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ABSTRACT

The salt wedge is a commonly observed water system in
estuaries with relatively small tidal ranges. It is forned
by sea water intrusion into the river and often has a very
distinctive two lavered stratification.

Because of its physical, chemical, bkiological and
economic importance, extensive investigations have been
performed on the salt wedge in order to specify both over-all
flow properties and mixing phenomena through its density
interface. However, particularly in the reproduction of this
f: w system by laboratory experiments, models show
significant complications and the present hydrodynamic
stability theories can not interpret the interfacial mixing
properties correctly.

In this study, some typical flow configurations in salt
wedge flow, especially secondary flow structures, are
considered. Based on previcus observations, four
hydrodynamic stability models are developed to investigate
interface stability. Each designed to investigate the
effects of the rigid boundary, boundary velocity, viscosity,
and displacement of the velocity profile inflection point
with respect to the density interface. The results provide
qualitative explanations for the observed three-dimensional
structures of interfacial phenomena and waves.

Precise experiments have been performed to produce a

complete data set (i.e. information such as wedge shape,



selonity and density profiles, wave length and phase
ye:locity, interfacial displacement and the lower layer
ickness) in order to verify the theoretical model

ra

predicticns.  Agreement between these experiments and the
\ meoretical results is very good, although the predicted
phase velocity of SVB waves is always underestimated.

This work is concluded with a discussion of the

possibility of three-dimensional primary instability in a

salt wedge flow.
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F Focal length of lens

£ Arbitrary function

£ Doppler shift frequency

F Body force

g Gravitational acceleration

g. Non-dimensional gravitational acceleration
h Shear layer thickness (=2L)
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INTRODUCTION

Understanding of instability phenomena of density
stratified flows is very important in a broad range of
scientific disciplines including Meteorology, Oceanography
and several branches of Engineering. Instability phenomena
are considered to be key mechanisms in the transition from
laminar to turbulent flow and in various mixing phenomena.
Much of the existing knowledge comes from work in Atmospheric
and Oceanographic science where experimental verification is
extremeiy difficult.

Investigation of estuarial salt wedges offers promise
for improving understanding of the role of instability
phenomena in mixing processes. Estuarine salt wedges can, in
nature, exhibit relatively stable mixing zones that
facilitate experimental and field investigation. Salt wedges
in steep estuaries with low tidal range and a constant fresh
water discharge exhibit these stable characteristics.

Needless to say, the hydrodynamic elements of such a
system are best studied in laboratory experiments. Although
laboratory experiments have some disadvantages such as
channel size and Reynolds number limitation, they do show
significant details of salt wedge hydraulics and are quite
adequite for examining the relationship between mixing and
interfacial wave phenomena. Many attempts have been made to
interpret this phenomenon in terms of a shear instability

mechanism; however, they fail to give enough accuracy,
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(a) SVA (Spiral Vortex Above the interface) waves.
(Holmboe mode with positive phase velocity Cr>0.0)

————

int.

(b) SVB (Spiral Vortex Beneath iLhe interface) waves.
(Holmboe mode with negative phase velocity Cr<0.0)

int.

(c) SVC (Spiral Vortex the Center of which coinsides
with the interface) waves. (Kelvin-Helmholtz mode)

————

~

< .\‘/_/\7/;_0 v

(d) Breaking and mixing.

Figure 2. Classification of typical interfacial
phenomena and waves.
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Figure 3. Three dimensional flow structure of salt
wedge flow due to the secondary flow in channel.



nopecially if three-dimensional wave structures exist on the
ity interface, due mainly to the lack of appropriate
models,

From previous knowledge, typical salt wedge flow and its
intoerfacial forms can be summarized as Figure 1 and 2.
Veelocity and density profiles are often approximated by

i.hiz) and step functions, respectively, which have

v«

mmeellent agreement with experimental observations. Also it
was found that secondary flow structures similar as the cren
channel flows exist on most of the salt wedge flow
experiments. This flow structure often creates spanwise
velocity distribution which is recognized as high and low
speed regions in fresh water layer (Figure 3).

By investigating previous knowledge, relatively weak
areas are identified as follows:

Problem (i): Separation of two different type of waves
(3VA and SVB) were observed and this phenomenon is called
'one~-sidedness'. Present knowledge of stability may explain
some stabilizing effects of the rigid boundary conditions,
but Jdoes not explain the separation of these two waves.

Problem (ii): Previous experiments show that a salt
wedge can be divided into three sub-divisions based on their
stress distributions. 1In each region, velocity profiles can
be aporoximated very well by a tanh(z) function, although the
inflection points are otten displaced with respect to the

density interface. These displacements cause some problems



when applying existing hydrodynamic stability theories to the
salt wedge.

Problem (iii): Due to the secondary flow structures in
channels, high and low speed regions develop which may cause
three-dimensional interfacial wave structure. However, tow
experimental data are available in the case of sait wedae
flow, making it difficult to determine the impli.ar iong o
this phenomenon.

The objective of this study is to obtain a bertter
understanding of the mechanisms of this interfacial wave
phenomenon by investigating in an appropriate fashion the
nydrodynamic stability of the flow field and then worityina
these results by carefully assembled experiments. In this
study, experimental and theoretical research will :iivut it
reviewed . The subsequent parts of this study wi!l analyse
each weak area by using theoretical, numerical an
experimental approaches. Theoretical models will employ an
inviscid two-dimensional two-layered stratified flow system
with appropriate boundary conditions. Numerical study will
be applied to two-layer viscous flow with continucus velocity
profiles, and detailed experiments will be performed in order

to verify these studies.



1. PART ONE: REVIEW OF THE PRESENT KNOWLEDGE

1.1 INTRODUCTION

Experimental and mathematical investigations of salt
wedge flow have been performed intensively since World War
i,ocause of its high economic and environmental impacts. From
a hydrodynamic point of view, this flow is also interesting
cince it is essentially laminar-turbulent transition flow
with density stratification, which is related to various
phenomena in the atmosphere and ocean (such as mixing, waves,
fluctuations of its properties etc).

However, despite such high demands from engineering,
public policy and science, present knowledge is still quite
limited due mainly to the complexity of the flow system (for
example, tide effects, geometrical limitation of modelling,
scale effects, strong non-linearity and time dependence).
Until now, two major approaches have been utilized by
researchers to understand this flow.

The first approach involves evaluation of the salt wedge
using macroscopic parameters to predict overall properties
such as entrainment, interfacial friction factor, general
wedge shape, total intrusion length, the strength of salt
circulation etc. Although relatively good agreements were
obtained with this approach, particularly through laboratory

experiments, the physics of the salt-wedge is still not 30

well understood.



Another approach is to pay great attention to the micio
structures of the mixing phenomena at or through the density
interface in the hope of improving the accuracy of prediction
for various applications. However, achievements in this
direction are still primitive.

In this study, we will employ this second approach to
improve our understanding of mixing phenomena in the ol
wedge. The hydrodynamic stability theory and interfacial
waves are assumed to be dominant mechanisms of mixing, an
applicability of those ideas will be discussed through the
experiments.

In this section, we will first briefly review the
overall properties of salt wedge experiments and _hen we wi!l.
inspect the previous experimental research on the interfaci:.
wave phenomena. Based on this microscopic approach,

mathematical and numerical research will be discussed in

order to identify relatively weak areas and the associated

reasons.



1.2 REVIEW OF EXPERIMENTAL INVESTIGATIONS

1.2.1 Introduction

While any predictive model should be formulated on the
basis of the underlying physical principles, the present
state of understanding of density-stratified flow is so
limited that a good deal of empirical information must be
used in model development. Laboratory experiments clearly
provide the most comprehensive observational detail, mainiy
because of their high reproducibility.

In the following subsection, several experimental works
on salt wedge flow will be reviewed, paying particular

attention to interfacial waves and mixing aspects.

1.2.2 Salt Wedge Experiments

Figure 1.1 summarizes the general overall shape of the
salt wedge obtained by experimental observations. Sargent &
Jirka (1987) suggested a longitudinal subdivision of the
wedge into three regions: the tip region, the quasi-
equilibrium region, and the exit region. The tip and exit
regions have a highly variable force distribution resulting
from adjustments in the internal stress distribution (tip)
and vertical accelerations caused by a non-hydrostatic
pressure distribution (exit). In practice, it was pointed
out that both regions are relatively short (on the order of

several water depths) and the quasi-equilibrium region is the



controlling factor for the overall dynamics of the salt
wedge.,

The density and velocity distributions in the vertical
direction are also shown in Figure 1.1. The thickness of e
variable density layer is about 1,10 to 1715 that ot the
velocity profiles. Therefore, it i1s commonly accepted tha!
the flow may be vertically divided by the denuity inter:a .
(the 50% point between maximum and minimum dencity, usually
also coincident with the maximum gradient point) into an
upper layer and lower layer (the so-called 'two-layer (o)
stratified flow' approximation).

Velocity profiles are often approximated by tanh(:) or
erf(z) functions due mainly to their mathematical
convenience, and acceptable matching with observations.
Although there have been several theoretical investigations
to determine the velocity distributions based on boundary
layer theory, the derived very high order (8th and 9th)
polynomial functions do not seem to provide sufficient
improvement to justify such a complicated m:thematical
treatment (see Keulegan 1944). Therefore, the general trend
is to approximate the velocity profile using a tanh(z)
function, particularly for upper layer profiles. On the
other hand, since the lower layer typically shows reverse
flow due to the mass balance in cases of an 'arrested' salrt
wedge, a second order polynomial function is commonly
employed for the velocity approximation, based on width-

averaged volume conservation.



In the quasi-equlibrium region, it is generally observed
that the inflection point of velocity profiles coincides with
its density interface level. By contrast, the tip and exit
regions show significant displacement of the velocity
inflection points from the density interface due to their
stress distributions. This displacement can reach about 20%
to 20% of the shear layer thickness; as will be explained
later, the conventional hydrodynamic stability theory is not
applicable for these cases. Details of the overall flow
properties can be found in many papers and articles such as
Schijf & Schonfeld (1953), Kaneko (1966), Keulegan (1966),
Suga & Takahashi (1976), Grubert (1980), Arita, Jirka & Tamai
(1986) and Arita & Jirka (1987). All of these indicate that
the dynamics of a salt wedge is strongly related to the
interfacial wave phenomena schematically illustrated in
Figure 1.2 (which was produced from photographs using
visualization technique).

Generally, interfacial waves first form at a distance of
about 20 to 30 cm (which is approximately 15 to 20 times
longer than shear layer thickness) from the wedge tip and
then persist over the main region of the wedge. The
predominant waves propagate downstream (see Figure 1.2) and
are somewhat irregular in shape with a cusp-like structure as
shown in Figure 1.3. (flow pattern (I)). The high vorticity
concentrations existing above these interfacial waves can be
visualized by injecting dye just above the density interface.

As the interfacial wave passes downstream, another type of



wave appears. This wave 1s generally moving upstream with o
very small phase velocity and its shape looks anti-symmoetric
to other waves with respect to the density interface. 'These
two types of waves eventually interact with each other and
induce mixing by ejecting eddies from their crests into both
the upper and lower layers (see wave pattern (II)).

Around the exit region, wave amplitudes increac.
drastically and strong mixing occurs. wWaves in this reajon
provagate with almost the same velocity as the density
interface velocity, and eventually the interface itself
starts rolling up.

Nishida & Yoshida (1984) classified these interfacial
phenomena into the four groups shown in Figure 2 in previous
section. The flow direction of upper layer is from left to
right, and the lower layer flows in the opposite direction.
They named the interfacial waves caused by strong vorticity
concentration above the interface as "SVA waves"; these have
been recognized as fast-propagating predominant waves on the
salt wedge by several researchers (each of them given
different names, such as wave I by Hino & Hung (1982)).
Another commonly observed wave is the SVB wave, due tac
vorticity concentration below the interface, propagating in
the opposite direction to SVA waves (called wave II by Hino &
Hung). Although these two waves are identified as Holmboe
modes in the Hydrodynamic stability theory, their properties
still provoke many questions particularly in a complicated

system such as the salt wedge.
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In the exit region, as was mentioned before, a third

type of wave is observed, named SVC waves here. These are
believed to be caused by a mechanism very similar to the
well-known Kelvin-Helmholtz (K-H) instability mechunism. 1n
fact, this type of flow represents the first successtul

application of stability analysis to actual flow systoems
nature.

The fourth pattern is found in more turbulent, well
developed flow and often has a smaller density gradient at
the density interface level.

This classification is very convenient, espeaially for
salt wedge flow, because of the different names for two
Holmboe modes moving in upstream and downstream directiong.
Therefore, we will follow this Nishida & Yoshida's naming :
the rest of this study.

In the next sub-section, experimental work related to
these first two Holmboe modes (i.e. SVA and SVB waves) wil!
be reviewed, in order to understand the basic mixing

mechanism on the salt wedge.

1.2.3 Interfacial Waves and Instabilities

The earliest experiments which considered stability were
performed by Keulegan (1949). His model was designed to
investigate the relationship between global (overall) flow
properties and the wave mixing phenomena of two layer

stratified flow. Figure 1.4 shows schematics of his



apparatus and a sketch of the observed interfacial mixing
process. Regardless of discharge variation and initial
density differences, the fundamental mixing mechanisms found
in these systems were identical: waves always had a sharp
crest towards the upper side, and the mechanism of miming was
an ejection of eddies from the crests into the moving current
as shown in Figure 1.4. At the time of Keulegan's wcrk,
however, this type of instability could not be explained
theoretically, making it very difficult to explain this
phenomenon. Even with present knowledge of Holmboe
instabilities, which provides additional unstable modes in
stratified flow, this phenomenon is not clearly understood,
since only one type of wave was found in the flow instead of
a pair of SVA and SVB waves as predicted by Holmboe (18€2).
This phenomenon, namely isolation of a single mode, was lazear
found in several experiments, and was called 'one-sidedness'
by Maxworthy & Browand (1975).

Although Keulegan's experiments do not provide enough
information (such as vertical velocity and density
distributions) to evaluate the flow stability using present
knowledge, his results clarify the most fundamental mixing
mechanism on the salt wedge.

Since the discovery of these additional unstable modes,
new experimental data on the Holmboe instability has been
quite sparse, despite theoretical and mathematical
investigations. This is probably due to the fact that

stratification in the atmosphere and ocean has relatively



small density gradients and under such conditions, K-H

instability usually has larger growth rates than Holmboo
modes. Qualitative investigations and observation of non-
linear evolutions of these Holmboe modes was periormed

experimentally by Browand & Wang (1972), and Browand & Winam
(1973). Figure 1.5 shows their experimental set-ups and
typical velocity and density profiles. It was toumd that b,
overall Richardson number (defined as Rio=gAph/p (A1) where Ap
and AU are density and velocity differences acros: the sheon
layer, respectively) varied from 0 to approximately 2.0 as
the flow progressed downstream and tended to be stable aftor
a certain distance from the splitter plates. This fact
indicates the existence of a critical Richardson number for
stability which could not be found using inviscid theory.
Although the experiments were intended to investigate mainty
strong non-linear evolutions of waves and vortex pairing,
which are essential causes of mixing, some aspects are
applicable to salt wedges particularly in the region wher=
SVA and SVB waves interact.

Besides the 'one-sidedness' probklem, three-dimensiond
structures of waves and flow are another phenomena still nnr
well understood. Figure 1.6 shows a typical flow pattern
observed in a relatively wide open channel (This photograptl.
was taken by Yonemitsu (1986) using dyed thread visualizatinn
method) : it can been seen that there are high and low speel
regions in the lateral directions. The predominant waves

(SVA) tend to be highly three-dimensional under this



circumstance, with several wave crest/troughs typically
appearing across any wedge section in the high-speed regions
of flow. The number of such lateral waves seem to be
strongly affected by channel cross-section aspect ratios.
There is some research that suggest this three-dimensional
structure, particularly in the fresh water layer, is related
to the channel secondary flows (Tashiro, Yoshida and Yoneya
(1983), Yonemitsu (1986) etc). Visualization indicates that
high speed regions tend to have higher shear stress at the
interface: therefore, it is understandable that SVA waves are
observed more often in these regions. On the other hand, SVB
waves always appear in the low speed region where there is
stronger back flow and lower interfacial shear stress; a fact
which cannot be explained by our present knowledge of
stability theory. This fact implies that wave properties may
not be predicted accurately using width averaged quantities.
Thus, more intensive and precise experiments with
consideration of such three-dimensional flow structures must
be performed in order to understand the mechanisms of
interfacial wave phenomena. In the next sub-section,
mathematical treatments of the interfacial wave phenomena

will be reviewed.
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1.3 MATHEMATICAL MODELS OF INTERFACIAL WAVES

1.23.1 Introduction

As was mentioned in a previous section, it may be
reasonable to treat the arrested salt wedge as two layer
stratified flow without mixing at or through the density
interface (5chijf & Schonfeld (1953)). This type of
treatment is also common in many other areas of fluid
dynamics in order to explain a variety of phenomena in the
ocean and atmosphere.

Natural bodies of fluid such ": the atmosphere, oceans
and lakes are characteristically stably stratified. When
they are disturbed in any way, internal waves are generated.
This wave phenomenon and the generation mechanism have
attracted the interests of many researchers since the middle
of 19th century. One of the reasons is that this phenomenon
is regarded as a primary mechanism of laminar-turbulent flow
transition and, therefore, is expected to explain phenomena
ranging from temperature fluctuations in the deep ocean to
the formation of clouds in the lee of mountains. Because of
such a wide variety of applications, intensive research has
been performed in the areas of Oceanography, Meteorology and
Applied Mathematics. Despite the early research attempts,
dramatic progress towards understanding this phenomena has
only been accomplished in the last 30 years due mainly to the
development of computer and numerical schemes. Examples of

books where the mathematical details of the linear stability



theory can be found are Chandrasekhar (1961), Betchov &
Criminale (1967), Turner (1973), LeBlond & Mysak (1978), and
Drazin & Reid (1981).

In this section, the stability analysis of two-layer and
quasi-two-layer systems will be reviewed specifically trom
the salt wedge application point of view. The review will
start with simple two layer inviscid two-dimensional models
with piece-wise linear velocity profiles, and then proceed to
more complicated systems employing viscosity-diffusivity
effects and various boundary conditions. Finally, some of
the latest three-dimensional instability theory and its

numerical results will also be referred to.

1.3.2 Hydrodynamic Stability

Stability can be defined as the quality of robustness.
This idea has been applied widely to mechanical, astronomical
and electrical systems which have only a few discrete degrees
of freedom. In the study of a continuous medium such as a
fluid, however, the number of degrees of freedom is infinite
and the question becomes substantially more difficult. 1In
particular, the basic equations take the form of a system of
nonlinear partial differential equations. 1In spite of the
additional complications, progress toward an understanding of
such system is made with the use of linearized approximations
and by appropriately extending the theory developed for

discrete systems.



Such a mathematical treatment of stability to explain
{he waves and mixing mechanism was initiated by Helmholtz
(1868) and Kelvin (1971). The velocity and density profiles

which they investigated are shown in Figure 1.7. It was

frund that one unstable wave mode which is Cx=0.0 can exist in
the system. This wave mode is now called 'Kelvin Helmholtz'
(F-H) instability. Although Figure 1.8 shows a typical K-H
instability observed in the atmosphere as a cloud formation,
field investigations by Woods (1968), Atlas et al.(1970),
Gossard et al.(1971), Gossard (1974) and Garrett & Munk

(1979) also support the existence of this wave mechanism.

In a two-layer system such as the salt wedge, however,
two additional unstable waves which are Cg#0.0 with completely
different features from K-H instability have been found.
These modes are actually dominant waves for the mixing
mechanism in the salt wedge; as was mentioned in a previous
section, much research has been performed on these waves.
Holmboe (1962) found these additional modes by employing a
simple two-layer piece-wise linear velocity profile model
with so-called 'symmetric wave analysis', and Hazel (1972)
obtained details on the structure of these modes through
numerical analysis.

Hazel's model utilized continuous velocity and density
profiles which were approximated by tanh(z) functions. The
details of these works can be found by reviewing articles by
Drazin & Howard (1966), Thorpe (1973), Howard & Maslowe

(1973) and Drazin & Reid (1981).



The velocity profiles, density profiles and stability

diagrams obtained by Holmboe are shown in Figure 1.9, where o

is the wave number, non-dimensionalized by the shear laver

thickness d, and Rip, is the overall (global) Richardson

number defined as follows:

P>-p: L

; 1
Ri = = gd
p.tp:

2

According to this diagram, it can be seen that unstable modes
(called 'over-stability' by Holmboe in order to distinguish
these additional dispersive mode from K-H modes, and now
these modes are generally called Holmboe modes) are limited
to a narrow wave number band which extends to Rig=e.

The same types of solution were obtained by Hazel
numerically using more realistic velocity and density
profiles (Figure 1.10 and 1.11). He investigated the flow
stability by varying the ratio between shear layer thickness
and density transition layer thickness, and helped clarify
the relationship between K-H modes and Holmboe modes. To
perform a comparison with other two-layer models, it is
necessary to modify the solutions, as is shown below, since
Hazel's model employed slightly different characteristic
scales,

=5 exo |- g)
1= ex
p. p p‘ Rv at Y=°° ’

=5 o)
P2=p p(Rw at y=-o0, and
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Then,

= R R
c=- =10 = = (1-Y)
2 9y 2 v , when 1-y << 1.

Therefore,

h
Rivenr = LI

v’ 2v?

R£g'h = % Rigoimboe

Using this conversion, Hazel's solutions give very good
agreement with Holmboe's solutions when R >5.0. Although
llishida & Yoshida (1990) pointed out that Hazel's solution
for K-H modes disappear asymptotically as R becomes larger
(equivalent to the two layer modelling) Hazel's model
provides an excellent explanation of the instability
mechanism for Holmboe modes. Since it is still not clear
‘ust what is the reason for this mismatching between two-
layer and continuous density model results, further

investigation is required.

1.3.3 Viscosity Effects on Stability

DPespite the excellent results of Hazel's calculations,
his model could not explain some observed facts such as the
presence of a critical value for the overall Richardson
number (with regards to instability) and a Reynolds number
dependency. Naturally, the next step in stability analysis
was to inciude the viscosity and diffusivity effects into the
governing equations (this was particularly necessary for

gradually varying stratified flow). Since high Richardson



number flow shows extremely small growth rates in the
inviscid models, it is expected that consideration of the
viscosity for such systems may decrease growth rates to thoe
point that the flow i1s stabilized and thus induce the
critical Richardson number.

The aoverning equations ware derived by Orr (1906) and
Sommerfeld (1908) for the case of viscous flows, and by
Koppel (1964) for viscous-diffusive systems. These equation:
are 4th and 6th order ordinary differential equations
respectively, and their mathematical behaviour has been
extensively investigated. If the velocity and density
profiles such as those of Hazel and Holmboe are used, the
solutions become very complicated and the problems must b
solved numerically. Maslowe & Thompson (1971) and Miller &
Gage (1972) performed this numerical analysis for the 6th
order governing equations based on Hazel's velocity and
density distributions (see Figure 1.12). It was found that
the effects of viscosity on stability was relatively small
and the neutral boundaries did not change except for very iow
Reynolds number flows (Re<150). This result is similar tn
results obtained by Lessen (1950) and Gotoh (1971) for the
homogeneous case. For a salt wedge, the range for Reynolds
number is around 50<Re<300 and it may be important to inciude«
the viscosity effects to improve the predictions. However,
since Hazel's and Holmboe's density distribution produces a

relatively thick density transition layer, it is not suitable



to explain the wave phenomenai in this type of two layer
s'ratified flow system.

The Orr-Sommerfeld equation (4th order) was employed in
rhe two layer models analyzed by Nishida & Yoshida (1990)
since the diffusivity effects are negligibly small for these
systems. Figure 1.13 shows the velocity and density profiles
+nd the resulting stability diagrams for different Reynolds
numbers. It can be seen clearly that unstable regions are
bounded as the Reynolds number Re decreases, and the critical
Richardson number Ric is about 1.5. This analysis explains
the experimental results very well, particularly in unbounded
cases of the two layer system. However, for the analysis of
the salt wedge flow, it was found that the phase velocities
»f Holmboe modes, which have smaller velocities (i.e.SVB),
are always underestimated by this calculation. Also, as was
mentioned in the previous section, the salt wedge showed
subdivisions with different wave formations, and Nishida's
results cannot explain the mechanism of this phenomenon.
This fact implies that there are other factors determining

the stability of a salt wedge besides viscosity.

1.3.4 Rigid Boundary Effects

The other important factor determining the stability of
the salt wedge is probably the presence of a rigid boundary.
Stability of the flow with such boundaries was first
investiacted by Howard (1964) on a homogeneous hyperbolic

tangential shear layer. It was found that the critical



distance from the inflection point to the rigid boundary

(i.e. where the flow becomes stable for all wavelenaths) was

Zcr=1.1997 as non-dimensional length based upon a half lenath
of shear layer thickness. For stratified cases, Hazel (197.2)
used his model to evaluate the effect c¢f reducing the lower

layer thickness. Although the calculations showed some
numerical instability problems, the critical values ot the
lower layer thickness for stability were found to be in the
range 1.195<Zcr<1.205.

Both Howard and Hazel employed inviscid modelis; o
treatment followed by Lalas & Einaudi (1976), Einaudi & Lalarn
(1976), Lindzen & Rosenthal (1976), Davis & Peltier (1977)
and Fua & Einaudi (1984) to solve atmospheric boundary !l.aye:
problems. Although these papers considered models of virying
complexity ard realism, the main qualitative results o! all
were identical. For example, the result obtained by Lalas
and Einaudi is shown in Figure 1.14. It is clearly seen that
the presence of the boundary leads to extra modes of
instability. These additional modes have different features
from K-H and Holmboe modes and were named 'resonant' modes by
Davis & Peltier (1976). The main differences observed were
longer wavelengths, lower phase velocity and smaller growth
rates than the K-H modes. Besides these facts, these moddes
propagate in the region between the shear layer and the lower
rigid boundary, which is quite similar to the SVB waves.

Both Lindzen & Rosenthal (1976) and Davis & Peltier (1976)

were able to show that the mechanism responsible for rthe



existence of resonant instabilities is critical level over-
reflection, a phenomena which explains the microscale
structures in the atmosphere very well.

However, because of the exponentially varying density
profile, this analysis is not applicable to salt wedges.
Their definition of the Richardson number is based on density
gradient dp/dz, (so-called local or gradient Richardson
number Ri,). In a salt wedge, Ri =0 except at the density
interface where Ri,=e. Hino & Hung (1982) introduced this
boundary effect into the salt-wedge type flow stability
problems by using the realistic velocity and density profiles
shown in Figure 1.15. Interestingly, although their
calculations show several modes with positive and negative
phase velocities, none of them are unstable. Thus, these
modes may be due to numerical instabilities.

All these calculations overestimate the stabilizing
effects of the rigid boundary, since it was found that salt
wedges have SVA waves in the region where 2;=0.4 to 0.5. A
nossible explanation of this fact may be that the density
interface destabilizes the Holmboe modes. Therefore, in
order to evaluate the boundary effects for salt wedge flow,

it is necessary to consider two layer viscous models.

1.3.5 Density Interface Displacement Effects
Experiments show that the center of the shear layer
tends to be displaced with respect to the density interface

especially in the tip and exit regions of the salt wedge.



Lawrence et al. (1991) investigated the stability teatures o
these displaced flow systems by using relatively simploe
inviscid two-layer models (see Figure 1.16 and L.17)., ‘The
results show that additional Holmboe modes appear in the
large wave number region near the Rip=0 axis. Theuso moden
nave two pairs of complex conjugate roots having positive oo
negative real parts equal in magnitude. It was «also tound
that new unstable waves, called 'mode I instability', are
obtained (providing an extension to K-H instability) which
are dispersive. It is interesting that Holmboe modes
eventually move closer to the Rio=0 axis as displacemesnt d
increases and disappear at d=1.0. This result is
understandable since Holmboe modes are induced by the
existence of strong stratification in the shear layer and
agree with Hazel's analysis qualitatively.

Although this model is quite simple, it indicates that
stability properties are strongly influenced by the
displacement d. This implies a sensitivity to velocity and,
therefore, it will be necessary to develop an appropriate
model for the stability analysis of a salt wedge because of
its velocity profiles. Such a sensitivity of stability
features to background velocity and density profiles may
induce three-dimensional wave structures on the density

interface, since the flow field is three-dimensional.

1.3.6 Three-Dimensional Instabilities



As was mentioned in section 1.2.3, three-dimensional
st.ructures of interfacial waves are another commonly cohserved
problem in salt wedges. Because of the consequences of
Squire's theorem (Squire 1933), it is always assumed a priori
that an initially one-dimensional flow will pass through a
distinct two-dimensional state before being dependent on the
third spatial coordinate (lateral direction). Three-
dimensional structures are therefore generally considered to
be results of secondary non-linear instability after full
development of primary two-dimensional instabilities. A
typical example of this idea can be seen in a homogeneous
fluid analysis such as the numerical analysis of a mixing
layer (Metcalfe et al. 1987) etc.

However, in the case of a salt wedge, flow is very
laminar and even fully developed interfacial waves have a
relatively small non-linearity when compared to homogeneous
cases. Therefore, it is natural to consider that three-
dimensional wave structures are, somehow, induced by the flow
structures caused by channel configurations. Another
possibility is the existence of three-dimensional primary
instability associated with strong stratification as
predicted by Smyth & Peltier (1990). This particular idea

will be discussed in part 5.
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1.4 CONCLUSION

Rased on the forgoing experimental and mathematical
review, the following conclusions may be made:

(i) Experiments show that a salt wedge can be segarateld
into three sub-divisions based on thei: stress distributions:

i@ s AT

the tip, quasi-equilibrium, and exit regions. in
region, velocity profiles can be approximated by a tanlii
function. The inflection points may be significantly
displaced with respect to the density interface in the tip
an' exit regions.

(ii) Due to secondary flow structures in the fresh waw-r
layer, high and low speed regions develop. The number of
regions is strongly related to the channel aspect ratic.

(iii) Mixing of salt and fresh water in salt wedge Ilow
is dominated by the interfacial wave phenomena. Two wave
groups of different phase velocities are observed. These
have been named Holmboe modes. For convenience, Holmbce
waves with Cp>0.0 will be called SVA waves, those with C.<0.0
will be called SVB waves.

(iv) SVA waves are predominant through almost the entire
range of the salt wedge. In contrast, SVB waves are observed
to a limited degree cnly low speed, relatively low
interfacial shear stress regions. There are few mathematical

and numerical models applicable to salt wedge flow and no

practical explanation exists concerning the localization of

these wave modes.



These results indicate that it s necessary o e o

P

further analysis and investigation in the tolicwin.
(i) Rigid boundary effects on the stability ot twe

layered stratified flows, both inviscid and visocous cane

(; ) Effects of velocity intlection point dicpl oo

with respect to the density interface tor viscous tiua

(iii) Complete set of wave and f.iow property
measurements with consideration of three-dimensi. il @
structures in the channel.

)

In the following sections, these problems witii e

analysed by performing analytical, numerical and emper ime

investigations.



2. PART THWO: THEORETICAL ANALYSIS (INVISCID MODELS)

2.1 INTRODUCTION

The waves on a saline w. :ge with rigid boundaries
usually have a very complex three-dimensional structure. In
. +.i.r to understand this problem, many approaches
irvolved increasing the complexity of velocity ani i-noioy
profiles, at the same time considering non-linear «rfects on
the governing equations. Despite all the efforts, th
problem is still not clearly understood. In this secricrn,

elatively simple velocity and density distributicns will b2

used to understand the mechanism of the rigid boundary

*h

effects on the stability of these systems. The first st-p
the procedure will be to derive & governing equaticn LY
applying infinitesimally small perturbations to the inviscid,
incompressible two-dimensional flow. Next, two models will
solve this equation for rigid boundary conditions. Model I
is designed to eva.uate the effects of the lower layer
thickness, Zr, on the stability. Model II will test rigii
boundary velocity effects. Both models employ a two-laver
density distribution which has a distinctive interface and
~iace-wise linear velocity profile. These conditions will

significantly simplify the analysis and make it easy to

understand the physics behind the phenomend.

47



2.2 GOVERNINIG EQUATIONS

2.2.1 Basic Assumptions and Governing Equationas
The Cartesian co-ordinate system is basicaliy the same

as was utilized in previous secticns and i3 derinet oo

follows.
1. The ¥ co-ordinate and aus ciated veloowie o
in the direction of flow parallel to the chanied

center line. The origin may be established it rariiy.
2. The Y co-ordinate and velocity v are in tie Tater ol
direction of the channel. When two-dimensicinial (plane)
flow is assumed, d/dy=0 and v=0.

3. The Z co-ordinate originates at the dencity intort
or the steepest density gradient point and i@ ..omir fve

upwards; w is the corresponding velocity.

In this chapter we limit our discussion to twuo-
dimensional incompressible inviscid flow in order » oimpiiny
the problem as rfollows:

1) The fluid dynamics is gcverned by tho el et

equations. Therefore, the fcllowing assumpricns may .-

made:

i) incompressible flow;



convective derivative.
ii) no non-conservative processes. (€g. visceosity,
diffusivity, etc.)

The continuity equation becomes

Vv = 0 (2.2.2)

And the momentum equation becomas

m’.+l_v + ges =0
pc p P93 , (2.2.3)

—~

where €3 is a unit vector of vertical directinn,
2) Hydrostatic balance between Po(2z) arnd Po(?) must

hold. Thus, in the absence of motion,

-

V=0,p=rpolz) .p=Polz) (2.2.4)
and Po and Po are exact solutions of ths= adiapatic

equat ions. Namely,

D pd
_BQL_L =0, Vv =0

Dt , (2.2.%)
dpe (2)
2Fo "l - o (z)
dz Po s (2.2.6)
3) Flow is two-dimensional, which is
_a_ = (0 ' v=0
dy (2.2.7)
become

From conditions 1),2) and 3), the governing equat ions

du , Ow _
ax Jdz (2.2.8)



B, ® L ®
ot b) dz
du du du ) do .
P Jt v dx " 9z ' d= o
ow dw dw ) de 0
P ot " Jx "o ' oz P

QE_O_(Z_)- = - po(z)g

dz

This system of egquations will be 2mxamined for

introducing infinitesimal

solutions of the system.

the next section.

)]
V]
o

per-urbations on the steady

The procedure will

Taylor-Goldstein Egquation

We consider steady-state solutions ot

u = Ug(z)

dp- ()

- = - Py{2)y
az

(‘\ \.“)
(L0
(. 1y
(S0 00
stability by
ot e
| STEIEE CRIORIE S STRTE B
(38 ST S SR
L,
(2.2 .1 %)
(2.2.1%)
(.
(.
(" )



spane, the system is called tunstable’.

rauations

(2.8)

to (2.12) obey Squire's theorem

The governing

(1933), which

means that "For every three-dimensional unstable disturbance,

fnere 15 a more unstable two-dimensional disturbance". It

implies that the small perturbations can be written as

functions of x%,z, and t. Here perturbation quantities are

dqeeroterd by the tilde superscript.

11

w

P

p

I

Ug(2)

0

Po(z)

pPo(2)

+ E(x,z,t)
+W(x,z2,8)

+ B(X,Z,C)

+ P2, 2z,t)

(2.2.201)
atoon

Substituting these quantities into the adiabatic eguat!

system, the terms containing products of perturbation

quantities result from a fluctuation on another I_.uctuat:l

1f the fluctuation has a frequency O,

have frequency 0 or 20.

Therefore they will either modl

PO
[P}

the coupled terms will

; s
LY

the nonfluctuating flow or introduce higher harmonics.

Since such difficulties disappear if we assume that the

fluctuations and their derivatives have small amplitude, let

=Sg

us linearize the equations by neglecting the quadratis:

perturbation terms. Then

+

o]

oJz

Uo

dp

ox

0

~ 9o
=2 =
Y oz

(2.2.23)



MW,y W, W, 1L
ot ox dz Po Ox

o]

a Qi+_]~_£)_p.+p = ()

ox Po Oz Po ) (0000

+ Ug

The advantage of linearity is that by assuminag the solutions
of this system are normal mode torms, it is possibilie to
reduce the system of partial Aiffcrontiel copiatd
(2.2.22),(2.2.23),(2.2.24),(2.2.25%) to ordinary ditterent bl
equations, facilitating the analysis. Thus, the tovl lowing

forms of solution are assumed:

T = (G(2) exp (iox-iwt) + cLoel) o2
= (Q(z) exp (ia(x-ct)) + cocl) s )
W o= (W(z) exp (ia(x-ct)) + c.c.) 72 | (. )
P ==(B(z) exp (io(x-ct)) + < c.) oo ‘ ( )
B = (p(z) exp lic(x-ct) + c.c.) 12, (e
c =

RE

where is the complex phase velocity and -0 i rhe
complex conjugate. (2.2.30)
If the complex phase speed is wrirten in the form

C = catic; , (2.2,

we may rewrite the perturbation guantities a3

Y
? (f(z)exp(ia(x—(cg+ic;)t)) + c.c.)/z

(E(z)exp(cxt)exp(ia(x-cpt)) + c.c.) /2 (2.2.12)
This relaticn shows that if th< imaginar; v ro .t *he phase
velocity C; is non-zero, then the pert.r . c.on 1o eeltiier
growing or decaying with time (i.e. the system 15 eeitheer

‘unstable' or 'stable'). If C.,=0, then the perturt.at inn



yeemains with the same amplitude as the initial state, and the
system is neutrally stable. Therefore, a complex phase
vi:locity ¢ as a function of the given parameters related to
velocity and density profiles, the stability of the flow

syotem can be judged.

Let us substitute (2.2.26) to (2.2.30) into equations
(0.2 220) to (2.2.25), then
iod + 9 =0
- , (2.2.33)
o (Ug-c) P+ Lo 5 -0
1 -C —_= W =
© P4z . (2.2.34)

~ d(_‘ ~ ~
it (Un-c) U + —2 w| + iop = 0
Po © dz P (2.2.35)

. ~ dp . =
i (Us-C) w + —— + =0
Po © az P . (2.2.36)

Solving this system in terms of W pr -Jduces

+ P02 (Ug-c)| W = 0

|
\

(po (Ug-0) w')' ‘(Po U; w

(@)
(o]
!

9]

(2.2.37)
where ' means d/dz.
Equation (2.2.37) is called "he Taylor-Goldstein (T-G)
equation in honour of its derivation and exploitation by
Taylor (1931) and Goldstein (1931). Note that the equation

and the boundary conditions, which will be discussed in the



next sub-section, are unchanged when & is replaced by -.

Thus, without loss of generality, we can take =0,

o

.2.3 Boundary and Matching Conditions

To simplify the problem, in this section we will
consider the very simple flow configuration with constant
densi-y and piecewise velocity profiles. In this case, ﬁ aned

Us become zero in each layer except for the boundary boetween

layers and the Taylor-Goldstein equation becomes,

2~

dz? ) (2.2.38)

The general form of the solution of this equation is well
known and is written as

W = A, exp (a2z) + A, exp (-a2z) \ 12.2.39)
where Ai and B> are complex coefficients which can be
determined by the boundary conditions and matching conditions
between layers.

Since the flow is inviscid, there are two types of
boundary conditions given as follows:

1) Rigid wall boundary: in this case

W =0 at 2 = Zuali . (2.2.40)
2) Unbounded boundary: Solution has to be 'beounded' at

z = oo z = - oo

either or
The boundaries between each layer are generally deformed
by the motion of the fluids (Figure 2.1), and two different

matching conditions are required. These are:



1) Kinematir matching condition:
This implies the normal component of the walocity

tieeldd i3 continuous across the deformed interface.

p=0
z=H
Ve
R ‘f"/mx z:d
- z=d+n
layer II
- z=0
Figure 2.1. Boundary conditions

If we denote that a superscript of + means

r'(d)y = lin ¢(d+€)
£E—=0 (2.2.41)

44

and a superscript of - means
f(d) = lim £ (d-€)
€m0 : (2.2.42)
Then geiterally, the velocity field due to wave motion

is described as

W= Qﬂ~+u*gn
dJt ox (2.2.43)
W= Qi‘. + U (-_)B.



it is

However, in this case,
is very small (i.2. n<<d).
w =W

u =Us(z) + U

and when substituted into

Tavlor expanding about

eddy quans it

aldy Alaiio oGy

terms,
- oh .

W ! < od) a—n‘
or dx

o

= — + . (d7) —

ot ox

wssuming wave perturbations of the form

n =(ﬁ exp (I0x-it) + c.c.)/2
= Gi exp (iot(x-ct)) + c.c.) /2

nen
W= {u.d-c) Qﬂ.
ox
w o= {U.(a7) -¢) g—n

which is equivalent to

-
-

assumed t hat

d and rejlecting

w W

(u.(a')-c) (ugear-¢)

W= (U:(d')—c) iaﬁ .
W = (U.(d7)=c) iam
implying
fan=—8 - W
(U.(d)=c)  (Ustd)-c) |

0
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1f we define the "jump" bracket [ ]as

f(z)] = lim(f(d+e) - f(d-€))

E—0 . (2.2.58)
egquation (2.2. ) can be re-written as
R
iy - ¢ at z = d , (2.2.57)
o
Wit U1 is the "Sump" bracket.

This is the kinematic matching concition.
2) Dynamic matching condition:
This condition states that the pressure must ke
cont inuous across the deformed interface.
“irst, consider the steady state solutions which have
no wave-like interfacial deformations. If it is

noted that

Polz) = p1(2)  jn layer I, (2.2.58)
Polz) = P2(2)  jp layer 1II, (2.2.59)
Pofz) = P1(2)  jin layer I, (2.2.60)
Pol(z) = P2(2)  in layer II. (2.2.61)

Th.-n, because of the h(rostaric relatinnship, in

layer I
cP |y
R S 1(2)
. puizig (2.2.62)
p.atz) =0 at z=H, (2.2.63)

where subscript H indicates hydrostatic pressure.

T ‘kewise, in layer II,



dpon

- = - pP.oAz)a
dz . (O e

po. = g po(&rad + po

where F.: Is an integration constant .,

J - . v - e kD ", -~ e et .. . SRR . . H
Since we moon have come Dol S L v 4t i,

o= gl pBrad+al po§Hrdd
‘ . {(2.2.606)
then
pai(z) = g| p.(Erdf+qg p. (5 d§
@ ! . (2.2.'7';)

If we introduce the wave-field as follows:

Pt Pis + Piw , (2.2.68)

P2t Prs * Paw , (e /.69)
where subscripts T and W indicate total and wave-
field pressure respectively.
The continuiry of the stress field a.ross the
deformed interface becomes,

pPiz(d+N) = p,r(d+m) | (2.2.70)

Performing a Taylor expansion of (2.2.70) around d

(since Tk<d) produces,

puy(d) + 9—1"—d—‘—di N+ po(d)
2



dp o (A

e
iz

TPl n ool o om)

(2.

2.71)

Remembering equation (2.2.66), P:i(d) and Doy (d)

cancel each other. Furthermore, from the hydrost... .C

relaticonship, we know

dp ()

e (LoD
gl—p“d—z(—d“) LA (2.2.73)
where d = d+g , d° = d-g, &<<1
Since N is very small, if higher order terrms o: n are
neglected, then
—gnpi(d’) + pu(d’) = =gnpa(d’) + pw(d) | (2.2.74)
{patd) = prtdfan-{pw - posl = 0 | (2.2.79)
{-gnp2 + pzw} -{-gnp1 + piw) = O ) (2.2.76)
at z=d.
And using the "jump" bracket, (2.2.76) can be written
as
[-gnpo + ] = 0 at z=d. (2.2.77)

Let us take the x-derivative of (2.2.77). Thus,

li—poga—]l + a&} =0

ox ox

tirwever, from (2.2.50) and (2.2.51),

on@d") WY

ax (u,@h-c) (2

at z=d. (2.2.78)

.2.79)



mdy _ Wd)
Ix (U a7y -¢)

S0

is -~'patituted into the momentum eguaticn

ox o d: ’ Jdz
then,

dp  Jdpu ow U

® P po(Uo‘C) = Po—w

ox  OJx o0z dz

Therefore, the jump conditicn at z=1 i «
(2.2.78), (2.2.81) and (2.2.84) as
3w U, ~ gpoﬂl

-po W -
dz 0z Uo—c|

=0

pO(Uz)_c)

s

which is "he dynamic matching conditicn.

The governing equation (2.2.37) and the matollin

boundary conditions (2.2.40),(2.2.57) and (2.2.85

the eigenvalue problem.

(.

I SR SN
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2.72.4 Perturbation Quantities in the Flow
Perturbat ion quantities in the flow ar- easily obtained
after the system is solved in terms of w. Frecm the

definitions, (2.2.26) to (2.2.30),

1

= [U(z) exp (iox-iwt) + c.c.}/2
= {U(z) exp (iQ(x-ct)) *+ c.c.} Sl (
w o= {Q(z) exp (io(x-ct)) + c.c.} r2 (2.0.n70)
5 = {B(z) exp (Io(x-ct)) + c.c.} /2 (2.2.85)
P = {B(z) exp (io(x-ct)) + c.c.} /2 (2.2.89)
whers c.c. means complex conjugate.
And W has the form
w(z) =|ﬂ exp (10) | (2.2.07)

Based upon this solution, »ther elements of the
perturbation field can be obtained as follows:

From the continuity equation,

ou ow
___.+_— = O
dx 0z ; (2.2.91)
l1.e.
~ oW
iog +— =0
dz , (2.2.92)
then,
_ . OW
u = _L._
[0

dz i (2.2.93)

If the stream function of the perturbation velocity



field is defined as

5 = 5(2) exp (Iox-iwt))
= @(z) exp (i0(x-ct)) (>0
then -
W o= - % ia5
dx ‘ ( o
so 5
0=Lu
= é-@ exp (iId(x-ct)) + c.c.; /2 G o

Therefore, from the kinematic matching condition (. ..1.%7),

the interfacial deformation N satisfies

an an

W= — + U, —
ot 0x (2.2.00)

but, by the definition
T‘: ﬁexp (ia(x—ct)) s (. T A

then
on = i0om
ox . (2.0,
Qﬂ = -iQcn = -¢ Qﬂ
at aX . (7 : TG
then
ox Uo—C (2.2.101)

’

therefore, the displacement T must be calculated as

= - i
n a Ug-c

’



':‘----wﬁ—-exp fig(%x-ct)) + c.c.} /2
I U.-c . (2.2.102)

Qe

To determine the Reynolds stress T averaged over the

w17 length, the following procedure is used.

Since,
2n/a
T = —@-f (- Uw) de
2r J, : (2.2.103)
where 8 is the phase ax-wgrt,
from (2.2.87) and (2.2.93)
rR/a

1= - & 1|l dW exp(iox-iot) - 4 9¥- e:e.p(ia:z.—ico‘t)\

2m 4 o dz o dz |

0

{G exp (iax-iwt) + w exp(iax—im%ﬂ} de

(2.2.104)
Rewritten  in the form
W= g + i0; (2.2.105)
where
c =9 = ¢z + icy
a ;
then,
exp (iox-iwt) = exp(Wit) exp(idx-iWgt) |,
= exp(W:t) exp(iB) | (2.2.106)
snd (2.2;394) becomes
T - - Z 2%;[ {é g—f—exp(mlt)exp(ie) - -&i %exp(w;t)exp(—ie)}

{Qexp(ont)exp(ie) + G'exp(ﬂnt)exp(-ie)} do ,



)

%?L}e\p(ZQ t)do

le:)

1l a ll@.ﬁ.
a 2n] Tla

[o%

Z

- L e:-:p(Z(D;t)‘G'QE - wdw
40 dz dz I . (looaren

Therefore, the Reynolds stress averaged over the wave lenath

e
-

T =-——exp(2w1: ) ‘
20 (2.2.10)

where Im (f) is imaginary part of f.



2.3 MODEL I: THICKNESS EFFECTS

A pormulation

In thiz section, the effects of a rigid boundary on the
ilow stability will be examined by using the equations which
were: derived in the previous section. To simplify the
provlem, four layers with plecewise linear velocity profiles
will be used in thic model, whizh s based on the assumption
ot Galilean invariance as well as experimental data (see
Figure 2.2). In this type of model, the Taylor-Goldstein
equation has the form of (2.3.1) since in each layer there is
no density stratification and the ve _ocity profile is linear.
An advantage of this model is that the eigenvalue equation

can be derived analytically from the governing equation. The

governing equation .

dz* . (2.3.1)
Note that if W is an eigen function with eigenvalue ¢ for
some ®, then so too is W with eigenvalue ¢ for the same «.
Thus, to each unstable mode there is a corresponding stable
mode which has a complex conjugate eigenvalue C,<0.

Now the general form of solution of (2.3.1) is

W = A.exp(0xz) + Aexp(-az) | (2.3.2)
The basic solution procedure is to assume solutions for
(2.3.1) in each layer .1 apply the boundary :nd matching

condit: s Lo determine the unknown coefficien=; Ay, Ay, ...,



z . , , . . . . ,
A velocit » distriburion density distributiog

I.Q

Layoer ()

-------- 777777777/ 7777777

rigid boundary
{a) 2r>1.0 case

“ velocity distribution density distribntion

i
P layer (I)

2=1.0 = — — -t - -t - =

layer (!1)

0‘__—»}(—.——.-—. [y R

2 . T
Zg t —_— §P laye: (I1i)

------ 7777777777

rigid boundar’
(b) Zr>1.0 case

Figure 2.2 (a), (b) Velocity and uensity
profiles of modell



the eigenvalue

In arder to get non-trivial solutions,
i iation must bhe solved establishing the dispersicn
re-lationship for internal waves in this system.
In this mode ., the formulations are slightly different
coording to whether the thickness of the lower layer Zi I8
by zases

o5
£,
[47]

cxnes

taraer or smaller than half the shear layer thickness: «<a
SR ceion s
5 aled

All rhe guantities In

andd (b)Y

(1)
dimensionalized by characteristic lengt
These are chosen as half of shear layer thi

L and V.
and half of the maximum-minimum velocity differen:e
Although the
the

let us consider model I(a).
y

respectively.

First of all,
general solution is written in the form of (2.3.2),
require slightl
the boundary

(1),
and

boundary conditions in layers (I) and (IV)
For layer
is infinity,

z
<

forms of solution.

different
is that W must be 'bounded' at
(IV), the condition is that W is zero at z=-Zx.
follows:

condition
for layer
Therefore, the solutions for each layer become as
w: = Ajexp(-az) |, (2.3.3)
W.. = A,exp(oz) + Ajexp(-0z) 3.4)
Wi = Agexp(0z) + Asexp(-0z) | 1)
Wiy = Agsinh (0(z+2gr)) 6)
where &y, B2, ... are coefficients and W: is solution 1in
layer (I).
Applying the kinematic (2.2.40) and dynamic (2.2.57) matching
conditions to these solutions, the kinematic matching

condition implies



(Xp(~0) - Asexp(Q) - Azexp(-®) = 0 gt z=1.0. (J.3.0)

And the dynamic matching condition at =z=1.0 i

I3
[#7}

Afo(l-c)exp (-0) | + A{o(1~c) - 1lexp(o) + Ad-o (1= = tlexp-a) = 0

(0. 3.8)

Thus, at z=0
A, + Ay - A, "A5=0, (2. 4.9

Iny<ac+1- %f}+A§YLac+l— %§}+A4-ac-1+ %$=+A4ac—l+ 2u)=0

(2.2,
And at z=-1.0
Agqexp (-0) + Asexp (@) - Agsinh(a(zz-1)) = 0 | (2.3.71)

Ay{a(1+c) +1)exp(-0) + Ay - (1+c) +1}exp(a)

+A¢l-a(l+c)cosh(a(zz-1)) =0  (2.3.12)

where

i 1- L
Y = _p_l_ g. = Rio Rio = .__.____.._( Y)g

P2, 1-y, v’

which are specific weight, non-dimensional gravitational
acceleration and over-all Richardson number.

These conditions may be written in matrix form as

Ay
A;
Aj
Aq
As

Ag . (2.

(@8]
—
Lad
~



For a non-trivial solution, the det M =0 must be satisfied.
The determinant of M can be obtained analytically by using
'Cramer's rule', followed by a sort in terms of the complex
phase velocity c. The final form of the dispersiocn

relationship for case(a) 1is

asct + ascld + ayc? + a;c t+ ap, = 0 (2.%.14)
where

as; = YBg + By

a3='YB3+B3

a, = YB + B;

a; = ¥YB, + B

ag = YBo *+ Bo | (2.3.15)
By = RiRs , B! = riR! |
By = RjRg + RyRs BY = rIR! + RIR! |
B, = RoRg + R3Rs B} = RIRE + RIRE |
B, = R3Rg + RgRs |, B! = RIR! + RIR!
= & _ By #
Bg = R4R¢ | Bo = RgR¢ , (2.3.16)
R1 = 20.2 ,
R, = -a(2a+l-exp(-2Q)) ,

Ry = 20+20g.-1+exp(-2Q)

Ry = -g«(20-1l+exp(-2Q))

Ry = a(0sinh(0zg-0) +sinh (Q) cosh (Qzp—Q))

R¢ = Rg—sinh (a) sinh (0zg-Qt)



R

L]
R(,

«? (cosh (0tzy) cosh (&zg-t) +sinh (@) sinh (Azr=Q) )
R'-R,-0cosh (0tzg)sinh (0zg—-Q)
(1-g.) Rg~sinh (@) sinh (0zz-00)
-g.(Ry=sinh (0) sinh (0zp-Q) )

2a

~(20~-1+exp(-200)) (2.3.17)

4y the same procedure, the dispersion relationship for case

(b) can be obtained as follows:

where

a;c3 + ac? + ajc + apo = 0 | (2.3.18)
aj RlR{,
a; = RoR}+R;RI+B; |
a; = RoRI+R R§+B,
ao = RoR§+Bo , (2.3.19)
By - (Y-1) g.exp (-2Q) sinh (0zR)
Ri.exp (-20) sinh (zg)
B, (Y-1) exp (-20) sinh (0zR)
B, o (Ysinh (azg) ~cosh (0zg) ) exp (-20Q)
Ro -20+1
R, = 2@ ,
RA (Y-1)g.sinh(tzg) = -Riosinh(0zg)
R ~(y-1) sinh (0zg)
Rg o (cosh (ozg) +ysinh (azg)) | (2.3.20)



This dispersion relationship was solved using the IMSL
polynomial solver ZRPOLY. A discussion of the results

follows.

2.3.2. Solution

The proceeding problems were solved numerically for the
parameter ranges 1.0 <2, Seo 0.0 =as3.0 0.0 s Ri 2.0 4,
calculations were performed using the University of Alhwita
Computing Service's Amdahl 5870 system with IMSL subroutine
library and FORTRAN 77 programing language. Figure 2.3 to
Figure 2.13 summarize the results obtained. These include
the dispersion relationship, neutral boundaries, growth rates
on O0-Ri plane and some other perturbation quantity profiles.
Figure 2.3 illustrates that a lower layer thickness Zy, does
not affect the stabili- £ the flow until it becomes less
than 2.0. However, witu Jdecreasing Zr, the growth rate of SVB
waves gradually decreases until Zr=1.03, all the SVB waves are
stabilized and only SVA waves can exist. As there is no
critical value for SVA waves in the range of the
calculations, it implies that the wave may be observed in
upper layer under this condition. This so-called "one-
sidedness" phenomena was studied by Maxworthy and Browand
(1975) .

The critical value of 2Z2r=1.03 is slightly smaller than
calculated by Howard (1964) which was 2r=1.1997 for the

hemogeneous case. As mentioned in part one, Hazel (1972)

calculated this criterion and estimated the value to be in



rhe range 1.195 < Zr < 1,205. Although his calculation showed
some problems due to the numerical instabilities with small
wave number and Richardson numbers, the criterion had a
tendency to converge towards Howard's value as Ri—0

Figure 2.8 shows the neutral boundaries for different
values of 2Zr and illustrates that both SVA and SVB wave
numbers tend to get smaller as Zy decreases. Furthermore, the
internal structure of the stability boundaries is shown in
Figures 2.4 to 2.7. It is interesting to note that as ZR—’LO,
the waves which have smaller Richardson number are relatively
stable compared to the waves for which Ri is about 0.6 to
1.0. This sounds contradictory since a smaller Richardson
number usually implies less density difference and greater
instability. This problem will be discussed later in section
2.5.

The perturbation quantities (such as 4, W, T, M) are

presented in Figures 2.9 to 2.12. By comparing Figure 2.9 to

2.10 (which shows the complex conjugate eigenvalues of 2.9),

it is easy to see that U and M are exactly the same, but w
has the opposite phase and the Reynolds stress T is positive
for the unstable case and negative for stable case. There is
a clear relacionship between the Reynolds stress and the
phase of W since both of them imply the direction of energy

t ransfer between turbulence and the mean flow. It can be
shown that d6/dz>0 and T>0 are necessary conditions for
instability, (see Appendix A), and can easily be seen in

Figure 2.12 which is a neutral mode case. These plots also



show that the critical level has a maximum displacement 0
which corresponds to the observations.
Figure 2.13, the streamlines of these waves are plotted

and have very good agreement with experiments.

e



Figure 2.3 (a)-(h). Dispersion relationship V.S. lower
lover thickness 2ZR. Ri=2.0 case
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2.4 MODEL 1II: EFFECTS OF VARIATIONS OF BOUNDARY
VELOCITY
2.4.1 Formulation

The main objective of this section is to evaluate the
effects of variations of boundary velocity on the stability
of flow. This is actually a slight modification of section
2.2. 1In addition to the existence of a rigid boundary, it is
assumed that the velocity on the rigid boundary can be Uw
instead of being restricted to -1.0. Since observations show
that the minimum velocity is located slightly above the
bottom in most cases, this assumption allows a more
reasonable model. Again, to model the system, four layers
with piecewise linear velocity profile as shown in Figure
2.14 will be used. As the formulation of the system
stability equations is almost identical to that in section
2.3, in this section only a brief additional explanation will
be given.

The governing equation for this model is

2 ~
.d_w - azw - O
dz? ; (2.4.1)

And the solutions for each layer become as follows:

W, = Ajexp(-0z) |, (2.4.2)
Q;[ = A,exp{(0z) + Ajexp(-0z) , (2.4.3)
Wi = Ajexp(@z) + Asexp(-0tz) | (2.4.4)

Wiy = Agsinh(o(z+zg)) | (2.4.5)



—

Figure 2.14. Velocity and density
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100

where B, P2 ... are coefficients and Wi is solution in
layer (I).
If the kinematic (2.2.40) and dynamic (2.2.57) matching
conditions are now applied to these solutions,
at z=1.0
Ajexp (-Q) - Aexp(a) - Azexp(-Q) = 0 | (2.4.6)

Ada(1-c)exp (-0 |+ As{o(1-c) -1lexp(a) + Af-0(1-c) -1jexp(-a) =0

(2.4.7)

A2+A3"A4 "A5=0 (2.48)

Ayy{ac+1- 9(—:'—}+Agy{-ac+1— %,+A4{-ac—l+ 9c—' +A5{ac—1+ %’— =0
{(2.4.9)
And at z=-1.0
Aqexp (-0) + Asexp () - Agsinh(a(zz-1)) = 0
(2.4.10)

Asyla(1+c) +1)exp(-0) + Asy (-0 (1+c) +1)exp(a)

4—A6-a(1+c)cosh(a(zg-1))+%ﬂi£sinh(a(zg-1))}=0
-z '
(2.4.11)
where
P Ri, . (1-v)gL
= — g« = Rig = ———
L 1=y, ° V2

If Us is the non-dimensionalized velocity on the rigid
boundary, these conditions may be written in the following

matrix form.



For non-trivial solutions, the det M =0 must

Ag

(oot

be satisticg,

and the dispersion relationship may be written asa

where

asct + asc? + ac? + ajc + a, = 0

ay

as

a

a

ao

YB, + B} ,

YB3y + Bgl

YB: + Bgl

YB:1 + B{

YBo + Bgl

RiRs | Bi = R{R{ |

RiRg + RpRs | B} = RIR{ + RIRE |
R,Rg + R3Rs | B} = RjR¢ + RIR!
R3Rg + RqRs | B! = R{R¢ + RIRS |
R¢Rg | B¢ = RIRE |

202

-0 (20+1-exp (-2Q) )
20+20g.~1+exp (-20)
-g«(20~1+exp (-20a))

a(asinh (azz-a) +sinh () cosh (azz-a1) )

(2.4.14)

(2.4.1%)



102

Ky = Ry{1+gﬂilejnh(a)sinh(azg-a)

l-ZR

R? = o’ (cosh (0zg) cosh (0zg-0) +sinh (@) sinh (Qzg=0t) ) |

cosh(0zg)sinh (zi-Q)

RS = R’:'-Rb—a(nu'”*l
1-2;1

sinh(a) sinh (zz-Q)

RY = (1-g.)RS-(1+M
l—zR

Rg = —g{R5+l+UW+1Sinh(a)Sinh(aZg—a)
1—ZR ’
R = 200 |
R = -(20-1+exp (-2a))) . (2.4.16)

As with the previous model, the same procedure was used to
solve this dispersion relationship, and a stability criterion

of C;=0 was used to conform with the governing equation and

boundary conditions.

2.4.2. Solution

In this model, the parameter ranges studied were
1.0 €25 £ 0.0 <a SS.O, 1.0 £Ri £2.0 g ~1.0 SUw £1.0 544
the calculations were performed using the same facilities as
in previous model. Since the cases involving Uw=-1.0 were
presented in section 2.3.3, only the effects of Uw>-1.0 will
be described in this section.

Figure 2.15 presents the effect of Uw on the stability
boundaries. It is clear that as Uw increases SVB waves tend

to get shorter and that SVA waves tend to have additional
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unstable modes with extremely long wave length. Also ot
interest, when Uw >-1.0, SVB waves have a tendency to
increase their wave number with decreasing 2k, an effect whioh
is opposite to the Uw =-1.0 case. SVA solutions seem
unaffected by Uw except for some additional unstable modes.
These modes are relatively small when Uw is close to -1.0,

but as Uw exceeds 0.0, they start growing as an indopendernt
unstable region, the details of which will be discussed

later.

Figures 2.19 and 2.20 present the phase velocity of
waves. Again, SVB waves are significantly influenced by Uw
and tend to get slower for the same wave number as SVA whon
Uw increases. These same effects were found for decreasing
in the previous section. By contrast, phase velocities o!
SVA solutions remain almost unchanged both 2Zr and Uw vary.
The additional unstable modes cannot be found on these phase
velocity diagrams.

In order to investigate the additional unstable modes,
the details of the dispersion relationship on the ~Ri plane
are shown in Figures 2.21 and 2.22. They show that these
modes have very small growth rates and phase velccities of
approximately zero, implying that the instabilities will
occur around the density interface and should rarely be
observed in the flow due to other faster growing unstable
modes.

Figures 2.23 and 2.24 show the perturbation quantities

of SVA and the additional unstable modes. Despite the
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displacement T of these additional modes is of very large
anp.litude, their growth rates are relatively small. These
large amplitudes are simply due to the singularity of

eeuati (2.2.102) which appears as ¢ becomes a real number.
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Figure 2.16 (a)-(h). Neutral boundaries. Uw -0.5
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Figure 2.18
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Figure 2.19 (a)-(e). Neutral boundaries on a-xCgq
plane. ZR=4.0 cases
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Figure 2.20 (a)-(h). Neutral boundaries on a-aCg

plane. Uw=-0.5 cases
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2.5 DISCUSSION

Solutions of Models I and II show that unstable regions
of small Richardson number waves get smaller as &rdecreases.
Particularly for Zr<1.2, waves in the range 0.4<Ri<1.0 appear
to be more unstable than homogeneous ones (Ri=0.0), and at
7.=1.0, these homogeneous solutions disappear completely.
This sounds contradictory since density stratification
usually has a stabilizing effect and it is usually expected
that homogeneous solutions are the most unstable.

To investigate this problem, the eigen equations
{(dispersion relationships) for Ri=0.0 and g=1.0 were derived
for both Z2r>1.0 and Zr<1.0. These equations are second order

in terms of the complex phase velocity c, and may be written

as
Ayc2 + Ajc - Ag = 0 | for Zr>1.0 (2.5.1)
Bic (c + B) =0 | for Zs<1.0 (2.5.2)
where
Ao = (202~ o) eHcosh(ofzg-1)) + sinhla(zg-1))
+ e3%cosh(afzg-1)) - sinh(ofzz-1))
- (202e® + (e30-e@)) sinh(a(zz-1)) , (2.5.3)
A, = a(e'3°‘- e“) (cosh(afzg-1)) - sinh(cfzz-1))) , (2.5.4)
A, = -20?eYcosh(afzz-1)) + sinh(o(zgz-1)) , (2.5.5)
B, = (sinh (@) +cosh(a))a¥cosh(azgl+sinh(azg)) (2.5.6)
B, = ofsinh (@) cosh{aZg)+cosh () sinh{azg))

B, . (2.5.7)



Therefore, both cases have the following solution

A
CR = - e——
23, (2.5.8)
c, = + V4A2A(\,‘A‘f
24, for 2r>1.0 , (2.5,9)
¢ =0 o0or c = -B, for 2r<1.0 , (2.5 1)

illustrating that ¢ cannot be complex for 2x<1.0 (i..-. no
unstable solution can exist).

Figure 2.25 presentec the dispersion relationship ftor
2:>1.0 case. It is obvious that an unstable region fades out
as 2Zr approaches to 1.0. The reason why there is no unstable
solution when 2Z8<1.0 is due to the velocity profile. This
type of piece-wise linear velocity cannot satisfy one of the
necessary conditions of instability; the so-called
"Fijortoft's theory" (Fjortoft 1950) which st =s
"Suppose instability occurs, and let 2’ (0, 1) for which U5+ 0,
Define U'= Uo(Z'), then a necessary condition for instability
is

U;(UO' U.)< 0 somewhere in the flow."

This theory was derived from Rayleigh's stability equation
(homogeneous case of the Taylor-Goldstein equation (2.2.137))
and Rayleigh's theory. For a piece-wise linear velocity
profile, a slight modification 1s required as follows:

The Rayleigh equation is
(UO-C)(¢— a2¢)-US¢=0 , (2.5.11)
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where ¢ is the stream function of perturbation velocity, Uo
in mean velocity profile which is function of z.,

1f there is instability, then c becomes a complex number and

" u.o
o - ao- —
(Us-c) , (2.5.12)

By multiplying ¢* and integrating through the domain, then

. " i U"(D L
0 10- o (0-) dz =0

2 , (2.5.13)

And taking the real part of this integration will always

vield

oe i g - -[ o oald) ox Co

IU()—CF
(2.5.14)
But, from the Rayleigh's theory
(cx-U*) Ug dz = 0
'Uo"cl2
° ) (2.5.15)
therefore, the necessary condition becomes
U'lu,-u*) e
2T dz (o
[u.-cf’
0 . (2.5.16)

For Zr>1.0, there are two singular points which have both

Us= °"andU;= ~® in the domain, thus they can satisfy this
necessary condition. However, for Zr<1.0, it is impossible to
fulfiil this condition and, therefore, there is no

instability in the flow. 1In order toc achieve reasonable

solutions for ZRSI'O, either the viscosity or some other



continudus velocity profile has to be employed.

analysis will be presented in next section.

This

kind

ot
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Figure 2.25. Dispersion relationship of homogeneous case
(Ri=0.0)



2.6 CONCLUSIONS

In this section, analytical models based on a perturbed,
inviscid, linearized Navier-Stokes equation have been
presented. Model I, which evaluates the effects of the lowoer
layer thickness 2z, shows that SVB waves are influenced by .
reduction in Zi, but this is not true for SVA Caoes.
Generally, SVB waves tend to have a smaller wave number .as we
decreases which is opposite to our intuition. By contrast,
Model II, which tests the effects of the boundary velocity on
the stability, shows that SVB waves with Uw>-1.0 get shorter
in wave length as Zr decreases. It was also found that SVA
waves have additional unstable modes in the extremely small
wave number region when the value of Uw exceeds 0.0. These
modes, however, have a very small growth rate and are not
expected to be able to appear in the flow.

The results of Models I and II seem to contradict each
other in the area of thickness effects, but they indicate an
obvious sensitivity of flow stability to velocity profiles.
The weakest part of this analysis involves the stability of
small Richardson number flow which tend to be over estimated
by failing one of the necessary conditions for instability
when Zr gets closer to 1.0. Another problem is that these
models were inviscid and could not predict any Keynolds
numpber dependency as observed in experiments.

In summary, the analysis presented in this section

explains many features of a flow with a rigid boundary,
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although appropriate experiments need to be performea to
soerify these characteristics, and more extensive analysis
should be done to ensure reasonable predictions. In the next
section, viscosity will be introduced and a continuous

velocity profile will be employved to improve the analysis.



3.1 INTRODUCTION

In the previous section, inviscid piece-wise linear
velocity proiile models were investigated in order to clarity
instability mechanisms involving a rigid boundary. However,
the simplifications used in these models created problems
with their dispersion relationship. Based on the results
from these models and the previous experiments, there were
indications that the flow stability was dependent on Reynolds
number and that there also existed a critical Richardson
number, |

In this section, the effects of viscosity and a
continuous velocity profile will be considered. To simulate
the velocity prefile, a hyperbolic tangent function will be
employed since this function agrees very well with
experimental observations. To model the density
distribution, it ! felt that a two-layer system is a
reasonable approximation to that known tc =2xist in a salt
wedge type flow.

To model this type of flow, the governing equation,
called the Orr-Sommerfeld equation, will be derived from the
two-dimensional Navier-Stnkes equation by applying
infinitesimally small perturbations to the system, and will
be solved numerically using two models with appropriate

boundary conditions. A third model will evaluate the rigid

[
(W8
O



noundary effects and a forth model will investigate the
crability of the flow when the density interface is displaced
from the center of shear layer (in this model the flow is
unbounded). Since these models have much more realistic
velocity and consity profiles because viscosity is
considered, they are expected to have better agre~ment with

experimental results.



3.2 GOVERNING EQUATIONS

3.2.1 Basic Assumptions and Governing Equations

As in the previous section, a system of equations based
upon the Cartesian co-ordinate s+'stem will be used. The only
difference is that we will now include the effect of
viscosity. As before, we will assume incompressibility of

flow, i.e.

D

2Py

Dt , (2.2.1)
reducing the continuity equation to

Vv = 0 , (3.2.2)
and the momentum equation to

— 2
DV + lvp + g&3 -vWv = 0
Dt P , (3.2.3)

where V=(u,v,w) is the velocity vector, g is the
gravitational acceleration and é; is the unit vector in the
vertical direction.
It will also be assumed that the hydrostatic balance between
Po(z) and Po(Z) is as fcllows,

cpgz(z) = T Polzl g (3.2.4)
where the subscript "o" represents quantities in a steady
state condition or at rest.
Moreover, since our model (see Figure 3.2) does not have a

gradual density stratification in each layer, Squire's thernry
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may he applied. This means that the system of eguations may

e reduced to two-dimensional form as

dy : (3.2.5)
“rom these assumptions and conditions, the governing

ecyuations become

@_4.8_"_’].:0
o dz , (3.2.4)
ap op op
. = =0
ST , (3.2.7)
2 2
du Ju 3_U)_ gu_ g4, dp _,
P ot T ox T 0z pv 2+822 ox
, (3.2.8)

2 2
p(a_w..*_uaw_\‘_wa_w)_pv(?_z-{.éi +a£+pg=o

Jt Jx oz i’ 927 z ,
(3.2.9)
dpg (2)
o e’ - _ (2)
dz Polzlg (3.2.10)
3.2.2 Orr-Sommerfeld Equation

As in section 2.2.2, we will apply infinitesimally small
rerturbations to the steady state solutions. By observing
their behavior, the stability of this system can be
determined. Following this procedure, let us first assume

that the steady state solutions are as follows:

u = Ug(z) | (3.2.11)



= Po(z) (3.0.13)
p = po(z) , ('; ) ‘])
where
dpa (2)
—S-—— = - polz)g L
az . (3..0.10%)

Let us now introduce perturbation quantities which are

denoted by the superscript tilde.

u = Ug(z) + U(x,z,t) (3.2.16)
w o= 0  + W(x,z,t) | (3.2.17)
P = Polz) + pix,z,t) (3.2.189)
P = Pofz) *+ Plx,2,t) (3.2.19)

Substituting these into the governing equations, we will
neglect quadratic terms of the perturbation quantities since
it is assumed that these quantities and their derivatives

have relatively small amplitude. Then

i‘]—: + .a_g. =0
dx dz , (3.2.20)
dp p . ~ g
= + Ug —/— + =0
ot © 9x Y oz , (3.2.21)
- - 2 P i -
a_u+ an_u+ 'JaUO - vaUO - Qi+a_u+ _:._QE—
ot ox 0z az2 ax7 azz Por Ox
(3.2.22)
5 w Wow w® P
gg + Ug %ﬁ -Vt ¢ 5; 53 C o9 0
" dx"  dz © ° (3.2.23)
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1¢ we now concider the perturbation quantities, let us assume

wavelike perturkations as

T = (Q(z) exp (iazx-iwt) + c.c.) /2
= (G (z) exp (iu(x-ct)) + c.c.) /2 , (3.2.24)
w = (W(z) exp ({a(x-ct)) + c.c.) /2 , (3.2.25%)
p =(a(z) exp (fo(x-ct)) + c.c.)/2 ' (3.2.26)
p = (ptz) exp (io(x-ct)) + c.c.) /2 | (3.2.27)
where
¢ =g atie (3.2.29)

As explained in section 2.2.2, the imaginary part of the
complex phase velocity ¢ indicates the stability of the
system. Namely, if <€:>0, the perturbation grows with time and
the system is unstable. If C:=0, then the system is neutrally
stable, and if C:<0, the system is stable. By introducing
these wavelike perturbations, the governing equations become
a set of ordirary differential equations as shown below:

iad + 949 - ¢
dz , (3.2.29)

Po 5 _
dz , (3.2.30)

i (Ug-c) p +

. ~ iy ~ ~ 20 -~ dzU L~
po i (ug-ord + =@ w) + pov|aiu- QJ*)- v—= + jop = 0
dz dz? dz?

(3.2.31)

a‘w- dﬁ% + %R 4 59 =0
dz? dz . (3.2.32)

Po 10(Ug-C)W + pgV



Since the flow is two-dimensional, we can introduce the

stream function of the perturbation velocity field, which i

O = ¢(z) exp (idx-iowt))
= ¢(Z) e:-:p (ia(:‘;_ct)) (3.: }})
Then, by definition,
_ 3
7.2
dz (3.2.34)
- 36 ~
w o= - —9 = - idod
0x . (3.2.35)

Substituting these relations into eguations (3.2.29),
(3.2.30),(3.2.31) and (3.2.32), eliminating P and P and
applying Boussinesq's approximation, we get the following

expression,

- 9 %o | '
(Uo—c)(q) - o + %Cd—z - U 0 = L o' -2a0 +a'o|
o .

A:'J o~

(3.2.36)
where a superscript of prime denotes d/dz.
If we non-dimensionalize this equation by using
characteristic length and velocity scales, the following

equation is produced.
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0 = —l— {0 200

i10Re

~n ~

(UO-C)(O - 0 + +a%0

(3.2.37)
where N 1s the Brunt-Vaisdla frequency and Re is the Reynolds
number.

Since this model has no density stratification in either
layer, the Brunt-Vidisdla frequency becomes zero and the

equation may be simplified to

~n ~ ~ry ~n ~

IIA ] ° 4
U~-C - - U = =209 +Q

Equation is the so-called 'Orr-Sommerfeld' equation, which is
actually just the vorticity equation obtained by eliminating
the pressure p from the momentum equations. As one model 1is
essentlally a superposition of two homogeneous fluid flow
systems, let us use the subscripts 1 and 2 to define the
stream function and Reynolds number for ithe upper(l) and

lower (2) layer quantities. Thus,

-~ " -~ - AIV - " -~
(Ug-c)0: - ¢:) - Ug ¢ = = 1 91 -200; +a'd;
i0Re, ,
(3.2.39)
-~ - - AIV ”~~ -~

(Ug-c)\dz = 9] - U, = o, -200, +ai;

iaRe;

(3.2.40)



3.3 BOUNDARY CONDITIONS

There are three boundaries we have to consider here.
They are: the bottom boundary which is rigid a wall at o=-3g,
the density interface which is a flexible boundary at z=n,
and the upper boundary at z = infinity. Because of
viscosi-vy, the no-slip condition must be applied on both the
rigid surface and the density interface which is main
difference between this model and the previous inviscid

model. Therefore, at z=-2r, the boundary condition is simply

—~ o~

¢, = 0

)

=0 at z=-2z , (3.3.1)
where a superscript of prime denotes d/dz.

At the density interface, since each velocity, pressure and
shear stress component must be continuous, the boundary

condition may be expressed as:

W= (3.3.2)
W= (3.3.3)
(acrl auT_) (aag aa‘z)
Vi +t— =V [ —+—
ox 0z ox dz/ (3.3.4)
~ oW dw; _ 9"
-P1#2pVi— = -p3+2p,V,—= “T—
2 oz dx ’ at z=n (3.3.5)

where the subscripts 1 and 2 refer to upper and lower laver
quantities respectively and T is the surface (interfacial)

tension.
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If we take a Taylor expansion around z=0, and neglect higher

order terms of 1,

and non-dimensionalize by using a

rharacteristic length scale L and velocity scale V, then

0. = 0, ,
AI- U(" -~ Al— U , -
0= i 0= - e 0
’/\lv UO" ?) /\} ~ l —~n ( Ucn
— PR —a . = ————— -

Re; \¢‘ (Uo-c : Re, lq)2 Ug-C
iY Ca BN iy -~ 'A
—— y o+ (Un—c)— —_— = =

P Y R Yo O
P Bil iY - 'A
2 2+ ((Ug=c) - — - U
oRe, ¢ o Re, ¢2 o¢2
where
P
Y= —
P2 |
Vi ,
1- L
Ri = (1-)g
v° ,

(3.3.6)

(3.3.7)

(3.3.10)

(3.3.11)

(3.3.12)

wherey is the relative density, Ri is the (global) Richardson

number,

dimensicnal surface (interfacial)

tension.

Re is the Reynolds number and S is the non-



For the boundary at z=infinity, the boundary condition
can be assumed to be the same the boundary condition at z=-Ik.
It should be noted, however, that this may produce some
difficulties for our numerical analysis. A more complete
treatment of this boundary condition will be discussed in the

next section.



3.4 CALCULATION METHOD OF EIGENVALUES

.1 Eigen Equation

[
o

The governing equations are fourth order and require
four independent solutions in each layer. However, because
of the boundary conditions at z=infinitv and z=-2Zr, we will
only need to determine two arbitrary solution constants
instead of four. To solve these equations, we will preform
two computing passes in which we will integrate the governing
equations numerically from the boundaries to the density
interface. These calculations will be performed in the upper
and lower layers separately, then, by examination, the
conditions that permit a perfect matching of these solutions
at the interface will be determined. Some values of o and 7,
as well as some tentative values of Cz and C; must be chosen
to start the calculation, and then, if they satisfy the
matching conditions, the system stebility can be determined
by judging sign of C;.

Let us assume that the form of the upper and lower layer

solutions is as below,

-~

61 = A1 O + Az G1z | (3.4.1)

—~

o>

i

Az 021 + Aq 022 , (3.4.2)
where ¢:1, i are independent solutions for the Orr-Sommerfeld

equation and the first subscript i denotes the layer.

If we know the values of Pi1:®i2 st the density interface, then

by substituting them into the matching conditions (3.3.6),



(3.3.7),(3.3.8) and (3.3.9), we will obtain the following

matrix
A
By _
( alj ) A2 - ( 0 )
B, ,
(3.4.3)
where
a., = 0., ,
a;; = 12 ,
a3 = = O
ajq = - 02 ,
1 U;\'
a = - = 1
21 = 011 Voo ¢:1 7
1 U '
az = 0. > 012
Ug—-cC

azy = = 4921'+ (UO l¢21

1] U !
aze = - 02 + (——r 2 )¢22
Ug-cC ,
‘Y " Y Un‘ 2)
a = —— {19 -~ — = -
3 Re; ¢‘1 Re;, Uo"C ¢11 ,
'Y " 'Y UO' 2)
az = — Q1 - — -a| ¢
Re; ¢ Re; \Up-c ,
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Fe, Re,
&, = - 0,. + - ( Sie ’an, [0 RP
Fe Re; \U,-c ,
i " ; :
ag; = “*1“'0t: + Y “UD—C) - iig) o - YU:0::
are- Re: ,

fu
<

- niim 6 y(hh—c)'- ii?)¢:;‘ YU >

. = - - ¢.):---_ ((UC—C) _ ;_1&) 021 + [Ug+ Ri+a’sS ;-
tRe, Re; Uy~cC ,
. " . . . 2
Aeg = - L ., - ((UC"C) - 310" 0z + [Uo+ Rita~S 0::
aRe; Re; Us=-cC
(3.4.4,

Therefore, for non-trivial solutions, the determirant of this
ma-rix (2:i!) must ke zero and the associated eigenvalue

eguation may be written as

det (A(a,c;Re:,Re; Riy)) =0 . (3.4.5)

To simplify the calculation, it is assumed that the kinematic
viscosity takes 2lmost the same value in both layers (i.e.
Re:=Re:) and the non-dimensional surface (interfacial) tension
5=0 which can be easily estimated its effects by
investigating the effect of the Richardson number Ri on the
system stability. With this simplification, the eigen

equation becomes



det (A(o,c;Re,Ri,y}) = 0 . (3.4.0)

Parasitic Growth Problems and Crthonormalization

W
o
ro

Now, let us consider the problem of determinina values
for Qi 0:: at the density interface in orde to solve this
eigen equation. Althcugh there are several possible methods,
we will employ the method of direct integration since we know
tne values of ®:1r @ a¢ boundaries. This reduces the problem
into a one-point boundary problem, for which the methcd of
dirsct integration gives high accuracy and also makes it
possible to solve for situation involving relatively high
Re n10lds numbers.

If we follow the method developed by Betchov and
Criminale (2967), from the boundary conditions, we choose the

initial values of G:2r 0:2 to be

=<¢u 0 ¢L ' ) = (0,0,1,0) (3.4.7)
"'(¢2/ 0120 02 s O ) = (0,0,0,1) (3.4.8)
= (%, 02 ¢4 0y )= (0,0,1,0) (3.4.9)
D,;,= (¢22r ¢22', L EPR ) = (0,0,0,1) (3.4.10)

where D, is vector form of solutions.

However, since the upper layer is assumed to be unbounded, it
is wifficult to calculate 9:is 0:2 by integrating the equations
from z=infinity to z=0 without sacrificing accuracy.
Fortunately, our model uses the hyperbolic tangent velocity

profile and in the z>>1 region, the coefficients of the GCrr-
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‘rprs-rfeld equaticn are zero or constant. Therefore, the

exp

°
f

expl- (a'+ iare:(u.-c)'7z) (3.4.12)

©
n

In our calculations, we use the valusz of these
asymptotic solutions at =5 as the starting values of

integration. By using the Runge-Kutta-Gill numerical

integration method with a ~.alculation step Az=0.005 to 0.025,
we obtain the values of ¢i:r 9:2 and their derivatives at the
density interface z=0. As the computer proceeds toward z=0,
however, the solutions occasionally develop characteristic
oscillati*o»ns and the two solutions, 6:: and ¢i% become
dependent. This phenomena, so-called parasitic growth
problem, occurs more often when the system has either a large
Reynolds number Re or wave number .

To avoid this problem, several techniques have been
developed. A few of them which are the filter method, the
re-orthogonalizaticn method, anu the Riccati methnd (see
Gersting & Jankowski (1972), Davey (1973 and 1977)). 7n this
r.del, we will use the modified filter method which is based
uron the methcd suggested by Kanlan (1964). The basic idea

c¢. =2thod is to maintain a right angle between the two
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vectors P:: and P, by s btracting D ciement from @

where P::x s the new vector which has been re-».thogonalized
against ®:; and K: is a modification coefficient.,

Since the coefficiants of the Orr-Sommerfeld equation can bhe
consider to be constant locally, the solutions should have

the same forms as the z=infinity case, i.e.

b= a0, . (3.4.14)
o

where ij is the solution matrix

9. ¢;: QtA Q?:

o, = 0:> ¢'12 ¢I‘:2 ‘1’:'2

0,: 0z 02 02

022 022 922 Q22 | (3.4.15)
A; = (A, A;, Ay, Ay , (3.4.16)
¢:1= exp (B;2) , (3.4.17)
$12= exp(Byz) , (3.4.18)
02, = exp(Bsz) (3.4.19)
¢.2 = exp(B;z) (3.4.20)

w 1./2
B, = - (a2 + U_O)
Ug—c

By = - (02 + soRre.(Ug-c))'? (3.4.22)

B3 = -Bl (3.4.23)
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A= 0D (3.4.27

e (Bi2) (4" 5 ¢"-5,% +5.5,%0)
2B (B,"-B,)

—2xp (B22) (4" _p.6"-5.°¢0 +5,B.%)
28) (BpL'B'_“)

RO (5 gm0
2B;3(Bs -B3“)

—exsz4zi (¢""Ba¢"‘332¢'+54532¢)
2B, (B3 " -By") ’ (3.4.26)

where A1, ..A; represent the magnitude of each element of a
nmarticular solution within the soclutions .
Thus, the modified solutions should satisfy the following

relationship,

AJ¢%1J = AJ¢%1J =0

s (3.4.27)
and the modification coefficients X: become
K, = EE&EE) for z>0
Aidﬁz) , (3.4.28)
K, = éASEEl for z<0
Atx((bzz) . (3.4.29)

Thus, the modified solutions may be written as



A4¢:J

Gy = O.: - .. for z2>0
AJQ%T) ,
(3.4.30)
A\D-- R
(D;’-.\' = (D‘ - (—) d)p: for =<0
afo:) . (3.9.31)
By using this methcd in every several calculation step, the

accumulation of the truncation errors can be avoided.

(9%
o

.3 Determination of Eigenvalues

In previous sections (2.4.1 and 3.4.2), the eigenvalue
problem is presented in terms of the 6 parameters o, Cgr, C-,
Ri, Re and y. It is ccnwvorient to regard four of the
parameters a&s given, and te present the determinant values on
the plane of the other two. In *his analysis, we will chooue
two possible combinations. In tne first, we fix C., Ri, Re, ¥
and plot the determinant values on a-Cr plane, while in the
second, we fix «, Ri, Re, ¥ and plot on Cr-C: plane.

Tor example, if we use the second combination, the
program will require o, Ri, Re and y as given values, and a
tentative range for Cr and C:; including the calculation steps
ACr and AC;. Based on these values, the computer will
perform the numerical integration from the boundaries toward
the interface, and map the real and imaginary parts of the
left-hand-side of the eigen equation (3.4.6). For
convenience, let us define these parts as Dz and D.. When the

mapping is completed on the Cr-C; plane, depending on the sign



0.48

0.478

0.476

0.474

0.472

0.47

0.362

0.361

0.36

0.359

0.358

0.357

o
[¢¢]

T >§< (a) WAVE NUMBER = 1.000 case
x
N DR=O
. ak\ a
\R ,‘/
\‘ “’
N - U=tanh (z)
<4 V'
%‘\\ ’/A Re=100
*‘\," gamma=0.997
4 & x Ri=0.600
s N x ZR=3.00
& x
/, y“
+ D,=0 « %
1 .
/‘ %
A
/
/
+ L——t- ¢ + t {
0.074 0.076 C.078 0.08 0.082 0.084 0.086
C:
T
(b) C; = 0.000 case
\Dg:o
x\
1 x
x
‘\\ oA
", o U=tanh (z)
i ) A
X, & Re=100
. o gamma=0.997
X A .
. A Ri=0.800
+ Al
’fn:‘ ZR=3.00
Pr=0 &% Tx
L& >
o ! + M, SIL . EEL . S
2.24 2.26 2.28 2.3 2.32 2.34 2.36
o

Figure 3.1. Determination of eigenvalues



of Dz and D;, the computer will Jdmzermine the points where
Dr=0 and D:=0. By connecting these points, we can make
contour curves of Dz;=0 and D.=0 on Cr-C: planre, with their
points cf intersection representing the eigenv.:lues (Cr, Co).
By evaluating the expected values of Cgr and C. from this mar,
with the aid of computer, we can achieve solutions with
higher accuracy. If the first combination of variables is
used, the program works in same way except C. is fixed instead

of the wave number 0. (see Figure 3.1(a) and (b))

3.4.4 Perturbation Quantities of the Flow

To obtain the eigen function ¢1L we will use the
following process. First, calculate the values of : at the
density interface based upon the eigenvalues. While the
numerical integration is preformed, calculated values of ¢::
in each step are stored in memory as well as the modification
coefficients K: if the modifications are required. Using the
matrix equation (3.4.26), we determine the coefficients
A:,..A;, and by calculating the§§ values from z=0 to the
boundaries, the eigen function o will be deEermin‘i. It 1s
important to note that this eigen function ¢ s defined as
the stream function of the perturbation velocity field,

~

therefore, we can find the perturbation quantities from ¢ as
follows,

”~

—~ déo
u = |— e: io(x-ct)) + c.c.) /2
b4 *p % (3.4.32)
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n = L. 1 ¢ exp(ic(x-ct))

J.-c

where T is the Reynolds stress

w =(—iao exp (IL(x-ct)) + c.c.)/Z (

t
(22
<

)

.4.33)

+ c.c.] /2

(3.4.34)

(3.4.35)

(3.4.36)

(averaged over the wave length)

and € is the turbulent kinetic energy.



3.5 MODEL III: THICKNESS EFFECTS

3.5.1 Formulation

Tigure 3.2 shows the velocity and density profiles used
in model III which was designed to investigate the etfeot of
the rigid boundary and the lower layer thickness Z: on the
flow stability (The ~omputer program for this problem and its
flow-chart are listed in appendix B). It should be noted
that the structure of this program allows it to calculate any
tvpe of velocity profile simply by changing the form of the
function in subroutine FUNC. This feature allows us to
investigate the stability of other velocity profiles in later
sections. For this model the tanh(z) function was employed
since it has been found that measured mean velocity profiles
tend to match either the tanh or error functions very well
(see section 1.2.2). The calculations were performed on the
University of Alberta Compucting Service's Amdhal 5870 system
with the FORTRAN77 programing language. It took about 20

sec. of CPU time to determine each eigenvalue on either the

0-Cr or Cr-C; plane. These solutions will be present in next

sub-section.

3.5.2 Solutions

The proceeding problems were solved numerically for the

parameter ranges 0-452:$5.0 , 0.050<3.0 , 0.0SRi<2.0

Figures 3.3 to 3.18 summarize the results obtained including

the dispersion relationship, neutral boundaries and the
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rurbation gquantity profiles. Figure 3.3 illustrates the

e
.

1

ry

dizspersion relationship for the 227 ~ase and is identical to
tre solutions arrived at by Nishida & Yoshida (1%87). For
rthis condition, the SVA and SVB waves are identical.

Figures 3.4 and 3.5 evaluate the rigid boundary effects
and, again, both the SVA and SVB solutions have the same
dispersion relationship, although they show that the
additional unstable modes in the low wave number region.

This is very similar to the inviscid cases presented in the
previous sections as well as the Lalas & Einaudi(1976)
results. These modes are, however, Holmboe modes instead of
Kelvin-Helmholtz modes as in the Lalas' case. Figure 3.5
shows that the growth rates in the 0Ci=0.05 region shrink as
the Richardson number decreases, a phenomena noted in both
models I and II. Eve..aally, the most unstable modes appear
in the area where the Richardson number is about (.4 and wave
number is 0.8. This tendency is maintained until 2r =0.4, and
will be discussed in the following section.

The dispersion relationship of SVA and SVB waves starts
to separate at Zr =1.7; a phenomena which can be clearly seen
in Figure 3.6. Similar to the inviscid model results, SVA
waves are not influenced by a thinning of the lower layer
thickness 2z, except in the region of very low wave number or
small Richardson number. As 2Zr becomes smaller than 1.0, a
numerica: instability ccuurs for very small Rirhardson number

flow 3¢ makes it impossible to calculate the * spersion



relationship, althou.Y these unstable regions eventual

shrink as is present=d in Figure 3.11.

Instead of testing the entire range of parameters, o=0.3

and Ri=0.4 have Leen chosen as the most unstable mode
examined for stability. Figure 3.12 implies that this
will be stabilized when 2z<0.43. Wy contrast, SVR wa-
much more stable against decreasing 2ix and for these w
the criterion is met at approximately 2Zas=1.07. This

very close to that obtained from the inviscid models i

ly

and
Sy stem
Q5NAare?

ave s,

value ig

)

n the

previous sections. Thus, it indicates that the viscosity

effects on the system stability is in the order of 3 t
This result is similar to the conclusions of Maslowe &
Thompson (1972) and Nishida & Yoshida (1987).

Figures 3.13 to 3.17 illustrate the variation of

perturbation quantity profiles with Zr., The Reynolds

o 4%.

the

stress

shows an obvious relationship between stability and energ
Y Y

transfers. The phase change of the displacement N also shows

that the perturbation field must lie into the mean flow field

in order to become unstable, which corresponds to the sign of

Reynclds stress.

Figure 3.13 shows the stream line of the unstable modes

of the SVA and SVB waves. It is obvious that SVB waves are

deformed by the existence of the rigid boundary. Most of the

features are identical with the invscid case; except for

smaller jwrwth rates.
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velocity 4?“SiFY .
z distribution distributicn
U=V tanh (z)
obl—mx — e e |- — ——
P,

rigid boundary

Figure 3.2. Velocity and density distributa
of Model III
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3.6 MODEL IV: DENSITY INTERFACE SHIFTING EFFECTS

3.6.1 Formulation

This problem is very similar to that researched by
Lawrence, Browand & Redekopp (1931). Figure 3.19 shows the
velocity and density profiles used in this model. Sipee
these profiles are similar to the preceding model, program
changes will only be required in the subroutine FUNC and in
some boundary conditicns. To make the density interface
shifting effects clear, an unbounded boundary condition will
be used; an assumption supported by experiments since
velocity distributions displaying this feature were observed
when the lower layer thickness 2:>3.0. With the rigid
boundary, it is expected that the dispersion relationship may
show some additional unstable modes in the low wave number

region; this will be discussed in section 3.7.

3.6.2 Solutions

In this model, the parameter ranges studied were d=0.5,
Re=100, 0.0=0=3.0 and O'OSRiSZ'S, which were chosen based on
previous experimental research (Yonemitsu (1986)), and the
calculations were performed using the same facilities as used
in the previous models. Figure 3.20 illustrates the neutral
boundaries and dispersion relationship of unstable modes.
Under this condition, it was found that only cne type of wave
can be unstable. Since this wave also has a negative

propagation speed, by definition, these waves must be called



gure 3.21 shows, the perturbation quantities

(PR

373 modes., As F
imply an instability level located lower than the point of
inflection, which was expected to be the point of greatest

inztabilicy.



velocity distribution density distribution

o~

Mo

U=tanh (z+Az)

Figure 3.19. Velocity and density
distribution of Model IV
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Figure 3.20. Dispersion relationship for density
interface displaced case (Re=100, d=0.5 case)
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3.7 DISCUSSION

Solutions of model III show the effects of viscosity on
the flow stability. By comparing to the result of inviscid
models, it can be seen that a large Richardson number region
is stabilized and that the neutral boundaries now have closed
forms. This is a more reasonable solution since the previous
experiments indicated the existence of a critical Richardsun
number for the Holmboe modes but the inviscid theories could
not explain it.

Despite the fact that model III included significant
improvements over the inviscid models in terms of the

velocity profile and the evaluation of the viscosity eff2acts,

the dispersion relationship on the 0-Ri plane indicates that
the most unstable modes tend to appear around 0=0.8 and
Ri=0.4 for the bounded cases; a result similar to that
predicted by the inviscid models in section 2.3. This
finding is consistent with the results obtained by Lawrence
et.al. (19%1) who employed an inviscid piece-wise linear
velccity profile model. It is interesting that the most
unstable modes get closer to the axis (Ri=0.0) as Zz
increases, and, as was mentioned before, they appear on the
axis in the unbounded case. This fact implies that model III
may be using a slightly different mechanism to determine the
most unstable modes in an off-axis location, when compared to
Lawrence'ss model, he mentioned that this phenomena may be due

to the existence of more unstable three dimensional primary



instability in the flow. However, present knowledge is
insufficient to answer this question; it is suggested that
experiments be performed to consider the three dimensional
wave structure (see Smyth and Peltier 1989, 1990).

Model III also shows that the lower layer thickness 2z
affects the stability of SVB waves, but does not seem to
affect SVA waves until it becomes less than 1.0. By contrast,
in the inviscid models, the most unstable modes of SVB waves
do not move their location on 0-Ri piane with the variation of
Zp. This implies that the stability of SVB waves is sensitive
not only to the velocity profile but also to the viscosity.
SVA waves obtained the additional unstable modes similar to
the inviscid models, but over a much larger area.
Unfortunately, as was found by Lalas & Einaudi (1976), it is
impossible to distinguish the boundaries between these
additional modes. Since investigation of the perturbation
quantities showed no over-reflection type of phenomena in
these modes, more precise calculations need to be done in
this region to find the mechanism of the additional modes.
Experimental investigations would be difficult since it is
expected that these modes would not be seen in the flow due
to their extremely small growth rates.

Model IV illustrates the dispersion relationship for
situation in which the density interface is displaced from
the center of the shear layer. Lawrence's inviscid models
show unstable Holmboe mode solutions in the region with small

Richardson numbers and large wave numbers, but these



solutions cannot be seen in Figure 3.20. This may be due to
viscosity damping effects, since the growth rate prredicted

an inviscid solution is relatively small and occurs at a
large wave number. Figure 3.20 also shows that the critical
value of the Richardson number is larger than that predicted
by model III. This result is reasonable, since the stronqest
shear occurs at the center of shear layer and far from the
density interface. Thus, the stabilizing effects of bouyancy
are much smaller than in the non-displaced cases. Another
contrast between this mcdel and non-disp.aced models is that
only SVB waves can exist when the Richardson number exceeds
about 0.2. This implies that the perturbation only appears
in the lower layer, which agrees with observations by Browand
& Winant (1973), Koop & Browand (1979) and Lawrence

et.al. (1990).
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3.8 CONCLUSION

In this section, the effect of viscosity was introduced
into the previous models, and a hyperbolic tangent velocity
profile was employed in order to improve the evaluation of
the flow stability.

Model III, which evaluates the effects of the lower
layer thickness Zz, shows the damping and stabilizing effects
of viscosity on high Richardson number flows. This is a much
more reasonable solution than the inviscid one, since the
previous experiments indicated the existence of a critical
Richardson number of about 1.5 to 2.0. It was also found
that the viscosity destabilizes the low wave number region,
as was illustrated by the additional unstable modes.

Model III also shows that SVB waves are strongly
influenced by the reduction in Zgr, but neutral boundaries and
the most unstable modes behave slightly differently from
those in the inviscid solutions. The most unstable modes
appear around 0=0.8 Ri=0.4 and do not move with variation of
Z:. These models (I,II and III) imply a sensitivity of SVB
wave stability on the lower layer thickness Zr and velocity
profile Uo. By contrast, SVA waves are only slightly
influenced by 2r and Uo; a result very similar to the
inviscid case, which may suggest an independence of SVA waves
from the lower layer flow.

Model IV, which tests effects of the displacement

between the interface and the center of the shear layer,



shows that only one Holmboe mode (SVRB) can exist in the
channel. Although the model did not cover the entire range
of parameter variation (especially the displacement d), the
results imply mechanisms for the instability that are quite
reasonable (in particular, the larger critical Richardson
number). This model also showed that the additional unstable
modes obtained by Lawrence et.al. are stabilized by
viscosity.

In summary, viscosity and continuous velocity profiles
exhibit significant influences on flow stability. However,
some of the features predicted by both the inviscid and
viscous models are contradictory. 1In the next section,
appropriate experiments will verify these problems and the

stability of the salt-wedge will be examined.



4.1 INTRODUCTION

In the previous section, several flow models, designed
for different flow patterns in the channel, were investigated
for their stability features. However, as was mentioned in
part I, few experimental and field observational data are
available to verify the waves and flow structures in the
channel, due mainly to the incompleteness of data sets.

In this section, experiments to produce complete data
sets (i.e. information such as wedge shape, velocity and
density profiles, wave length and its phase velocity,
interface displacement d and the lower layer thickness Zs)
will be discribed. Measurements were made using LDA (Laser
Doppler Anemometry), a conductivity-salinity meter, and a
wave detector; all controlled by a computerized data
acquisition system. Also a flow visualization technique was
used to identify the flow structure and density interface.
The parameter ranges were carefully controlled by choosing
the salt water density p2 and fresh water velocity Ue to
produce an appropriate flow situation for observing the waves
and results referred to in previous sections. The details

will be explained in the following sub-sections.
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4.2 FACILITIES AND PROCEDURES

4.2.1 Flume

The layout of the flume used in the experiments is shown
in Figure 4.1. It consists of a straight channel section
3.05 m long and 16 cm wide connected to a large downstream
reservoir which is 81 cm long, 82 cm wide and 10 cm deep. At
the end of reservoir there is an overflow weir to maintain a
constant water level. The depth of the channel section is
maintained at 6.7 to 7 cm for all cases. Although the slope
is adjustable by using a2 jack located at the upstream end of
the channel, it was set at zero for the experiments.

The flume was constructed of plexiglass supported by
aluminum frames to prevent bending and torsion due to its own
weight. The bed of flume is supported over the desk top
about 40 cm high in order to move the LDA system. These
supports were arranged to minimize interference with the
measuring system except for the region very near the river
mouth. At the upstream end, two sets of flow straighteners
{which were made of 7 cm long plastic honeycomb and fiber
hog) were installed in order to obtain uniform flow by
destroying the large eddy structure in the channel. By
employing this method, the turbulence intensity in the
channel was of the order of 10 to 20% of the mean flow
velocity at the upsteam end.

The salt wedges for our experiments were formed using

the following procedure. First, the flume was filled with
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salt wate: while the upstream end of the channel was eclevated
about 5 cm higher than downstream end and the depth of water
was about 2 cm. Then, fresh water was introduced into the
channel from the upstream end using a very small discharge,
in order to prevent any mixing phenomena right at the
beginning. Once a distinct fresh water layer had been
established over the salt water, the discharge was increased
and at the same time the slope was slowly reduced. The
combination of discharge and bed slope was carefully chosen
such that the location of the front end of the salt wedge
(so-called tip region) would be maintained about 10 to 20 cm
downstream of the flow straighteners. After the bed slope
reached zero, and a constant discharge of the fresh water was
established, the salt wedge tip continued to move until it
reached a station approximately 200 cm from the channel
mouth. At this point, the movementof the salt wedge slowed
down significantly, reaching an average velocity of about 5
to 30 cm/hour (Quasi-steady state).

The measurements were made after a steady state
condition had been obtained, which was ascertained by
constancy of the salt wedge tip location. Measurements
included visualization of interfacial details through dye
injection, velocity profiles taken by the LDA system,
interfacial wave phase velocity Cz and wave length A
determined by the wave detector. The density profile

measurements were made with the conductivity probe and by



™o
>
s

sampling. Details of these measurements and their equipm-nt

will be described in fcllowing sub-sections.

4.2.2 Laser Doppler Anemometer

The Laser Doppler Anemometry (LDA) technique is one of
the most widely utilized velocity measurement systems. It is
a non-intrusive, instantanecus measurement without any
calibration even though its signal processing gives several
mathematical and electrical difficulties. For a general
review of the history, theories and applications, refer to
the work by Durst, Melling & Whitelaw (1981), in the Von
Karman Institute Lecture series 1981-3 entitled 'Laser
velocimetry' (1981). Technical details of the system can be
found in the [ ISA manuals.

The method utilized in the experiments is the "dual beam
forward scatter"” method (fringe mode) shown in Figure 4.2,
The advantage of this method, compared to the common back
scatter type LDA, is a smaller power requirement for the
laser tube, and easy maintenance. In particular, the ease
with which the optics could be adjusted was a very important
feature of this method since the density stratification often
refracted the laser beams, making it necessary to re-focus
the photo detector during experiments. A minor adjustment of
the detector focusing was necessary every time the system
went across the density interface. Since the photomultiplier

was conveniently located slightly higher than the beam



focusing plare (see Figure 4.2), it was impossible t. measure
the velocity at poirnts a few millimetres below the interface.
When using this method, velocity is given by following

eguation,
A-

2sin(0./2)

U =
(4.2.1)

where AL is the wavelength of laser light (632.85 nm (He-Ne
tube)), O, is the crossing angle of the two beams (measured as
5.52 deg.), and fp is the Doppler shift frequency.

This equation implies that measured velocity values are
completely independent of the location and set-up of photo
detectors.

Figure 4.3 is a schematic diagram of the r2in components
of the LDA system, as well as the data acquisition system.
The laser tube was composed of a 35mW He-Ne laser with a
632.8 nm red line, requiring significantly less power than
other comparable systems. Using the beam splitter, the laser
beam was split into two distributed beams of approximately
equal power. The frequency of one of these beams was shifted
40MHz (plus-minus a few KHz) by passing it through the Bragg
cell (acousto-optical frequency shifting system) in order to
detect flow direction. A focusing lens (f=310mm 8.=5.52deg.)
crossed these two beams at a point which was positioned in
the flow by moving the entire optical system (mounted on the
optical bench). Accuracy of positioning in the vertical and

transverse direction was 0.5 mm.
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Figure 4.2. Laser optics set up.



‘w1545 Axiswowsuy Ja1ddog a13sel Jo weIibeip NoO0Tg "€°v 21nbrg

1035392014 Hmcmﬂm 1917114
adf1-193unoo[@——]sseg pueg E
19731 7dwy
f 06168 ¥YSId b
(*W°dg) | L61SS
1010929 ¥SId
(11 O®BR) d
T912ndwo)d |
13uuey) 7015111950
/ :
HWO ¥
1130 I933TYS
bbexg Aousnbsi1g ya1
T

0INSS V¥SIdA

He-Ne Laser

(35mW)




N
(@]
[§1

Since the system operates by analyzing the scattered
lighr from minute particles within the flow, the flow was
zeded with skim milk powder in very small concentrations,
+ne required quantity being determined by monitoring the raw
sianal output of the photomultiplier with pre-amplifier and
Land-pass filters. The scattered light was collected by the
photomultiplier located opposite the laser on the same
optical bench as the laser-Bragg cell-focusing system. This
scattered light was converted into an electrical signal,
which was processed by the counter type frequency analyzer
after passing through pre-amplifier and band-pass filters.
This counter evaluated the Doppler frequency fo in each burst
and displayed these values on its front panel. Also, since
the digital output was sent to a D-A convertor and output
amplifier, the velocity values could be monitored as a
voltage by using appropriate instruments such as a syncro-
sccpe.

As can be imagined, this system generates a large amount
of data and necessitates the use of a data acquisition
system. The system we used consisted of an A-D convertor
(NB-MIO~16L-9), an amplifier and a computer (Macintosh II
with 4MB of memory). The analog signal could be sampled by
this system at an arbitrary sampling rate which was totally
controlled by computer software, and, although this system
was capable of a sampling interval of 10 MHz, the experiments

did not require such a high speed sampling since the flow was



quasi-laminar. Other settings of importance to the operation

of this system are presented in Table 4.1.

Table 4.1 LDA system setting

band pass filters 1 to 256 kHz
pre-amp. gain -3 to -7 db
threshold window 7 db

computation accuracy 1.5 to 3 %

ensemble width 1 to 4096

Frequency shift 40 MHz+20kHz

output amp. reduce gain 3 to 7 db

AD conv. amp. gain (Mac) 100 db

sampling rate (Mac) 50 Hz (At=0.02 sec.)
FFT smpling (Mac) 1024 data points

The sampled data was processed by the utility program
package 'LabView', which controlled data acquisition,
calculations and data storage. Essentially, two types of
information were collected; the time-averaged velocity Uo and
the root-mean-square of fluctuations uU. The averaging was
performed over a time interval represented by 4000 to 40000
data points at a sampling interval At=0.02 seconds. Thus, it
took about 2 minutes at each location to get one averaged
velocity. At the same time, the statistical package included
with LabView determined the standard deviation of velocity
which corresponds to rms (u). In addition to velocity

information, the power spectrum was obtained simultanecusly



2C7

iy using the FFT (Fast Fourier Transform) program in the
rabView. All this information could be monitored on the
computer display screen and was automatically stored on a

£loppy disk in spread sheet format.

4.2.3 Wave Detector

The interfacial waves were detected using an instrument
similar to a conductivity meter. Figure 4.4 shows a schematic
diagram of this instrument, designed and built by the
Department of Applied Physics at Hokkaido University in 1984.
This device measures the conductivity difference between two
wires by detecting the unbalance aross a Wheatstone bridge
and amplifing the output. A 5 KHz alternating current was
applied to the bridge to avoid the electrolysis of water, and
the output of this circuit responded linearly to conductivity
change. To maximize the sensitivity of this device to
interface movement, the pair of wires was positioned such
that the ends were half submerged into the salt water.

Two completely independent sets of sensors were located
longitudinally in the stream, separated by a known distance
(10cm). A FFT and cross-correlation of outputs gave enough
information to evaluate the interfacial wave length A and its
rhase velocity Cz (see Appendix C). These measured values
were compared with flow visualization results in order to
confirm the information. Unfortunately, it was impossible to

measure the growth rate of waves aC;, because these two

sensors had to be electrically independent and could not
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Figure 4.5. Wave detector output and processed data.
(90.6.9(1) case. A*=2.10cm, Cp*=3.20 cm/sec.)



match the 'r output characteristics completely. The FFT and

cross-correlation were performed using the same computer

system as was used for velocity measurements. (see Figure
4.5)
4.2.4 Conductivity-Salinity Meter

It is well known that conductivity-salini-y
measurements are one of the most difficult aspects of
experimental instrument design and usually are not reliable
unless sensors are calibrated every time they are used. The
difficulty is mainly due to the change of sensor effective
surface area by salt, and also the sensitivity of the sensor
and circuit to temperature fluctuations. Also, entrainment
of sampling water by the sensor makes the situation even more
difficult. (see Sargent & Jirka (1987)).

In order to avoid these technical problems, the
following two methods were employed. In the first method, a
sensor designed and built in the Department of Mechanical
Engineering at the University of Alberta was used. This had
a tip designed to be very small and sleek to prevent
entrainment, yet large enough to achieve high accuracy and
sensitivity during experiments. This sensor was moved slowly
and located at each measuring point for a sufficient length
of time to obtain stable readings. The process required one
to two minutes for each reading, depending on the flow

velocity. By employing this method, it was found that
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reading values were very consistent and reliable regavdless
of the direction of sensor travel,

In the second method, the density of the upper and lower
layers was determined by taking 100ml samples of fresh and
salt water before and after the experiments. By measuring
the weight of each sample using an electric scale (which can
read up to 10 mg), and averaging several readings, the
maximum and minimum densities in the flow were obtained. From
these values, Ap and Y were obtained.

As shown in Figure 4.6, this sensor showed excellent
linearity, implying a similarity of density profiles and
output velocity profiles. Based on this figure, we feel very
confident of our measuraments of density distributions and
the density interface location, which was defined as the
level at which PAv is located. The vertical resolution of
this sensor was 0.1 mm in location and it was accurate enough

to examine the density structure of the interface and shear

layer.



4.3 EXPERIMENTAL RESULTS

Figure 4.7 is a schematic diagram of a typical salt
wedge profile observed during the experiments. On the basis
of their detailed experimental data, Sargent & Jirka (1987)
suggested a longitudinal subdivision of the wedge into three
regions (see part one) which are (1) the tip region, (2) the
quasi-equilibrium region and (3) the exit region, based upon
the force distribution on the interface. Although the
overall dynamics of the salt wedge is mainly controlled by
the quasi-equilibrium region, it was found that the tip and
exit region contribute to wave generation as well.
Therefore, it was necessary to perform velocity and density
profile measurements in all three regions.

As it was mentioned before, the flow in the channel has
a very complicated three-dimensional structure as is shown
schematically in Figure 4.8. These structures were observed
using a combination of flow visualization, conductivity
measurements and LDA (see Figure 4.8 and 4.9). It is
obvious that the secondary flow in the channel creates the
transverse flow structures, and it is because of these
structures that the stability of the system cannot be
described by width-averaged or centerline velocity profiles
as was the common practice with previous researchers.
Mnreover, the LDA measurement of the velocity distribution in
the transverse direction, shown in Figure 4.9, indicates the

existence of a slightly different structure in the salt water



R

compared to that observed in the fresh water. Therefore, the
experiments were performed with consideration of not only
longitudinal subdivisions but also transverse subdivision
such as the high speed region and low speed region.

Let us now introduce new longitudinal subdivisions based
upon wave and interfacial phenomena (Figure 4.7). If we
consider Figure 4.8 it can be seen that SVA waves are located
in the high speed regicn and, by contrast, SVB waves are
always found in the low speed region.

In addition to velocity profiles (see Figure 4.8), the
thickness of the salt wedge was also measured in the
transverse direction, and it was found that only very small
changes (about 0.2mm) in thickness existed. This fact
implies that it is very difficult to determine the flow
structure by measuring interfacial deformation. Therefore,
it is necessary to clearly specify the locations of flow
measurements if we are to understand and evaluate flow
stability.

Figure 4.10. shows typical interfacial waves (here SVA)
in this flume. Here, the salt water layer was dyed with food
color to visalize the density interface ((a) and (b)). Also
in (b), this dye was injected into fresh water layer about
lcm above the interface and it indicated the series of
vortices which correspond to SVA waves. Both photograph were
taken in the quasi-equilibrium region and over-all Richardson

number was around Rio=0.6.



In the analysis of vertical velocity profiles, they were
non-dimensionalized using the characteristic length and
velocity scales as defined in Figure 4.11. These scales are
based upon the hyperbolic tangent function velocity profile
and the step function which describes the density profile.
Figure 4.12 summarizes the velocity profiles and shows good
agreement with tanh(z) especially around the density
interface. It can be seen that velocities tend not to match
well in the z<-1.0 region, which is due to the existence of
the rigid boundary. The upper layer velocities also show
some disagreement with tanh(z) since the shear stress near
the density interface was considered as the first priority
for velocity matching. Also, it should be mentioned that we
have tried to minimize the displacement ¢ (which is defined
as the distance between the density interface and the center
of the shear layer) unless it was too big. The effects of
this velocity approximation technique on the evaluation of
the stability will be discussed in the next section.

Figure 4.13 shows a typical vertical density
distribution and implies that a two-layer model for the salt
wedge is quite reasonable. The profiles maintained their
sharp density interface through the entire section of flume,
and it was found that the visual interface and the steepest
density gradient point always matched each other very well.

The significant details of the experiments performed are
summarized in Table 4.2, where the superscript "*" indicates

a dimensional guantity. X and Y represent the location of



measurement points as distance from the mouth and left wall,
respectively, Vist and Dint represent the velocity and depth of
the density interface, D represents the total depth of the
location and d represents the density interface displacement
from the center of the shear layer. Some of the experiments
in this table were performed in a different flume by
Yonemitsu (1986) and are listed for comparison. The ranges
of the global parameters such as the Reynolds number and the
Richardson number were wide enough to cover entire range of
results from the previous analysis (29<Re<549, 0.15<Ri<3.96).
Figure 4.14 shows three typical velocity profiles
measured in stable and unstable situations. It can be seen
that the fluctuations (rms(u)) tend to have three peaks in
their amplitude; a feature that may be considered to be proof
of the instability mechanism since it is a very unique
feature predicted in sections 3.5 and 3.6. Moreover, the
spectrum of these fluctuations appears to be identical with
the interfacial wave spectrum predicted for the case
involving unstable flow conditions. On the other hand, the
stable case shows that the maximum fluctuation peaks are
significantly far from the density interface and seem to be
stabilized by stronger bouyancy effects. Another problem of
rms (U) was that the data rates in lower layer, particularly
near the bed, were not significantly high to obtain reliable
value of deviation, which was mainly due to the fgeature of
our counter type signal processor. Details of this problem

can be founf in the DISA manual. Also, it can be seen that



the amplitude of rms(U) in the lower layer exceeds 100% of
the mean velocity and, therefore, we must conclude that by
uzing the velocity approzimation, tanh(z), we may be
introducing problems into the analysis. These problems will

e evaluated in the next section.

Figures 4.15 to 4.20 summarize the results obtained by
the experiments. Each of them combines experimental results
with the theoretical and numerical analysis performed in the
previous sections and by Nishida & Yoshida (1987). If we
consider Figure 4.15, this figure indicates a strong
dependence between Reynolds number and the unstable wave
number and, since most results are below the line, the
experiments show good agreement with the numerical results
(unbounded case). Also, it should be noted that SVB waves
tend to have larger wave numbers than SVA waves which may be
due to the effects of the rigid boundary.

A strong influence of Reynolds number on stability can
be seen in Figure 4.16 which illustrates 2Zr effects on the
stability of the flow. The inviscid analysis performed by
several researchers (Hazel et.al. see section 1.3.3.) matches
with experiment when Re>250, however, for the smaller Re, the
results seem to indicate that viscosity effects should also
be considered.

Figure 4.17 presents the relationship between wave
number @ and phase speed OCy. Obviously, the numerical
analysis underestimates the phase velocity of SVB waves even

though the solid line is for the 2:=3.0 case. This type of



mismatch of phase velocity of SVB waves is common amongst
most of the experimental results reported (Yoshida s
Kashiwada 1988 and Hino & Hung 1982). Although several
explanations (including non-linear effects) have been given
for this problem, none of them have been verified.

Figure 4.18 illustrates the stability boundaries on the
x-Ri plane. It is easily seen that the critical Richardson
number Ric is about 2.0, which is slightly larger than that
predicted by both the unbounded and bounded cases. This is
also commonly found in experiments: it has been suggested
that the intermittency of wave generation is related to this
overestimation. Two other observations that can be made {rom
this diagram are as follows. First, the numerical analysis
gives reasonable agreement for SVA waves in terms of the most
unstable modes. Second, SVB waves appear to be much shorter
(i.e. larger wave number) than predicted values: again,
several explanaticns exist and will be discussed later.

The critical Richardson number Ric and its 2r dependence
are shown in Figure 4.19. As in Fiqure 4.18, there is an
indication of slight overestimation on Ri: and, therefore,
some of these points, which have extremely large Richardsocn
numbers, may result from same mechanism. However, except for
these points, experiments show relatively good matching with
numerical analysis and the existence of a cut-off value for Z.

can be seen clearly.
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Figure 4.20 shows the relationship between Re and Ri.
Agreement is good except for several SVA waves which are the
same outlines as in previous figures.

The experiments have revealed some of the basic
mechanisms relevant to the interfacial wave phenomena in
rerms of the hydrodynamic stability. Yet, a few problems
still remain, such as the underestimation of the critical
Richardson number Ric and the SVB wave phase velocity. 1In
the next section, these questions will be discussed from the

point of view of velocity approximation problems.



eusuouayd aaem piue 9LPaIM-ITRS BY3 JO MITA IPIS

YINOW ISATY ¢

wd 0cZ-0¢1

wspy-0¢

uotbar 3Tx8 | uotbaxr unraqrrirnbe-rsenb

"Ly 2anbrg

|
“ dra
- — '_A L I91eM ysaag
[ L “
| [ i @oeJaIng
-l »la |
uotbhox gAS DUB YAS Atuo °  uothazx
burxztu



i

(§]

“abpam 11ES 213 U0 BINIVNIIS TPUCTSUIWTJ-93IYL

o9bpam 1T1es

@17302d
K310012a TRIUOZTIOY

(uotbax poaads moT)
MOTJ I93eM ysSd13J TTePWS
MOTJ Yoeq abier \.‘\\

ysaig

(uotbax peads uybyy)
MOTJ 1921em ysaijy abiey
MO13] Ydoeq Trews

‘@°p 2anbt 4
(z793%0TU3)
uoybax
poads Mot
(zautyl)
uotbax
- 2ads uyb
.-2 w \U UPTH (193EM

z ysaiy)
moTd

(sxted xo310A
95 TM-WEII]E)
sMOTJ Axepuodas




(3sed *03/E7cq-1=d ‘wdnz=uldap as3em 37es ‘wc ¢y =yidop (viod ‘yinow
®U1 WOII wONy) TIUURYD BY1 UT 8INIONAIS MOTI AIEPUODDS "§°p 2INDHTY
(WD) Ti®2M BPTIS WOl IDURISIP

R 9 C 0
I T T I-
|
!
| x x x x
_ .

.

| - * 0
k x 'Y *

!

04 ¢

3
.
41
° 4¢
°
°
o o
° o

Av -3 < ° - ° Lm

ery . WOG " T-=42Z x

170 WOG* 0-=4Z ¢ (D925 /WD)

WO T=xZ ¢

on



(b)

re 4.10 SVA waves in the flume
si-equilibrium region)



shear layer

velocity distributicen density distribution

P,

U=V tanh (z/L)

Figure 4.11. Definitions of the characteristic
length and velocity scale
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4.4 DISCUSSION

The previous section indicates that the hydrodynamic
stability analysis explains the interfacial wave rhenomena
very well. However, several problems also arise, exampleos of
which are the velocity approximation, the oritical Ricshardson
number and the phase velocity. In this section some
explanations will be given from the velocity approximation
point of view.

As was mentiored in Part One, it was believed that the
mean velocity profiles fit a tanh(z) function reasonably well
and that the inflection point (i.e. the center of the shear
layer) always matches the lczation of the density interface,
This is true if a width averaged, center line velocity is
considered. However, the actual flow structure is5 far more
complicated and this idea of width averaging may not be
appropriate for all the cases. Therefore, the velocity

pproximation should be re-considered in order to evaluate

93]

t
joy

e flow stability correctly.

In section 4.3, the velocity profile was approximated hy
the tanh(z) function on the basis of the following
assumptions: (1) The inflection points of the wvelocity
profile (i.e.z=0) occur at the density interface except in
the flow region near the mouth region. (2) The velocity

radient is of greater importance to a stakility evaluaticn
than the maximum-minimum values of vrlocity. Figure 4.12 and

Table 4.2 were obtained using these assumptions and thevy
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deerermination., However, 1if we relax these cond:
vhe interface dizplacement d be non-zerc, a hetter
approzimation can be cobtained as shown in Figure 4.21. Table
4.3 contains re-calrculated parameters based on this new
approximaticn: it can be seen that most of wvalues are
identical to Tavle 4.2 except for d.

As was found in the numerical analysis and Lawrence's

recults, the displacement d has strong effects on the flow

tability, particularly on the wave number and phase

Lt

velocity. 1In order to evaluate the influence of d, the

Richardson number Ri and wave number O were plotted against d
as 1in Figure 4.22. This figure indicates that the unstable
modes tend to have larger Richardson numbers and wave numbers

5 d increases. This is very reasonable in terms of the

s0

critical Richardson number, since the prediction of model IV
showed Ri-=2.2 at d=C.5 (Riz=1.5 for d=0.0 case). On the other
hand, model IV showed that the unstable wave numbers tend to
be unchanged or slightly smaller than the d=0 cases; a result
which is completely different from the behavior of SVB waves
in Figure 4.22.

These experimental results seem to support Lawrence's
inviscid analysis. SVA waves showed relatively good
asrecment with the viscous model and any differences may be
~-p:a.ned as follouws: (1) SVA waves showed larger critical
Richardson numbers mainly due to the displacement effects

vredicted by model IV; (2) SVB waves tend to have larger wave



numbers than were predicted by the viscous models (II! and

IV) . However, it may be reasonable to say that the viscosity

v

[§3
t)

fects are relatively small since the lower laver thickneos
2z was large for these cases. Thus, the inviscid model does a
tetter job of prediction (see also Figure $.23). (3) Another

possible explanation for these phencmena is that the non-slio

boundary conditions (model II) make the SVB wave number

larger as Uw (relative velocity of the rigid boundary to the
Y

mean flow) increases. This also seems reasonable since model

II is inviscid.

It should also be mentioned that the critical Richardson
number observed in most of the previous experimental warks
tends to be large since the wave phenomenon is intermittent.
Also, if the mean velocitv profile is employed to examin- the
stability, the shear stress was likely underestimared and the
critical Richardson number overestimated. This suaggests thar

nstantaneous velocity prefile measurements must ke employed

(BN

to improve the accuracy of the prediction, althcugh cur
experiments did reveal the details of the mechanism of rhe
interfacial wave phenomena very well.

Figure 4.24 shows the relaticnship between the denzsity
difference Ap and the characteristic length and wvelccity
scales. It is interesting that the length scale L is almosrt

independent of Ap variation, while the velocity scale V is

significantly influenced by Ap. The variation of V also

shows that V cannot be large enough to maintain their smal

Richardson number for unstable waves as Ap increases. Gn "he
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“rer hand, cmaller values of Ap allew a certain amount of

LR IPe
syariation in Y and therefore, most of the unstable situations
were ohserved in the 0<Ap<0.015 region. This fact suggests
vhat it iz wery difficult to obtain an instabili<y in
experimental channels with a high density difference such as
provided by sea water (Ap=0.029-0.033).

The phase wvelocity mismatch of SVB waves is another
problem. However, there i1s no clear explanation for this
nrcblem mainly due to the lack of appropriate analysis. It
can be seen (based on models I, III) that the SVB waves have
a slightly larger phase velccity in the smaller wave number
region if a rigid boundary is present than in the unbounded
case and this may be one of the reasons. The possibility of
non-linear effects on these waves has been examined by
Yoshida & Kashiwada (1988), but this analysis did not improv

the situation either. This is certainly a problem to be

solved in the future.
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Figure 4.21. Non-dimensionalized velocity profile
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4.5 CONCLUSION

In this secticn, experiments involving the sal:t wedge
rype of two layer stratified flow have been discussed. The
meeasurements (from LDA, wave detector, conductivicy met.:r and
visualizaticn technigues) investigated the wave phencmern. on
*his type of flow. As the measured mean and fluctuation

velocity profiles showed very good agreement with

VI

o

diction, this proved that these wave phenomena are

ore

strongly asscciated with the shear instability mechanism.
The other flow parameters (the Reynolds number, the
Fichardson number, wave number and phase velocity) supported
this idea by showing very good agreement with analvsis.
However, a few problems were found related to the critical
value of the Richardson number and phase velccity of SVB
waves. These are partially caused by problems of the
velocity approximation with a tanh{(z) function and to
intermittency of the wave phenomena. Also, it was suggested
that strong non-linear effects on the phase velocity may
affect the measurens~*s. This problem needs further

investigation by both theoretical and experimental analysis.



5.1 CONCLUSIONS

In this stuay, present knowledge was reviewed with * he
objective of clarifying relatively weak points in ocur
understanding of instability phenomena on salt wedae tlow,

The following problems were addressed:

Problem (1i): Seraration of two Holmboe modes (i.e. 3\VA
and SVB) were observed and this phenomena is called 'one-
sidedness'. Present xnowledge of stability may explain some

tabilizing effects of the rigid boundary conditions, but

1G]

dces not exp. ::n the separation of the solutions.

Problem (ii): Previcus esperiments show that a salt
wedge can »¢ divided into three sub-divisions based on their
stress distributions. 1In ea~h region, velocity profiles can
be arvroximated very well by a tanh(z) function, although the«
irnflection points are often displaced with respect to the
density interface. These displacements cause some problems
when applving existing hydrodynamic stability thecries to the
salt wedge.

Problem (iii): Due to the secondary flow structures in
channels, high and low speed regions develop which may cause
three-dimensional interfacial wave structures. However, few
experimental data arm available in the case of salt wedge
.

flow, making it difficult to determine the implicaticns of

this phenomena.

244
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These problems were investigated by developing

apioropr iate numerical models and through verification of

“hene models with experimental data.
For the problem (i), three models were examined to
«yaluate the rigid boundary effects on the z.nkility of salt

wiedge flow. The features of these mcdels can be summarized

as follows:

Model I: Inviscid, piece-wise linear velocity profile Zlow to
evaluate the effects cf the rigid boundary.

Model II: Same as model I, but provides for the back flow
effects in the lower layer by changing the rigid
boundary velccity Uw.

Model III: Viscous, tanh(z) velocity profile flow. Designed
to evaluate rigid boundary effects on stability.

The results are:

Model I: Generally SVB waves are stabilized as the lower
thickness Zyz decreases, while SVA waves are not affected
as strongly. The unstable wave numbers for SVB waves
tends to have smaller values as 23 decreases, which is
opposite to intuition.

Model II: It was found that the SVB wave length gets shorter
as Zg decreases when the velocity of the rigid boundary
Uw is Uw>-1.0. It was also found that SVA waves have
additional unstable modes in the extremely small wave
number region when the value of Uw exceeds 0.0. These

modes, however, have a very small growth rate and are

not expected to be able to appear in the flow.



Zoth models I and II showed some problems when 0 we 3 oma
than 1.0, sirze the plece-wise [incar velociny profile @ ils
to satisfy one of the necessary conditions for instabilicy,

Model III: In this model the damping and stabilizing «ffectn

of viscosity on high Richardson number {low was

observed. It was also found that the viscosity
destabilized the low wave number region, as was
illustrated by the additional unstable moedes. This
model also shows that SVB waves are strongly influenced
by the reducticn in 2z, but neutral boundaries and the
most unstable modes behave in a slightly different way
when compared to the inviscid soluticns. The most
unstable mcdes appear around o=0.8 Ri=0.4 and do not
move with the variation of Z2z. These models (I, II and
III) imply a sensitivity -f SVB wave stability on the
lower layer thickness Zz and velocity profile Uo., By
contrast, SVA waves are only slightly influenced by &+
and Uo; a result very similar to the inviscid cas: and
may suggest an independence of SVA waves from the lower
layer flow.

These numerical results indicate that viscosity ard a
continuous velocity profile have a significant influence ugpon
the flow stability. In order to verify these results, the
experiments including the measurements (from LDA, wave
detector, conductivity meter and flow visualization
technique) were performed. A3 the measured mean and

fluctuation velocity profiles showed very good agreement with
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seenanism.  Gther flow parameters (the Reynolds number, the
Ficharason number, wave number and phase velocity) supported
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1150 found, however, that there were a few proclems rel
t., the critical wvalue of the Richardson number and the phase
si:locity of SVB waves. These are partially caused by
approximating the velocity profile with a tanh(z) function
and problem associated with intermittency of the wave
phenomena. Also, it was suggested that strong non-linear
effects on the phase velocity may affect the measurements.
This problem needs further investigation by both theoretical
and experimental analysis.

For the problem (ii), the displacement of inflection
point upon the stability of salt wedge flows were evaluated
by numerical model IV, which is: Viscous, tanh(z) velocity
profile and unbounded flow with the inflection point
displacement. The results were summarized as:

Model IV: This model showed that only one Holmboe mode (SVB)
can exist in an open channel. Although the model did
not cover the entire range of parameter variation
(especially the displacement d), the results imply
mechanisms for the instability that are quite reasonable
(in particular, the larger criticali Richardson number).
This model also showed that the additional unstable

modes obtained by Lawr.nce et al. are stabilized by



viscosity.

ments verified significant eftects of the

-

The exper

1))

infle
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tion point displacement on the waves, particatarly
'one-sidedness' phencmencn.

For the preblem (iii), careful and precise experiments
were performed. By combining the resulits with the problem
(1) and (ii), they showed even more details of flow and wave
structures cn salt wadge than previous knowledge. The
results from these experiments also support the assumption
that localization and three-dimensional structures of
interfacial waves are strongly related to the channel
configuration and three-dimensional flow structures. This
fact implies that better prediction of wave phenomera on a
salt wedge requires precise details of the flow as opposed to
just width averaged or centerline velocity and density
profiles.

Therefore, the stability problem of a salt wedge needs
further investigation in which precise measurements are

taken. These should include the instantaneous velocity

profiles and secondary flow structures in the channel.



5.2 DISCUSSION AND SUGGESTIONS

L5 was mentioned before, the three-dimensional structure
¢ inrerfacial waves 1s another commonly observed prcoblem
snueciated with salt wedges., Because of the consejuence cf
piire's theorem, we have always assumed a priori that an
initially one-dimensional flow will pass through a distinct
Two-dimensional state before becoming dependent on the third
spatial coordinate (lateral directi-ri. Thus, these three-
dimensional wave structures are considered to be the
secondary instabilities produced after full development of
primary two-dimensional instabilities. However, the salt
wedge flow usually does not have the strong non-linearity
required, by theory, to induce secondary instabilities and it
is this fact that has guided this study in the investigation
of three-dimensional ¢.-w structure as opposed to focusing on
a non-linear treatment of these interfacial waves.

Recently, it was found that the fastest growing three-
dimensional primary instability possibly exists when there is
increasing viscosity or stratification of the flow. Smyth &
feltier (1990) investigated the stability of stratified,
dissipative flows and found these three-dimensional primary
instabilities in the Holmboe modes. Although the calculation
is performed under quite a limited range of paremeters, their
results answer some of the questions concerning the stability
analysis of stratified fluws. rror example, the inaximum

rowth r.te of Holmboe modes is always obtained ~round

Ye



0.8

2-D Homboe
instability

Ri

4 3-D Homboe
04 F  instapility

-

02 F .

2-D Kelvin-Helmholtz instability

0.0 L dem
0 200 Re 400 600

Figure 5.1 Adopted stability diagram of primary
three-dimensional instabilicy from Smyth & Peltier
(1990). (R=3.0, Pr=9.0 case)



i <0 .4. Rlthough wnis is intuitively somewhat sucpicious, a
nononinle explanation is that the flow tends to be more
wrmvxnle due t©o the three-dimensional perturbations when
Figure 5.1 illustrates some of the results obtained by
smeth & Peltier, and shows that when Re=100 (which was the
~ane for models III and IV) three-dimensional instabilities
~an become the most unstable modes. Although their model
employs a relatively large density transition thickness
compared to the two layer model, the results indicate the
necessity for further theoretical investigation to explore
the possibility of three-dimensional primary instability. At
the present time, we do not have enough evidence to verify
the existence of three-dimensional primary instability, and

further experimental and theoretical investigation is

expected.
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APPENDIX A: RELATIONSHIP BETWEEN REYNOLDS STRESS AND
PHASE CHANGE OF PERTURBATION VELOCITY We

:n section 2.3, it was seen that the phase change of

perturbstion velocity W (i.e. df/dz) is strongly related to
the flow .-ability. In fact, the phase change df/dz
represents th+ direction of the energy transfer between the

mean flow ancd Lurbulence which is the same as Reynolds

stress. In this appendix, it will be proven that d8/dz and
Reynolds stress are identical in the piece-wise linear

velocity profile cases.

Let us consider the phase change of the perturbation

velocity W, which is

~ . -~
@ = tan™" %L = tan™t XL
WR WR o, (A.1)
where
W = W + W] and W= Wp + i

Since the piece-wise linear velocity profile was employed in
section 2, it can be seen that onlylﬂ < 1.0 region
contributes to the energy supply for the turbulence (see
Figures 2. to 2. ). Thus, |2 < 1.0 region will be
investigated in the following part of this appendix.

The general form of the governing equation for this

region may be written as,

W= A exp(az)+ B exp(-0z) | (A.2)
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where A and B are complex numbers and may be written as

A=AR+iA: and B=BR+iB:

From equation (2.2. ) the Reynolds stress is

T = -1 exp2w.t)Im (Qg_w_)
20 dz/ .
If the flow is unstable for 0>0.0 cases, then

T>0,

and
exp(2m;t) > 0
Therefore, the following relation has to be satisfied.

Im (G'ﬂ > 0
dz . (A.4)

Substituting (A. ), then

Im Q'gﬁ)
dz

Dn(a(A'exp(az)+B'exp(-az))(Aexp(az)-Bexp(—az)))‘

I

Im (o ( |2Pexp (2az) - |HPexp (-20z) ) +0AB -A"B) ,
im (oaz)-ofas”))

Im(ZiaIm(ABj)

20.Im (AB)

>0 . (A.5)

Therefore, the condition for instability becomes

m (a8) > 0 | (A.6)

However, from (A. ), we know

A = Ay + iA: and B =BR-iB;,



o
-J
o

Lhoen

mm (AB°) = A.Bi-AB. > 0O (A.7)

Thus the condition may be written as

A.B, > AB:. | (A.8)

Analysis of the perturbation quantity profiles showed
that 1f dO8/dz>0 was satisfied, then Ci>0 was found. It
implies that some relationship between dB/dz and Reynolds

stress T exists. Let us consider the condition for d0/dz in

the followings. From (A.1l),

N

6 = tan™

%)

then
de - 1 d v
~~1\2 -~
dz 14¥& dz l\wg
Wg ,
~ dw; -~ dws
R.__L - Wy R
= dz dz > 0

2 . (A.9)

Thus, the condition may be written as

—— -
—~ dwy > o dwg

W3 I
dz dz (A.10)

b )

but

W= A exp(0z)+ B exp(-0z)



Then the relat:onship (A. ) may be rewritten as
(x(Agexp(az)+E;exp(—az))(A;exp(az)—Bzexp(—a:))

>(1(A;exp(az)+B;exp(-az))(Agexp(az)—E;exp(—az))‘

(A.11)
chen
-AzB:+A:By > ~A.Bz+AgB: | (A.12)
Therefore
A:Bz > AzB; | (A.13)

This condition is exactly the same expression as (A.8) which

implies that t>0 and Ci>0. Hence it may be concluded that

a0 0] > T>0and C;: > 0
dz . (A.143) .



APPENDIX B: COMPUTER PROGRAMS

In this section, the computer programs which were used
in part three are presented. Flow charts are attached in
front of each program and the symbols utilized in the

nrograms are defined as follows.

<Symbols in the programs>

A Eigen matrix Aij

C,CR,CI Complex phase velocity ¢ and its real and
imaginary part

ENE Turbulent kinetic energy

ETA, ABSETA, ARGETA Interfacial displacement 1 and its

amplitude and phase

¥,DF,D2F,D3F The stream function 9t and their
derivatives

FIN Solution Pu

VI Solution ®:;

GAMMA Relative density ¥

GR Growth rate of perturbation = aCi

ND(1),ND(2) Step intervals of modification of
solutions

N¥X(1),NX(2) Number of integration steps in upper and

lower layer
RE(1),RE(2) Reynolds numbers of upper and lower layer

RI Richardson number
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S Non-dimensional interfacial tension

TAU Reynolds stress averaged over wave lenoth

~C, ABSUO, ARGUO Perturbation velocity U and its amplitude
and phase

Vi(l),V(2) Characteristic velocities for the mean

velocity profile (i.e. Vo=V (i)tanh(z))

v0, ABSVO, ARGVO Perturbation velocity W and its amplitude

W,DW,D2W,D3W Solution vector at z=0 and its
derivatives

WN Wave number «

ZR(1),2R(2) Upper and lower boundary values of

integration i.e. ~2R(2) S2 <ZR(1)

These programs are designed to calculate the eigenvalues
for the bounded (THIC.FOR) case and the displaced velocity
profile case (SHIFT.FOR). They have two modes of
calculation. In mode 1, the wave number o is fixed and
points are plotted where the determinant Dr=0 and D;=0 on Ci-C.
plane. 1In mode 2, C; is fixed and points are plotted on a-Cy
plane. The programs "THIC.FOR" and "SHIFT.FOR" are exactly
the same except for the velocity profile which is calculated
ir the complex function "FUNC". Thus, only the flow chart

and program for "THIC.FOR" are presented here.



( sare )

main
READ

.

subroutine
SUB1

!

subroutine
SUBR2

'

subroutine
SUB3

{

subroutine
ZERO

]

Y

subroutine
WRITE

'

STOP

Y

END

[
-
o

Data input. 6 parameters of
eigenvalue problem and values
of mode switches.

Numerical integration of the 0-S
equation by using Runge-Kutta-Gill
method

FUNC: O-S equation
CRKGN1:R~K-G routine

Calculation of matrix
elements Aij

Calculation of determinant values
Dr and Di

Interpolation of points Dr=0
and Di=0

Output the results in either
print or plot form



C******************************t**********f*t*****

c

PROGRAM THIC.FORT2 (DOUBLE PRECISION)

LA S R R R B RN

c**k**********t***************k*t*******t****k***tttt***kk*ﬁt

112

oW

|

I
|
!
|
[
I

IMPLICIT REAL*8(A-H,0-2)
COMPLEX*16 C,W,DW,D2W,D3W,A,DET1,DET2

COMMON /BL1/ V,WN,C,RE /BL2/ GAMMA,RI,S /BLS/

ZR,NX,ND,NPLOT

/BL40/ WNS,WNE,CRS,CRE,CIS,CIE, ITAG

DIMENSION V(2),RE(2),2R(2),NX(2),ND(2),

W(2,2),DW(2,2),D2W(2,2),D3W(2,2),A(4,4),

DETR(21,21,21),DETI(21,21,21),
AWN(21),ACR(21),ACI(21)

READ (5,100) WNS, WNE, NWN,
CRS, CRE, NCR,
CcI1s,CIE,NCI,
vV(l),RE(1),2R(1),NX(1),ND (1),
V(2),RE(2),2ZR(2),NX(2),ND(2),
GAMMA, RI, S,
NN, NPLOT, ITAG

NTOTAL= (NWN+1) * (NCR+1) * (NCI+1)

IF (ITAG .EQ. 1) GOTO 111

WRITE (6,200) V(1),RE(1),2ZR(1),NX(1),ND(1),

v{2),RE(2),2R(2),NX(2),ND(2),
GAMMA, RI, S, NTOTAL

WRITE (6,300)

DO 10 N1=1,NWN+1

IF (NWN .EQ. 0) GOTO 1

WN=WNS+ (WNE-WNS) *DFLOAT (N1-1) /DFLOAT (NWN)

GOTO 2

WN=WNS

CONTINUE

AWN (N1) =WN

IF (ITAG .EQ. 1) GOTO 112

WRITE (6, 400)

DO 10 N2=1,NCR+1

IF (NCR .EC. 0) GOTO 3

CR=CRS+ (CRE-CRS) *DFLOAT (N2-1) /DFLOAT (NCR)

GOTO 4

CR=CRS

CONTINUE

ACR (N2)=CR

DO 10 N3=1,NCI+1

IF (NCI .EQ. 0) GOTO 5

CI=CIS+(CIE-CIS)*DFLOAT (N3-1) /DFLOAT (NCI)

GOTO 6

CI=CIS

CONTINUE

ACI (N3)=CI

C=CR+(0.0D0,1.0D0) *C1

GR=WN*CI



N
~}
N

IF (CDABS(C) .EQ. 0.0DO) GOTO 7

CALL SUB1({(2R,NX,ND,W,DW,D2W,D3W)
CALi. SUB2(W,DW,D2W,D3W, 1)
CALL SUB3(A,DET1,ADET1,DET2,ADETZ2,AGAP,NSTOP)

IT (ITAG .EQ. 1) GOTO 113
WRITE (6,500) WN,CR,CI,GR,DET1,ADET1,DET2,ADET2,AGAP,
! NSTOP
113 GOTO 8
7 CONTINUE
IF (ITAG .EQ. 1) GOTO 8
WRITE (6,600) WN,CR,CI,GR
8 CONTINUE
IF (NN .NE. 0 .AND. NN .NE. 1) GOTO 10
IF (NN .EQ. 1) GOTO 9
DETR (N3,N2,N1)=DIMAG((0.0D0,1.0D0) *DET1)
DETI (N3,N2,N1)=DIMAG (DET1)
GOTO 10
9 CONTINUE
DETR (N1, N2,N3)=DIMAG((0.0D0,1.0D0) *DET1)
DETI (N1, N2,N3)=DIMAG (DET1)
10 CONTINUE

IF (NN .NE. O .AND. NN .NE. 1) GOTO 30
IF (NN .EQ. 1) GOTO 20
CALL ZERO(NN,DETR,DETI,ACI,ACR,AWN,NCI+1,NCR+1,NWN+1)
GOTO 30
20 CONTINUE
CALL ZERO(NN,DETR,DETI,AWN,ACR,ACI,NWN+1,NCR+1,NCI+1)

30 CONTINUE

100 FORMAT (3(2F10.4,1S5/),2(2F10.4,F5.1,215/),3F10.4/,315)
200 FORMAT (1H1//,11X,'Ul=',F6.3, 'DTANH(Y)',10X, 'RE(1)=",
| F6.1,10X, 'ZR(1)=',F5.1,5X, 'NX(1)=",I4,5X,
| 'ND(1)=',I4//,11X,'U2="',F6.3, 'DTANH (Y) ', 10X,
| 'RE(2)=',F6.1,10X, 'ZR(2)=",F5.1,5X, 'NX(2)=",
| I4,5X,'ND(2)=',I4//,11X, 'GAMMA=',F6.3,10X, 'RI=",
: F6.2,10X,'S="',F7.2, 10X, '"NTOTAL=",14//)
300 FORMAT(1H ,8X,'(WN,CR,CI,GR)',11X,
| 'NORMALIZED DETERMINANT DET1',4X,'|DET1}',SX,
1 'ORIGINAL DETERMINANT DET2',5X, '|DET2}"', 4X,
| "ELEMENT GAP',2X, 'NS'/)
400 FORMAT (1H )
500 FORMAT(1H ,'(',F6.3,',',F6.3,',',F6.3,',',F7.4,")",3X,
[ '(',E11.4,',',E11.4,')',2X,E11.4,3X,"'(',E11.4,
| ',",E11.4,')',2X,E11.4,3X,E9.2,2X,I2)
600 FORMAT(1H ,'(',F6.3,',',F6.3,',',F6.3,',',F7.4,")",3X,
l '( * ¢ ) ', 2%, ! * ', 3%,
l 3 * 'lzx’l *l)

STOP
END



C****************************************************t***

SUBROUTINE SUB1 (ZR,NX,ND, W, DW,D2W, D3W)

C********************************************k**t********

IMPLICIT REAL*8 (A-H,0-2)

COMPLEX*16 c,p1l,P2,FUNC,FO0,G,FVI,FIN,
I W,DW,D2W, D3W,

f COEF1,COEF2, COEF

COMMON /BLl1/ V,WN,C,RE /BL3/ N

DIMENSION V(2),RE(2),2R(2),NX(2),ND(2),F0(4),G(4,13),
| FVI(4,601),FIN(4,601),

! w(2,2),DW(2,2),D2W(2,2),D3W(2,2)

EXTERNAL FUNC

DO 10 N=1,2
SIGN=(-1.0D0) **N
Z0=-DABS (ZR(N) ) *SIGN
LX=NX (N)
LD=ND (N)
=~Z0/DFLOAT (LX-1)
P1=SIGN*CDSQRT (WN*WN-2.0DO*V (N) *DTANH (Z20) *(1.0DO-
[ DTANH (ZQ) *DTANH (Z0) ) / (V(N) *DTANH (20) -C))
P2=SIGN*CDSQRT (WN*WN+ (0.0D0, 1.0D0) *WN*RE (N) * (V(N)
|  *DTANH(Z0)-C))
IF (V(N) .EQ. 0.0D0) GOTO 100

c FO(1)=CDEXP (P2*20)
FO(1)=0.0DO

C FO(2)=P2*CDEXP (P2*20)
F0(2)=0.0D0

C FO(3)=P2*P2*CDEXP (P2*20)
FO(3)=0.0D0

C FO(4)=P2*P2*P2*CDEXP (P2*20)
FO0(4)=1.0D0

CALL CRKGN1 (FUNC,Z0,F0,4,H,”,FVI,LX,4)
W(N,2)=FVI(1,LX)

DW(N, 2) =FVI(2,LX)

D2W (N, 2)=FVI (3, LX)

D3W (N, 2) =FVI (4, LX)

c FO(1)=CDEXP (P1*20)
FO(1)=0.0D0

C FO(2)=P1*CDEXP (P1*20)
FO0(2)=0.0D0

C FO(3)=P1*P1*CDEXP (P1*Z0)
FO(3)=1.0D0

C FO(4)=P1*P1*P1*CDEXP (P1*Z0)
FO(4)=0.0D0
MX=LD+1
IF (MX .GE. LX) GOTO 30
DO 20 I=LD+1,LX-1,LD
M=I
CALL CRKGN1 (FUNC,Z20,F0,4,H,G,FIN,MX,4)



8
~1
[e¢]

20=20+DFLOAT (LD) *H

P1=SIGN*CDSQRT (WN*WN-2.0D0*V(N) *DTANH (Z0) *(1.0D0-
I DTANH (20) *DTANH (Z0) ) / (V(N) *DTANH (20) -C) )
P2=SIGN*CDSQRT (WN*WN+ (0.0DG0, 1.0D0) *WN*RE (N) * (V(N)
| *DTANH(Z0)-C))

C COEF1=FIN (4,MX) +P2*FIN (3,MX) -P1*P1*FIN(2,MX)-P1*P1=p2+*
c l FIN(1,MX)

COEF1=FIN (1,MX) *DCONJG (FVI (1,M)) +FIN (2, MX)

| *DCONJG (FVI (2,M) ) +FIN (3, MX) *DCONJG (FVI (3,M))

| +FIN (4,MX) *DCONJG (FVI (4,M))
c COEF2=FVI (4, M)+P2*FVI (3, M)~PLl*P1*FVI(2, M)-P1l*P1*p2*
C 1 FVI(1, M)

COEF2=FVI (1, M)*DCONJG(FVI (1,M))+FVI(2, M)
| *DCONJG (FVI (2,M) ) +FVI (3, M) *DCONJG (FVI (3,M))
1 +FVI (4, M)*DCONJG(FVI(4,M))
COEF=COEF 1/COEF2
FO (1)=FIN(1,MX)=-COEF*FVI(1,M)
FO (2)=FIN(2,MX)~COEF*FVI (2,M)
FO (3) =FIN(3,MX)-COEF*FVI (3, M)
FO (4)=FIN(4,MX)-COEF*FVI (4,M)
20 CONTINUE
MX=LX-M+1
GOTO 40
30 MX=LX
40 CALL CRKGN1 (FUNC,Z0,F0,4,H,G,FIN,MX, 4)
W(N, 1)=FIN(1,MX)
DW (N, 1) =FIN (2, MX)
D2W(N, 1) =FIN (3, MX)
D3W(N, 1) =FIN (4, MX)
GOTO 10

100 W(N,2)=1.0DO
DW (N, 2) =P2
D2W (N, 2) =P2*P2
D3W (N, 2) =P2*P2*P2
W(N,1)=1.0D0
DW(N,1)=P1
D2W(N, 1) =P1*P1
D3W(N, 1) =P1*P1*P1

10 CONTINUE

RETURN
END

Ct\\-t***************************************************

COMPLEX FUNCTION FUNC(K,Z,F)

CrAXARKRARARAARRARRARARARR XA ARAAR AR AR KRR AR AR R AR A AR A Ak kK

IMPLICIT REAL*8(A-H,0-2)
COMPLEX*16 C,F



10

COMMON /BL1l/ V,WN,C,RE /BL3/ N
DIMENSION F(4),V{(2),RE(2)

GOTO (1,2,3,4),K
FUNC=F (2)

GOTO 10

FUNC=F (3)

GOTO 10

FUNC=F (4)

GOTO 10

FUNC=(2.0DO*WN*WN+ (0.0DO, 1.0D0) *WN*RE (N)

| * (V(N) *DTANH (Z) =C) ) *F (3) = (WN**4+ (0.0DO, 1.0DO0)
| *WN*RE (N) * (WN*WN* (V{N) *DTANH (Z) -C) =2 . 0DO *V (N)
| *DTANH (Z) * (1.0DO-DTANH (Z) *DTANH (2))) ) *F (1)
RETURN

END

(AR EEEEEEEEEREEREEEEEREREEE R EE R EE R R R R R R R B R R R RN VIS U U

C

SUBROUTINE CRKGN1 (FUNC, X0, YO,N,H,F, Y4,NX, NR)
N-TH ORDER DIFERENTIALL EQUATION (RUNGE-KUTTA-GILL)

(LR RS EREEEREESEEEEET SRR TR R R R R R B R R R R R R S G U S e

10
20

30

40

50

IMPLICIT REAL*8 (A-H,0-2Z)
COMPLEX*16 FUNC, YO, F, Y4

DIMENSION YO (N), Y4 (NR,NX),F(NR,13)

IF (N .LE. 0 .OR. N .GT. NR) GOTO 80
CR2I=1.0D0-DSQRT(0.5D0)

DO 10 K=1,N

F(K,1)=0.0D0

Y4 (K, 1) =Y0 (K)

F(K,2)=Y0 (K)

I=1

X=X0+ (DFLOAT(I-1)) *H

DO 30 K=1,N

F (K, 3)=H*FUNC(K,X,F(1,2))
F(K,4)=0.5DO0*F (K, 3) -F (K, 1)
F(K,5)=F(K,2)+F (K, 4)
F(K,6)=F(K,1)+3.0D0*F (K, 4) -0.5D0*F (K, 3)
DO 40 K=1,N
F(K,7)=H*FUNC (K, X+0.5D0*H,F(1,5))
F(K,4)=CR2I*(F (K,7)-F (K, 6))
F(K,8)=F(K,5)+F (K, 4)

F(K,9)=F (K, 6)+3.0D0*F (K, 4) -CR2I*F (K, 7)
DO 50 K=1,N

F (K,10)=H*FUNC (K, X+0.5DO*H,F (1,8))
F(K,4)=(2.0D0-CR2I) * (F(K,10)-F (K, 9))
F(K,11)=F (K, 8) +F (K, 4)
F(K,12)=F(K,9)+3.0DO*F (K, 4) - (2.0D0-CR2I) *F (K, 10)
DO 60 K=1,N
F(K,13)=H*FUNC (K, X+H,F(1,11))



F(K,4)=(F(K,13)-2.0D0*F(K,12))/6.0DO0
F(K,2)=F(K,11)+F (K, 4)
Y4 (K, I+1)=F(K,2)

60 F(K,1)=F(K,12)+3.0D0*F(K,4)-0.5D0*F (K, 13)
I=I+1
IF (NX-I)70,70,20

80 WRITE(6,100) N,NR

100 FORMAT ('O (SUBR.CRKGN1) N=',I3,', NR=', I3,
f ', N SHOULD BE A POSITIVE INTEGER LESS THAN
| OR EQUAL TO NR. RETURNED WITH NO CALCULATION.'
I /7)

70 RETURN
END

C***********************************************t******

SUBROUTINE SUB2 (W,DW,D2W,D3W,A)

C******************************************************

IMPLICIT REAL*8(A-H,0-2)
COMPLEX*16 C,Al0,A20,B11,B21,B10,B20,
[ c12,c22,C10,C20,

| D13,D23,D11,D21,D10,D20,

[ A,W,DW,D2W,D3W

COMMON  /BL1/ V,WN,C,RE /BL2/ GAMMA,RI,S
DIMENSION V(2),RE(2),A(4,4),W(2,2),DW(2,2),
| D2W(2,2),D3W(2,2)

Al10=1.0DO
A20=1.0D0
Bl1=-C
B21=-C
B10=-V (1)
B20=-V(2)

C12=-C*GAMMA*RE (2)
C22=-C*RE (1)

C10=-WN*WN*C*GAMMA*RE (2)

C20=-WN*WN*C*RE (1)

D13--(0.0D0,1.0D0) *C*GAMMA*RE (2) /WN
D23=-(0.0D0, 1.0D0) *C*RE (1) /WN

D11=C*GAMMA* (C*RE (1) *RE (2) +(0.0D0, 3.0D0) *WN*RE (2) )
D21=C* (C*RE (1) *RE (2) + (0.0D0, 3.0D0) *WN*RE (1) )
D10=(C*GAMMA*V (1) +RI) *RE (1) *RE (2)

D20= (C*V (2) -WN*WN*S) *RE (1) *RE (2)
A(1,1)=A10*W(1,1)

A(1l,2)=A10*W(1,2)

A(1,3)=-A20*W(2,1)

A(l,4)=-RA20*W(2,2)
A(2,1)=B11*DW(1,1)+B10*W(1,1)
A(2,2)=B11*DW(1,2)+B10*W(1,2)
A(2,3)=-B21*DW(2,1)-B20*W(2,1)
A(2,4)=-B21*DW(2,2)-B20*W(2,2)



A(3,1)=Cl2*D2W(1,1)+C10*W(1,1)
A(3,2)=C1l2*D2W(1,2)+C10*W(1,2)
A(3,3)=-C22*D2W(2,1)-C20*W(2, 1)
A(3,4)=-C22*D2W(2,2)-C20*W(2,2)
A(4,1)=D13*D3W(1,1)+D11*DW(1,1)+D10*W(1, 1)
A(4,2)=D13*D3W(1,2)+D11*DW(1l,2)+D10*W(1,2)
A(4,3)=-D23*D3W(2,1)~D21*DW(2,1)-D20*W(2,1)
A(4,4)=-D23*D3W(2,2)-D21*DW(2,2)-D20*W (2, 2)

RETURN
END

C**********************t******************tt**tt*tt**ttttt

SUBROUTINE SUB3(A,DET1,ADET1,DET2,ADET2,AGAP,NSTOP)

(SRR SRR ERSEE SRR R R R R R R R R g S Ay

IMPLICIT REAL*8(A-H,O0-2)
COMPLEX*16 A,DET1,DET2,WA,B

DIMENSION A(4,4),AMXJ(4),AMXI(4),AMNJ (4),WA(24),WK(4),
| B (4)

DO 10 J=1,4
AMXJ (J) =DMAX1 (CDABS (A(1,J)),CDABS(A(2,J)),
| CDABS(A(3,J)),CDABS(A(4,35)))
AMNJ (J) =DMIN1 (CDABS (A(1,J)),CDABS (A(2,J)),
| CDABS (A (3,J)),CDABS(A(4,J)))
DO 20 II=1,4
A(II,J)=A(II,J)/AMXJ(J)
20 CONTINUE
10 CONTINUE
DO 30 I=1,4
AMXI (I) =DMAX1 (CDABS(A(I,1)),CDABS(A(I,2)),
I CDABS (A(I,3)),CDABS(A(I,4)))
DO 40 JJ=1,4
A(I,JJ)=A(1,JJ)/AMXI(I)
40 CONTINUE
30 CONTINUE

DO 554 1J=1,14

B(IJ)=(1.0D0,0.0D0)
554 CONTINUE

IAA=4

IBB=4

NNN=4

IMM=1

IJOBB=1

CALL LEQ2C(A,NNN, IAA, B, IMM, IBB, IJOBB, WA, WK, NSTOP)

DET1=(1.0D0,0.0D0)
DO 555 JI=1,NNN

QOO0 CO000000



IPVT=WK (JI)

IF (IPVT .NE. JI) DET1=-DET1
INDX=JI+ (JI-1) *NNN
DET1=DET1*WA (INDX)

CONTINUE

DET1=A(1,1)*(A(2,2)*A(3,3)*A(4,4)+A(2,3)*A(3,4)*A(4,2)
+A(2,4)*A(3,2)*A(4,3)-A(2,4)*A(3,3)*Aa(4,3)
-A(2,3)*A(3,2)*A(4,4)~A(2,2)*A(3,4)*A(4,3))
-A(2,1)*(A(1,2)*A(3,3)*A(4,4)+A(1,3)*A(3,4)
*A(4,2)
+A(1,4)*A(3,2)*A(4,3)-A(1,4)*A(3,3)*A(4,2)
-A(1,3)*A(3,2)*A(4,4)-A(1,2)*A(3,4)*A(4,3))
+A(3,1)*(A(1,2)*A(2,3)*A(4,4)+A(1,3) *A(2,4)
*A(4,2)
+A(ll 4) *A(Zr 2) *A(4r 3)"A(ll 4) *A(ZI 3) *A(412)
-A(1,3)*A(2,2)*A(4,4)-A(1,2)*A(2,4) *A(4,3))
~A(4,1)*(A(1,2)*A(2,3)*A(3,4)+A(1,3)*A(2,4)
*A(3,2)
+A(1,4)*A(2,2)*A(3,3)-A(1,4)*A(2,3)*A(3,2)
-A(1,2)*A(2,4)*A(3,3)-A(1,3)*A(2,2)*A(3,4))

ADET1=CDABS (DET1)
DET2=AMXJ (1) *AMXJ (2) *AMXJ (3) *AMXJ (4) *

AMXTI (1) *AMXI (2) *AMXI (3) *AMXI (4) *DET1
ADET2=CDABS (DET2)
AMX=DMAX1 (AMXJ (1) , AMXJ (2) , AMXJ (3) , AMXJ (4))
AMN=DMIN1 (AMNJ (1) ,AMNJ (2) , AMNJ (3) ,AMNJ (4))
AGAP=AMX/AMN
RETURN
END

ChrAAAAAKRAAXARARRRKARRAAARAR AR AR RS R A AR AR AR A A ARk AR AR Akk kX

SUBROUTINE ZERO(NN,FR,FI,X1,X2,X3,M1,M2,M3)

C***************************i****'k************************

IMPLICIT REAL*8(A-H,0-2)
COMMON /BL4/ X10R,X20R,X30R,X10I,X20I,X301I,
SGR, SGI,J,K,L,M

DIMENSION FR(21,21,21),FI(21,21,21),X1(21),X2(21),
X3(21),X10R(2,21,450),X20R(2,21,450),
X30R(2,21,450),X101(2,21,450),X20I(2,21,450),
X30I(2,21,450),SGR(2,21,450),S8GI(2,21,450),
J(21) ,K(21),L(21),M(21)

DO 10 I1=1,M1

JJ=0

KK=0

LL=0

MM=0

IF (M3 .LE. 1) GOTO 26



DO 20 I2=1,M2
DO 20 I3=1,M3-1
IF (FR(I1,I2,I3)*FR(I1,I2,I3+1)) 12,12,11

12 JJ=JJ+1

IF (FR(I1,I2,I3) .NE. 0.0DO .AND.

FR(I1,I2,I3+1) .NE. 0.0DO) GOTO 8

GRD=0.0DO

X30R(1,I1,J3J)=0.5D0* (X3 (I3+1)+X3(I3))

GOTO 9

8 GRD=(X3(I3+1)-X3(I3))/(FR(I1,I2,I3+1)-FR(I1l,I2,13))
X30R(1,I1,JJ)=X3(I3)-GRD*FR(I1,I2,I3)

9 X10R(1,I1,JJ)=X1(I1)
X20R(1,I1,JJ)=X2(I2)
IF (GRD) 13,14,15

13 SGR(1,I1,JJ)=-1.0D0
GOTO 11

14 SGR(1,I1,JJ)=0.0D0
GOTO 11

15 SGR(1,I1,JJ)=1.0D0

11 CONTINUE

IF (FI(I1,I2,I3)*FI(I1,I2,I3+1)) 22,22,21
22 KK=KK+1
IF (FI(I1,I2,I3) .NE. 0.0D0 .AND.
) FI(I1,I2,I3+1) .NE. 0.0D0) GOTO 18
GRD=0.0D0
X30I(1,I1,KK)=0.5D0*(X3(I3+1)+X3(I3))
GOTO 19
18 GRD=(X3(I3+1)-X3(I3))/(FI(Il,IZ,I3+1)-FI(Il,IZ,IB))
X301(1,I1,KK)=X3(I3)-GRD'FI(II,IZ,I3)
19 X10I(1,I1,KK)=X1(I1l)
X20I(1,I1,KK)=X2(1I2)
IF (GRD) 23,24,25
23 SGI(1,I1,KK)=-1.0D0
GOTO 21
24 SGI(1,I1,KK)=0.0D0O
GOTO 21
25 SGI(1,I1,KK)=1.0DO
21 CONTINUE
20 CONTINUE

26 IF (M2 .LE. 1) GOTO 10
DO 30 13=1,M3
DO 30 12=1,M2-1
IF (FR(I1,I2,I3)*FR{(I1,I2+1,1I3)) 32,32,31
32 LL=LL+1
IF (FR(I1,I2,I3) .NE. 0.0DO .AND.
I FR(I1,I2+1,I3) .NE. 0.0D0) GOTO 28
GRD=0.0D0O
X20R(2,I1,LL)=0.5D0* (X2 (I2+1)+X2(I2))
GOTO 29
28 GRD=(X2(I2+1)-X2'I12))/(FR(I1,12+1,I3)-FR(I1,I2,13))
X20R(2,1I1,LL)=X. :12)-GRD*FR(I1,I2,I3)
29 X10R(2,I1,LL)=X1(I1)



38

39

43
44
45

41
30

10

X30R(2,I1,LL)=X3(I3)
IF (GRD) 33,34,35
SGR(2,I1,LL)=-1.0D0

GOTO 31
SGR(2,I1,LL)=0.0DO
GOTO 31
SGR(2,I1,LL)=1.0DO
CONTINUE

IF (FI(I1,I2,I?)*FI(I1,I2+1,I3)) 42,42,41

MM=MM+1

IF (FI(I11,12,I3) .NE. 0.0DO .AND.
FI{(I1,I2+1,I3) .NE. 0.0D0O) GOTO 38

GRD=0.0D0

X20I(2,I1,MM)=0.5D0* (X2 (I2+1)+X2(I2))

GOTO 39

GRD=(X2(I2+1)-X2(I2))/(FI(I1,I2+1,I3)-FI(I1,I2,13))

X20I1(2,I1,MM)=X2(I2)~-GRD*FI(I1,1I2,13)

X10I(2,I1,MM)=X1(Il)

X30I(2,I1,MM)=X3(I3)

IF (GRD) 43,44,45

SGI(2,11,MM)=-1.0D0

GOTO 41

SGI(2,11,MM)=0.0D0

GOTO 41

SGI(2,I1,MM)=1.0D0

CONTINUE

CONTINUE

J(Il)=JJ
K(Il)=KK
L(Il)=LL
M(Il)=MM
CONTINUE

CALL WRITE (NN, M1)

RETURN
END

C***t*******************t*********t************

SUBROUTINE WRITE (NN,Ml)

C*******t*:t*'ktt****************************k***

I
I
!
I

IMPLICIT REAL*8 (A-H,0-2)
COMPLEX*16 C

COMMON /BL4/ X10R, X20R, X30R,X10I,X20I,X30I,
SGR, SGI,J,X,L,M
/BL40/ WNS,WNE,CRS,CRE,CIS,CIE,ITAG
/BLl/ V,wWN,C,RE /BL2/ GAMMA,RI,S
/BLS5/ ZR,NX,ND,NPLOT



AN

DIMENSION XlOR(2,21,4SO),XZOR(2,21,450),X30R(2,21,450),
| XlOI(2,21,450),X201(2,21,450),X3OI(2,21,450),
! SGR(2,21,450),SGI(2,21,450) ,RE(2),

| J(21) ,K(21),L(21),M(21),2R(2),NX(2),ND(2)

IF (ITAG .EQ. 1) GOTO 135
DO 50 JJ=1,M1

WRITE (6,100)
DO 60 II=1,2
GOTO (61,62),II
61 JL=J(JJ)
GOTO 63
62 JL=L(JJ)
63 CONTINUE
IF (JL .EQ. Q) GOTO 64
IF (NN .EQ. 1) GOTO 65
WRITE (6,200) (X30R(II,JJ,KK),X20R(II,JJ,KK),
[ X10R(II,JJ,KK),SGR(II,JJ,KK),KK=1,JL)
GOTO 66
65 WRITE(6,200) (X1OR(II,JJ,KK),X20R(II,JJ,KK),
! X30R(II,JJ,KK),SGR(II,JJ,KK),KK=1,JL)
GOTO 66
64 WRITE(6,300)
66 WRITE(6,400)
60 CONTINUE

WRITE (6,500)
DO 80 II=1,2
GOTO (81,82),II
81 KM=K(JJ)
GOTO 83
82 KM=M(JJ)
83 CONTINUE
IF (KM .EQ. 0) GOTO 84
IF (NN .EQ. 1) GOTO 85
WRITE(6,200) (X30I(II,JJ,KK),X20I(II,JJ,KK),
! X10I(II,JJ,KK),SGI(II,JJ,KK),h KK=1,KM)
GOTO 86
85 WRITE(6,200) (X10I(II,JJ,KK),X20I(II,JJ,KK),
| X30T(1I1,JJ,KK),SGI(II,JJ,KK),KK=1,KM)
GOTO 86
84 WRITE (6,300)
86 WRITE(6,400)
80 CONTINUE

50 CONTINUE
C+++++++++++ TAG FILE GENERATOR +++++++++++++++++++++++++++++
135 IF (ITAG .EQ. 0) GOTO 111

DO 150 JJ=1,M1



WRITE(6,101)
IF (NN .EQ. 1) GOTO 112
WRITE (6,103)
WRITE(6,104) WNS,WNE,CRS,CRE
WRITE(6,105) ZR(2),RE(1l),RI,CIS
WRITE(6,107)
GOTO 113

112 WRITE(6,102)
WRITE(6,104) CIS,CIE,CRS,CRE
WRITE(6,106) 2R(2),RE(1),RI,WNS
WRITE(6,107)

113 DO 160 II=1,2
GOTO (161,162),II

161 JL=J(JJ)
GOTO 163

162 JL=L(JJ)

163 CONTINUE
IF (JL .EQ. 0) GOTO 160
IF (NN .EQ. 1) GOTO 165
WRITE(6,201) (X30R(II,JJ,KK),X20R(II,JJ,KK),

| KK=1,JL)
GOTO 160
165 WRITE(6,201) (X30R(II,JJ,KK),X20R(II,JJ,KK),
l KK=1, JL)

160 CONTINUE

WRITE(6,501)
DO 180 II=1,2
GOTO (181,182),1II
181 KM=K (JJ)
GOTO 183
182 KM=M(JJ)
183 CONTINUE
IF (KM .EQ. 0) GOTO 180
IF (NN .EQ. 1) GOTO 185
WRITE (6,201) (X30I(II,JJ,KK),X20I(II,JJ,KK),

| KK=1, KM)
GOTO 180
185 WRITE(6,201) (X30I(II,JJ,KK),X20I(II,JJ,KK),
| KK=1, KM)

180 CONTINUE

150 CONTINUE

WRITE (6, 601)
CH+++++++++++++++++++++4+++++++++++++++t+++++++++++++++++++++

100 FORMAT(1H ///,10X, ' ZERO-POINT OF REAL PART OF
I DETERMINANT DET1'//,1H ,20X,'( WN , CR , CI
| ) ',5X, 'SIGN OF GRADINT',/)

200 FORMAT(1H ,21X,r6.3,1X,F6.3,1X,F6.3,14X,F4.1)

300 FORMAT (1H ,25X, 'NO ZERO-POINT')

400 FORMAT(1H )

500 FORMAT(1H //,10X, 'ZERO-POINT OF IMAGINARY PART OF
I DETERMINANT DET1'//,1H ,20X,'( WN , CR , CI



! ) ', 5X, 'SIGN OF GRADIENT', /)

101 FORMAT (6X, 'GEN A PLOT.',/, 6X,
I ' LEGEND OFF.',/ 6X,
I 'X PAGE IS 11.°',/, 6X 'Y PAGE IS 8.5.")

102 FORMAT (6X, 'X LABEL IS "CI". / 6X,'Y LABEL IS "CR".'

103 FORMAT (6X, 'X LABEL IS "WN". e/ 6%X,'Y LABEL IS "CR".
104 FORMAT (6X, 'X LENGTH=9. 0, AXIS ORIGIN 1.0.',7/,6X,

! 'Y LENGTH=6.5,AXIS ORIGIN 1.0. ,/ 6X,

| 'X MIN ',F10.4,',MAX ',F10.4, .',/,6X,

| 'Y MIN ',F10.4,',MAX ',F10.4,'.")

105 FORMAT(6X, 'TITLE "WALL EFFECT THICKNESS—' Fq.2,' RE=",

| F5.1,' RI=',F5.3,' CI=',F5.3,'".")
106 FORMAT (6X, 'TITLE "WALL EFFECT THICNESS=',F4.2,' RE =
I F5.1,' RI=',F5.3,' WN=',F5.3,'".")
107 FORMAT (6X, 'FRAME.',/, 6X, ' INPUT DATA.', /, 6X,
J '"REAL PART"')
201 FORMAT(3X,F8.5,',"',3X,F8.5)
501 FORMAT (6X, ' "IMARGINARY PART"')
601 FORMAT (6X, 'END OF DATA.',/, 6X,
| 'CURVE 1 SYMBOL COUNT 1,SCATTERED. ', /, 6X,
I 'CURVE 2 SYMBOL COUNT 2,SCATTERED.', /, 6X,
| 'LEGEND UNITS PLOTS%.',/, 6X,
| 'LEGEND X ORIGIN 70.°',/, 6X,
! 'LEGEND Y ORIGIN 10.',/,6X,
| 'LEGEND HEIGHT 0.10.',/, 6X,
| 'LEGEND FRAME 1.',/,6X,"'SEND."', /, 6X,
| 'QUIT."')

111 RETURN
END

)

")

’
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The program "THIC10.FOR" is designed to calculate the

stream function and other perturbation quantities based upon

the eigenvalues which are obtained from previous programs.

Its flow chart and program are as follows.

C

START :)

'

main
READ

Y

subroutine
SUB1

Y

subroutine
SUB2

Y

subroutine
SUB3

Y

subroutine
SUB4

Y

subroutine
WRITE

Y

C

STOP :)

Y

C

END

)

Data input. 6 parameters of the
eigenvalue problem and values
of mode switches.

Numerical integration of the 0O-S
equation by using Runge-Kutta-Gill
method

FUNC: O0O-S equation
CRKGN1:R-K-G routine

Calculation of matrix elements
Aij

Calculation of ccefficients
Al,Bl,A2,B2

and stream function @

Calculation of perturbation
quantities

Output the results in either print
or plot form



C**************************************t***************t*tt«k

C STABILITY OF A TWO-LAYER SHEAR FLOW
c ———- CALCULATION OF EIGENFUNCTION --- <THIC10.FOR2>
C DOUBLE PRECISION TYPE

c***************************************x*****k*k****kt*****i

IMPLICIT REAL*8(A-H,0-2)

COMPLEX*16 C,W,DW,D2W,D3W,A,DET1,DET2,AA,Q, V0, DVO, D2VO,

| D3VO0

COMMON /BL1/ V,WN,C,RE /BL2/ GAMMA,RI, S

DIMENSION V(2),RE(2),2R(2),NX(2),ND(2),2(2,601),
W(2,2),DW(2,2),D2W(2,2),D3W(2,2) ,A(4,4),Q(3),
v0(2,601),DV0(2,601),D2V0(2,601),D3V0 (2, 601),
ABSV0(2, 601),ARGVO (2, 601) ,ABSUO (2, 601),
ARGUO (2, 601) ,ABSETA(2, 601) , ARGETA (2, 601),
TAU(2,601) ,ENE (2, 601)

READ (5,100) WN,CR,CI,

| V(1),RE(1),2R(1),NX(1),ND(1),

l V(2),RE(2),2R(2),NX(2),ND(2),

! GAMMA, RI, S,RT,

! ICONT, IVO

IF (ICONT .EQ. 1) GOTO 10

WRITE(6,200) V(1),RE(1),2ZR(1),NX(1),ND (1),
I V(2) ,RE(2),2ZR(2),NX(2),ND(2),
| GAMMA, RI, S

WRITE (6,300)

10 C=CR+(0.0D0,1.0D0)*CI
GR=WN*CI
IF (CDABS(C) .EQ. 0.0D0O) GOTO 1

CALL SUB1 (ZR,NX,ND, 2, W, DW, D2W, D3W)

CALL SUB2(W,DW,D2W,D3W,A)

CALL SUB3(NX,A,DET1,ADET1,DET2,ADET2,AGAP,NS1,
| AA,Q,NS2,V0,DV0,D2V0, D3VO0)

CALL SUB4 (NX,2Z,V0,DV0,ABSV0, ARGVO,

! ABSUO, ARGUO, ABSETA, ARGETA, TAU, ENE)

IF (ICONT .EQ. 1) GOTO 20

WRITE(6,400) WN,CR,CI,GR,DET1,ADET1,DET2,ADET2,AGAP,NS1
WRITE (6,500)

WRITE (6, 600) AA,Q(1),Q(2),Q(3),NS2

CALL WRITE(NX, Z,V0,DV0Q,D2V0,D3V0,ABSVO, ARGVO,
I ABSUO, ARGUO, ABSETA, ARGETA, TAU, ENE)

20 CALL STFUNC(NX,2,V0,RT, ICONT, IVO, ZR)
CALL VOPLO(Z,NX,V0, IVO)

GOTO 2

1 CONTINUE
IF (ICONT .EQ. 1) GOTO 2
WRITE (6,700) WN,CR,CI,GR
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2 CONTINUE

100 FORMAT (3F10.4/,2(2F10.4,F5.1,215/),4F10.4,/,215)
200 FORMAT(lHl//,llX,'Ul=',F6.3,’DTANH(Y)',lOX,'RE(1)=',
| F6.1,10X, '2R(1)="',F5.1,5X, 'NX(1)=',1I4,5X,
| '*ND(1l)="',14//,11X,'U2=',F6.3, 'DTANH(Y) ', 10X,
| 'RE(2)=',F6.1,10X, '2R(2)="',F5.1,5X, 'NX(2)=",
| 14,5X,'ND(2)=',14//,11X, 'GAMMA="',F6.3, 10X, 'RI=",
| F6.2,10X,'S="',F7.2//)
300 FORMAT(1H ,8X, ' (WN,CR,CI,GR)"', 11X,
| '"NORMALIZED DETERMINANT DET1',4X, '|DET1|', 5X,
1 '"ORIGINAL DETERMINANT DET2',5X,'|DET2|',4X,
a '"ELEMENT GAP',2X, 'NS'/)
400 FORMAT(1H ,'(',F6.3,',',F6.3,',',F6.3,',',F7.4,")"',3X,
| '(',E11.4,',',E11.4,"')',2X,E11.4,3X,'(',E11.4,
| ',",E11.4,')',2X,E11.4,3X,E9.2,2X,12)
500 FORMAT(1H //,25X,'AA',24X,'Q(1)',23X,'Q(2)',23X,
| 'Q(3)',18X%, 'NS2'/)
600 FORMAT(1H ,13X,'(',E11.4,',',E11.4,")"',2X,'(',E11.4,
| ',",E11.4,')',2X,"'(',E11.4,"',"',E11.4,") ", 2X, ' (',
| E11.4,',',E11.4,')"',8X,I2)
700 FORMAT(1H ,'(',F6.3,',',F6.3,',',F6.3,',',F7.4,")"',3X,
I l( * ' * )l’zx’v * |,3x,
l " * r ¥ ) ' 2%, ! * ', 3%,
I t * v,2xlr *l)

STOP
END

C*k***************************************************'k**

SUBROUTINE SUB1(2R,NX,ND,2,W,DW,D2W,D3W)

C*******t************************************************

IMPLICIT REAL*8(A-H,0-2)
COMPLEX*16 CC,P1,P2,FUNC,F0,G,FVI,FIN,W,DW,D2W,D3W,

| COEF1,COEF2,COEF,F,DF,D2F,D3F

COMMON  /BL1l/ V,WN,C,RZ /BL3/ N /BL6/ F,DF,D2F,D3F,

| COEF

DIMENSION V(2),RE(2),2R(2),NX(2),ND(2},2(2,601),F0(4),
[ G(4,13),FVI(4,601),FIN(4,601),W(2,2),DW(2,2),
| D2W(2,2),D3W(2,2),F(2,2,601),DF(2,2,601),

| D2F (2,2,601),D3F(2,2,601),COEF (2, 601)
EXTERNAL FUNC

DO 10 N=1,2
SIGN=(-1.0D0Q) **N
20=-DABS (2R (N) ) *SIGN
LX=NX(N)
LD=ND (N)
=-Z0/DFLOAT (LX-1)
DO 50 J=1,LX
Z(N,J)=Z0+H* (J-1)

50 CON.INUE



P1=SIGN*CDSQRT (WN*WN~2,0DO*V (N)

|  *DTANH(Z0) *(1.0DO-DTANH(Z0) *

| DTANH (20) ) / (V(N) *DTANH (20) -C) )
P2=SIGN*CDSQRT (WN*WN+(0.0DO, 1.0D0)

[ *WN*RE (N) * (V(N) *DTANH (20) ~C))

IF (V(N) .EQ. 0.0D0) GOTO 100
FO(1)=CDEXP (P2*20)

FO(1)=0.0DO
FO(2)=P2*CDEXP (P2*20)
F0(2)=0.0D0

FO (3)=P2*P2*CDEXP (P2*20)
FO0(3)=0.0D0

FO(4)=P2*P2*P2*CDEXP (P2*20)
FO(4)=1.0D0
CALL CRKGN1 (FUNC,Z0,F0,4,H,G,FVI,LX, 4)
DO 200 Jl=1,LX
F(N,2,J1)=FVI(1l,J1)
DF (N, 2,J1)=FVI(2,J1)
D2F (N,2,J1)=FVI(3,J1)
D3F(N,2,J1)=FVI(4,J1)
COEF (N, J1)=0.0D0

200 CONTINUE
W(N,2)=FVI(1,LX)
DW(N, 2)=FVI (2, LX)
D2W(N, 2) =FVI (3, LX)
D3W(N, 2) =FVI (4, LX)

FO (1) =CDEXP (P1*2Z0)
FO(1)=0.0D0O
FO(2)=P1*CDEXP (P1*20)
F0(2)=0.0D0
FO(3)=P1*P1*CDEXP (P1*Z0)
FO(3)=1.0D0
FO(4)=P1*P1*P1*CDEXP (P1*20)
FO(4)=0.0D0
MX=LD+1
M=1
IF (MX .GE. LX) GOTO 30
DO 20 I=LD+1,LX-1,LD
M=I
CALL CRKGNL1 (FUNC,Z0,F0,4,H,G,FIN,MX, 4)
Kl=1
DO 300 J2=M-LD,M
F(N,1,J2)=FIN(1,K1)
DF(N,1,J2)=FIN(2,K1)
D2F (N, 1,J2)=FIN(3,K1)
D3F(N,1,J2)=FIN(4,Kl)
K1=K1+1

300 CONTINUE
Z0=Z0+DFLOAT (LD) *H
P1=SIGN*CDSQRT (WN*WN
| =2.0DO*V(N)*DTANH(Z0) *(1.0DO-DTANH (20) *
| DTANH (Z0) )/ (V(N) *DTANH (Z0) -C) )
P2=SIGN*CDSQRT (WN*WN+ (0.0D0, 1.0D0)
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*WN*RE (N) * (V(N) *DTANH (20) -C) )

292

COEF1=FIN(4,MX) +P2*FIN(3,MX) -P1*P1*FIN(2,MX)-P1*P1*pP2*

FIN(1l, MX)

COEF1=FIN(1,MX) *DCONJG (FVI (1,M)) +FIN (2,MX)

*DCONJG (FVI (2,M) ) +FIN(3,MX) *DCONJG(FVI(3,M))

+FIN(4,MX) *DCONJG(FVI(4,M))

COEF2=FVI(1l, M) *DCONJG(FVI(1l,M))+FVI(2, M)

*DCONJG (FVI(2,M) ) +FVI (3, M) *DCONJG(FVI(3,M))

+FVI(4, M) *DCONJG(FVI(4,M))

COEF2=FVI (4, M)+P2*FVI (3, M)-P1l*P1l*FVI(2,

FVI(l, M)
COEF (N, M) =COEF1/COEF2
FO (1) =FIN(1,MX)~COEF (N,M) *FVI(1,M)
FO (2) =FIN(2,MX)-COEF (N, M) *FVI (2, M)
FO (3)=FIN(3,MX)~COEF (N, M) *FVI(3,M)
FO (4) =FIN (4,MX)-COEF (N, M) *FVI (4, M)
CONTINUE
MX=LX-M+1
GOTO 40
MX=LX
CALL CRKGN1 (FUNC,Z0,FO0,4,H,G,FIN,MX,4)
K2=1
DO 400 J3=M,LX
F(N,1,J3)=FIN(1,K2)
DF (N,1,J3)=FIN(2,K2)
D2F (N, 1,J3)=FIN(3,K2)
D3F (N, 1,J3)=FIN (4,K2)
K2=K2+1
CONTINUE
W(N,1)=FIN(1,MX)
DW (N, 1) =FIN(2,MX)
D2W (N, 1) =FIN (3, MX)
D3W (N, 1) =FIN (4, MX)
GOTO 10

CONTINUE

DO 500 J4=1,LX
F(N,2,J4)=CDEXP (P2*Z (N,J4))

DF (N, 2,J4)=P2*CDEXP (P2*2 (N, J4))

D2F (N, 2, J4)=P2*P2*CDEXP (P2*2 (N, J4))
D3F (N, 2, J4)=P2*P2*P2*CDEXP (P2*Z (N,J4))
F(N,1,J4)=CDEXP (P1*Z (N,J4))
DF(N,1,J4)=P1*CDEXP (P1*Z(N,J4))
D2F(N,1,J4)=P1*P1*CDEXP (P1*Z(N,J4))
D3F(N,1,J4)=P1*P1*P1*CDEXP (P1*Z (N,J4))
COEF (N, J4)=0.0D0

CONTINUE

W(N,2)=F(N,2,LX)

DW (M, 2) =DF (N, 2, LX)

D2W(N, 2)=D2F (N, 2, LX)

D3W(N, 2)=D3F (N, 2, LX)

W(N,1)=F(N,1,LX)

DW(N,1)=DF (N, 1,LX)

D2W (N, 1)=D2F (N, 1, LX)

M)-P1l*P1l*pP2*



D3W(N, 1)=D3F (N, 1, LX)

10 CONTINUE
RETURN
END

C*************************************************i****

COMPLEX FUNCTION FUNC(K,Z,F)

C******************************************************

IMPLICIT REAL*8 (A~H,0-2)
COMPLEX*16 C,F

COMMON /BL1/ V,WN,C,RE /BL3/ N
DIMENSION F(4),V(2),RE(2)

GOoTO (1,2,3,4),K
1 FUNC=F (2)
GOTO 10
2 FUNC=F (3)
GOTO 10
3 FUNC=F (4)
GOTO 10
4 FUNC=(2.0DO*WN*WN+(0.0D0,1.0D0)
I *WN*RE (N) * (V(N) *DTANH (Z) -C) ) *F (3)
[ - (WN**4+(0.0D0,1.0D0) *WN*RE (N)
I * (WN*WN* (V(N) *DTANH (2) -C)
! =2.0DO*V (N) *DTANH (2)
[ *(1.0DO-DTANH (2) *DTANH(Z2)))) *F (1)
10 RETURN
END

R R e Y 2 I T T e
*

SUBROUTINE CRKGN1 (FUNC, X0, YO,N,H,F, Y4, NX, NR)
C N-TH ORDER DIFERENTIALL EQUATION (RUNGE-KUTTA-GILL)

C*************************************************t**ttt**t**
*

IMPLICIT REAL*8(A-H,0-2Z)
COMPLEX*16 FUNC, Y0,F, Y4
DIMENSION YO (N),b Y4 (NR,NX),F(NR,13)

IF (N .LE. 0 .OR. N .GT. NR) GOTO 80
CR2I=1.0D0-DSQRT (0.5D0)
DO 10 K=1,N
F(K,1)=0.0D0
Y4 (K, 1)=Y0(K)
10 F(K,2)=Y0(K)
I=1
20 X=X0+(DFLOAT (I-1))*H



DO 30 K=1,N
F (K, 3) =H*FUNC (X, X,F(1,2))
F(K,4)=0.5DO*F (K, 3)~F (K, 1)
F(K,5)=F (K, 2) +F (K, 4)
30 F(K,6)=F(K,1)+3.0D0*F (K, 4)-0.5D0*F (K, 3)
DO 40 K=1,N
F (K, 7) =H*FUNC (K, X+0.5DO*H,F (1, 5) )
F (K, 4) =CR2I* (F (K, 7) -F (K, 6) )
F (K, 8)=F (K, 5) +F (K, 4)
40 F (K, 9)=F (K, 6)+3.0DO*F (K, 4) ~CR2I*F (K, 7)
DO 50 K=1,N
F (K, 10) =H*FUNC (K, X+0 .5DO*H,F (1, 8))
F(K,4)=(2.0D0-CR2I)* (F (K, 10)-F (K, 9))
F(K,11)=F (K, 8)+F (K, 4)
50 F(K,12)=F(K,9)+3.0D0*F (K, 4) - (2.0D0O-CR21I) *F (K, 10)
DO 60 K=1,N
F (K, 13) =H*FUNC (K, X+H,F (1,11))
F(K,4)=(F(K,13)-2.0D0*F (K, 12))/6.0D0
F(K,2)=F(K,11) +F (X, 4)
Y4 (K, I+1)=F (K, 2)
60 F(K,1)=F(K,12)+3.0D0O*F (K, 4)-0.5DO*F (K, 13)
I=I+1
IF (NX-I)70,70,20
80 WRITE(6,100) N,NR
100 FORMAT('0 (SUBR.CRKGN1) N=',I3,', NR=',61I3,
| ', N SHOULD BE A POSITIVE INTEGER LESS THAN
[ OR EQUAL TO NR. RETURNED WITH NO CALCULATION.'
| //)
70 RETURN
END
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SUBROUTINE SUB2 (W,DW,D2W,D3W,A)

ChkAAkAkXARAKRAARKRAKRAKNAARAR AR A A A Ak kR hkdkhkhhhhhkhkkkknhik

IMPLICIT REAL*8 (A-H,0-2)
COMPLEX*16 C,Al10,A20,B11,B21,B10,B20,C12,C22,C10,C20,
| p13,D23,D11,D21,D10,D20,A, W,DW, D2W,D3W

COMMON  /BL1l/ V,WN,C,RE /BL2/ GAMMA,RI,S

DIMENSION V(2),RE(2),A(4,4),W(2,2),DW(2,2),

[ D2W(2,2),D3W(2,2)

Al10=1.0D0
A20=1.0D0
Bl1l=-C
B21=-C
B10=-V (1)
B20=-V(2)

Cl2=-C*GAMMA*RE (2)
C22=-C*RE (1)
Cl0=-WN*WN*C*GAMMA*RE (2)
C20=-WN*WN*C*RE (1)



100
29
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D13=-(0.0D0, 1.0D0) *C*GAMMA*RE (2) /WN
D23=-(0.0D0,1.0D0) *C*RE (1) /WN

D11=C*GAMMA* (C*RE (1) *RE (2) +(0.0DO0, 3.0D0) *WN*RE (2) )
D21=C* (C*RE (1) *RE (2) +(0.0D0, 3.0D0) *WN*RE (1))
D10=(C*GAMMA*V (1) +RI) *RE (1) *RE (2)

D20={C*V (2) -WN*WN*S) *RE (1) *RE (2)
A(l,1)=A10*W(1,1)

A(1,2)=A10*W(1,2)

A(1l,3)=-220*W(2,1)

A(l,4)=-220*W(2,2)
A(2,1)=B11*DW(1,:)+B10*W(1,1)
A(2,2)=B11*DW(1,2)+B10*W(1,2)
A(2,3)=-B21*DW(2,1)-B20*W(2,1)
A(2,4)=-B21*DW(2,2)-B20*W (2, 2)
A(3,1)=C12*D2W(1,1)+Cl0*W(1,1)
A(3,2)=C1l2*D2W(1,2)+C1l0*W(1,2)
A(3,3)=-C22*D2W(2,1) -C20*W (2, 1)
A(3,4)=-C22*D2W(2,2) -C20*W (2, 2)
A(4,1)=D13*D3W(1,1)+D11*DW(1,1)+D10*W(1,1)
A(4,2)=D13*D3W(1,2)+D11*DW(1,2)+D10*W(1,2)
A(4,3)=-D23*D3W(2,1)-D21*DW(2,1)-D20*W (2, 1)
A(4,4)=-D23*D3W(2,2)-D21*DW(2,2)-D20*W (2, 2)

DO 10 I=1,2

DO 20 J=1,2

WRITE(6,100) I,J,D3W(I,J)

FORMAT (2X,2(I5,2X),'(',E20.10,"',"',E20.10,") ")
CONTINUE

CONTINUE

RETURN
END

(AR SRR RS RERES R R Ry R R

SUBROUTINE SUB3(NX,A,DET1,ADET1,DET2, ADET2, AGAP,NS1,
AA,Q,NS2,V0,DV0,D2V0,D3V0)

Chhrhkkk kA AXR A AAR AR AKX AR KR AAA AR AR ARk hk A ARk AR R AR AR A Rk ok k k&

IMPLICIT REAL*8(A-H,0-2)

COMPLEX*16 F,DF,D2F,D3F,COEF,A,AA,P,Q,DET], DET2, WW1,
WW2,VMAX, SHIFT,V0,DV0,D2V0,D3V0,All,Al2,
A21,A22,BBB, TDET, TP, TQ

COMMON  /BL6/ F,DF,D2F,D3F, COEF

DIMENSION NX(2),F(2,2,601),DF(2,2,601),D2F(2,2,601),

D3F(2,2,601),A(4,4),P(3,3),Q(3),WWl(24),
IP1(4),WW2(15),IP2(3),V0(2,601),DV0(2,601),
D2V0 (2, 601),D3V0(2,601),AMXJ(4) , AMNJI (4),
AMXI (4) ,COEF (2,601),A11(601),A12(601),
A21(601),A22(601),BBB(4),TP(3,3),TQ(3)

AA=(1.0D0,0.0DO)
po 100 I=1,3



Q(I)=-A(I,1)*AA
DO 200 J=1,3
P(I,J)=A(I,Jd+1)
200 CONTINUE
100 CONTINUE

EPS=1.0D0D-14

CALL DCLNLU(P, 3, 3,Q,EPS,WW2, IP2,NS2)

DO 102 I1=1,3

WRITE(6,103) (I1,J,P(I1,J),J=1,3)

WRITE (6,104) Q(I1)
103 FORMAT (2 (I5,2X),4X,'(',E12.6,',',E12.6,"')")
104 FORMAT(10X,'Q=','(',E12.6,"',',E12.6,"') ")
102 CONTINUE

aOOOa00000n

TDET=P (1, 1) *P (2,2) *P (3,3) +P (1,2) *P (2, 3) *P (3, 1)
! +P(1,3)*P(2,1)*P(3,2)~-P(1,3)*P(2,2)*P(3,1)
! -P(1,1)*P(2,3)*P(3,2)-P(1,2)*P(2,1)*P(3,3)
IF (TDET .EQ. (0.0D0,0.0D0)) THEN
WRITE (6, 105)
105 FORMAT (20X, 'MATRIX IS SINGULAR')
STOP
END IF

TP(1l,1)= (P(2,2)*P(3,3)-P(2,3)*P(3,2))/TDET
TP(1,2)=-(P(1,2)*P(3,3)-P(1,3)*P(3,2))/TDET
TP(1,3)= (P(1,2)*P(2,3)-P(1,3)*P(2,2))/TDET
TP(2,1)=~(P(2,1)*P(3,3)-P(2,3)*P(3,1)) /TDET
TP(2,2)= (P(1,1)*P(3,3)-P(1,3)*P(3,1))/TDET
TP (2,3)=-(P(1,1)*P(2,3)-P(1,3)*P {2,1))/TDET
TP(3,1)= (P(2,1)*P(3,2)-P(2,2)*P(3,1))/TDET
TP (3,2)=-(P(1,1)*P(3,2)-P(1,2)*P(3,1))/TDET
TP(3,3)= (P(1,1)*P(2,2)-P(1,2)*P(2,1))/TDET

TQ(1)=TP (1, 1) *Q(1)+TP(1,2) *Q(2)+TP (1, 3) *Q(3)
TQ(2)=TP (2,1) *Q(1) +TP (2,2) *Q(2) +TP (2, 3) *Q(3)
TQ(3)=TP(3,1)*Q (1) +TP(3,2) *Q(2) +TP (3, 3) *Q(3)

Q(1)=TQ(1l)

Q(2)=TQ(2)

Q(3)=TQ(3)
c CALL LEQ2C(P,3,3,Q,1,3,0,WW2,IP2,NS2)
c WRITE (6,111) Q(1),Q(2),Q(3)

C 111 FORMAT(2X, 'NO1',3(2X,'(',E12.6,"',"',E12.6,"') "))

All(NX(1))=AA

Al2 (NX(1))=Q(1)
A21(NX(2))=Q(2)
A22 (NX(2))=Q(3)

DO 50 L1=NX(1)-1,1,~1



50

60

300

400

All(L1l)=A11(L1l+1)
Al2(L1)=A12(L1+1)-COEF(1,L1+1)*All(L1+1)
CONTINUE

DO 60 L2=NX(2)-1,1,-1

A21(L2)=A21(L2+1)
A22(L2)=A22(L2+1)—COEF(2,L2+1)*A21(L2+l)
CONTINUE

VMAX=(0.0D0,0.0D0)

DO 300 Kl=1,NX(1)
VO(l,K1)=All(Kl)*F(l,l,Kl)+A12(K1)*F(1,2,K1)
DVO(l,K1)=A11(K1)*DF(l,l,Kl)+A12(Kl)*DF(1,2,K1)
D2VO(1,K1)=A11(K1)*DZF(l,l,K1)+A12(K1)*D2F(1,2,Kl)
D3V0(l,Kl)=A11(Kl)*D3F(l,1,K1)+A12(K1)*D3F(1,2,K1)
IF (CDABS(VO(1,Kl)) .GT. CDABS(VMAX)) VMAX=V0(1l,K1)

CONTINUE

DO 400 K2=1,NX(2)

VO (2,K2)=A21(K2) *F (2,1,K2) +A22 (K2) *F (2, 2,K2)

DV0 (2,K2)=A21 (K2) *DF (2,1,K2) +A22 (K2) *DF (2, 2,K2)
D2V0(2,K2)=A21 (K2) *D2F (2,1,K2) +A22 (K2) *D2F (2, 2, K2)
D3VO(2,K2)=A21(K2)*D3F(2,1,K2)+A22(K2)*D3F(2,2,K2)
IF (CDABS(VO(2,K2)) .GT. CDABS(VMAX)) VMAX=V0(2,K2)
CONTINUE

FAI=-3.141592D0*0.5D0

WRITE(6,411) VvO(1,1)
FORMAT (2X, 'V0=',"'(',E12.6,"',',E12.6,') ")

SHIFT=DCONJG(VO(1,1) /VMAX) /CDABS (VO (1, 1) /VMAX) *
CDEXP ((0.0D0,1.0D0) *FAI)

SHIFT=CDEXP ((0.0D0,1.0D0) *FAI)

SHIFT=DCONJG(V0(2,2) /VMAX) /CDABS (VO (2, 2) /VMAX) *
CDEXP ((0.0D0,1.0D0) *FAI)

DO 500 K3=1,NX(1)

VO (1,K3)=V0(1,K3)/VMAX*SHIFT
DVO(1,K3)=DV0O(1,K3)/VMAX*SHIFT
D2VO0(1,K3)=D2V0(1,K3) /VMAX*SHIFT

. D3VO(1,K3)=D3V0O(1,K3) /VMAX*SHIFT

500

600

CONTINUE

DO 600 K4=1,NX(2)

V0 (2,K4)=V0(2,K4) /VMAX*SHIFT
DV0(2,K4)=DV0(2,K4) /VMAX*SHIFT
D2V0 (2,K4)=D2V0(2,K4) /VMAX*SHIFT
D3V0(2,K4)=D3V0(2,K4) /VMAX*SHIFT
CONTINUE

DO 10 J=1,4
AMXJ (J)=DMAX1 (CDABS(A(1,J)),CDABS(A(2,J)),
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| CDABS (A(3,J)),CDABS (A(4,J)))
AMNJ (J) =DMIN1 (CDABS (A(1,J)),CDABS (A(2,J)),
| CDABS (A(3,J)),CDABS (A(4,J)))
DO 20 II=1,4

A(II,J)=A(II,J)/AMXJ(J)

CONTINUE

CONTINUE

DO 30 I=1,4

AMXT (I)=DMAX1 (CDABS (A(I,1)),CDABS(A(I,2)),
| CDABS (A(I,3)),CDABS(AII,4)))
DO 40 JJ=1,4

A(I,JJ)=A(I,JJ)/AMXI(I)

CONTINUE

CONTINUE

CALL DCINV(A,4,0,4,4,0.0D0,DET1,WW1,IP1,NS1)

DO 556 IJ=1,4
BBB(IJ)=(1.0D0,0.0D0)
CONTINUE

CALL LEQ2C(A,4,4,BBB,1,4,1,WW1,IP1,NS1)

WRITE(6,112)
FORMAT (2X, 'NO2"')

DET1=A(1,1)*(A(2,2)*A(3,3)*A(4,4)+A(2,3)*A(3,4)*A(4,2)
+A(2,4)*A(3,2Z)*A(4,3)-A(2,4)*A(3,3)*A(4,3)

I
I -A(2,3)*A(3,2)*A(4,4)-A(2,2)*A(3,4) *A(4,3))
l -

A(2,1)*(A(1,2)*A(3,3)*A(4,4)+A(1,3) *A(3,4) *A(4,2)

| +A(1,4) *A(3,2) *A(4,3)-A(1,4) *A(3,3) *A(4,2)
I -A(1,3)*A(3,2)*A(4,4)-A(1,2)*A(3,4) *A(4,3))
I

+A(3,1) *(A(1,2)*A(2,3)*A(4,4)+A(1,3)*A(2,4) *A(4,2)

| +A(1,4) *A(2,2) *A(4,3)-A(1,4)*A(2,3) *A(4,2)
I -A(1,3)*A(2,2)*A(4,4)-A(1,2)*A(2,4)*A(4,3))
l -

A(4,1)*(A(1,2)*A(2,3)*A(3,4)+A(1,3)*A(2,4) *A(3,2)

OOO0000

l +A(1,4) *A(2,2) *A(3,3)-A(1,4)*A(2,3) *A(3,2)
| -A(1,2) *A(2,4) *A(3,3)-A(1,3)*A(2,2) *A(3,4))

DET1=(1.0D0,0.0D0)

DO 555 JI=1,4

IPVT=IP1(JI)

IF (IPVT .NE. JI) DET1=-DET1
INDX=JI+(JI-1) *4
DET1=DET1 *WW1 (INDX)

CONTINUE

ADET1=CDABS (DET1)

DET2=AMXJ (1) *AMXJ (2) *AMXJ (3) *AMXJ (4) *

| AMXTI (1) *AMXT (2) *AMXI (3) *AMXI (4) *DET1
ADET2=CDABS (DET2)



AMX=DMAX1 (AMXJ (1), AMXJ (2) , AMXJ (3) , AMXJ (4) )
AMN=DMIN1 (AMNJ (1), AMNJ (2) , AMNJ (3) , AMNJ (4) )
AGAP=AMX/AMN

RETURN

END

c*******wt*******************************i******i**ttt**t*

I

SUBROUTINE SUB4 (NX,Z,V0,DV0, ABSVO,ARGVO,
ABSUOQ, ARGUO, ABSETA, ARGETA, TAU, ENE)

C************************************************k**tttt*t

20
10

IMPLICIT REAL*8 (A-H,0-2)

COMPLEX*16 c,v0,DV0,U0Q,ETA

COMMON /BL1/ V,WN,C,RE

DIMENSION V(2),RE(2),NX(2),2(2. ‘01),v0(2,601),
DVO(2,601),U0(2,601),ETA(2,601),TAU(2,601),
ENE(2,601) ,ABSV0 (2, 601) ,ARGVO0(2,601),
ABSUO (2,601) ,ARGUO(2, 601) ,ABSETA(2,601),
ARGETA (2, 601)

DO 10 N=1,2

ABSVO (N, 1)=0.0D0
ARGVO (N, 1) =0.0D0
ABSUO (N, 1)=0.0D0
ARGUO (N, 1) =0.0D0
ABSETA (N, 1) =0.0D0
ARGETA (N, 1) =0.0D0
TAU (N, 1)=0.0D0
ENE (N, 1) =0.0D0

DO 20 I=2,NX(N)

UO(N,I)=(0.0D0,1.0D0)*DVO(N,I)/WN

ETA(N, I)=VO(N,I)/((0.0D0,1.0DQ) *WN* (DTANH(Z (N, I))-C))

ABSVO (N, I)=CDABS (VO(N, I))

ARGVO (N, I) =DATAN2 (DIMAG(VO (N, I)),DREAL(VO(N,I)))
*180.0D0/3.141592D0

ABSUOQ (N, I)=CDABS (UO (N, I))

ARGUO (N, I) =DATAN2 (DIMAG(UO (N, I)),DREAL(UO(N,I)))
*180.0D0/3.141592D0

ABSETA (N, I)=CDABS(ETA(N,I))

ARGETA (N, I) =DATAN2 (DIMAG(ETA(N, I)) ,DREAL (ETA(N,I)))*

180.0D0/3.141592D0

TAU (N, I) =-ABSUO (N, I) *ABSV0 (N, I) *COS (ARGUO (N, I)
-ARGVO (N, I))/2.0D0

ENE (N, I) =(ABSUO (N, I) **2+ABSVO (N, I)**2)/2.0D0

CONTINUE

CONTINUE

RETURN
END



-
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C***********************************************************r

SUBROUTINE WRITE (NX, Z,V0,DV0,D2V0,D3V0,ABSV0,ARGVO,
! ABSUO, ARGUO, ABSETA, ARGETA, TAU, ENE)

Ckkkt**ﬁ*****************************************t***********

IMPLICIT REAL*8(A-H,0-Z)
COMPLEX*16  VO0,DV0,D2V0,D3V0

DIMENSION NX(2),2(2,601),

| V0 (2, 601),DVO0(2,601),D2V0(2,601),D3V0(2,601),
| ABSVO0 (2, 601) ,ARGVO (2, 601),ABSUO (2, 601),

| ARGUO (2, 601) ,ABSETA(2, 601) , ARGETA(2,601),

| TAU (2, 601) ,ENE(2, 601)

WRITE (6,100)

WRITE(6,200) (2(1,I),v0(1,I),DVO(1,I),D2VO(l,I),

] pD3vO(1,I),I=1,NX(1),2)

WRITE (6, 200) (Z(2,J),V0(2,J),DVO(2,J),DZVO(Z,J),

| pD3v0(2,J),J=NX(2),1,-2)

WRITE (6,300)

WRITE (6,400)

WRITE(6,500) (2(1,1),ABSVO(1,I),ARGVO(1,I),

I ABSUO(1,1I),ARGUO(1,1I),

| ABSETA(1,I1),ARGETA(1,I),TAU(1,I),ENE(1,I),
! I=1,NX(1),2)

WRITE (6, 500) (2(2,J),ABSV0(2,J),ARGV0(2,J),

| ABSUO(2,J),ARGUO(2,J),

| ABSETA(Z,J),ARGETA(Z,J),TAU(Z,J),ENE(Z,J),
| J=NX(2),1,-2)

100 FORMAT (1H //,8X,'2',16X,'V0’*,23X, 'DV0/DZ*, 20X,
| 'D2V0/DZ2"', 19X, 'D3V0/D23'/)

200 FORMAT (1H ,5X,F6.3,2X,'(',E11.4,"',',E11.4,")",2X,
| '(',E11.4,',',E11.4,")',2X,'(',E11.4,"', ",
| E11.4,')',2X,'(',E11.4,',',E11.4,") ")

300 FORMAT(1H //,8X,'2',16X,'V0',25X,'U0', 25X, 'ETA', 18X,
1 "TAU', 12X, 'ENE")

400 FORMAT (1H ,17X, 'DABS(VO) ARG (V0)', 10X, 'DABS(U0)
| ARG(UO) ', 10X, 'DABS(ETA)  ARG(ETA) ')

500 FORMAT (1H ,5X,F6.3,2X,'(',E11.4,',',E11.4,")",2X, ' (",
| E11.4,',',E11.4,')',2X,'(',E11.4,"',',E11.4,
| 'y',3X,E11.4,4X,E11.4)

RETURN
END

C**tt*****************t***********************************

SUBROUTINE STFUNC(NX,Z,VO0,RT,ICONT,IVO,ZR)

C*****************************t***************************

IMPLICIT REAL*8(A-H,0-2)



Yoy
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ZOMPLEX*16 C, V0

COMMON /EL1/ V,WN,C,RE /BLP/ AMP /BLV/ VP, VA
DIMENSION NX(2),Z(2,601),v0(2,601),F(2,601),VP(2,601),
| VA(2,601) ,AMP(21,41),2R(2),V(2),RE(2)

CR=DREAL (C)

———————— BACKGROUND STREAM FUNCTION =======-——cmoooo_-

10

20

30

Dz1=2(1,1)-2(1,2)

Dz22=2(2,2)-2(2,1)

DO 10 10=1,601

F(1,I0)=0.0D0

F(2,10)=0.0D0

CONTINUE

DO 20 Il=NX(1)-1,1,-1

F(1,I1)=F(1,I1+1)

| +((DTANH(Z2(1,I1))+DTANH(Z(1,I1+1)))/2-CR)*DZ1
CONTINUE

DO 30 I2=NX(2)-1,1,-1

F(2,I2)=F(2,12+1)

| ~((DTANH(2(2,12))+DTANH(Z2(2,I2+1)))/2~CR)*DZ22
CONTINUE

TZ=ZR (1) +ZR(2)

TZ=3.0D0+ZR(2)

DTzZ=TZ/40.0D0

IZ1=INT(DTZ/DZ1)

IZ2=INT(DTZ/D22)
IMZ2=IZ2*INT(NX(2)/122)+1
IMZ1=NX(1)-INT((DT2- (NX(2)~IMZ2)*DZ2)/DZ1)
ISZ1=IMZ1-IZ1*(41-(INT(NX(2)/I22)+1)~-1)
IF (ISZl .LT. 1) THEN

Iszl=1

END IF

40

VMAX=0.0DO

VP (1,1)=0.0D0

VA(1,1)=0.0D0O

DO 40 J1=2,NX(1)
VP(1,J1)=CDABS (V0(1,J1))
SA1=DIMAG(VO(1,J1))/VP(1,J1)
VA(1,J1)=-DASIN(SAl)-(3.141592/2.0D0)
IF (VP(1,J1) .GT. VMAX) THEN
VMAX=VP (1,J1)

ELSE

VMAX=VMAX

END IF

CONTINUE

VP (2,1)=0.0D0
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VA (2,1)=0.0D0
DO 50 J2=2,NX(2)
VP (2, J2) =CDABS (V0 (2, J2))
SA2=DIMAG (V0 (2,J2)) /VP (2,J2)
VA (2,J2)=-DASIN(SA2)-(3.141592/2.0D0)
IF (VP(2,J2) .GT. VMAX) THEN
VMAX=VP (2, J2)
ELSE
VMAX=VMAX
END IF

50 CONTINUE

DO 60 K1l=1,NX(1)
VP (1,K1)=VP(1l,K1l)/VMAX
60 CONTINUE

DO 70 K2=1,NX(2)
VP (2,K2)=VP (2,K2) /VMAX
70 CONTINUE

---------------- COMBINING ~==m=-=m=mm——————
DO 80 I=1,81
PN=(I-1)*(3.141592/20.0D0)
II=0
DO 90 J1=IS521,IMZz1,IZ1
II=II+1
AMP (I, II)=F(1,J1)+RT*VP(1,J1)*COS(VA(1l,J1)+PN)
90 CONTINUE
DO 110 J2=IMz2,1,-122
II=II+1
AMP (I, II)=F(2,J2)+RT*VP (2, J2) *COS (VA(2,J2)+PN)
110 CONTINUE
80 CONTINUE

———————————————— FIND AMOUNT OF SHIFTING -----—--——=——=——--
AMIN=10.0DO
DO 200 I3=1,81
DO 210 J3=1,41
IF (AMP(I3,J3) .LT. AMIN) THEN
AMIN=AMP (I3, J3)
END IF

210 CONTINUE

200 CONTINUE

--------- SHIFTING ACCORDING TO AMIN —------—---e—-—ceee—-
DO 300 14=1,81
DO 310 J4=1,41
AMP (I4,J4)=BAMP (I4,J4)-AMIN
310 CONTINUE
300 CONTINUE

--------- CREAT OUTPUT FILE ——-===-=——=——-mmc——ommeeeoo
DO 500 I=1,81
IF (IVO .EQ. 1) GOTO 120



LERIRS

WRITE (6,100) AMP(I, 1),AMP(I, 2),AMP(I, 3),AMP(I, 4),
! AMP (I, 5),AMP(I, 6),AMP(I, 7),AMP(I, 8),
I AMP (I, 9),AMP(I,10),AMP(I,11),AMP(I,12),
| AMP (I, 13),AMP(I,14),AMP(I,15),AMP (I, 16),
l AMP (I,17),AMP(I,18),AMP(I,19),AMP(I,20),
l AMP (I, 21),AMP(I,22),AMP(I,23),AMP(I,24),
! AMP (I, 25),AMP(I,26),AMP(I,27),AMP(I,28),
f AMP (I, 29),AMP(I,30),AMP(I,31),AMP(I, 32),
[ AMP (I, 33),AMP(I,34),AMP(I,35),AMP (I, 36),
| AMP (I, 37),AMP(I,38),AMP(I,39),AMP(I,40),
J AMP (I, 41)

100 FORMAT (41 (1X,F6.3))

500 CONTINUE

120 RETURN
END

C***R***********************************************tt******t

SUBROUTINE VOPLO(Z,NX,V0,IV0)
C TAG GENERATOR.

(O AEEEARRESEEEEREEEEEREEEERSEERERERERRRRRS SRR R RN EE REENE]

IMPLICIT REAL*8(A-H,0-2)

COMPLEX*16 vo

COMMON /BLV/ VP,VA

DIMENSION 2Z(2,601),NX(2),V0(2,601),VP(2,601),VA(2,601)

IF (IV0 .EQ. 0) RETURN
WRITE(6,100)
WRITE (6,200)
WRITE (6,300)
WRITE(6,400)

DO 10 Il1=1,NX(1)

WRITE (6,500) VP(1,I1),2(1,1I1)
10 CONTINUE

DO 15 I2=NX(2),1,-1

WRITE (6,500) VP(2,12),2(2,12)
15 CONTINUE

WRITE (6, 600)

DO 20 J1=1,NX(1)

WRITE(6,500) VA(1,J1),2(1,J1)
20 CONTINUE

DO 25 J2=NX(2),1,-1

WRITE(6,500) VA(2,J32),2(2,J02)
25 CONTINUE

WRITE (6,700)



100 FORMAT (6X,'GEN A PLOT.',/, 6X,
| 'LEGEND OFF.',/, 6X,
| 'X PAGE IS 11.',/,6X,'Y PAGE IS 8.5.',/

| 6X, 'X LABEL IS "vO".',/,6X,'Y LABEL IS "z".

200 FORMAT (6X, 'X LENGTH=9.0,AXIS ORIGIN 1.0DO0.',/,6X,
[ 'Y LENGTH=6.5,AXIS ORIGIN 1.0DO0.',/,6X,
I 'X MIN -3.0D0 "',MAX 3.0D0 ','-',/,GX’
| 'Y MIN -3.0D0 ',',MAX 3.0D0 ','.")
300 FORMAT (6X, 'TITLE "VO DISTRIBUTIONS".')
400 FORMAT (6X, 'FRAME.',/,6X, 'INPUT DATA.',/, 6X,
| '*"ARS VO"I)
500 FORMAT (3X,F10.5,',',3X,F1C.5)
600 FORMAT (6X, '"PHASE VO"')
700 FORMAT (6X, 'END OF DATA.',/,6X,
f '"CURVE 1 SYMBOL COUNT 1,SCATTERED.',/,6X,
[ 'CURVE 2 SYMBOL COUNT 2,SCATTERED.',/,6X,
| 'LEGEND UNITS PLOT%.',/, 6X,
| 'LEGEND X ORIGIN 70.',/,6X,
| 'LEGEND Y ORIGIN 10.',/,6X,
I 'LEGEND HEIGHT 0.10.°',/, 6X,
I 'LEGEND FRAME 1.',/,6X,'SEND.',/, 6X,
| 'QUIT.')

RETURN
END
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APPENDIX C: DETERMINATION OF WAVE LENGTH A AND PHASE

VELOCITY Cgr

In section 4.2.3, it was mentioned that two sets of
independent wave sensors located along the longitudinal axis
of the flume, gave enough information to evaluate the
interfacial wave length A and its phase velocity Cg. In this
appendix, the process used to determine these properties is
shown by way of example output data.

Let us consider a the typical output example which is
shown in Figure C.1. From the FFT output (b), we can obtain
the dominant frequency of the wave fq which can be confirmed
by comparison with the raw data (a) (in this example, fq =
1.52 Hz). OQutput (c) shows the result of a cross correlation
between two sensors located 10cm apart longitudinally, which
indicates the maximum correlation time tgq. Care must be
taken when using this time scale since there are several
identical peaks in the output produced by the wave phenomena,
since the waves are basically periodic. Therefore, some
information is required to distinguish between the
correlation time and others.

In this thesis, the additions information was provided
using a stop watch and physical observation; a technigue
which a supplied reasonable range for the time scale. Using
this process, the maximum correlation time in this particular

example was found to be tgq=3.13 sec. Since we already know
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“he distance between the two wave sensors, the phase velocity

of the interfacial wave can be calculated as follows;
/ tq = 10(cm) / 3.13 (sec) = 3.20 (cm/sec).

Cr = 10 (cm)
Since the dominant frequency fd was obtained from (b), the
wave length A is calculated as,

/ 1.52 (Hz) = 2.10 (cm).

A =Cgr / Fqg = 3.20 (cm/sec)



At = 0.66 sec
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Figure C.l. Wave detector output and processed data
example. 90.6.9(1) case. A*=2.10cm, Cp*=3.20 cm/sec.)



