.1). This technique has 

the practical advantage of reducing the number of false alarms during normal operation. 

The combined index was estimated for each of the case studies shown above. A value of

0.25 was used for k  in Eq. 5-15. It was found that this index indeed decreased the number
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of false alarms during normal operation. Figure 5-18 shows the estimated combined 

index for normal data shown in case study 1. For this case, during normal operation, in 

the first 5000 samples, only 61 samples were outside the threshold limit when the 

combined index was monitored. In contrast, 85 samples violated the limit causing false 

alarms during the same time period when only the residual corresponding to PC2 was 

monitored. However, online implementation of this monitoring scheme may become 

numerically intensive and difficult to use, whereas monitoring the score is much simpler 

to implement in practice. An alternative way to reduce the number of false alarms when 

monitoring the score is to periodically update the safety limits using past normal data. 

This was a feasible implementation scheme under the present historian architecture at the 

plant. This method is currently being tested at AT Plastics, i.e., the closure error is being 

calculated in real time from available process data and the PCA loadings. Figure 5-19 

shows an online plot of the closure error along with the upper safety limit as being 

monitored at the plant. This is a very preliminary implementation where the objective is 

to carefully trade-off the sensitivity of the score variable with few false alarms. One 

possibility that we are contemplating is to filter the residual errors and/or raise the upper 

bound, which would reduce the sensitivity.

One limitation of the proposed method is that it does not give information on how heat is 

generated or being utilized inside each zone of the reactor since the method is based on 

an overall energy balance. A zone heat balance is required instead of an overall balance 

in order to get such details. This requires precise information about conversion in each 

zone, which could not be estimated from the available plant measurements. However, the 

proposed method can still be useful as a way to give a quick warning and the operators 

can then take a closer look into the reactor.

Another point worth mentioning is how this method differs from the traditional way of 

using PCA for fault detection. In the conventional approach, usually, a normal PCA 

model is developed from routine operating data by retaining the first few major principal 

components. This model is then compared against abnormal data to detect faults (Kumar 

et ah, 2003). Such models are usually built using a large number of variables; therefore
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locating the fault may be difficult. In contrast, the proposed method is based on a first 

principles energy balance, which requires only a few variables and specifically deals with 

the heat utilization inside the reactor. Therefore it clearly indicates an impending fault in 

the reactor when the data deviates from the model. This work was done using an energy 

balance for a polymerization reactor. However, the same principle can be applied to other 

chemical processes.
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Figure: 5-18: Combined monitoring index for Case study 1

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

ft w Wi .............................   llaii iBiMigi i

VOO

" n  F to Edit Plots F flvoritss Tools f r f e

D  c S U & £  ** * • & * > ©  * ? ©  1? ►

24/11/2006 2:34.0aPM24/11/2006 Z04:08PM

Sfc-ur A u h k f M n  S V t TZ  Type Persxl M otvrf “«!n F
. 1 - 5 0 0  500 0 OOttC BestFit 1 How “   *“HISTORIAN IP_ANAL0G

J g § j 2 4 / 1 1 / 2 0 0 6  £ 0 4 : 1 ) 6  PM c  n  4 0  x . , ©  ^ 2 4 ' 1 1 / T X E  2  4 4  0 8  PM m
< 1 '  '• 1 .  _ It . .................m

— 1 l1 :2 4  I f fZ S t  1 . . . . . . . . . . . . . . . < 1 2 4 4 . . . . . . . . . . . . . . . . . . . . . ‘ . . . . . . . . . . . . . . l i r a 1 * 14 :04  1 114 44 r

Figure 5-19: Continuous estimation of the closure error as implemented for evaluation at AT Plastics



5.10 Summary

In this chapter, we presented a fault detection scheme for monitoring the onset of 

decomposition in an autoclave reactor in a LDPE-EVA plant. The method is based on an 

overall energy balance around the reactor. PCA was utilized as a model identification tool 

to estimate unknown parameters in the balance equation. The method was successfully 

applied to a number of decomposition case studies. In each case, the energy balance 

closure error showed an increase before the accident took place, indicating abnormal heat 

generation inside the reactor. In addition to being simple to calculate, one advantage of 

using the heat balance error as a monitoring tool is that it takes into account the combined 

effect of reaction and heat transfer in the reactor. Although monitoring the reactor 

temperature is a well accepted technique in most LDPE plants, this method can give 

significant and important additional insight into the process (case study 1) which may be 

overlooked by monitoring the reactor temperature alone. It is important to note that the 

model should include all possible ranges of variability of the normal process in order to 

reduce the number of false alarms. Periodic updating of the safety limit using offline past 

normal data is recommended for online implementation of this method.
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Chapter 6 

Concluding Remarks

6.1 Summary

This thesis has explored the applications of a number of multivariate statistical methods 

to develop modeling and monitoring tools for a high pressure polymerization process. 

The suitability of PCA and PLS for modeling, fault detection and diagnosis for 

continuous processes is well known. This thesis has confirmed the applicability of some 

of these existing techniques and introduced a number of novel extensions and techniques 

for model identification and fault detection.

In chapter 2, we presented an in-depth review of existing techniques for modeling 

polymer properties. We identified a number of challenging issues involved in the 

application of data based techniques to industrial polymerization processes. These 

include: process non-linearity; frequent grade changes resulting in change in process 

dynamics; issues related to data scaling; and model validation with real data. We tried to 

provide a reasonable and practical solution to these issues in the modeling work 

presented throughout the rest of the thesis.

In chapter 3, we presented an application of a PLS based soft sensor to predict melt flow 

index using routinely measured process variables from an LDPE-EVA plant. Two 

composite models and a number of single grade models were developed. The results 

indicated that these models could successfully predict the MI values of various products. 

Two single grade models were implemented at the AT Plastics plant site. These models 

have been running successfully over the last year. The composite models were not 

implemented as the quality of within grade prediction was not comparable to the single 

grade models. However, the plant personnel indicated that the composite models can still
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be used as an offline tool during grade transition to give the operators an indication of the 

direction of the MI change. A simple bias update scheme was adopted during online 

implementation of the models to account for operational variations during production of 

the same grade (resin).

At this point it is important to reiterate some difficulties associated with data based 

modeling in an industrial setting.

• Real data is usually corrupted with noise and outliers. Therefore, the training set 

should have sufficient excitation (high signal to noise ratio, without outliers). This 

may require collection of a large pool of data and choosing the appropriate time 

segments to build the model.

• In addition, plant data usually contains a large number of variables. Selection of 

appropriate variables requires judgment and process knowledge. Statistical 

techniques such as step-wise regression (Han, 2005) can also be employed in 

variable selection. The objective of a good softsensor design exercise is to ensure 

that the model structure does not become too complicated with too many variables 

and as a result it should not obscure simple physical interpretation.

• Another point worth mentioning is that in most chemical plants, there will be 

transport delays between different variables whose correlation may be of interest. 

For the softsensor design to be successful, it is crucial to estimate these delays and 

thus lag the appropriate variables to maximize the correlation between the X and 

Y block matrices. In this application the delays were estimated from physical 

measurements in the plant.

• In all these aspects, the task is made easier if  it is accompanied by frequent 

interactions with the plant operators and engineers.

In chapter 4, we focused on developing predictive models for dynamic time varying 

system. We presented a detailed review of the existing theories of data based recursive
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PLS modeling techniques. A novel RPLS algorithm was introduced based on the PLS 

theory using the Krylov controllability matrix. Three RPLS methods were applied to 

predict melt index during an EVA grade transition. For a fair comparison, performance of 

three methods were tested on the same data set. The newly proposed RPLS algorithm was 

shown to be faster than the existing methods. To date, before this work, the existing 

RPLS theories have not been tested on any polymer processes. It should be noted that 

implementation of any of these RPLS methods require matrix calculations, which was 

beyond the capability of the current historian and the existing hardware at AT Plastics. At 

present, the historian is only capable of performing scalar operations. Due to this 

technical limitation, the RPLS algorithms could not be implemented online. Nevertheless, 

the offline application results show the power of this method and indicate that this 

method is worthy of implementation on other time varying systems.

In chapter 5, we presented a PCA based fault detection scheme for monitoring the onset 

of decomposition in an industrial LDPE reactor. The method combines an overall energy 

balance around the reactor with PCA to estimate unknown parameters in the balance 

equation. Results from a number of decomposition case studies indicate that the method 

can successfully detect decomposition with reasonable lead times. This method has 

already aroused interest from a number of high pressure LDPE producing facilities. It has 

been successfully implemented at AT Plastics and has been running for over a year.

6.2 Contributions of this Thesis

The main contributions of this study can be listed as follows:

• A PLS based soft sensor was developed using routine operating data for 

predicting melt index of EVA polymers in an industrial reactor. The model was 

implemented in real time and was able to successfully predict MI at the reactor 

conditions.

• A detailed and practical methodology was given for developing inferential sensors 

using archived industrial data.

• A complete review was provided on recursive partial least squares algorithms for 

adaptive modeling of time varying systems. Advantages and disadvantages of
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each method were compared using real grade transition data from an industrial 

reactor.

• A detailed description was provided on Krylov controllability matrix based PLS 

theory. Some numerical issues related to the computational stability and 

robustness of the original algorithm were resolved.

• A novel RPLS algorithm was developed using controllability matrix formulated 

from the process data.

• A novel PCA based monitoring scheme was developed to detect decomposition in 

an industrial high pressure LDPE reactor. The method was simple in calculations 

and yet powerful in detection of the onset of decomposition. The method has been 

implemented and is currently undergoing evaluation at AT Palsctics.

6.3 Recommendations for Future Work

The results obtained during the course of this research work have opened up a number of 

possible areas for future work. Some of these are briefly summarized below.

Improvement o f  the soft sensor models: In this thesis we presented a static PLS based soft 

sensor model for building both single grade and composite models. When time delay 

between each input and the output variable is included in these models, they can be 

considered as a simple approximation of a dynamic model. Building dynamic models was 

difficult due to lack of dynamic data during grade transitions. Now, with the newly 

implemented extruder based soft sensor at the plant, more transient data are available. It 

would be interesting to test the performance of dynamic PLS, particularly for handling 

grade changes via a composite model.

Improvement o f  the RPLS algorithm: In this study, the RPLS algorithms were applied 

using a fixed length moving window or a constant forgetting factor to discount old data 

as the new data becomes available. Using a fixed moving window or a constant forgetting 

factor to discount the old data is sufficient if there is persistent excitation in the process. 

However, if there is no information in the new data and the old data are still being 

discounted, the covariance matrix will lose the essential process information and may
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become ill-conditioned. Under these circumstances, precision of the resulting parameter 

estimates will be poor. Use of a variable length for the moving window or using a 

variable forgetting factor will overcome such possibilities. Computation of variable 

forgetting factor has been explained in Fortescue et a l, (1981), and Shah and Cluett 

(1991). When a variable forgetting factor is used, the old data are discounted only when 

there is information in the new data and retained when there is no information in the new 

data. An interesting application would be to combine the covariance matrix updating 

scheme as shown in the kernel based RPLS algorithm and the KCM based RPLS 

algorithm using a variable forgetting factor. This combined method may be more suitable 

for modeling grade transition dynamics.

Modeling vinyl acetate content Copolymer content in EVA copolymers is an important 

factor that determines end use properties related to “softness”. The same approach that 

was followed in modeling MI may be used to build a PLS based softsensor to predict 

comonomer content for EVA copolymer.

Designing new products using a model inversion technique-. In a polymerization plant 

that is capable of manufacturing many varieties of polymers, new and experimental 

products are developed occasionally, based on the market demand. Operating conditions 

necessary to develop such grades are usually derived from knowledge of polymer 

reaction kinetics and empirical relationships between final property and reactor operating 

conditions. If PLS models can be developed for more than one final quality parameter, 

inversion of the model may provide insight into the operating conditions necessary to 

produce a new grade. Jaeckle and MacGregor (1998) proposed a PLS model inversion 

technique and showed its applicability for finding a window of operating conditions for a 

simulated tubular LDPE reactor. The method was later used in a machine tools factory 

for conducting preliminary experiment design. It would be interesting to test such a 

technique on an industrial LDPE reactor.

Improvement on the PCA based fault detection scheme: In this study, the PCA model for 

detection of decomposition was specifically built for a single grade of EVA product. It

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



was observed from the plant event history that almost all the decomposition incidents that 

took place at AT Plastics during the past five years occurred during production of this 

EVA resin. This was why we selected this product. However, the model was tested on 

another EVA grade with similar properties and was found to be quite successful. For a 

robust performance of the method, a number of PCA based models may need to be 

developed, each applicable to a group of polymer products. The grouping can be done in 

terms of melt index, viscosity, heat capacity, comonomer content etc., using any 

multivariate clustering technique.

Development o f  a kinetic model fo r  decomposition. When decomposition takes place in 

any part of the reactor, ethylene decomposes into its components exothermically instead 

of making polymer. Heat released during decomposition is much greater than the heat of 

polymerization. To perform an energy balance equation during decomposition, one 

should also include the heat of reaction for decomposition and the fraction of ethylene 

that takes part in the decomposition reaction. Therefore, during such an event, the steady 

state energy balance equation shown in Eqn 5-22 is no longer valid as this clearly does 

not take the decomposition reaction into account. The purpose of this study was to detect 

when such a phenomenon takes place rather than modeling the decomposition reaction. 

Detailed kinetic modeling of decomposition in LDPE reactors can be useful from an 

industrial point of view. This is indeed a challenging task and certainly worthy of future 

research work.
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Appendix 1

Singular value decomposition (Johnson & Wichem, 1999)

Let A be a m x k  matrix of real numbers. Then there exists a m x m orthogonal matrix U 

and a n x n  orthogonal matrix V such that A = UAVT . Here m x k matrix A has (/,/) entry 

/I, > Ofor / = 1,2,.... ,min(m,k ) and all other entries are zero. The positive constants T, ’s

are called the singular values of A. The singular value decomposition can also be 

expressed as a matrix expansion that depends on the rank r of A  Specifically, there exists 

r positive constants r orthogonal m x 1 unit vectors ul,u2,...,ur and r

orthogonal k x I unit vectors v,,v2,...,vr such that

-4 = £ W ={^ kv ,t
i= i

whereUr =[u} u2 ... ur] , Fr =[v, v2 ... vr] , and Ar is a diagonal r x r  matrix 

with diagonal entries Xi . Here AA1 has eigenvalue-eigenvector pairs Xj2,u i 

so, AATui = X 2uf , with X12,X22,....,Xr2 >0 = Xr+12,Xr+22,...,Xm2 for m>k. Alternatively, 

the Vj’s are the eigenvectors of ATA with the same non zero eigenvalues X 2.
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Appendix 2

Table A -l: List of variables in the raw data

Variable ID Description Engineering Units

1 Gas Concentration (ethane) %

2 Gas Concentration (C02) %

3 Gas Concentration (propylene) %

4 Melt Index none

5 Vinyl Acetate Content %

6 Fresh Feed Flow rate Kg/hr

7 Propylene Mass Flow rate kg/hr

8 Blended VA Mass Flow rate kg/hr

9 Stirrer Motor Amps amp

10 Separator Level %

11 Return Gas Cooler Outlet Pressure kg/cm

12 1st Stage Secondary Discharge Pressure kg/cm2

13 Product Cooler Inlet Pressure Kg/cm2

14 Reactor Feed gas Pressure kg/cm2

15 Reactor Pressure, PV %

16 Reactor Pressure, SP kg/cm2

17 Reactor Pressure, OUT kg/cm2

18 Separator Pressure kg/cm2

19 Extruder Speed rpm

20 Return Gas Cooler Inlet Temperature Deg °C

21 Return Gas Cooler Outlet Temperature Deg °C

22 2nd Stage Secondary Discharge Temperature Deg °C

23 1st Stage Secondary Discharge Temperature Deg °C
24 1st Stage Secondary Suction Temperature Deg °C

25 Reactor Thermo Couple - 1 Deg °C
26 Reactor Thermo Couple - 2 Deg °C

27 Reactor Thermo Couple - 3 Deg °C
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Variable ID Description Engineering Units

28 Reactor Thermo Couple - 4 Deg °C

29 Reactor Thermo Couple - 5 Deg °C

30 Product Cooler Outlet Temperature Deg °C

31 Catalyst Injection Pump-1, output %

32 Catalyst Injection Pump-1, PV Deg °C

33 Catalyst Injection Pump-1, SP Deg °C

34 Catalyst Injection Pump-1, Output %

35 Catalyst Injection Pump-2, Output %

36 Catalyst Injection Pump-2, PV Deg °C

37 Catalyst Injection Pump-2, SP Deg °C

38 Catalyst Injection Pump-2, Output %

39 Catalyst Injection Pump-3, Output %

40 Catalyst Injection Pump-3, PV Deg °C

41 Catalyst Injection Pump-3, SP Deg°C

42 Catalyst Injection Pump-3, Output %

43 Catalyst Injection Pump-4, Output %

44 Catalyst Injection Pump-4, PV Deg °C

45 Catalyst Injection Pump-4, SP Deg °C

46 Catalyst Injection Pump-4, Output %

47 Catalyst Injection Pump-5, PV Deg °C

48 Reactor Feed Gas Temperature Deg °C
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Appendix 3

Time delay estimation:

The calculation is based on a typical mass balance for the entire plant obtained from AT 

Plastics. Mass flow rate through the secondary compressor was taken as a basis. It was 

assumed that the plant was operating at normal temperature and pressure. Note that 

transport delay estimation based on this approach is not exact since it depends on the 

specific day of operation, grade of polymer being produced, and specific temperature and 

pressure. Also, the calculation was performed only for LDPE production. However, we 

assumed that although the mass flow rate may vary from grade to grade, the volumetric 

flow rate remains approximately constant for different product grades. Therefore, the 

estimates for LDPE are assumed to be valid also for EVA copolymers.

Basis for delay estimation: Mass flow rates for ethylene and PE are known for each 

pipeline from the mass balance. Pipe dimension (diameter and length) and equipment 

sizes were collected from appropriate P&I diagrams. Using these information, transport 

delay was calculated according the following procedure:

Mass flow 
rate of 
ethylene and 
PE
(Kg/hr)

divide by 
Density
(K g /m )

Volumetric 
 ̂ Flow rate _

(iriVhr)

divide by pipe 
cross sectional 
area (m )

Stream 
velocity (m/s)

Pipe length (m)
divide with stream 
velocity (m/s)------- Transport delay (s)

Density Calculation for ethylene, polyethylene and their mixture: Assumptions

1. Density of ethylene is calculated using the equation of state: PV = ZRT. 

Compressibility factor Z is taken as 1 for low pressure, and its value is obtained 

from generalized compressibility factor chart at high temperature and pressure.
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2. Density of polyethylene is calculated using relations for thermal expansivities of 

polymer. Effect of pressure on density is ignored, only the effect of temperature is 

considered.

3. At conditions where both ethylene and polyethylene are present in a single phase, 

mixture density is calculated using the mixing rule:

Procedure for calculation of the density of polyethylene: (ref: Krevelen, D.W.V, 1997) 

Structural unit of PE = [-CEE-CEE -]

Vw = VanderWaal’s volume = = 2(10.13) = 20.46 cm3/mol
i

Ei = molar thermal expansivity of melt = 10"3VW = 0.02046 cm3/mol

Eg = molar thermal expansivity in glassy state = 0.45 x 10'3VW = 0.009207 cm3/mol

Vc = molar volume of crystalline polymer at 298K = Vc; =29.4 cm3/mol
i

Vg = molar volume of glassy polymer at 298K = Y y gJ = 32.74 cm3/mol
i

Assume, for PE, Tg = 195K, Tm = 408K, therefore, at 298K, PE exists in crystalline state. 

Let, Vi(T) = molar volume of melt at desired temperature T, where T>Tm

:.V,(T) = V,(29S)+E'(Tm -298)+A F„ * E , ( T - T , )

= F,(298)+£! (r „ -2 9 8 )+ 0 .5 5 x l0 -V .r „ + £ l( r - r J

= 29.4 + 0.009207(408 -  298)+ 0.55 x 1 O'3 (20.46X408)+ 0.0246(r -  408) 
=> Vj (T) = 35 + 0.0246(r -  408)

2

4- Pm,,ure *' = 1,2

Let M = molar mass of structural unit ( -C 2 H 4 - )  = 28.05

.’. density = p(T ) = —
V^T)  35 + 0.0246(E-408)

28.05
, T > m K
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