The Study of SSDT Hook through Comparative Analy&tveen Live
Response and Memory Image

Muteb Alzaidi, Ahmed Alasiri, Dale Lindskog, Pavtdvarsky, Ron Ruhl, Shafi Alassmi
Information Systems Security Management
Concordia University College of Alberta, Edmont@anada
{Muteb.Alzaidi, Medo00.2004, alassmi.shafi}@gmaila

{dale.lindskog, pavol.zavarsky, ron.ruhl}@concordiaca

Abstract

The purpose of a kernel rootkit is to prevent didecof a compromised operating system. System
Service Dispatch Table (SSDT) hooking has beenl®mg by most Windows kernel rootkits
(Kornblum 2006, Rie 2006) as a method of hidirgsfi processes and registry keys from system and
investigative utilities, by determining what fuiocts become the targets within the operating system
This paper describes a comparative analysis betwleendetection capabilities of a particular live
response utility, MANDIANT Redline, and a memoryage analysis utility, Volatility, when the SSDT
has been hooked by a rootkit. This comparative yaimlshows that Redline, when compared with
Volatility, is significantly limited in its abilityto detect SSDT hooks. We show that the limitatiohthis

live response utility are due to the fact thatelies on system calls for detection of SSDT hoolWge
further show that Redline fails to uncover otheéalMevidence that is both available in the memargge,
and helpful to the investigation.

Keywords: SSDT, rootkit, function, hook, system call, liresponse, memory image

[. INTRODUCTION

Brian D. Carrier recently revealed that one of there recent and famous worms, Code Red, “resided
only in memory and never wrote anything to disk'affler 2003). An example like Code Red further
illustrates the well understood importance of aillegy and analyzing volatile data. However,
examination and collection of volatile data candame in two quite different ways: through operating
system calls, which is the method most live respartiities use, or through the analysis of raw ragm
accessed either directly on the compromised sysieindirectly via an image of that system's memory

In this paper we demonstrate, in practical expeanisieand using well-known forensic investigation
utilities and bona fide Windows kernel rootkitsaththere are significant theoretical and practical
limitations to the reliance on operating systeniscidr the collection and investigation of volatiiata
related to SSDT hooks, and that these limitations ia the case of SSDT hooking rootkits, substigti
overcome by employing utilities that investigatevnaemory. These considerations further demonstrate
the pressing, practical importance of continuedaesh into memory forensics, continued developroént
memory image forensic utilities, and the integnatmf such theory and practice into real world live
response and digital forensic investigations.

This paper is organized in the following mannerct®a Il presents a full explanation of the system
service dispatch table; Section Il provides a ulsion of system service dispatch table hookingtiG@e

IV presents the details of our experimental desigd also provides information on the tools usethén
comparative analysis; our results and some disoussithem are presented in Section V; in sectibn V
our conclusions and recommendations for future vemekgiven.

IIl. SYSTEM SERVICE DISPATCH TABLE

The System Service Dispatch Table (SSDT) is a tibp#able contained by Windows Operating
Systems. Microsoft Windows systems use the SYSENIiRERuction to jump from user mode (ntdll.dll)

to kernel mode (ntoskrnl.exe). When triggered, $¥SENTER instruction will cause the process to
move to kernel mode by activating KiSystemServibe, system service dispatcher, which then uses the
information delivered from user mode to locate #ugress of an API routine (Kornblum 2006). The
system service number, known as the dispatcheisiyen used as an index entry into address lookup
tables (Hoglund and Butler 2007, Blunden 2009, htigt al 2010), as shown in Figure 1 as step numbe
1.

As shown in step number 2 of Figure 1, the systerdice number is 32 bits in size. Bits 0 through 11
indicate what service will be called, and bits 12l 43 specify one of four possible service desaript
tables. In a Windows environment, only two tablesia fact used, and those tables are: SSDT (Gghwh
describes the KeServiceDescriptorTable, and SSDT), (Iwhich describes the
KeServiceDescriptorTableShadow. If the value ohbmts 12 and 13 are 0, then that indicates that th
KeServiceDescriptorTable is being used. Whereasjtifl2 is 1 and 13 is 0, then that indicates the
KeServiceDescriptorTableShadow is being used.i$hmlicated in Figure 1 as step number 3.

In KeServiceDescriptorTable, the system servicebmmmranges from 0x0000 to OxOFFF, while the
KeServiceDescriptorTableShadow will have systenvisernumbers ranging from 0xI000 to OxIFFF
(MOYIX 2008). Moreover, the two service descriptables contain two substructures, generally referre
to as System Service Tables (SSTs), and specifiaalKiServiceTable and W32pServiceTable. An SST
is an address lookup table that can be definedring of the following C structure (Zhang and Bi 201
Blunden 2009, Zhang et al 2009) which we depicstiep number 4 of Figure 1. The C structure is
declared like this:

typedef struct _SYSTEM_SERVICE_TABLE

{

PDWORD serviceTable; //array of functionrpers
PDWORD filed2; //not used in Windows fiteaild
DWORD nEnters; //number of function pointersS8DT
PBYTE argumentTable; [larray gfebcounts
} SYSTEM_SERVICE_TABLE;

This C code shows that the first attribute, sefvadge, “is a pointer to the first function of arrayr in
virtual addresses” (Blunden 2009), where each ed$ehaddresses is an entry point to a routine ineker
space. This array is known as the System Servispdith Table (SSDT) which contains KiServiceTable
and W32pServiceTable. The second attribute inCttstructure, filed2, is not used in the Windowsefre
build. The third attribute, nEnters, specifies tlumber of functions in the SSDT array. The lasilatte,

argumentTable, is a pointer to the first compomérn array; this array is referred to as a Sysdenvice
Parameter Table of bytes. Each byte in the Systemic® Parameter Table shows the amount of space
allocated for function arguments when the corredpanSSDT routine is called (Wu et al 2010, Blunden
20009).

medll.dil
SYSEMTER
= I 1 User Mode
Eemel Mode
Ntoskrnl.exe
Kisyslemaervice)
N
System Service Number
Routin Index 2
Bit 32 o013 120 Bit O
e -
-7 s 5
3
1 a 1 a .
12 W3alZpServiceTable giservicaTable
13 1 1 a a
KeserviceDescriptorTableShadow / \
powomD iSendceTable; | KeServiceDescriptorTable
lepworn fields; — | PV
| DwaRD REMLrbzs; ! I POWDRD KiServiceTable; |
| PENTE KlargumentTabie; | | FOWORD fieidz; |
| BWORD nEniries, | 4

e | a4 PPEATE Kidgumert Table; |
| PO'WERD WilpServiceTable: | e ———— = 4

FOWORD fislds; |

DWORD rEntries; |

PEYTE WiaZpargumes<Tahle: |

*

L ___ I e T

Fig. 1 System Service Dispatch Table Architecture

Additionally, the first 16 bytes of the KeServiceddaptorTable structure in the SST (KiServiceTable)
describe the SSDT for Windows API routines, asdatdid in step number 5 of Figure 1. In additioe, th
first 32 bytes of the KeServiceDescriptorTableShadtyucture indicate two SSTs which describe two
SSDTs. The first 16 bytes is just a replicatiorSET in the KeServiceDescriptorTable, and the second
16 bytes indicate a SSDT (W32pServiceTable) fohtibe user and graphical user interface, and which
“is implemented by the win32k.sys kernel-mode dij@lunden 2009), as shown in Figure 1 as step
number 6.

Moreover, when a process from ntdll.dll calls thystem service dispatch, KiSystemService, through
kernel space, it loads the EAX registry with theteyn service identifier number (i.e., an index itite
system function requested). The process then Itted&DX registry which contains the address of the
function parameter in user mode. At this stage,sysem service dispatcher confirms the number of
parameters and copies them from the user stacktbatkernel stack. It then calls the function stoa¢

the address indexed in the SSDT by the servicdifdmumber in EAX (Blunden 2009, Hoglund and
Butler 2007).

[ll. SYSTEM SERVICE DISPATCH SERVICE HOOK

Successfully hooking a function in the SSDT recgiga ordered series of steps. Firstly, the rookdds

to disable memory access protection in kernel modenodifying control register CRO (Blunden 2009,
Hoglund and Butler 2007). After disabling that aiton, information leading to the target function
needs to be acquired. In particular, the base addriethe function table and the index (EAX registf

the target function need to be known. Rootkits Uguacall a function called
MmGetSystemRoutineAddress (Microsoft 2010) which Il wiocate the base address of
KeServiceDescriptorTable and KeServiceDescriptat&8hadow. Once the base address of the target
table is obtained, then the attacker can get thetifon needed from that table and the rootkit caokha
target function (Ligh et al 2011). The rootkit doys the SSDT hook by replacing the address of the
system routine with the address of the target fanctWhen the system calls the function that hanbe
hooked in SSDT, it will be pointed to the rootkéide. The SSDT will search for the appropriate syste
call address of the function requested through oesfe and return it; the returned value will paothe
rootkit code. The rootkit at this stage has thditgbio act as a man-in-the middle, deciding what
information and programs the user does and doese®i{Hoglund and Butler 2007, Light et al 2010,
NIST 800-61, Wu et al 2010).

IV. COMPARATIVE ANALYSIS BETWEEN LIVE MEMORY AND ME MORY IMAGE

An important consideration in digital forensicsisool's capability to detect rootkits, and to gmealtheir

impact on the system. Our experimentation with Redhnd Volatility evaluates these forensic udhti

ability to detect and analyze SSDT hooking rootkdtisd in this section, we describe these two iaf#lit
and our experimental design and methodology.

A. ResearchMethodology

We used Redline and Volatility 2.0 to investigaystems in three separate cases where the system was
infected with a SSDT hooking rootkit. The only diftnce between these three cases was the specific
rootkit under investigation (see Table 1). All cadead the same experimental environment, and the
rootkits were chosen randomly

TABLE |

THE MODE OF THE EXPERIMENTAL RESEARCH

Rootkit’s name Target Systen
Runtime2 (Case 1)
Wincom32 (Case 2) | Windows XPSP3
Blackenergy (Case3)

Memory image analysis was performed on a VMwarekstation 8.0 guest machine running Windows
XP SP3, with the host machine running Ubuntu 10nx, equipped with an Intel (R) Core (TM) 2
CPU T7250 2.00GHz.

In all cases, the rootkit sample was launched, thed a memory image was taken by suspending the
system using the suspend feature provided by VMwakds memory image was analysed using
Volatility 2.0. Starting with pslist, a Volatilitplugin used to observe the processes that weréngiiom

the system when the memory image was taken; th&ireqrocess termination was captured. Next, the
SSDT plugin was used to observe which functions beeh hooked by the sample. That, along with

further analysis using other plugins such as SSIXT _fsSxview, impscan and others, enabled us to
investigate memory image.

Memory acquisition and analysis was conducted ttirees, and between each iteration, a five minute
time interval was allowed to elapse in order toesbs any dynamic change that would occur, as veell a
to help ensure reliable comparison.

Each time we launched the rootkit sample and tbeknhemory image, live analysis using Redline was
performed. Redline has the capability to detect B3IDoks applied by a rootkit. Redline also flags
processes as suspicious, and then investigatepdtentially infected processes. Volatile data is
constantly changing, and we monitored for such ghdy analysing the live system with Redline over a
interval of time after rootkit infection, and compe these results with the static memory image veitid
subsequent memory images obtained at these irgerval

B. Memory image analysis

We captured a full memory image in all three casas] employed Volatility framework and the
Interactive Disassembler Professional (IDA PROnt@stigate the images. The Volatility Framework is
an open collection of tools which can be used fdragting digital artifacts from volatile memory
(RAM). These techniques for digital artifact extian are conducted entirely independently from the
system being examined, yet they are able to prawsight into the runtime condition of the systefé
Volatility Framework, IDA Pro). The utility has thability to detect SSDT hooks via the SSDT plugin,
and further investigate rootkit hooks using othkigms, such as ssdt_ex, pxsview, callbacks, tlsead
procmemdump, modules, filescan, hivelist, printk@yd impscan. IDA PRO is a dissembler and a
debugger used to analyse malware code. It is andepey for some of the Volatility plugins that we
used.

C. Live response analysis

In a live, real-time state, a system under invesitig stores crucial, transitory data that can sgpo the
examiner the precise state of the system. Redhnebe used as a live response utility to invesigat
system infected with a SSDT hook. Redline, a friélgyufrom MANDIANT, hastens the procedure of
treating hosts suspected of being infected or wfiser compromised, while simultaneously providing
support for in-depth analysis of live memory. Itsadesigned to assist in uncovering even well-hidden
malware, and has the ability to detect and exarf@i8®T hooks in some detail; Redline aids in the
investigation of processes, hooks, drivers andogsyiDLL injection, network ports and connecticang]
untrusted handlers (Redline, Malin 2008).

V. DISCUSSION AND RESULTS

Table 2 presents the data observed and investigated both forensic utilities: Redine in a livespense
context, and Volatility for the investigation of mery images. A check markl/Y in Table 2 indicates
evidence successfully collected; an x mark (x) &bl€ 2 indicates where data was not obtained fram t
utility.

TaBLE 2 COMPARISONSBETWEENREDLINE AND VOLATILITY

Case 1 (runtime2) Case 2 (wincom32) Case 3 (blackenergy2)
Rediine | Volatility | Redline | Volatility Redline volatility

Processes list J J y N y N
Process termination X vV X y X y
$SDT Hooks y y | y x v
Imported functions J J y N X N
String section V[V[1,/' \f X \f
Suspicious processes |y J y N y N
Threads analysis X v[X \f X \f
Device tree y y v y X y
Files scan y y v \ v \
Call-backs routines X V X y X y

In all three cases we found that Redline was unbtietect terminated processes, infected threadis,
back routines and, in one case (case 3), SSDT hddies inability to detect blackenergy2 in case 3
indicates that Redline’s success in detecting B2TShook depends upon the of type of function Haat
been hooked. We discuss this in more detail below.

Redline failed to obtain certain types of evideabeut the rootkits, and there are many reasonghifr
Information about terminated processes is unavailab Redline, since this information resides in
unallocated space in RAM. Information can be diffidor a live response utility like Redline to uwner
when it is located in unallocated RAM, since unadlied RAM is not mapped to kernel mode (Aljaedi, et
al 2011). Another limitation is that a live respengility like Redline tends to operate in kernelds.

Volatility directly accesses memory (via a memanage), and therefore can retrieve unallocated data;
was in unallocated memory that we were able to éwidence of the rootkit's installation on the spst
including terminated process that indicated thakibdnad infected the system. We must bear in mind;
however, that memory image analysis is only ableoltain this kind of data if it has not been
overwritten. This fact was verified in our experimtg where after a sufficient interval of time, |iility
was no longer able to detect the terminated proo@sesponding to the execution of the rootkitatist.

Furthermore, kernel space needs to access kereabitblock (KTHREAD) to perform thread preparation
and synchronization for running threads. Some kitgl fields of the KTHREAD structure are described
briefly in Table 3 (Russinovich and Solomon 2009).

TABLE 3KTHREAD STRUCTURE ELEMENTS

Element Description

Dispatcher header

KTHREAS start with it becauseat is
object and can be waited to execute

Execution time

Total CPU time

Cycle time CPU cycle tim
Pointer to kernel stack It point to base and upper address of
information kernel stack

he

Pointer to system service
table

Any thread starts by point to the majn
system service table
(KeServiceDescriptorTable).

Mutant list List all mutant thread have
Scheduling information Thread scheduling
Pointer to TEB Thread ID, TLS (Transport Layer Security)

and, PEB pointer, and other user-mode
information

The KTHREAD structure includes an entry which psitd the SDT that is used by the thread, as Table 3
shows (honeynet 2008). This pointer in KTHREAD peito KeServiceDescriptorTable. This fact is used
by Volatility's threads plugin to identify threaitdected by the rootkit. In our experiments, theafidity
threads plugin was able to scan threads associatieeéach process to identify orphans, i.e. thresits

a start address that does not map back to the BstbtoduleList in kernel space, threads attached to
other process’s address space, and threads integt®88DT hooks (Light 2011). Since thread initiatie

a necessary step in process creation, infectecepses were uncovered in our experiments. Figuse 2 i
one sample of Volatility's threads analysis, anovghthe services.exe process (736) and its owadhre
(1276) is infected with rootkit hooks; in fact theotkit targeted this function for DLL injectionn |
addition, when infected threads were analysed ugiegmemory image, processes infected with the
rootkit hooked functions were detected. On the ottand, the live response utility, Redline, does no
provide threads analysis.

ETHREAD: OxB667855% Pid: 736 Tid: 1276 P
Thiz iz the tag
Tags: HookedSSDT > y-
responsible to

Created: 2012-01-12 23:24:12 .

. retrieve threads

Exited: - infected

Owning Process: 0x863516el '\zervices.exe!

Attached Process: 0x863516ed 'services.exe'

State: Waiting;UserReguest

BasePriority: 0=9 > Thiz iz the

Priority: 0x% infected process

TEB: 0xTf£fab000

StartAddress: 0x7c8l06ed

ServiceTable: 0x80552f60

[0] 0x80501b8c Hooked
[0x47] NtEnumerateRey Oxeef9efaé wincomdZ.sys functions by
[0x49] NtEnumerateValueKey OxeeS9eadZ wincom3Z.sys - wincomaz
[0%81] NtQueryDirectoryFile Oxeef8%e546 wincom32.sys s
1] Oxb B0

Fig. 2 Thread analysis sample in memory image

Volatility includes a call-back routines plugin threnables us to identify routines hooked by thekito
When the runtime2.sys device driver is loaded th® kernel, it is able to covertly gain controltbé
system. In fact, in all three cases the rootkithég stage changed the SSDT to point to a fundtion
provided, instead of win32k.sys, in order to creledgs in the registry. In case 1, the runtime2 hook
PsSetCreateProcessNotifyRoutine created a process the system and an
loRegisterShutdownNotification, which is a shutdowallback routine (see figures 5 and 6 in our
appendix). The Redline utility is unable to prodtitie evidence.

In all three cases the rootkits hook the functionthe SSDT and don’t release their hook. Furtheemo
there are common functions among the sample rgotkiat target the functions NtEnumerateKey,
NtEnumerateValueKey NtSetValueKey. The functione amployed to set and return key or subkey
values in the registry. When any calls are placethése registry functions, the rootkits’ hookeddtion
returns modified results in order to hide theirgemce on the target system.

ETHREAD: 0xB65dfcl0 Pid: 604 Tid: 824
Tags: HookedSSDT
Created: 2012-01-09 01:40:47
Exited: 2012-01-09 01:58:27
Owning Process: 0x866ba3bf 'Redline.exe'
Attached Process: 0x866€ba3bf 'Redline.exe’
BasePriority: Oxf@
Priority: 0x10
TEB: 0x00000000
StartAddress: 0x7c8106ed
ServiceTable: 0x860eabbl
[0] 0x862dZb90

|[Dxad1 NtQuergSgstemInformation 0x660d%da0 00000B27
Fig. 3 Volatility detect live response utility irdton by rootkit hooks

For the remainder of this section, we will elaberah our most remarkable experimental finding.dsec
three (blackenergy?), Redline was unable to debechooks by this rootkit. As we shall see, thikifa

is explained by the fact that Redline, like moge lresponse utilities, relies on the compromisexesy.
Most rootkit developers are aware of the detectimthods used by live response utilities, and as is
shown in Figure 3, Redline itself was infected viithckenergy?2's hooks.

Specifically, the rootkit hooks the NtQuerySystefaimation function, either to conceal itself or to
deceive a detection utility, by returning falseommhation from the system call made by the utility.
Detection via NtQuerySystemInformation operatesibiermining the address range of SSDT in kernel
space. The first step is to call the NtQuerySysidomiation function, and a failure to retrieve the
necessary information from this function will resuh the failure of this method. In fact, the
NtQuerySysteminformation function is responsible fetrieving valuable information that most live
response utilities rely on (see Table 4 in appendiigure 4 shows the trace of system calls made by
Redline to acquire data, including calls to th®udkrySysteminformation function.

+ &4 [E==m0 BmE D
D

Tl Module APFI

289966 7344 clr.dll LeaveCritical5ection { 1

259967 7344 clr.dll Ge {1

289968 7344 clr.dll Ge [

239969 7344 clr.dll G tyMask [GetCurrentProcess(),

289970 7344 clr.dll LoadLibraryW [“ntdil.dll™)

289971 7344 clr.dll GetProcAddress [0x77a20000, "MtQueryInformationThread”™!
289972 7344 clr.dll GetProcAddress | . "HtQuerysystemInformation”™ !
289973 7344 MSYCR100_CLRD4D.. Tis alue (16)

Fig. 4 Redline utility usage of system calls

Redline utility usage of system calls indicates thmain reason rootkits hook the
NtQuerySysteminformation function, namely, to pmvé¢hat information from being retrieved by a
rootkit detection utility. This technique is useg tmany rootkits to thwart detection, and thus easur
longer life on the target system. Since memorggenanalysis does not rely on system calls, deteofi

the hooks made by the rootkit cannot be evadetisnrhanner and in our experiments were detected
using Volatility.

Volatility's method of SSDT hook detection is ttas the Executive Thread Block objects (ETHREAD),
which have structures that contain the kernel thr@@THREAD) block, the thread identification

information, the process identification informatiosecurity information (in the form of a pointer the
access token), and impersonation information (Ressth and Solomon 2009, The Volatility
Framework, Light 2011). Accessing ETHREADS throigatility’s threads plugin captured the hook's
functions, including the hooked NtQuerySystemInfation function.

Our experiments demonstrate, in practical cases, disstem calls cannot be trusted in compromised
systems, because these calls may be interceptedodtkits, and therefore return incomplete,

untrustworthy, and even positively misleading ressuDur experiments also demonstrate how memory
image utilities are inherently more reliable, bessauhey cannot be tricked by kernel rootkits into
providing incomplete or false information, genedafeom an infected system call, and presented to an
investigator.

VI. REVIEW OF RELATED RESEARCH

The system service dispatch table hook is used agynsecurity applications, such as Diamond CS
Process Guard v2, Kerio Personal Firewall4, andelsel2, to apply their security features. Chew
discovered this in his research of the hookingrigples applied in those applications (Keong, 20B4j
Shen introduced the Windows Kernel Hook (WKH) tdghe to control behaviour of the replication and
store, to prevent contents from being re-stored repticated, by using ZwWriteFile, a function that
responsible for writing tasks. The WKH techniqueok® and modifies the corresponding functions to
target operations which will lead to a failure iccamplishing the operation. The author used anTSSD
hook to demonstrate his technique by hooking th&VrkeFile function in the SSDT. The WKH was
tested on Adobe Reader 9.0 where the “Save” fumatid not actually save any modifications to tHe fi
even though a message was returned indicatingthieasave was successful. This demonstrated that a
hook was in place which prevented the “Save” fuorcfrom occurring (Wang et al 2009).

Moreover, Zhang and Bi discuss a method of integtétection and restoration based on the kerrel fil
they provide a method to detect infection and restbe system after a SSDT hook has been employed.
The author’'s compare the number of the functiodthresses in the KiserviceTable's to the numbehén t
KeserviceDescriptorTable's (Yangquan Zhang andBi&011). Mahpatre and Selvakumar developed a
technigue named Kernel Rootkit Trojan Detector (KBIRto detect and scan against rootkits that operat
in kernel mode-ring 0. It also blocks a rootkitfrepreading infection of the target system. KeRTas w
set into the kernel mode to “monitor all the pr@sssand drivers being loaded into the system ateve
moment of their creation and deletion.” The Tasknifger then returns a list of all processes that are
running and drivers that are loaded, which are #eamined by KeRTD to detect any processes hidden
by rootkits. The technique was able to unhook S8ittions that were hooked by rooktits (Mahpatre
and Selvakumar, 2011).

VII. CONCLUSION AND FUTURE WORK

Rootkits employ increasingly sophisticated methtwswvoid traditional detection, due to developers’
awareness of the ways in which memory structurasbeaused to conceal their rootkit's existenceiwith
the system. This paper shows the limitations ofsiqular live response utility, Redline, for deteg
SSDT hooks, and explains how rootkits can, anduimexperiments did evade live response detection. |
light of this, we suggest that live response procesl include memory acquisition. The most valuable
method for collecting evidence is a hybrid approaehh current technologies, employing situational
recognition and triage technigues. With this apghodive response can function as triage, gathering

enough data to determine the next logical actiathar than being used to amass comprehensive,
unmanageable, and unreliable bodies of data. Undery conditions, it is crucial to resolving a ctizat

the examiner gains a more complete awareness agfitieng state of the machine. Using full memory
analysis and the requisite memory acquisitionsuggpsrt and complement traditional digital forensic
investigations is appropriate in such cases.

There is much need for further investigation irfte tapabilities and limitations of live response an
memory image analysis. To note two specific exasplee hope for (1) further inquiry into such
capabilities when rootkits target the control regigCR3, CR2) in the processor. When rootkits earg
those control registries they gain control over phecessor’s performance. Another promising acea f
further research is the analysis of function hogkly much antivirus software, in cases where ro®tki
are also in place. Finally, we hope for further @lepment of live response utilities that do not reh
system calls.

ACKNOWLEDGMENT

As first author, | am deeply indebted to the Minjistf High Education in Saudi Arabia represented in
Saudi Culture bureau in Canada for giving me a lsekoip. Special regards and gratitude go to my
brother Fahad Abdullah Alzaidi for his advices atiscussions. | give special thanks to my family for
their support all the time. Also, Thanks go to ndyiaors Dale Lindskog Pavol Zavarsky, and Ron Ruhl
for their continuous support. Also, | would like a@knowledge Michael Hale Ligh for his advices and
discussions. | am also indebted to my best fridadtheir support, Sami Alshaheri, Steven L. McGawa
and Amanda Solyom and others.

REFERENCES

Yangquan Zhang and Hai Bi (2011, July). Anti-robtkechonolgy of Kernel Integrity Detection and Reation
[Online]. Available: http://ieeexplore.ieee.org

Yulin Wang, Yang Shen and Jian Pan. (2009, Decemmhisage Control Based on Windows Kernel Hook
[Online]. Available http://ieeexplore.ieee.org

Yunlong Wu, Dong Cui and Qiang Zhang. (2010, Juk)Malicious Software Evaluation System Based on
Behavior Association [Online]. Available http:#iexplore.ieee.org

Chew Keong. “Defeating Kernel Native APl HookersIhiyect Service Dispatch Table Restoration”, SIGQ2
D. Kornblum, “Exploiting the Rootkit Paradox withidows Memory Analysis” (2006).

Bill Blunden, “Windows System Architecture, Hookir@all Tables, and Defeating Live Response” in thetkit
arsenal, Texas, Wordware, 2009, ch 3, 5, 9. ppl9®®

GreG Hoglund and James Butler, “the age old arhawking, subverting the kernel and Rootkit detetti;m
Rootkits: Subverting the windows kernel. bostoars®nal Education, 2006, ch, 2,4,10. pp, 21-47 72,205
31.

Mark E.Russinovich and David Solomon, in Windowteinals, Microsoft Press 2009,.

Jiayuan Zhang, Shufen Liu, Jun Peng, and Aijie G{2009, May). Techniques of user mode detectiostedy
Service Description Table [Online]. Available atg/ieeexplore.ieee.org

B. D. Carrier. (2003, December). Hardware — Basezimigky Acquisition Procedure for Digital Investigats.
[Online]. Available at http://www.digital-evidena@g/papers/tribble-preprint.pdf

Aljaedi, Amer, Lindskog, Dale, Zavarsky, Pavol, RuRon, and Almari, Fares (2011, October) Comparéanaylsis
of Volatle Memory forensics: Live respond vs. Memo image. [Online]. Available at
http://ieeexplore.ieee.org

Guide to Malware Incident Prevention and HandlingsN 800-83, 2005 MmGetSystemRoutineAddress routine,
Internet http://msdn.microsoft.com/en-us/librarytdows/hardware/ff554563 (v=vs.85).aspx 2010
[September, 13 2011]

Michael Hale Ligh, Steven Adair Blake Hartsteimdavatthew Richard “Memory Forensics: Rootkits"iraMare
Analyst’'s Cookbook and DVD: Tools and Techniques Fighting Malicious Code, New York Wiley, 2011
ch 17, pp, 636-772 Chris Rie, “Inside Windows RatkigiantMinds, Pittsburgh, 2006.

The Volatility Framework website (2011) [Online]vailable at http://code.google.com/p/volatility/

Redline website [Online]. Available http://www.maadt.com/products/free_software/redline/

Memoryze website [Online]. Available at http://wwmandiant.com/products/free_software/memoryze/

Mahpatre and Selvakumar, (2011, July), an onlirewviifference and behaviour based kernel rootkiect®n
[Online]. Available: ACM digital library.

IDA Pro, [Online] Available http://www.hex-rays.cdproducts/ida/index.shtml
Runtime2.sys rootkit , [Online] Available httputhw.kernelmode.info, [Oct 10, 2011]
Blackenergy?2 rootkit , [Online] Available http://wwoffensivecomputing.net/ [Oct 10, 2011]
Wincom32 rootkit [Online] Available http://www.keelmode.info [Oct 10, 2011]

Michael “Light Investigating Windows Threads with oMtility”, [Online] Available
http://mnin.blogspot.com/2011/04/investigating- ddmvs- threads-with.html APRIL 18, 2011 [Oct 3, 2Dp11

MOYIX, Auditing the System Call Table Internetitp://moyix.blogspot.com/2008/08/auditing-systeatl-c
table.html AUGUST 20, 2008 [Oct 3, 2011]

Cal Waits, Joseph Ayo Akinyele, Richard Nolan, aadry Rogers “Computer Forensics: Results of Livesponse
Inquiry vs. Memory Image Analysis” software engirieg intuition, Omaha, 2008.

Michael A. Davis, Sean Bodmer, and Aaron LeMastKernel-Mode Rootkits”, in Hacking Exposed Malwake
Rootkits, McCraw Hill 2010 Computer Security Incdédandling Guide (800-61), NIST

Cameron H. Malin, Eoghan Casey, and James M. AguilMalware Incident Response: Volatile Data Cdlmt
and Examination on a

Live Windows System” in Malware Forensics: Inveatigg and Analyzing Malicious Code, Syngress 2008 .c
Get system call address from SSDT, (2008) Availablettp://www.honeynet.org/node/438.

Microsoft, “NtQuerySystemInformation”, [Online] Aillable http://msdn.microsoft.com/ [December 20120

APPENDIX

C:\Volatility 2.0> python wol.py callbacks - a.vmem

WVolatile Systems WVolatility Framework 2.1 alpha

Type Callback Owner Those are the
PsSetCreateProcessNotifyRontine 0xb29%cb72e runtime2.sys — routines
IoRegisterShntdownNotification 0xb29cc036 runtime?.sys (\Driver\runtime2) hooked

Fig. 5 Callback routines hooked by runtime2.sys

-text -BZ29CB97E sub_ BZ9CB9LC endp

-text-B29CB97FE

CEEeMECB2OCBOFE 5 ——
-text-B29CEBE9E1 align 2

-Ttext cBZOCEY9EZ word BZ9CB982 dw LH5h

-LexL-B29CE9E8L aleresource

-text-B29CB98L unicode B8, <XERESOURCE> .8

-text-B29CEBE29n aB db "B" .8

-textB22CB29C ain:

-text -B29CBI9C unicode B, <IHNH>.08

-TtextB2Z2CEYA2Z asc_ B2Z9CB?AZ db - " .0

-text -BZOCE9n4 aSystemrootTemp -

-text-BZ29CEBEYAY unicode B8, <SystemRootwTempistartdruv_.exe> .8

-text cBZ9CB9DE align 18h

-text-B2Z92CEB9EDQ dd @8CCCCCCCCh

-text:B29CEB9EL 1

~textB22CEB2EM - [1111111111l S UEBROUTIMHNE [t iaaininineneenasass
-textB29CB2ELM

-text-B29CB2E4 : anttributes: bp-based Fframe

-text-BZ9CB9ELS

Fig. 6 The process created by runtime2.sy

TABLE 4

THE INFORMATION RETRIEVED THROUGHNTQUERYSYSTEMINFORMATION FUNCTION

Information

Description

SystemBasicInformation

Provide the number of processors running in ttséesy in
a SYSTEM_BASIC_INFORMATION structure.

SystemExceptioninformation

Provide an opaque SYSTEKICEPTION_INFORMATION structure
that can “be used to generate an unpredictablefeeadandom number
generator”.

Systeminterruptinformation

Provide an obscure S¥KETINTERRUPT_INFORMATION structure
that can “be used to generate an unpredictablefeeadandom number
generatc’.

SystemLookasidelnformation

Provide an obscure S8 TLOOKASIDE_INFORMATION structure
that can “be used to generate an unpredictablefeeadandom number
generatc’.

SystemPerformancelnformation

Provide an
opaque SYSTEM_PERFORMANCE_INFORMATION structure g¥his
usecto “generat ar unpredictabl see(for arandon numbe generatc’.

SystemProcessInformation

Provide an array of SYSTEROCESS_INFORMATION structures,
“one for each process running in the system.
These structures contain information about theunesousage of each
process, including the number of handles used dythcess, the peak
page-file usage, and the number of memory pagéshgrocess has
allocater’.

SystemProcessorPerformancelnformation

Providerary ar
of SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION struetu
s, “one for each processor installed in the system”

SystemQueryPerformanceCounterinformation

“Returns
a SYSTEM_QUERY_PERFORMANCE_COUNTER_INFORMATION str
ucture that can be used to determine whether #temyrequires a kernel
transition to retrieve the high-resolution performoa counter information
through aQueryPerformanceCounter function call”.

SystemRegistryQuotalnformation

“Returns a SYSTEMGRETRY QUOTA INFORMATION structure”.

SystemTimeOfDayInformation

“Returns an opaque SYSTEIMEOFDAY_INFORMATION structure
that can be used to generate an unpredictabl€seadandom number
generatol Use the CryptGenRandol functior instea(”

** The content of this table is obtained from Microsoft

