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Abstract 

A single-stage utility-scale photovoltaic (PV) system is usually interfaced with the host grid 

via a central voltage-source converter (VSC). Recently, due to their reliability, dc-link film 

capacitors are favored over electrolytic capacitors in grid-connected VSC applications. 

However, the capacitance per unit volume of film capacitors is significantly smaller than that 

of electrolytic capacitors. The overall system stability might be compromised by the reduction 

of the dc-link capacitance, particularly in PV systems, which have a dynamic resistance that 

varies with operating conditions. Using a detailed small-signal model of the grid-connected 

PV system, it is shown in this thesis that the reduction of the dc-link capacitance interferes 

with the dynamic resistance of the PV array leading to instabilities. The minimum dc-link 

capacitance that preserves the overall system stability is determined. To mitigate instabilities 

with a reduced dc-link capacitance, a simple yet effective active compensator is developed. 

Detailed time-domain simulations validate the analytical results and show the effectiveness of 

the proposed compensator in preserving the system stability. 
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Chapter 1 

Introduction 

Driven by global climate change concerns and the continuous growth of energy demand, 

renewable energy resources are becoming increasingly popular all over the world. According to 

the International Energy Agency (IEA), the world’s total installed photovoltaic capacity reached 

486 GW out of 2351 GW of the global total renewable energy capacity at the end of 2018. By 

2050, PV global cumulative capacity would contribute 11% of the worldwide electricity generation 

to avoid 2.3 gigatons of carbon dioxide emissions per year [1], [2]. 

In the grid-connected PV systems, the generated electrical power quality is degraded due 

to the intermittent nature of PV energy. Therefore, centralized voltage-source converters (VSCs) 

with dc-link capacitors are usually used to regulate the generated PV power and interface PV 

power plants to the host grid [3], [4]. Generally, three types of dc-link capacitors are available for 

power converters; namely, they are multi-layer ceramic capacitors (MLC-Cs), metalized 

polypropylene film capacitors (MPPF-Cs), and aluminum electrolytic capacitors (AE-Cs) [5]. 

Even though MPPF capacitors are the best choice for reliability, their utilization is still challenging 

due to the high cost and the limited capacitance per unit volume. Generally, a relatively large dc-

link capacitance enhances the dc-link voltage profile and increases the stability margin. However, 

more research work has been conducted to preserve the dc-link stability under reduced capacitance 

to pave the way to adopt MPPF capacitors [2], [6], [7]. 

A single-stage VSC is used to interface a PV array to the utility grid. The VSC adopts the 

standard vector control strategy with cascaded outer and inner control loops [8]. However, it is 

reported in the literature that, with a reduced dc-link capacitance, the VSC dynamics could involve 

right-half plane (RHP) poles in many applications, such as motor drives, wind turbines, and PV 

systems [9]–[11]. 

The impact of the dynamic impedance of PV arrays on a grid-connected VSC with a 

reduced dc-link capacitance has been briefly and solely addressed in single specified research work 

in the literature [11]. However, the developed single-stage model in [11] is not comprehensive and 

only comprises three states. The dynamic model in [11] does not consider the influence of the step-
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up transformer, dc-cables, the grid-stiffness, the phase-locked loop (PLL), and ac-voltage control 

dynamics. Moreover, the studied research work mainly focuses on the two-stage without 

considering single stage converters. More importantly, there is no proposed solution or mitigation 

technique to enhance the integration of PV generators with reduced dc-link capacitance. 

1.1 Problem Statement and Research Motivations 

It is shown in this thesis that the integration of PV-VSC systems with reduced dc-link capacitance 

induces significant instabilities under certain conditions. The motivation of this work is to preserve 

the system stability under these challenging conditions to allow a wide adoption of the new dc-

link capacitance technology, e.g., film capacitors. The following areas are the research motivation 

for this work: 

1) The integration of PV-VSCs using reduced dc-link capacitors induces instabilities under 

certain conditions.  

2) The operation of the PV arrays with the constant voltage and current regions has a 

significant impact on the system dynamics, particularly with the reduced dc-link 

capacitance. 

3) The control of interfacing VSCs should be designed accurately in order to clearly show and 

study the interaction dynamics due to integrated devices interference. 

1.2 Thesis Objectives 

The aim of this work is to mitigate the adverse impacts of utilizing a reduced dc-link capacitance 

in the grid-connected PV-VSCs systems. This thesis addresses the grid-connected PV-VSCs 

systems accoridng to the following objectives: 

1) Accurate design of the cascaded controllers of the grid-connected VSC in PV applications 

considering parameter uncertainties. 

2) Determination of the minimum dc-link capacitance analytically to preserve the dynamic 

stability. 

3) Assessment of the dynamic interactions of the grid-connected PV-VSCs systems with the 

reduced dc-link capacitance. 
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4) Mitigation of the adverse impacts or dynamic instabilities following the integration of PV-

VSCs systems using a reduced dc-link capacitance. 

5) Verification of the analytical results using nonlinear time-domain simulations within 

MATLAB/SIMULINK® environment. 

1.3 Thesis Methodology 

Throughout this work, the following key tools and methods are utilized to address the problem 

under study: 

1) Developing a dynamic small-signal model of the PV-VSC grid-connected system to 

investigate the system stability using eigenvalues and impedance analysis. 

2) Using linear control tools and frequency-domain analysis to derive accurate formulas to 

determine the appropriate parameters of the PLL controller, current controller, PCC voltage 

controller, and DC-link voltage controller. 

3) Conducting stability analysis based on the Nyquist admittance ratio criterion around the 

point of interconnections between PV generators and grid-connected VSC system. 

4) Preserve the stability of the system by designing a linear compensator from the source-side 

to damp the system actively. 

5) Linear analysis tools such as root-locus, participation factor, and Bode plots are utilized in 

the dynamic studies. 

1.4 Thesis Contributions 

The contributions of this thesis to the research field are as follows: 

1) Newly original equations are derived to design the controllers of the grid-connected VSC. 

This includes the PLL, current controller, ac-voltage controller, and accurate and 

approximated dc-link voltage controller. The method provided in this work helps to design 

the proportional and integral gains that preserve the system stability margins. 

2) The development of a comprehensive and detailed small-signal and impedance models for 

the grid-connected PV-VSC system. This model is utilized to conduct dynamic analysis 

and assess the performance under different conditions. 
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3) Investigation of the dynamic instabilities due to the interference between the reduced dc-

link capacitance and PV dynamic impedance at different operating points. 

4) The development of a new compensator to enhance the integration of the single-stage PV 

systems with minimized dc-link capacitance. With the new compensation method, the 

system dynamic performance is robustly damped, and film capacitors with reduced 

capacitance per unit volume can be used to increase the system reliability. The operation 

is investigated under different operating conditions, including fault conditions. 

1.5 Thesis Outline 

The remainder of the thesis is organized as follows. 

Chapter 2 presents the background and literature survey for the grid-connected PV-VSC 

systems, including the recent challenges in PV integration. 

Chapter 3 presents comprehensive modeling and control of the grid-connected VSCs. An 

accurate design approach for the system controllers is analytically derived and presented. Also, the 

dynamic and static impedances of the PV generator are investigated. Moreover, a detailed small-

signal model in the d-q reference-frame is developed to study the system stability. Furthermore, 

non-linear time-domain simulations are conducted and presented to validate the developed 

linearized model. 

Chapter 4 presents the dynamic interference between the PV dynamic impedance and dc-

link capacitance under different operating regions. A new active compensation method is proposed 

to mitigate the associated dynamic instabilities. Small-signal and time-domain simulation models 

are developed to study the dynamic stability interactions and investigate the performance of the 

compensated system under different operating conditions. Furthermore, this chapter investigates 

the large-signal low-voltage ride-through (LVRT) performance for both the compensated and 

uncompensated systems. 

Chapter 5 presents the thesis conclusions and suggestions for future research work in this 

area. 
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Chapter 2 

Background and Literature Survey 

2.1 Introduction 

Voltage-source converters (VSCs) have been increasingly used in various applications in modern 

power systems to integrate renewable energy resources (RER). The dynamic interactions on both 

ac- and dc-sides of VSCs interfacing RER and the system stability have become important topics 

in current research. 

In this chapter, a background and a literature survey of the main topics in this thesis are 

introduced. It is shown that power electronic converters are the primary building element for 

different applications in the power system, especially when they are used to interface renewable 

energy sources, such as PV generators, into the utility-grid. Different topologies of PV systems 

are presented based on their applications and structures. Various classes of dc-link capacitor 

technologies and the corresponding critical challenges are also presented and compared. It is 

shown that interaction dynamics among VSC converter and other devices may adversely influence 

the overall system stability even if each stage is inherently functional and stable. Both eigenvalue- 

and impedance-based stability analysis for a VSC-based PV system are presented under the d-q 

transformation modeling approach.  

2.2 Power Electronic Converters in Grid-Connected PV Systems 

Renewable energy resources, PV systems, should be interfaced by power electronic converters to 

perform two main tasks; regulating the operating point of the PV generator to achieve the 

maximum power point tracking (MPPT) and inject the regulated generated power to the utility 

grid at the desired power factor (PF) [3], [12]. Two types of grid-connected PV systems are 

introduced in the literature based on the number and nature of power electronic converters used in 

the system [3], [4], [13]. The two systems are (a) Single-stage or centralized PV systems, which 

include one dc/ac converter to achieve the maximum power point (MPP) tracking and control the 

injected ac current into the utility grid. (b) Two-stage system which includes a PV-interfacing 

dc/dc converter to achieve the MPP tracking, and a grid-interfacing dc/ac converter to control the 

injected ac current into the ac-side. 
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In grid integration systems, two types of converters are widely adopted as an interfacing 

stage in many applications such as PV systems, wind farms, motor drives, and HVDC systems 

[14]–[16]. (1) Voltage-source converter (VSC), which operates as a buck inverter. The dc-side 

element of the VSC is a capacitor, and the controlled dc input is the dc-link voltage, whereas the 

dc input current depends on the system conditions. Also, the output voltage of the VSCs is 

independent of loading conditions, and the power loss in the dc-link capacitor is around 0.5%. (2) 

Current-source converter (CSC), which operates as a boost inverter. The dc-side element of the 

CSC is a choke, and the controlled dc input is the dc current while input voltage changes with load. 

Also, the output current of the CSCs is independent of load, and the power loss in the dc choke is 

usually 2% to 4%. 

VSCs are more common and widely used in grid-interfacing systems due to the absence of 

a series reactor, which reduces the losses comparing to the high losses in CSCs. However, CSCs 

have advantages over VSCs in the PV systems with small power capacity where VSCs require 

another stage to boost the voltage, which increases the cost and complexity of the system [15]. For 

the previous reasons, the structure of the single-stage system using VSCs has gained a high 

significance in the utility-scale systems by reducing the power losses and cost. As a result, the 

single-stage system is considered in this thesis. 

2.3 PV Systems as a DC Power Source for Grid-Connected Converters 

PV systems have gained a high growth rate among other renewable resources in the world today. 

By the end of 2018, the total installed capacity of the PV systems reached 486 GW out of 2351 

GW of the total capacity of renewable resources [1], [2]. The capacity of renewable sources is 

expected to expand by 50% between 2019 and 2024 to add 1200 GW to the total installed power 

today, where PV systems participate in 60% among other renewable resources [17]. By 2050, PV 

cumulative capacity would contribute 11% of the global electricity generation. 

PV generators are nonlinear devices that are used to convert sunlight into electricity. The 

basic device of the PV generator is the PV cell that typically produces an electrical power between 

1 and 2 W [4]. Multiple PV cells are connected in series to form a PV module. To increase the 

terminal voltage of the PV generator, multiple PV modules are connected in series to form a PV 
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string. To increase the power rating of the PV generator, many PV strings are connected in parallel 

to form a PV array [18]. 

PV systems can be classified based on their generation capacities as follows [19], [20]. (1) 

Utility-scale three-phase (3PG) systems with generation capacity from 1-10 MW. This system 

requires many interconnection transformers and several dc/ac converters connected in parallel. (2) 

Medium-scale system for commercial applications (such as government sites, residential 

complexes, etc.) with ranges from 10-1000 kW. The interconnection configuration of this system 

depends on the system capacity. (3) Small scale single-phase (1PG) systems for residential and 

roof-top applications with capacities ranging up to 10 kW. The installation of this system is single-

phase and can produce the required power at the customer’s load without using interconnection 

transformers to reduce the system complexity. (4) Off-grid system, which is isolated from the 

utility-grid, is required for remote communities and telecommunication units with different ratings. 

It is important to investigate the integration of the utility-scale PV systems due to their large power 

generation capacity and their potential impacts on the system stability. 

Regarding the interconnection of the PV structure and the used converters, PV generators 

are normally categorized into four types as shown in Figure 2.1 [3], [12], [13]. (1) The centralized 

structure which consists of a combination of parallel-connected PV strings interfaced by one 

centralized dc/ac converter. This structure is commonly used because of its low cost and high 

conversion efficiency. (2) The string structure where each PV string is interfaced to the utility-grid 

by its own dc/ac converter. This structure has better efficiency than the centralized structure 

because MPP tracking can be separately achieved in each string. However, the cost is higher due 

to the additional number of interfacing converters. (3) The multi-string where each string is 

interfaced by a dc/dc converter to boost the dc-link voltage and a common dc/ac converter is then 

used to interface all PV strings to the ac-side. (4) The ac module structure, which consists of 

multiple PV modules, and each module is interfaced by its own dc/ac converter. The reliability of 

this structure is very high because there is no single point of failure. 
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                 (a)                                     (b)                              (c)                                                          (d) 

Figure 2.1: Configuration of PV generators. (a) Centralized structure. (b) String structure. (c) Multi-string structure. 

(d) AC module structure. 

2.4 DC-Link Capacitors 

A capacitor (𝐶) is a passive electronic component that stores electrical energy in the form of an 

electrostatic field as shown in (2.1a). It consists of two conducting plates separated by an 

insulating material called a dielectric, which limits the leakage current. The capacitance is directly 

proportional to the surface areas (𝐴) of the plates, and is inversely proportional to the separation 

(𝑑) between the plates. The capacitance also depends on the relative permittivity constant 

(𝜀𝑟 = 𝜀 𝜀𝑜⁄ ) of the dielectric as shown in (2.1b). 

                                                                            𝐶 =
𝑄

𝑉
                                                                            (2.1a) 

                                                                          𝐶 = 𝜀
𝐴

𝑑
                                                                           (2.1b) 

where 𝑄 is the charge held by the conductor in Coulomb, and 𝑉 is the electric potential in Volt. 

Capacitors are categorized into several types based on the used materials and the 

fabrication process [5], [21]–[23]. (1) Electrolytic capacitors are commonly made of aluminum 

and tantalum. This type of capacitors is polarized and made from a high-surface-area metallic tube 

contacting with an electrolyte. They provide the largest capacitance among all high-voltage 

capacitors and have a wide tolerance so that they are used to filter the rectified current and the 

noise suppression in power supplies. (2) Ceramic capacitors are made of metal electrodes separated 

by ferroelectric dielectrics. This type of capacitors has a wide range of capacitance. A new type of 

=
 

=
 

=

=

=

=

=

=

===
   

=
 

=
 

=
 

=
 

=
 

=
 

=
 

=
 

=
 

AC BUSAC BUS AC BUS AC BUS

DC BUS



 

 9 

ceramic capacitors, multilayer ceramic capacitors (MLC-Cs), has been developed to extend the 

use of the ceramic capacitors in high capacitance applications. (3) Polymer film capacitors which 

have a polymer dielectric and are classified into four types based on the properties of their 

dielectric substance: Polycarbonate capacitors which have a good stability over time and a wide 

temperature range, polypropylene capacitors which have a stable capacitance with time and 

applied voltage, polystyrene capacitors which have a good insulation and low cost, and 

polytetrafluoroethylene capacitors (PTFE-Cs) which have a low loss and a wide temperature range. 

Sometimes two polymer dielectrics are merged to meet a specific application requirement. (4) 

Mica capacitors are classified into two types: clamped mica capacitors, which are considered 

obsolete due to their inferior characteristics, and silver mica capacitors where silver electrodes are 

plated on to mica dielectric substance. This type is not widely used because it is large in volume, 

but it is importantly used in high-frequency applications where a high accuracy and high-quality 

factor (i.e., low loss and great temperature stability) are needed. (5) Supercapacitors which consist 

of high surface area electrodes that are filled with electrolyte. They have an extremely high 

capacitance on the scale of hundreds of farads for a single capacitor. As a result, they received 

much attention to be the most common type of capacitors used in applications as an alternative 

power source because of their high-power density and long cycling stability. 

DC-link capacitors are one type of reliability-critical important components in power 

electronic converters applications which contribute to cost, size, and failure rate on a considerable 

scale [5], [24]. Moreover, dc-link capacitance decreases, and equivalent series resistance (ESR) 

increases with aging, which leads to an increase in voltage ripple and damages the semiconductor 

switches due to overvoltage. Therefore, a large number of scientific researches on the different 

methods for condition monitoring of dc-link capacitors have been conducted in the last decades to 

monitor the health of capacitors, estimate their lifetimes, and enhance the reliability of the overall 

system in different applications, such as solar, wind turbines, electrical aircraft, and electric 

vehicles [25]–[29]. 

Aluminum Electrolytic Capacitors (AE-Cs), Metallized Polypropylene Film Capacitors 

(MPPF-Cs), and high capacitance Multi-Layer Ceramic Capacitors (MLC-Cs) are generally the 

most three types of capacitors available for dc-link applications [5]. The dc-link design requires 

the matching of available capacitor characteristics and parameters to the specific application needs 

under various conditions. The three types have advantages and shortcomings in their performance 



 

 10 

and could be compared from different aspects. AE-Cs achieve the highest energy density, highest 

capacitance, lowest cost, and low ripple current ratings, however, with aging (evaporation of 

electrolyte) low capacity and high ESRs. MLC-Cs have a smaller size, wider frequency range, and 

higher operating temperatures up to 200◦C. However, they suffer from higher cost and mechanical 

sensitivity. MPPF-Cs provide a well-balanced performance for high voltage applications in terms 

of cost and ESR, capacitance, ripple current, and reliability. Nevertheless, they have the 

shortcomings of large volume and moderate upper operating temperature. 

DC-link capacitors are widely used in voltage-source converter applications to mainly 

balance the power difference, minimize the voltage ripple, and short-term energy storage. 

Aluminum electrolytic capacitors for such applications is assumed to be one of the lifetime 

bottlenecks and weakest links in power electronic systems. Various studies propose passive and 

active capacitive dc-link solutions to reduce the dc-link capacitance in different applications; 

therefore, bulky electrolytic capacitors can be replaced by reliable small film capacitors which 

have a well-balanced performance among all other types of the dc-link capacitors to improve the 

reliability of the overall system [30]–[34]. 

2.5 Interaction Dynamics and Instabilities in Grid-Connected PV Systems 

In the literature, several works addressing the stability analysis of grid-connected PV systems have 

been conducted to enhance the dynamic system performance. Some performance issues regarding 

the dynamic interactions between the converter and the PV system on the dc-side and between the 

utility-grid and the converter on the ac-side have been discussed. Different passive and active 

damping techniques are presented on both sides to mitigate the instabilities by damping the 

dynamic system performance. 

2.5.1 AC-Side Interactions 

Dynamic interactions of the ac-side of VSC integrated into ac grid have been studied in the 

literature. The dynamic instability of VSC represented by the high current and voltage distortions 

caused by the interactions between converters and the passive components has been observed in 

the proposed systems in [35], [36]. In [37], [38], a sensitivity analysis has been conducted to 

investigate the influence of the system parameters on the dynamics performance of the three-phase 

grid-connected single-stage VSC-based PV system with a high order inductive-capacitive-
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inductive (LCL) filter. A similar system is investigated in [39] where a proposed two degree of 

freedom active damping technique is presented to mitigate the ac LCL filter resonance. Moreover, 

the resonance frequency of the LCL filter and the negative impact of the grid impedance on the 

dynamics of VSC controllers are investigated under weak grid scenarios in [37], [40]–[43]. 

Further, it has been shown in [44] that a large dc-link power injection of VSC with insufficient 

reactive power compensation can cause power instability in the ac-side of VSC grid-connected 

system. Furthermore, the impacts of control loops coupling on the dynamic stability of grid-

connected VSCs is revealed in [45]. 

The ac-side stability is considered for the grid-connected CSC-based PV systems in the 

literature. Active damping techniques for the ac filter resonance have been addressed for the CSC 

in some applications [46]–[48]. The control of a current-source converter (CSC) in the 

synchronous rotating reference frame is discussed in [46]. An active compensation technique is 

proposed to mitigate the undesirable resonant oscillations induced by the ac capacitor of the CSC 

with the utility-grid inductance. A similar active damping control method for the LC resonance in 

the CSC operating in low switching frequency is proposed in [47], where an active compensation 

feedback signal is fed from the ac capacitor voltage through a high-pass filter (HPF). In [48], 

multiple active damping methods for the ac-side LC filter resonance in CSCs are investigated 

where it is found that the derivative inductor current and the proportional capacitor voltage 

feedbacks can significantly damp the resonance by appropriately designing their gains. 

2.5.2 DC-Side Interactions 

The dc-side operating conditions of the PV grid-connected system should be considered in the 

dynamic system stability analysis to firmly preserve the system's performance. The optimal 

placement for solar energy plants and the influence of the variable atmospheric conditions, 

especially solar irradiance and temperature on the dynamic performance of the utility-grid has been 

studied in [49], [50]. The negative impact of the non-linearity of the generated PV power and high 

penetration effect of PV generators on the dynamic performance of the grid-utility VSC- and CSC- 

based systems have been mitigated by canceling the inherent nonlinearities and decoupling the 

dynamic interaction of the dc and ac sides in [51] and [52], respectively. In [52], the dynamic 

performance of both CSC- and VSC-based PV systems is compared where CSC-based systems 

present better over-current protection performance than VSC-based systems due to the regulation 
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of the input dc current in CSC-based systems. A nonlinear dc-link voltage controller for the grid-

connected VSC-based PV system is designed in [50], where the system nonlinearities are 

algebraically transferred by applying the state feedback linearization technique into autonomous 

nonlinear zero-dynamic stable system and reduced-order linear system controlled by a linear 

controller. The proposed technique is tested under variable solar irradiation levels. However, the 

complexity of implementing a nonlinear controller is not justified when the conventional 

proportional-and-integral (PI) controller can be implemented to improve the system performance. 

Several research works have been conducted to minimize the dc-link capacitance value in 

the field of motor drive and wind turbine applications in order to replace the low-reliability 

electrolytic capacitors by the small capacitance high-reliability film capacitors [9], [10]. It has been 

shown in these systems that right-half-plane (RHP) poles appear in their control dynamics when 

the dc-link capacitance is minimized. However, the influence of the dynamic impedance of PV 

generators on a grid-connected single- and two-stage VSC-based PV systems with minimized dc-

link capacitance has been solely addressed in [11]. It is shown in this study that the dynamic system 

is stable when the PV generator operates at constant voltage region (CVR) and maximum power 

point, whereas an RHP pole appears in the control dynamics of the PV systems when the PV 

generator operates at constant current region (CCR) which affect the system stability. This RHP 

pole is correlated to the bandwidth (BW) of the dc voltage controller, the dc-link capacitance, and 

the operating point of the PV generator (CCR, CVR, and MPP). As a result, an accurate selection 

of the dc-link capacitance and dc-side operating conditions are mandatory to preserve the system 

stability. 

2.6 Eigenvalues- and Impedance-Based Stability Analysis 

This section introduces a background of the analytical methods used to study the challenging 

interaction dynamic problems and stability issues in this thesis. The eigenvalues and impedance 

analysis of the small-signal model of grid-connected VSC-based PV system in the d-q reference 

frame, including root-locus, Bode and Nyquist impedance ratio criterion, are addressed in [53]–

[55]. A brief overview of existing approaches for defining a state variable participation factor in 

mode to analyze power system stability is provided in [56]. 
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2.6.1 Nyquist Impedance Ratio Criterion 

The grid-connected VSC-based PV system is highly nonlinear, a small-signal state-space model is 

developed, and then the required impedances can be obtained as a transfer functions that depend 

on the control and physical parameters of the associated system as shown throughout this thesis. 

The ratio between the source output impedance and the load input impedance around an 

interconnection point must satisfy the Nyquist stability criterion to ensure the overall system 

stability. At the interconnection point, the equivalent impedance representation of a voltage source 

is represented by a Thevenin equivalent circuit with a voltage source (𝑉𝑠(𝑠)) and a source output 

impedance (𝑍𝑠(𝑠)) while the equivalent input impedance representation of the integrated load is 

defined as (𝑍𝑙(𝑠)). As a result, the equivalent circuit of the overall system is represented as shown 

in Figure 2.2. 

 

Figure 2.2: Impedance representation of integrated voltage source-load system. 

The voltage response at the interconnection point could be given as in (2.2) where 

(1 + 𝑍𝑠(𝑠) 𝑍𝑙(𝑠)⁄ )−1 represents a closed-loop system with a unity forward gain and negative 

feedback of the ratio (𝑍𝑠(𝑠) 𝑍𝑙(𝑠)⁄ ). It is clearly shown that the stability of the integrated systems 

is maintained if the ratio (𝑍𝑠(𝑠) 𝑍𝑙(𝑠)⁄ ) satisfies the Nyquist stability criterion. In other words, 

𝑍𝑠(𝑠) should be less than 𝑍𝑙(𝑠) in the whole frequency domain range. 

                                                         𝑉𝑙(𝑠) = (1 +
𝑍𝑠(𝑠)

𝑍𝑙(𝑠)
)

−1

𝑉𝑠(𝑠)                                                        (2.2) 

A similar analysis has been applied to the current source integrated with a load system in 

[54]. It has been concluded that the stability requirements for VSC is opposite to that for CSC, 

where voltage source impedance is required to be low, and the source impedance of a current 

source is ideally infinity. 

Voltage Source Load
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The unstable systems can be re-stabilized by reshaping the source- or load-side impedance 

to avoid undesirable dynamic interactions on the whole frequency domain range. The reshaping 

can be achieved by using passive elements or active compensators to modify the load- or source-

side characteristics and satisfy load/source Nyquist stability criterion [57]. 

2.6.2 Participation Factor Analysis 

 Due to the complex and unpredictable nature of modern distribution power systems that consist 

of hundreds of generators connected with thousands of power lines, hundreds of load centers, and 

complex physical process problems due to parameter uncertainty, it is so difficult to simulate and 

analyze the stability of such power systems [56]. Selective Modal Analysis (SMA), which consists 

of eigenvalues and participation factors, is the most modern method recently used to study power 

system stability [58]. 

Participation factor (𝑃𝑗
𝑘), as well-known today, is used to identify the relationships among 

the state variables and eigenmodes by measuring the participation of the state variables (𝑘) in the 

eigenmodes (𝑗), and vice versa [56]. Participation factor is developed to calculate the state 

variables participation in the system eigenmodes for the first time in [58], as given in (2.3), and is 

defined by the left-right eigenvectors multiplication. The concept of participation factor is then 

divided into two different definitions (state-in-mode and mode-in-states) [59]. In [59], the authors 

show that formula (2.3) is inappropriate and invalid for systems with real eigenvalue cases. As a 

result, a new formula for calculating state variables participation in the system eigenmodes is 

proposed for accurate calculations of real eigenvalues cases as given in (2.4). However, 

incorrectness and inaccuracy of formula (2.4) for complex eigenvalues cases have been proved in 

[56] where a new validated approach to state-in-mode participation factor for both real and 

complex eigenvalues cases is proposed and defined as given in (2.5). 

                                                                         𝑃𝑗
𝑘 = 𝐿𝑗

𝑘𝑅𝑗
𝑘                                                                         (2.3) 

                                                           𝑃𝑗
𝑘 =

[𝑅𝑒(𝐿𝑗
𝑘)]

2

𝑅𝑒(𝐿𝑗) ∗ (𝑅𝑒(𝐿𝑗))
𝑇                                                            (2.4) 

                                                                       𝑃𝑗
𝑘 =

|𝐿𝑗
𝑘|
2

∑ (|𝐿𝑗
𝑘|
2
)𝑘

                                                                      (2.5)  
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Chapter 3 

Modeling and Control of the Grid-Connected Voltage-Source 

Converter-Based Photovoltaic System 

3.1 Introduction 

This chapter investigates the interconnection of VSCs to a utility-grid using the conventional 

vector control in the rotating reference frame (RRF). A comprehensive analysis of the modeling 

and control of grid-connected VSC converter is presented considering all control loops. The PV 

dynamic impedance is identified under different PV operation regions. A large-signal model is 

built to validate the analytical results of the developed small-signal model. 

3.2 Power Circuit Model of the Grid-Connected PV System 

Centralized voltage-source converters shown in Figure 3.1 are usually used to interface large PV 

power plants to the host grid [4]. In the following sections, the dynamic model of the ac- and dc-

sides are provided. 

 

Figure 3.1: Vector-controlled three-phase single-stage grid-connected PV inverter. 

As shown in Figure 3.1, the grid-connected PV array is interfaced by a three-phase two-

level VSC consisting of six cells; each comprises an insulated-gate-bipolar transistor (IGBT) in 

parallel with a freewheeling diode. The transfer of energy from the PV generator to the utility-grid 

is achieved by the VSC. The dc-side of the VSC is interfaced by a capacitor to maintain the dc-
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link voltage regulated. A filter is directly connected to the VSC terminals to filter out the switching 

harmonics in the ac current and voltage. 

Vector control loops of the grid-connected PV-VSC system are briefly presented in Figure 

3.1. MPPT is used to extract maximum power from PV generators. The phase-locked-loop is used 

to synchronize the VSC to the grid and generate the signals in the d-q converter frame. The outer 

dc-link and ac voltage control loops are used to generate the reference currents to be used by the 

inner current control loop. The VSC controllers are discussed in detail in Section 3.3. 

3.2.1 AC-Side Circuit Model 

The ac-side of grid-connected VSC is shown in Figure 3.1; the grid is modeled as a voltage source 

and an impedance. The grid impedance is defined by the short-circuit-ratio (𝑆𝐶𝑅) and the 

reactance to resistance ratio (𝑋 𝑅⁄ ). The low-pass filter (LPF) is used to attenuate the current and 

voltage harmonic components at the ac-side of the VSC. The step-up transformer is generally 

included in the grid-connected PV systems to match the terminal ac voltage of the LC-filter with 

the nominal grid voltage at the point of common coupling (PCC). 

The dynamic equations of the LC-filter and the grid impedance integrated with the 

transformer are investigated in the following subsections in the phasor-domain. 

a) Utility-Grid Interface 

As shown in Figure 3.1, the grid is modeled as a voltage source and impedance to represent the 

grid stiffness. The grid-impedance comprises a large inductive part (𝐿𝑔) in series with the 

equivalent resistance of the line (𝑅𝑔) represented by the short-circuit-ratio (𝑆𝐶𝑅 =

(𝑉𝐴)𝑟𝑎𝑡𝑒𝑑 (𝑉𝐴)𝑠𝑐⁄ ) and the reactance to resistance ratio (𝑋 𝑅⁄ ). The values of 𝐿𝑔 and 𝑅𝑔 are 

obtained according to (3.1) and (3.2). 

                                                                     𝐿𝑔 =
𝑣𝑔
2

𝜔𝑔(𝑉𝐴)𝑠𝑐
                                                                    (3.1) 

                                                                         𝑅𝑔 =
𝜔𝑔𝐿𝑔

𝑋 𝑅⁄
                                                                        (3.2) 

The dynamic equation of the grid-impedance is: 

                                                           𝐿𝑔
𝑑𝑖𝑔

𝑑𝑡
 + 𝑅𝑔𝑖𝑔 = 𝑣𝑠 − 𝑣𝑔                                                            (3.3) 

where (𝑉𝐴)𝑠𝑐 and (𝑉𝐴)𝑟𝑎𝑡𝑒𝑑 are the short-circuit and rated capacity of the utility-grid in VA, 
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respectively; 𝑣𝑔 and 𝑖𝑔 are the grid voltage and current, respectively; 𝑣𝑠 is the transformer 

secondary voltage, whereas 𝜔𝑔 is the angular frequency of the utility-grid in rad/s. 

b) Step-Up Transformer 

As shown in Figure 3.1, the step-up transformer is used to match the terminal ac voltage of the ac-

filter with the nominal grid voltage at the point of common coupling. Figure 3.2a represents the 

equivalent circuit of the exact model of the step-up transformer. The transformer can be referred 

to the primary-side as in Figure 3.2b to integrate its dynamic with the ac-filter, or it can be referred 

to the secondary-side as in Figure 3.2c to integrate its dynamic with the utility-grid impedance 

which is the applied case in this research study as shown in Figure 3.3. 

 

(a) 

 

(b) 

 

(c) 

Figure 3.2: Transformer equivalent circuit. (a) Exact model. (b) Equivalent circuit referred to the primary side. (c) 

Equivalent circuit referred to the secondary side. 
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𝐿𝑝 and 𝐿𝑠 are the primary and secondary inductances, respectively; 𝑅𝑝 and 𝑅𝑠 are the primary and 

secondary resistances, respectively. 𝐿𝑇𝑅 = (𝐿𝑠 +
𝐿𝑝

𝑁2
) and 𝑅𝑇𝑅 = (𝑅𝑠 +

𝑅𝑝

𝑁2
) are the equivalent 

inductance and resistance referred to the secondary-side, respectively; 𝑖𝑝 and 𝑖𝑠 are the primary 

and secondary currents; and 𝑣𝑝 is the transformer primary voltage. 

 

Figure 3.3: The equivalent circuit of the grid-impedance and transformer referred to the secondary side. 

The dynamic equation of the transformer circuit integrated with the grid-impedance becomes: 

                                                          𝐿𝑇
𝑑𝑖𝑔

𝑑𝑡
 + 𝑅𝑇𝑖𝑔 =

1

𝑁
𝑣 − 𝑣𝑔                                                          (3.4) 

where 𝐿𝑇 = 𝐿𝑇𝑅 + 𝐿𝑔 and 𝑅𝑇 = 𝑅𝑇𝑅 + 𝑅𝑔 are the total impedance of the step-up transformer and 

the utility-grid. 

c) AC-Filter 

The three-phase low-pass filter is essential for the connection of the VSC to the utility-grid and is 

used to attenuate the current and voltage harmonic components at the ac-side of the VSC and is 

commonly selected as LC type for its simplicity and economy [4]. The dynamic equations of the 

filter inductance and capacitance are as follows: 

                                                               𝐿𝑓
𝑑𝑖

𝑑𝑡
 + 𝑅𝑓𝑖 = 𝑣𝑖 − 𝑣                                                               (3.5) 

                                                                    𝐶𝑓
𝑑𝑣

𝑑𝑡
= 𝑖 −

1

𝑁
𝑖𝑔                                                                    (3.6) 

where 𝑣𝑖 and 𝑖 are the voltage and current of the ac terminal of VSC; and 𝑅𝑓, 𝐿𝑓, and 𝐶𝑓 are the 

resistance, inductance and capacitance of the ac-filter, respectively. 

3.2.2 DC-Side Circuit Model 

The dc-side of the grid-connected VSC-based PV system is shown in Figure 3.1. The dc-cable is 
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used to connect the PV farms to the grid-connected VSC system, whereas the PV plant is the main 

dc-source in the system, which generates the delivered power to the utility grid. 

a) DC-Link Capacitor 

Capacitors are widely used for dc links in the applications of the power electronic converters to 

balance the instantaneous power difference between the input source and output load [5]. The dc-

link capacitance (𝐶𝑑𝑐) is functioned as a filter to regulate the dc-link voltage (𝑉𝑑𝑐) to the desired 

value in order to minimize voltage variation in the dc link and achieve the maximum generated 

power from the PV plant. The dynamic equation of the dc-link capacitor is given as follows: 

                                                          
𝑑

𝑑𝑡
(
1

2
𝐶𝑑𝑐𝑉𝑑𝑐

2 ) = 𝑃𝑒𝑥𝑡 − 𝑃𝑑𝑐                                                           (3.7) 

where 𝑃𝑒𝑥𝑡 is the incoming PV power; 𝑃𝑑𝑐 is the approximated injected power (𝑃𝑖𝑛𝑣) to the ac-

side assuming a lossless power converter; 𝐶𝑑𝑐 is the dc-link capacitor and its nominal value is 

designed at 5000 μF [4]. 

b) DC Transmission Cables 

The dc cables are used to transmit the generated PV power to the grid-connected VSC system. the 

dynamic model of the dc lines is modeled as follows: 

                                                       𝐿𝑑𝑐
𝑑𝐼𝑝𝑣

𝑑𝑡
+ 𝑅𝑑𝑐𝐼𝑝𝑣 = 𝑉𝑝𝑣 − 𝑉𝑑𝑐                                                       (3.8) 

where 𝑅𝑑𝑐 and 𝐿𝑑𝑐 are the resistance and inductance of the dc-cable, respectively; and their values 

are designed at [60]. 

c) PV Generator 

The main building block of PV panels is the PV cell. Figure 3.4 shows the single-diode circuit 

representation of a PV generator in which multiple series-connected PV cells, denoted by the 

number 𝑛𝑠, are stacked together to form a PV module. To increase the terminal voltage (𝑉𝑝𝑣) of 

the PV generators, several PV modules, denoted by the number 𝑁𝑠, are connected in series to form 

the PV string. To increase the power rating (𝑃𝑝𝑣) of the PV generator, many PV strings, denoted 

by the number 𝑁𝑝, are connected in parallel to form a PV array [18]. At the level of one PV cell, 

the solar illumination (𝐼𝑖𝑟𝑟) excites the electronics to typically generate 1.0 − 2.0 W of electrical 
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power [4]. The PV generated current (𝐼𝑝ℎ) is dependent on the solar illumination level (𝐼𝑖𝑟𝑟), and 

the PV temperature level (𝑇) as follows: 

                                                   𝐼𝑝ℎ = (𝐼𝑖𝑟𝑟 𝐼𝑖𝑟𝑟
∗⁄ )[𝐼𝑠𝑐 + 𝛼𝑖(𝑇 − 𝑇

∗)]                                                   (3.9) 

where 𝐼𝑖𝑟𝑟
∗  is the reference illumination level in W m2⁄ ; 𝑇∗ is the reference temperature in Kelvin; 

𝐼𝑠𝑐 is the short-circuit current of the PV cell in A; and 𝛼𝑖 is the temperature coefficient in A Kelvin⁄ . 

 

Figure 3.4: Cells, modules, and strings of the single-diode PV array. 

As shown in Figure 3.5, the relation between the diode current (𝐼𝐷) and voltage (𝑉𝐷) is 

governed by the non-linear Shockley diode model where 𝑉𝐷 is not directly measured and is 

represented in terms of 𝑉𝑝𝑣 and 𝐼𝑝𝑣 as follows: 

                                                         𝑉𝐷 = 𝑉𝑝𝑣 + (𝑁𝑠 𝑁𝑝⁄ )𝑅𝑠𝐼𝑝𝑣                                                           (3.10) 

                                                 𝐼𝑟𝑠 = 𝐼𝑟𝑠
∗ (

𝑇

𝑇∗
)
3

𝑒𝑥𝑝 {
𝑞. 𝐸𝑔

𝐴.𝐾
(
1

𝑇∗
−
1

𝑇
)}                                               (3.11) 

                                                  𝐼𝐷 = 𝐼𝑟𝑠 (𝑒𝑥𝑝 {
𝑞. 𝑉𝐷

𝑁𝑠. 𝑛𝑠. 𝐴. 𝑘. 𝑇
} − 1)                                                  (3.12) 

where 𝑅𝑠 is the equivalent series resistance of the PV module; 𝐼𝑟𝑠 and 𝐼𝑟𝑠
∗  are the reverse saturation 

current at the operating and reference temperatures in A, respectively; 𝑞 is the unit charge in 

Coulomb, 𝐾 is the Boltzmann’s constant in Joules/Kelvin; 𝐴 is the ideality factor, and 𝐸𝑔 is the 

band-gap energy of the PV cell which’s 1.1ev for the silicon material. 

As shown in Figure 3.5, the parasitic equivalent series resistance of the PV module (𝑅𝑠) is 

V
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considered in the PV model to represent the power losses, while the equivalent shunt resistance 

(𝑅𝑠ℎ) is considered to represent the effect of the leakage current due to the fabrication process. 

The terminal equivalent PV current (𝐼𝑝𝑣) can be represented as in (3.13), and the generated power 

of the PV system (𝑃𝑝𝑣 = 𝑉𝑝𝑣𝐼𝑝𝑣) is controlled by the MPPT algorithms to deliver the maximum 

power to the utility-grid [4]. 

                                         𝐼𝑝𝑣 = 𝑁𝑝𝐼𝑝ℎ − 𝑁𝑝𝐼𝐷 −
𝑉𝑝𝑣 + (𝑁𝑠 𝑁𝑝⁄ )𝑅𝑠𝐼𝑝𝑣

(𝑁𝑠 𝑁𝑝⁄ )𝑅𝑠ℎ
                                          (3.13) 

 

                               (a)                                                    (b)                                                               (c)  

Figure 3.5: Equivalent circuit representation of the PV generator. a) PV module. b) PV string. c) PV array. 

In this thesis, an array of the model “Mitsubishi Electric PV-UD190MF5” has been 

considered [61]. The nominal voltage and power for PV generator are designed at 1186 V and 1.5 

MW, respectively. This matches the rating conditions of the recent centralized power electronic 

converters in PV applications [62]. 

3.2.3 AC Power Circuit Dynamic Model in the Grid-Reference Frame 

As shown in section 3.3, the power circuit model of the grid-connected VSC should be represented 

in the (𝐷𝑄)-grid rotating reference frame, denoted by the superscript “g”, that rotating by the grid 

angular frequency (𝜔𝑔) to accurately study the dynamic stability of the system. The equations are 

represented in the grid-frame as follows: 

                                 𝐿𝑓
𝑑𝑖𝑑𝑞
𝑔

𝑑𝑡
 +  𝑗𝜔𝑔𝐿𝑓𝑖𝑑𝑞

𝑔
+ (𝑅𝑓 + 𝑟𝑜𝑛)𝑖𝑑𝑞

𝑔
= 𝑣𝑖𝑑𝑞

𝑔
− 𝑣𝑑𝑞

𝑔
                                   (3.14) 

                                    𝐿𝑇
𝑑𝑖𝑔𝑑𝑞
𝑔

𝑑𝑡
+  𝑗𝜔𝑔𝐿𝑇𝑖𝑔𝑑𝑞

𝑔
+ 𝑅𝑇𝑖𝑔𝑑𝑞

𝑔
=
1

𝑁
𝑣𝑑𝑞
𝑔
− 𝑣𝑔𝑑𝑞

𝑔
                                     (3.15) 

                                               𝐶𝑓
𝑑𝑣𝑑𝑞

𝑔

𝑑𝑡
+  𝑗𝜔𝑔𝐶𝑓𝑣𝑑𝑞

𝑔
= 𝑖𝑑𝑞

𝑔
−
1

𝑁
𝑖𝑔𝑑𝑞
𝑔
                                                 (3.16) 
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3.2.4 DC Power Circuit Dynamic Model 

The dynamic equations of the dc-link capacitance, dc-lines, and the PV generator model are 

investigated in the following subsections. 

a) DC-Link Dynamic 

The injected real power (𝑃𝑑𝑐 ≈ 𝑃𝑖𝑛𝑣) to the ac-side in (3.7) could be implemented as in (3.17) or 

it could be implemented as in (3.18) to be represented in terms of the PCC-real power control 

input (𝑃𝑝𝑐𝑐) and the dropped power in the ac-filter (𝑃𝑅𝑓) and (𝑃𝐿𝑓) as follows: 

                                        𝑃𝑖𝑛𝑣 = 𝑅𝑒 {
3

2
𝑣𝑖⃗⃗⃗  (𝑡)𝑖 

∗(𝑡)} = 1.5(𝑣𝑖𝑑
𝑔
𝑖𝑑
𝑔
+ 𝑣𝑖𝑞

𝑔
𝑖𝑞
𝑔
)                                       (3.17) 

                                                          𝑃𝑖𝑛𝑣 = 𝑃𝑅𝑓 + 𝑃𝐿𝑓 + 𝑃𝑝𝑐𝑐                                                            (3.18a) 

                                   𝑃𝑅𝑓 = 𝑅𝑒 {
3

2
𝑅𝑓𝑖 (𝑡)𝑖 

∗(𝑡)} =
3

2
𝑅𝑓 ((𝑖𝑑

𝑔
)
2
+ (𝑖𝑞

𝑔
)
2
)                                   (3.18b) 

                                𝑃𝐿𝑓 = 𝑅𝑒 {
3

2
𝐿𝑓
𝑑𝑖 (𝑡)

𝑑𝑡
𝑖 ∗(𝑡)} =

3

2
𝐿𝑓 (𝑖𝑑

𝑔 𝑑𝑖𝑑
𝑔

𝑑𝑡
+ 𝑖𝑞

𝑔 𝑑𝑖𝑞
𝑔

𝑑𝑡
)                               (3.18c) 

                                       𝑃𝑝𝑐𝑐 = 𝑅𝑒 {
3

2
𝑣𝑖⃗⃗⃗  (𝑡)𝑖 

∗(𝑡)} = 1.5(𝑣𝑑
𝑔
𝑖𝑑
𝑔
+ 𝑣𝑞

𝑔
𝑖𝑞
𝑔
)                                       (3.18d) 

The dynamic equation of the dc-link capacitor for the accurate system could be given as in 

(3.19a) or (3.19b), whereas the dynamic equation of the accurate system is given in (3.19c). 

                                         
1

2
𝐶𝑑𝑐

𝑑

𝑑𝑡
𝑉𝑑𝑐
2 = 𝑉𝑑𝑐𝐼𝑝𝑣 − 1.5(𝑣𝑖𝑑

𝑔
𝑖𝑑
𝑔
+ 𝑣𝑖𝑞

𝑔
𝑖𝑞
𝑔
)                                         (3.19a) 

                             
1

2
𝐶𝑑𝑐

𝑑

𝑑𝑡
𝑉𝑑𝑐
2 = 𝑉𝑑𝑐𝐼𝑝𝑣 − 𝑃𝑅𝑓 − 𝑃𝐿𝑓 − 1.5(𝑣𝑑

𝑔
𝑖𝑑
𝑔
+ 𝑣𝑞

𝑔
𝑖𝑞
𝑔
)                              (3.19b) 

                                          
1

2
𝐶𝑑𝑐

𝑑

𝑑𝑡
𝑉𝑑𝑐
2 = 𝑉𝑑𝑐𝐼𝑝𝑣 − 1.5(𝑣𝑑

𝑔
𝑖𝑑
𝑔
+ 𝑣𝑞

𝑔
𝑖𝑞
𝑔
)                                         (3.19c) 

b) Dynamic Resistance of PV Array 

As shown in Figure 3.6a, the characteristic of the PV array mainly reflects the non-linear 

characteristics of the p-n junction diode. Figure 3.6b shows the dc and ac PV impedances, where 

the dc resistance is the PV static resistance (𝑟𝑠) defined as (𝑉𝑝𝑣/𝐼𝑝𝑣) and the ac resistance of the 

PV generator (𝑟𝑑) is the dynamic small-signal-resistance defined as the negative reciprocal of  

(𝑑𝐼𝑝𝑣/𝑑𝑉𝑝𝑣) [63] and is given as follows: 
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         𝑟𝑑 = −(
𝑑𝐼𝑝𝑣

𝑑𝑉𝑝𝑣
)

−1

=

1 +
𝑅𝑠
𝑅𝑠ℎ

+
𝐼𝑟𝑠. 𝑞. 𝑅𝑠
𝑛𝑠 . 𝐴. 𝑘. 𝑇∗

𝑒𝑥𝑝(
𝑞. (𝑉𝑝𝑣 + (

𝑁𝑠
𝑁𝑝
𝑅𝑠) 𝐼𝑝𝑣)

𝑁𝑠. 𝑛𝑠. 𝐴. 𝑘. 𝑇∗
)

1

(
𝑁𝑠
𝑁𝑝
𝑅𝑠ℎ)

+
𝑁𝑝. 𝐼𝑟𝑠. 𝑞

𝑁𝑠. 𝑛𝑠. 𝐴. 𝑘. 𝑇∗
𝑒𝑥𝑝(

𝑞. (𝑉𝑝𝑣 + (
𝑁𝑠
𝑁𝑝
𝑅𝑠) 𝐼𝑝𝑣)

𝑁𝑠. 𝑛𝑠. 𝐴. 𝑘. 𝑇∗
)

           (3.20) 

where the dynamic resistance at the MPP equals the static resistance at the same point as follows: 

                               𝑟𝑑|𝑀𝑃𝑃 = −(
𝑑𝐼𝑝𝑣

𝑑𝑉𝑝𝑣
)

−1

|

(𝑉𝑝𝑣
𝑚𝑎𝑥,𝐼𝑝𝑣

𝑚𝑎𝑥)

= (
𝑉𝑝𝑣

𝐼𝑝𝑣
)|
(𝑉𝑝𝑣
𝑚𝑎𝑥,𝐼𝑝𝑣

𝑚𝑎𝑥)

                                (3.21) 

The dynamic resistance of the PV generator can be defined in a deferent way as follows: 

                                                        𝑟𝑑 = (𝑟𝑑
𝐷 ∥

𝑁𝑠
𝑁𝑝
𝑅𝑠ℎ) +

𝑁𝑠
𝑁𝑝
𝑅𝑠                                                       (3.22) 

where 𝑟𝑑
𝐷 is the dynamic resistance of the p-n junction diode and is given as follows: 

                               𝑟𝑑
𝐷 = −

𝑁𝑠. 𝑛𝑠. 𝐴. 𝑘. 𝑇
∗

𝑁𝑝𝐼𝑟𝑠𝑞
𝑒𝑥𝑝(

−𝑞. (𝑉𝑝𝑣 + (
𝑁𝑠
𝑁𝑝
𝑅𝑠) 𝐼𝑝𝑣)

𝑁𝑠. 𝑛𝑠. 𝐴. 𝑘. 𝑇∗
)                               (3.23) 

Due to the high nonlinearity of the PV characteristics and the continuous perturbation in 

the operating points with time, PV generator should be implemented in terms of its dynamic 

resistance to accurately study the dynamic performance at different certain operating conditions. 

The dynamic model of the dc lines and PV generator are modeled as follows: 

                                                   𝐿𝑑𝑐
𝑑𝐼𝑝𝑣

𝑑𝑡
+ 𝑅𝑑𝑐𝐼𝑝𝑣 = 𝑟𝑑𝐼𝑝𝑣 − 𝑉𝑑𝑐                                                     (3.24) 
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Figure 3.6: PV array at different solar irradiance levels. (a) 𝑃𝑝𝑣 − 𝑉𝑝𝑣  and 𝐼𝑝𝑣 − 𝑉𝑝𝑣 characteristics. (b) Dynamic and 

static PV impedances. 

3.3 Conventional Vector Control of the Grid-Connected Voltage-Source 

Converter-Based Photovoltaic System 

Figure 3.7 shows the control structure of the VSC in the synchronous rotating d-q reference frame. 

The phase-locked-loop generates the synchronization angle, which is used to transform signals 

between the grid-frame and the converter-frame. The squared value of the measured dc-link 

voltage (𝑉𝑑𝑐
2 ) is compared to the reference value (𝑉𝑑𝑐

∗ 2) to process the error by a PI dc voltage 

controller (𝐺𝑣𝑑𝑐(𝑠)), which determines the 𝑑-axis component of the reference value of the injected 
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ac current (𝑖𝑑
∗). The 𝑑-axis component of the measured PCC-voltage (𝑣𝑑) is compared to the 

reference value (𝑣𝑑
∗) to process the error by a PI ac voltage controller (𝐺𝑣𝑎𝑐(𝑠)), which determines 

the 𝑞-axis component of the reference value of the injected ac current (𝑖𝑞
∗). However, the 𝑞-axis 

component (𝑖𝑞
∗) could be set to zero to have a unity power factor in some cases. The PI ac current 

controller (𝐺𝑖(𝑠)) in both d-q channels regulates the corresponding measured values to follow 

their references. The control loops of the grid-connected VSC are modeled in the following 

subsections. 

 

Figure 3.7: Vector control of the grid-connected VSC. 

3.3.1 PLL Dynamics 

Vector control is characterized by the PLL to synchronize the VSC with the utility-grid. The 

detailed structure of the PLL is shown in Figure 3.7. The PCC voltage is decomposed into the D-

Q components in the synchronous reference frame (SRF). A proportional and integral controller 

(𝐺𝜀 = 𝑘𝑝
𝑝𝑙𝑙 + 𝑘𝑖

𝑝𝑙𝑙 𝑠⁄ ) is implemented in the PLL control loop to set the q-component of the PCC 

voltage (𝑣𝑞
𝑔

) to zero. The synchronization angle (𝜀) is generated by integrating the angular 

frequency (𝜔) and is used to transform the three-phase grid-frame signals, denoted by the 

superscript “g”, to the converter-frame, denoted by the superscript “c”, and vice versa [8]. Under 

transient conditions, the synchronization angle (𝜀 = 𝜀𝑐 − 𝜀𝑔) oscillates to resynchronize the 

converter-frame with the grid-frame and eventually becomes zero in steady-state conditions. 

                                                                   
𝑑𝜀

𝑑𝑡
=
𝐺𝜀𝑣𝑞

𝑐

𝑣𝑑
𝑜 + 𝜔𝑔                                                                  (3.25) 
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𝑑𝜀

𝑑𝑡
= 𝜔                                                                          (3.26) 

Referring to Figure 3.7, the measured quantities should be transformed and retransformed 

between the converter-frame and the grid-frame to accurately model the influence of the PLL on 

the system dynamics [64]. The frame transformation is mathematically modeled as 𝑓𝑑𝑞
𝑐 = 𝑒−𝑗𝜀𝑓𝑑𝑞

𝑔
 

where the PCC voltage and the VSC output current and voltage are given as follows: 

                                                      𝑣𝑑𝑞
𝑐 = [cos(𝜀) − 𝑗 sin(𝜀)]𝑣𝑑𝑞

𝑔
                                                      (3.27a) 

                                                       𝑖𝑑𝑞
𝑐 = [cos(𝜀) − 𝑗 sin(𝜀)]𝑖𝑑𝑞

𝑔
                                                      (3.27b) 

                                                     𝑣𝑖𝑑𝑞
𝑔
= [cos(𝜀) + 𝑗 sin(𝜀)]𝑣𝑖𝑑𝑞

𝑐                                                      (3.27c) 

Using (3.25) and (3.26), the open-loop transfer function of the PLL dynamics is ℓ𝑝𝑙𝑙(𝑠) =

�̂�𝑝𝑐𝑐(1 𝑣𝑑
𝑜⁄ )(𝐺𝜀 𝑠⁄ ), where �̂�𝑝𝑐𝑐 = 𝑣𝑑

𝑜 = 𝑣𝑝−𝑝
𝑟𝑚𝑠√2 3⁄  is the peak value of the PCC voltage. The 

phase angle of ℓ𝑝𝑙𝑙(𝑗𝜔) at low and high frequencies is −180𝑜 and −90𝑜, respectively. By selecting 

a proper phase margin (𝑃𝑀𝑝𝑙𝑙) and a bandwidth (𝜔𝑝𝑙𝑙) to be about one-fifth of the bandwidth of 

current control loop and lower than the grid frequency, the controller gains can be calculated as 

follows: 

                                                        𝑘𝑖
𝑝𝑙𝑙
=

𝜔𝑝𝑙𝑙
2

√1 + (tan(𝑃𝑀𝑝𝑙𝑙))
2
                                                        (3.28) 

                                                             𝑘𝑝
𝑝𝑙𝑙 =

𝑘𝑖
𝑝𝑙𝑙 tan(𝑃𝑀𝑝𝑙𝑙)

𝜔𝑝𝑙𝑙
                                                            (3.29) 

As shown in Figure 3.8, the selected phase margin (𝑃𝑀𝑝𝑙𝑙) and cut-off frequency (𝜔𝑝𝑙𝑙) 

of the PLL are 84.4° and 181 rad s⁄ , respectively. 
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Figure 3.8: Bode plot of the open-loop PLL controller. 

3.3.2 Inner Current Control 

From the current control loop in Figure 3.7, the output voltage (𝑣𝑖𝑑𝑞
𝑐 ) in the converter-frame is 

obtained to generate the modulating signal for the VSC. A PI controller (𝐺𝑖 = 𝑘𝑝
𝑖 + 𝑘𝑖

𝑖 𝑠⁄ ) is 

implemented in the current control loop to regulate the injected active and reactive power to the 

utility. The dynamic equation describing the d-q current controller is implemented as follows: 

                                             𝑣𝑖𝑑𝑞
𝑐 = 𝑣𝑑𝑞

𝑐 + 𝑗𝜔𝑐𝐿𝑓𝑖𝑑𝑞
𝑐 + 𝐺𝑖(𝑖𝑑𝑞

∗ − 𝑖𝑑𝑞
𝑐 )                                              (3.30) 

where 𝑗𝜔𝑐𝐿𝑓𝑖𝑑𝑞
𝑐  and 𝑣𝑑𝑞

𝑐  are the decupling and feedforward terms, respectively. 

Using (3.14), (3.30) and applying the frame transformation, the open-loop gain of the 

current control loop is ℓ𝑐𝑐(𝑠) = 𝐺𝑖 (𝐿𝑓𝑠 + (𝑅𝑓 + 𝑟𝑜𝑛))⁄ . By setting the phase margin (𝑃𝑀𝑖) at 

90𝑜, the controller gains can be calculated as follows: 

                                                                     𝑘𝑖
𝑖 =

𝑅𝑓 + 𝑟𝑜𝑛

𝜏𝑖
                                                                     (3.31) 

                                                                          𝑘𝑝
𝑖 =

𝐿𝑓

𝜏𝑖
                                                                           (3.32) 

where 𝜏𝑖 is the time constant of the closed current loop. For fast current control response, the 

bandwidth of the closed control loop (𝜔𝑖 = 1 𝜏𝑖⁄ ) is designed to be ten times smaller than the 
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switching frequency (𝜔𝑠𝑤 = 2𝜋𝑓𝑠𝑤) of the VSC [8]. 

As shown in Figure 3.9, the designed phase margin and bandwidth (1 𝜏𝑖⁄ ) of the closed-

loop current control are 90𝑜 and 1922.7 rad s⁄ , respectively. 

 

Figure 3.9: Bode plot of the open-loop current controller. 

3.3.3 DC-Link Voltage Control 

One of the main advantages of implementing the PLL in the vector control of VSC is the decoupled 

active and reactive power control [8]. As 𝑣𝑞 = 0, the active power injection (𝑃𝑖𝑛𝑣) is solely 

dependent on the active current component (𝑖𝑑). The dc-link voltage control bandwidth is designed 

with 10 − 20% of the bandwidth of the inner current controller. Therefore, the output of the dc-

link voltage controller is 𝑖𝑑
∗ = 𝑖𝑑. 

Referring to (3.19), the power difference between the delivered PV power 𝑃𝑒𝑥𝑡 = 𝑉𝑑𝑐𝐼𝑝𝑣 

and the injected power 𝑃𝑑𝑐 ≈ 𝑅𝑒𝑎𝑙{1.5𝑣𝑖𝑑𝑞𝑖𝑑𝑞
𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒

} to the utility-grid is balanced by controlling 

the rate of change of the energy in the dc-link capacitance. 

As shown in Figure 3.7, a PI controller (𝐺𝑣𝑑𝑐 = 𝑘𝑝
𝑣𝑑𝑐 + 𝑘𝑖

𝑣𝑑𝑐 𝑠⁄ ) is implemented in the dc-

link voltage control loop to regulate the squared value of the dc-link voltage (𝑉𝑑𝑐
2 ) to the squared 

reference value (𝑉𝑑𝑐
2 ∗) which is generated by the MPPT algorithm. In the literature, many different 
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MPPT methods have been introduced where the most widely used techniques are the perturb and 

observe (P&O), and incremental conductance (IC) [4]. More importantly, the dc-link voltage must 

satisfy the criteria 𝑉𝑑𝑐 ≥ 2𝑣𝑑
𝑜 when the conventional pulse-width-modulation (PWM) is employed 

and the criteria 𝑉𝑑𝑐 ≥ 1.74𝑣𝑑
𝑜 when PWM with third-harmonic injection is employed [8]. The 

dynamic equation describing the dc-link voltage controller is 

                                                     𝑖𝑑
∗ =

𝜂𝑃𝑒𝑥𝑡 − 𝐺𝑣𝑑𝑐(𝑉𝑑𝑐
2 ∗ − 𝑉𝑑𝑐

2 )

1.5𝑣𝑑
𝑜                                                      (3.33) 

where 𝜂 is a constant used to enable the feed-forward power compensation to reduce the 

nonlinearity effect of the PV generator. 

Considering a unity PCC voltage, a real power control response (𝑃𝑝𝑐𝑐 =
𝑃𝑝𝑐𝑐
∗

𝜏𝑖𝑠+1
), an 

instantaneous power of VSC interface reactors and using (3.19b) and (3.33), the accurate open-

loop gain of the dc-link voltage control loop is ℓ𝑣𝑑𝑐(𝑠) = (2𝐺𝑣𝑑𝑐(𝜏𝑝𝑠 + 1)) (𝐶𝑑𝑐𝑠(𝜏𝑖𝑠 + 1))⁄ , 

where 𝜏𝑝 = 2𝐿𝑑𝑐𝑃𝑝𝑣
𝑜 3𝑣𝑑

𝑜2⁄  is a positive time-constant given in terms of the operating points [8]. 

Note that ℓ𝑣𝑑𝑐(𝑠) has three poles; two at zero and one at (1 𝜏𝑖⁄ ). The phase angle of ℓ𝑣𝑑𝑐(𝑗𝜔) at 

low and high frequencies is −180𝑜 and −90𝑜, respectively. By selecting a proper phase margin 

(𝑃𝑀𝑣𝑑𝑐) and a crossover frequency (𝜔𝑣𝑑𝑐) to be about one-fifth of the bandwidth of current 

control loop [8], The dc-link voltage controller gains can be calculated as follows: 

                                         𝑘𝑖
𝑣𝑑𝑐 =

𝐶𝑑𝑐𝜔𝑣𝑑𝑐
2 √1 + (𝜔𝑣𝑑𝑐𝜏𝑖)2

2√1 + (tan(𝜃𝑣𝑑𝑐))2√1+ (𝜔𝑣𝑑𝑐𝜏𝑝)
2
                                       (3.34) 

                                                            𝑘𝑝
𝑣𝑑𝑐 =

𝑘𝑖
𝑣𝑑𝑐 tan(𝜃𝑣𝑑𝑐)

𝜔𝑣𝑑𝑐
                                                              (3.35) 

where 𝜃𝑣𝑑𝑐 is given by 𝜃𝑣𝑑𝑐 = 𝑃𝑀𝑣𝑑𝑐 + tan
−1(𝜔𝑣𝑑𝑐𝜏𝑖) − tan

−1(𝜔𝑣𝑑𝑐𝜏𝑝). 

Ignoring the instantaneous power of the VSC interface reactors, the simplified open-loop 

gain becomes ℓ𝑣𝑑𝑐(𝑠) = (2𝐺𝑣𝑑𝑐) (𝐶𝑑𝑐𝑠(𝜏𝑖𝑠 + 1))⁄ . The phase angle of ℓ𝑣𝑑𝑐(𝑗𝜔) at both low and 

high frequencies is −180𝑜, The phase margin of the simplified open-loop increases to the 

maximum value at a certain frequency (𝜔𝑣𝑑𝑐
𝑚𝑎𝑥 = √𝑘𝑖

𝑣𝑑𝑐 (𝜏𝑖𝑘𝑝
𝑣𝑑𝑐)⁄ ). As a result, the controller 

gains can be calculated at (𝜔𝑣𝑑𝑐
𝑚𝑎𝑥) as 
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                                            𝑘𝑖
𝑣𝑑𝑐 = √

𝐶𝑑𝑐
2(𝜔𝑣𝑑𝑐

𝑚𝑎𝑥)4(1 + (𝜏𝑖𝜔𝑣𝑑𝑐
𝑚𝑎𝑥)2)

4(1 + (1 (𝜏𝑖𝜔𝑣𝑑𝑐
𝑚𝑎𝑥)⁄ )2)

                                             (3.36) 

                                                                 𝑘𝑝
𝑣𝑑𝑐 =

𝑘𝑖
𝑣𝑑𝑐

𝜏𝑖(𝜔𝑣𝑑𝑐
𝑚𝑎𝑥)2

                                                                (3.37) 

VSC operates in the inverting mode where the real-power flow is between zero and 

maximum power delivered by the PV plant. In this study, 𝜏𝑝 is very small and insignificant. As a 

result, the proportional and integral gains have approximately the same values for both accurate 

and approximated dc-link voltage controllers at the same phase margin and cut-off frequency. 

To achieve the same proportional and integral gains given in Appendix A.3.1, the phase 

margin (𝑃𝑀𝑣𝑑𝑐) and cut-off frequency (𝜔𝑣𝑑𝑐) for both the accurate and approximated models in 

(3.34)-(3.35) and (3.36)-(3.37) should be designed at 85.8𝑜 , 193.8 rad s⁄  and 

78.6𝑜, 192.3 rad s⁄ , respectively, as shown in Figure 3.10, and Figure 3.11. 

 

Figure 3.10: Bode plot of the open-loop accurate dc-link voltage controller. 
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Figure 3.11: Bode plot of the open-loop approximated dc-link voltage controller. 

3.3.4 PCC Utility-Grid Voltage Control 

Similarly, as in the dc-link voltage control, the reactive power injection (𝑄𝑖𝑛𝑣) is determined by 

the reactive current component (𝑖𝑞) due to the implementation of the PLL. The ac-voltage 

controller bandwidth is designed with 10 − 20% of the bandwidth of the inner current controller. 

Therefore, the output of the ac-voltage controller is 𝑖𝑞
∗ = 𝑖𝑞 [8]. 

As shown in Figure 3.7, A PI controller (𝐺𝑣𝑎𝑐 = 𝑘𝑝
𝑣𝑎𝑐 + 𝑘𝑖

𝑣𝑎𝑐 𝑠⁄ ) is implemented in the ac 

voltage control loop to regulate the PCC voltage to unity by generating a reference q-component 

of the injected current (𝑖𝑞
∗) to maintain the reactive power. The dynamic equation of the ac voltage 

controller is given as follows: 

                                                              𝑖𝑞
∗ =

−𝐺𝑣𝑎𝑐(𝑣𝑑
∗ − 𝑣𝑑)

1.5𝑣𝑑
𝑜                                                               (3.38) 

The ac voltage controller is designed in a similar way as the design of the dc-link voltage 

controller. Considering the current control response and using (3.15) and (3.38), the open-loop 

transfer function of the ac voltage control loop becomes ℓ𝑣𝑎𝑐(𝑠) =

(2𝜔𝑔𝑁2𝐿𝑇 3𝑣𝑑
𝑜⁄ )(𝐺𝑣𝑎𝑐 (𝜏𝑖𝑠 + 1)⁄ ), the phase angle of ℓ𝑣𝑎𝑐(𝑗𝜔) at low and high frequencies is 
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−90𝑜. By selecting a proper phase margin (𝑃𝑀𝑣𝑎𝑐) and a crossover frequency (𝜔𝑣𝑎𝑐) to be about 

one-fifth of the bandwidth of current control loop, the ac-voltage controller gains can be calculated 

as follows: 

                                                𝑘𝑖
𝑣𝑎𝑐 =

3𝑣𝑑
𝑜𝜔𝑣𝑎𝑐√1 + (𝜔𝑣𝑎𝑐𝜏𝑖)2

2𝜔𝑜𝑁2𝐿𝑇√1 + (tan(𝜃𝑣𝑎𝑐))2
                                               (3.39) 

                                                             𝑘𝑝
𝑣𝑎𝑐 =

𝑘𝑖
𝑣𝑎𝑐 tan(𝜃𝑣𝑎𝑐)

𝜔𝑣𝑎𝑐
                                                             (3.40) 

where 𝜃𝑣𝑎𝑐 is given by 𝜃𝑣𝑎𝑐 = 𝑃𝑀𝑣𝑎𝑐 − 90 + tan
−1(𝜔𝑣𝑎𝑐𝜏𝑖). 

As shown in Figure 3.12, the designed phase margin (𝑃𝑀𝑣𝑎𝑐) and cut-off frequency (𝜔𝑣𝑎𝑐) 

of the ac voltage control open-loop are 86.4𝑜 and 130 rad s⁄ , respectively. 

 

Figure 3.12: Bode plot of the open-loop PCC voltage controller. 

3.4 Small-Signal Modeling and Analysis 

To study the dynamic stability of the grid-connected PV system, a detailed small-signal model has 

been developed by linearizing the nonlinear equations �̇� = 𝐹(𝑥(𝑡), 𝑢(𝑡)) in Sections 3.2 and 3.3. 

The linearized state-space model of the overall system is defined in Appendix A.3.3 and is given 

as follows: 
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∆�̇� = 𝐴∆𝑥 + 𝐵∆𝑢
∆𝑦 = 𝐶∆𝑥 + 𝐷∆𝑢

                                                                  (3.41) 

where 𝐴 = (𝜕𝐹(𝑥, 𝑢) 𝜕𝑥⁄ )|(𝑥,𝑢)=(𝑥𝑜,𝑢𝑜) is the system matrix; 𝐵 = (𝜕𝐹(𝑥, 𝑢) 𝜕𝑢⁄ )|(𝑥,𝑢)=(𝑥𝑜,𝑢𝑜) is 

the control matrix; 𝐶 is the output matrix; 𝐷 is the feed-forward matrix; and the perturbation 

variables ∆𝑥, ∆𝑢, and ∆𝑦 are the state, input, and output vectors, respectively. 

The resultant multiple-input multiple-output (MIMO) model in (3.41) consists of 14 state 

variables and five inputs where ∆𝑥 =

[∆𝑖𝑑
𝑔
  ∆𝑖𝑞

𝑔
 ∆𝑖𝑔𝑑

𝑔
  ∆𝑖𝑔𝑞

𝑔
  ∆𝑣𝑑

𝑔
  ∆𝑣𝑞

𝑔
  ∆𝜑𝑑

𝑖   ∆𝜑𝑞
𝑖   ∆𝜀  ∆𝜑𝜀

𝑝𝑙𝑙  𝜑𝑣
𝑎𝑐 ∆𝑉𝑑𝑐

2   ∆𝜑𝑣
𝑑𝑐 ∆𝐼𝑝𝑣]

𝑇
 and ∆𝑢 =

[∆𝑉𝑑𝑐
2 ∗ ∆𝑃𝑝𝑣 ∆𝑣𝑑

∗  ∆𝑣𝑔𝑑
𝑔
  ∆𝑣𝑔𝑞

𝑔
]
𝑇
. 

3.5 Evaluation Results 

A detailed nonlinear time-domain simulation model for the VSC-based PV system is developed 

within Matlab/Simulink® environment to evaluate the preceding theoretical analysis and validate 

the accuracy of the small-signal model. The complete model entities are built using both 

SimPowerSystem® and Simulink toolboxes. The VSC is simulated using the average-model-based 

blocks. The simulation type is discrete with a sample time of 50 μs, and the complete system 

parameters are shown in Appendix A.3.1. 

3.5.1 Large-Signal Non-Linear Models 

Two types of the non-linear time-domain simulation models are introduced to validate the 

analytical results. The first type is the Simulink large-signal model where the complete model is 

built using the SimPowerSystem® toolbox, the VSC is simulated using the average-model-based 

blocks or the switching-model-based blocks, and the simulation type could be continuous or 

discrete with a certain sampling time. The second type is the mathematical large-signal model, 

where the complete model is built by aggregating the nonlinear system equations using the 

Simulink toolbox. 

As shown in Figures 3.13, 3.14, and 3.15, the proportional gain of the dc-link voltage 

controller is decreased to produce an oscillatory and lightly damped response, and, therefore, the 

two non-linear models can be verified in order to use them to evaluate the theoretical analysis and 

validate the accuracy of the small-signal model. 
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Figure 3.13: The dc-link voltage of the large-signal model. 

 

Figure 3.14: d-axis current of the large-signal model. 
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Figure 3.15: d-axis PCC voltage of the large-signal model. 

3.5.2 Small-Signal Model Validation 

To evaluate the accuracy of the small-signal state-space model in (3.41), a perturbation with a 5% 

step increase in 𝑉𝑑𝑐 is applied under the steady-state condition at 𝑡 = 1s. To compare the linearized 

model with the actual model and validate the accuracy, the proportional gain of the dc-link voltage 

controller is decreased to increase the bandwidth of the dc-link voltage control loop, which in turn 

produce an oscillatory and lightly damped response, and, therefore, the model can be verified even 

in the presence of lightly damped oscillations. 

As shown in Figures 3.16, 3.17, and 3.18, The model accuracy is validated at two different 

conditions, where the dominant damped and lightly-damped eigenvalues of the small-signal model 

are 𝜆 ≈ −20 and 𝜆 ≈ −14 ± 𝑗57, respectively. 
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Figure 3.16: DC-link voltage response of the verified small-signal model at two different conditions. 

 

Figure 3.17: D-axis current response of the verified small-signal model at two different conditions. 
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Figure 3.18: D-axis PCC-voltage response of the verified small-signal model at two different conditions. 

3.5.3 Approximated and Accurate Models of the DC-Link Voltage Controller 

As discussed in section 3.3, the small-signal model can be modeled accurately or approximately 

based on the applied dc-link voltage controller and considering the instantaneous power of the ac-

filter in the linearized model. 

 As shown in Figures 3.19, and 3.20, the accurate model is selected in this study to 

accurately validate the analytical results. 
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Figure 3.19: DC-Link voltage response of the approximated model at lightly-damped condition. 

 

Figure 3.20: DC-Link voltage response of the accurate model at lightly-damped condition. 
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3.5.4 Dominant Eigenvalues 

As discussed in Chapter 2, the selective model analysis is used to study the power system dynamic 

stability using both eigenvalues and participation factor analysis. Eigenvalues of the linearized 

model are used to study the system stability, whereas the participation factor, which is defined by 

left-right eigenvectors multiplication is used to study the relationship between states and modes. 

The participation factor of k-states in j-modes is given in Section 2.6.2. 

As shown in Figures 3.16 and Table 3.1, the most dominant eigenmodes of damped and 

lightly- damped systems are influenced by the dc-link voltage state. 

Table 3.1: Participation Factor Analysis of the Damped and Lightly-Damped Systems. 

Eigenmodes of the 

Lightly-Damped System 

Influencing 

State(s)/ 

Controllers 

Eigenmodes of the 

Damped System 

Influencing 

State(s)/ 

Controllers 

λ1 = −2.7585E6 ∆𝐼𝑝𝑣 

DC-Cable 

λ1 = −2.7585E8 ∆𝐼𝑝𝑣 

DC-Cable 

λ2,3 = −80.3 ± 5415.9i ∆𝑖𝑔𝑑 , ∆𝑣𝑑 λ2,3 = −16.83 ± 5490i ∆𝑖𝑔𝑑 , ∆𝑣𝑑 

λ4,5 = −131 ± 4534.6i ∆𝑖𝑔𝑞 , ∆𝑣𝑞 λ4,5 = −107.1 ± 4562.4i ∆𝑖𝑔𝑞 , ∆𝑣𝑞 

λ6 = −1956.3 ∆𝑖𝑑 λ6 = −2185.2 ∆𝑖𝑑 

λ7 = −1636.1 ∆𝑖𝑞 λ7 = −1641.2 ∆𝑖𝑞 

λ8 = −216.9 ∆𝜀 

PLL-Controller 

λ8 = −252.6 ∆𝜀 

PLL-Controller 

λ9,10 = −14.06 ± 57.3i ∆𝜑𝑣
𝑑𝑐, ∆𝑉𝑑𝑐 DC-

Controller 

λ9 = −110.71 ∆𝜑𝑣
𝑑𝑐 

DC-Controller 

λ11 = −35.87 ∆𝜑𝑣
𝑎𝑐 

AC-Controller 

λ10 = −40.21 ∆𝜑𝑣
𝑎𝑐 

AC-Controller 

λ12 = −20 ∆𝜑𝑑
𝑖  / Current-

Controller 

λ11,12 = −20.46 ± 0.20i ∆𝜑𝜀
𝑝𝑙𝑙

, ∆𝑉𝑑𝑐 / 

PLL & DC-

Controller 
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λ13,14 = −19.8 ± 0.147i ∆𝜑𝜀
𝑝𝑙𝑙

, ∆𝜑𝑞
𝑖  / PLL 

& Current-

Controller 

λ13 = −20 ∆𝜑𝑑
𝑖  / 

Current-

Controller 

- - λ14 = −19.87 ∆𝜑𝜀
𝑝𝑙𝑙

, ∆𝜑𝑞
𝑖  /  

PLL & Current-

Controller 

3.6 Conclusion 

Comprehensive modeling and control of the grid-connected VSC system have been investigated. 

Moreover, the development of analytical expressions for systematic and accurate calculations of 

all VSC controllers’ gains have been introduced to easily determine the gains of the proportional 

and integral terms of each controller. Further, PV dynamic and static impedances are identified 

under all PV operation regions. In order to study the system stability and performance, a detailed 

small-signal model, mathematical and Simulink large-signal models are developed. Also, the 

simulation results of the three models have been compared and validated. 
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Chapter 4 

Assessment and Mitigation of Dynamic Interactions in Grid-

Connected PV-VSC Systems 

4.1 Introduction 

As discussed in Chapter 2, it is reported in the literature that, with a reduced dc-link capacitance, 

the VSC dynamics involve right-half plane poles in many applications. In the PV applications, the 

impact of the dynamic impedance of PV arrays on a grid-connected VSC with a reduced dc-link 

capacitance was solely addressed in [11]. 

In [11], The dynamic impedance of the PV generator is analyzed. Instabilities due to the 

RHP poles in the dc-link voltage control loop are investigated. The unstable behavior is expected 

in both single- and two-stage systems especially, with a reduced dc-link capacitance. An 

approximate expression for the minimum dc-link capacitance required to guarantee the stability is 

developed. This study reported that the dynamic stability of the dc-link voltage control could be 

affected when the PV generator operates in the constant current region. However, this effect is 

alleviated when the PV generator operates at the maximum power point or constant voltage region. 

The developed model in [11] does not consider the influence of the step-up transformer, dc-cables, 

the grid-stiffness, the phase-locked loop, and ac-voltage control dynamics. More importantly, there 

is no proposed solution or mitigation technique to enhance system stability and facilitate the 

integration of PV generators with reduced dc-link capacitance. 

Motivated by the preceding challenges, a comprehensive model is developed in this 

chapter. Moreover, a new, yet simple, and efficient compensator is introduced to overcome the 

dynamic instabilities due to the variable operating conditions, especially under minimized dc-link 

capacitance. 

4.2 Instabilities Due to PV and DC-link Interactions 

The unstable dynamic interaction between the PV generator and the dc-side of the VSC at different 

operating conditions is demonstrated using eigenvalues and impedance analysis. The PV system 

stability is preserved at the MPP and CVR of the 𝑉𝑝𝑣 − 𝑃𝑝𝑣 curve of PV array. On the contrary, the 

stability is violated in the CCR only when 𝐶𝑑𝑐 is reduced to values below the stability margin value 
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of the dc-link capacitance. The state-space model of the comprehensive system is developed in 

Appendix A.4.1. 

Figure 4.1 shows the eigenvalue analysis at the CCR with different values of the dc-link 

capacitance. The high-frequency eigenmode is migrated to the right-half-plane in the s-domain 

despite the robustness of the dc-link voltage controller [proportional and integral gains of the dc-

link voltage controller are changed accordingly to fix both of phase margin and bandwidth at the 

required values for stable operation]. 

The unstable performance in Figure 4.1 is reflected on the incremental impedance (∆𝑍𝑙(𝑠)) 

of the grid-connected VSC system. The source dynamic impedance (∆𝑍𝑠(𝑠)) can be found using 

(3.21) and (3.24). The location of the source and load impedances are shown in Figure 3.1. 

 

Figure 4.1: Eigenvalue analysis of the influence of the dc-link capacitance on the uncompensated system. 

∆𝑉𝑑𝑐 and ∆𝑉𝑑𝑐
2  are linearized as in (4.1a) and (4.1b), respectively. The identity 

(∆𝑉𝑑𝑐
2 ≈ 2𝑉𝑑𝑐

𝑜 ∆𝑉𝑑𝑐) can be obtained by substituting (4.1a) in (4.1b). As a result, the load 

impedance (∆𝑍𝑙(𝑠) = ∆𝑉𝑑𝑐 ∆𝐼𝑑𝑐⁄ ) can be found as shown in Appendix A.4.1. 

                                                                  𝑉𝑑𝑐 ≜ 𝑉𝑑𝑐
𝑜 + ∆𝑉𝑑𝑐                                                                  (4.1a) 

                                                               𝑉𝑑𝑐
2 ≜ (𝑉𝑑𝑐

𝑜 )2 + ∆𝑉𝑑𝑐
2                                                                (4.1b) 
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As shown in Figure 4.2, the uncompensated model is consistent with the results of the 

eigenvalue analysis in Figure 4.1, where the system stability is violated at a dc-link capacitance of 

0.77 p. u. under CCR operation. 

As shown in Table 4.1, the violation of the Nyquist criterion occurs at 5498.6 rad/s, which 

is clearly influenced by voltage controller states. 

 

Figure 4.2: Impedance analysis of the influence of the dc-link capacitance on the uncompensated system. 

The analysis showed that the unstable oscillation is not due to the resonance of LC on the 

dc-side, and the dc-line does not affect the system stability under any conditions. As shown in 

Table 4.1, the dc-line influences only the farthest eigenvalue in the left-half-plane (LHP) and has 

no significant effect on the unstable eigenmode. 

Table 4.1: Participation-Factor analysis of the uncompensated system under unstable operating conditions. 

Eigenmodes 
Influencing State(s)/Controllers 

λ1 = −1.2189E8 ∆𝐼𝑝𝑣 / DC-Cable 

λ2,3 = 64.8 ± 5498.6i ∆𝑉𝑑𝑐 / DC-Controller 

λ4,5 = −38.9 ± 4904.2i ∆𝑖𝑔𝑑 , ∆𝑖𝑔𝑞 , ∆𝑣𝑑  , ∆𝑣𝑞 
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λ6 = −2571.3 ∆𝑖𝑑 

λ7 = −1527.7 ∆𝑖𝑞 

λ8 = −276.6 ∆𝜀 / PLL-Controller 

λ9,10 = −53.7 ± 31.7i ∆𝜑𝑣
𝑎𝑐 / AC-Controller 

λ11,12 = −18.4 ± 1.9i ∆𝜑𝜀
𝑝𝑙𝑙, ∆𝜑𝑣

𝑑𝑐 / PLL- & DC- Controllers 

λ13 = −20 ∆𝜑𝑑
𝑖  / Current-Controller 

λ14 = −19.6 ∆𝜑𝑞
𝑖  / Current-Controller 

 

4.3 Active Stabilization of Grid-Connected VSC-PV System 

In this section, an active compensator is proposed to mitigate the instabilities of the grid-connected 

single-stage PV system as shown in Figure 4.3. 

 

Figure 4.3: Vector control schematic of the grid-connected VSC with compensated control loop. 

4.3.1 Proposed Active Compensator 

Assume that there is a series resistor (𝑅𝐶𝑑𝑐) with the dc-link capacitor, the dynamic power equation 

becomes:  

                                            𝐼𝑒𝑥𝑡 − 𝐼𝑑𝑐 = 𝐶𝑑𝑐
𝑑[𝑉𝑑𝑐 − 𝑅𝐶𝑑𝑐(𝐼𝑒𝑥𝑡 − 𝐼𝑑𝑐)]

𝑑𝑡
                                            (4.2) 

The role of passive damping effect in (4.2) can be actively emulated by modifying the d-

axis current reference from the dc-link voltage control loop in (3.33) as follows: 
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                                           𝑖𝑑
∗ |𝑡𝑜𝑡𝑎𝑙 =

𝜂𝑃𝑒𝑥𝑡 − 𝐺𝑣𝑑𝑐(𝑉𝑑𝑐
2 ∗ − 𝑉𝑑𝑐

2 )

1.5𝑣𝑑
𝑜 + 𝐼𝑑𝑚𝑝                                           (4.3) 

                                             𝐼𝑑𝑚𝑝 = 𝛼
𝐶𝑑𝑐𝑅𝐶𝑑𝑐𝑠

𝐶𝑑𝑐𝑅𝐶𝑑𝑐𝑠 + 1⏟        
𝐻(𝑠)

1

𝜏𝑠 + 1
(𝑠𝐶𝑑𝑐𝑉𝑑𝑐) ⏟          
𝐼𝐶𝑑𝑐

                                             (4.4) 

where 𝐼𝑑𝑚𝑝 is the added damping current; 𝛼 is a gain used to enhance the high-frequency 

attenuation; 𝐻(𝑠) is a high-pass filter with a time-constant equals 𝐶𝑑𝑐𝑅𝐶𝑑𝑐; and 𝐼𝐶𝑑𝑐 is the dc-link 

capacitor current which is constructed practically by filtering the derivative of dc-link voltage 

using a low-pass filter with a time constant (𝜏). As a result, the damping current can be obtained 

by applying the dc-link voltage to a double high-pass filter with a suitable cut-off frequency. 

Two more states are added to the model to stabilize the system. The influence of the 

proposed compensator on the dynamic response of the system is shown in Figures 4.4 and 4.5. As 

compared to the uncompensated  case, the  stability  margin  is increased by moving the 

eigenvalues to the left-half-plane, and the system is robustly damped with a dominant damping 

ratio 𝜆 ≈ −20 as in the normal operation when the dc-link capacitance is 1 p. u. 

 

Figure 4.4: Eigenvalue analysis of the influence of the dc-link capacitance on the compensated system. 
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Figure 4.5: Impedance analysis of the influence of the dc-link capacitance on the compensated system. 

4.3.2 Sensitivity Analysis 

As shown in Figure 4.6, the active compensator does not influence the dc-link voltage controller 

and the steady-state performance of the grid-connected VSC. Moreover, the proposed compensator 

enhances the transient response by mitigating the resonance frequency at 𝜔 ≈ 4860 rad/s, which 

is induced by the ac-filter. 
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Figure 4.6: Transfer function of the closed-loop dc-link voltage controller at 𝑐𝑑𝑐 = 1p. u. for both compensated and 

uncompensated systems. 

4.4 Evaluation Results 

A large-signal time-domain simulation model of the system under study in Figure is implemented 

under the Matlab/Simulink environment to evaluate the analytical results and validate the 

performance of the proposed active compensator. 

The complete model entities are built using the SimPowerSystem® toolbox. The VSC is 

simulated using average-model-based blocks. The simulation type is discrete with a sample time 

of 50 μs, and the complete system parameters are shown in Appendix A.4.2. 

4.4.1 Influence of Reduced DC-Link Capacitance 

Figure 4.7 shows the uncompensated response at different dc-link voltage levels under all PV 

operation regions and different dc-link capacitance values. The system operates in the CVR, MPP, 

and CCR at 𝑡 = 0 − 3 s, 𝑡 = 3 − 4 s, and 𝑡 = 4 − 7 s, respectively. 
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The dc-link voltage has significant high-frequency oscillations that affect the system 

dynamic stability when the system operates at the CCR and reduced dc-link capacitance values 

lower than 0.77 p. u. 

 

Figure 4.7: Uncompensated system response at different voltage levels and dc-link capacitance values. 
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4.4.2 Active Compensated Interaction 

The active compensated response using the outer loop compensator is shown in Figure 4.8. The 

dc-link voltage is highly damped with no overshoots at (𝑡 = 1.3 s) under CCR operation and lower 

dc-link capacitance values. 

 

Figure 4.8: Influence of added active compensation loop at 𝑡 = 1.3𝑠. under CCR operation. 

Figure 4.9 shows the compensated response at different dc-link voltage levels under all PV 

operation regions and different dc-link capacitance values. The system operates in the CVR, MPP, 

and CCR at 𝑡 = 0 − 3 s, 𝑡 = 3 − 4 s, and 𝑡 = 4 − 7 s, respectively. 
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Figure 4.9: Uncompensated system response at different voltage levels and dc-link capacitance values. 

4.4.3 Influence of the DC-Link Cable 

Figure 4.10 shows the dc-link voltage response of the uncompensated and compensated systems 

with no cables on the dc-side. It is clearly shown that the source of instabilities is not due to the 
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resonance at the dc-side, and they occur due to interactions between the dc-link capacitance and 

PV dynamic impedance. 

 

Figure 4.10: Compensated and uncompensated dc-link voltage responses at 𝐶𝑑𝑐 = 1 𝑝. 𝑢. due to dc cable influence. 

4.4.4 Operation Under Fault Conditions 

Due to the increased penetration levels of renewable resources, the fault ride-through capability is 

incorporated to guarantee a stable grid operation during grid fault conditions. 

Figure 4.11 investigates the low voltage ride-through capability of the compensated and 

uncompensated systems where the active compensator is applied under the CCR at 𝑡 = 1 s for the 

compensated system. The PCC is subjected to a single-line to ground fault for five cycles at 𝑡 =

1.5 s. Clearly, the system stability is preserved with the proposed compensator. 

Figure 4.12 shows the compensated dc-link voltage response under different dc-link 

capacitance values. The system operates in the CCR and is subjected to a single-line to ground 

fault for five cycles at 𝑡 = 4.5 s. 
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Figure 4.11: Compensated and uncompensated dc-link voltage response to a single-phase ground fault at t=1.5s for 5 

cycles. 
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Figure 4.12: Compensated dc-link voltage response to a single-phase ground fault at t=4.5s for 5 cycles. 

4.4.5 Uncertainties in DC-Link Capacitance 

As shown in Figure 4.13, the dc-link capacitance could vary by ±10% to ±20% from the nominal 

value due to aging, temperature, internal faults, etc. Due to parameter uncertainties, the system 

stability should be studied to ensure robust operating at different operating points and with reduced 

capacitance. 
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Figure 4.13: Uncompensated system for ±20% dc-link capacitance values due to aging. 

4.4.6 Sensitivity Results 

The influence of the proposed compensator on the dynamic and steady-state performance of the 

grid-connected VSC is investigated in this subsection. A unit step has been applied to the dc-link 

voltage at 𝑡 = 1 s, and the corresponding compensated versus uncompensated responses are 
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shown in Figure 4.14. It is clear that both responses have the same steady-state performance and 

share a similar rise time. Further, the ac-filter resonance is enhanced in the compensated system. 

 

Figure 4.14: Compensated and uncompensated dc-link voltage responses at 𝐶𝑑𝑐 = 1 𝑝. 𝑢. 

4.5 Conclusion 

This chapter has shown that a reduced dc-link capacitance affects the dynamic stability of the 

overall system due to interactions with the dynamic resistance of the PV array. As a result, a new 

simple compensator is proposed to stabilize the system with a reduced dc-link capacitance. Small-

signal stability analysis of the overall system is performed under different operating conditions. 

The proposed compensators have the following advantages: 1) it is simple yet effective and can be 

easily designed using linear analysis tools, 2) it does not affect the steady-state operation of the 

VSC grid-connected PV system, 3) it improves the damping performance of the dc-link voltage 

and provides a robust and stable performance at different operating conditions of the PV system, 

and 4) it facilitates successful low voltage ride-through at different operating conditions. 
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

This thesis has addressed the integration of PV-VSCs systems to the utility grid using a reduced 

dc-link capacitance. First, the controllers’ parameters have been accurately designed to preserve 

the system stability under a wide variation range of operating points. Then, small-signal analysis 

tools have been utilized to derive the equivalent incremental impedance models of the PV array 

and the interfacing VSC with reduced dc-link capacitance. Moreover, a new, simple, and active 

compensation method has been proposed to enhance the system performance by mitigating the 

dynamic instabilities. The compensated system is robustly damped and stabilized under different 

operating conditions. Time-domain nonlinear simulations are presented to validate the analytical 

results at different operating conditions. Furthermore, the large-signal LVRT performance has 

been investigated for both compensated and uncompensated systems. The compensated system 

reflects better damping following fault incidents.  

The proposed compensator features the following advantages: 1) it is linear and so can be 

designed easily using linear analysis tools such as root locus and Bode plots. 2) it is a low order 

compensator, and so it should not overload digital controllers once implemented. 3) no extra 

voltage or current sensors are needed for implementation. 4) it does not affect the steady-state 

performance. 
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5.2 Future Work 

In continuation of this work, the following research directions are suggested for future studies. 

1) Investigating the dynamic stability of the proposed system under different partial shading 

cases. Also, studying the partial shading effect on the PV dynamic impedance and the 

overall system stability under different operating conditions. 

2) Extending the PV circuit model to include other different types of the PV model (such as 

two- and three-diode models). Also, considering other components in the PV circuit model 

(such as resistance and inductance of the internal lines, diffusion capacitance, and dynamic 

impedance of the bypass and blocking diodes in the partial shading cases).   

3) Deriving an accurate formula to calculate the minimum dc-link capacitance, which is 

required to stabilize the system performance under all operating conditions. 

4) Investigating the dynamic interference between grid-connected VSC system and hybrid 

DG units. 
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APPENDICES 

Appendix A.3 

A.3.1 Simulation System Parameters 

The VSC grid-connected system parameters are: 

Utility-Grid: 𝑣𝑔 = 12.47 𝛫𝑉 , 𝜔𝑜 = 2𝜋(60) 𝑟𝑎𝑑/𝑠 , 𝑆𝐶𝑅 = 20 , 𝑋 𝑅⁄ = 10. 

Step-Up Transformer: 𝑁 = (0.48 𝐾𝑉 12.47 𝐾𝑉⁄ ) , 𝐿𝑝 = 122.23 𝜇𝐻 , 𝑅𝑝 = 4.608 𝑚𝛺 , 𝐿𝑠 =

27.499 𝑚𝐻 , 𝑅𝑠 = 1.0367 𝛺. 

AC-Filter and VSC Controllers: 𝑃 = 1.5 𝑀𝑊 , 𝑓𝑠𝑤 = 51 ∗ (60 𝐻𝑧) , 𝐿𝑓 = 100 𝜇𝐻 , 𝑅𝑓 =

2 𝑚𝛺 , 𝑟𝑜𝑛 = 1 𝑚𝛺 , 𝐶𝑓 = 369 𝜇𝐹 , 𝑘𝑝
𝑝𝑙𝑙 = 1.8014𝑒2 𝑉−1𝑠−1 , 𝑘𝑖

𝑝𝑙𝑙 = 3.1969𝑒3 𝑉−1𝑠−2 , 

𝑘𝑝
𝑖 = 0.1923 𝛺 , 𝑘𝑖

𝑖 = 3.8453 𝛺𝑠−1 , 𝑘𝑝
𝑣𝑑𝑐 = 0.4807 𝛺−1 , 𝑘𝑖

𝑣𝑑𝑐 = 9.2415 𝛺−1𝑠−1 , 𝑘𝑝
𝑣𝑎𝑐 =

71.8162 𝑉𝑎𝑟𝑉−1 , 𝑘𝑖
𝑣𝑎𝑐 = 1.9947𝑒6 𝑉𝑎𝑟𝑉−1𝑠−1. 

DC-Link: 𝐶𝑑𝑐 = 5000 𝜇𝐹. 

DC-Cable: 𝐿𝑑𝑐 = 0.34 𝜇𝐻 , 𝑅𝑑𝑐 = 0.125 𝑚𝛺. 

 

The PV module parameters of a model “Mitsubishi Electric PV-UD190MF5” are: 

Table A.3.1: Solar module parameters. 

𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔 Description Values 

𝑰𝒊𝒓𝒓
∗  PV module nominal illumination 1 𝐾𝑊/𝑚2 

𝑻∗ PV module nominal temperature 298 𝐾𝑒𝑙𝑣𝑖𝑛 

𝑹𝒔 Series resistance of a PV module 0.32376 𝛺 

𝑹𝒔𝒉 Shunt resistance of a PV module 236.4479 𝛺 

𝒏𝒔 Number of series-connected cells in 

a PV module 

50 

𝑰𝒑𝒉 PV module Light generated current 8.2413 𝐴 

𝑰𝒔𝒄 PV module short circuit current 8.23 𝐴 

𝑽𝒐𝒄 PV module open circuit voltage 30.8 𝑉 
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𝑰𝒎𝒂𝒙 PV module maximum current 7.71 𝐴 

𝑽𝒎𝒂𝒙 PV module maximum voltage 24.7 𝑉 

𝑷𝒎𝒂𝒙 PV module maximum power 190.437 𝑊 

𝑰𝒓𝒔
∗  PV module reference reverse 

saturation current 

7.6985𝐸 − 11 𝐴 

𝒌 Boltzmann constant  1.3806𝐸 − 23 𝐽𝑜𝑢𝑙𝑒𝑠/𝐾𝑒𝑙𝑣𝑖𝑛 

𝒒 Electron charge 1.6022𝐸 − 19 𝐶𝑜𝑢𝑙𝑜𝑚𝑏 

𝑽𝑻 Thermal voltage (𝐾𝑇/𝑞)  

𝑨 Ideality factor 0.94466 

𝑬𝒈 Bandgap energy for silicon 1.1 𝑒𝑉 

𝜶𝒊 Short-circuit current temperature 

coefficient 

0.038202 % °𝐶⁄  

𝜶𝒗 Open-circuit voltage temperature 

coefficient 

−0.32571 % °𝐶⁄  

 

A.3.2 Linearized State-Space Equations 

Using the same symbols of Figure 3.1 and Figure 3.7, the linearization of the non-linear 

equations in section 3.2 and section 3.3 is given as follows: 

𝑬𝒒𝒖 (𝟑. 𝟏𝟒) Linearized Equation of the VSC AC-Filter 

[
∆𝑖𝑑
𝑔

∆𝑖𝑞
𝑔]
̇
=

[
 
 
 
 
−𝑅𝑓

𝐿𝑓
𝜔𝑜

−𝜔𝑜
−𝑅𝑓

𝐿𝑓 ]
 
 
 
 

⏞        
𝐴1

[
∆𝑖𝑑
𝑔

∆𝑖𝑞
𝑔] +

[
 
 
 
 
1

𝐿𝑓
0

0
1

𝐿𝑓]
 
 
 
 

⏞    
𝐵1

[
∆𝑣𝑖𝑑

𝑔

∆𝑣𝑖𝑞
𝑔 ] +

[
 
 
 
 
−1

𝐿𝑓
0

0
−1

𝐿𝑓 ]
 
 
 
 

⏞      
−𝐵1

[
∆𝑣𝑑

𝑔

∆𝑣𝑞
𝑔] + [

𝑖𝑞
𝑜

−𝑖𝑑
𝑜]

⏞  
𝐶1

[∆𝜔𝑔] 

𝑬𝒒𝒖 (𝟑. 𝟏𝟓) Linearized Equation of Step-Up Transformer and Grid Impedance 

[
∆𝑖𝑔𝑑
𝑔

∆𝑖𝑔𝑞
𝑔 ]

̇

=

[
 
 
 
−𝑅𝑇
𝐿𝑇

𝜔𝑜

−𝜔𝑜
−𝑅𝑇
𝐿𝑇 ]

 
 
 

⏞        
𝐴2

[
∆𝑖𝑔𝑑
𝑔

∆𝑖𝑔𝑞
𝑔 ] +

1

𝑁

[
 
 
 
1

𝐿𝑇
0

0
1

𝐿𝑇]
 
 
 

⏞      
𝐵2

[
∆𝑣𝑑

𝑔

∆𝑣𝑞
𝑔] +

[
 
 
 
−1

𝐿𝑇
0

0
−1

𝐿𝑇 ]
 
 
 

⏞      
−𝐵2

[
∆𝑣𝑔𝑑

𝑔

∆𝑣𝑔𝑞
𝑔 ] + [

𝑖𝑔𝑞
𝑜

−𝑖𝑔𝑑
𝑜 ]

⏞    
𝐶2

[∆𝜔𝑔] 
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𝑬𝒒𝒖 (𝟑. 𝟏𝟔) Linearized Equation of the Capacitor at the Point of Common Coupling 

[
∆𝑣𝑑

𝑔

∆𝑣𝑞
𝑔]
̇
= [

0 𝜔𝑜

−𝜔𝑜 0
]

⏞        
𝐴3

[
∆𝑣𝑑

𝑔

∆𝑣𝑞
𝑔] +

[
 
 
 
 
1

𝐶𝑓
0

0
1

𝐶𝑓]
 
 
 
 

⏞    
𝐵3

[
∆𝑖𝑑
𝑔

∆𝑖𝑞
𝑔] +

1

𝑁

[
 
 
 
 
−1

𝐶𝑓
0

0
−1

𝐶𝑓 ]
 
 
 
 

⏞      
−𝐵3

[
∆𝑖𝑔𝑑
𝑔

∆𝑖𝑔𝑞
𝑔 ] + [

𝑣𝑞
𝑜

−𝑣𝑑
𝑜]

⏞  
𝐶3

[∆𝜔𝑔] 

𝑬𝒒𝒖 (𝟑. 𝟑𝟎) Linearized Equations of the VSC Current Controller 

[
∆𝑣𝑖𝑑

𝑐

∆𝑣𝑖𝑞
𝑐 ] = [

0 −𝜔𝑜𝐿𝑓
𝜔𝑜𝐿𝑓 0

]
⏞          

𝐴4

[
∆𝑖𝑑
𝑐

∆𝑖𝑞
𝑐] + [

∆𝜑𝑑
𝑖

∆𝜑𝑞
𝑖 ] + [

∆𝑣𝑑
𝑐

∆𝑣𝑞
𝑐] + [

𝑘𝑝
𝑖 0

0 𝑘𝑝
𝑖
]

⏟      
𝐵4

[
∆𝑖𝑑
∗

∆𝑖𝑞
∗] + [

−𝑘𝑝
𝑖 0

0 −𝑘𝑝
𝑖
]

⏟        
−𝐵4

[
∆𝑖𝑑
𝑐

∆𝑖𝑞
𝑐]

+ [
−𝐿𝑓𝑖𝑞

𝑜

𝐿𝑓𝑖𝑑
𝑜 ]

⏟    
𝐶4

[∆𝜔𝑐] 

[
∆𝜑𝑑

𝑖

∆𝜑𝑞
𝑖 ]
̇
= [
𝑘𝑖
𝑖 0

0 𝑘𝑖
𝑖
]

⏞    
𝐴5

[
∆𝑖𝑑
∗

∆𝑖𝑞
∗] + [

−𝑘𝑖
𝑖 0

0 −𝑘𝑖
𝑖
]

⏞        
−𝐴5

[
∆𝑖𝑑
𝑐

∆𝑖𝑞
𝑐] 

𝑬𝒒𝒖 (𝟑. 𝟐𝟓) 𝐚𝐧𝐝 𝑬𝒒𝒖 (𝟑. 𝟐𝟔) Linearized Equations of the Phase-Locked Loop 

[
∆𝜀

∆𝜑𝜀
𝑝𝑙𝑙]
̇

= [
0 1
0 0

]
⏞    
𝐴6

[
∆𝜀

∆𝜑𝜀
𝑝𝑙𝑙] +

[
 
 
 
 0

𝑘𝑝
𝑝𝑙𝑙

𝑣𝑑
𝑜

0
𝑘𝑖
𝑝𝑙𝑙

𝑣𝑑
𝑜 ]
 
 
 
 

⏞      
𝐵6

[
∆𝑣𝑑

𝑐

∆𝑣𝑞
𝑐] 

∆𝜔 = [0 1]⏞    
𝐶6

[
∆𝜀

∆𝜑𝜀
𝑝𝑙𝑙] + [0

𝑘𝑝
𝑝𝑙𝑙

𝑣𝑑
𝑜
]

⏞      
𝐷6

[
∆𝑣𝑑

𝑐

∆𝑣𝑞
𝑐] 

𝑬𝒒𝒖 (𝟑. 𝟐𝟕𝐚), 𝑬𝒒𝒖(𝟑. 𝟐𝟕𝐛), 𝐚𝐧𝐝 𝑬𝒒𝒖(𝟑. 𝟐𝟕𝐜) Linearized Equations of the Reference-

Frame Transformation where synchronization angle is very small (𝜀 ≪) 

[
∆𝑣𝑑

𝑐

∆𝑣𝑞
𝑐] = [

∆𝑣𝑑
𝑔

∆𝑣𝑞
𝑔] + [

𝑣𝑞
𝑜 0

−𝑣𝑑
𝑜 0

]
⏞      

𝐴7

[
∆𝜀

∆𝜑𝜀
𝑝𝑙𝑙] 

[
∆𝑖𝑑
𝑐

∆𝑖𝑞
𝑐] = [

∆𝑖𝑑
𝑔

∆𝑖𝑞
𝑔] + [

𝑖𝑞
𝑜 0

−𝑖𝑑
𝑜 0

]
⏞      

𝐵7

[
∆𝜀

∆𝜑𝜀
𝑝𝑙𝑙] 
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[
∆𝑣𝑖𝑑

𝑔

∆𝑣𝑖𝑞
𝑔 ] = [

∆𝑣𝑖𝑑
𝑐

∆𝑣𝑖𝑞
𝑐 ] + [

−𝑣𝑖𝑞
𝑜 0

𝑣𝑖𝑑
𝑜 0

]
⏞      

𝐶7

[
∆𝜀

∆𝜑𝜀
𝑝𝑙𝑙] 

𝑬𝒒𝒖 (𝟑. 𝟑𝟖) Linearized Equation of Integrator Term of the AC-Voltage Controller 

[∆�̇�𝑣
𝑎𝑐] = [−𝑘𝑖

𝑣𝑎𝑐 0]⏞      
𝐴8

[
∆𝑣𝑑

𝑐

∆𝑣𝑞
𝑐] + [𝑘𝑖

𝑣𝑎𝑐]⏞  
𝐵8

[∆𝑣𝑑
∗ ] 

𝑬𝒒𝒖 (𝟑. 𝟏𝟗𝐚) 𝐚𝐧𝐝 𝑬𝒒𝒖 (𝟑. 𝟑𝟑) DC-Link Dynamic Linearized Equation of the Accurate 

System 

[
∆𝑉𝑑𝑐

2

∆�̇�𝑣
𝑑𝑐
]

̇
=

[
 
 
 
 

𝐼𝑝𝑣
𝑜

𝐶𝑑𝑐√𝑉𝑑𝑐
2 𝑜

0

−𝑘𝑖
𝑣𝑑𝑐 0]

 
 
 
 

⏞          
𝐴9

[
∆𝑉𝑑𝑐

2

∆𝜑𝑣
𝑑𝑐] + [

0 0
𝑘𝑖
𝑣𝑑𝑐 0]

⏞      
𝐵9

[
∆𝑉𝑑𝑐

2 ∗

∆𝑃𝑝𝑣
] + [

−3𝑣𝑖𝑑
𝑜

𝐶𝑑𝑐

−3𝑣𝑖𝑞
𝑜

𝐶𝑑𝑐
0 0

]

⏞          
𝐶9

[
∆𝑖𝑑
𝑔

∆𝑖𝑞
𝑔]

+ [
−3𝑖𝑑

𝑜

𝐶𝑑𝑐

−3𝑖𝑞
𝑜

𝐶𝑑𝑐
0 0

]

⏟        
𝐷9

[
∆𝑣𝑖𝑑

𝑔

∆𝑣𝑖𝑞
𝑔 ] +

[
 
 
 
 

(

 
2√𝑉𝑑𝑐

2 𝑜

𝐶𝑑𝑐
)

 

0 ]
 
 
 
 

⏟        
𝐸9

[∆𝐼𝑝𝑣] 

𝑬𝒒𝒖 (𝟑. 𝟏𝟗𝐛) 𝐚𝐧𝐝 𝑬𝒒𝒖 (𝟑. 𝟑𝟑) DC-Link Dynamic Linearized Equation of the Accurate 

System 

[
∆𝑉𝑑𝑐

2

∆�̇�𝑣
𝑑𝑐
]

̇
=

[
 
 
 
 

𝐼𝑝𝑣
𝑜

𝐶𝑑𝑐√𝑉𝑑𝑐
2 𝑜

0

−𝑘𝑖
𝑣𝑑𝑐 0]

 
 
 
 

⏞          
𝐴9

[
∆𝑉𝑑𝑐

2

∆𝜑𝑣
𝑑𝑐] + [

0 0
𝑘𝑖
𝑣𝑑𝑐 0]

⏞      
𝐵9

[
∆𝑉𝑑𝑐

2 ∗

∆𝑃𝑝𝑣
]

+ [

−3𝑣𝑑
𝑜 − 6𝑅𝑓𝑖𝑑

𝑜

𝐶𝑑𝑐

−3𝑣𝑞
𝑜 − 6𝑅𝑓𝑖𝑞

𝑜

𝐶𝑑𝑐
0 0

]

⏞                      
𝐶9

[
∆𝑖𝑑
𝑔

∆𝑖𝑞
𝑔] + [

−3𝑖𝑑
𝑜

𝐶𝑑𝑐

−3𝑖𝑞
𝑜

𝐶𝑑𝑐
0 0

]

⏟        
𝐷9

[
∆𝑣𝑑

𝑔

∆𝑣𝑞
𝑔]

+

[
 
 
 
 

(

 
2√𝑉𝑑𝑐

2 𝑜

𝐶𝑑𝑐
)

 

0 ]
 
 
 
 

⏟        
𝐸9

[∆𝐼𝑝𝑣] + [

−3𝐿𝑓𝑖𝑑
𝑜

𝐶𝑑𝑐

−3𝐿𝑓𝑖𝑞
𝑜

𝐶𝑑𝑐
0 0

]

⏞            
𝐹9

[
∆𝑖𝑑
𝑔

∆𝑖𝑞
𝑔]
̇

 



 

 67 

𝑬𝒒𝒖 (𝟑. 𝟏𝟗𝐜) 𝐚𝐧𝐝 𝑬𝒒𝒖 (𝟑. 𝟑𝟑) DC-Link Dynamic Linearized Equation of the Approximated 

System 

[
∆𝑉𝑑𝑐

2

∆�̇�𝑣
𝑑𝑐
]

̇
=

[
 
 
 
 

𝐼𝑝𝑣
𝑜

𝐶𝑑𝑐√𝑉𝑑𝑐
2 𝑜

0

−𝑘𝑖
𝑣𝑑𝑐 0]

 
 
 
 

⏞          
𝐴9

[
∆𝑉𝑑𝑐

2

∆𝜑𝑣
𝑑𝑐] + [

0 0
𝑘𝑖
𝑣𝑑𝑐 0]

⏞      
𝐵9

[
∆𝑉𝑑𝑐

2 ∗

∆𝑃𝑝𝑣
] + [

−3𝑣𝑑
𝑜

𝐶𝑑𝑐

−3𝑣𝑞
𝑜

𝐶𝑑𝑐
0 0

]

⏞          
𝐶9

[
∆𝑖𝑑
𝑔

∆𝑖𝑞
𝑔]

+ [
−3𝑖𝑑

𝑜

𝐶𝑑𝑐

−3𝑖𝑞
𝑜

𝐶𝑑𝑐
0 0

]

⏟        
𝐷9

[
∆𝑣𝑑

𝑔

∆𝑣𝑞
𝑔] +

[
 
 
 
 

(

 
2√𝑉𝑑𝑐

2 𝑜

𝐶𝑑𝑐
)

 

0 ]
 
 
 
 

⏟        
𝐸9

[∆𝐼𝑝𝑣] 

𝑬𝒒𝒖 (𝟑. 𝟑𝟑) 𝐚𝐧𝐝 𝑬𝒒𝒖 (𝟑. 𝟑𝟖) Linearized Equation of the D-Q Axes Reference Currents 

[
∆𝑖𝑑

∗

∆𝑖𝑞
∗] =

[
 
 
 
 
 

(

 𝑘𝑝
𝑣𝑑𝑐 +

𝜂𝐼𝑝𝑣
𝑜

2√𝑉𝑑𝑐
2 𝑜

)

 

1.5𝑣𝑑
𝑜

−1

1.5𝑣𝑑
𝑜

0 0 ]
 
 
 
 
 

⏞                  
𝐴10

[
∆𝑉𝑑𝑐

2

∆𝜑𝑣
𝑑𝑐] + [

−𝑘𝑝
𝑣𝑑𝑐

1.5𝑣𝑑
𝑜 0

0 0

]

⏞        
𝐵10

[
∆𝑉𝑑𝑐

2 ∗

∆𝑃𝑝𝑣
] + [

0
−2

3𝑣𝑑
𝑜
]

⏞  
𝐶10

[∆𝜑𝑣
𝑎𝑐]

+ [

0 0
2𝑘𝑝

𝑣𝑎𝑐

3𝑣𝑑
𝑜 0]

⏟      
𝐷10

[
∆𝑣𝑑

𝑐

∆𝑣𝑞
𝑐] + [

0
−2𝑘𝑝

𝑣𝑎𝑐

3𝑣𝑑
𝑜
]

⏟      
𝐸10

[∆𝑣𝑑
∗ ] +

[
 
 
 
 

(

 
𝜂√𝑉𝑑𝑐

2 𝑜

1.5𝑣𝑑
𝑜

)

 

0 ]
 
 
 
 

⏟        
𝐹10

[∆𝐼𝑝𝑣] 

𝑬𝒒𝒖 (𝟑. 𝟑𝟑) DC-Cable Linearized Equation 

[∆𝐼𝑝𝑣̇ ] = [
−

1

2𝐿𝑑𝑐√𝑉𝑑𝑐
2 𝑜

0
]

⏞            
𝐴11

[
∆𝑉𝑑𝑐

2

∆𝜑𝑣
𝑑𝑐] + [(

−𝑅𝑑𝑐
𝐿𝑑𝑐

−
𝑃𝑝𝑣
𝑜

𝐿𝑑𝑐(𝐼𝑝𝑣
𝑜 )

2)]

⏞              
𝐵11

[∆𝐼𝑝𝑣]

+ [0 (
1

𝐿𝑑𝑐𝐼𝑝𝑣
𝑜 )]

⏟        
𝐶11

[
∆𝑉𝑑𝑐

2 ∗

∆𝑃𝑝𝑣
] 

Define the following zeros and identity matrices: 

I = [
1 0
0 1

] 𝑍 = [
0 0
0 0

] 𝑍𝑣 = [0 0] 𝑍𝑣
𝑇 = [

0
0
] 
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A.3.3 Small-Signal State-Space Model 

Define the following 14 states and five inputs in the d-q frame 

∆𝑥 = [∆𝑖𝑑
𝑔
  ∆𝑖𝑞

𝑔
 ∆𝑖𝑔𝑑

𝑔
  ∆𝑖𝑔𝑞

𝑔
  ∆𝑣𝑑

𝑔
  ∆𝑣𝑞

𝑔
  ∆𝜑𝑑

𝑖   ∆𝜑𝑞
𝑖   ∆𝜀  ∆𝜑𝜀

𝑝𝑙𝑙  𝜑𝑣
𝑎𝑐 ∆𝑉𝑑𝑐

2   ∆𝜑𝑣
𝑑𝑐 ∆𝐼𝑝𝑣]

𝑇
 

∆𝑢 = [∆𝑉𝑑𝑐
2 ∗ ∆𝑃𝑝𝑣 ∆𝑣𝑑

∗  ∆𝑣𝑔𝑑
𝑔
  ∆𝑣𝑔𝑞

𝑔
]
𝑇
 

Approximated Model 

The state-space model of the approximated system is given as follows: 

𝐴11 = [

𝐴1 + 𝐵1(𝐴4 − 𝐵4) 𝑍 −𝐵1 + 𝐶1𝐷6 + 𝐵1 + 𝐵1𝐶4𝐷6 + 𝐵1𝐵4𝐷10

𝑍 𝐴2 (1 𝑁⁄ )𝐵2 + 𝐶2𝐷6

𝐵3 −(1 𝑁⁄ )𝐵3 𝐴3 + 𝐶3𝐷6

] 

𝐴21 = [
−𝐴5 𝑍 𝐴5𝐷10
𝑍 𝑍 𝐵6

] 

𝐴31 = [

𝑍𝑣 𝑍𝑣 𝐴8

𝐶9 + 𝐷9(𝐴4 − 𝐵4) 𝑍  𝐷9(𝐼 + 𝐶4𝐷6 + 𝐵4𝐷10)
𝑍𝑣 𝑍𝑣 𝑍𝑣

] 

𝐴12 = [
𝐵1 (𝐶1 + 𝐵1𝐶4)(𝐶6 + 𝐷6𝐴7) + 𝐵1(𝐶7 + 𝐴4𝐵7 + 𝐴7 + 𝐵4(𝐷10𝐴7 − 𝐵7))

𝑍 𝐶2(𝐶6 + 𝐷6𝐴7)
𝑍 𝐶3(𝐶6 + 𝐷6𝐴7)

] 

𝐴22 = [
𝑍 −𝐴5𝐵7 + 𝐴5𝐷10𝐴7
𝑍 𝐴6 + 𝐵6𝐴7

] 

𝐴32 = [

𝑍𝑣 𝐴8𝐴7
𝐷9 𝐷9(𝐶7 + 𝐴4𝐵7 + 𝐴7 − 𝐵4𝐵7 + 𝐶4𝐶6 + 𝐶4𝐷6𝐴7 + 𝐵4𝐷10𝐴7)
𝑍𝑣 𝑍𝑣

] 

𝐴13 = [

𝐵1𝐵4𝐶10 𝐵1𝐵4𝐴10 𝐵1𝐵4𝐹10
𝑍𝑣
𝑇 𝑍 𝑍𝑣

𝑇

𝑍𝑣
𝑇 𝑍 𝑍𝑣

𝑇
] 

𝐴23 = [
𝐴5𝐶10 𝐴5𝐴10 𝐴5𝐹10
𝑍𝑣
𝑇 𝑍 𝑍𝑣

𝑇 ] 

𝐴33 = [
𝑍𝑣𝑍𝑣

𝑇 𝑍𝑣 𝑍𝑣𝑍𝑣
𝑇

𝐷9𝐵4𝐶10 𝐴9 + 𝐷9𝐵4𝐴10 𝐸9 + 𝐷9𝐵4𝐹10
𝑍𝑣𝑍𝑣

𝑇 𝐴11 𝐵11
] 

𝐴 = [
𝐴11 𝐴12 𝐴13
𝐴21 𝐴22 𝐴23
𝐴31 𝐴32 𝐴33

] 
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𝐵 =

[
 
 
 
 
 
 
 𝐵1𝐵4𝐵10

𝑍
𝑍

𝐴5𝐵10
𝑍
𝑍𝑣

𝐵9 + 𝐷9𝐵4𝐵10
𝐶11

𝐵1𝐵4𝐸10
𝑍𝑣
𝑇

𝑍𝑣
𝑇

𝐴5𝐸10
𝑍𝑣
𝑇

𝐵8
     𝐷9𝐵4𝐸10    

𝑍𝑣𝑍𝑣
𝑇

𝑍
−𝐵2
𝑍
𝑍
𝑍
𝑍𝑣
𝑍
𝑍𝑣 ]

 
 
 
 
 
 
 

 

Accurate Model 

The state-space model of the accurate system is given as follows: 

𝐴11 = [

𝐴1 + 𝐵1(𝐴4 − 𝐵4) 𝑍 −𝐵1 + 𝐶1𝐷6 + 𝐵1 + 𝐵1𝐶4𝐷6 + 𝐵1𝐵4𝐷10

𝑍 𝐴2 (1 𝑁⁄ )𝐵2 + 𝐶2𝐷6
𝐵3 −(1 𝑁⁄ )𝐵3 𝐴3 + 𝐶3𝐷6

] 

𝐴21 = [
−𝐴5 𝑍 𝐴5𝐷10
𝑍 𝑍 𝐵6

] 

𝐴31 = [

𝑍𝑣 𝑍𝑣 𝐴8

𝐶9 + 𝐹9(𝐴1 + 𝐵1(𝐴4 − 𝐵4)) 𝑍 𝐷9 + 𝐹9(𝐶1𝐷6 + 𝐵1 + 𝐵1𝐶4𝐷6 + 𝐵1𝐵4𝐷10)

𝑍𝑣 𝑍𝑣 𝑍𝑣

] 

𝐴12 = [
𝐵1 (𝐶1 + 𝐵1𝐶4)(𝐶6 + 𝐷6𝐴7) + 𝐵1(𝐶7 + 𝐴4𝐵7 + 𝐴7 + 𝐵4(𝐷10𝐴7 − 𝐵7))

𝑍 𝐶2(𝐶6 + 𝐷6𝐴7)
𝑍 𝐶3(𝐶6 + 𝐷6𝐴7)

] 

𝐴22 = [
𝑍 −𝐴5𝐵7 + 𝐴5𝐷10𝐴7
𝑍 𝐴6 + 𝐵6𝐴7

] 

𝐴32 = [

 𝑍𝑣 𝐴8𝐴7

𝐹9𝐵1 𝐹9(𝐶1 + 𝐵1𝐶4)(𝐶6 + 𝐷6𝐴7) + 𝐹9𝐵1(𝐶7 + 𝐴4𝐵7 + 𝐴7 + 𝐵4(𝐷10𝐴7 − 𝐵7))
 𝑍𝑣  𝑍𝑣

] 

𝐴13 = [

𝐵1𝐵4𝐶10 𝐵1𝐵4𝐴10 𝐵1𝐵4𝐹10
𝑍𝑣
𝑇 𝑍 𝑍𝑣

𝑇

𝑍𝑣
𝑇 𝑍 𝑍𝑣

𝑇
] 

𝐴23 = [
𝐴5𝐶10 𝐴5𝐴10 𝐴5𝐹10
𝑍𝑣
𝑇 𝑍 𝑍𝑣

𝑇 ] 

𝐴33 = [
𝑍𝑣𝑍𝑣

𝑇 𝑍𝑣 𝑍𝑣𝑍𝑣
𝑇

𝐹9𝐵1𝐵4𝐶10 𝐴9 + 𝐹9𝐵1𝐵4𝐴10 𝐸9 + 𝐹9𝐵1𝐵4𝐹10
𝑍𝑣𝑍𝑣

𝑇 𝐴11 𝐵11
] 

𝐴 = [
𝐴11 𝐴12 𝐴13
𝐴21 𝐴22 𝐴23
𝐴31 𝐴32 𝐴33

] 
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𝐵 =

[
 
 
 
 
 
 
 𝐵1𝐵4𝐵10

𝑍
𝑍

𝐴5𝐵10
𝑍
𝑍𝑣

𝐵9 + 𝐹9𝐵1𝐵4𝐵10
𝐶11

𝐵1𝐵4𝐸10
𝑍𝑣
𝑇

𝑍𝑣
𝑇

𝐴5𝐸10
𝑍𝑣
𝑇

𝐵8
     𝐹9𝐵1𝐵4𝐸10    

𝑍𝑣𝑍𝑣
𝑇

𝑍
−𝐵2
𝑍
𝑍
𝑍
𝑍𝑣
𝑍
𝑍𝑣 ]

 
 
 
 
 
 
 

 

Appendix A.4 

A.4.1 Eigenvalues and Impedance Models of the Uncompensated System 

Eigenvalues Analysis 

Apply the same Linearized Equations in A.3.3 with modification on the input vector as follows: 

𝑬𝒒𝒖 (𝟑. 𝟏𝟗𝐚) 𝐚𝐧𝐝 𝑬𝒒𝒖 (𝟑. 𝟑𝟑) DC-Link Dynamic Linearized Equation of the Accurate 

System 

[
∆𝑉𝑑𝑐

2

∆�̇�𝑣
𝑑𝑐
]

̇
=

[
 
 
 
 

𝐼𝑝𝑣
𝑜

𝐶𝑑𝑐√𝑉𝑑𝑐
2 𝑜

0

−𝑘𝑖
𝑣𝑑𝑐 0]

 
 
 
 

⏞          
𝐴9

[
∆𝑉𝑑𝑐

2

∆𝜑𝑣
𝑑𝑐] + [

0 0
𝑘𝑖
𝑣𝑑𝑐 0]

⏞      
𝐵9

[
∆𝑉𝑑𝑐

2 ∗

∆𝑟𝑑
] + [

−3𝑣𝑖𝑑
𝑜

𝐶𝑑𝑐

−3𝑣𝑖𝑞
𝑜

𝐶𝑑𝑐
0 0

]

⏞          
𝐶9

[
∆𝑖𝑑
𝑔

∆𝑖𝑞
𝑔]

+ [
−3𝑖𝑑

𝑜

𝐶𝑑𝑐

−3𝑖𝑞
𝑜

𝐶𝑑𝑐
0 0

]

⏟        
𝐷9

[
∆𝑣𝑖𝑑

𝑔

∆𝑣𝑖𝑞
𝑔 ] +

[
 
 
 
 

(

 
2√𝑉𝑑𝑐

2 𝑜

𝐶𝑑𝑐
)

 

0 ]
 
 
 
 

⏟        
𝐸9

[∆𝐼𝑝𝑣] 

𝑬𝒒𝒖 (𝟑. 𝟑𝟑) 𝐚𝐧𝐝 𝑬𝒒𝒖 (𝟑. 𝟑𝟖) Linearized Equation of the D-Q Axes Reference Currents 
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[
∆𝑖𝑑

∗

∆𝑖𝑞
∗] =

[
 
 
 
 
 

(

 𝑘𝑝
𝑣𝑑𝑐 +

𝜂𝐼𝑝𝑣
𝑜

2√𝑉𝑑𝑐
2 𝑜

)

 

1.5𝑣𝑑
𝑜

−1

1.5𝑣𝑑
𝑜

0 0 ]
 
 
 
 
 

⏞                  
𝐴10

[
∆𝑉𝑑𝑐

2

∆𝜑𝑣
𝑑𝑐] + [

−𝑘𝑝
𝑣𝑑𝑐

1.5𝑣𝑑
𝑜 0

0 0

]

⏞        
𝐵10

[
∆𝑉𝑑𝑐

2 ∗

∆𝑟𝑑
] + [

0
−2

3𝑣𝑑
𝑜
]

⏞  
𝐶10

[∆𝜑𝑣
𝑎𝑐]

+ [

0 0
2𝑘𝑝

𝑣𝑎𝑐

3𝑣𝑑
𝑜 0]

⏟      
𝐷10

[
∆𝑣𝑑

𝑐

∆𝑣𝑞
𝑐] + [

0
−2𝑘𝑝

𝑣𝑎𝑐

3𝑣𝑑
𝑜
]

⏟      
𝐸10

[∆𝑣𝑑
∗ ] +

[
 
 
 
 

(

 
𝜂√𝑉𝑑𝑐

2 𝑜

1.5𝑣𝑑
𝑜

)

 

0 ]
 
 
 
 

⏟        
𝐹10

[∆𝐼𝑝𝑣] 

𝑬𝒒𝒖 (𝟑. 𝟑𝟑) DC-Cable Linearized Equation 

[∆𝐼𝑝𝑣̇ ] = [
−

1

2𝐿𝑑𝑐√𝑉𝑑𝑐
2 𝑜

0
]

⏞            
𝐴11

[
∆𝑉𝑑𝑐

2

∆𝜑𝑣
𝑑𝑐] + [(

𝑟𝑑 − 𝑅𝑑𝑐
𝐿𝑑𝑐

)]
⏞        

𝐵11

[∆𝐼𝑝𝑣] + [0 (
𝐼𝑝𝑣
𝑜

𝐿𝑑𝑐
)]

⏟      
𝐶11

[
∆𝑉𝑑𝑐

2 ∗

∆𝑟𝑑
] 

Define the following 14 states and five inputs in the d-q frame 

∆𝑥 = [∆𝑖𝑑
𝑔
  ∆𝑖𝑞

𝑔
 ∆𝑖𝑔𝑑

𝑔
  ∆𝑖𝑔𝑞

𝑔
  ∆𝑣𝑑

𝑔
  ∆𝑣𝑞

𝑔
  ∆𝜑𝑑

𝑖   ∆𝜑𝑞
𝑖   ∆𝜀  ∆𝜑𝜀

𝑝𝑙𝑙  𝜑𝑣
𝑎𝑐 ∆𝑉𝑑𝑐

2   ∆𝜑𝑣
𝑑𝑐 ∆𝐼𝑝𝑣]

𝑇
 

∆𝑢 = [∆𝑉𝑑𝑐
2 ∗ ∆𝑟𝑑 ∆𝑣𝑑

∗  ∆𝑣𝑔𝑑
𝑔
  ∆𝑣𝑔𝑞

𝑔
]
𝑇
 

The state-space model of the modified system is given as follows: 

𝐴11 = [

𝐴1 + 𝐵1(𝐴4 − 𝐵4) 𝑍 −𝐵1 + 𝐶1𝐷6 + 𝐵1 + 𝐵1𝐶4𝐷6 + 𝐵1𝐵4𝐷10

𝑍 𝐴2 (1 𝑁⁄ )𝐵2 + 𝐶2𝐷6
𝐵3 −(1 𝑁⁄ )𝐵3 𝐴3 + 𝐶3𝐷6

] 

𝐴21 = [
−𝐴5 𝑍 𝐴5𝐷10
𝑍 𝑍 𝐵6

] 

𝐴31 = [

𝑍𝑣 𝑍𝑣 𝐴8

𝐶9 + 𝐷9(𝐴4 − 𝐵4) 𝑍 𝐷9(𝐼 + 𝐶4𝐷6 + 𝐵4𝐷10)
𝑍𝑣 𝑍𝑣 𝑍𝑣

] 

𝐴12 = [
𝐵1 (𝐶1 + 𝐵1𝐶4)(𝐶6 + 𝐷6𝐴7) + 𝐵1(𝐶7 + 𝐴4𝐵7 + 𝐴7 + 𝐵4(𝐷10𝐴7 − 𝐵7))

𝑍 𝐶2(𝐶6 + 𝐷6𝐴7)
𝑍 𝐶3(𝐶6 + 𝐷6𝐴7)

] 

𝐴22 = [
𝑍 −𝐴5𝐵7 + 𝐴5𝐷10𝐴7
𝑍 𝐴6 + 𝐵6𝐴7

] 
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𝐴32 = [

𝑍𝑣 𝐴8𝐴7
𝐷9 𝐷9(𝐶7 + 𝐴4𝐵7 + 𝐴7 − 𝐵4𝐵7 + 𝐶4𝐶6 + 𝐶4𝐷6𝐴7 + 𝐵4𝐷10𝐴7)
𝑍𝑣 𝑍𝑣

] 

𝐴13 = [

𝐵1𝐵4𝐶10 𝐵1𝐵4𝐴10 𝐵1𝐵4𝐹10
𝑍𝑣
𝑇 𝑍 𝑍𝑣

𝑇

𝑍𝑣
𝑇 𝑍 𝑍𝑣

𝑇
] 

𝐴23 = [
𝐴5𝐶10 𝐴5𝐴10 𝐴5𝐹10
𝑍𝑣
𝑇 𝑍 𝑍𝑣

𝑇 ] 

𝐴33 = [
𝑍𝑣𝑍𝑣

𝑇 𝑍𝑣 𝑍𝑣𝑍𝑣
𝑇

𝐷9𝐵4𝐶10 𝐴9 + 𝐷9𝐵4𝐴10 𝐸9 + 𝐷9𝐵4𝐹10
𝑍𝑣𝑍𝑣

𝑇 𝐴11 𝐵11
] 

𝐴 = [
𝐴11 𝐴12 𝐴13
𝐴21 𝐴22 𝐴23
𝐴31 𝐴32 𝐴33

] 

Impedance Analysis 

Divide the previous state-space system that is used for the eigenvalue analysis of the 

uncompensated system in A.4.1 into two models. 

• State-space model (1): Load Impedance (𝑍𝑙) 

Apply the same Linearized Equations in A.3.3 with modification on the input vector as follows: 

 

𝑬𝒒𝒖 (𝟑. 𝟏𝟗𝐚) 𝐚𝐧𝐝 𝑬𝒒𝒖 (𝟑. 𝟑𝟑) DC-Link Dynamic Linearized Equation of the Accurate 

System 

[
∆𝑉𝑑𝑐

2

∆�̇�𝑣
𝑑𝑐
]

̇
=

[
 
 
 
 

𝐼𝑝𝑣
𝑜

𝐶𝑑𝑐√𝑉𝑑𝑐
2 𝑜

0

−𝑘𝑖
𝑣𝑑𝑐 0]

 
 
 
 

⏞          
𝐴9

[
∆𝑉𝑑𝑐

2

∆𝜑𝑣
𝑑𝑐] +

[
 
 
 
 

0
2√𝑉𝑑𝑐

2 𝑜

𝐶𝑑𝑐
𝑘𝑖
𝑣𝑑𝑐 0 ]

 
 
 
 

⏞          
𝐵9

[
∆𝑉𝑑𝑐

2 ∗

∆𝐼𝑝𝑣
] + [

−3𝑣𝑖𝑑
𝑜

𝐶𝑑𝑐

−3𝑣𝑖𝑞
𝑜

𝐶𝑑𝑐
0 0

]

⏞          
𝐶9

[
∆𝑖𝑑
𝑔

∆𝑖𝑞
𝑔]

+ [
−3𝑖𝑑

𝑜

𝐶𝑑𝑐

−3𝑖𝑞
𝑜

𝐶𝑑𝑐
0 0

]

⏟        
𝐷9

[
∆𝑣𝑖𝑑

𝑔

∆𝑣𝑖𝑞
𝑔 ] 

𝑬𝒒𝒖 (𝟑. 𝟑𝟑) 𝐚𝐧𝐝 𝑬𝒒𝒖 (𝟑. 𝟑𝟖) Linearized Equation of the D-Q Axes Reference Currents 
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[
∆𝑖𝑑

∗

∆𝑖𝑞
∗] =

[
 
 
 
 
 

(

 𝑘𝑝
𝑣𝑑𝑐 +

𝜂𝐼𝑝𝑣
𝑜

2√𝑉𝑑𝑐
2 𝑜

)

 

1.5𝑣𝑑
𝑜

−1

1.5𝑣𝑑
𝑜

0 0 ]
 
 
 
 
 

⏞                  
𝐴10

[
∆𝑉𝑑𝑐

2

∆𝜑𝑣
𝑑𝑐] + [

−𝑘𝑝
𝑣𝑑𝑐

1.5𝑣𝑑
𝑜

𝜂√𝑉𝑑𝑐
2 𝑜

1.5𝑣𝑑
𝑜

0 0

]

⏞            
𝐵10

[
∆𝑉𝑑𝑐

2 ∗

∆𝑖𝑒𝑥𝑡
]

+ [

0
−2

3𝑣𝑑
𝑜
]

⏞  
𝐶10

[∆𝜑𝑣
𝑎𝑐] + [

0 0
2𝑘𝑝

𝑣𝑎𝑐

3𝑣𝑑
𝑜 0]

⏟      
𝐷10

[
∆𝑣𝑑

𝑐

∆𝑣𝑞
𝑐] + [

0
−2𝑘𝑝

𝑣𝑎𝑐

3𝑣𝑑
𝑜
]

⏟      
𝐸10

[∆𝑣𝑑
∗] 

Define the following 13 states and 5 inputs in the d-q frame to find the transfer function 

(𝑇𝐹 =
∆𝑉𝑑𝑐

2

∆𝐼𝑝𝑣
) 

∆𝑥 = [∆𝑖𝑑
𝑔
  ∆𝑖𝑞

𝑔
 ∆𝑖𝑔𝑑

𝑔
  ∆𝑖𝑔𝑞

𝑔
  ∆𝑣𝑑

𝑔
  ∆𝑣𝑞

𝑔
  ∆𝜑𝑑

𝑖   ∆𝜑𝑞
𝑖   ∆𝜀  ∆𝜑𝜀

𝑝𝑙𝑙  𝜑𝑣
𝑎𝑐 ∆𝑉𝑑𝑐

2   ∆𝜑𝑣
𝑑𝑐]

𝑇
 

∆𝑢 = [∆𝑉𝑑𝑐
2 ∗ ∆𝐼𝑝𝑣 ∆𝑣𝑑

∗  ∆𝑣𝑔𝑑
𝑔
  ∆𝑣𝑔𝑞

𝑔
]
𝑇
 

𝐴11 = [

𝐴1 + 𝐵1(𝐴4 − 𝐵4) 𝑍 −𝐵1 + 𝐶1𝐷6 + 𝐵1 + 𝐵1𝐶4𝐷6 + 𝐵1𝐵4𝐷10
𝑍 𝐴2 (1/𝑁)𝐵2 + 𝐶2𝐷6
𝐵3 −(1/𝑁)𝐵3 𝐴3 + 𝐶3𝐷6

] 

𝐴21 = [
−𝐴5 𝑍 𝐴5𝐷10
𝑍 𝑍 𝐵6

] 

𝐴31 = [
𝑍𝑣 𝑍𝑣 𝐴8

𝐶9 + 𝐷9(𝐴4 − 𝐵4) 𝑍 𝐷9(𝐼 + 𝐶4𝐷6 + 𝐵4𝐷10)
] 

𝐴12 = [
𝐵1 (𝐶1 + 𝐵1𝐶4)(𝐶6 + 𝐷6𝐴7) + 𝐵1(𝐶7 + 𝐴4𝐵7 + 𝐴7 + 𝐵4(𝐷10𝐴7 − 𝐵7))

𝑍 𝐶2(𝐶6 + 𝐷6𝐴7)
𝑍 𝐶3(𝐶6 + 𝐷6𝐴7)

] 

𝐴22 = [
𝑍 −𝐴5𝐵7 + 𝐴5𝐷10𝐴7
𝑍 𝐴6 + 𝐵6𝐴7

] 

𝐴32 = [
𝑍𝑣 𝐴8𝐴7
𝐷9 𝐷9(𝐶7 + 𝐴4𝐵7 + 𝐴7 − 𝐵4𝐵7 + 𝐶4𝐶6 + 𝐶4𝐷6𝐴7 + 𝐵4𝐷10𝐴7)

] 

𝐴13 = [

𝐵1𝐵4𝐶10 𝐵1𝐵4𝐴10
𝑍𝑣
𝑇 𝑍

𝑍𝑣
𝑇 𝑍

] 

𝐴23 = [
𝐴5𝐶10 𝐴5𝐴10
𝑍𝑣
𝑇 𝑍

] 
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𝐴33 = [ 𝑍𝑣𝑍𝑣
𝑇 𝑍𝑣

𝐷9𝐵4𝐶10 𝐴9 + 𝐷9𝐵4𝐴10
] 

𝐴 = [
𝐴11 𝐴12 𝐴13
𝐴21 𝐴22 𝐴23
𝐴31 𝐴32 𝐴33

] 

𝐵 =

[
 
 
 
 
 
 𝐵1𝐵4𝐵10

𝑍
𝑍

𝐴5𝐵10
𝑍
𝑍𝑣

𝐵9 + 𝐷9𝐵4𝐵10

𝐵1𝐵4𝐸10
𝑍𝑣
𝑇

𝑍𝑣
𝑇

𝐴5𝐸10

      
𝑍𝑣
𝑇

𝐵8
𝐷9𝐵4𝐸10

    

𝑍
−𝐵2
𝑍
𝑍
𝑍
𝑍𝑣
𝑍 ]
 
 
 
 
 
 

 

Use (∆𝑉𝑑𝑐
2 ≈ 2𝑉𝑑𝑐

𝑜 ∆𝑉𝑑𝑐), the Load Impedance of the uncompensated system is given as 

follows: 

∆𝑍𝑙
𝑢𝑛 =

∆𝑉𝑑𝑐
∆𝐼𝑝𝑣

=
1

2𝑉𝑑𝑐
𝑜

∆𝑉𝑑𝑐
2

∆𝐼𝑝𝑣

⏞
𝑇𝐹

 

• State-space model (2): Source Impedance (𝑍𝑠) 

The state-space linearized equation of the dc-cable is implemented as follows: 

𝑬𝒒𝒖 (𝟑. 𝟑𝟑) DC-Cable Linearized Equation 

[∆𝐼𝑝𝑣̇ ] = [−
1

𝐿𝑑𝑐
] [∆𝑉𝑑𝑐] + [(

𝑟𝑑 − 𝑅𝑑𝑐
𝐿𝑑𝑐

)] [∆𝐼𝑝𝑣] 

The Source Impedance is given as follows: 

∆𝑍𝑠 =
∆𝑉𝑑𝑐
∆𝐼𝑝𝑣

= (−𝐿𝑑𝑐)𝑠 + (𝑟𝑑 − 𝑅𝑑𝑐) 

A.4.2 Eigenvalues and Impedance Models of the Compensated System 

Eigenvalues Analysis 

Two more states are added in the compensated system, apply the same Linearized Equations 

in A.3.3 with modifications on the input and state vectors as follows: 

𝑬𝒒𝒖 (𝟑. 𝟏𝟗𝐚) 𝐚𝐧𝐝 𝑬𝒒𝒖 (𝟑. 𝟑𝟑) DC-Link Dynamic Linearized Equation of the Accurate 

System 
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[
∆𝑉𝑑𝑐

2

∆�̇�𝑣
𝑑𝑐
]

̇
=

[
 
 
 
 

𝐼𝑝𝑣
𝑜

𝐶𝑑𝑐√𝑉𝑑𝑐
2 𝑜

0

−𝑘𝑖
𝑣𝑑𝑐 0]

 
 
 
 

⏞          
𝐴9

[
∆𝑉𝑑𝑐

2

∆𝜑𝑣
𝑑𝑐] + [

0 0
𝑘𝑖
𝑣𝑑𝑐 0]

⏞      
𝐵9

[
∆𝑉𝑑𝑐

2 ∗

∆𝑟𝑑
] + [

−3𝑣𝑖𝑑
𝑜

𝐶𝑑𝑐

−3𝑣𝑖𝑞
𝑜

𝐶𝑑𝑐
0 0

]

⏞          
𝐶9

[
∆𝑖𝑑
𝑔

∆𝑖𝑞
𝑔]

+ [
−3𝑖𝑑

𝑜

𝐶𝑑𝑐

−3𝑖𝑞
𝑜

𝐶𝑑𝑐
0 0

]

⏟        
𝐷9

[
∆𝑣𝑖𝑑

𝑔

∆𝑣𝑖𝑞
𝑔 ] +

[
 
 
 
 

(

 
2√𝑉𝑑𝑐

2 𝑜

𝐶𝑑𝑐
)

 

0 ]
 
 
 
 

⏟        
𝐸9

[∆𝐼𝑝𝑣] 

𝑬𝒒𝒖 (𝟑. 𝟑𝟖) 𝐚𝐧𝐝 𝑬𝒒𝒖 (𝟒. 𝟑) Linearized Equation of the D-Q Axes Reference Currents 

[
∆𝑖𝑑

∗

∆𝑖𝑞
∗] =

[
 
 
 
 
 

(

 𝑘𝑝
𝑣𝑑𝑐 +

𝜂𝐼𝑝𝑣
𝑜

2√𝑉𝑑𝑐
2 𝑜

)

 

1.5𝑣𝑑
𝑜

−1

1.5𝑣𝑑
𝑜

0 0 ]
 
 
 
 
 

⏞                  
𝐴10

[
∆𝑉𝑑𝑐

2

∆𝜑𝑣
𝑑𝑐] + [

−𝑘𝑝
𝑣𝑑𝑐

1.5𝑣𝑑
𝑜 0

0 0

]

⏞        
𝐵10

[
∆𝑣𝑑𝑐

2 ∗

∆𝑟𝑑
] + [

0
−2

3𝑣𝑑
𝑜
]

⏞  
𝐶10

[∆𝜑𝑣
𝑎𝑐]

+ [

0 0
2𝑘𝑝

𝑣𝑎𝑐

3𝑣𝑑
𝑜 0

]

⏟      
𝐷10

[
∆𝑣𝑑

𝑐

∆𝑣𝑞
𝑐] + [

0
−2𝑘𝑝

𝑣𝑎𝑐

3𝑣𝑑
𝑜
]

⏟      
𝐸10

[∆𝑣𝑑
∗ ] +

[
 
 
 
 

(

 
𝜂√𝑉𝑑𝑐

2 𝑜

1.5𝑣𝑑
𝑜

)

 

0 ]
 
 
 
 

⏟        
𝐹10

[∆𝐼𝑝𝑣]

+ [
𝛼 0
0 0

]
⏟    
𝐺10

[
∆𝑖𝑥
∆𝑖𝑦
]
̇

 

𝑬𝒒𝒖 (𝟑. 𝟑𝟑) DC-Cable Linearized Equation 

[∆𝐼𝑝𝑣̇ ] = [
−

1

2𝐿𝑑𝑐√𝑉𝑑𝑐
2 𝑜

0
]

⏞            
𝐴11

[
∆𝑉𝑑𝑐

2

∆𝜑𝑣
𝑑𝑐] + [(

𝑟𝑑 − 𝑅𝑑𝑐
𝐿𝑑𝑐

)]
⏞        

𝐵11

[∆𝐼𝑝𝑣] + [0 (
𝐼𝑝𝑣
𝑜

𝐿𝑑𝑐
)]

⏟      
𝐶11

[
∆𝑉𝑑𝑐

2 ∗

∆𝑟𝑑
] 

𝑬𝒒𝒖 (𝟒. 𝟒) Linearized Equation of the active compensator 
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[
∆𝑖𝑥
∆𝑖𝑦
]
̇
=

[
 
 
 
−1

𝑅𝐶𝑑𝑐𝐶𝑑𝑐
−
𝐶𝑑𝑐
𝜏

0 −
1

𝜏 ]
 
 
 

⏞          
𝐴12

[
∆𝑖𝑥
∆𝑖𝑦
] +

[
 
 
 
 
 
 
𝐶𝑑𝑐

2𝜏√𝑉𝑑𝑐
2 𝑜

0

1

2𝜏√𝑉𝑑𝑐
2 𝑜

0

]
 
 
 
 
 
 

⏞        
𝐵12

[
∆𝑉𝑑𝑐

2

∆𝜑𝑣
𝑑𝑐] 

Define the following 16 states and five inputs in the d-q frame 

∆𝑥 = [∆𝑖𝑑
𝑔
  ∆𝑖𝑞

𝑔
 ∆𝑖𝑔𝑑

𝑔
  ∆𝑖𝑔𝑞

𝑔
  ∆𝑣𝑑

𝑔
  ∆𝑣𝑞

𝑔
  ∆𝜑𝑑

𝑖   ∆𝜑𝑞
𝑖   ∆𝜀  ∆𝜑𝜀

𝑝𝑙𝑙  𝜑𝑣
𝑎𝑐 ∆𝑉𝑑𝑐

2   ∆𝜑𝑣
𝑑𝑐 ∆𝐼𝑝𝑣 ∆𝑖𝑥 ∆𝑖𝑦]

𝑇
 

∆𝑢 = [∆𝑉𝑑𝑐
2 ∗ ∆𝑟𝑑 ∆𝑣𝑑

∗  ∆𝑣𝑔𝑑
𝑔
  ∆𝑣𝑔𝑞

𝑔
]
𝑇
 

𝐴11 = [

𝐴1 + 𝐵1(𝐴4 − 𝐵4) 𝑍 −𝐵1 + 𝐶1𝐷6 + 𝐵1 + 𝐵1𝐶4𝐷6 + 𝐵1𝐵4𝐷10

𝑍 𝐴2 (1 𝑁⁄ )𝐵2 + 𝐶2𝐷6
𝐵3 −(1 𝑁⁄ )𝐵3 𝐴3 + 𝐶3𝐷6

] 

𝐴21 = [
−𝐴5 𝑍 𝐴5𝐷10
𝑍 𝑍 𝐵6
𝑍𝑣 𝑍𝑣 𝐴8

] 

𝐴31 = [
𝐶9 + 𝐷9(𝐴4 − 𝐵4) 𝑍 𝐷9(𝐼 + 𝐶4𝐷6 + 𝐵4𝐷10)

𝑍𝑣 𝑍𝑣 𝑍𝑣
𝑍 𝑍 𝑍

] 

𝐴12 = [

𝐵1 (𝐶1 + 𝐵1𝐶4)(𝐶6 + 𝐷6𝐴7) + 𝐵1(𝐶7 + 𝐴4𝐵7+ 𝐴7 + 𝐵4(𝐷10𝐴7 − 𝐵7)) 𝐵1𝐵4𝐶10

𝑍 𝐶2(𝐶6 + 𝐷6𝐴7) 𝑍𝑣
𝑇

𝑍 𝐶3(𝐶6 + 𝐷6𝐴7) 𝑍𝑣
𝑇

] 

𝐴22 = [

𝑍 −𝐴5𝐵7 + 𝐴5𝐷10𝐴7 𝐴5𝐶10
𝑍 𝐴6 + 𝐵6𝐴7 𝑍𝑣

𝑇

𝑍𝑣 𝐴8𝐴7 𝑍𝑣𝑍𝑣
𝑇
] 

𝐴32 = [

𝐷9 𝐷9(𝐶7 + 𝐴4𝐵7 + 𝐴7 + 𝐶4(𝐶6 + 𝐷6𝐴7) + 𝐵4(𝐷10𝐴7 − 𝐵7)) 𝐷9𝐵4𝐶10

𝑍𝑣 𝑍𝑣 𝑍𝑣𝑍𝑣
𝑇

𝑍 𝑍 𝑍𝑣
𝑇

] 

𝐴13 = [

𝐵1𝐵4(𝐴10 + 𝐺10𝐵12) 𝐵1𝐵4𝐹10 𝐵1𝐵4𝐺10𝐴12

𝑍 𝑍𝑣
𝑇 𝑍

𝑍 𝑍𝑣
𝑇 𝑍

] 

𝐴23 = [

𝐴5(𝐴10 + 𝐺10𝐵12) 𝐴5𝐹10 𝐴5𝐺10𝐴12

𝑍 𝑍𝑣
𝑇 𝑍

𝑍𝑣 𝑍𝑣𝑍𝑣
𝑇 𝑍𝑣

] 

𝐴33 = [

𝐴9 + 𝐷9𝐵4(𝐴10 + 𝐺10𝐵12) 𝐸9 + 𝐷9𝐵4𝐹10 𝐷9𝐵4𝐺10𝐴12
𝐴11 𝐵11 𝑍𝑣
𝐵12 𝑍𝑣

𝑇 𝐴12
] 
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𝐴 = [
𝐴11 𝐴12 𝐴13
𝐴21 𝐴22 𝐴23
𝐴31 𝐴32 𝐴33

] 

Impedance Analysis 

Divide the previous state-space system that is used for the eigenvalue analysis of the 

compensated system in A.4.2 into two models. 

• State-space model (1): Load Impedance (𝑍𝑙) 

Apply the same Linearized Equations in A.3.3 with modifications on the state and input vectors 

as follows: 

𝑬𝒒𝒖 (𝟑. 𝟏𝟗𝐚) 𝐚𝐧𝐝 𝑬𝒒𝒖 (𝟑. 𝟑𝟑) DC-Link Dynamic Linearized Equation of the Accurate 

System 

[
∆𝑉𝑑𝑐

2

∆�̇�𝑣
𝑑𝑐
]

̇
=

[
 
 
 
 

𝐼𝑝𝑣
𝑜

𝐶𝑑𝑐√𝑉𝑑𝑐
2 𝑜

0

−𝑘𝑖
𝑣𝑑𝑐 0]

 
 
 
 

⏞          
𝐴9

[
∆𝑉𝑑𝑐

2

∆𝜑𝑣
𝑑𝑐] +

[
 
 
 
 

0
2√𝑉𝑑𝑐

2 𝑜

𝐶𝑑𝑐
𝑘𝑖
𝑣𝑑𝑐 0 ]

 
 
 
 

⏞          
𝐵9

[
∆𝑉𝑑𝑐

2 ∗

∆𝐼𝑝𝑣
] + [

−3𝑣𝑖𝑑
𝑜

𝐶𝑑𝑐

−3𝑣𝑖𝑞
𝑜

𝐶𝑑𝑐
0 0

]

⏞          
𝐶9

[
∆𝑖𝑑
𝑔

∆𝑖𝑞
𝑔]

+ [
−3𝑖𝑑

𝑜

𝐶𝑑𝑐

−3𝑖𝑞
𝑜

𝐶𝑑𝑐
0 0

]

⏟        
𝐷9

[
∆𝑣𝑖𝑑

𝑔

∆𝑣𝑖𝑞
𝑔 ] 

𝑬𝒒𝒖 (𝟑. 𝟑𝟖) 𝐚𝐧𝐝 𝑬𝒒𝒖 (𝟒. 𝟑) Linearized Equation of the D-Q Axes Reference Currents 

[
∆𝑖𝑑

∗

∆𝑖𝑞
∗] =

[
 
 
 
 
 

(

 𝑘𝑝
𝑣𝑑𝑐 +

𝜂𝐼𝑝𝑣
𝑜

2√𝑉𝑑𝑐
2 𝑜

)

 

1.5𝑣𝑑
𝑜

−1

1.5𝑣𝑑
𝑜

0 0 ]
 
 
 
 
 

⏞                  
𝐴10

[
∆𝑉𝑑𝑐

2

∆𝜑𝑣
𝑑𝑐] + [

−𝑘𝑝
𝑣𝑑𝑐

1.5𝑣𝑑
𝑜

𝜂√𝑉𝑑𝑐
2 𝑜

1.5𝑣𝑑
𝑜

0 0

]

⏞            
𝐵10

[
∆𝑉𝑑𝑐

2 ∗

∆𝐼𝑝𝑣
]

+ [

0
−2

3𝑣𝑑
𝑜
]

⏞  
𝐶10

[∆𝜑𝑣
𝑎𝑐] + [

0 0
2𝑘𝑝

𝑣𝑎𝑐

3𝑣𝑑
𝑜 0]

⏟      
𝐷10

[
∆𝑣𝑑

𝑐

∆𝑣𝑞
𝑐] + [

0
−2𝑘𝑝

𝑣𝑎𝑐

3𝑣𝑑
𝑜
]

⏟      
𝐸10

[∆𝑣𝑑
∗] + [

𝛼 0
0 0

]
⏟    
𝐹10

[
∆𝑖𝑥
∆𝑖𝑦
]
̇

 

𝑬𝒒𝒖 (𝟒. 𝟒) Linearized Equation of the active compensator 
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[
∆𝑖𝑥
∆𝑖𝑦
]
̇
=

[
 
 
 −

1

𝑅𝐶𝑑𝑐𝐶𝑑𝑐
−
𝐶𝑑𝑐
𝜏

0 −
1

𝜏 ]
 
 
 

⏞            
𝐴11

[
∆𝑖𝑥
∆𝑖𝑦
] +

[
 
 
 
 
 
 
𝐶𝑑𝑐

2𝜏√𝑉𝑑𝑐
2 𝑜

0

1

2𝜏√𝑉𝑑𝑐
2 𝑜

0

]
 
 
 
 
 
 

⏞        
𝐵11

[
∆𝑉𝑑𝑐

2

∆𝜑𝑣
𝑑𝑐] 

Define the following 15 states and 5 inputs in the d-q frame to find the transfer function 

(𝑇𝐹 =
∆𝑉𝑑𝑐

2

∆𝐼𝑝𝑣
) 

∆𝑥 = [∆𝑖𝑑
𝑔
 ∆𝑖𝑞

𝑔
 ∆𝑖𝑔𝑑

𝑔
 ∆𝑖𝑔𝑞

𝑔
 ∆𝑣𝑑

𝑔
 ∆𝑣𝑞

𝑔
 ∆𝜑𝑑

𝑖  ∆𝜑𝑞
𝑖  ∆𝜀 ∆𝜑𝜀

𝑝𝑙𝑙
 𝜑𝑣
𝑎𝑐 ∆𝑉𝑑𝑐

2  ∆𝜑𝑣
𝑑𝑐 ∆𝑖𝑥 ∆𝑖𝑦]

𝑇
 

∆𝑢 = [∆𝑉𝑑𝑐
2 ∗ ∆𝐼𝑝𝑣 ∆𝑣𝑑

∗  ∆𝑣𝑔𝑑
𝑔
  ∆𝑣𝑔𝑞

𝑔
]
𝑇
 

𝐴11 = [

𝐴1 + 𝐵1(𝐴4 − 𝐵4) 𝑍 −𝐵1 + 𝐶1𝐷6 + 𝐵1 + 𝐵1𝐶4𝐷6 + 𝐵1𝐵4𝐷10
𝑍 𝐴2 (1/𝑁)𝐵2 + 𝐶2𝐷6
𝐵3 −(1/𝑁)𝐵3 𝐴3 + 𝐶3𝐷6

] 

𝐴21 = [
−𝐴5 𝑍 𝐴5𝐷10
𝑍 𝑍 𝐵6
𝑍𝑣 𝑍𝑣 𝐴8

] 

𝐴31 = [
𝐶9 + 𝐷9(𝐴4 − 𝐵4) 𝑍 𝐷9(𝐼 + 𝐶4𝐷6 + 𝐵4𝐷10)

𝑍 𝑍 𝑍
] 

𝐴12 = [

𝐵1 (𝐶1 + 𝐵1𝐶4)(𝐶6 + 𝐷6𝐴7) + 𝐵1(𝐶7 + 𝐴4𝐵7+ 𝐴7 + 𝐵4(𝐷10𝐴7 − 𝐵7)) 𝐵1𝐵4𝐶10

𝑍 𝐶2(𝐶6 + 𝐷6𝐴7) 𝑍𝑣
𝑇

𝑍 𝐶3(𝐶6 + 𝐷6𝐴7) 𝑍𝑣
𝑇

] 

𝐴22 = [

𝑍 −𝐴5𝐵7 + 𝐴5𝐷10𝐴7 𝐴5𝐶10
𝑍 𝐴6 + 𝐵6𝐴7 𝑍𝑣

𝑇

𝑍𝑣 𝐴8𝐴7 𝑍𝑣𝑍𝑣
𝑇
] 

𝐴32 = [
𝐷9 𝐷9(𝐶7 + 𝐴4𝐵7 + 𝐴7 + 𝐶4(𝐶6 + 𝐷6𝐴7) + 𝐵4(𝐷10𝐴7 − 𝐵7)) 𝐷9𝐵4𝐶10

𝑍 𝑍 𝑍𝑣
𝑇 ] 

𝐴13 = [
𝐵1𝐵4(𝐴10 + 𝐹10𝐵11) 𝐵1𝐵4𝐹10𝐴11

𝑍 𝑍
𝑍 𝑍

] 

𝐴23 = [
𝐴5(𝐴10 + 𝐹10𝐵11) 𝐴5𝐹10𝐴11

𝑍 𝑍
𝑍𝑣 𝑍𝑣

] 

𝐴33 = [𝐴9 + 𝐷9𝐵4
(𝐴10 + 𝐹10𝐵11) 𝐷9𝐵4𝐹10𝐴11
𝐵11 𝐴11

] 
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𝐴 = [
𝐴11 𝐴12 𝐴13
𝐴21 𝐴22 𝐴23
𝐴31 𝐴32 𝐴33

] 

𝐵 =

[
 
 
 
 
 
 
 𝐵1𝐵4𝐵10

𝑍
𝑍

𝐴5𝐵10
𝑍
𝑍𝑣

𝐵9 + 𝐷9𝐵4𝐵10
𝑍

𝐵1𝐵4𝐸10
𝑍𝑣
𝑇

𝑍𝑣
𝑇

𝐴5𝐸10

      

𝑍𝑣
𝑇

𝐵8
𝐷9𝐵4𝐸10

𝑍𝑣
𝑇

    

𝑍
−𝐵2
𝑍
𝑍
𝑍
𝑍𝑣
𝑍
𝑍 ]
 
 
 
 
 
 
 

 

Use (∆𝑉𝑑𝑐
2 ≈ 2𝑉𝑑𝑐

𝑜 ∆𝑉𝑑𝑐), the Load Impedance of the compensated system is given as follows: 

∆𝑍𝑙
𝑐𝑜𝑚𝑝 =

∆𝑉𝑑𝑐
∆𝐼𝑝𝑣

=
1

2𝑉𝑑𝑐
𝑜

∆𝑉𝑑𝑐
2

∆𝐼𝑝𝑣

⏞
𝑇𝐹

 

• State-space model (2): Source Impedance (𝑍𝑠) 

The state-space linearized equation of the dc-cable is implemented as follows: 

𝑬𝒒𝒖 (𝟑. 𝟑𝟑) DC-Cable Linearized Equation 

[∆𝐼𝑝𝑣̇ ] = [−
1

𝐿𝑑𝑐
] [∆𝑉𝑑𝑐] + [(

𝑟𝑑 − 𝑅𝑑𝑐
𝐿𝑑𝑐

)] [∆𝐼𝑝𝑣] 

The Source Impedance is given as follows: 

∆𝑍𝑠 =
∆𝑉𝑑𝑐
∆𝐼𝑝𝑣

= (−𝐿𝑑𝑐)𝑠 + (𝑟𝑑 − 𝑅𝑑𝑐) 

 


